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Abstract

The truck sector is thought to be one of the first adopters of autonomous driving
technology. Reduced fuel- and labour costs, increased flexibility in scheduling and in-
creased hours of service, are all incentives for the freight companies to go autonomous.
The automation of the truck fleet is likely to be gradual. At first, autonomous trucks
(AT:s) are expected to have a conservative driving style, avoid lane-changes and keep
large gaps to the surrounding traffic. As technology advances, the AT:s will eventually
be capable of performing any type of driving manoeuvres and to a certain extent make
use of vehicle-to-vehicle communication systems (V2V).

In this thesis, the microscopic traffic simulation software SUMO is used to investigate
how AT:s with a conservative driving style, and AT:s with enhanced driving capabil-
ities, affect travel times, maximum road capacity and emissions of CO2. When simu-
lating AT:s in a heterogeneous traffic flow, the conservative driving style turned out
to have a negative effect on both maximum road capacity and average travel times.
Congestion around an on-ramp that worked as a bottleneck, significantly increased
when conservative AT:s were introduced. Total emissions of CO2 however, decreased.
The AT with enhanced driving capabilities, showed a much better performance, with
insignificant effects on travel times, increases in road capacity and decreases in emis-
sions of CO2. It is therefore likely that, in early stages of AT deployment, the overall
effect on traffic could be negative. Once the share of AT:s with enhanced driving
capabilities increase, the effect is instead assumed to be positive.

The introduction of AT:s advocates an increased share of trucks at night, when there
is free capacity available. In order to save energy, these AT:s would drive at much
lower speeds than the surrounding traffic. Simulations show that nighttime AT traffic
has limited effects on travel times but results in large increases in total emissions of
CO2. The simulations showed that a very low traffic flow is crucial in order to ensure
low emission levels. Introduction of nighttime AT traffic should therefore come with
sufficient time- and route restrictions, in order to ensure ecological sustainability.
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1 Introduction

The development of automated driving technology is moving fast and will, when in-
troduced in a large scale, have effects on traffic flow (Maurer et al., 2016). While
this is certain, it is not yet known how. (Calvert, Schakel and Lint, 2017) state in
their research article, that regardless of the outcome of research on this topic, the
results will help mitigating future infrastructure costs. If vehicle automation was to
negatively affect road capacities, infrastructure needs to be adapted in order to ensure
stable traffic flows. Contrarily, if vehicle automation implies a substantial increase of
capacity, the road infrastructure developments cannot continue like today.

According to (KPMG, 2019), the trucking industry is thought to be one of the first
users of autonomous driving technology. Ginsburg and Uygur (2017) concur and states
that a reason for this could be the plausible economic savings, the trucking industry
could make by e.g. reducing fuel costs and enabling a more flexible route planning.
Despite the expected future of autonomous freight transport, previous research on
autonomous vehicles’ effects on traffic has predominantly been focused on passenger
vehicles (Kristoffersson and Brenden, 2018). This has resulted in a research gap that
needs to be filled in order prepare for future freight traffic automation.

1.1 Previous work

The importance of investigating how self-driving vehicles affect traffic, is increasing due
to the growing utilisation of driver-assistance systems (Kesting et al., 2008). Calvert,
Schakel and Lint (2017) stated that we are currently in the beginning of a new era,
where the driver of a vehicle is gradually replaced by computer based systems. Many
researchers have studied how autonomous vehicles could potentially affect traffic flow
in different future scenarios. Less attention has however, been given to the effects
of automation within the freight sector. Ramezani et al. (2018) state that in the
published research related to effects of autonomous trucks, there are yet fewer that
use microscopic traffic simulations.

Ginsburg and Uygur (2017) discussed several ways that automation within the freight
sector could affect traffic. First, implications of truck platooning was investigated.
A platoon consists of several after another following trucks, that operate with small
time headways. Theoretically, the result is increased capacity as more vehicles can
pass a cross-section of a road at a particular time interval. The authors mentioned,
however, that long platoons of trucks could generate driving difficulties for the sur-
rounding traffic, which in turn would affect the traffic flow negatively (Ginsburg and
Uygur, 2017). Despite this, the capacity effect was assumed to be generally posit-
ive. Autonomous trucks will drive with less speed fluctuations compared to manually
driven vehicles, which reduces the risk of congestion. The authors further mentioned
that AT:s without vehicle-to-vehicle communication systems are thought to make the
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total road capacity increase linearly with an increasing number of AT:s, whereas AT:s
equipped with vehicle-to-vehicle communication systems would result in a faster ca-
pacity increase. (Ginsburg and Uygur, 2017).

Müller (2012) used a microscopic simulation approach to investigate traffic implications
of AT platoons. A 5 kilometer long network with two to three lanes and without
intersections was used. In a platoon, vehicles are following the behaviours of a leader,
which is the very first vehicle in the vehicle string. If it starts to break, the following
vehicles react simultaneously, making the platoon act like a single vehicle unit. Müller
(2012) captured this behaviour by modelling each platoon as a long single vehicle that
used manual driving characteristics. The results showed that when 25 % of the vehicles
were platooning, the capacity increased with approximately 5 %.

Ramezani et al. (2018) used a refined version of the CACC car-following model, de-
veloped by Milanés and Shladover (2014), in order to simulate implications of truck
platoons, on Interstate 710 in Long Beach, California (Information about car-following
models can be found in chapter 2.3). The network was approximately 24 kilomteres
long and had 3 to 6 lanes. All automated trucks were assumed to be equipped with
vehicle-to-vehicle communication systems (V2V), enabling them to communicate with
other trucks and form platoons. In contrast to the simulations by Müller (2012), the
trucks equipped with CACC technology could form platoons during the ongoing sim-
ulation and did thus not need to be predefined. The results showed a positive effect
on both traffic flow and average speed. Müller (2012) however, discussed the works
of Henning, Preuschoff and Happe (2003), where different results were obtained when
simulating CACC-equipped trucks. The simulations showed that the increase in ca-
pacity that platooning could potentially generate, was compensated by disturbances
caused by the coupling procedure of the platoon.

Calvert, Schakel and Lint (2017) discussed the future of trucks with V2V communica-
tion systems. They argued that when simulating a future scenario with heterogeneous
flows of regular and autonomous vehicles, one should to a certain extent try to avoid
relying on V2V communication systems. The penetration rate of the system is likely
to be much lower than the total share of autonomous trucks, which results in a traffic
flow with a variety of vehicle technologies.

Kristoffersson and Brenden (2018) investigated different scenarios of future freight
automation by hosting a panel discussion with people working in the freight sector.
The panel mentioned increased night driving as a possible effect of automation within
the freight sector. This because drivers’ working schedules would no longer need to
be considered when planning the transport routes. Analogously, removing the driver
would also enable the trucks to drive at lower speeds to save energy.

Energy saving and CO2 emissions are recurring subjects within the research on autonom-
ous freight transport. Ginsburg and Uygur (2017) stated that AT:s have the potential
to cut fuel consumption and emissions within the freight sector since they will drive
with less speed fluctuations compared to regular trucks. Sugimachi et al. (2013) on
the other hand mentioned the decreased inter-vehicular spacing as a reason for a more
energy- and fuel efficient freight transport, when using autonomous vehicles. A smaller
gap to the preceding vehicle entails less air resistance which in turn reduces the energy
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consumption (Sugimachi et al., 2013). This effect is even greater when the trucks drive
in a platoon, where inter-vehicular distances are kept at a minimum.

As cited researchers have shown, there are several studies that have investigated the
behaviour and effects of autonomous trucks, in a variety of transport networks. Many
of which, did however, focus on the effects of platooning and advanced V2V commu-
nication systems. It is likely however, that within a foreseeable future, lower levels
of automation will be introduced first (Calvert, Schakel and Lint, 2017). Later in
development, the traffic flow is likely to consist of vehicles with a variety of automa-
tion technologies. This thesis therefore aims at investigating how autonomous trucks
without V2V communication systems could affect traffic flow. Two types of autonom-
ous trucks are defined, one with a conservative driving style, which represent AT:s in
an early stage of development and one with an aggressive driving style, representing a
further developed AT. This will capture how the AT:s’ driver behaviour affects different
aspects of traffic flow, such as maximum capacity, travel times and CO2 emissions.

Furthermore this work will investigate the traffic flow implications of a distribution
of AT:s, with and without V2V communication systems. Current research, such as
Ramezani et al. (2018), has covered the positive traffic flow effects of trucks equipped
with V2V communication systems. However, microscopic simulations with such AT:s
in a heterogeneous flow of other types of AT:s with lower levels of automation, is
currently missing. This work aims at filling this research gap.

Lastly, this thesis will analyse how total emissions of CO2 change when introducing the
above mentioned AT types. Research shows that autonomous vehicles, including AT:s,
have the potential to decrease CO2 emissions and energy consumption (Kristoffersson
and Brenden, 2018). However, how emissions from the entire traffic flow change,
including regular cars and trucks, has until not been investigated. By measuring the
total amounts of emitted CO2 during each simulation, this work tries to answer this
question.

1.2 Purpose statement

The purpose of this thesis is to investigate how autonomous trucks (AT:s) could affect
traffic flow, once they are introduced in a large scale. Three scenarios are created which
represent different aspects of autonomous freight transport in an urban motorway
setting. The scenarios are simulated in a microscopic traffic simulation software, in
order to study how autonomous trucks affect travel times, travel costs, maximum road
capacity and emissions of CO2.

1.3 Research questions

The thesis will aim at answering the following research questions:

• How do AT:s without V2V communication systems affect travel times, travel
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costs, total emissions of CO2 and maximum road capacity, when introduced in
an urban motorway setting?

• How does a distribution of AT:s with and without V2V communication sys-
tems affect travel times, travel costs, total emissions of CO2 and maximum road
capacity, when introduced in an urban motorway setting?

• How does slow AT traffic at night affect travel times and emissions of CO2?

1.4 Geographical setting

In this thesis a road network consisting of an 8.6 kilometre long motorway section with
two grade-separated intersections. In order to make the infrastructure and the traffic
as realistic as possible, the network was modelled to replicate a section of a real exist-
ing motorway. When looking for a suitable geographical location, there were several
aspects to bear in mind. Firstly, the motorway should be located in an environment
where the traffic flow is high and sometimes reaches capacity. This would facilitate
the analysis of the autonomous trucks’ effect on total road capacity. Secondly, the mo-
torway section should contain a number of on- and off-ramps with considerable traffic,
which would act as bottlenecks in the network. Lastly there should be sufficient data
on e.g traffic volumes, vehicle distributions and time headways in order to replicate
the transport system well.

A section of motorway E6 in central Gothenburg, Sweden, turned out to fulfill all
the above mentioned criteria. E6 is one of Scandinavia’s most important highways,
connecting Trelleborg in the southernmost part of Sweden with the Norwegian town
Kirkenes above the arctic circle (E6 Highway Project 2020). Through central Gothen-
burg, on the west coast of Sweden, E6 has three lanes in both the northbound and
southbound direction and has grade-separated intersections. The speed limit is re-
stricted to 70 km/h through the urban area, which differs from the standard speed
limit of 110 km/h on rural parts of the motorway (NTF, n.d.). At G̊arda intersection
(see figure 1.1), there are loop detectors which collect information on vehicle flows,
speeds and vehicle distributions. Data from the detectors was provided by Trafik-
verket (2019). More information about the road network in the simulation model is
shown in chapter 3.3. A picture showing the topology of the network model is shown
in figure 3.3.
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Figure 1.1: Location of the motorway network modelled in this thesis. The road section
in pink represents motorway E6 in central Gothenburg. Source:
OpenStreetMap (2020).

1.5 Scope and limitations

As mentioned above, the purpose of this study is to explore traffic flow effects of
autonomous trucks in an urban motorway setting. The focus is therefore on infrastruc-
ture with grade-separated junctions and median dividers, which prevents the traffic
flow in one direction from interacting with the flow in the opposite direction. The
simulated vehicles are thus not exposed to a range of traffic situations that normally
occur during an average trip, such as over-takings in the opposite direction lane, giving
way to vehicles approaching from the right in intersections, driving trough signalled
intersections as well as interacting with pedestrians and cyclists. Consequently, there
are several aspects of traffic with autonomous trucks that this work will not cover.

The geographical setting entails further limitations to this work. The speed limit on the
investigated part of motorway E6 in Gothenburg is 70 km/h, which differs significantly
from rural sections of the Swedish motorway network, where the standard speed limit
is 110 km/h (NTF, n.d.). As a consequence, the results presented in this work cannot
be used to draw conclusions about AT vehicles’ general effects on traffic flow under
circumstances that differ significantly from those modelled in this thesis.

A vehicle’s travel time, average speed and emission of CO2 relate to the stability of
the traffic flow. If the flow starts to break down, and starts showing a stop-and-
go behaviour, the average speed is reduced, which increases the travel time. The
probability of flow breakdown correlates with the occurrence of bottlenecks, such as
on-ramps or merging lanes in the network. In the network simulated in this thesis,
the geographical spread is limited and only covers two on-ramps. As a result, flow
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characteristics shown in the simulations might differ significantly from the real traffic
flows on motorway E6 through Gothenburg. Congestion at a particular cross-section
could appear before the flow rate reaches capacity, due to traffic breaking down further
ahead in the network. The aim of the thesis is thus not to relate the results to the
infrastructure at the particular location in Gothenburg, but instead, in a more general
sense, to study AT vehicles’ effects on traffic flow, given the circumstances defined in
the model.

Lastly, when simulating vehicle emissions in this work, it is assumed that all vehicles,
including the AT:s, run on fossil fuels. No data on the characteristics of vehicles on the
route has been considered. A share of today’s vehicles use other fuels than gasoline
and diesel, which means that the emission results shown in this thesis might be slightly
exaggerated.

1.6 Thesis structure

The thesis is structured as follows. Chapter 2 contains a literature review, in which
the most relevant aspects of autonomous vehicles and microscopic traffic modelling is
presented. Chapter 3 describes the methodology used throughout this thesis, including
the model structure, model calibration and simulated scenarios. Chapter 4 presents
the results from each simulation and in chapter 5, the results are discussed an analysed.
Lastly, in chapter 6, conclusions are drawn, based on the presented results.
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2 Literature review

2.1 Autonomous vehicles

The autonomous vehicle technology is developing fast and is to be commercially avail-
able during the coming decade, according to Gordon et al. (2018). The autonomous
vehicle technology is divided into 6 levels by the Society of Automobile Engineers
(SAE, 2019). It ranges from 0 (no autonomous technology) to 6 (full automation, no
actions from driver is needed). The lower levels of automation contain e.g. break- and
acceleration control, lane-keeping assistance and adaptive cruise control (SAE, 2019).
Some technologies are currently available in modern passenger cars, whereas technolo-
gies in the higher levels of automation are still to be developed. Tettamanti, Varga and
Szalay (2016) argue that in the initial phase of vehicle automation development, the
driver behaviour will be conservative, with large time headways to surrounding traffic
and as a result, there will be a loss of road capacity. Later on in development, however,
the authors predict an opposite effect. They further argue that the driver behaviour
of an automated vehicle will be more deterministic than that of a regular vehicle and
have significantly lower reaction times (Tettamanti, Varga and Szalay, 2016).

