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Abstract 
 

This thesis investigates methods that estimate the Expected Shortfall correctly by passing the 

Acerbi-Szekely (2014) backtest in both stressed and calm periods. This backtest is added to in 

this thesis to test against both under- and overestimation of ES. This research is relevant due to 

the recent shift in the Basel’s Fundamental Review of the Trading Book from using Value-at-

Risk as the leading risk measure to ES. The tests are performed on five hypothetical portfolios, 

which represent weighted asset classes and options hold in an actual bank’s trading book. The 

tested methods are a result of the literature reviewed; namely: Normal distribution, Student’s t-

distribution and skewed Student’s t-distribution, each with both constant volatility and 

GARCH(1,1), BHS and VWHS with GARCH(1,1), as a filtered form of BHS.  

From a quantitative analysis, the result of this study indicates that the method with Student’s t-

distribution with GARCH volatility performed superior throughout both periods compared to 

the other methods. Secondly, the in literature supported approach of VWHS with GARCH 

correctly estimated ES. In particular for the calm period, the Normal distribution with constant 

volatility received non-rejections for four out of six tested years. An interesting result to emerge 

from this study is the dependence between in-sample periods and the testing year regarding the 

degree of similarity in the level of standard deviation, which is of great influence across all 

methods’ test statistic results. 

 

Keywords: Expected Shortfall, Trading Book, Student’s t-distribution, GARCH(1,1), 

Volatility Weighted Historical Simulation 
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1   Introduction 
 

1.1 Background 
The probability of a bad outcome and its consequence or in other words, the risk, is a major 

concern for the human being. Individuals, businesses, organisations, institutions and 

governments are all exposed to risk in various ways. The financial risk is the risk associated 

with financing and is particularly applicable to investors, banks and financial institutions. The 

banks portfolios are exposed to market risk, which is a type of financial risk, and it can be 

defined as “the risk of losses resulting from changes in the prices of instruments such as bonds, 

shares and currencies” (Bank for International Settlements, p.1, 2019a). 

 

Value-at-Risk (VaR) and Expected Shortfall (ES) are statistical risk management metrics used 

to measure and evaluate the level of market risk of an investment. For the Bank for International 

Settlements (BIS) and the Basel Committee on Banking Supervision (BCBS), a continuing 

concern is to investigate and improve the standards for banks to measure the market risk of a 

bank’s trading book and to determine the capital requirements for it. In the past and the current 

Basel accords, the 10-day VaR at the 99th percentile one-tailed confidence level has been used 

as the metric to capitalize the loss of the trading book.  

 

The 2008 financial crisis has highlighted the relevance of effective risk measures for banks by 

regulations. In the light of the financial crisis, the BCBS assessed the current market risk 

framework and recognized deficiencies related to the framework and its properties, which 

became apparent when it was exposed to the adverse price movements during the financial 

crisis. In May 2012, the BCBS proposed the Fundamental Review of the Trading Book (FRTB), 

which is the new market risk framework to strengthen the regulatory capital standards (Bank 

for International Settlements, 2012). One of the amendments related to the introduction of the 

FRTB is the shift from VaR to ES as the standardised measure of risk to determine the capital 

requirements of the trading book. In the FRTB, the BCBS supports the shift by the findings in 

the academic literature about VaR’s disfavouring effect on diversification and ignorance of tail 

events beyond the 99th percentile of the loss distribution.  
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The new quantitative standards for calculating the capital requirements by using Expected 

Shortfall, as clarified by the BCBS in the publication Minimum Capital Requirements for 

Market Risk from January 2016, is that the ES is to be computed on 10-trading day horizon at 

the 97.5th percentile one-tailed confidence level.  

 

1.2 Research Problem  
The change towards a new market risk framework, namely the Fundamental Review of the 

Trading Book suggested by the Basel Committee on Banking Supervision, prompts banks to 

change from Value-at-Risk to Expected Shortfall for measuring the market risk to subsequently 

determine the capital requirements. The remaining issue is how to estimate ES correctly such 

that it is not underestimated by the implemented method. As VaR used to be the standardized 

leading risk measure, a considerable amount of literature and studies have grown around its 

estimation methods, such as distributional assumptions and volatility modelling. Thus far, the 

research around ES estimation methods is significantly less expanded. Existing research has 

demonstrated that distributions accounting for excess kurtosis for instance the Student’s t-

distribution, volatility models representing market conditions including volatility clustering 

such as GARCH or EWMA and extreme loss models that can capture rare events such as 

Extreme Value Theory (EVT) give correct estimates for VaR. 

 

To start with, as regards to the tail risk, ES is a better risk measurement since it considers the 

losses beyond VaR (Yamai & Yoshiba, 2005). Regarding the estimation methods for ES, 

similar starting points as for VaR have been found. Two decades ago, McNeil and Frey (2000) 

showed that disregarding the stylised facts of financial data leads to poor ES estimates and 

consequently they suggested to consider a leptokurtic distribution assuming a Student’s t-

distribution instead of the traditional Gaussian Normal distribution. Up to now, research 

comparing several ES estimations among different asset classes highlighted the factors that are 

associated with well-performing methods, which are the skewed Student’s t-distribution as well 

as the conditional parametric models with the implementation of the GARCH(1,1) and the 

filtered versions of Historical Simulations (FHS) methods are superior methods to estimate ES, 

for all types of asset classes (Righi & Ceretta, 2015). Furthermore, it is now well established 

from several studies that confirmed the effectiveness of EVT is the ES estimation procedure 

(McNeil & Frey, 2000; Harmantzis, Miao & Chien, 2006; Chinhamu, Huang, Huang & 

Chikobvu, 2015 & Bah, Munga’tu & Waititu, 2016, EVT in combination with a GARCH (1,1) 

(McNeil & Frey, 2000 & Bah, Munga’tu & Waititu, 2016), and approximated with the 
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Generalized Pareto Distribution (GPD). Another important concern is to evaluate VaR and ES 

estimate by adopting a backtesting methodology. The backtesting method which has been 

widely employed in the literature is a backtesting method developed by McNeil and Frey 

(2000), which requires to perform Monte Carlo simulations. More recently, Acerbi and Szekely 

(2014) proposed three backtesting methods and one of the tests can be used to backtest ES 

directly. Therefore, it is more convenient as compared to performing a Monte Carlo simulation.  

 

Continuous effort and research advancements regarding stylised facts in financial data increase 

the need of revising what is currently believed to be accurate methods. Estimating ES correctly 

is a key aspect for banks as otherwise their market risk and thus, capital requirements are either 

under- or overestimated. An underestimated ES evaluates the overall risk in the trading book 

portfolio as too low, which is not an adequate property of a risk measure and can result in a 

capital charge by Basel. This occurs because in that case banks do not fulfil the requirements 

set by Basel and thus, will be punished for it. On the other hand, while Basel solely is concerned 

with underestimation of risk, banks also do not want to overestimate ES as this would 

consequently result in a higher capital reserve to hedge against the risk of the trading book, 

which would be inefficient capital allocation. Both under- and overestimation should be 

avoided and thus, estimating ES using an estimation method yielding an accurate ES estimate 

is of major concern.  

 

As discussed before, to date, there has been little quantitative analysis of ES estimation 

methods, especially on its estimation on a bank’s trading book instead of single indices as 

implemented by previous studies. Hence, an attempt to estimate ES using loss observations of 

several indices, representing an all-in portfolio consisting of different asset classes and an 

equity option, will broaden the scientific knowledge around the ES estimation methods and 

create a basis for further research. The importance and originality of this study are that is 

provides new insights into which methods estimate ES on a bank’s trading book under the in 

Basel determined confidence level correctly, which is evaluated by backtesting it against both 

under- and overestimation and thus, arrive at appropriate recommendations for banks to 

implement.  
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1.3 Statement of Research Objective  
In the light of the FRTB from Basel, the objective of this thesis is to identify the estimation 

methods that estimates the Expected Shortall on a bank’s trading book correctly for both 

stressed and calm periods, such that it is neither under- nor overestimated according to the 

“second backtest” by Acerbi and Szekely (2014).  

 

It should be noted that a correct method in this paper refers to the estimation method that is not 

rejected in the backtest and thus, approximates ES correctly. This is the only criteria and other 

criterions such as level of difficulty and speed of implementation, level of difficulty of 

explaining the method, etcetera, do not determine a correct method in this study. Throughout 

the dissertation, the term “methods” will refer to the different methods that are tested, for 

instance parametric versus non-parametric approaches, distributional assumptions and 

volatility modelling as well as any further in literature or through the tests as relevant 

established factors of influence when estimating ES. The empirical analysis is performed from 

the perspective of a U.S. bank’s trading book. Consequently, the data consist of eight U.S. 

Dollar denominated indices, which are aggregated into five different portfolios to represent the 

trading book of a U.S. bank and the analysis is conducted on daily log-loss observations 

obtained from the daily closing prices of the indices. The ES is estimated one day ahead at the 

97.5th percentile one-tailed confidence level in accordance with the new Basel standards, 

namely Basel III and FRTB. The ES is estimated using three years of data for a “stressed period” 

and a “calm period”. The stressed period refers to the years 2008, 2009 and 2011 while the calm 

period is 2014, 2017 and 2019.  

 

As a result of the literature review, the methods tested are the Gaussian Normal distribution, 

Student’s t distribution and skewed Student’s t-distribution with both GARCH(1,1) volatility 

and constant volatility, Basic Historical Simulation (BHS) and Volatility Weighted Historical 

Simulation (VWHS) with GARCH (1,1). The second backtest by Acerbi and Szekely’s (2014) 

is used to evaluate the ES estimates. This test usually solely tests against underestimation; 

however, as the relevance of not overestimating ES for banks has been explained before, this 

backtest is expanded to test both sides.  
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1.4 Research Questions 
Main Research Question:  

Which methods estimate the Expected Shortfall on a bank’s trading book correctly for both 

stressed and calm periods, such that it is neither under- nor overestimated according to the 

“second backtest” by Acerbi and Szekely? 

 

Sub-Research Questions:  

• SQ 1: Using existing studies, which, in literature established, methods estimate ES 

correctly? 

• SQ 2: How can ES be backtested in a consistent way in order to account for under- 

and overestimations of ES according to the “second backtest” by Acerbi and 

Szekely? 

• SQ 3: What is an appropriate representative portfolio for a bank’s trading book? 

• SQ 4: Which methods estimate ES correctly resulting from the tests applied in this 

research?  

• SQ 5: To which extent do methods estimate ES similarly or differently in stressed 

versus calm periods?  

 

1.5 Delimitations 
There are several limitations as regards to the scope of the thesis and in which extent previously 

used methods can be applied in terms of the limited time frame. It is beyond the scope of this 

study to examine and provide a comprehensive review of all possible estimation and backtesting 

methods. In this thesis, the methods that are considered most relevant through established 

literature are applied and tested. This area leaves room for further research. Due to the timely 

restriction put on this thesis, the EVT approach is left for further research to determine whether 

it estimates ES correctly and how it performs in comparison to the methods applied in this 

research.  

 

This study is unable to encompass the entire complexity of constructing a representative 

portfolio of what banks hold in their trading book. It is not practical to build a close to reality 

portfolio as this differs between banks and changes at times. This was counteracted as good as 

possible by constructing a representative trading book as this study’s testing portfolios with 
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several asset classes as well as an option strategy based on the suggestions by the Basel 

Committee on Banking Supervision.  

The liquidity-adjusted ES, originated in the FRTB, is not implemented in the thesis. The FRTB 

considers the risk of market illiquidity by incorporating varying liquidity horizons in the 

calculation of the regulatory metric for market risk (Bank for International Settlements, 2012). 

As a result, an equation to derive the regulatory liquidity-adjusted ES is constructed (Bank for 

International Settlements, 2016). This is left out of this study as it requires the calculation of 

the ES on various sub-portfolios since different assets classes have different liquidity horizons. 

Hence, this is beyond the scope of this thesis.  

Moreover, the data selection is limited to indices that are introduced and initiated for trading at 

latest in 2000-01-01 up until 2020-04-01, are denominated in U.S. Dollars and are available on 

either Datastream or Bloomberg.  

 

1.6 Outline of the Thesis 
The remainder of the thesis is composed in six themed sections. In Section 2, the theoretical 

frameworks and literature review is discussed by starting with defining VaR and ES and 

showing superiority of ES over the drawbacks of VaR. The in literature as best defined methods 

for estimating VaR are reviewed here. Afterwards, there is a critical comparison of different ES 

estimation methods based on existing studies and literature. Further, there is a discussion about 

how to backtest ES. This part forms the basis for the choice of data and methodologies used in 

order to perform achieve the objective of this study. Section 3 includes the methodology, in 

which the data from the representative portfolio is displayed, followed by how to implement 

the in Section 2 introduced ES estimation methods and backtesting method. In Section 4, the 

results are discussed and analysed before drawing a conclusion and suggesting 

recommendations for areas of further research and recommendations for practice of estimating 

ES in Section 5 and 6, respectively.  
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2   Theoretical Framework & Literature Review 
 

2.1 Value-at-Risk and Expected Shortfall 

2.1.1 Definition Value-at-Risk 
Value-at-Risk (VaR) is a risk measure that incorporates the loss variable of a portfolio, which 

can be either derived from prices or returns. The latter is beneficial as its stationarity and 

stochastic assumption is more realistic compared to asset prices. Linear returns are defined in 

the following way:  

𝐿	(𝑡) 	= 	𝑃(	𝑡) 	− 	𝑃(𝑡 − 1),	

where P is the price over the period (t, t-1).  

Similarly, the log-return over the holding period is defined as follows:  

𝑟(𝑡	) 	= 	𝑙𝑛 	-(.)
-	(./0)

		.  

Using log-returns over arithmetic, linear returns is beneficial in terms of the appliance of the 

additivity rule and the commonly in finance assumed Gaussian distribution properties (Ballotta 

& Fusai, 2017). These returns can be transformed into losses by changing the sign.  

VaR refers to a minimum loss l, which requires that the probability of a future loss of the 

portfolio L is greater than this minimum loss is smaller or equal to 1 – α, where α refers to the 

confidence level (α = 0.99 in the old Basel regulation). VaR is defined in the following equation:  

 

 𝑉𝑎𝑅5(𝐿) 	= min{	𝑙: 𝑃𝑟	(𝐿	 > 	𝑙	)	 ≤ 	1	 − 	𝛼	} (1) 

 

The popularity of the usage of VaR comes from its simple calculation applicable to all asset 

classes and straightforward interpretation (Yamai & Yoshiba, 2005). Furthermore, it used to be 

the leading risk measure required under Basel to establish capital obligations for banks.  

 

There are several drawbacks when using VaR. One problem is that it solely measures the 

percentiles of a loss occurring while overlooking the size of a loss beyond that level of VaR. In 

other words, it fails to detect the tail risk of the probability distribution of future profit and 

losses (BIS, 2000). To give an example, there might be a 5% probability that the loss is greater 

than 20, thus VaRB.CD = 20 but a 1% chance that the loss is greater than 10,000 resulting in 

VaRB.CC = 10,000. Therefore, the VaRB.CD	disregards the size of a loss at a higher confidence 

interval. This characteristic can lead to wrong indications to utility maximizing investors that 
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are unaware of the size of a potential loss beyond the conducted VaR, which may result in great 

losses.   

Furthermore, VaR is not a coherent risk measure as it is not sub additive. In economic terms, 

this implies that this risk measure does not encourage diversification, such that the risk of 

combined all-in portfolio is often greater than the sum of the individual risks of each sub-

portfolio. This is unrealistic and does not conform with what is experienced in practice. 

Moreover, VaR is sensitive to stressed market condition, in which case it is likely that VaR will 

underestimate the actual risk, which in return will lead to false inferences (Yamai & Yoshiba, 

2005). 

 

2.1.2 Definition Expected Shortfall  
Expected Shortfall (ES) is the average loss beyond the VaR level, that is for all confidence 

levels that are greater or equal to 𝛼. This implies that ES takes the loss distribution of the entire 

right tail greater than 𝛼 into calculation. Mathematically this is shown as follows:  

 

 
𝐸𝑆5(𝐿) = 	

1
1 − 	𝛼 	G 𝑉𝑎𝑅H(𝐿)𝑑𝑥

0

5
 

 
(2) 

Comparing the disadvantageous properties of VaR, such as the silence about the size of the loss 

beyond the VaR level, with the definition of ES it becomes clear that ES is able to eliminate 

these drawbacks as it captures the losses of the entire right tail. Furthermore, ES is a coherent 

risk measure that supports the diversification effects and thus, moves closer to real life 

applications. However, potential difficulties with ES arise when considering its sample size. 