2.1.1 Adaptive Cruise Control (ACC)

The Adaptive Cruise Control system is based on the regular cruise control systems
(CC), that makes a vehicle keep a particular speed that is determined by the driver
(Kesting et al., 2008). If there are no preceding cars ahead in the same lane, the
vehicle equipped with the CC system can keep this desired speed. However, if the flow
of cars increases, and there are slower vehicles ahead in the same lane, the driver needs
to deactivate the CC system, by manually breaking the vehicle. A vehicle equipped
with Adaptive Cruise Control technology, on the other hand, automatically adjusts its
speed according to the speed difference and distance to the preceding vehicle (Kesting
et al., 2008). Figure 2.1 shows an ACC-equipped vehicle following another vehicle.
Radar is used to calculate the distance gap xr and the relative velocity to the vehicle
in front vr, from which the preferred velocity vh and acceleration ah is determined
(Naus et al., 2010).

Several traffic simulations have indicated that ACC-equipped vehicles could have a
positive effect on road capacity. Kesting et al. (2008) simulated an increasing market
penetration rate of ACC-equipped cars on a 13 km long 3-lane motorway with an
on-ramp that generated significant congestion problems. The simulations showed that
already at a market penetration rate of 25 %, the congestion was eliminated. Des-
pite this, the ACC technology has its deficits. Milanés and Shladover (2014) showed
through experiments that when many ACC-equipped vehicles drove in a platoon, the
ACC-system did not prove string stability. When the very first vehicle in the pla-
toon started breaking, the following vehicle reacted by breaking harder than the first
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vehicle. This resulted in an amplification of the breaking reactions backwards in the
platoon, making the last vehicle decelerate much more than the first vehicle (Milanés
and Shladover, 2014). The authors therefore stated that an increased market penetra-
tion rate could make the traffic flow less stable. According to the authors, the reason
the simulations have not indicated the string stability issues shown in the experiments,
is that the they have underestimated the time the ACC needs to react to changes to
the preceding vehicle’s speed (Milanés and Shladover, 2014).

Figure 2.1: Structure of the ACC system. Source: Naus et al. (2010)

2.1.2 Cooperative Adaptive Cruise Control (CACC)

The Cooperative Adaptive Cruise Control (CACC) make use of the speed control sys-
tems found in ACC techonologies, but extends it by implementing Vehicle-to-Vehicle
(V2V) communication systems (H. Liu et al., 2018). The V2V communication enables
vehicles to drive with much smaller time gaps than regular vehicles, since they can
communicate with vehicles further ahead in the same lane, and thus react to speed
changes earlier. H. Liu et al. (2018) state that a CACC-equipped vehicle can use a
time gap of only 0.6 seconds, compared to the average time headway on motorways,
which is 1.4 seconds. Milanés and Shladover (2014) further showed that, unlike the
ACC system, the CACC system was string stable when implemented on a platoon of
cars. In contrast to an ACC-equipped vehicle, a vehicle with CACC technology can
react to speed changes made by any vehicle in the platoon, which drastically reduces
the reaction time and improves the string stability (Milanés and Shladover, 2014).

2.2 Traffic modelling

Traffic models are used to experimentally analyse traffic flow characteristics in a trans-
port system (Linköping University, 2020). The models use mathematical formulas in
order to replicate e.g vehicles’ driving behaviours or traffic densities on a particular
road section. Traffic models have been used for a long time - the first models that were
based on traffic flow theories were developed by Bruce D. Greenshield already in the
1930’s (Treiber and Kesting, 2013). Due to increased traffic flows in urban areas and
development within computer science, traffic models have become very useful tools in
transportation planning in recent years.
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There are several types of traffic models and they can be categorised in various ways
(Treiber and Kesting, 2013). One common way to differentiate them is by the level of
network aggregation. In a macroscopic traffic model, traffic is modelled as aggregated
flows in an extensive road network with little detail (see figure 2.2). In a micro-
scopic model on the other hand, the network contains higher level of detail and every
single vehicle is modelled as a separate unit. Mesoscopic traffic models use a level
of detail that is in between the macroscopic and the microscopic models. (see figure
2.2). In sections 2.2.1 and 2.2.2 below, macroscopic and microscopic traffic models are
described.

Figure 2.2: Categorisation of traffic models based on the representation of reality. Source:
Trafikverket (2013).

2.2.1 Macroscopic traffic modelling

A typical case when macroscopic traffic modelling is used is when making traffic fore-
casts (Trafikverket, 2014). The forecast modelling has four distinctive steps:

1 Traffic generation

2 Destination choice

3 Mode choice

4 Traffic assignment

In the first step the observed area or region is divided into a number of zones, each
with different spatial characteristics. Based on data on a range of parameters, such
as population, income, car-ownership etc. the number of journeys generated within
the zone (the transport demand) and the number of journeys attracted by the zone
are calculated. Secondly the transportation demand between all zones are calculated
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which results in an origin-destination-matrix. In step 3 the traffic between all zones
are divided between each available transport mode, e.g car, bus, train etc. Lastly the
traffic is assigned to routes through the network, which generates flows on each link.
The output from step 4 affects both the mode- and destination choice - if a link gets
congested people would pick an alternative route to get to their destination. As a
result, step 2, 3 and 4 are calculated again and continues to do so iteratively until an
equilibrium is found (Trafikverket, 2014).

In a macroscopic traffic model (traffic assignment), the flow of vehicles in a road net-
work is modelled similar to fluids (Treiber and Kesting, 2013). Formulas describing
the conservation of mass are thus also applicable for a transport system. If one con-
siders a section of a road, the number of vehicles entering from one side must equal
the number leaving it at the other end, given the absence of on- and off ramps along
the road section. The conservation of vehicles is given by equation 2.1, where δk is
the change in traffic density during time step δt and δq is the change in traffic flow
along the road section δx (L. V. Knoop, 2017). This could also be written as a partial
differential equation as shown in equation 2.2.

δk
δt

+
δq
δx

= 0 (2.1)

∂t · k + ∂x · q = 0 (2.2)

Another important formula in macroscopic traffic modelling relates to the relation
between traffic density k, speed u and flow rate q (see equation 2.3). This equation
forms fundamental diagrams that can be shown graphically (see figure 2.3). With the
flow q defined as a function of the density k, equation 2.2 can be rewritten according
to equation 2.4. This forms the definition of the Lighthill-Whitham-Richards (LWR)
model which is based on the conservation of vehicles and a fundamental diagram (L. V.
Knoop, 2017).

q = ku (2.3)

∂t · k + ∂x · f(k) = 0 (2.4)
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Figure 2.3: Fundamental diagrams in traffic flow theory. Source: Zaidi et al. (2015).

2.2.2 Microscopic traffic modelling

In microscopic traffic modelling, traffic is modelled as a stream of discrete vehicles
(Treiber and Kesting, 2013). Time is the independent variable and every simulated
vehicle’s longitudinal and lateral position, speed and acceleration are calculated during
every time step of the simulation (Tapani, 2008). Figure 2.4 shows how a microscopic
model represents reality. During a small time step dt the change in speed dv for vehicle
α is a function of e.g the acceleration α, the current speed v, distance gap to a leading
vehicle s and difference in speed between vehicle α and a leading vehicle in the same
lane.

Figure 2.4: Description of how a microscopic traffic model represents reality. Source:
Treiber and Kesting (2013).

When simulating the longitudinal vehicle movements on any type of infrastructure,
each vehicle’s speed and acceleration will be affected by the behaviours of the sur-
rounding traffic. If a leading vehicle has a lower speed than the following vehicle in
the same lane, the following vehicle might have to decelerate in order to maintain its
desired safety time headway, T, to the leading vehicle. Correspondingly, if the leading
vehicle then accelerates, the following vehicle will react by increasing the speed to its
desired speed. In microscopic traffic simulations such vehicle movements are man-
aged by a car-following model (Krauß, 1998). It controls only the longitudinal vehicle
movements and does thus not allow the vehicle to pass the leading vehicle. Lateral
movements, such as lane changing on motorways and overtakings on two-lane roads,
are controlled by separate lane-changing models and overtaking models (Olstam J.,
2004). Car-following models are treated in chapter 2.3 whereas information about
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lane-changing models is found in chapter 2.5.

2.3 Car-following models

A car-following model controls a vehicle’s longitudinal movements, such as acceleration
and deceleration in response to the driving behaviour of a leading vehicle in the same
lane. According to Krauß (1998), there is a fundamental function that most common
car following models are based on (see function 2.1). It says that the momentary
acceleration of a vehicle i, at a timestep t, is a function of the difference between the
desired velocity Vdes and the current velocity vi and some ”sensitivity” parameter τ .
The desired speed Vdes, usually is a function of the speed of the preceding vehicle,
vt+1(t). (Krauß, 1998).

dvi(t)

dt
=
Vdes(t)− vi(t)

τ
= f(vi+1(t), vi(t), τ) (2.5)

In continuous car-following models, time is considered as a continuous variable which
means that a following vehicle’s acceleration is calculated at any point in time. This
results in several differential equations that describe the behaviour of a vehicle follow-
ing another (Treiber and Kesting, 2013). In discrete car-following models, time is not
continuous, but instead a range of discrete values. In every time step, the acceleration
of the following vehicle is calculated as a function of the results in the previous time
step. Discrete car-following models cannot replicate real traffic situations as well as
continuous models, but due to their simplicity, they need less computing power and
could thus still be advantageous (Treiber and Kesting, 2013). In the following sections,
the most commonly used car-following models are described briefly.

2.3.1 The Krauss model

The Krauss car-following model is the default car-following model, used in the traffic
simulation software SUMO (German Aerospace Center, 2019d). It was developed by
Stefan Krauß at the German Aerospace Center in 1998 (Krauß, 1998). It is categorised
as a ”Safe Distance Model”, since it is based upon the assumption that a driver will
adjust its speed in such a way that a desired distance to the preceding vehicle is kept
at all times (Kanagaraj et al., 2013).

A following vehicle’s speed is determined by first calculating a maximum safe speed,
vsafe. It is defined as the highest speed a vehicle can keep, without colliding with the
preceding vehicle in the same lane. vsafe is given by formula 2.6, where vl(t) is the
current speed of the leading vehicle, g(t) is the distance gap to the leading vehicle, τ
is the reaction time, v̄(t) is the average speed of the leading and the following vehicle
and b is the maximum deceleration ability (Jost and Nagel, 2005).

After the safe speed has been calculated, the vehicle’s desired speed, vdes, can be
calculated. vdes is the speed the vehicle would like to reach, given the vsafe constraints
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defined in formula 2.6 below. vdes is given by formula 2.7, where v(t) is the vehicle’s
current speed, a∆t is the speed increase during the current time step and vmax is the
vehicle’s maximum speed. .

vdes enables the calculation of the vehicle’s resulting speed in the next time step. This
is given in formula 2.8 where ε is the noise amplitude, a is the maximum acceleration
ability and η is a random number between 0 and 1 (Jost and Nagel, 2005). The
term εaη adds a random element to the desired velocity which captures the stochastic
characteristics of a human driver. When the resulting speed has been determined for
each vehicle in the simulation, the vehicles’ positions are updated according to formula
2.9.

vsafe(t) = vl(t) +
g(t)− vl(t)τ

v̄(t)
b

+ τ
(2.6)

vdes(t) = min{v(t) + a∆t, vsafe, vmax} (2.7)

v(t+ ∆t) = max{0, vdes − εaη} (2.8)

x(t+ ∆t) = x(t) + v(t+ ∆t) ·∆t (2.9)

2.3.2 Intelligent Driver Model (IDM)

The Intelligent Driver Model is a commonly used time-continuous car-following model
that belongs to the Gazis-Herman-Rothary (GHR) group of models (Pourabdollah et
al., 2018). In this group of models, the acceleration a of a vehicle i, is calculated as
a function of the preceding vehicle’s speed vi−1 and the distance gap to the preceding
vehicle si.

In the IDM model, the acceleration of vehicle i at time t is given by formula 2.10,
where amax is the vehicle’s maximum desired acceleration, vi(t) is the vehicles speed
at timestep t, vdes(t) is the vehicles desired speed at timestep t, δ is an acceleration
exponent and si is the distance gap to the preceding vehicle i. The parameter s∗i is
given by formula 2.11.

The IDM model has historically been a common choice of car-following model when
simulating autonomous vehicles (Calvert, Schakel and Lint, 2017). Modified versions of
the IDM model has also been used in experimental autonomous vehicles. Milanés and
Shladover (2014) found however, that when applied to a cars in their field experiments,
the model generated significant delays in the response to speed changes.

ai(t) = amax · (1−
vi(t)

vdes(t)
)δ − (

s∗i
si

)2 (2.10)

13



s∗i = s0 + vi(t) · T +
vi(t) ·∆vi(t)

2 ·
√
amax·bmax

(2.11)

2.3.3 Wiedemann model

The Wiedemann model is a psycho-social time continuous car-following model that
is used by the traffic simulation software VISSIM (Treiber and Kesting, 2013). The
model’s psycho-social nature brings that a following vehicle reacts to speed changes
of the preceding vehicle only if the speed change is larger than a particular threshold.
Treiber and Kesting (2013) state that this captures the behaviour of human drivers in
a better way than the models that react to infinitely small speed changes. Tettamanti,
Varga and Szalay (2016) however, argue that psycho-social, as previously used, will
not capture the behaviours of autonomous vehicles very well. The parameters used in
psycho-social models are based on statistics on human driver behaviours. Since the
driver behaviour of autonomous vehicles will be deterministic in comparison to human
driven vehicles, the psycho-social models need to be adjusted to match this behaviour
(Tettamanti, Varga and Szalay, 2016).

The Wiedemann model determines a vehicle’s acceleration based on four regimes:

1 Free flow

2 Approacing a preceding vehicle

3 Car-following close to a steady-state equilibrium

4 Critical situations

In each regime, the acceleration is calculated differently. The regimes are shown in
figure 2.5. The blue line symbolises a car approaching a slower vehicle in the same lane.
Once the threshold for detecting the preceding vehicle is passed (SDV), the vehicle
reacts by decelerating with an acceleration determined by regime 2, causing the speed
difference between the vehicles, ∆v, to decrease. Once ∆v is sufficiently small, the car-
following regime (regime 3) is activated, making the acceleration oscillate around ∆v
= 0. (Treiber and Kesting, 2013). The regimes in figure 2.5 are defined by functions in
a three-dimensional space, f(s, v,∆v), spanned by the gap to the preceding vehicle (s),
the following vehicle’s speed (v) and the speed difference ∆v. The regime borders are
thus in fact surfaces rather than curves as pictured in figure 2.5 (Treiber and Kesting,
2013).

2.3.4 ACC

The ACC car following model was developed by Milanés and Shladover (2014) to
enable simulation of vehicles equipped with adjustable cruise control technologies.
As mentioned in chapter 2.3.2, the IDM model had previously been commonly used
when simulating autonomous vehicles. However, after using the IDM car-following

14



Figure 2.5: Regimes in the Wiedemann car-following model. Source: Treiber and Kesting
(2013).

.

model on experimental vehicles, Milanés and Shladover (2014) questioned the IDM
model’s ability to react to a leading car’s speed changes. They therefore came up
with a car-following model specific for ACC vehicles, that turned out to generate a
better car-following behaviour (Milanés and Shladover, 2014). In the ACC model, the
acceleration of a vehicle k, is calculated with formula 2.12, where xk−1 is the position
of the preceding vehicle, xk is the position of the subject vehicle k, vk−1 is the speed of
the preceding vehicle and vk is the speed of the subject vehicle. thv is the desired time
gap to the preceding vehicle and k1 and k2 are weights, determining the importance of
the distance and the speed difference respectively. By minimising the error between
the simulation results and the data from the experimental vehicles, k1 = 0.23 s−2 and
k2 = 0.07 s−1 was found to generate the best fit (Milanés and Shladover, 2014).

ak = k1(xk−1 − xk − thvvk) + k2(vk−1 − vk) (2.12)

Since the ACC model was created to replicate the behaviour of vehicles equipped with
ACC technologies, and k1 and k2 was tuned in order to minimise the error between the
simulation results and the results from the field experiments, the string instability that
was shown in section 2.1.1 also applies for the ACC model (Milanés and Shladover,
2014). The authors mention that k1 and k2 could be adjusted to increase the string
stability, but that could worsen other aspects of the car-following behaviour.

2.3.5 CACC

The CACC car-following model was developed by Milanés and Shladover (2014) in
order to mimic the driving behaviour of autonomous vehicles equipped with V2V

15



communication systems. The simulated vehicles using the CACC-model can commu-
nicate to other surrounding vehicle, react to their speed changes and form platoons. In
contrast to the ACC car-following model, described in section 2.1.1, the CACC model
showed string stability when simulating a string of four cars (Milanés and Shladover,
2014). The CACC model uses the gap error ek to determine the vehicle speed. The
gap error is equal to the formula that is multiplied with k1 in the ACC model (see
formula 2.12). It is defined as the difference between the actual distance between the
vehicles and the desired distance gap (see formula 2.13). If ek is positive, i.e. the
distance between the subject vehicle and the preceding vehicle is larger than desired,
it causes the subject vehicle to accelerate (Milanés and Shladover, 2014).

The subject vehicle’s speed is calculated from ek and its derivative ėk (see formula
2.14). vkprev is the initial vehicle speed and kp and kd are weights that determine the
impact of ek and ėk respectively, on the resulting speed, vk. Milanés and Shladover
(2014) used kp = 0.45 and kd = 0.25.

ek = xk−1 − xk − thvvk (2.13)

vk = vkprev + kpek + kdėk (2.14)

2.4 Headway distributions

Even though networks in microscopic traffic simulations aim at being realistic and
representing real-world traffic networks as well as possible, they contain simplifications
that need to be considered when running simulations. In a real-world traffic network,
the geographical spread is very large, which means that the vehicle flow at a particular
cross-section is a result of the driving behaviours of numerous vehicles in the network.
In a microscopic simulation however, the traffic flow inside the model is a result of
predefined inflows. In order to generate realistic traffic heterogeneity, the traffic flow
entering the simulated network needs to follow a stochastic distribution (Treiber and
Kesting, 2013). The stochastic distribution used in this model is described in chapter
3.

Several research articles have investigated and compared stochastic distributions when
explaining time headways, T , at different traffic flows. If one assumes that the time
headway is represented by the stochastic variable X and the traffic flow per hour is
denoted q , the average time headway can be calculated calculated as:

lim
x→∞

∑n
i=1Xn

n
=

1
q

3600

=
3600

q
(2.15)

The time headways do, however, not distribute themselves symmetrically around the
average. As Figure A.1 shows, the time headway distribution on the Long Island
Expressway in New York City was proven to be asymmetrical with a peak at around 2
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Figure 2.6: Time headway distributions on the Long Island Expressway in New York.
Source: TRB, 2000

Table 2.1: Measured mean headways and standard deviations on motorway I-35 in
Austin, Texas. Source: Ye and Zhang (2009)

Flow < 800 veh/h 800-1500 veh/h > 1500 veh/h

Headway type µ σ µ σ µ σ

Car following Car 8.38 9.05 4.16 3.29 1.95 1.52
Truck following car 8.76 9.01 6.39 3.72 2.61 1.87
Car following truck 1.87 9.46 9.14 5.02 2.55 1.50
Truck following truck 9.12 9.56 9.42 6.08 2.75 1.54
Mixed 8.84 9.18 5.03 4.03 2.06 1.57

seconds (TRB, 2000). Time headways larger than the peak value was observed more
frequently than smaller time headways. This could partly be explained by the fact
that T has no upper limit but is downwards limited by a minimum safety headway.
Figure 1 further shows that the dispersion of T in the adjacent lanes 2 and 3 is smaller
and has a more uniform distribution (see figure A.1).

According to Greenberg (1966), the log-normal distribution was proven to generate
a good fit to time headway data. By fitting a log-normal distribution to both data
from a Californian freeway, as well as data from the Holland tunnel in New York City,
he proved that the log-normal distribution was able to describe the headways in both
data sets. Ye and Zhang (2009) instead used vehicle type specific headway data in
order to fit a distribution to each vehicle combination. In table 1, the results from
their analysis is shown. They found that the largest mean time headway occurs when
a car follows a truck. Another finding was that the standard deviation in the data
decreased for all vehicle combinations when the traffic flow increased. This means that
the data is distributed more closely around the mean at high traffic flows.
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2.5 Lane changing models

Apart from vehicles’ longitudinal accelerations, the traffic flow is also affected by the
lateral vehicle maneuvers such as lane changes (Moridpour, Rose and Sarvi, 2009).
In order to perform lane changes, a vehicle needs to adjust its speed to the traffic in
the adjacent lane. Sometimes, also the traffic in the adjacent lane needs to adjust its
speed to give the lane-changing vehicle sufficient space. A result could be a capacity
drop that can spread backwards in both lanes (Moridpour, Rose and Sarvi, 2009). In
order to simulate traffic realistically, modelling vehicles’ lateral movements is therefore
of great importance.

In microscopic traffic simulations, lateral movements are determined by a separate
lane-changing model. As of 2019, SUMO supports three different lane changing mod-
els: LC2013, SL2015 and DK2008 (German Aerospace Center, 2019a). The DK2008,
created by Daniel Krajzewicz, was the model that was first used by the simulation
software and was the default lane-changing model until the release of SUMO version
0.18.0. LC2013, is the current default lane-changing model, created by Jakob Erd-
mann as an expansion of the previous DK2008 model. The SL2015 model is used
when increased lateral resolution is needed (German Aerospace Center, 2019a). Since
LC2013 is the default lane changing model, it will be described in further detail below.

2.5.1 LC2013

The LC2013, developed by Erdmann (2015) considers a vehicle’s planned route, in
order to calculate the need for lane changes (Grumert, 2018). The model distinguishes
three main lane-changing types: strategic, cooperative and tactical (Erdmann, 2015).
A strategic lane change is performed when the vehicle cannot continue its planned route
by keeping to the current lane. This could i.e. be the case if the current lane diverts
from the motorway. A cooperative lane change is performed when a vehicle is changing
lane in order to facilitate another vehicle’s lane changing procedure (Grumert, 2018).
On a motorway, a cooperative lane change from the rightmost lane to the adjacent
lane lets a parallel incoming vehicle from the on-ramp enter the motorway. Tactical
lane changing on the other hand occurs when a vehicle follows vehicle with a speed
that is lower than the its desired speed. The following vehicle then performs a tactical
lane change to gain speed. These types of lane changes are considered when the need
to gain speed outweighs the effort it takes to perform a lane change (Erdmann, 2015).

18



3 Methodology

In order to investigate the possible effects on traffic flow that autonomous trucks
could have, microscopic traffic simulations have been used throughout this thesis.
As mentioned in section , there are several microscopic simulation software available
today. In this thesis, the software SUMO (Simulation of Urban Mobility) was chosen,
a modelling software developed by the German Aerospace Center (German Aerospace
Center, 2019c). In order to run simulations, SUMO was accompanied with several
Python-files, which controlled the simulation’s input and output data.

In total, three different scenarios were simulated in SUMO. Section 3.2 explains their
background and structure. In the simulations, three types of autonomous trucks (AT:s)
were defined. Each type of AT was characterised by a range of parameters related
to the longitudinal and lateral driving behaviour. Section 3.1 describes the driver
behaviour of all AT types and their relevant parameters. In section 3.3 the structure
of the simulation model and its associated Python scripts are explained. Figure 3.4
summarises the information into a flowchart which shows the model structure. Lastly,
section 3.4 describes the process of calibrating the simulation model based on data
from Trafikverket (2019).

3.1 Defining AT driving styles

There is currently not for certain how autonomous truck will behave in real traffic
situations on motorways. This uncertainty advocates testing how different driver be-
haviours affect traffic flow. In an interview with Tomas Olsson, at Einride, a Swedish
company developing autonomous truck technology, he stated that making AT vehicles
managing overtaking procedures is complicated, and will at first be avoided as much
as possible. Much later in development, autonomous trucks are thought to manage
overtakings and lane-changes as well as regular trucks. Calvert, Schakel and Lint
(2017) argues that the deployment of cooperation between AT:s, with for instance
V2V communication systems, is likely to be delayed, in comparison to lower automa-
tion systems.

The parameters that have been adjusted to define the AT driving styles are shown in
table 3.1. The parameter sigma was set equal to 0.0 for all AT:s. sigma regulates
the driver imperfections, in other words the likelihood of driving errors. When a fully
autonomous truck gets permission to drive on public motorways, the occurrence of
driving errors is assumed to have been minimised, advocating sigma values equal or
close to 0.0. The speedFactor parameter defines the vehicle’s desired speed in relation
to the speed limit. The vehicle’s desired speed is given by the speedFactor multiplied
with the speed limit. In these simulations it was set to 1.0 and speedDev, which
regulates the divergence from the speedFactor, was to 0.0 for all AT:s, since it was
assumed that an autonomous vehicle will not violate the speed limit at any time.
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The parameter tau regulates the desired time gap to a preceding vehicle. Calvert,
Schakel and Lint (2017) state that several simulations with ACC-equipped vehicles
have used desired gap times between 1.2 to 1.8 seconds. tau was set to 2.0 for the
conservative AT, since AT:s will have larger breaking distances compared to smaller
autonomous vehicles and thus need larger time gaps. Later in the development of
autonomous technology, the AT:s are assumed to be able to handle all possible traffic
situations and keep a smaller time headway to the preceding vehicle. tau for the
aggressive driving style is reduced to 0.8 seconds, which is slightly smaller than the
default value of 1.0. The cooperative AT used an even smaller time gap. Müller (2012)
stated that the distance gap in a platoon could be as little as 10 meter, which in the
current network corresponds to a time gap of approximately 0.5 seconds. Alipour-
Fanid et al. (2017) also used a time gap of 0.5 seconds when simulating CACC vehicles
and found a string of vehicles to be string stable. tau for the cooperative AT was thus
set to 0.5 seconds.

The conservative and aggressive AT:s used a car following model developed for vehicles
equipped with ACC-systems. The AT:s equipped with V2V technology instead used
the CACC car-following model. Both models, which were developed by Milanés and
Shladover (2014), are described in section 2.3.4 and 2.3.5.

Furthermore, there are a range of parameters associated with the lane changing be-
haviour. In all scenarios, the default lane changing model LC2013 was used, which
is described in section 2.5.1. The parameter lcStrategic regulates the strategic lane
changing, (German Aerospace Center, 2019a). If the parameter value is larger than
the default value 1.0, the vehicles perform lane changing earlier than a default vehicle.
For the conservative AT, the parameter lcStrategic was first adjusted to 0.8 since
overtakings were to be avoided. This however, resulted in large traffic jams at inter-
sections, due autonomous trucks changing lane very late and therefore made following
vehicles break hard. lcStrategic was thus left at the default value 1.0. For the other
two AT:s, the parameter was set to 1.2. Calvert, Schakel and Lint (2017) argued that
generally, vehicles with ACC-systems are likely to perform lane changes earlier than
regular drivers.

Changes to lcSpeedGain affects the eagerness to perform tactical lane changes to gain
speed. This could for instance be the case if there is a slower vehicle ahead in the
same lane. The conservative AT:s are assumed to avoid these kinds of lane-changes as
much as possible and thus get a speedGain value of 0.0. The other AT:s will also, to
a certain extent, try to avoid lane changes to gain speed, since travel time is not as
critical for a freight transport as for a passenger transport. In some situations however,
when the preceding vehicle’s speed deviates significantly from the AT’s speed, such
lane changes are needed. speedGain is set to half the default value (see table 3.1).

lcKeepRight regulates the eagerness to keep to the right. The conservative AT was
given a value of 5.0 after several simulations with different parameter values were
performed. lcAssertive decides the time gap needed in the adjacent lane in order to
perform a lane change. A value lower than 1.0 increases the desired gap, resulting
in less lane changing. The conservative AT got a value of 0.5 in order to avoid lane
changing in general. The aggressive AT got a value of 0.9, which means that it required
slightly larger gaps compared to regular trucks. The reason for this is that even though
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the vehicle would be able to perform lane changes like a regular truck, it was assumed
that the required gap will be larger, since it will take all available risks associated
to human driving behaviour into consideration when planning a lane change. Note
that no information on the exact time gaps could be retrieved since the autonomous
technology is not fully developed yet. Also for the cooperative AT, lcAssertive was
set to 0.9. The lane changing behaviours of the aggressive and the cooperative AT
were assumed to be equal.

Table 3.1: vType paramter values for the conservative, aggressive and cooperative AT
driving styles as well as for regular trucks.

Parameter ATcon ATagg ATCACC Regular trucks Default

sigma 0.0 0.0 0.0 0.3 0.5
lcStrategic 1.0 1.2 1.2 1.2 1.0
lcCooperative 0.5 1.0 1.0 1.2 1.0
lcSpeedGain 0.0 0.5 0.5 0.75 1.0
lcKeepRight 5.0 1.0 1.0 1.9 1.0
lcAssertive 0.5 0.9 0.9 1.0 1.0
speedFactor 1.0 1.0 1.0 1.17 1.0
speedDev 0.0 0.0 0.0 0.05 0.05
tau 2.0 0.8 0.5 2.0 1.0
carFollowModel ACC ACC CACC Krauss Krauss

3.2 Scenarios

In order to find traffic flow effects of autonomous trucks (AT:s), three different scenarios
were investigated. The scenarios try to capture different aspects of autonomous freight
traffic. Below, the scenarios are described briefly before a more in-depth description
in chapters 3.2.1, 3.2.2 and 3.2.3.

The first scenario (from now on called scenario A), aimed at investigating effects of
AT:s at high but stable traffic flows. Two different driving behaviours and three market
penetration rates of autonomous technology (MPRAT ) were simulated. Scenario A,
also investigated how a potential future vehicle distribution containing both AT:s and
passenger cars with V2V communication systems affected the traffic flow. Scenario
B on the other hand explored the coexistence of nighttime AT traffic at low speeds
and the regular traffic. According to Kristoffersson and Brenden (2018), a potential
effect of the introduction of autonomous trucks is that the amount of freight traffic at
night could be increased significantly, since drivers’ working schedules do not need to
be considered when performing the route planning. Another effect of the removal of
the driver is that the travel time for an AT at night will be less critical, advocating
reduced speeds, in order to save energy. Scenario B investigated how and under what
circumstances such traffic would be feasible. Lastly, in scenario C, AT:s effects on the
network’s maximum capacity was investigated. Like in scenario A, scenario C did not
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only aim at capturing the isolated effects of AT exclusively, but also to study how
a future distribution of both autonomous trucks and autonomous cars would affect
traffic flow.