Yamai and Yoshiba (2005) argue that in comparison to VaR a larger sample size is required to 

receive a similarly accurate estimation. 

 

2.2 Stylised Facts of Financial Data & Volatility Forecasting 
The stylised facts of time series of financial return data are commonly recognized and 

emphasized within the research field of economics and volatility modelling. Brooks (2014) 

define three common stylised facts exhibited by financial data, namely volatility clustering, 

leptokurtosis and leverage effect. Volatility clustering is the tendency of the volatility in the 

financial data to exhibit a high volatility the next day if the volatility has been high in the 

previous days, or low if the volatility has been low in the previous days. Hence, both positive 
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and negative returns appear in bunches, thus high and low volatility is clustered rather than 

spread out over the time period. This is reflected by information arrivals and its impact the price 

movements. The tendency for the volatility of the financial data to exhibit a larger increase after 

a large fall in the price as compared to a rise of the same magnitude is called for the leverage 

effect. Leptokurtosis is when the distribution of the financial data is characterised by excessive 

peakedness at the mean and fatter tails (or heavy tails). Hence, the returns do not follow a 

Normal (Gaussian) distribution. Another property of distribution return is the skewness, which 

indicates the symmetry of the distribution around its mean value (Brooks, 2014).   

 

In finance, volatility is a measure of risk. Several parametric and non-parametric approaches to 

estimate VaR and ES require forecasting of a volatility parameter by using a volatility model. 

Various time series models exist for this purpose. For instance a simple model is constant 

volatility and more sophisticated and complex models, in particular the GARCH(1,1) and the 

EWMA, are appropriate to account for stylised facts of volatility in financial data. Bollerslev 

(1986) and Taylor (1986) independently developed the Generalised Autoregressive Conditional 

Heteroskedasticity, GARCH(1,1) which can model volatility and at the same time it 

encompasses volatility clustering, time-varying volatility and leptokurtosis. However, the 

model cannot account for the leverage effects (Brooks, 2014). The exponentially weighted 

moving average (EWMA) model captures volatility clustering by letting the most recent 

observations to influence the forecast of volatility more than older observations (Brooks, 2014).  

 

2.3 The Basel Standards and the Transition from VaR to ES 
Since 1974, the Basel Committee of Banking Supervision (BCBS) has provided a forum for 

banking supervisory matters with the aim to globally improve financial stability and the banking 

supervision (Bank for International Settlements, 2020). The established banking regulations 

and standards published by BCBS are known as Basel I, Basel II and Basel III (Bank for 

International Settlements, 2020). In 1988, Basel I, or the Basel Capital Accord, was approved 

by the member countries and released to the banks. Later on, in 2004 the Basel I was replaced 

by Basel II, the New Capital Framework, and the three pillars made the foundation for the new 

framework; minimum capital requirements, supervisory review and market discipline. The 

financial crisis in 2008 forced the revision of Basel II as the banks liquidity and risk 

management were insufficient as exposed to the crisis. As a result, Basel III was approved in 

2010 to enhance the capital and liquidity requirements (Bank for International Settlements, 

2020). To date, the framework is still a subject for revision.  
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The BCBS published the Fundamental Review of the Trading Book (FRTB) in 2012 as a 

response to the drawbacks of the current market risk framework to propose a new framework 

that considers the tail risk of tail events in the measurements of market risk. VaR has been 

criticised in the academic literature for discouraging diversification and disregarding the tail 

events beyond the 99th percentile of the loss distribution, which is the confidence level used in 

the current framework when estimating VaR. The Bank for International Settlements (2012) 

supports the transition from VaR to ES by the weaknesses of the current market risk related to 

VaR as the risk measure. First, they support it by the fact that VaR is unable to capture the risk 

of tail events and such tail events may imply large losses if they occur. VAR ignores the tail 

risk since it does not look beyond the 99th percentile of the loss distribution. Furthermore, the 

shift is supported by findings in academic literature of the coherence of risk measures. VaR is 

not a coherent risk measure due to its non-subadditivity property. This means that VaR 

discourages diversification of investments. Contrariwise, the Expected Shortfall looks beyond 

the VaR and captures the tail risk and has the property of being sub-additive, thus it is coherent.  

 

The new quantitative standards for calculating the capital requirements, as clarified by the 

BCBS in the publication Minimum Capital Requirements for Market Risk from January 2016 

and revised version in 2019, is that the ES is to be computed on 10-trading day horizon at the 

97.5th percentile one-tailed confidence level. Therefore, replacing the current metrics VaR 

estimated at the 99th percentile one-tailed confidence level to capitalize the loss of the trading 

book. Going forward, the transition from VaR to ES involves the issue of finding methods to 

estimate ES correctly and an accurate backtesting method for ES.  

 

2.4 Estimating VaR and ES  

2.4.1 Previous Research on VaR Estimation Methods  
As indicated previously, estimating VaR correctly is still of major importance when backtesting 

ES and thus, the following compares existing studies of well performing VaR estimation 

methods. This is to give an indication of what is known about VaR methods that are well-

performing in the backtest. A large body of literature has highlighted several successful 

methods that are described in the following.  

 

To start with, it is widely accepted that estimation methods that are able to take rare events into 

account (such as EVT or fat-tailed distributions) result in more accurate estimates compared to 
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non-fat-tailed distributions (Harmantzis, Miao & Chien, 2006). Furthermore, the advantages of 

a more dynamic volatility model that is able to capture volatility clustering or time-varying 

volatility, such as EWMA or GARCH, are well established and outperform a constant volatility 

model, such as the variance-covariance approach (Huang, 2000; Tang & Do, 2018). To be more 

specific, research has established that competitive methods include applying GARCH for 

volatility modelling and, in case of a parametric approach, assuming a distribution with heavy 

tails (excess kurtosis), skewness and asymmetry (Abad, Benito & López, 2013; Krause & 

Paolella, 2014). Such a distribution with these properties can be the Student’s t-distribution 

(Lin & Shen, 2006). While Altun, Tatlidil and Ozel (2019) agree with the researchers on the 

benefit of excess kurtosis, they add to that by proposing a new extension to the normal 

distribution called alpha-skew generalized normal (ASGN), which accounts for skewed data. It 

is further argued that beside that newly developed distribution, also the Normal and Student’s 

t-distribution in combination with a GARCH model deliver promising results. Regarding 

portfolio VaR estimations, researchers argue that Extreme Value Theory (EVT) and the non-

parametric historical simulation (for which no distribution must be assumed as the empirical 

distribution is used) leads to a number of violation that is close to the expected number of 

violations and thus, perform well (Huang, 2000; Abad, Benito & López, 2013; Tang  & Do, 

2018).  

 

To conclude, while some studies have demonstrated that promising VaR estimation can be 

achieved with EVT or Normal distribution in combination with a proven volatility model, the 

majority of researchers agree that a distribution that takes financial data and thus, excess 

kurtosis and skewness into account combined with a volatility model that is able to model time-

varying volatility and volatility clustering outperforms other methods in the VaR backtest.  

 

2.4.2 Previous Research on ES Estimation Methods 
In 2000, McNeil and Frey constructed a method to estimate conditional quantiles and 

conditional expected shortfalls, or in other words VaR and ES. They used GARCH models to 

estimate the current conditional volatility and Extreme Value Theory (EVT) to model the tails 

of the distribution function with an application of the Generalized Pareto Distribution (GPD) 

approximation. When McNeil and Frey (2000) compared the results using their method with 

several other methods they found that a conditional approach fitted the estimation of VaR more 

than an unconditional approach. Another finding in the study by McNeil and Frey (2000) was 
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using models with Normal distributions and conditional return gave poor ES estimates and 

consequently, the researchers suggested to take the leptokurtic property of distributions into 

consideration. One possible implication of this is that poor ES estimates are the consequence 

of disregarding the stylised facts of financial data, as discussed previously in section 2.2. 

 

Additional research on ES estimation methods has included the EVT model. Chinhamu, Huang, 

Huang and Chikobvu (2015) argued that EVT has been proven successful in areas such as 

insurance. They showed that a GPD distribution is superior to a Gaussian or Student’s t-

distribution, which resulted from backtesting those distributions under the EVT approach. 

Harmantzis, Miao and Chien (2006) used the EVT approach to estimate ES, which together 

with the historical approach are concluded as methods giving accurate ES estimates compared 

to the Normal Gaussian distribution and the Stable Paretian methods. Almost every paper 

investigating ES estimations includes several methods that performed well in the studies. 

Therefore, Taylor (2020) tested the degree to which a combination of several well performing 

methods had a significant improvement of estimating ES (and in this case VaR). The conclusion 

is that combining is superior to using individual methods on their own. Likewise, this is 

supported by Bah, Munga’tu and Waititu (2016) as they found that combining EVT with a 

GARCH model results in a robust estimation method. It is argued that this is due to the fact that 

GARCH is able to account for changing volatility and volatility clustering while EVT with 

GPD respects the stylized financial fact of financial data, for instance fat tail of the distribution.  

 

A profound study of several different ES estimation models, namely A comparison of Expected 

Shortfall estimation models by Righi and Ceretta, was published in 2015. Righi and Ceretta 

(2015) investigated 17 different ES estimations models and the models used were categorized 

in three types: unconditional, conditional and quantile/expectile regression-based model. The 

unconditional models were the Normal (Gaussian) distribution, Student’s t-distribution, skewed 

Student’s t-distribution, and Generalized Pareto distribution (GPD, used for EVT) and 

Historical Simulation (HS). The authors described the conditional models as “filtered versions 

of those unconditional models” (Righi & Ceretta, 2015, p.20). For the last category of models, 

the risk measure VaR and ES was estimated through quantile and expectile regressions were 

the dynamics of the conditional quantiles was estimated for VaR and the dynamics of the 

conditional expectiles was estimated for ES. Righi and Ceretta (2015) used the CAViaR models 

as proposed by Engle and Manganelli (2004) for VaR to model the quantiles. These models are 

the symmetric absolute value (SAV), the asymmetric slope (AS) and the indirect-GARCH (IG). 
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For ES estimation and for modelling the expectiles, the CARES approach was used for ES 

estimation and for modelling the expectiles, and since it is based on the CAViaR approach 

SAV, AS and IG is also considered in the same way. The models were estimated empirically 

on data of different financial assets; S&P500, DAX, FTSE100, Nikkei225, Ibovespa and Hang 

Seng indices representing equity investments, U.S Treasury bonds representing fixed income 

assets, WTI crude oil, Gold, and soybean from COMEX, NYMEX and CBOT representing 

commodity investments, and USD/EUR, USD/YEN, USD/GBP and BRL/USD for exchange 

rates. Their dataset consisted of 3198 observations for each asset from the time period 2000-

01-01 – 2012-12-31 and with estimation windows equal to 250, 500 and 1000 trading days. 

 

Righi’s and Ceretta’s (2015) empirical results suggest the best performing models for 

estimating ES are the conditional models, GARCH and filtered HS (FHS), and the authors 

concluded the CARES-based models as underperformers. They argue that the filtering of data 

is important to consider heteroscedasticity since it leads to the stylised facts of volatility 

clustering. Furthermore, Righi and Ceretta (2015) stressed the importance of the length of the 

estimation window as shorter estimation windows were concluded to give poor backtest results 

since information of significant relevance is left out from the estimation. Their argument of the 

estimation window as an important variable in ES estimation due to its effect on the overall 

performance of the methods conforms with this result.  

 

A recent study by Lazar and Zhang (2019) assessed the risk of estimation models for ES based 

on evaluating to which extent the model must undergo correction to jointly pass ES backtests. 

Lazar and Zhang (2019) derived theoretical formulas for model risk, which in turn derives from 

the estimation and specification errors of the model. To empirically perform the test, the authors 

used their proposed methodology on the DJIA index from 1900-01-01 to 2017-03-05, MSCI 

Europe Index and MSCI World Index for equity, Bank of America Merrill Lynch US Treasury 

& Agency Index for bonds and the CRB Spot Index for commodity from 1986-10-31 to 2017-

07-07, USD/GBP for FX and Microsoft (MSFT) shares from 1987-01-10 to 2017-20-04. 

According to their study, models with GARCH(1,1) residuals were found to be the models that 

had to undergo the smallest correction among several models with the following 

implementations; Historical Simulation (HS), EWMA models, Gaussian Normal distribution, 

Student’s t-distribution, GARCH(1,1)-N, GARCH(1,1)-t, Cornish-Fisher and GARCH(1,1)-

GPD. In addition, they found that ESB.CMD had to undergo smaller corrections than VaRB.CC and 
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the corrections made to the ES estimates was on average 50% smaller if corrections were made 

to the VaR estimates before. 

 
2.5 Backtesting ES 
In the case of ES, backtesting methods are less developed as compared to VaR where the Kupiec 

frequency test by Kupiec (1995) is the standard backtesting method and given to use when 

backtesting VaR estimates. The Kupiec test is a binomial test, where a violation occurs if the 

loss is larger than the VaR estimate. The observed frequency of VaR violations is compared to 

the predicted frequency of VaR violations.  

 

Since the VaR has been the standard market risk measure, the Basel standard way of backtesting 

is conducted on VaR and by observing the number of exceptions, corresponding to the Kupiec 

test. Regardless of the suggested transition from using VaR to ES, the Basel Committee for the 

Bank for International Settlements (2019b) still recommends to backtest VaR measures at the 

99th and 97.5th percentile confidence level, based on a sample of 250 observations and placing 

the estimate in one of three zones depending on the number of exceptions; green light (if zero 

to four exceptions), amber light (if five to nine exceptions) and red light (if ten or more 

exceptions). Hence, often called for the Traffic Light approach. Thus far, the BCBS has not 

suggested a standard backtesting method for ES.  

 

A commonly used ES backtesting method was developed by McNeil and Frey (2000) and it 

tests the null hypothesis of the residuals having a mean equal to zero using a bootstrap test 

taking no distributional assumptions regarding the residuals. A one-sided t-test is employed to 

test the alternative hypothesis of a mean exceeding zero, thus implying an underestimation of 

the conditional ES. The backtesting method proposed by McNeil and Frey (2000) is widely 

adopted among the reviewed articles (Chinhamu, Huang, Huang & Chikobvu, 2015; 

Harmantzis, Miao & Chien, 2006; Lazar & Zhang, 2019; Righi & Ceretta, 2015; Taylor, 2020) 

 

 

In 2014, the article Backtesting Expected Shortfall, written by Acerbi and Szekely, was 

published by MSCI. ES was believed to be non-backtestable after it was discovered that ES, 

contrary to VaR, cannot be elicited (Acerbi & Szekely, 2014). This was believed as ES takes 

into account the entire right tail after the VaR level and thus, the VaR estimate is of relevance 

for ES and its backtest. Acerbi and Szekely (2014) proved that ES can be backtested using the 
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three methodologies they have developed and proposed in the article. The first test is 

backtesting ES after VaR, and it is similar to the frequently used backtesting approach 

developed by McNeil and Frey (2000). The third test is about estimating the ES from realized 

marks to backtest the whole distribution of the model. The first and the third test require Monte 

Carlo simulation, while the second test backtest ES estimates directly. Among these three, the 

first and the second model are proposed by the authors as valid backtest models. However, the 

first model should be used in a combination with the VaR backtest as suggested by the Basel 

Committee. Further, they argue that the elicitability property is to be considered when 

conducting an analysis of different models with the approach to select a model. Thus far, the 

proposed methods by Acerbi and Szekely (2014) have not been widely employed yet. Lazar 

and Zhang (2019), implemented the second test, 𝑍O, as proposed by Acerbi and Szekely (2014) 

among other implemented backtesting methods.  

 

2.6 Evaluation of Previous Research 
The stylised facts of time series of financial returns are emphasized in several papers written 

on VaR and ES estimation methods and relate to the contributions of the papers, including the 

studies by McNeil and Frey (2000) and Righi and Ceretta (2015). The approach by McNeil and 

Frey (2000), GARCH-EVT, takes into account two stylised facts of time series of financial 

returns. One is that the volatility of conditional return distributions is stochastic and the other 

is that the return distributions are leptokurtic, or in other words, the distributions are fat-tailed. 

McNeil’s and Frey’s (2000) finding as reported above is supported by the study undertaken by 

Righi and Ceretta in 2015 since they also found the GARCH method to be one of the best 

performing methods. However, the GARCH(1,1) model is not a fully idealised model to 

forecast volatility since it does not account for the leverage effect. Although, the GARCH(1,1) 

models have been widely employed in the literature, it still serves to capture some of the stylised 

facts of volatility in financial data. On the other hand, both McNeil and Frey (2000) and Righi 

and Ceretta (2015) propose other ways to consider the stylised facts. When the return 

distributions are leptokurtic and the tails are symmetric, McNeil and Frey (2000) suggest 

modelling using the t-distribution. However, Righi and Ceretta (2015) suggest an 

approximation with GPD since it can handle asymmetric tails, but they also find that the skewed 

Student’s t-distribution fulfils a significant estimation function as it can take the heavy and 

asymmetric tails into account, and the conditional models dominate the other models used in 

their study.  
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With the transition from VaR to ES other variables than the distributional assumptions, non-

parametric or parametric, and unconditional versus conditional are discussed to have an impact 

on the ES estimates, for instance the sample size and the length of the estimation window. 

Yamai and Yoshiba (2005), found that ES requires a larger sample size under market stress 

because a larger sample size will reduce the estimation error that becomes larger when the 

underlying loss distribution becomes more fat-tailed implying higher probability for large 

losses. Righi and Ceretta (2015) implemented three different estimation windows and argued 

around the estimation window as a significantly relevant variable in the ES estimation model. 

However, in general this variable seems to have been less considered in the literature and it 

might be due to that the Basel Committee’s recommendation of an estimation window of 250 

days has been widely accepted.  
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3   Data & Methodology  
 

3.1 Data and Data Descriptive 

3.1.1 Representative Trading Book Portfolio  
As in indicated from previous research, equity indices, treasury bonds, exchange rates and 

commodities have been utilised to empirically evaluate different ES estimation methods. 

However, the assets or indices have been evaluated and analysed separately rather than as an 

all-in portfolio consisting of several different asset classes. A constructed portfolio of different 

assets classes is believed to bring enhanced representation of a bank’s or agent’s actual 

portfolio, and it also conforms with the hypothetical portfolio used in the Analysis of the trading 

book hypothetical portfolio exercise conducted by the Basel Committee on Banking 

Supervision (BCBS) published in 2014. Hence, a portfolio approach is an attempt to increase 

the validity of the study. An approach to construct an aggregated portfolio consisting of several 

different indices as a representation of a bank’s trading book was implemented in this thesis. 

Indices were used instead of swaps or forwards to represent the actual positions hold by a bank 

and to include the overall pattern of these positions, which are believed to be reflected in a 

broad index. As seen in the portfolio exercise performed by Basel, banks make use of options 

to hedge their exposure. This is included into the representative portfolio of this thesis by 

constructing an equity index (namely S&P 500) option, which is explained in section 3.1.5. 

 

3.1.2 Data 
The data was retrieved through two financial databases from two providers, which are Thomson 

Reuters’s Datastream and Bloomberg L.P’s Bloomberg Terminal. Among many other types of 

data, the databases allow to retrieve time series data of indices required to achieve the research 

objective. Since these are two major and prominent databases, the retrieved data is subject to 

validation. The dataset consists of daily closing prices for equity indices, sovereign and 

corporate bond indices as proxies for interest rates and credit spreads, commodity index and 

foreign exchange (FX) index. Considering that the thesis adopts a perspective of a U.S. bank / 

U.S. based agent, a number of criteria was to be met for the index to be selected. The criteria 

for selecting the index were as follows: 

§ The index can be retrieved from Datastream or Bloomberg, 

§ it is denominated in US Dollars and,  
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§ it has daily observations between 2000-01-01 and 2020-04-01 (approximately 250 days 

per year, except for year 2020).  

The selected indices are presented in Table 3.1 below. 

 

Table 3.1 Data retrieved from Datastream and Bloomberg 

  
The S&P 500 Composite and the S&P SmallCap 600 Value were used as proxies to represent 

the equity investments and the losses of the investments in equities. Regarding bond indices, 

risk factors such as time to maturity or yield are already reflected in the price and thus, it is 

sufficient to take the price index instead a different index for each risk factor. The bond indices 

presented in the Table 3.1 were used as proxies for both interest rate and credit spread. The 

S&P US Treasury Bond Index and the US Benchmark 10 Year DS Government Index measure 

the performance of the Treasury bond market and were used to approximate the interest rate. 

Furthermore, one investment grade bond index, the S&P 500 Investment Grade Corporate 

Bond Index and one high yield corporate bond index, the Bloomberg Barclays US corporate 

High Yield Total Return Index, were used. These two corporate bond indices measure the 

corporate bond market and was proxies used for the credit spread. The proxy for the position 

in commodities is the Thomson Reuters Equal Weight Commodity Index, also referred to as the 

Thomson Reuters Continuous Commodity Total Return Index. This is a broad commodity index 

consisting of 17 futures contracts reflecting the price movements of 17 commodities and each 

contract continuously preserves an equal weight of 5.88% (Thomson Reuters, 2012). The US 

Dollar Index (DXY) was used as a proxy for the foreign exchange rate positions. The DXY 

index is a weighted geometrically-averaged index measuring the movements of the US dollar 

in relation to six currencies; Euro (57.6%), Japanese Yen (13.6%), British Pound (11.9%), 

Asset Name Code Source
S&P 500 Composite S&PCOMP Datastream

S&P SmallCap 600 VALUE SP06SVA Datastream

US Benchmark 10 Year DS Government Index S08729(RI) Datastream

S&P US Treasury Bond Index SPBDUSB Datastream

S&P 500 Investment Grade Corporate Bond Index SPUIGBD Datastream

Bloomberg Barclays US Corporate High Yield Total Return Index LF98TRUU Bloomberg

Commodity Thomson Reuters Equal Weight Commodity Index NYFECRB Datastream

FX US Dollar Index DXY NDXYSPT Datastream

Equity

Bond
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Canadian Dollar (9.1%), Swedish Krona (4.2%) and Swiss Franc (3.6%) (Intercontinental 

Exchange, 2020).  

 

All the time-series retrieved from Datastream included non-trading days related to U.S. public 

holidays or other special events resulting in a closure of the exchanges. The one index retrieved 

from Bloomberg also included a few non-trading days. A total of 226 and 12 days of 

observations from Datastream and Bloomberg, respectively, were discarded from the sample 

due to holidays and special events. The underlying reason was that the closing price of the non-

trading day was the retained closing price of the previous trading day, which eventuated into a 

zero return and a zero loss. The non-trading days for both stock exchanges and the bond market 

are New Year’s Day, Martin Luther King, Jr. Day, Presidents’ Day, Good Friday, Memorial 

Day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day. Further, the bond 

market is closed on the Veterans Day and the Columbus Day, while the stock market remains 

open on these days. To maintain consistency of preventing zero losses due to non-trading, the 

two days were discarded regardless that observations are available for some indices at those 

days.  

 

3.1.3 Descriptive Statistics 
To give an overview of the data and its properties, each asset and its descriptive statistics are 

displayed below in Table 3.2 (the descriptive statistics) and in Figure 3.1 (the daily log loss 

graphs). The y-axis is the same scale for all graphs, such that they can be comparable. 

  

Table 3.2 Descriptive Statistics for assets for time period 2000-2020 

    
 

Minimum Maximum Mean Median Std Dev Skewness Kurtosis

S&PCOMP -10.4236 12.7652 -0.0112 -0.0550 1.2530 0.4399 11.2490

SP06SVA -8.5385 13.7096 -0.0226 -0.0673 1.5039 0.6201 8.5250

S08729 -4.0529 2.8735 -0.0096 -0.0305 0.4791 0.0719 2.8686

SPBDUSB -1.7829 1.6938 -0.0142 -0.0200 0.2424 0.0611 3.8716

SPUIGBD -1.8113 2.6010 -0.0013 -0.0130 0.2960 0.5821 4.8859

LF98TRUU -2.8289 4.8147 -0.0257 -0.0438 0.3144 2.2507 34.0690

NYFECRB -9.0120 5.8994 -0.0100 -0.0209 0.8457 0.1691 6.6034

NDXYSPT -2.7344 3.0646 0.0006 0.0000 0.5048 0.0382 1.8134
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Figure 3.1 Graphs of daily log losses for the assets for time period 2000-2020 
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While the Bloomberg Barclays index, S&P US Treasury Bond and S&P 500 Investment Grade 

Corporate Bond index display less variation in absolute values of loss, the equity and 

commodity indices experience fluctuations on a higher scale in terms of absolute values. A 

common trend shown by all assets in the loss graphs is the great dispersion around 2008/ 2009, 

which is a consequence of the global financial crisis. Furthermore, fluctuations can be seen in 

2020 during the corona crisis. 

 

By evaluating the skewness coefficient, it becomes clear that some assets appear to be fairly 

symmetrically distributed (with a coefficient between 0.038 and 0.072) as it is the case for the 

US Benchmark 10 Year index (S08729), the S&P US Treasury Bond Index (SPBDUSB) and 

the US Dollar Index (NDXYSPT). The asset with the most extreme skewness is the Bloomberg 

Barclays index with a coefficient of 2.25. The remaining assets display skewness coefficients 

between 0.17 and 0.62, which means their distribution is asymmetric and positively skewed. 

With the kurtosis coefficient, it is apparent that the majority of assets are not normally 

distributed, but rather best described by fat tails, which supports the findings from the literature 

review regarding stylized financial data.  

 
The above described statistics as well as a further yearly standard deviation analysis of all 

indices, as seen below in Table 3.3, show that the years 2008 and 2009 have clearly above 

average standard deviations and thus, are considered for the stressed period. The third largest 

standard deviation was in 2011, which is the reason this year is also referred to for the stressed 

period. On the other hand, this analysis showed that the years 2014, 2017 and 2019 have the 

lowest standard deviations and thus, are chosen as the calm testing period for this study. For 

each of these mentioned testing years, the three previous years generated the input for 

estimating parameters or volatilities for that year. To give an example, when testing for 2008, 

the input from 2005-2007 was used to maximize the loglikelihood function to arrive at GARCH 

parameters, to calculate the constant volatility, etcetera. This period of three years as input was 

chosen as it is believed that among other things volatility change over time and does not stay 

constant. Three years is considered a medium long period, which is long enough to be able to 

pick up underlying trends of volatility clustering but is short enough to leave out irrelevant 

trends from the market, which would have an effect on the ES estimation. This three-year 

sample window is kept constant throughout all tests in order to ensure consistency and 

comparability between test results.  
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Table 3.3 Yearly Standard Deviation Analysis 

 
 

3.1.4 Calculating the Losses 
The daily logarithmic returns was calculated for each index in order to obtain its daily losses, 

which are needed to estimate ES.	The log-return was calculated by the log differences where 

the natural logarithm of the closing price at time 𝑡 − 1	was subtracted from natural logarithm 

of the closing price at time 𝑡, and the losses were obtained by multiplying the log return by -

$100: 

 𝑟(𝑡) = ln(𝑝.) − ln(𝑝./0)	 (3) 

 

 𝑙(𝑡) = −100 ⋅ 𝑟(𝑡) (4) 

 
  



   
 

23 
 

3.1.5 Constructing an Option  
The option is priced using the pricing formula by Black (1976) and it is defined as follows:  

 

 𝐶(𝑆., 𝑡) = 𝑁(𝑑0)𝑆. − 𝑁(𝑑O)𝐾𝑒/Y(Z/.) (5) 

 

 
𝑑0 = 	

1
𝜎√𝑇 − 𝑡

^ln _
𝑆.
𝐾` + b𝑟 +

𝜎O

2 d
(𝑇 − 𝑡)e (6) 

 

 𝑑O = 	𝑑0 − 	𝜎√𝑇 − 𝑡 (7) 

 
As presented before, for the regular indexes the loss is calculated based on a fixed amount of 

money that was invested the previous day compared to the index value of the following day. 

To be consistent with regular indexes and the option, it was decided that the call option price is 

calculated by using the previous day’s index value as the spot price and the strike price, from 

which the loss to the following day is determined. This calculation yields an at-the-money 

option. The option price at the beginning of the day 𝐶./0 and the option price at the end of the 

day 𝐶. are calculated to obtain the daily returns. First the option price at the beginning of the 

day 𝐶./0 is calculated. The time to maturity is kept constant at 30 days. The standard deviation 

is estimated using a rolling window of the previous month (20 days), which is then scaled to 

yearly volatility by multiplying with √252. The risk-free rate is assumed to be 1%. The today’s 

closing price of the index is the spot price at the end of the day which is used to calculate 𝐶. At 

this point, the time to maturity is 29 days and the yearly volatility, the strike price and the risk-

free rate are unchanged. Finally, the return is calculated as: (𝐶. −	𝐶./0)/𝐶./0.  

 

As the option is a non-linear function of the underlying index, it has larger absolute deviations 

compared to the underlying assets and thus, to avoid extreme swings in the portfolios caused 

by this single index, it is scaled by multiplying with -100 just as the other asset classes; however, 

it receives a lower weigh to fit into the all-in portfolio. This is done as the purpose of including 

this option is to have a representative pattern of a non-linear option in the portfolios instead of 

the option dominating the portfolio losses. Therefore, as seen in Table 3.4 below, the option is 

included into the all-in portfolios with a weight of 1%. Consequently, this means that in total 

$100*0.01 = $1 is invested in the equity option.  
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3.1.6 Constructing the All-in Portfolios 
As the purpose of this study is to estimate and backtest ES on a bank’s trading book, the above 

listed asset classes need to be combined to a portfolio. To refer to Basel’s portfolio exercise, 

they do not disclose the weights given to each asset and they constructed seven such portfolios. 

It is challenging to define these weights as each bank assigns them individually and they are 

also influenced by the negative correlation that is generally found between a bank’s trading 

book and banking book (market risk and credit risk). If a bank faces high risk in the trading 

book, then it will try to reduce exposure in their loan portfolio and by doing so reducing their 

credit risk. This is also a matter of capital requirements and restraints for the bank imposed by 

regulations (Abbassi & Schmidt, 2018). Concerning the main asset classes, it can be noted that 

banks usually put a risk weight between 55% to 70% on equity, between 20% to 80% on 

commodities and up to 30% on FX. It is shown that extensive equity positions are held (PwC, 

2016). In order to counteract the uncertainty that each bank holds different weights in the 

trading book due to several reasons, this study will consider the generally suggested weights 

and five different all-in portfolios are constructed to ensure that the backtesting result are valid 

and applicable for different banks with different books. The all-in portfolios can be found in 

Table 3.4. 

 

Table 3.4 All-in portfolios with corresponding asset weights 

 
 
 

It should be noted that the two equity indices have equal weights in the portfolios, and the same 

holds for the four bond indices. To clarify, this means that the two equity indices have a weight 

of 24.5%, respectively in Portfolio 1, and each bond has a weight of 1.25% (=0.05/4) in 

Portfolio 1, (and in Portfolio 2), and so on.  

 

The following table shows the descriptive statistical analysis of the five constructed all-in 

portfolios. It can be seen that their properties are similar to each other as they consist of the 

All-in 
Portfolio Equity Equity Option Bonds Commodity FX

Portfolio 1 49% 1% 5% 35% 10%

Portfolio 2 54% 1% 5% 20% 20%

Portfolio 3 59% 1% 5% 30% 5%

Portfolio 4 64% 1% 10% 20% 5%

Portfolio 5 69% 1% 10% 10% 10%
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same assets with solely different weighting. Closer inspection of Table 3.5 shows that an 

increasing weight for equity increases the minimum and maximum data points and 

consequently, the standard deviation. This is not surprising as it was already identified by the 

previous daily log losses graphs that this asset class experience great fluctuation. Furthermore, 

the weights put on equity are the largest relatively to the weights of other asset classes in the 

portfolios.  

 

Table 3.5 Descriptive Statistics for all-in portfolios for time period 2000-2020 

  
 
 
3.2 Estimation Methodology  
 
A quantitative research methodology has been undertaken since quantitative data are of 

importance to achieve the research objective and to answer the research question. All 

estimations are conducted in Excel and all formulas can be found in the Appendix (see 

Appendix 1: Excel Formulas and Functions). The following sections give a brief definition of 

each method while the focus is on how and for what reason it was implemented in this thesis. 