In the future AV distribution, a significant share of both the truck fleet and passen-
ger car fleet was made up by autonomous vehicles. The vehicle distribution is shown
in figure 3.1. The distribution of AT:s was assumed to consist of both AT:s with
an aggressive driving style (and without V2V communication systems) and cooperat-
ive CACC trucks. All conservative AT:s were assumed to have been phased out and
replaced with AT:s with a higher levels of automation. The automation among pas-
senger cars was assumed to lag behind that of the truck fleet. Once fully automated
passenger cars are introduced on Swedish roads, they are assumed to be equipped
with CACC technology, enabling them to communicate with the surrounding traffic.
Another equally large share of the cars were equipped with Adaptive Cruise Control
systems. These vehicles used the ACC car following model described in chapter 2.1.1,
but did otherwise have the same characteristics as regular cars. The resulting car share
consisted of manual (regular) cars. In cars equipped with Adaptive Cruise Control,
the driver is free to set any desired speed that the vehicle then tries to keep. The
speedFactor parameter was therefore set equal to that of regular vehicles. The para-
meter speedDev, which regulates the deviation from speedFactor is, however, set to
0 since the ACC system is able to keep a smooth longitudinal driving style without
deviating from the desired speed.

Fully automated and connective cars (CACC) make up a total of 20.7 % of the whole
vehicle flow. Semi-automated cars (cars with Adaptive Cruise Control) make up an-
other 20.7 %, which means that 50 % of all cars will be equipped with some type of
automation technology. The truck fleet on the other hand will consist of 50 % fully
automated trucks and 50 % regular trucks (see figure 3.1).

3.2.1 Scenario A (Driver behaviour)

Scenario A had two main goals. Firstly, it investigated how two types of AT driving
styles without V2V communication systems affected traffic flow. As mentioned above,
non-cooperative AT:s are likely to dominate the AT fleet in early stages in development.
Therefore, the need for investigating how the driving styles of these vehicles affect
traffic, is of great importance. Note that in order to isolate the effects of the AT:s, all
passenger cars were modelled as manual non-autonomous vehicles. Secondly, scenario
A investigated how a potential future vehicle distribution of both autonomous trucks
and autonomous cars could affect traffic flow.

Table 3.2 shows the structure of the scenario. First two AT driving styles (conservative
and aggressive) and three AT market penetration rates was combined, resulting in six
different simulation combinations (A1 to A6). The last simulation (A7) aimed at
capturing the effects of a potential future vehicle distribution according to figure 3.1.
The AT market penetration rate is set to 50 %, which means that 50 % of all trucks
used some level of automation. Among these trucks one share (corresponding to 30
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Figure 3.1: Vehicle types in the future vehicle distribution.

% of the total truck fleet) consisted of AT:s with an ”aggressive” driving style. The
resulting AT:s (20 % of the total truck fleet) consisted of cooperative AT:s with V2V-
communication systems which enables them to form platoons. 50 % of the total truck
fleet was made up by manual (regular) trucks. In each simulation, the average speed
v̄, average travel time TT and total travel cost TC, was measured. Each result was
then be compared to results from a simulation without autonomous trucks.

The data for calculation of travel costs was gathered from ASEK (2016). On the part
of motorway E6 that was investigated in this thesis, the amount of work commuters are
high during the morning- and afternoon hours. A result is that the average valuation
of travel time is relatively high. When approximating the shares of commuter trips,
regular car trips and the flow of freight vehicles, the average value of time (VoT) was
144 SEK per hour. The calculations of VoT based on data from ASEK (2016), is
shown in Appendix A.1.

3.2.2 Scenario B (Night driving)

In scenario B, the impact of AT truck with low speeds at night was investigated. An
advantage of AT trucks is that no driver is needed to bring the freight from one place to
another. Apart from economical impacts that this could have, removing the driver also
affects the planning of driver schedules. As no working hours have to be considered,
the time-of-day is no longer a constraint in the schedule planning process. Another
effect is that the total running time for a freight vehicle is not as critical without a
driver, advocating driving at lower speeds to save energy. If parts of the autonomous
truck traffic shifted from day to night, and drove at significantly lower speeds, it could
both make use of the free capacity available at night and the same time save energy.
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Table 3.2: Simulations in scenario A (Driver behaviour).

AT driving style Penetration rate Simulation Parameters

Passive
50 % A1 v̄, TT, TC
75 % A2 v̄, TT, TC
100 % A3 v̄, TT, TC

Aggressive

50 % A4 v̄, TT, TC
75 % A5 v̄, TT, TC
100 % A6 v̄, TT, TC

Mix 50 % A7 v̄, TT, TC

Table 3.3: Simulations in scenario B (Night driving).

Traffic flow AT speed Penetration rate = 50 % Penetration rate = 100 %

300
30 Simulation B1 Simulation B2
40 Simulation B3 Simulation B4
50 Simulation B5 Simulation B6

500
30 Simulation B7 Simulation B8
40 Simulation B9 Simulation B10
50 Simulation B11 Simulation B12

700
30 Simulation B13 Simulation B14
40 Simulation B15 Simulation B16
50 Simulation B17 Simulation B18

Furthermore, by doing so, the traffic flow in peak hours would decrease, enabling a
more stable traffic flow and lowering the risk of traffic flow breakdown. Driving at low
speeds at night is however, not feasible without having knowledge about the traffic
implications it could have. This scenario investigates both effects on traffic flow and
on the total amounts of CO2 emissions and tries to answer if and when this sort of
traffic is suitable.

In figure 3.2, the share of freight and car traffic is shown. The data was gathered
from the northbound lanes of motorway E6 in Kallebäck intersection in Gothenburg,
Sweden, during an average weekday (Trafikverket, 2019). The intersection is located
directly south of the motorway section modelled in this thesis and was assumed to have
similar traffic flows. The car flow shows clear peaks in the morning and evening. The
flow of freight vehicles does not show the same pattern. The freight flow is more evenly
distributed throughout the day (See figure 3.2). However, it adds to the maximum
flow in the peaks, resulting in short periods with very high flow, reaching the road
capacity. At night, however, the total flow passing the Trafikverket data source is only
about 5 - 15% of the flow during the morning peak (Trafikverket, 2019). If this free
capacity could be used more effectively by trucks, the maximum flow in the morning-
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and afternoon peaks would decrease. This would also increase the share of cars in the
peak, resulting in a more homogeneous flow, which would increase traffic flow stability.

Since introducing slow autonomous trucks at night would decrease the average travel
time, aggregating the travel time for each vehicle into a mean travel time is not a
suitable measurement of traffic implications in this scenario. In SUMO, the parameter
timeLoss was instead chosen as as an indicator of the effects. It shows the average
difference between a vehicle’s actual travel time and the vehicle’s minimum travel time,
given ideal circumstances, such as free flow without being hindered by surrounding
traffic (German Aerospace Center, 2019b).

In the simulations, three AT speeds, two AT penetration rates and three different
vehicle flows werw considered. The AT vehicle speed is set to either 30, 40 or 50
km/h, whereas the penetration rate is set to either 50 % or 100 %. The traffic flow
levels were based on data from the Trafikverket loop detector at G̊arda intersection
(see figure 1.1). At the data source, the traffic flow at night varied between 100 and
400 vehicles per hour. Around 03:00 in the morning the traffic flow started to increase
rapidly, reaching the morning peak flow of around 4000 vehicles per hour at 07:30.
The fast increase in traffic flow in the morning hours advocates the need to consider
different traffic flows. The traffic flow was therefore either set to 300, 500 or 700 vehicles
per hour, resulting in 18 different simulation combinations. Every combination was
simulated 10 times, after which the mean timeLoss value was calculated. Note that
even the lowest traffic flow at 300 veh/h is higher than the lowest recorded flow from
the data source. The reason for this is that there could be seasonal variations in the
traffic flow data that was not shown in the studied data sample. If that were to be
the case, the model results should be valid for such a traffic flow. If the flows on the
motorway were kept much lower than the input flows in the simulation, the simulation
results would be slightly exaggerated compared to reality.

The parameter timeLoss increases as the traffic flow increases, since more traffic means
that all vehicles need to adjust their driver behaviour to surrounding traffic. To isolate
the impact of the introduction of AT trucks, the simulation was first run 10 times
without AT vehicles. This generated a base timeLoss value, which was subtracted
from all other simulation results, giving the average increase in travel time during
each simulation. The structure of scenario B is shown in table 3.3. The simulation
results can be seen in table 4.4, 4.5 and 4.6 in chapter 4.2.

3.2.3 Scenario C (Capacity)

In scenario C, effects on the road capacity was investigated. The number of vehicles
entering the model was increased linearly throughout the simulation, making the traffic
flow reach capacity. The traffic flow characteristics were investigated in two main
ways. Firstly, loop detectors were placed 100 meters south of the on-ramp, measuring
aggregated parameters such as average vehicle flow and average speed for vehicles that
have passed the detector every minute. The speed and flow data was then plotted in a
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Figure 3.2: Flow of freight and car traffic on motorway E6 at Kallebäck intersection,
october 2019. Source: Trafikverket (2019)

diagram which showed the maximum flow that had been reached at detectors in lane
1, 2 and 3. Secondly, data was gathered on a microscopic level to get a more detailed
picture of the vehicle speeds in the whole network. Once every second the speed and
travelled distance was gathered from all passing vehicles. This data was then plotted
in a trajectory diagram, which showed where and when congestion emerges in the
network, as well as the length of the congested string of vehicles.

Table 3.4 shows the structure of all simulations in scenario C. Similar to scenario
A, two types of driver behaviours and a future vehicle distribution was simulated
separately. Three levels of MPRAT was used, resulting in seven different simulations.
Each simulation is run three times with different random seeds.

Table 3.4: Simulations in scenario C (Capacity).

AT driving style Penetration rate Simulation Parameters

Passive
50 % C1 v̄, Breakdown flow
75 % C2 v̄, Breakdown flow
100 % C3 v̄, Breakdown flow

Aggressive
50 % C4 v̄, Breakdown flow
75 % C5 v̄, Breakdown flow
100 % C6 v̄, Breakdown flow

Future vehicle distribution 50 % C7 v̄, Breakdown flow
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3.3 Model description

In figure 3.4 the structure of the simulation model is shown. In a first step the net-
work file was created, in which the traffic network is defined with nodes and edges.
The traffic network was created with a software called NetEdit, a separate tool for
creating and modifying networks used specifically in SUMO simulations. The net-
work was made to resemble Ullevi and Örgryte intersections along the motorway E6
in Gothenburg, Sweden. The model contains five possible routes for vehicles to take
(see figure 3.3). Note the location of the loop detector from which data was gathered.
The network was then saved in a (.net) file.

Next, traffic that would run through the network had to be defined. Each vehicle
type got its vehicle and driver characteristics by setting a large range of parameter
values. In table 3.5, available vehicle parameters and their default values are shown.
Depending on the choice of car-following model and lane-changing model, there are
several additional parameters that can be adjusted. Table 3.6 shows available car-
following parameters and table 3.7 shows parameters related to the choice of lane-
changing model.

In this model four vehicle categories were used: passenger vehicles (cars), light trucks,
trucks with semitrailers and trucks with trailers. The vehicle categories were based on
data from Trafikverket (2019) collected from the northbound lanes on motorway E6,
north of Örgryte intersection in Gothenburg, 2019. The detectors registered average
flows and average vehicle lengths every minute during 24 hours. A few average vehicle
lengths that is currently not allowed on Swedish roads were registered. These meas-
urements were seen as errors and were thus excluded. From the remaining data, the
above mentioned vehicle categories were defined. The length of the passenger vehicle
was approximated to 3 to 5 meters, the light truck to 9.5 meters, the semitrailer truck
to 16.5 meters and the truck with trailer to 20 meters.

Figure 3.3: Routes in the simulation model.
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Table 3.5: Available vehicle type parameters that can be adjusted. Source: German
Aerospace Center (2019a)

Headway type Default Regulates

accel 2.6 Vehicle acceleration
decel 4.5 Vehicle deceleration
length 5.0 Vehicle length
minGap 2.5 Minimal gap to leading vehicle [m]
speedFactor 1.0 Adjusts vehicles’ desired maximum speed
speedDev 0.1 Deviation from speedFactor
color yellow Vehicle color
width 1.8 Vehicle width
carFollowModel Krauss Car-following model
laneChangeModel LC2013 Lane changing model

Table 3.6: Parameters specific for the Krauss and IDM cal-following models. Source:
German Aerospace Center (2019a)

Headway type Default Regulates Car-following model

sigma 0.5 Driver imperfection Krauss, IDM
tau 1.0 Desired time headway All models
delta 4.0 Acceleration exponent IDM
stepping 0.25 Step length when computing follow speed IDM

Table 3.7: Parameters specific to the LC2013 lane changing model. Source: German
Aerospace Center (2019a)

Headway type Default Regulates

lcStrategic 1.0 Eagerness to perform strategic lane changing
lcCooperative 1.0 Eagerness to perform cooperative lane changing
lcSpeedGain 1.0 Eagerness to perform lane changing to gain speed
lcKeepRight 1.0 Eagerness to keep right
lcOvertakeRight 0 Probability to overtake on the right
lcOpposite 1.0 Eagerness for overtaking via the opposite-direction lane
lcAssertive 1.0 Willingness to accept smaller gaps in the target lane
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Figure 3.4: Structure of the Python-scripts, controlling the simulations.
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3.3.1 Traffic generation

In SUMO, vehicle and driver characteristics are defined in a route file (.rou.xml)
(German Aerospace Center, 2019a). In a route file, the type of vehicles (vehicle char-
acteristics and driving behaviour) and each vehicle’s route in the network has to be
specified. A vehicle type, e.g. passenger car or a truck is defined by a string of .xml
code starting with vType:

’<vType vClass="passenger" accel="2.9" decel="4.5" id="Car"
length="4.5" maxSpeed="40" sigma="0.5"/>’

’<vType vClass="trailer" accel="1.4" decel="3.5" id="Truck"
length="16.0" maxSpeed="22.22" sigma="0.1"/>’

On the stretch of motorway between Öregryte and Ullevi intersections, the flow of
passenger cars is dominant and thus affecting the flow characteristics the most. In
order to resemble heterogeneous traffic with a wide range of vehicles and make the
flow of vehicles less deterministic, a number of passenger vehicle types were used, each
with parameters generated from stochastic variables. In Python, a for-loop is used
to generate 100 different passenger vehicle types. In each iteration, parameters are
given unique values, resulting in range of vehicle characteristics and driver behaviours.
More information about the stochastic distributions that were used can be seen in
table 3.10.

When defining the freight vehicle types, three vehicle types are created: Light truck,
Truck with semitrailer and Truck with trailer. In peak, the flow of freight vehicles
is relatively low. As a result, small variances in driver behaviour of freight vehicles
were assumed to have a limited effect on the overall traffic flow. For this reason, all
freight vType parameters are given definite values.

From the vehicle types, singe vehicles were created. Apart from the vehicle type
characteristics, a single vehicle needs a route to travel on in the network as well
as information about choice of car-following model and lane-changing model. The
network contains five possible routes, which are shown in figure 3.3. Continuous data
from the Trafikverket detector close to G̊arda intersection, together with data from on-
and off ramps were used to approximate the flow on each route in the model. When
assigning a route to a vehicle, the route is chosen by a discrete random variable, with
probabilites resembling the approximated route flows.