 

3.2.1 Gaussian Normal Distribution 
The Gaussian Normal Distribution assumes that a normal distribution generates the time series 

returns or losses. As previously discussed, the assumption of Normal distribution is not 

significantly supported in the empirical studies for VaR and ES methods, or in general for 

financial data. However, when estimating different VaR and ES methods the Normal 

distribution innovation is still useful as a reference for comparing the methods with different 

distributional assumptions. The VaR and the ES under the Normal distribution are estimated 

as: 

 𝑉𝑎𝑅5 	= 	𝜇	 + 	𝜎	 ⋅ 	𝑧5 (8) 

 
𝐸𝑆5 	= 	𝜇	 + 	𝜎 ⋅ 	

𝑓k.l(𝑧5)
1	 − 	𝛼 			 

(9) 

All-in Portfolio Minimum Maximum Mean Median Std. Dev. Skewness Kurtosis

Portfolio 1 -5.9261 8.8766 -0.0305 -0.0474 1.0245 0.4202 5.4223

Portfolio 2 -5.7872 8.8831 -0.0298 -0.0496 1.0278 0.3617 5.1734

Portfolio 3 -6.6284 9.9243 -0.0317 -0.0545 1.1353 0.4367 5.7626

Portfolio 4 -6.7024 10.0955 -0.0322 -0.0567 1.1608 0.4151 5.7637

Portfolio 5 -6.9630 10.3090 -0.0320 -0.0617 1.1939 0.3750 5.6495
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where the zα is the quantile α of the standard normal distribution (Embrechts, Frey & McNeil, 

2005). For VaR and ES, the α equals 0.975 as proposed in the FRTB by Basel. For the ES 

estimation, the fstd(zα) is the probability density function of the standard Normal distribution 

and expressed as: 

 
𝑓k.l(𝑧5) 	= 	

1
√2𝜋

𝑒𝑥𝑝 b
−	𝑧	O

2 d	 (10) 

 

The estimation of VaR and ES was conducted using (8) and (9), by applying both the 

unconditional, or in other words the constant volatility, 𝜎, through sampling the constant 

volatility (see section 3.2.4) and conditional volatility, 𝜎., derived from implementing the 

GARCH(1,1) from (27). The 𝜇 is the constant mean as described in the beginning of this 

section.  

 

3.2.2 Student’s t-distribution 
The Student’s t-distribution was implemented as a distributional assumption in the VaR and ES 

estimations as it is capable to take the previously discussed stylised fact of financial data, 

namely leptokurtosis, or also called excess kurtosis (>3) and heavy tails, into account. It does 

so by implementing the parameter v, which is the degrees of freedom. The lower the degrees of 

freedom, the higher the excess kurtosis and the fatter the tails. Consequently, when v approaches 

infinity, it moves closer to the Normal distribution.  

 

For the ES estimation method, the probability density function of the standardized Student’s t-

distribution is required, which is expressed as: 

 
 

𝑓k.l	∗ o𝑡5,p	q =
𝛤 s	𝑣	 + 12 u	

√𝑣	 ⋅ 	𝜋 	 ⋅ 	𝛤 s	𝑣2	u
⋅ v	1 +	

1
𝑣 ⋅ 	𝑡5,p

	O w
/	(	p	x0)O

		      (11) 

 
where 𝑡5,p	 is the 𝛼-quantile for the distribution (Laurent & Bauwens, 2002). The v denotes the 

degrees of freedom and is expressed  

 𝑣	 = 	
4𝑘	 − 	6
𝑘	 − 	3 				 

       (12) 

 
The (12) is the solution to the expression for kurtosis, k, which is:   
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 𝑘	 = 	3	 +	

6
𝑣	– 	4	 

     (13) 

 
Following these equations, VaR and ES under the Student’s t-distribution for each day in the 

out of sample period were estimated as defined by Embrechts, Frey and McNeil (2005): 

 
 

𝑉𝑎𝑅5 = 		𝜇	 + 	𝜎 ⋅ 	~
𝑣	 − 2
𝑣 ⋅ 	 𝑡5,p     (14) 

 
 

𝐸𝑆5 = 	𝜇	 + 	𝜎 ⋅ ~
𝑣 − 2
𝑣 	 ⋅ 		𝑡5,p	 ⋅ 	

𝑓k.l	∗ o𝑡5,pq
1	 − 	𝛼 ⋅ b

𝑣	 + 	𝑡5,p	O

𝑣	 − 1 d       (15) 

 
 
In the above cases, 𝜎 refers to the regular unconditional variance; however, if it is replaced by 

a time-varying model such as GARCH(1,1), the approximations for VaR and ES for the 

Student’s t-distribution change to the following expressions: 

 

 
𝑉𝑎𝑅5 = 		𝜇	 +	𝜎. ⋅ ~

𝑣	 − 2
𝑣 ⋅ 	 𝑡5,p       (16) 

 

 
𝐸𝑆5 = 	𝜇	 +	𝜎. ⋅ ~

𝑣 − 2
𝑣 	 ⋅ 		𝑡5,p	 ⋅ 	

𝑓k.l	∗ o𝑡5,pq
1	 − 	𝛼 ⋅ b

𝑣	 + 	𝑡5,p	O

𝑣	 − 1 d       (17) 

 
3.2.3 Skewed Student’s t-distribution 
As resulted from the Literature Review discussed by several authors, the skewed Student’s t-

distribution is useful for modelling data that fits the stylised financial facts. While the 

symmetric Student’s t-distribution considers the heavy tails and excess kurtosis compared to 

the Normal distribution, this extension also accounts for the skewness and thus, the asymmetry 

as compared to the symmetrical Student’s t-distribution (Jones & Faddy, 2002). 

In a study by Bauwens and Laurent (2002) it becomes apparent that a symmetric Student’s t-

distribution is particularly applicable when modelling stock return data. Combining this 

distribution with a GARCH volatility model is superior to other methods.  
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To start with, 𝜇 in the skewed Student’s t-distribution refers to the mean of the underlying data, 

𝑦., and 𝜎 is the standard deviation of 𝑦.. Further, it is assumed that 𝑧. is an independently and 

identically distributed process with 𝐸(𝑧.) = 0 and Var(𝑧.) = 1. Following this definition, the 

underlying data, 𝑦., can be defined as:  

 

 𝑦. = 𝜇 + 	𝜎𝑧.   (18) 

Solving (18) for the 𝑧.: 

 
𝑧. =

(𝑦. − 𝜇)
𝜎    (19) 

 

The authors assume that 𝑧. follows a skewed Student’s distribution and thus, introduce the 

parameters 𝜉	and 𝑣, which measure skewness and kurtosis, respectively. While 𝑣 remains the 

same as for the symmetric Student’s t-distribution and thus, (12), the parameter 𝜉 takes on a 

value below or above 1 to be asymmetric (if 𝜉 = 1 the distribution is the symmetric Student’s 

t-distribution). Specifically, 𝜉 > 1 means right skewness and 𝜉 < 1 means left skewness. The 

following loglikelihood equation in Bauwens and Laurent (2002) needs to be maximized in 

order to find the parameters 𝑣 and 𝜉:  

 𝑙𝑛	𝐿.(𝜇, 𝜎, 𝜉, 𝑣) =

= ln�
2

𝜉 + 1𝜉
� + 𝑙𝑛	Γ	 _

𝑣 + 1
2 ` −

1
2 lno𝜋

(𝑣 − 2)q − 𝑙𝑛Γ s
𝑣
2u

+ ln s
𝑠
𝜎u −

1
2
(𝑣 + 1) ln ^1 +

(𝑠𝑧. + 𝑚)O𝜉/O��
𝑣 − 2 e 

  (20) 

 

where: 

 
𝑚(𝜉, 𝑣) =

Γ s𝑣 − 12 u√𝑣 − 2

√𝜋Γ s𝑣2u
_𝜉 −

1
𝜉`   (21)  

 

 𝑠O(𝜉, 𝑣) = _𝜉O +
1
𝜉O − 1` − 𝑚

O  (22) 
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𝐼. = �

				1	𝑖𝑓	𝑧. ≥ −
𝑚
𝑠 	

−1	𝑖𝑓	𝑧. < −
𝑚
𝑠

	  (23) 

 

In the above case, 𝜎 is assumed to be constant, but can be replaced with a time-varying 

volatility, which would then be expressed as 𝜎. in (19) and (20). The conditional volatility 𝜎. 

is derived from the GARCH(1,1) estimation as described below. Consequently, the parameters 

𝜉	and 𝑣 was replaced with the values from the ML estimation allowing for GARCH(1,1).  

 

To estimate VaR and ES under the assumption of the skewed Student’s t-distribution, the 

quantile function is calculated according to the following definition given by Laurent (2002): 

 

 

𝑡5,p,� = 	

⎩
⎪⎪
⎨

⎪⎪
⎧
1
𝜉 𝑡5,p _

𝛼
2 (1 + 𝜉

O)` − 𝑚

𝑠 																		𝑖𝑓	𝛼 <
1

1 + 𝜉O

−𝜉𝑡5,p b
1 + 𝛼
2 (1 + 𝜉/O)d − 𝑚

𝑠
					𝑖𝑓	𝛼 ≥

1
1 + 𝜉O

  (24) 

 

where t�,�,�  is the quantile function of the Skewed student’s t-distribution, t�,� is the quantile 

function for the Student’s t-distribution (see above for the Student’s t-distribution).  

The function is estimated at seven different quantile levels, α =

0.999, 0.995, 0.991, 0.987, 0.982, 0.979, 0.975.  

 

The VaR under the skewed Student’s t-distribution was then estimated using the t�,�,�  as the 

input in accordance with the following expression for VaR: 

 
 𝑉𝑎𝑅5 = 		𝜇	 + 	𝜎 ⋅ 𝑡5,p,�			.  (25) 

 
The ES for each day in the estimation period is simply the average of the VaR estimates at the 

same day and can be described as  

 

 𝐸𝑆5 = average(𝑉𝑎𝑅B.CMD, 𝑉𝑎𝑅B.CMC, … , 𝑉𝑎𝑅B.CCC) . 

 
 (26) 
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In the same manner as for the Normal distribution and for the Student’s t-distribution, the 𝜎 

which is the constant volatility in (25) is replaced by the estimated GARCH(1,1) estimation of 

volatility (see section 3.2.5 below) to obtain the method estimates assuming skewed Student’s 

t-distribution with the application of conditional volatility.  

 
3.2.4 Constant Mean and Volatility 
In the formulas for VaR and the ES the 𝜇 denotes the constant mean and 𝜎 denotes the constant 

volatility, and these are the sample average and standard deviation, respectively. The constant 

mean and volatility are estimated using the rolling window sampling technique. The window is 

fixed to the number of days in the in-sample period. By moving one day ahead, the observation 

the day before is included and the oldest observation is excluded from the window. The process 

proceeds until the end of the sample period has been reached.  

 

The constant mean applies to the VaR and ES estimations with the Normal distribution, the 

Student’s t-distribution and the skewed Student’s t-distribution, for both the constant volatility 

and the GARCH volatility, in order to maintain consistency in the treatment of the methods. 

The Normal distribution with constant volatility is the only method that does not require 

estimations of parameter and therefore, the 𝜇 is not estimated with the maximum likelihood as 

for the other methods.  

 

3.2.5 GARCH(1,1) Parameter Estimation 
The GARCH(1,1) model, as developed independently by Bollerslev (1986) and Taylor (1986), 

was implemented in order to account for the stylised facts, specifically volatility clustering and 

time varying volatility. In the GARCH(1,1) model, the conditional variance depends on the past 

conditional variances,	𝜎./0O , and the conditional variance on past squared errors, 𝜂./0O  . Thus, 

the definition of the conditional variance is given by Brooks (2014), and here defined with the 

parameters 𝜔, 𝛼	and 𝛽:  

 

 𝜎.O = 	𝜔 + 𝛼𝜂./0O + 𝛽𝜎./0O 	. (27) 

 

The parameters 𝛼 and 𝛽 determine the dynamics of the volatility while the restrictions put on 

the parameters 𝜔, 𝛼 and 𝛽 that non can be negative ensure that the conditional variance, 𝜎.O,	 

does not become negative.  
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The model’s mean equation is defined as follows:  

 

 𝑟. = 𝜇 + 𝜂., (28) 

 

where 𝑟. is the log return of the underlying data, 𝜇 is the average of it while 𝜂. are the residuals.  

The above-mentioned parameters as well as 𝜇 had to be defined. This was done by performing 

maximum loglikelihood (ML) estimation by maximising the sum of the loglikelihood functions 

of each day 𝑡 in the in-sample period, where 𝑡 = 1, 2, …𝑇 and T is between 747 - 750 depending 

on number of trading days of each year. This is a mathematical tool to estimate the most likely 

parameters that will generate the known observations (which in this case are the all-in trading 

portfolios) and thus, those optimised parameters are such that they can explain and fit the given 

data best. Here, it should be noted that the 𝜇 in (28) is estimated by the ML estimation and not 

the rolling window which applies to the 𝜇 in the VaR and ES expressions.  

 

The function to perform the ML estimation under the Normal distribution is as follows (Peters, 

2001): 

 

 
𝑙𝑛 𝐿Z	(𝜇, 𝜔, 𝛼, 𝛽) = 	¢b−

1
2 ln

(2𝜋) −
1
2 ln

(𝜎.O) −
𝜂.O

2𝜎.O
d

Z

.£0

 (29) 

 

For the Student’s t-distribution, the parameter for the degrees of freedom v is needed in the 

loglikelihood function, as given by Peters (2001), as this distribution account for excess 

kurtosis:  

 

 𝑙𝑛 𝐿Z	(𝜇, 𝑣, 𝜔, 𝛼, 𝛽) = ln v𝛤 _
𝑣 + 1
2 `w − ln ¤𝛤 s

𝑣
2u¥ − 0.5 ln

[𝜋(𝑣 − 2)]

− 0.5¢^𝑙𝑛𝜎.O + (1 + 𝑣) ln b1 +
𝑧.O

𝑣 − 2de
Z

.£0

 
(30) 

 

Here the degrees of freedom is 2<v ≤ ∞ and it is estimated according to (12). Moreover, for the 

skewed Student’s t-distribution both kurtosis and skewness are required and therefore, the 

loglikelihood function is as follows:  
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 𝑙𝑛	𝐿.(𝜇, 𝜉, 𝑣, 𝜔, 𝛼, 𝛽) =

= ln�
2

𝜉 + 1𝜉
� + 𝑙𝑛	Γ	 _

𝑣 + 1
2 ` −

1
2 lno𝜋

(𝑣 − 2)q − 𝑙𝑛Γ s
𝑣
2u

+ ln _
𝑠
𝜎.
` −

1
2
(𝑣 + 1) ln ^1 +

(𝑠𝑧. + 𝑚)O𝜉/O��
𝑣 − 2 e 

  (31) 

 

where 𝑧. is defined in (19) and 𝐼. in (23), as defined in Bauwens and Laurent (2002). 

In the following, the estimation procedure is explained. To start with, initial values for the four 

parameters are set. To start with, 𝜇 is initially defined as the average of the underlying log-

return data, which mostly generated a value close to 0. The remaining three parameters are set 

in line with the restrictions that none of them can be negative. As the estimation is sensitive to 

the initial parameters, values are chosen that are expected to be close to the actual parameter 

values after the optimisation: 𝜇 ≈ 0, 𝜔 = 0.01, 𝛼 = 0.05 and 𝛽 = 0.9. The parameters 𝜇, 𝜔, 𝛼 

and 𝛽 are estimated each year using a window of three years prior to the upcoming year. 

Consequently, the parameters used for modelling the GARCH in 2008 are estimated using the 

loss observations from 2005-2007, adding up to 750 in-sample observations in total. The loss 

observations from 2006-2008 (also a total of 750 observations) are used to estimate the 

parameters for 2009 and this process is followed for the years 2011, 2014, 2017 and 2019.   

 

For the estimation procedure of GARCH assuming Normal distribution innovations, the first 

step was to define the residual 𝜂.. According to (28) the residual is 𝜂. = 	 𝑟. − 	𝜇. Afterwards, 

the next step was to calculate the conditional variance according to (27) with the initially set 

parameter values. As the conditional variance cannot be defined for the first observation out of 

each sample when t = 1, the unconditional variance 𝑉𝑎𝑟(𝑟.), the sample variance of the three 

years sample input, was used. Afterwards, the loglikelihood function as in (29) was maximized. 

To simplify, the first step was to define the loglikelihood value for each period with:  

 

 
𝑙𝑛 𝐿.	(𝜇, 𝜔, 𝛼, 𝛽) = 	−0.5 ln(𝜎.O)−	

𝜂.O

2𝜎.O
 (32) 

 

This was followed by summing the values for each day in the sample period. This sum was 

maximized by changing the four parameters and allowing for the restrictions that 𝜔, 𝛼 and 𝛽 
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are non-negative. After the maximization was conducted the final parameter values were 

reported and eventually used in the GARCH(1,1) model to capture the volatility.  

The GARCH estimation assuming the symmetric Student’s t-distribution was performed by 

first calculating the residual 𝜂. in the same manner as for the normal distribution. Afterwards, 

𝑧. was calculated as in (19) before calculating the conditional variance as described above 

according to (27). The loglikelihood function in (30) was calculated for each day in the sample 

period. The sum of all the loglikelihood values in the sample period was then maximised to 

obtain the GARCH parameters 𝜔, 𝛼, 𝛽 and 𝑣.  

 

Finally, the GARCH estimation assuming the skewed Student’s t-distribution was conducted. 

The 𝜂. and 𝑧. were estimated in the same way as described for the symmetric Student’s t-

distribution. This was followed by defining 𝐼. as described in (23), where 𝑚 and 𝑠 were defined 

as (21) and (22). Again, the next step was to calculate the loglikelihood function for each day 

in the sample period and summing all the loglikelihood values, as in (31). This sum was 

maximised in order to obtain the parameter estimates of 𝑣 (degrees of freedom) and 𝜉 (the 

skewness parameter) and 𝜔, 𝛼, 𝛽 of the GARCH model.  

 

3.2.6 Historical Simulation 
The Historical Simulation (HS) approach is a non-parametric approach and is independent of 

distributional assumptions. It takes the actual empirical distribution of the underlying data and 

thus, is able to navigate certain drawbacks when choosing a distribution that is unable to fit 

financial data. The sampling technique used to estimate VaR and ES with HS is the rolling 

window or moving window. The window contains the same number of loss observations as the 

length of the window (in terms of days of the in-sample periods in this case) to estimate the 

VaR and ES the day following the window. The window is fixed to the number of days in the 

in-sample period, so when it is moving one day ahead the observation from the previous day is 

included in the window and the oldest loss observation in the window is excluded from it.  

 

i. Basic Historical Simulation 
 

For the simplest form of the non-parametric approach, namely the basic historical simulation 

(BHS), VaR is estimated as follows:  

 𝑉𝑎𝑅5(𝐿) = (1 − 𝛼)𝑁 + 1	 (33) 
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where N is the number of sample observations. Consequently, ES is approximated by taking 

the average of the losses that are greater than the VaR estimate. 

 

ii. Volatility Weighted Historical Simulation 
 
The Volatility Weighted Historical Simulation (VWHS) implements BHS, but on the rescaled 

losses for which each loss receives the same probability as suggested by Hull and White (1998). 

The intuition behind this is volatility clustering, meaning that if volatility is higher than average 

at time 𝑡, it is likely that it is also higher at time t+1 and vice versa. For that reason, this method 

can model and account for events that are currently undergoing in the market.  

 

The Volatility Weighted Historical Simulation (VWHS) implements BHS, but on the rescaled 

losses for which each loss receives the same probability. The intuition for this is volatility 

clustering, meaning that if volatility is higher than average at time 𝑡, it is likely that it is also 

higher at time 𝑡 + 1 and vice versa. For that reason, this method can model and account for 

events that are currently undergoing in the market. The rescaled losses are defined as follows 

for 𝑇 losses: 

 

 𝑙0∗ =
𝜎Zx0
𝜎0

𝑙0 

𝑙O∗ =
𝜎Zx0
𝜎O

𝑙O 

. 

. 

. 
 

𝑙Z∗ =
𝜎Zx0
𝜎Z

𝑙Z 

(34) 

      

Four years (the three in-sample years and the out-of-sample year) of daily rescaled losses are 

obtained for each month, January – December, where 𝜎Zx0 denotes the conditional volatility at 

the first trading day of the month in the out-of-sample period. This means, 12 columns with 

rescaled losses are conducted for each portfolio. Afterwards, the VaR and ES are estimated by 

applying the BHS as described above, but in this case on the rescaled losses. The procedure is 

described in detail below.  
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To estimate the VaR and ES with the VWHS, a rolling window of three years consisting of the 

rescaled losses is implemented. The first VaR is estimated using the out-of-sample (three years) 

rescaled losses from January, and the second VaR estimate is estimated using the three years 

of rescaled losses from January plus the first loss in the out of sample period minus the first 

loss in the in-sample, maintaining the same length of the window. When the VaR estimates for 

all days in January is calculated, the first VaR estimate in February is calculated using the three 

years of rescaled loss from February, the rolling window switches month from January to 

February and moves one step ahead. Hence, the rolling window includes (and excludes) the out 

of sample (and the in-sample) days in January. The same procedure follows for each month of 

the out of sample period.  

 

3.3 Backtesting 
 
After completing the estimations of ES, backtesting was conducted in order to evaluate the 

performance of the methods used to estimate ES. Backtesting is the widest accepted method to 

determine how accurate the method applied on the historical data forecasts the actual outcome. 

As previously mentioned, Acerbi and Szekely (2014) developed three methods for backtesting 

ES. Here, the second test proposed by Acerbi and Szekely (2014) was employed to backtest the 

ES estimates. This method has a number of adequate features compared to the first and the third 

method. Firstly, it is testing ES directly. Secondly, the test only requires the predicted (one day 

ahead) 𝐸𝑆5,.	(𝐿) and the magnitude 𝐿.𝐼. of the loss if a VaR exception occurs at day t. Thirdly, 

it is characterized by a noticeable stability of the critical values over different distributions, or 

shapes of tails (Acerbi & Szekely, 2014). The authors highlight this as advantageous since it 

implies no necessity to note daily predictions of the distribution. In other words, a Monte Carlo 

simulation of the distributions of the test statistics is not required to obtain critical values. 

However, a Monte Carlo simulation is required for the first and the third test, thus the main 

disadvantage of these two tests is based on this requirement. Hence, the tests are not directly 

applicable in the same extent as the second test.   

 

For simplicity, the hypotheses as stated by Acerbi and Szekely (2014) are rewritten to the 

following:  

𝐻B :  𝐸𝑆5,.- = 𝐸𝑆5,.ª  , ES is correctly estimated for each day t 
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𝐻0 : 𝐸𝑆5,.- < 𝐸𝑆5,.ª  , ES is underestimated for at least one day t.  

 

Furthermore, as this thesis set out to also test against overestimation, which is equally bad for 

banks as underestimation is for Basel, the following alternative hypothesis results from it:  

𝐻0 : 𝐸𝑆5,.- > 𝐸𝑆5,.ª  , ES is overestimated for at least one day t.  

 

The 𝑃 denotes the actual distribution of losses of the model/method used to estimate ES, while 

the 𝐹 denotes the unknown and true distribution of losses.  

 

The test statistics 𝑍O, as defined by Acerbi and Szekely, is defined in (35) where 𝑇(1	– 	𝛼) is 

the expected number of violation days. If the ES is correctly estimated by the method the 

expected  𝑍O equals zero under the null hypothesis, since under the null the test statistics 𝑍O is 

equal to zero.  

 

 
𝑍O = 	−

1
𝑇(1 − 𝛼)	¢ 	

𝐿.𝐼.
𝐸𝑆5,.(𝐿.)

+ 	1
.£Z

.£0

 (35) 

 

The following equations (36), (37), (38) and (39) depicts how the expected 𝑍O equals zero under 

the null hypothesis. In equation (36), the definition of ES is rewritten and the 𝐿. represents the 

stochastic loss at day t. 𝐼. represents the indicator function which, as defined in (37), takes on 

the value one if a VaR violation occurs at day t and zero otherwise.  

 

 
𝐸𝑆5,.(𝐿.) = 𝐸¬𝐿.|𝐿. > 𝑉𝑎𝑅5,.(𝐿.)® = 	

𝐸[𝐿.𝐼.]
𝐸[𝐼.]

=
𝐸[𝐿.𝐼.]
1 − 𝛼  (36) 

 

 
𝐼. = ¯	

1	𝑖𝑓	𝐿. 	> 		𝑉𝑎𝑅5,.(𝐿.)
0	𝑖𝑓	𝐿. 	≤ 	𝑉𝑎𝑅5,.(𝐿.)	

  (37) 

 

The equation in (38) follows from (36) and is applied in the equation in (39).  

 

 
𝐸𝑆5,.(𝐿.) = 	

𝐸[𝐿.𝐼.]
1 − 𝛼  (38) 
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𝐸°±[𝑍O] = −𝐸 ²

1
𝑇¢

𝐿.𝐼.
(1 − 𝛼)𝐸𝑆5,.(𝐿.)

.£Z

.£0

+ 1³ =	 

=	
1
𝑇¢

𝐸[𝐿.𝐼.]
1 − 𝛼

.£Z

.£0

⋅
1

𝐸𝑆5,.(𝐿.)
 

= −
1
𝑇 	 ⋅ 𝑇 + 1 =	 

=	−1 + 1 = 0 

(39) 

 
To conclude, the expected  𝑍O under the null and the alternative hypotheses for under- and 

overestimation, respectively, is as follows: 

 

𝐸°±[𝑍O] = 0	,						𝐸°´[𝑍O] < 0, 					𝐸°0[𝑍O] > 0	. 

 
As previously stated above, Acerbi and Szekely (2014) found that the critical values for 𝑍O 

showed noticeable stability over different distributions. The authors suggest that if the 

significance threshold is 5% and 0.01% the critical values are 𝑍OµY¶. = -0.7 and 𝑍OµY¶. = -1.80, 

respectively, for underestimation. 

This implies that the null hypothesis is rejected if the test statistics, 𝑍O, is below -0.7 or -1.80 

for the significance level 5% and 0.01%, respectively, due to underestimation. Furthermore, 

Acerbi and Szekely (2014) suggest that the aforementioned critical values perfectly apply for a 

Basel traffic-light approach.  

 

This backtesting method described above is applicable to test against underestimation as 

required by the Basel Committee; however, for banks overestimation of risk is just as critical. 

For this reason, the Acerbi and Szekely test is added to by the upper test statistics to reject a 

method when it is overestimating ES. The critical values for overestimation are +0.59 for the 

5% significance level and +0.93 for the 0.01% significance level. These were obtained with a 

standard Monte-Carlo simulation of Z-statistic under the null hypothesis. See Acerbi and 

Szekely (2014) for details on this simulation.  

 

In this thesis a traffic-light approach is employed to resemble the Basel Committee’s proposed 

traffic-light mechanisms for backtesting, and the method is rejected if it does not pass the 5% 

significance level. After identifying the test statistics, 𝑍O, each method is assigned the colour 

“green”, “amber” or “red” and is either rejected or not rejected. To not reject the method, the 
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𝑍O must have a value between -0.7 and 0.59, thus the method will be assigned a green colour 

since it is neither underestimated (from the perspective of the Basel Committee) nor 

overestimated (from the perspective of banks). This is in accordance with the critical values 

suggested by Acerbi and Szekely (2014).  

 

For the significance level 0.01% the lower critical value is -1.8 for the normal distribution, 

according to Acerbi and Szekely (2014). However, the critical value for the significance level 

0.01% is rather unstable for different distributions as compared to the critical value at the 5% 

significance level. According to their result, this means that the critical value will become more 

negative when the distribution exhibits a kurtosis larger than three (kurtosis > 3, or when 𝑣 

becomes smaller) which is the case here. Therefore, the critical values for both sides will be 

considered as approximate critical values, or approximate boundaries of the red zones. The 

values used as approximated critical values for the 0.01% significance level are -1.8 and +0.93. 

This is a conservative approach since the actual critical values will be larger when the 

distribution exhibits excess kurtosis, thus the actual critical values will be more negative 

(positive) for underestimation (overestimation) than the approximated critical values. Hence, 

methods that have 𝑍O < -1.8 or 𝑍O > 0.93 will be rejected and placed in the red zones as 

suggested by Basel’s traffic light system. The approximated upper critical value for the 0.01% 

level is chosen in such way it corresponds to the lower critical level of the 0.01% level. This is 

because limited sources exist for upper critical values suited for the implementation of the 

backtest by Acerbi and Szekely (2014). This is a solid solution in the attempt to represent the 

perspective of banks in the estimation of ES.  

 

Therefore, in the case the 𝑍O is between -0.70 and -1.8 or between +0.59 and +0.93 it is rejected 

since it requires further improvements to not underestimate or overestimate the ES, thus it 

receives the amber light. As already mentioned, methods fall in the approximated red zone if 

the methods have a 𝑍O below -1.8 or above +0.93 since it underestimates and overestimates the 

ES. This rejection procedure is summarized in Table 3.6. 

 

Table 3.6 Summary Rejection and Traffic Light Result Procedure based on Test Statistics 
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4   Results & Analysis 
 

Based on the discussed methods, the tests are performed, and ES estimates are obtained for 

these several methods for the five representative trading portfolios for the stressed periods, 

namely the years 2008, 2009 and 2011, as well as the calm period, which is the years 2014, 

2017 and 2019. This section first presents the estimated parameters from both constant volatility 

and GARCH (1,1) and secondly the backtest test statistics (𝑍O ) and traffic light system results 

of the various methods for the two periods are analysed. Furthermore, the five portfolios are 

evaluated, and the performance of the methods are analysed year by year. Finally, an overall 

summary of the results and the analysis is given.  

 

4.1 Estimated Parameters 
To start with, the GARCH parameters 𝜇, 𝜔, 𝛼 and 𝛽 for the three distributions are estimated 

with maximum likelihood. For the Student’s t-distribution the parameter 𝑣 and for the skewed 

Student’s t-distribution the parameters 𝑣 and 𝜉 are also included in the maximum likelihood 

estimation, with both constant and GARCH volatility, as explained in the methodology in the 

previous chapter. The GARCH parameters are derived for each separate representative portfolio 

in each period for the three different distributions, respectively. In Table 4.1 and 4.2, the 

parameters 𝑣 and 𝜉 estimated for constant volatility are presented together with the parameter 

𝜇 for Student’s t and skewed Student’s t-distribution. 
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Table 4.1 Estimated Parameters for Stressed Period – Constant Volatility 

 
 

 

Table 4.2 Estimated Parameters for Calm Period – Constant Volatility 

 

Portfolio Student skewed Student Student skewed Student Student skewed Student
μ 1 -0.0569 -0.0525 -0.0397 0.0015 -0.0605 -0.0328

2 -0.0508 -0.0435 -0.0336 0.0067 -0.0482 -0.0239

3 -0.0581 -0.0518 -0.0425 0.0044 -0.0632 -0.0292

4 -0.0549 -0.0466 -0.0402 0.0077 -0.0583 -0.0235

5 -0.0519 -0.0405 -0.0365 0.0129 -0.0506 -0.0176

v 1 10.6039 10.4265 3.3142 3.3337 4.0853 4.1079

2 8.9679 8.9442 3.2847 3.2976 4.1212 4.1330

3 9.3832 9.2850 3.2011 3.2170 3.9821 3.9994

4 8.6782 8.6262 3.1547 3.1657 3.9563 3.9668

5 8.3673 8.3519 3.1502 3.1566 3.9674 3.9727

ξ 1 1.0338 1.0855 1.0498

2 1.0442 1.0764 1.0431

3 1.0391 1.0832 1.0526

4 1.0446 1.0783 1.0513

5 1.0558 1.0752 1.0471

2008 2009 2011

Portfolio Student skewed Student Student skewed Student Student skewed Student
μ 1 -0.0662 -0.0473 -0.0262 -0.0247 -0.0529 -0.0511

2 -0.0682 -0.0533 -0.0364 -0.0332 -0.0547 -0.0514

3 -0.0769 -0.0543 -0.0308 -0.0277 -0.0597 -0.0558

4 -0.0821 -0.0603 -0.0364 -0.0324 -0.0627 -0.0580

5 -0.0854 -0.0658 -0.0436 -0.0381 -0.0653 -0.0590

v 1 4.6847 4.6829 8.6307 8.6400 5.2815 5.2966

2 4.6624 4.6538 7.8314 7.8480 4.8939 4.9132

3 4.5128 4.5154 8.5030 8.5343 4.9760 5.0021

4 4.4611 4.4630 8.1713 8.2192 4.7287 4.7557

5 4.4225 4.4236 7.8086 7.8718 4.5616 4.5909

ξ 1 1.0574 1.0092 1.0075

2 1.0459 1.0189 1.0128

3 1.0599 1.0177 1.0136

4 1.0560 1.0222 1.0161

5 1.0504 1.0289 1.0202

2014 2017 2019
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The degrees of freedom parameter 𝑣 ranges between 3.1052 and 10.6039 for the symmetrical 

Student’s t-distribution and between 3.1566 and 10.4265 for the skewed Student’s t-distribution 

in all years. The highest values of the parameter 𝑣 are the ones estimated for 2008 and 2017 

and the lowest are observed for 2009. For the skewed Student’s distribution, the skewness 

parameter is 𝜉	>1 for all five portfolios for all six years, which implies asymmetry in the loss 

distributions. It means that the loss distributions exhibit right (positive) skewness, thus it has 

more probability in the right tail. This is an indication of deviation from a symmetrical 

distribution. A lower degrees of freedom parameter indicates excess kurtosis and fatter tails, so 

the lower degrees of freedom parameters estimated for 2009 by using the years 2006-2008 are 

very likely a consequence of the financial crisis and its influence on the loss distribution 

resulting in heavy tails, thus more probability for a higher loss in the tails. Furthermore, the 

skewness parameters as estimated for 2009 are further away from 𝜉	=1 in absolute terms in 

relation to the skewness parameters for the other years, which indicates greater right (positive) 

skewness and more probability in the right tail. Contrariwise, the estimated degrees of freedom 

parameters for 2017 are higher as compared to those of the portfolios in 2009. This implies that 

the relatively stable years 2014-2016 exhibits a loss distribution with non-heavy tails. Taking 

the skewness parameter into consideration, the average value of the skewness parameters in 

2017 is the second lowest (after the average value in 2019) relatively the average of the 

skewness parameters in the other years. Hence, one can conclude that these loss distributions 

are normally distributed. To conclude, in the case of estimating the parameters using constant 

volatility there are indications of higher values of the skewness parameters and lower values of 

the degrees of freedom parameters when the period used for estimating the parameters involves 

more volatile years and vice versa.  