3.4 Calibration procedure

In order to resemble the traffic through Ullevi and Örgryte intersections, the model had
to be calibrated. A manual calibration procedure was used to tune parameters against
loop detector data, provided by the Swedish Transport Administration (Trafikverket,
2019). The data was gathered from detectors that continuously collected data on
traffic flow, average headways, vehicle lengths and speeds per lane during a 24-hour
period. Since the traffic flow was dominantly made up of passenger cars, the data
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Table 3.8: Passenger car parameters in the calibration.

Parameter Regulates

tau Desired time headway
sigma Driver imperfection
speedFactor Drivers’ violation of the speed limit
speedDev Deviation from the speedFactor
lcStrategic Eagerness to perform strategic lane changing
lcCooperative Eagerness to perform cooperative lane changing
lcSpeedGain Eagerness to perform lane changing to gain speed
lcKeepRight Eagerness to keep right
lcAssertive Willingness to accept smaller gaps in the target lane

Table 3.9: Freight parameters in the calibration.

Parameter Regulates

lcStrategic Eagerness to perform strategic lane changing
lcCooperative Eagerness to perform cooperative lane changing
lcSpeedGain Eagerness to perform lane changing to gain speed
lcKeepRight Eagerness to keep right
lcAssertive Willingness to accept smaller gaps in the target lane

from the detectors could not be used to calibrate freight car-following parameters.
The values of these parameters were therefore been gathered from other sources. The
freight lane-changing parameters however, were included in the calibration. Below the
three categories of parameters in the calibrations are shown.

• Passenger car-following parameters

• Passenger lane-changing parameters

• Freight lane-changing parameters

Hollander and R. Liu (2008) describe the general procedure of calibrating micro simu-
lation models. According to the authors, available parameters have to be categorised
in order to detect the ones that are subject to calibration. Parameters, whose values
can be determined from other sources, e.g. vehicle characteristics, should be excluded
from the process. Also, if reliable parameter values can be obtained from other similar
micro simulations, these are then not subject to calibration. Furthermore, only para-
meters which have a significant effect on traffic flow should be included (Hollander and
R. Liu, 2008).

Based on this information, only the parameters shown in table 3.8 were found subject
to calibration. The resulting parameters were either gathered from data, from pre-
vious research or could not be calibrated with the provided data. These parameters
were therefore excluded. For instance, the lane-changing parameters lcOpposite and
lcOvertakeRight were excluded from the calibration procedure. The road network
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studied in this thesis is a motorway with median dividers and grade separated inter-
sections. The parameter lcOpposite regulates overtakings in the opposite-direction
lane, and was therefore not relevant in this case. Also lcOvertakeRight, which reg-
ulates the probability of overtaking another vehicle on the right were excluded, since
no data had been collected that could show this behaviour.

The provided data from Trafikverket (2019), showed information on flow, average
headways and average speeds. The aim of the calibration was to minimise the mean
squared standard error (RMSE) between this data and the simulated vehicle flows,
average headways and average speeds.

3.4.1 Parameter values prior to calibration

Before the actual calibration procedure started, all calibration parameters were given
initial values. Bjärkvik et al., 2017 calibrated a SUMO traffic simulation model based
on data from the Drive Me route - a route around central Gothenburg that was used
to test autonomous vehicles in mixed traffic. The route consists mostly of urban mo-
torways with 2 or three lanes in each direction and incorporates the motorway section
investigated in this thesis. The car traffic through G̊arda and Ullevi intersections were
therefore assumed to be similar to the traffic on the Drive Me Route. Some para-
meter values from the Drive Me model were therefore used as initial values before the
calibration procedure.

Bjärkvik et al. (2017) found that the desired time headway, tau, followed a log-normal
distribution with mean µ = 0 and standard deviation σ =

√
0.4 on the Drive Me route.

Based on this this, tau was assumed to be log-normally distributed also in this model.
The value of σ,and µ however, were not known and was investigated during the model
calibration.

Some further parameter values were gathered from the work of Bjärkvik et al. (2017).
The minimum gap to the preceding vehicle at standstill, minGap was assumed to follow
a Gamma distribution with shape parameter k = 0 and scale parameter θ = 1.0. The
vehicles acceleration ability, accel, was set to follow a uniform distribution between 2.7
and 3.3 m/s2 and the deceleration ability was set to 4.5 m/s2. Lastly, the impatience
parameter, regulating the driving behaviour if the vehicle has to halt unintentionally,
was set to 0.5 (Bjärkvik et al., 2017).

Some parameters were approximated from other external sources. The vehicle length,
length, was assumed to vary between 4 and 5 meters, covering the default vehicle
lengths of passenger cars and passenger vans used in SUMO (German Aerospace Cen-
ter, 2019d). In the vType code, length was generated from a uniform stochastic
parameter varying between 4 and 5 meters.

The driver imperfection sigma was initially set to the default value 0.5. The drivers’
actual mean speed, given by the speedFactor parameter, was approximated from data
provided by the Swedish Transport Administration (Trafikverket, 2019). Detectors on
each of the three northbound lanes between Örgryte and Ullevi intersections collected
data on average speeds every minute for 24 hours during a weekday in November 2019.

32



The speedFactor parameter was approximated by dividing the average speed during
each minute with the speed limit. The distribution of the speedFactor parameter for
passenger cars can be seen in figure 3.5. The distribution that fit the data the best
was a normal distribution with mean µ = 1.2 and a standard deviation σ = 0.2. For
freight vehicles speedFactor was normally distributed with µ= 1.17 and σ = 0.11.
Both µ and σ was adjusted in the calibration.

The speedDev parameter, which regulates the deviation from the speedFactor was
set to 0 in prior to the calibration, since it was assumed that enough variation in
speeds was captured by the distribution of the speedFactor. During calibration it was
investigated whether this hypothesis held true. This was also the case for the remaining
parameters width, carFollowModel, laneChangeModel, lcStrategic, lcCooperative,
lcSpeedGain, lcKeepRight and lcAssertive. Default values were initially used, but
later adjusted during the calibration.

In table 3.11 the freight car-following parameters are shown. The acceleration ability
accel and deceleration ability decel were set to SUMO’s default values for light trucks,
trucks with semitrailers and trucks with trailers. The speed deviation speedDev was
set to the default value for freight vehicles, 0.05 (German Aerospace Center, 2019d).
The driver imperfection sigma was set to 0.3, slightly lower than for passenger cars,
since it was assumed that truck drivers have more routine and driving skills than
average regular car drivers. The parameter impatience was set to 0 since it was
assumed that travel times are not as crucial during a freight journey as it is for morning
car commuters (see ASEK (2016)). The resulting car-following parameters were set to
default values. Also, all lane-changing parameters were set to the default value 1.0 in
prior to the calibration.
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Figure 3.5: Distributions of speed factors for passenger cars in the northbound lanes on
E6 motorway, north of Örgryte intersection, Gothenburg. Normal
distribution with µ = 1.2 and σ = 0.2.
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Table 3.10: Parameters for cars before calibration.

Parameter Value/Distribution Unit In calibration?

accel U(2.7, 3.3) m/s2 No
decel U(6.5, 7.5) m/s2 No
length U(4.0, 5.0) m No
impatience 0.5 No
minGap Gamma(0.0, 1.0) m No
maxSpeed 40 m/s No
width 1.8 m No
carFollowModel Krauss No
laneChangeModel LC2013 No
tau Lognormal(0.0, 0.4) m Yes
sigma 0.5 Yes
speedFactor N(1.2, 0.1) Yes
speedDev 0.1 m/s Yes
lcStrategic 1.0 Yes
lcCooperative 1.0 Yes
lcSpeedGain 1.0 Yes
lcKeepRight 1.0 Yes
lcAssertive 1.0 Yes

Table 3.11: Parameters for freight vehicles before calibration.

Parameter Light truck Semitrailer Trailer In calibration?

accel 1.3 1.1 1.0 No
decel 4.5 4.5 4.5 No
length 9.5 16.5 20.0 No
tau 1.0 1.0 1.0 No
minGap 2.5 2.5 2.5 No
sigma 0.3 0.3 0.3 No
impatience 0 0 0 No
speedFactor 1.0 1.0 1.0 No
speedDev 0.05 0.05 0.05 No
maxSpeed 22.22 22.22 22.22 No
width 2.55 2.55 2.55 No
carFollowModel Krauss Krauss Krauss No
laneChangeModel LC2013 LC2013 LC2013 No
lcStrategic 1.0 1.0 1.0 Yes
lcCooperative 1.0 1.0 1.0 Yes
lcSpeedGain 1.0 1.0 1.0 Yes
lcKeepRight 1.0 1.0 1.0 Yes
lcAssertive 1.0 1.0 1.0 Yes
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3.4.2 Calibrating flows

All parameters suited for calibration are shown in table 3.8. In the first step, the flows
of vehicle types in all lanes are investigated. Data from Trafikverket (Trafikverket,
2019) show approximate vehicle distributions in each of the northbound lanes. By
manually changing the lane changing parameters in table 3.8, a vehicle distribution in
the simulation was reached that matched the data well. Table 3.12 below shows the
parameter values in combination with the output vehicle distribution.

Table 3.12: Calibrated lane changing parameters.

Parameter Car Light truck Semitrailer Trailer

lcStrategic 0.8 0.7 0.7 0.7
lcCooperative 1.3 1.2 1.2 1.2
lcSpeedGain 1 0.75 0.75 0.75
lcKeepRight 1 1.9 1.9 1.9
lcAssertive 1 1 1 1

Flow lane 1 [%] 75 16 2 6
Simulated flow lane 1 [%] 78 13 1 8

Flow lane 2 [%] 84 12 1 3
Simulated flow lane 2 [%] 90 6 2 3

Flow lane 3 [%] 91 8 0 1
Simulated flow lane 3 [%] 93 5 0 2

3.4.3 Calibrating speeds

After the lane changing parameters had been calibrated and the simulation output
showed accurate flows in each lane, the car-following parameters regulating speed,
speedFactor and speedDev for the passenger vehicles were adjusted. By investigating
the data on average speeds from the loop detector at G̊arda intersection, it was found
that cars’ deviations from the speed limit could be approximated to a log-normal
distribution with µ = 1.2 and σ = 0.2 (see figure 3.5). For freight vehicles the deviation
was normally distributed with µ = 1.17 and σ = 0.11. It was not for certain however,
that these settings were the ones that would generate simulation outputs that matched
the speed data the best after the lane-changing parameters had been changed. Since
the car traffic is dominant on the investigated route, speedFactor and speedDev for
the passenger vehicles are adjusted, whereas values for the freight vehicles remained
the same. In section 3.4.1, a hypothesis was that speedDev could be set equal to
zero because by letting the speedFactor parameter follow a stochastic distribution,
the standard deviation σ would capture the deviations from the speed limit. By
simulating combinations of speedFactor and speedDev one could show whether this
hypothesis held true.
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µ = 1.2
speedDev σ = 0.05 σ = 0.10 σ = 0.15

0.0 1.7 1.54 1.82
0.05 1.58 1.48 1.64
0.1 1.53 1.78 1.89

Table 3.13: Mean square errors for combinations of speedFactor and speedDev.

Nine combinations were simulated, generating average speeds that were compared
with speed data from Trafikverket (2019). The aim of the speedFactor and speedDev
calibration was to minimise the mean square error between the simulation output and
the data. The results are shown in table 3.13. The µ parameter of speedFactor was
varied but µ = 1.2 turned out to generate the best fit. Table 3.13 therefore only shows
the calibration results with this value of µ. Each combination was simulated ten times.
speedFactor = Lognorm(1.2, 0.1) together with speedDev=0.05 generates the best fit
to the data. The results therefore differ slightly from the initial approximations of
speedFactor and speedDev.

3.4.4 Calibrating headways

In the next step, parameters affecting headways were calibrated. The car-following
parameters tau and sigma were assumed to affect the average headways in each lane.
When experimenting with random combinations of these parameters however, sigma
turned out to have no significant effect on the average simulated headways. There-
fore, only tau were calibrated againts the headway data. Bjärkvik et al. (2017) found
that tau was log-normally distributed on the DriveMe route in Gotheburg. In these
simulations, tau was therefore assumed to follow a log-normal distribution but with
unknown parameters. Combinations of means and standard deviations were therefore
simulated in order to find which log-normal distribution that fitted the data from
Trafikverket (2019) the best. Every combination was simulated five times. The para-
meter combination that minimised the summarised square root mean error compared
to the data was thereafter chosen. Table 3.14, shows the mean square errors when
running simulations with different tau distributions. A log-normal distribution with
µ = −0.2 and σ = 0.6 generated the best fit (see table 3.14).

σ µ = −0.2 µ = 0.0 µ = 0.2 µ = 0.4 µ = 0.6

0.2 2.54 2.60 2.60 2.62 2.65
0.4 2.56 2.79 2.58 2.64 2.67
0.6 2.45 2.94 2.72 2.72 2.65
0.8 2.92 3.09 2.76 2.93 2.74

Table 3.14: Headway mean square errors for different log-normal distributions of tau.
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4 Results

In this section, the results from the simulations are presented. The results from each
scenario are compared to simulation results from base scenarios, without autonomous
vehicles, in order to analyse the effects. The results refer to simulation numbers, which
can be found in tables 3.2.1, 3.2.2 and 3.2.3.

4.1 Results from scenario A

4.1.1 Travel times

In table 4.1 the average increase in travel time per vehicle is shown. The parameter
timeLoss has been used to find the travel time increases. timeLoss measures the
difference between a vehicle’s actual travel time and its ideal travel time if it continu-
ously drove with its desired speed. For each combination of driver behaviour type and
penetration rate, a two-tailed t-test shows if the mean timeLoss value differs signific-
antly from the base simulation. The null hypothesis (H0) is that the timeLoss mean
from simulation i is equal to the mean from the base simulation (see formula 4.1). If
the null hypothesis is true, there is no significant difference between the mean of the
simulation output and the results from the base simulation. The significance level is
set to 0.05.

H0 : µbase − µi = 0 (4.1)

The increase in travel time was measured along a 3.3 km long section of the motorway,
which included the on-ramps in Örgryte and Ullevi intersections. Table 4.1 both
shows the total increase in travel time and the travel time increase per kilometre.
An increased travel time affects the travel costs for all vehicles travelling through the
network. Table 4.2 shows the change in total travel costs (TTC), related to the car
drivers’ and the freight vehicles’ VoT.

The conservative driving style generated timeLoss values that differed significantly
from the base simulation. The null hypothesis was rejected for all market penetration
rates and the difference in timeLoss compared to the base scenario increased with an
increasing MPRAT (see table 4.1). Despite significant change compared to the base
simulation, the total travel time increases are small. In the base simulation the average
travel time through the 3.3 km long motorway section was 59.5 seconds. This means
that the increase in travel time ranged between 0.87 % and 2.53 %, when simulating
the conservative driving style. The aggressive driving style generated even smaller
travel time increases. At a MPRAT of 50 %, the change in timeLoss was insignificant
at a significance level of 0.05, which means that H0 could not be rejected. A MPRAT
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Table 4.1: Increase of average travel times when introducing AT vehicles in scenario A.
Traffic flow = 3500 veh/h.