 

In Table 4.3 and 4.4 the 𝑣 and 𝜉 parameters are presented with the GARCH parameters 𝜇, 𝜔, 𝛼 

and 𝛽, as obtained from the ML estimation with conditional volatility, thus GARCH 

application, for all three distributions.  
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Table 4.3 Estimated Parameters for Stressed Period – GARCH Volatility 

 
 

 

 

 

 

 

 

 

 
 
 
 
 

 

Portfolio Normal Student skewed Student Normal Student skewed Student Normal Student skewed Student

µ 1 -0.0615 -0.0684 -0.0649 -0.0529 -0.0598 -0.0489 -0.0920 -0.0956 -0.0876

2 -0.0523 -0.061 -0.0548 -0.0451 -0.0545 -0.0413 -0.0936 -0.0955 -0.0907

3 -0.0627 -0.0709 -0.0659 -0.0552 -0.0648 -0.0512 -0.0977 -0.1033 -0.0933

4 -0.0579 -0.0672 -0.0607 -0.0527 -0.0638 -0.0487 -0.0994 -0.1045 -0.0955

5 -0.0525 -0.0643 -0.0549 -0.0483 -0.0621 -0.0452 -0.1024 -0.1063 -0.0999

ω 1 0.0328 0.0265 0.0258 0.0546 0.0261 0.0264 0.0652 0.0300 0.0300

2 0.0297 0.0182 0.0173 0.0410 0.0169 0.0176 0.0533 0.0232 0.0235

3 0.0376 0.0263 0.0254 0.0566 0.0266 0.0270 0.0708 0.0323 0.0324

4 0.0361 0.0217 0.0208 0.0478 0.0211 0.0218 0.0654 0.0291 0.0294

5 0.0368 0.0186 0.0176 0.0390 0.0151 0.0159 0.0581 0.0254 0.0259

α 1 0.0423 0.034 0.0336 0.1605 0.0943 0.0925 0.1718 0.0886 0.0876

2 0.0445 0.0312 0.0305 0.1388 0.0843 0.0832 0.1749 0.0881 0.0875

3 0.0494 0.0354 0.0349 0.1551 0.0930 0.0913 0.1740 0.0896 0.0886

4 0.0502 0.0335 0.0328 0.1416 0.0868 0.0853 0.1749 0.0891 0.0883

5 0.0524 0.0331 0.0324 0.1285 0.0802 0.0790 0.1764 0.0885 0.0879

β 1 0.9538 0.9247 0.9261 0.8973 0.8870 0.8874 0.8990 0.8988 0.8994

2 0.9554 0.9701 0.9712 0.9150 0.9523 0.9521 0.8994 0.9493 0.9494

3 0.9514 0.9304 0.9321 0.9040 0.8931 0.8932 0.8996 0.8995 0.9000

4 0.953 0.9398 0.9417 0.9151 0.9051 0.9049 0.9004 0.9011 0.9013

5 0.9528 0.9457 0.9474 0.9261 0.9175 0.9170 0.9015 0.9031 0.9031

v 1 11.3698 11.2172 8.3145 8.5550 8.6709 8.7751

2 9.8411 9.863 7.4079 7.6618 11.2432 11.3932

3 10.5682 10.4942 7.7715 8.0095 9.2707 9.4247

4 9.8427 9.8443 7.1182 7.3518 10.5652 10.7937

5 9.4656 9.5636 6.7701 7.0368 12.7556 13.1329

ξ 1 1.0309 1.0744 1.0373

2 1.0431 1.0693 1.0268

3 1.0363 1.0756 1.0430

4 1.0425 1.0693 1.0401

5 1.0553 1.0673 1.0332

2008 2009 2011
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Table 4.4 Estimated Parameters for Calm Period – GARCH Volatility 

 
 
 

The explanatory power of the of the GARCH parameters from the ML estimation should be 

noted with caution as they are solely the parameter estimations; however, comparing in 

particular the alpha and beta parameters for the different periods, it becomes apparent that the 

betas are lower in the calm period compared to the stressed period while the alpha parameters 

is slightly higher in the calm period when evaluating with the stressed period. This may mean 

that the past conditional variances have a larger influence in the stressed period while the 

variances of the squared errors are slightly more crucial for the calm period. This in turn can be 

interpreted as that the aspect of volatility clustering and time-varying volatility is more 

dominant in a financially distressed period than in the calm period. This is intuitive as such 

periods are characterised by above average volatility, meaning that high volatility at time 𝑡 

influences the volatility at time 𝑡 + 1 to also be high. This dependence becomes clear in a higher 

Portfolio Normal Student skewed Student Normal Student skewed Student Normal Student skewed Student

µ 1 -0.0727 -0.0693 -0.0566 -0.0405 -0.0389 -0.0354 -0.0777 -0.0667 -0.0687

2 -0.0869 -0.0737 -0.0640 -0.0524 -0.0512 -0.0455 -0.0819 -0.0674 -0.0678

3 -0.0863 -0.0807 -0.0660 -0.0434 -0.0437 -0.0385 -0.0852 -0.0730 -0.0738

4 -0.0949 -0.0874 -0.0736 -0.0490 -0.0500 -0.0438 -0.0898 -0.0753 -0.0752

5 -0.1017 -0.0933 -0.0813 -0.0562 -0.0580 -0.0500 -0.0931 -0.0774 -0.0755

ω 1 0.0486 0.0099 0.01 0.2246 0.0910 0.0882 0.2103 0.0667 0.0671

2 0.1246 0.0193 0.0193 0.2303 0.0990 0.0940 0.2212 0.0843 0.0844

3 0.0940 0.0159 0.0159 0.2646 0.1076 0.1031 0.2245 0.0717 0.0718

4 0.1279 0.0243 0.0242 0.2805 0.1169 0.1109 0.2241 0.0768 0.0768

5 0.1487 0.0378 0.0387 0.2957 0.1271 0.1188 0.2327 0.0872 0.0867

α 1 0.1098 0.0415 0.0415 0.2350 0.1262 0.1255 0.2610 0.1207 0.1217

2 0.2021 0.0514 0.0512 0.2605 0.1437 0.1434 0.2940 0.1397 0.1399

3 0.1585 0.0486 0.0483 0.2372 0.1289 0.1279 0.2811 0.1279 0.1283

4 0.1958 0.0572 0.0568 0.2461 0.1358 0.1349 0.3018 0.1373 0.1373

5 0.2153 0.0708 0.0717 0.2584 0.1443 0.1440 0.3201 0.1465 0.1456

β 1 0.9194 0.9482 0.9480 0.7113 0.7380 0.7428 0.7035 0.7775 0.7762

2 0.8293 0.9628 0.9629 0.6971 0.8435 0.8480 0.6808 0.8559 0.8557

3 0.8798 0.9377 0.9377 0.7100 0.7350 0.7414 0.7104 0.7810 0.7806

4 0.8472 0.9221 0.9222 0.7008 0.7210 0.7289 0.7064 0.7692 0.7693

5 0.829 0.8974 0.8953 0.6948 0.7086 0.7182 0.7000 0.7524 0.7536

v 1 6.5985 6.6072 10.5511 10.6265 6.2589 6.2276

2 6.6197 6.5943 9.8315 9.9419 5.9046 5.9007

3 6.7507 6.7810 10.3593 10.4984 6.0223 6.0121

4 6.8655 6.8895 10.0129 10.2024 5.7985 5.7991

5 6.9906 7.0126 9.6800 9.9172 5.6865 5.7006

ξ 1 1.0621 1.0331 0.9891

2 1.0474 1.0541 0.9979

3 1.0665 1.0450 0.9961

4 1.0620 1.0543 1.0003

5 1.0554 1.0698 1.0088

2014 2017 2019
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beta value while in the calm period the volatility is more constant over time, which in turn 

proceeds into a lower beta. 

The degrees of freedom parameter 𝑣 ranges between 5.6865 and 12.7556 for the symmetrical 

Student’s t-distribution and 5.7006 and 13.1329 for the skewed Student’s t-distribution for all 

years. The highest observed values of the parameter 𝑣 are the ones estimated for 2008, 2011 

and 2017 the lowest are observed for 2019. The skewness parameter is 𝜉 > 1 for all five 

portfolios for all six years, except for Portfolio 1, 2 and 3 in 2019 where 𝜉 < 1, which implies 

some left (negative) skewness in the loss distribution. However, this difference is fairly small, 

and the skewness parameter is closer to 𝜉 ≈ 1, implying no asymmetry of the distributions in 

this period. An interesting result is that the degrees of freedom parameters when allowing for 

conditional volatility are relatively higher than the parameters observed in Tables 4.1 and 4.2.  

 

Similar to the pattern displayed among the parameters in Tables 4.1 and 4.2, there is a tendency 

for higher values of skewness parameters to be accompanied by lower values of the degrees of 

freedom parameters. Moreover, the degrees of freedom parameters in the calm period are lower 

than in the stress period, which also aligns with the conclusion above. Again, the interpretations 

of the parameters should be considered with cautions since this is solely a trend among 

relatively few estimated periods.  

 
 

4.2 Backtest Test Statistics and Traffic Light System Results 
 
In the following tables, Table 4.5 and 4.6, the test statistics from the backtests as well as the 

traffic light results for each labelled method for both stressed and calm years, respectively, are 

shown. These tables serve as an overview of the general test results, which are discussed in 

detail in the following sub-parts. The discussion is structured method by method to arrive at a 

meaningful sub-conclusion about the performance of the particular method for the chosen years.  
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Table 4.5 Backtest Z Test Statistics and Traffic Light System Results for Stressed Period 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Portfolio ES-N ES-N-GARCH ES-t ES-t-GARCH ES-Skew t ES-Skew t-GARCH ES-BHS ES-VWHS-GARCH

2008 1 -6.6511 -0.3360 -6.0923 -2.6079 -3.3189 -0.5862 -5.2114 -3.3441
Reject Not reject Reject Reject Reject Not reject Reject Reject

2 -6.7712 0.0070 -6.1032 -2.3527 -2.6859 0.0108 -4.9670 -2.9872
Reject Not reject Reject Reject Reject Not reject Reject Reject

3 -6.8420 -0.1454 -6.1817 -2.3772 -3.1380 -0.2440 -5.0825 -3.0981
Reject Not reject Reject Reject Reject Not reject Reject Reject

4 -6.8193 0.0213 -6.1954 -2.3475 -2.9304 -0.0032 -5.0842 -2.8921
Reject Not reject Reject Reject Reject Not reject Reject Reject

5 -7.0541 -0.0696 -6.3179 -2.0987 -2.8784 0.0995 -5.4967 -2.5156
Reject Not reject Reject Reject Reject Not reject Reject Reject

2009 1 -0.7650 1.0000 -0.4709 -0.4188 0.9850 0.8898 -0.1597 0.2816
Reject Reject Not reject Not reject Reject Reject Not reject Not reject

2 -0.4003 1.0000 -0.1630 -0.0919 0.9858 1.0000 -0.0327 0.5738
Not reject Reject Not reject Not reject Reject Reject Not reject Not reject

3 -0.7579 1.0000 -0.5539 -0.3021 0.9684 0.9450 -0.0543 0.4175
Reject Reject Not reject Not reject Reject Reject Not reject Not reject

4 -0.7160 1.0000 -0.5109 -0.0960 0.9687 1.0000 -0.0440 0.4298
Reject Reject Not reject Not reject Reject Reject Not reject Not reject

5 -0.5365 1.0000 -0.3645 0.2889 0.9684 0.9819 0.0712 0.7108
Not reject Reject Not reject Not reject Reject Reject Not reject Reject

2011 1 0.1365 0.6465 0.2789 -0.0518 0.9197 0.6268 0.5500 -0.0900
Not reject Reject Not reject Not reject Reject Reject Not reject Not reject

2 0.1307 0.6483 0.2707 -0.0638 0.9155 0.4981 0.4323 -0.4914
Not reject Reject Not reject Not reject Reject Not reject Not reject Not reject

3 -0.0051 0.6447 0.6088 -0.1651 0.9675 0.6009 0.5462 -0.2843
Not reject Reject Reject Not reject Reject Reject Not reject Not reject

4 0.1162 0.6463 0.4667 -0.3265 0.9668 0.5535 0.4255 -0.3454
Not reject Reject Not reject Not reject Reject Not reject Not reject Not reject

5 0.1062 0.6490 0.3216 -0.3789 0.9492 0.4058 0.3071 -0.6963
Not reject Reject Not reject Not reject Reject Not reject Not reject Not reject
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Table 4.6 Backtest Z Test Statistics and Traffic Light System Results for Calm Period 

 

 

 

4.2.1 Backtest of ES Estimates with Normal Distribution 
To start with the ES estimation under Normal distribution with constant volatility for the 

stressed years, it can be seen from the test statistics for 2008 that ES is underestimated 

substantially and thus, the method is rejected. For 2009, the estimates for three out of five 

portfolios are rejected at the 5% significance level and thereby received the amber traffic light, 

which means that further improvements of the method are required. Consequently, the method 

does not underestimate ES as greatly as compared to 2008 estimates. For 2011, all five portfolio 

test statistics are not rejected and thus, awarded with the green light. An explanation for these 

results is that the three years sample period input for 2008 are generated from a rather calm 

period (as the assets in the portfolios in 2005-2007 experienced a below average standard 

deviation), thus these input values forecast a calm period. For this reason, each ES estimate 

underestimates the risk in 2008 as the actual risk in that year was higher due to the start of the 

Portfolio ES-N ES-N-GARCH ES-t ES-t-GARCH ES-Skew t ES-Skew t-GARCH ES-BHS ES-VWHS-GARCH

2014 1 0.5492 1.0000 0.8354 -0.0644 1.0000 0.8488 0.8319 -0.3488
Not reject Reject Reject Not reject Reject Reject Reject Not reject

2 -0.0206 1.0000 0.8282 0.0656 0.9844 0.8885 0.3326 -0.4270
Not reject Reject Reject Not reject Reject Reject Not reject Not reject

3 0.5511 1.0000 0.8416 0.0568 1.0000 0.9087 0.7122 -0.2481
Not reject Reject Reject Not reject Reject Reject Reject Not reject

4 0.4061 1.0000 0.7169 0.0527 1.0000 0.9087 0.7020 -0.2854
Not reject Reject Reject Not reject Reject Reject Reject Not reject

5 0.1123 1.0000 0.5864 0.0506 1.0000 0.8461 0.4504 -0.3218
Not reject Reject Not reject Not reject Reject Reject Not reject Not reject

2017 1 0.5461 0.8468 0.7005 0.4685 0.9407 0.6887 0.5828 0.5251
Not reject Reject Reject Not reject Reject Reject Not reject Not reject

2 0.3881 0.7128 0.5514 0.4336 0.9644 0.7040 0.5693 0.3854
Not reject Reject Not reject Not reject Reject Reject Not reject Not reject

3 0.5458 0.8539 0.7039 0.4719 0.9623 0.7694 0.7116 0.5275
Not reject Reject Reject Not reject Reject Reject Reject Not reject

4 0.4026 0.7245 0.5774 0.3458 0.9642 0.7288 0.5870 0.3999
Not reject Reject Not reject Not reject Reject Reject Not reject Not reject

5 0.3874 0.7216 0.4271 0.3182 0.9635 0.7551 0.4585 0.3961
Not reject Reject Not reject Not reject Reject Reject Not reject Not reject

2019 1 -0.3684 0.7181 -0.2002 0.2065 0.7024 0.7506 -0.1295 -0.6466
Not reject Reject Not reject Not reject Reject Reject Not reject Not reject

2 -0.3763 0.5717 -0.2603 0.3064 0.7823 0.8511 -0.1171 -0.6510
Not reject Not reject Not reject Not reject Reject Reject Not reject Not reject

3 -0.3794 0.5803 -0.2746 0.2076 0.6596 0.7460 -0.1166 -0.6530
Not reject Not reject Not reject Not reject Reject Reject Not reject Not reject

4 -0.3733 0.4419 -0.2347 0.3056 0.8024 0.8325 0.0169 -0.7618
Not reject Not reject Not reject Not reject Reject Reject Not reject Reject

5 -0.5072 0.4340 -0.0951 0.3055 0.7638 0.8304 0.0183 -0.8774
Not reject Not reject Not reject Not reject Reject Reject Not reject Reject
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global financial crisis. The same explanation holds for the result of ES estimates for 2009, with 

the difference that 2008 is an input year. The ES estimates in 2009 are influenced by a variation 

of volatilities, both low and high, and therefore, the method does not underestimate ES as much 

as in 2008. This leads to an improvement in the ES estimates for 2009. The results for the last 

stressed year, 2011, are not rejected as the sample period input comes from the stressed years 

2008 and 2009 (and the calm year 2010) and thus, deliver accurate forecasts for that period, 

which is displayed in non-rejected test statistics. To be more specific, the variation in the 

volatility is lower and thereby the method can deliver more accurate ES estimates.  

 

From the test statistics in Table 4.6 for the Normal distribution with constant volatility, it can 

be seen that this method gives better ES estimates for the calm period in comparison to the 

previously discussed stressed period. More interestingly, ES is correctly estimated for all 

portfolios in all the three calm years. Therefore, the test statistics are within the green light 

boundaries, which means the method does neither underestimates nor overestimates the ES. 

One possible explanation for this might be that the in-sample data’s standard deviation is similar 

enough to the testing years’ deviation, such that the Normal distribution with constant volatility 

is able to pick up the relatively constant standard deviation from the in-sample years to estimate 

ES correctly. Furthermore, the method with Normal distribution might perform better in the 

calm years due to less probability of big losses occurring, meaning less excess kurtosis (as 

discussed in the estimated degree of freedom parameter analysis in the previous section).  

 

As a sub-conclusion, the Normal distribution with constant volatility as an ES estimation 

method performs well for the calm period, which is surprising as neither the distribution nor 

the constant volatility was found as a well performing method in this thesis’s literature review; 

however, an intuitive explanation for this performance is provided above. Furthermore, in 

particular from the backtesting results from the stressed period it emerges that there possibly is 

a dependence between the correctness of the ES estimate and the level of similarity of its sample 

period’s standard deviation to the testing year. This is a preliminary finding and requires further 

investigation by other methods’ results to become reliable as a finding.  

 

Evaluating Table 4.5 for the Normal distribution in combination with GARCH volatility, the 

test statistics indicate no rejection for 2008 and consequently lies within the green light 

boundaries, while both for 2009 and 2011 all ES estimates are overestimated and given the red 

and amber light, respectively. Comparing the result for 2008 under normal distribution with 
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constant volatility versus GARCH volatility, it appears that the implementation of GARCH 

volatility accounts for the recent volatility changes. The constant volatility in that period is 

characterised by calm movements, GARCH proves to be able to account for volatility clustering 

that starts at the end of 2007 and beginning of 2008 and thus, it is able to predict ES for 2008 

accurately. Implying this property of volatility clustering, the ES are overestimated for 2009 

and 2011 as the greatest volatility is observed in 2008 and thus, GARCH forecasts a similar 

level of volatility for the other two stressed years. However, the overestimation of the ES in 

2011 is not as severe as in 2009. As already discussed previously in this section, there is less 

fluctuations in volatility in the years used to forecast the volatility for 2011, which results in 

more accurate ES estimations compared to 2009 (yet still slightly overestimated). Overall, 

evaluating this result for the stressed years, the dependence of both the length and experienced 

standard deviation of the in-sample period seems to be relevant. For this study, assuming the 

estimates for 2011 were predicted with only two years data input from 2009 and 2010, this 

method might have been able to estimate ES correctly as these years have similar levels of 

standard deviations compared to 2011.  

 

By a closer inspection of Table 4.6 for the method with Normal distribution and GARCH 

volatility, it becomes apparent that the ES estimates are rejected at the 0.01% and 5% 

significance level for 2014 and 2017, respectively, due to overestimation while the test statistics 

indicate correct estimations for 2019 for four out of five portfolios. However, the rejected test 

statistics for 2017 are in the amber zone, thus the methods are not rejected at the 0.01% 

statistical level since the test statistics are not above the approximated critical value +0.93.  

In 2014, another great overestimation (in terms of test statistic values and received traffic lights) 

happens, which can be explained by the input years that reflect the stressed year 2011. The 

GARCH model takes the above average high volatility from this year into account and thus, 

overestimates the below average volatility and thus, the risk in the testing year 2014. The result 

for 2017 can be evaluated when looking closer at the standard volatility. This year reports the 

lowest volatility out of the entire sample period, which causes the overestimation. Regardless 

of the fact that the three years input for that year are also calm periods, they are still 

experiencing higher volatility than 2017 and thus, the overestimation occurs. In 2019, the ES is 

correctly estimated at the 5% significance level for four out of five portfolios and thus, the test 

statistics are within the green light boundaries. This can be explained by the three years input 

data which is similar to that of the year 2019, based on the standard deviation. Furthermore, 

taking into account the extremely calm year 2017, the test statistics for 2019 are closer to 
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overestimation than to underestimation. Here the opposite affect occurs compared to 2008 

results with Normal distribution and constant volatility, which are underestimated due to low 

standard deviations from the in-sample data. This further suggests a clear link between the in-

sample periods and the ES estimations’ correctness being applicable in both directions (over- 

and underestimation).   

 

To conclude the result for the Normal distribution with GARCH volatility, the method does not 

follow a clear trend to what extent it estimates ES correctly consistently; however, it should be 

noted that there is a strong dependence between the volatility observed in the sample years with 

the volatility experienced with the testing years. If these volatilities are similar, GARCH is able 

predict ES correctly. If the sample period volatility is greater than the volatility in the testing 

year, the test statistics indicate overestimations. On the other hand, if the sample period 

volatility is mostly below average, the GARCH model is still able to react quickly and take 

volatility clustering and increased volatility into account as seen for 2008. Overall, this suggests 

that GARCH is sensitive to the input volatilities and tends to overestimate the ES rather than 

underestimating it.  

 
4.2.2 Backtest of ES Estimates with Student’s t-distribution 
Table 4.5 illustrated the breakdown of test statistics and traffic light system results for the 

Student’s t-distribution. Starting with this distribution in combination with constant volatility 

and in the stressed period, it is apparent that the results are similar to those under Normal 

distribution applying the same volatility modelling. The test statistics for the ES estimates in 

2008 are also in the red zone because they are more negative than the approximated critical 

value -1.8, thus the ES is underestimated by the method. This can be explained in the same 

manner as for the method with the Normal distribution and constant volatility. In this year there 

is a slight improvement when using Student’s t-distribution as compared to the Normal 

distribution, such as the test statistic values are less negative in relation to the test statistics for 

the Normal distribution with constant volatility.  

 

As seen in Table 4.1, the degrees of freedom parameters 𝑣 differ significantly between 2008 

and 2009. In year 2009, each portfolio had a much lower degrees of freedom parameter than in 

2008, implying that the loss distributions exhibit leptokurtosis, such that it has heavy tails. 

Therefore, the Student’s distribution improves the ES estimation for this year. Thus, the trend 

as found in the previous research of Student’s t-distribution being the superior distribution can 



   
 

50 
 

be supported here preliminary. Furthermore, it also becomes obvious that the results are 

influenced to a great extent by the volatility model applied and less by the distributional 

assumptions.  

 

Moving on to the results of the same method for the calm period. In Table 4.6, it can be 

recognised that the ES results are similar, but less often correctly estimated, to those under 

Normal distribution with constant volatility. If ES estimates and its test statistics are rejected, 

it is due to overestimation. For this reason, the same explanation as for the Normal distribution 

in that period holds. The more surprising observation is that under Normal distribution with 

constant volatility more estimates are not rejected compared to when using Student’s t-

distribution, which does not confirm the outcome from the literature discussed and from this 

method’s stressed period results found in this study. However, the method does not 

overestimate ES in such way it is in the red zone for overestimation, thus it is not rejected at 

the 0.01% significance level.  

 

In summary, these results suggest and confirm further that the outcome of the backtest is greatly 

influenced by the volatility model applied, rather than by the underlying distribution that is 

assumed. This can be seen in the fact that estimates conducted with the same volatility model 

but with different distributional assumptions perform similarly.  

 
The test statistics of the method using Student’s t-distribution in combination with forecasted 

volatility using the GARCH model for the stressed period, as shown in Table 4.5, display an 

opposite trend compared to those ES estimates under the Normal distribution and with GARCH 

volatility for the same period. Further, if this method is rejected it is due to underestimation 

while for Normal distribution using GARCH the reason of rejection is overestimation. 

Regardless of this opposition, it appears that this is a good performing method combination as 

10 out of 15 estimates in the stressed period are not rejected. Thus, it can be argued that this 

method combinations perform superior while both methods in combination with other 

distributions and volatility models estimate ES less often correct. 

 

The estimated degrees of freedom parameters for 2009, as seen in Table 4.3, are also lower than 

those of 2008, but at the same time higher than the parameters estimated with constant volatility. 

The lower values of the degrees of freedom parameters indicate more leptokurtosis, thus heavy 

tails. Therefore, it is intuitive that the ES estimations were improved with the assumption of the 
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Student’s t-distribution since it can accommodate kurtosis larger than three, and thus account 

for the heavy tails.  

 

If now moving on to the same combination in the method for the calm period, it is apparent that 

while 2014 and 2017 display opposite results when comparing to the ES estimates under 

Normal distribution with GARCH, the backtest outcomes for 2019 are in agreement. In total, 

for this period 15 out of 15 test statistics are correct and thus, are not rejected and receive the 

green light. This further supports the suggestion found for the stressed period that this method 

combination works well.  

 

Taken together, the results for the method with Student’s t-distribution with constant volatility 

display similar patterns as for Normal distribution with constant volatility while The results in 

this section indicate that the method combination of Student’s t-distribution with GARCH 

estimates ES correctly for both stressed and calm period more often than other methods.  

 
4.2.3 Backtest of ES Estimates with Skewed Student’s t-distribution 
In this section the results of the ES estimation using the Skewed Student’s t-distribution with 

both constant volatility and GARCH for the stressed and calm period as seen in Table 4.5 and 

4.6, are discussed.  

 

For the stressed period using constant volatility, all estimates for the three tested years are 

rejected with mostly the red light (two exceptions for the amber light in 2011). In 2008, this is 

due to severe underestimation, similar to the Normal and Student’s t-distribution using constant 

volatility. For 2009 and 2011 the red light is given due to overestimation, which shows the 

constant volatility is not able to adjust for less stressed period when having a very stressed 

year’s volatility as input. This result indicates the in-sample and out-of-sample data 

dependence.  

 

Nevertheless, it further appears that this particular distribution is less appropriate in fitting the 

data compared to Normal and regular Student’s t-distribution for the stressed period. 

Remarkably, all ES estimates in the stressed period are either rejected at the 0.01% significance 

with a red light or not rejected at the 0.01% level but still overestimated and thus, within the 

amber zone. Given this outcome, the method estimates ES poorly and it has a poor performance 

when compared to the other methods.  
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Turning to the calm period estimates with this distribution using constant volatility, it is noted 

that also for this period the methods using the Normal and Student’s t-distribution using the 

same volatility model outperform the method with skew Student’s t-distribution for every year 

in the calm period. In 2014 and 2017, the method in discussion is rejected for all years at the 

0.01% significance level, as it overestimates the ES and thereby, it is placed in the red zone.  

 

To conclude regarding the performance of the skew Student’s t-distribution with constant 

volatility, it is found that the method more often overestimates the ES compared to other 

distributions with the same volatility modelling, which suggest that the issue arises from the 

skewed Student’s t-distribution being unable to fit the data as the symmetric Student’s t-

distribution. A possible explanation might be that the positive skewness puts too much weight 

to the right of the distribution, which consequently leads to a too high ES estimate and thus, 

overestimation. The difference between existing studies’ suggestion of an outperformance of 

the skewed Student’s t-distribution and this study’s result is surprising, especially when 

evaluating the skewness parameters being above zero and thus, displaying asymmetry, both for 

assets individually and the combined portfolios, as reported in Table 3.2 and 3.4.  

 

Turning now to the backtest of the skewed Student’s t-distribution with GARCH volatility for 

the stressed period. The results appear to follow a similar pattern to the method under Normal 

distribution with GARCH volatility; however, this method combination performs slightly better 

than for the Normal distribution. On the other hand, GARCH under this distribution compared 

to the Student’s t-distribution do not appear to resemble in the same direction, while the latter 

displays a slight outperformance over this method. When skewed Student’s t-distribution with 

GARCH is rejected it is because the method overestimates the risk estimates, which confirms 

the trend discussed previously for this distribution and thus, emerges as a common issue for the 

skewed Student’s t-distribution. However, comparing the test statistics of the method with the 

skewed Student’s t-distribution with constant volatility and GARCH volatility, it is apparent 

that the GARCH model can accommodate volatility clustering.    

 

Regarding this method combination’s result for the calm period, one can observe from Table 

4.6 the test statistics appear to follow a different pattern to the GARCH under Student 

distribution. This distribution with GARCH performs better compared to the skewed Student’s 

t-distribution with GARCH, as the latter does not estimate ES correctly for any portfolio in the 

three years. The results are rejected due to overestimation more often when compared to Normal 
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and Student’s t-distribution applying GARCH. While the overestimation in 2017 is partly a 

common problem due to the extremely low volatility in that year and the in comparison higher 

volatility in the sample period 2014-2016, also the estimates for 2019 are overestimated 

(received the amber light), which is not rejected by other GARCH implying methods. 

 

To conclude the evaluation of the skewed Student’s t-distribution, for both constant and time-

varying GARCH volatility, this distribution overestimates ES more often than other 

distributions in both the stressed and calm period. Comparing the performance between the two 

periods, it can be summarized that it estimates ES for the stressed period better than for the 

calm years.  