Passive Aggressive Mix
50 % 75 % 100 % 50 % 75 % 100 % 50 %

Mean timeLoss
increase [s]

1.71 2.59 4.96 0.21 0.84 0.42 6.73

Mean timeLoss
increase [s/veh km]

0.87 % 1.32% 2.53 % 0.11 % 0.43 % 0.21 % 3.43 %

p-value 0.03 0.02 <0.01 0.72 0.33 0.59 <0.01
Reject H0? Yes Yes Yes No No No Yes

Table 4.2: Increase in total travel costs [SEK/km*h] when introducing AT vehicles in
scenario A. Traffic flow = 3500 veh/h.

Passive Aggressive Mix
50 % 75 % 100 % 50 % 75 % 100 % 50 %

72 109 210 9 36 18 284

of 50 % and 75 % generated small, yet significant changes to timeLoss. In contrast
to the conservative driving style, an increasing MPRAT of aggressive AT:s did not
generate larger timeLoss values (see table 4.1). The relatively large timeLoss values
for the conservative driving style could be partly explained by their lane changing
behaviour. The conservative AT:s try to avoid lane changes as far as possible. The
trucks therefore keep to the rightmost lane, forcing the surrounding traffic to perform
many lane changes in order to overtake the AT:s. This behaviour is shown in figure
4.3.

Table 4.1 also shows the increase in travel times when simulating an assumed future
vehicle distribution according to section 3.2. The travel time increased with 6.73
seconds, which corresponds to approximately 2 seconds per vehicle-kilometre and a
travel time increase of 3.4 %. The relatively large increase in travel time relates to
the increase of vehicles that do not deviate from the speed limit. In the future vehicle
distribution, automation is introduced within the passenger car fleet. The autonomous
cars have, like the AT:s, a speedFactor of 1.0, which means that their desired speed
equals the speed limit. Their speed, however, deviates from the average speed, since
the regular cars and trucks have desired speed that are larger than the speed limit.
Consequensively, the non-autonomous vehicles are hindered from driving at their de-
sired speeds, which increases the timeLoss parameter. In order to investigate this
theory, a few simulations were carried out after changing the speedFactor settings
for the non-autonomous cars. When setting speedFactor equal to 1.0, the average
timeLoss value dropped to -0.6 %. The AT:s thus affect the average travel times neg-
atively, but the negative impact is due to the surrounding manual vehicles not keeping
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the speed limit.

Table 4.2 shows how the total travel costs are affected by the changes in travel time.
The travel costs are approximated based on data on value of travel time (VoT) from
(ASEK, 2016) The calculation of VoT can be seen in appendix A.1. Like the increase in
travel times, the effect on travel costs are small for single vehicles. When aggregating
the effects on travel cost over time, however, the results become more evident. The
passive driving style at a MPRAT of 75 % generated a TTC increase of 109 SEK/km
· h, which is little in regard to the high traffic flow. If one assumes that the traffic
flow of 3500 veh/h is kept during 5 hours per day, and the motorway stretches 10 km
through an urban area with traffic in both directions, the resulting TTC increase is
approximately 4 million SEK anually. If, instead, MPRAT = 100 % is assumed, the
annual TTC increase would be approximately 7.7 million SEK.

4.1.2 CO2 emissions

In table 4.3, the simulated emissions from all vehicles in scenario A is shown. The
simulations were run five times with random seeds. The results were compared to
a base simulation, in which MPRAT was set to 0 %, e.g no AT:s were present. A
two-sided t-test is used to determine whether the simulated results differ significantly
from the base simulation. The significance level is set to 0.05. ”Mix” corresponds to
a vehicle distribution according to chapter 3.2. The results from all simulation runs
can be found in appendix A.4.

In scenario A, the simulated amount of CO2 emissions differed significantly from the
base simulation (see table 4.3). Surprisingly, both the passive and the aggressive
driving styles resulted in decreases in total amounts of emitted CO2. All AT:s are
assumed to strictly keep the speed limit, which makes the average speed of the truck
fleet decrease as the AT penetration rate increases. Other aspects of the AT driving
behaviour could have an impact on the amounts of emitted CO2. Lower speed devi-
ations (speedDev) and driver imperfections (sigma), makes the AT:s keep a smoother
speed profile, with less fuel-consuming accelerations.

The passive driving style generated the largest CO2 reductions. When simulating
a passive driving style with MPRAT = 100 %, the total CO2 emissions decreased
with 16.2 %. The aggressive driving style generally resulted in emission levels more
similar to the base simulation. This behaviour is likely to be linked to the travel time
increases. The passive AT:s caused the travel times to increase, which is a result of
vehicles keeping lower average speeds. While the increase in travel time and travel
cost is negative in the aspect of the driver, it generates positive effects on the total
amounts of CO2 emissions.
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Table 4.3: Emissions from all vehicles in simulation A [kg]. Traffic flow = 3500 veh/h.
”Mix” corresponds to a vehicle distribution according to chapter 3.2.

Passive Aggressive Mix
Simulation Base 50% 75% 100% 50% 75% 100% 50%

Mean 5908 5538 5218 5065 5671 5737 5593 5307

Diff [%] -4.0% -12.5 % -16.2 % -3.0 % -5.5 % -6.6 % -11.9 %
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Reject H0? Yes Yes Yes Yes Yes Yes Yes

4.2 Results from scenario B

The results from simulations in scenario B can be seen in tables 4.4, 4.5, 4.6 and
4.7. The tables show the values of the parameter timeLoss and the total amount of
emitted CO2. timeLoss represents the average travel time increase for all vehicles in
the simulation

4.2.1 Travel times

Tabls 4.4, 4.5 and 4.6 together with figures 4.1 and 4.2 show the average increases in
travel times for all simulations in scenario B. When the MPRAT is set to 50 %, value
of the timeLoss parameter increases linearly with an increased traffic flow (see figure
4.1). As expected the timeLoss parameter get the highest values when the AT speed is
30 km/k. Since the traffic flow is far below the road capacity, the travel time increase
is mostly due to the increased number of lane-changes that occur due to overtakings
of the slow AT:s. When the penetration rate is 50 %, the flow of freight vehicles is
a mixture of slow AT:s and regular trucks driving at higher speeds. Regular freight
vehicles are therefore forced to drive in lane 2 and 3 which hinders the passenger traffic
(see figure 4.3).

By investigating figure 4.2 one can see that the maximum timeLoss value is lower for
all AT speeds when simulating a MPRAT of 100 %. This is also the case for a traffic
flow of 500 veh/h and 300 veh/h. The timeLoss value is generally lower in figure 4.2
which indicates that a flow of freight vehicles that consists of a mixture of slow AT:s
and regular AT:s disturbs the traffic flow more than a flow that consists solely of AT:s.

As expected, the largest timeLoss value is generated when the AT:s drive at a speed
of 30 km/h. The increase is however relatively small in comparison to the travel time
along the entire route. A timeLoss value of 1.05 seconds corresponds to a travel time
increase of approximately 0.3 %.
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Figure 4.1: Increases in travel times in scenario B when using a MPRAT of 50 %

.

Figure 4.2: Increases in travel times in scenario B when using a MPRAT of 100 %

.
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Table 4.4: Increase of average travel times when introducing AT vehicles at different
penetration rates and speeds [s]. Traffic flow = 300 veh/h.

Penetration rate = 50 % Penetration rate = 100 %
Simulation run 30 km/h 40 km/h 50 km/h 30 km/h 40 km/h 50 km/h

Mean timeLoss
increase [s]

1.05 0.62 0.34 0.81 0.51 0.32

p-value <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001
t-value -14.60 -11.52 -9.81 -11.18 -13.60 -9.29

Reject H0? Yes Yes Yes Yes Yes Yes

Table 4.5: Increase of average travel times when introducing AT vehicles at different
penetration rates and speeds [s]. Traffic flow = 500 veh/h.

Penetration rate = 50 % Penetration rate = 100 %
30 km/h 40 km/h 50 km/h 30 km/h 40 km/h

50 km/h

Mean timeLoss
increase [s]

1.38 0.90 0.44 0.67 0.66 0.33

p-value <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001
t-value -11.61 -26.42 -16.32 -9.98 -10.61 -11.41

Reject H0? Yes Yes Yes Yes Yes Yes

Table 4.6: Increase of average travel times when introducing AT vehicles at different
penetration rates and speeds [s]. Traffic flow = 700 veh/h.

Penetration rate = 50 % Penetration rate = 100 %
30 km/h 40 km/h 50 km/h 30 km/h 40 km/h

50 km/h

Mean timeLoss
increase [s]

1.93 1.10 0.66 1.25 0.59 0.09

p-value <0.00001 <0.00001 <0.00001 <0.00001 0.000023 0.21
t-value -16.96 -14.43 -6.98 -7.48 -5.65 -1.29

Reject H0? Yes Yes Yes Yes Yes No
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Figure 4.3: Vehicles travelling at high speeds (yellow) overtaking slow AT trucks (red)

.
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4.2.2 CO2 emissions

Even though the increased travel times are relatively small, the effects become more
evident, when investigating CO2 emissions. Table 4.7 shows the increase of the total
amount of emitted CO2 during simulations B1 to B9. The combination of an AT speed
of 30 km/h and an AT penetration rate of 50 %, that generated a travel time increase
of 1.05 seconds, resulted in a significant increase in total emissions (4.7). As the traffic
flow increases, the CO2 emissions increase rapidly. At a traffic flow of 700 vehicles
per hour and an AT speed of 30 km/h, the increase in CO2 emissions per vehicle was
0.29 kg, which corresponds a relative increase of 119.8 % compared to the simulated
emissions without autonomous trucks.

The rapid increase in emissions is partly due to the emissions from regular (non-
autonomous) trucks. Figure 4.4 shows the registered emissions from 10 random non-
autonomous trucks during one hour of simulation, with and without autonomous trucks
present in the network. The figure clearly shows that when autonomous trucks are
introduced in the simulations at a penetration rate of 50 % and with low speeds, the
non-autonomous trucks emit larger amounts of CO2. The data was gathered every
fifth second during the 1-hour simulation. At some time instances, the emissions from
some trucks were 0.0 kg/h, indicating that the trucks were coasting. The 0.0 values
have been removed from the plot in figure 4.4, which means that the figure does not tell
anything about the total amounts of emitted CO2. However, it gives a clear indication
on why the total average emissions per vehicle, shown in table 4.7, increased. Figure
4.4 also shows that the dispersion in registered CO2 emissions increased when AT:s
were present.

Already at a traffic flow of 300 vehicles per hour, the relative increase in CO2 emissions
is significant. When the AT:s drove at a speed of 50 km/h, approximately 30 %
below the speed limit, the average increase of CO2 emissions per vehicle was 35.4
%. Worth noticing is the relatively low speed limit on this part of motorway E6. A
few simulations were run with a speed limit of 90 km/h instead of 70 km/h. The
relative speed difference between an AT at 50 km/h and the resulting traffic was thus
approximately 45 %. After five sequential simulation runs, the average increase in
CO2 emissions per vehicle compared to the base simulations was 61.2 %. The increase
was thus not proportional to the relative increase of the speed limit, indicating that
on motorway sections with a higher peed limit, the CO2 emissions could be far greater
than what the results from this scenario show.
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Table 4.7: Increase of total CO2 emissions after introducing AT:s with a speed of 30
km/h at a penetration rate of 50 %. Simulation time = 1 hour.

Flow [veh/h] AT speed
30 km/h 40 km/h 50 km/h

300
Total increase [kg] 245.5 218.8 185.6
Increase per vehicle [kg/veh-km] 0.12 0.10 0.09
Increase per vehicle [%] 48.5 % 41.7 % 35.4 %

500
Total increase [kg] 840.8 707.8 649.3
Increase per vehicle [kg/veh-km] 0.23 0.20 0.18
Increase per vehicle [%] 96.2 % 81.0 % 74.3 %

700
Total increase [kg] 1466.2 1239.4 1107.9
Increase per vehicle [kg/veh-km] 0.29 0.25 0.22
Increase per vehicle [%] 119.8 % 101.3 % 90.5 %

Figure 4.4: Registered emissions from regular trucks (non autonomous) before and after
autonomous trucks have been introduced.

4.3 Results from scenario C

In this section, the results from scenario C are shown. Figure 4.5 shows a flow-
speed diagram from the base simulation without autonomous vehicles. The simulation
was run three times, each time with a random seed. As the figure shows, the flow
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in lane 1 breaks down when it reaches approximately 1100 vehicles per hour. This
represents the breakdown flow, in other words, the highest registered flow rate in the
lane during stable conditions. When the flow rate surpasses the breakdown flow, the
speed decreases rapidly, and congestion occurs in lane 1. The adjacent lanes 2 and
3 do not show any signs of flow breakdown during the simulation. Worth noticing
though is that in both lane 2 and 3 the speed decreases linearly with an increasing
flow rate.

Figure 4.6 shows a trajectory plot for all vehicles in the base simulation (no AT:s
present). The color and the vertical axis represents the vehicle’s speed. At distance
= 0 meters the vehicles enter the simulation network and accelerates to their desired
speeds around 70 km/h (the network speed limit). In the first 10 to 15 minutes of
simulation, the vehicles keep this speed throughout the whole remaining part of the
network. After approximately 15 minutes however, some vehicles start decelerating
around a location 6 kilometers from the start. This is the location of the network’s
first on-ramp (Örgryte intersection). The decelerations increase as the simulation time
passes and soon congestion starts to form. The congested string of vehicles grows and
by the time the simulation ends, the traffic jam is approximately 1 kilometre long.
Figure 4.5 and 4.6 will be compared to the results from simulations C1 to C7.

Table 4.8: Simulated mean speeds from the base simulation as well as simulations

MPR Lane 1 Lane 2 Lane 3

Base 45.21 65.97 69.89 Simulation

Passive
50 % 41.59 64.51 68.68 C1
75 % 40.90 64.89 69.61 C2
100 % 40.11 65.22 68.99 C3

Aggressive
50 % 41.53 64.25 69.5 C4
75 % 43.16 63.58 68.7 C5
100 % 44.52 63.94 68.2 C6

Future distribution 50 % 44.77 60.58 67.49 C7
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Figure 4.5: Flow-speed diagram for the base simulation without autonomous vehicles

Figure 4.6: Trajectory plot for all vehicles in the base simmulation (MPRAT = 0 %).

4.4 Simulation C1 & C4

In simulation C1 and C4, the market penetration rate of autonomous vehicles was set
to 50 %. Table 4.8 shows the mean simulated speed in each lane during all simulations.
The average speeds in simulation C1 and C4 are very similar. In comparison to the base
simulation, the average speed in lane 1 decreases. Figures 4.7a and 4.7b, illustrates the
flow breakdown in a speed-flow diagram. When simulating the conservative driving
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style at a MPRAT of 50 %, the flow breaks down when it reaches approximately 1000
vehicles per hour, a slight decrease compare to the results from the base simulation
(see figure 4.7a). The aggressive driving style on the other hand, resulted in a flow
breakdown at approximately 1100 vehicles per hour, similar to the base simulation.
The adjacent lanes 2 and 3 never get congested, which results in an average speed
close to the speed limit of 70 km/h (see table 4.8). It seems like the effects of the
introduction of the autonomous trucks are isolated to lane 1. A reason could be that
when congestion occurs in lane 1, the speed difference between lane 1 and lane 2
drastically increases. A result is that lane changing between the two lanes becomes
restricted.

The differences between the conservative and the aggressive driving style are more
evident when investigating the trajectory plots in figure 4.8a and 4.8b. In the simula-
tion with conservative AT:s, the congestion in lane 1 starts to form after approximately
20 minutes and grows successively during the remaining simulation time. This means
that the discharge flow (the flow out of the congestion) is smaller than the inflow,
which causes a capacity drop (Yuan, V. L. Knoop and Hoogendoorn, 2014). When
simulating the aggressive AT:s, the congestion does not show this behaviour. Once the
congestion starts forming, the length of the string remains constant throughout the
entire simulation. The congestion even disappears at some points and then reemerges
(see figure 4.8b).

(a) Simulation C1 (b) Simulation C4

Figure 4.7: Flow-speed diagram for simulation C1 and C4 (MPRAT = 50 %). ”Passive
driving style” corresponds to the conservative AT.
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(a) Simulation C1 (b) Simulation C4

Figure 4.8: Trajectories and speeds for vehicles in simulation C1 and C4. Conservative
and aggressive driving style and MPRAT = 50 %.

4.5 Simulation C2 & C5

In scenario C2 and C5, MPRAT is set to 75 %. Three quarters of the truck fleet thus
consists of autonomous vehicles, whereas the remaining part is made up by regular
trucks. Simulation C2 shows similar results to simulation C1 in figure 4.7a. However,
when investigating figure 4.7b, lane 1 shows a higher concentration of low speeds,
compared to the results with MPRAT = 50 % in figure 4.7a. The breakdown flow in
lane 1 in simulation C2 is approximately 1000 vehicles per hour, which is similar to
the base simulation.

In simulation C5, the breakdown flow seems to occur around 1250 vehicles per hour,
which is a slight improvement compared to simulation C4 (MPRAT = 50 %). The
situation in lane 2, however, seems to worsen a bit. Figure 4.9b shows a concentration
of average speeds around 50 km/h, when the flow rate reaches approximately 2000
vehicles per hour. In table 4.8, one can see that the average speed in lane 2 slightly
decreases compared to both simulation C2 and the base simulation. One reason could
be that the aggressive AT:s are more likely to perform lane changes. When the speed
in lane 1 drops, the AT:s are likely to change lane in order to keep their desired speeds,
which affects the flow in lane 2. The flow in lane 3 is not affected significantly during
the simulation, resulting in an average speed close to the speed limit (see table 4.8).
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(a) Simulation C2 (b) Simulation C5

Figure 4.9: Flow-speed diagram for simulation C2 and C5 (MPRAT = 75 %). ”Passive
driving style” corresponds to the conservative AT.

(a) Simulation C2 (b) Simulation C5

Figure 4.10: Trajectories and speeds for vehicles in simulation C2 and C5. Conservative
and aggressive driving style and MPRAT = 75 %.

4.6 Simulation C3 & C6

In simulation C3 and C6 an AT market penetration rate of 100 % was used. Figure
4.9a and 4.11a show the simulated flows and speeds in each lane on an aggregate level.
When looking at the conservative driving style, congestion in lane 1 occurs at a traffic
flow of approximately 1000 vehicles per hour, similar to the results from simulation
C2 (see figure 4.9a and 4.11a). In lane 2 and 3, the speed decreases linearly as the
flow rate increases. Unlike lane 1, there are no signs of sudden drops in speeds during
the simulation.

Figure 4.12a shows the trajectory plot in for simulation C3. Congestion starts forming
after approximately 10 minutes. At first, the length of the traffic jam does not increase
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substantially. However, after approximately 30 minutes of simulation, the flow sud-
denly breaks down, creating a congestion shock wave downstream in lane 1. The string
of congested vehicles grows and at the end of the simulation the length of the traffic
jam is approximately 2 kilometers, which is significantly longer than in simulation C2.
In the road section prior to the on-ramp at 6000 meters, the speed homogeneity and
the average speed seems to have increased compared to all other simulations with the
conservative AT:s and to the base simulation (see figure 4.12a). The conservative AT:s
keep to the rightmost lane, which makes the faster cars use lane 2 and 3. As faster
vehicles are not hindered by the AT:s, they can keep their desired speeds. In table
4.8, one can see that the average speed in lane 2 increases with an increasing market
penetration rate of conservative AT:s.

The results from simulation C6 indicate a breakdown flow in lane 1 at approximately
1250 vehicles per hour, like simulation C5 (see figure 4.11b). The average speed in
lane 1 increased from 43.1 seconds in simulation C5 to 44.52 in simulation C6 (see
table 4.8). In lane 2 and 3, the results are similar to simulation C5. At a flow rate
of approximately 1500 to 2000 vehicles per hour, the speed slightly drops and there is
a large variation in registered speeds. As stated in section 4.5, this is assumed to be
caused by the aggressive AT:s’ lane changing behaviour.

Figure 4.12b shows the trajectories in simulation C6. Compared to simulation C5,
it takes longer before the speed in lane 1 drops. After approximately 30 minutes, a
short string of vehicles slows down creating a source of congestion. Unlike simulation
C5, the outflow from the congestion source is kept similar to the inflow, making the
length of the congestion remain constant during the resulting simulation time. At high
penetration rates, the conservative driving style seems to have worse effect on capacity
than the aggressive driving style, given the presence of on-ramps with significant traffic
flows.

(a) Simulation C3. (b) Simulation C6.

Figure 4.11: Flow-speed diagram for simulation C5 and C6 (MPRAT = 100 %). ”Passive
driving style” corresponds to the conservative AT.
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(a) Trajectories for vehicles in simulation C3. (b) Trajectories for vehicles in simulation C6.

Figure 4.12: Trajectories and speeds for vehicles in simulation C5 and C6. Conservative
and aggressive driving style and MPRAT = 100 %.

4.7 Simulation C7

In simulation C7, the vehicle distribution according to section 3.1 was simulated.
Figure 4.13 shows the flow-speed diagram, in which the breakdown flow in lane 1
can be seen. Similar to the base simulation, the speed and flow in lane 1 drops at
a flow rate of approximately 1100 vehicles per hour. The trajectory plot in figure
4.14 however, shows that the flow breakdown in the base simulation was more severe
than in simulation C7. In contrast to the base simulation, the length of the string of
congested vehicles in simulation C7 is similar throughout the whole simulation (see
figure 4.14). This indicates that the discharge flow, e.g the flow out of the congestion,
is higher in simulation C7 compared to the base simulation.

In the trajectory plot, the speed before the congested road section seems to be more
homogeneous in comparison to the base simulation. By looking at figure 4.6 one
can observe an orange colour for the traffic before the congested road section, which
indicates that some vehicles are driving with a lower speed than in figure 4.14. The
trajectories of the slower vehicles are plotted on top of the trajectories of faster vehicles,
which makes it impossible to get any information about the average speed from figure
4.6. However, it indicates that the base simulation has a larger speed heterogeneity.
The AT:s have a speedDev parameter equal to 0, which means that they do not
deviate from the speed limit. A MPRAT of 50 % seems to greatly increase the speed
homogeneity in the traffic flow.

According to table 4.8, the average speed in simulation C7 is lower than in the base
simulation. This is likely due to the significant share of vehicles (AT:s) which do not
deviate from the speed limit and thus reduce the average speed.
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Figure 4.13: Flow-speed diagram for simulation C7.

Figure 4.14: Trajectory diagram for simulation C7, showing each vehicle’s speed along its
route.
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5 Analysis and discussion

The three scenarios A, B and C have showed that autonomous trucks indeed have an
impact on both traffic flow characteristics as well as emissions of CO2. In this section
the results will be analysed in relation to the research questions in section 1.3.

5.1 Traffic flow

In scenario A, the effect on traffic flow and emissions were investigated at high, but
stable, traffic flows. The conservative driving style turned out to affect the traffic
flow the most, generating travel time increases ranging from 0.87 % to 2.53 %. When
the penetration rate of conservative AT:s increased, the average travel time increased
which indicates that the conservative driving style disturbs the regular traffic flow. One
explanation for this behaviour could be that the speed deviation of the AT:s are smaller
than that of the regular trucks. The AT:s are in other words more likely to respect the
speed limitations. The regular trucks and cars, however, have desired speeds that are
larger than the speed limit, which means that the AT speed deviates from the average
speed on the route. With an increasing AT penetration rate, the speed differences
between AT:s and the surrounding traffic are therefore likely to increase, which in
turn make the cars need to perform time- and fuel consuming overtaking maneuvers.
When vehicles change lane from lane 1 to lane 2, vehicles in lane 2 need to adjust their
speed to facilitate the overtaking procedure. The travel time does therefore not only
increase for vehicles performing the lane changes, but also for vehicles in the adjacent
lanes.

The conservative AT:s also showed to affect the total road capacity negatively. In
scenario C, the conservative AT driving style caused the capacity in lane 1 to drop,
in comparison to the base simulation. The conservative AT driving style represents
an AT in early stages of AT development, as mentioned in section 3.2. When AT:s
are introduced on motorways for the first time, it is therefore likely that one can
expect a slight drop in road capacity and increases in travel times. Once the driving
characteristics of the AT:s improve and lane-changing maneuvers can be performed
like any other truck, the AT driving characteristics will be more similar to that of
the aggressive AT. The results indicate that an increasing rate of aggressive AT:s will
instead improve the traffic flow. The truck fleet is however, not likely to consist solely
of conservative or aggressive AT:s, but rather of a mixture of them both. Once AT:s
with a more advanced driver behaviour is introduced, the conservative AT:s are likely
to be deprecated. Based on the results from this thesis it is not possible to determine
how the traffic flow will be affected by this type of combination of conservative and
aggressive AT:s. It is likely however, that once ”aggressive” AT:s are introduced, the
negative impacts of the conservative driving style will be reduced. Even further on
in development, V2V communication systems will emerge, which enable connected
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autonomous vehicles to communicate with each other (Calvert, Schakel and Lint,
2017).

A potential future vehicle distribution, containing both connective cars and AT:s with
V2V technology was simulated in scenario A and C. The market penetration rate of
autonomous vehicles was set to 50 %, which means that the vehicle flow consisted of 50
% manual vehicles and 50 % vehicles with some level of autonomy. Scenario A showed,
that when there is a mixture of autonomous and manual vehicles, the travel times
trough a network with dense traffic could increase due to the speed difference between
the autonomous and the manual vehicles. The travel time increase is measured with
the timeLoss parameter, which calculates the difference between a vehicle’s actual and
desired travel time (German Aerospace Center, 2019a). The AT:s will have a longer
desired travel time than the regular trucks and if no larger disturbance occurs along
the route, the actual travel time will equal the desired travel time, resulting in timeloss
close to zero. The travel time of the regular vehicles however, will be increased due
to interactions with the slower AT:s, resulting in larger timeLoss values. The travel
time increases in the ”future” vehicle distribution, is therefore mostly a result of travel
time reductions among the non-autonomous vehicles. When the share of autonomous
vehicles become significantly higher and the homogeneity in the traffic flow increases,
the effect on the timeloss parameter is therefore likely to decrease.

The effect on travel times were small in scenario B. Chapter 4.2 showed that the total
travel time increase was less than 1 %. At very low traffic flows there is free capacity
in lane 2 and 3 which enables fast overtakings. However, if the traffic flow were to
significantly, this might not be the case. The effects on travel time could therefore
become much larger if the nighttime AT traffic continued into the morning hours,
when the traffic flow rapidly increases.

When investigating the effects of autonomous vehicles it is important to bear in mind
that the time horizon of the deployment of autonomous vehicles on Swedish roads is
uncertain. When simulating the passive and aggressive AT:s in this thesis, a traffic
environment without autonomous cars has been simulated. Depending on when AT:s
are to be allowed on public roads, the AV technology could be more or less progressed.
If the deployment of the first AT:s will happen in a distant future, the autonomous
technologies could be far more advanced than what has been modelled in this thesis and
V2V technology could be standard equipment in any AT. Alternatively, connectivity,
such as V2V communication systems, could become prerequisites for the AT:s to be
allowed on Swedish roads. In such cases, not the passive nor the aggressive AT,
simulated in this thesis, will be present in the traffic flow. Most likely, however, is
that the AT deployment will be gradual, with lower levels of AT:s in initial stages and
connected AT:s later in development. In Jönköping, Sweden, a fully automated truck
is in use on public roads between two freight terminals Einride (2019). The route is
short, and the truck needs to be monitored externally by a human being in order to be
allowed in traffic. The truck is not near any fully automated vehicle simulated in this
report. However, it indicates that permissions to drive AT:s could come soon enough
for non-connected AT:s to be present in the traffic flow.
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5.2 Traffic cost

In scenario A in chapter 3.2.1, the increase in traffic cost (cost experienced by drivers
whose travel time increases) was 7.7 million SEK annually when simulating a MPRAT

of 100 %. In relation to the large number of vehicles that pass through the investigated
section of motorway E6 during a year, a total travel cost increase of 7.7 million SEK is
rather small. Important to note however, is that during the simulations in scenario A,
the traffic flow was kept stable during all simulations. As argued in chapter 1.5, due
to the limited network size modelled in this thesis, it is impossible to analyse when
congestion would occur in reality at the geographical location in Gothenburg. A more
severe bottleneck further ahead (beyond our simulated network) could cause congestion
earlier than what has been shown in simulations. In fact, the loop detector data from
Trafikverket (2019) indicates that congestion regularly occurs during peak hours when
the traffic flows are similar to those in scenario A. By introducing conservative AT:s
that disturb the traffic flow, the risk of more severe congestion increases. This would
generate much larger increases to the travel costs, than the 7.7 million SEK that was
simulated in scenario A.

5.3 Environmental aspects

In all simulations it is assumed that all AT:s use diesel and passenger cars use gasoline.
All simulated vehicles thus emit CO2. In the future use of AT vehicles, there is a
possibility however, that a significant share of AT:s will be electric. Kristoffersson and
Brenden (2018) describe a future scenario of autonomous freight, in which kilometer-
charging systems on vehicles running on fossil fuels and bans on such vehicles in city
centres, have forced the truck fleet to go green. Hatch and Helveston (2018) argues that
there are several reasons why autonomous vehicles will be electric. Electric vehicles
will need less maintenance, be cheaper to fuel and recharging could easily be monitored
by the vehicle itself, which is not the case for the regular vehicles. This development
is however not for certain. Hatch and Helveston (2018) further mention examples of
transport service companies which have revealed that their future AV:s will run on
fossil fuels. Due to the uncertain future of AV electrification, the autonomous vehicles
in these simulations have been kept non-electric.

Scenario B showed that introducing slow AT:s at night has an effect on overall emis-
sions of CO2. The slow AT:s used the rightmost lane, which forced the surrounding
traffic to constantly perform energy consuming lane-changing procedures. When the
regular trucks occupied lane 2, cars had to use lane 3 in order to overtake the trucks.
As mentioned above, all trucks use diesel as fuel whereas the passenger vehicles are
gasoline cars. Any increase in energy consumption thus directly affect the total CO2

emissions. From an environmental perspective, a perquisite for introducing slow AT:s
at night should therefore be that a significant share of either the truck fleet or the
passenger vehicle fleet is electrified. As argued by Hatch and Helveston (2018), this
is likely to be the case. Given that electricity is generated from renewable sources,
the potential energy increase related to nighttime AT traffic, would in such a case not
cause increases to total emissions of CO2.

59



Scenario B further showed that the amount of emitted CO2 per vehicle increased
significantly when the flow rate increased. If slow AT:s with very low speeds such as
30 km/h are introduced, it is important to restrict the traffic to times when the traffic
flow is very low. In the case of motorway E6, the flow rate reaches below 200 veh/h at
the lowest, but in the early morning hours, the traffic flow quickly increases. In order
to ensure a low traffic flow, so that CO2 emissions are kept at a low level, nighttime AT
traffic should only occur within strict time intervals. Like scenario A, the increase in
CO2 emissions was simulated based on the assumption that the vehicle fleet is running
100 % fossile fuels. If a share of the vehicle fleet is electrified, as in predictions by
Hatch and Helveston (2018) and Kristoffersson and Brenden (2018), more generous
time intervals could be accepted. Scenario B showed that negative effects on travel
times were very limited even at traffic flows up to 700 veh/h. The main issue with the
nighttime AT traffic is thus the CO2 emissions.

5.4 Merging behaviour in junctions

The focus in this thesis has been AT:s with lower automation levels. In the “future”
vehicle distribution however, AT:s and cars equipped with CACC technologies were
simulated. As figure 3.1 shows, cooperative trucks made up only 3.4 % of the total
traffic flow in the future vehicle distribution. At low shares of connected AV:s, the
occurrence of vehicle platoons will be relatively limited. In heterogeneous flows of
several vehicle types, it will take time for such vehicles to form platoons. Due to the
relatively short travel time through the network, truck platoons were rare. Modelling
a larger network would likely increase the likelihood of platoons forming inside the
network, and thus increase the realism in the simulations. However, due to the scope
of this thesis, the network size has been kept relatively short.

If the share of connected AT:s was to significantly increase in reality, truck platoons
would most likely be common on motorways. This could cause problems at on- and
off-ramps. Figure 5.1 shows a platoon of five connected AT:s in a platoon passing an on
ramp, on which a passenger car accelerates and tries to enter the motorway. However,
this manoeuvre is hindered by the long platoon occupying lane 1, which forces the
car to break. The platoon can split in order to facilitate for instance a lane change,
however, the time it takes for a vehicle platoon to split and make room for an incoming
vehicle is too long and results in insufficient merging procedures. Analogously, similar
problems could occur also at off-ramps. Depending on the strategic lane changing
behaviour, some vehicles might change from lane 2 to lane 1 right before continuing
onto the off-ramp. If a long truck platoon was to hinder this lane changing behaviour
by occupying lane 1, it could result in sudden and urgent breaking manoeuvres. In
the simulated “future” vehicle distribution this happens very rarely, but due to the
uncertainty in the deployment of AT:s, it is an important aspect to keep in mind.
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Figure 5.1: A platoon of connected AT:s hindering an incoming car on an on-ramp to
enter lane 1.
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6 Conclusions

This thesis has showed that autonomous trucks are likely to affect both traffic flows,
travel times and emissions of CO2, once they are introduced in the Swedish road
network. At first, the driver behaviour of AT:s will be conservative in comparison to
that of regular trucks. When simulating this type of AT driver behaviour, the results
indicates losses in maximum road capacity and increases to average travel times and
travel costs. In the first phases of automation of the truck fleet, it is therefore likely
that positive aspects of AT:s, such as economical savings and increased traffic safety,
are partly compensated by other negative traffic flow related effects. It is therefore
vital to ensure that the early stages of deployment of AT:s comes with sufficient time
restrictions, in order to avoid loss of capacity in e.g rush hours close to busy urban
centers.

Once AT:s with enhanced lane-changing capabilities become commercially available,
negative effects on road capacity, travel times and travel costs are expected to decrease.
When simulating a traffic flow consisting of regular cars, trucks and AT:s with better
lane changing capabilities, the maximum road capacity increased, compared to base
simulations without AT:s. Furthermore, the effect on travel times was insignificant,
proving that AT:s with a more ”aggressive” driving style in contrast to the conservative
ones, perform better and do not disturb the traffic flow. It is therefore likely that when
AT:s with conservative driving styles are successively phased out and replaced with
AT:s with higher levels of automation, the effects on road capacity will improve.

As stated by Kristoffersson and Brenden (2018), removing the truck driver and repla-
cing it with autonomous driving technology enables trucks to operate during nighttime
to a larger extent than today. Furthermore, in order to save energy, the truck traffic at
night could keep a much lower speed than usual. When simulating an increased truck
share at night, including AT:s with low speeds, travel times were moderately affected.
The results showed however, that the total emissions of CO2 increased significantly.
When the traffic flow increased from 300 to 500 vehicles per hour, the average CO2

emissions per vehicle doubled. When introducing nighttime AT traffic, it is therefore
crucial to restrict it time-wise and geographically in order to ensure that the night-
time AT:s always operate in low traffic flows. In this work all vehicles are assumed
to run on fossil fuels. Like Hatch and Helveston (2018) mentions however, it is likely
that a share of future AT:s will be electric. If this is were to be the case, negative
environmental effects could possibly be compensated.

6.1 Further research

As mentioned in chapter 1.5, the network size used in this work is small. In total, the
simulated motorway is 8.6 km long and contains two grade separated intersections. An
effect of the relatively short motorway section, is that very few platoons have time to
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form within the network. In order to extend this research, a future vehicle distribution
made up by both higher and lower levels of AV:s and regular vehicles could be simulated
in a larger motorway network. By doing so, the effects of vehicle platoons could be
captured in a more realistic way. Furthermore, a larger network would enable analysis
of effects on traffic flow when the characteristics of the motorway change. For instance,
the speed limitations could vary throughout the network, as well as the design of the
grade separated intersections.

As this work has exclusively focused on an urban motorway setting, including other
types of infrastructure in the network could be a way to extend this research. As
discussed in chapter 1.5, by limiting the network to only a motorway and its on-
and off-ramps, many aspects of autonomous truck traffic is excluded. Even though
a large share of the total route length might be located on motorways, AT:s will
need to navigate through e.g. signalised intersections, roundabouts, and other types
of infrastructure in order to get to the motorway. Tolerable effects in such settings
could thus be a perquisite for deploying AT:s on motorways and would therefore be
an interesting topic for further research.

Another way to extend this research would be to include electrical vehicles (EV:s) in
order to resemble the future vehicle fleet in a more detailed way. As mentioned in
chapter 5.3, Hatch and Helveston (2018) argued that it is likely that the introduction
of autonomy within the vehicle sector would come with some degree of electrification.
To model such a scenario, the emission levels could be changed when defining the
simulated vehicle types. In this way, other vehicle types such as hybrid cars could be
modelled.
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A Appendix

A.1 Calculation of Value of Time (VoT)

The calculation of Value of Time is based on data from ASEK (2016). It defines four
categories of trips, as shown in table A.1. In scenario A, a flow of approximately 3500
vehicles per hour was simulated, which corresponds to the traffic flow in the early
morning peak. At this time, the share of cars was 83 %. Since no information about
trip purposes was available for the particular stretch of motorway in Gothenburg, the
share of work trips is an approximation. It is assumed that 60 % of the car traffic is
made up of work-trips. This corresponds to 50 % of the total traffic flow. Analogously,
the resulting 40 % of the car traffic is assumed to be made up of trips with other
purposes than commuting. This share corresponds to 33 % of the total traffic flow
(see table A.1). The share of freight vehicles is approximated from the vehicle types
in the simulations.

ASEK (2016) provides VoT-values for 2014 and at 2040. The VoT values shown in
table A.1 are thus approximated with linear interpolation. It is assumed that on
average, 1.5 people travel in each car. Therefore, the VoT related to cars is multiplied
with 1.5.

Table A.1: Approximations of the value of time (VoT). Data from: ASEK (2016).

Trip category Share [%] VoT (2035) [SEK] Total [SEK]

Car Work 50 129 64.0
Car Other 33 87 29.0
Σ 93 .0
Σ · 1 .5 139 .5

Freight no trailer 10 9 1.0
Freight trailer 7 45 3.1
Σ 4 .1

Weighted VoT [SEK] 143.6
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A.2 Levels of autonomous vehicle technology

Figure A.1: Levels of autonomous vehicle technology defined by SAE International.
Source: SAE (2019)

.

A.3 Simulated increase in travel times in scenario

B. 10 random seeds for each combination of

AT speed and traffic flow.
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Table A.2: Increase of average travel times when introducing AT vehicles at different
penetration rates and speeds [s]. Traffic flow = 300 veh/h.

Penetration rate = 50 % Penetration rate = 100 %
Simulation run 30 km/h 40 km/h 50 km/h 30 km/h 40 km/h 50 km/h

1 0.91 0.56 0.29 0.60 0.40 0.38
2 0.99 0.53 0.27 1.11 0.56 0.32
3 1.02 0.54 0.27 0.75 0.40 0.45
4 0.71 0.50 0.24 0.96 0.79 0.36
5 1.38 0.76 0.38 0.89 0.49 0.12
6 1.23 0.40 0.39 1.02 0.55 0.41
7 1.03 0.74 0.25 0.43 0.44 0.19
8 1.25 0.48 0.56 0.95 0.53 0.39
9 1.26 0.73 0.46 0.53 0.55 0.32
10 0.74 0.94 0.29 0.81 0.43 0.26

Mean timeLoss
increase [s]

1.05 0.62 0.34 0.81 0.51 0.32

p-value <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001
t-value -14.60 -11.52 -9.81 -11.18 -13.60 -9.29

Reject H0? Yes Yes Yes Yes Yes Yes

Table A.3: Increase of average travel times when introducing AT vehicles at different
penetration rates and speeds [s]. Traffic flow = 500 veh/h.

Penetration rate = 50 % Penetration rate = 100 %
Simulation run 30 km/h 40 km/h 50 km/h 30 km/h 40 km/h 50 km/h

1 0.98 0.74 0.35 0.51 0.50 0.45
2 1.69 0.81 0.48 0.85 0.66 0.35
3 1.09 0.91 0.56 1.07 1.02 0.18
4 1.42 0.99 0.43 0.54 0.60 0.34
5 1.18 0.87 0.44 0.62 0.79 0.45
6 1.72 0.91 0.41 0.38 0.81 0.38
7 1.32 0.84 0.38 0.87 0.42 0.32
8 1.17 1.07 0.34 0.53 0.55 0.28
9 2.16 0.82 0.53 0.67 0.46 0.26
10 1.07 0.99 0.45 0.62 0.83 0.33

Mean timeLoss
increase [s]

1.38 0.90 0.44 0.67 0.66 0.33

p-value <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001
t-value -11.61 -26.42 -16.32 -9.98 -10.61 -11.41

Reject H0? Yes Yes Yes Yes Yes Yes
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Table A.4: Increase of average travel times when introducing AT vehicles at different
penetration rates and speeds [s]. Traffic flow = 700 veh/h.

Penetration rate = 50 % Penetration rate = 100 %
Simulation run 30 km/h 40 km/h 50 km/h 30 km/h 40 km/h 50 km/h

1 2.21 1.20 0.67 1.43 0.38 0.21
2 1.78 0.97 0.47 1.80 0.33 0.08
3 2.52 1.23 0.88 1.20 0.60 -0.02
4 1.41 1.04 0.57 0.93 0.50 0.22
5 2.05 0.90 1.07 0.60 0.40 0.11
6 1.68 1.35 0.39 1.50 0.41 0.04
7 1.77 0.93 0.56 2.18 0.47 0.30
8 1.86 1.11 0.54 0.97 0.68 -0.11
9 1.93 1.02 0.47 1.14 1.12 0.04
10 2.07 1.27 0.99 0.70 0.99 0.04

Mean timeLoss
increase [s]

1.93 1.10 0.66 1.25 0.59 0.09

p-value <0.00001 <0.00001 <0.00001 <0.00001 0.000023 0.21
t-value -16.96 -14.43 -6.98 -7.48 -5.65 -1.29

Reject H0? Yes Yes Yes Yes Yes No
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A.4 Simulation results from scenario A.

In table A.5, the simulated values of the timeLoss parameter, e.g the simulated in-
creases in travel time are shown. Table A.6 shows the simulated time for vehicles to
enter the motorway on the on-ramp in Örgryte intersection. Lastly table A.7 shows
the simulated total emissions from all vehicles in scenario A. All simulations were run
5 times with random seeds.

Table A.5: Increase of average travel times when introducing AT vehicles at different
penetration rates and AT drivin styles [s]. Traffic flow = 3500 veh/h. ”Mix”
corresponds to a vehicle distribution according to chapter 3.2.

ATpass ATagg Mix
Simulation Base 50 % 75 % 100 % 50 % 75 % 100 % 50 %

1 6.59 10.11 9.41 13.30 9.30 10.44 7.72 15.08
2 8.30 10.50 8.77 14.08 8.86 10.55 8.83 14.79
3 9.02 9.27 13.02 11.48 7.58 7.90 7.63 13.85
4 8.90 8.08 10.93 13.38 6.13 7.87 8.46 15.85
5 7.39 10.79 11.03 12.76 9.38 7.65 9.65 14.28

Mean TT
increase [s]

1.71 2.59 4.96 0.21 0.84 0.42 6.73

Reject H0? Yes Yes Yes Yes Yes No Yes
p-value 0.03 0.02 < 0.01 0.79 0.33 < 0.01 < 0.01

Table A.6: Increase of on-ramp merging times at Örgryte intersection, when introducing
AT vehicles at different penetration rates and AT driving styles [s]. Traffic
flow = 3500 veh/h. ”Mix” corresponds to a vehicle distribution according to
chapter 3.2.

ATpass ATagg Mix
Simulation Base 50 % 75 % 100 % 50 % 75 % 100 % 50 %

1 3.04 3.0 3.85 5.65 2.55 2.71 2.42 3.35
2 2.88 2.87 3.11 4.22 2.31 2.71 2.14 3.46
3 2.87 2.64 3.26 4.38 2.73 2.47 2.37 2.97
4 2.92 3.84 3.12 3.70 2.36 2.40 2.24 3.08
5 2.73 3.95 3.23 4.50 2.58 2.52 2.2 3.10

Mean TT
increase [s]

0.37 0.43 1.60 -0.38 -0.33 -0.65 0.30

p-value 0.21 0.02 <0.01 <0.01 <0.01 <0.01 0.02
Reject H0? No Yes Yes Yes Yes Yes Yes

71



Table A.7: Emissions from all vehicles in simulation A [kg]. Traffic flow = 3500 veh/h.
”Mix” corresponds to a vehicle distribution according to chapter 3.2.

Passive Aggressive Mix
Simulation Base 50% 75% 100% 50% 75% 100% 50%

1 6039 5694 5762 5755 5691 5303 5101 5186
2 5795 5739 5719 5535 5629 5101 4998 5314
3 5916 5625 5809 5489 5460 5295 4980 5311
4 5832 5597 5715 5535 5407 5197 5110 5266
5 5959 5700 5681 5650 5501 5195 5135 5456

Mean 5908 5671 5737 5593 5538 5218 5065 5307
Diff [%] -4.0% -3.0 % -5.5 % -6.6 % -12.5 % -16.2 % -11.9 %
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Reject H0? Yes Yes Yes Yes Yes Yes Yes
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