 
 
4.2.4 Backtest of ES Estimates with BHS and VWHS 
The following discusses the last section of Table 4.5 and 4.6, which is the backtesting result for 

the methods BHS and VWHS with GARCH volatility. To start with, BHS in the stressed period 

naturally follows a similar result pattern as the Normal and Student’s t-distribution with 

constant volatility for this period, as BHS also applies constant volatility. A difference is that 

this method estimates ES correctly more often in 2009 compared to the Normal distribution, 

which underestimated ES in that year. For 2008, it underestimates the forecasts due to the same 

reason being the calm input years for a stressed out-of-sample year. It is worth noting, while 

this method also receives the red light due to underestimation for all estimates in 2008, the 

underestimation is less severe in absolute test statistic values compared to the other two 

mentioned methods. The overall result for BHS in the stressed method displays that this method 

estimates ES well with less and lower underestimation compared to Normal and symmetrical 

Student’s t-distribution. This suggests that a method that does not fit the data into a certain 

distribution can be beneficial. This result contradicts the findings in previous findings. In the 

study by Righi and Ceretta (2015), the historical simulation did not give accurate ES estimates.  

 

Moving on Table 4.6 to discuss the BHS results for the calm period, it is apparent that this ES 

method receives solely the green and amber light for its ES estimations. The reason for rejecting 

in 2014 and 2017 is overestimation within the amber zone, meaning the overestimation is not 

severe, but some improvements to the method are required. Further, as found in many test 

results, BHS performs similar to other methods assuming constant volatility, which is in an 
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indicator that it is due to the dependence between in-sample periods’ and out-of-sample period’s 

volatility.  

 

To conclude, the BHS seems to give more accurate ES estimates in the calm years than it does 

for the stressed years. This suggests that especially in calm, but also in stressed years it can be 

beneficial to model the empirical distribution of the underlying data instead of forcing it into a 

certain type of distribution, in particular when forced into the skewed Student’s t-distribution. 

Moreover, it is notable that BHS does not underestimate ES in the stressed period as severe as 

other comparable methods; however, it is also more likely to (slightly) overestimate ES in 

calmer periods.  

 
Lastly, the VWHS using GARCH for the stressed period performs similar to other GARCH 

implying model, in particular to the method with Student’s t-distribution and GARCH 

volatility. In 2008 the estimates are rejected at the 5% and 0.01% statistical level due to 

underestimation, and thus placed in the red zone. This is the common issue found in most 

methods due to the sudden financial distressed experienced in that year. Moreover, this method 

delivers accurate estimates and thus, a good overall performance for the stressed period, which 

supports the finding from BHS that stressed period’s data can be modelled well in an empirical 

distribution.  

 

The same method also performs superior in the calm period as it is solely rejected for two 

portfolios due to underestimation in 2019. This is explained by the in- and out-of-sample 

dependence again as the in-sample period is from an extremely calm period (2017) while the 

out of sample testing year is an average calm year. However, these underestimations receive 

the amber traffic light, which is a sign for solely slight underestimation.   

 

To conclude, VWHS in combination with GARCH is one of the better performing methods in 

terms of estimating ES correctly for both the stressed and the calm period. This result is also 

supported in previous studies. It conforms with the findings of Righi and Ceretta (2015), which 

showed that the filtered Historical Simulation performed well in their study. Nevertheless, it 

also suffers from dependence of input data and its volatility like most other methods also 

experience.   

 



   
 

55 
 

4.2.5 Portfolio Performance 
 
In this thesis, the number of backtests of ES estimation performed results in a total of 240 test 

statistics, 48 for each portfolio. Table 4.7 presents the number of test statistics in each zone 

between the five trading portfolios; thus, it reveals the difference between each portfolio in 

regard to the result of the ES estimation methods. As can be seen from the table, the ES on the 

Portfolios 2 and 5 are estimated correctly by the estimation methods 28 and 27 times, 

respectively, such that the ES is not underestimated or overestimated, and therefore the methods 

have not been rejected at the 5% significance level and were placed within the green zone. In 

other words, using these two portfolios the ES has been estimated correctly most times by the 

methods. Interestingly, there are no similarities between these two portfolios in terms of weights 

in the assets. Portfolio 1 and 3 have fewest ES methods in the green zone and the greatest 

number of methods in the amber zone. These two portfolios have the greatest weights in 

commodity, 35% and 30%, respectively. As seen in Table 3.3, the commodity index has the 

highest standard deviation behind the two equity indices, which may explain larger deviations 

in Portfolio 1 and 3 comparably to the other portfolios. However, as discussed in section 3.1.6 

and Table 3.5, the portfolios with the largest minimum and maximum and thus, standard 

deviation are the ones with the highest equity weights, which are portfolio 4 and 5. Therefore, 

the fact that portfolio 1 and 3 are estimated correctly and received a green traffic light slightly 

less often compared to the other portfolios might be more coincidentally rather than a 

meaningful finding.   

 
Table 4.7 Cumulative Number of Test Statistics in each Traffic Light Zones for Each Portfolio 

over all tested Years 

  

 
 

While the portfolio performance analysis showed that the weights distribution between asset 

classes is not relevant for the performance of ES methods, this finding validates the design of 

this study and increases its applicability to banks. Assuming the actual bank’s trading book is 

composed of similar asset classes (as suggested by Basel), the actual asset weights implied by 

Zone Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

Green Zone 23 28 22 25 27

Amber Zone 14 8 13 10 8

Red Zone 11 12 13 13 13
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a bank are unknown and differ between banks; however, this is shown irrelevant as methods 

give similar results (in terms of rejection and non-rejection) to all five tested portfolios. 

Therefore, this finding is reliable as it was tested for five portfolios for in total six years and 

thus, this study design is valid and applicable to real banks.  

 

4.2.6 Year by Year Analysis 
As one of the sub-research objectives is to determine whether methods perform differently or 

similarly in stressed versus calm periods, the following summarizes the main findings for this 

(see Table 4.8 for a detailed year by year method performance breakdown).  

 

Table 4.8 Year by Year Method Performance Ranking  

 
 

 

The following discussion is solely concerned about the methods that achieve zero rejections in 

the respective years to determine the methods that estimate each portfolio’s ES correctly in that 

year and not to just determine methods that are able to estimate ES correctly most of the time 

or a few times only.  
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Firstly, it is noted that there is no clear indication that one certain method or method 

combination outperforms the other methods dominantly. Furthermore, the only method that 

was unable to estimate ES correctly without zero rejections for at least one portfolio in one year 

is the skewed Student’s t-distribution with constant volatility. In total, the Student’s t-

distribution using GARCH performed the best as it was able to estimate ES correctly for all 

portfolios for five out of six tested years, followed by the Normal distribution using constant 

volatility, which achieved zero rejections for all portfolios for four out of six years. 

 

To look closer in which periods these non-rejections occurred, it is apparent that the Normal 

distribution with constant volatility was able to predict ES correctly for each of the calm years 

and for only one stressed year. Consequently, it can be assumed that this method performs better 

in calm periods. Secondly, the Student’s t-distribution using GARCH was able to estimate ES 

correctly for two years in the stressed period and for all years in the calm period. Lastly, the 

third most correctly estimating methods in this study is VWHS with GARCH and BHS as they 

have zero rejections for in total three out of the six tested years. For VWHS with GARCH two 

of these years are calm years and solely one stems from the stressed period, while it is the other 

way around for BHS (correctly estimated for two stressed and one calm year). This small 

difference in distribution of correct estimates of the non-parametric approaches between calm 

and stressed years is not significant. 

 

To summarize the emerged findings regarding method performance in stressed versus calm 

period, the Student’s t-distribution using GARCH performs well in both periods and while the 

Normal distribution with constant volatility show a (slightly) better estimation performance for 

the calm period.  

 

4.3 Summary of Results and Analysis 
 

The following summarizes the most meaningful trends identified in the method by method and 

year by year analysis. As the portfolio performance analysis did not result in any significance 

trends, this part is omitted here. 

 

This thesis is concerned with which ES estimation method estimate the ES such that the ES is 

neither underestimated not overestimated both the perspective of the Basel Committee and the 

perspective of Banks are considered. From the result, there are more methods that would be 
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preferred as seen from the perspective of the Basel Committee because in general the methods 

applied in this thesis on the portfolio leads to more overestimations than underestimations. 

Hence, the regulatory perspective should emphasis the application of the Normal Distribution 

with GARCH or the skewed Student’s t-distribution for stressed periods and Normal 

distribution with both constant volatility and GARCH volatility, the Student’s t-distribution and 

the VWHS model with GARCH volatility for the calm period. The banks are concerned with 

the overestimation since it can lead to inefficient capital allocation, therefore the banks would 

prefer the method with the Student’s t-distribution and GARCH volatility or the VWHS with 

GARCH volatility.  

 

In Table 4.9 the cumulative number of lights awarded to each method as identified by the test 

statistic can be found. Those results are discussed below for the perspective of both Basel and 

banks, meaning the method only performs well when it does not over- nor underestimate ES.  

 

Table 4.9 Cumulative Number of Test Statistics in each Traffic Light Zones for Each 
Portfolio, sorted by methods used 

 
 
 
Based on this quantitative analysis, the method, which estimates ES correctly more often and 

is within the green light boundaries, throughout all periods and portfolios is the Student’s t-

distribution with GARCH volatility, received the green lights 25 times. Moreover, the Normal 

distribution with constant volatility and the VWHS with GARCH received the green light 22 

times. Therefore, these are on the second place after the Student’s t-distribution with GARCH. 

On third place comes the BHS with 21 correct estimations and thus, green lights. The remaining 

methods score a considerably lower number of correct estimations and hence, are not 

considered well performing in this study.  

While quantitively speaking and also the method-by-method and year-by-year analysis shows 

that there are several methods that perform similarly well in the estimation of the ES correctly 

and thus, there is no clear indication that there is a single method or method combination that 

is superior.  

 

Zone ES-N ES-N-GARCH ES-t ES-t-GARCH ES-Skew t ES-Skew t-GARCH ES-BHS ES-VWHS-GARCH

Green Zone 22 9 18 25 0 8 21 22

Amber Zone 3 11 7 0 7 18 4 3

Red Zone 5 10 5 5 23 4 5 5
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The correct estimations from methods such as Student’s t-distribution, GARCH and VWHS are 

conformed with the reviewed literature and the reported importance of taking stylized facts into 

account (Huang, 2000; McNeil & Frey, 2000; Righi & Ceretta, 2015; Tang & Do, 2018). 

Moreover, especially the finding that the Normal distribution with constant volatility modelling 

belongs to the one of the best performing methods in this study contradicts the findings from 

existing research. While this distribution was only included in the tests to potentially find 

outperforming of other distributions (that account for stylized financial facts such as excess 

kurtosis and skewness), it proves to be able to estimate ES correctly. Moreover, the skewed 

Student’s t-distribution was promising as it accounts for two important financial data facts; 

nevertheless, its result in particular in combination with constant volatility is rather 

disappointing.  

 

Finally, the single most consistent and remarkable finding to emerge from the analysis is the 

strong dependence between in-sample data and out of sample and their level of standard 

deviation. The more similar that level is between input years and testing year, the better are the 

ES estimates in terms of not being under- or overestimated. This is a trend seen by almost every 

tested method and year. In general, this accords with earlier observations by Righi and Ceretta 

(2015), indicating that the estimation window itself is an important variable in estimation of 

and the performance of the ES estimates. This study confirms that the performance of the ES 

method is associated with the estimation window, and thus and important variable in ES 

estimation as suggested by Righi and Ceretta (2015). 

This result is partly related to the findings observed in earlier studies by Yamai and Yoshiba 

(2005), indicating that the sample size for estimating ES must be larger than for VaR. This 

identifies a possibility for further research to investigate whether, given the same data as in this 

study, the ES estimations are correct more often when increasing (or potentially decreasing) the 

in-sample size from three years. 
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5   Conclusion 
 

The study was designed to determine the methods that are able to correctly estimate the 

Expected Shortfall on a bank’s trading book for both stressed and calm period, in such a way 

that the methods are not rejected for under- or overestimation when backtesting the Expected 

Shortfall estimates using the second backtest developed by Acerbi and Szekely (2014). The 

following answers each sub-research questions directly before drawing an overall conclusion 

concerning the main objective.  

 

From previous studies, the established methods to estimate the ES are those that in different 

combinations make allowance for the stylised facts of financial data, namely excess kurtosis, 

skewness and volatility clustering. In the previous research, the methods that correctly 

estimated the ES are the symmetrical Student’s t-distribution and the skewed Student’s t-

distribution, with conditional volatility from volatility models such as GARCH(1,1) or EWMA, 

VWHS and EVT with GARCH volatility, and the method that was commonly rejected is the 

one with Normal distribution innovations. In accordance with the previous research findings, 

this study has implemented the Normal distribution, the symmetrical and skewed Student’s t-

distributions and VWHS, with constant volatility and GARCH forecasted volatility, and also 

the BHS, in order to estimate ES. The Student’s t-distribution implies the degrees of freedom 

parameter, which measures the excess kurtosis, and the skewed version of this distribution takes 

the skewness parameter into account, which allows for an asymmetric distribution. The BHS 

models the empirical distribution of the underlying data. Furthermore, GARCH and VWHS 

take volatility clustering and time-varying volatility into the estimation procedure.  

 

A review of the existing backtesting methods for ES estimates revealed that the second backtest 

by Acerbi and Szekely (2014) was the most appropriate one as it tests ES directly without 

requiring a Monte Carlo simulation as other backtests do. This implies that a rather 

comprehensible and adaptable backtesting method is available for evaluation of the ES 

estimation methods. In order to resemble the method proposed by the Basel Committee, an 

extension of the backtesting method by Acerbi and Szekely (2014) was conducted in order to 

account for both under- and overestimation of the ES. This was made by placing the methods 

not rejected at the significance level 5% (test statistic above or below the critical value -0.7 and 

+0.59, respectively) in the green zone, the methods rejected at the 5% level and not rejected at 

the 0.01% significance level in the amber zones and finally, the methods with a test statistics 
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exceeding the approximated critical values -1.8 and +0.93 for the 0.01% significance level in 

the red zones.  

 

To construct a representative portfolio for a bank’s trading book several asset classes, namely 

equity, foreign exchange, commodities, proxies for credit spread and interest rates, as well as 

an equity option, as suggested in Basel’s Analysis of the trading book hypothetical portfolio 

exercise, were included in all-in portfolios. The asset weighting was made in accordance with 

the suggestions of PwC (2016); however, as the actual assets and its weights are unknown and 

differ between banks, in total five all-in portfolios were assembled to mitigate this uncertainty. 

The testing was performed on the daily log losses of these five portfolios. The results in this 

study showed that the weights distribution between asset classes is not relevant for the 

performance of ES methods, therefore this finding validates the design of this study and 

increases its applicability to banks. 

 

An finding to emerge from this study’s testing is that the Student’s t-distribution and the skewed 

Student’s t-distributions are only superior to the Normal distribution with GARCH, otherwise 

when the constant volatility is applied the method with the Normal distribution showed good 

performance in relation to the methods with Student’s t-distributions. Furthermore, the choice 

of volatility model seems to have a greater impact on the performance of the ES estimate as 

compared to the choice of distributional assumptions.  

 

Moreover, a quantitative analysis of the number of non-rejections showed that the Student’s t-

distribution with GARCH volatility received the highest number of non-rejections of the test 

statistics, followed by the Normal distribution with constant volatility and the VWHS with 

GARCH and lastly BHS. All other methods received a considerably lower number of not 

rejected test statistics. This study has shown that the method using the Student’s t-distribution 

with GARCH volatility is the method that performs equally as well in the stressed and the calm 

periods. The Normal distribution with constant volatility gives more correct ES estimations for 

the calm period. Both VWHS and BHS do not display a significant trend in which period they 

perform better. 

 

This thesis is concerned with both underestimation and overestimation of the ES, thereby the 

perspective of the Basel’s Committee and the perspective of the banks are considered. This 

study showed that the methods that correctly estimates the ES on a bank’s trading book for both 
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the stressed and calm period, taking both under- and overestimation into consideration, are the 

methods with the Student’s t-distribution with GARCH volatility and secondly also VWHS 

with GARCH volatility. Regarding estimations in calm out-of-sample periods, also the Normal 

distribution with constant volatility predicts ES correctly. The most unanticipated finding 

should be acknowledged here, which affects all methods used. It emerged that there is a strong 

dependence between the in-sample period’s standard deviation and the backtest result for the 

out-of-sample testing year. It was identified that the more similar the level of deviation in these 

years, the more often does any method estimate ES correctly.  
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6   Recommendations  
 
The study should be repeated using the same data and all-in portfolios but changing the in-

sample period by length, such as one years, two years or five years, and possibly by using a 

rolling window for parameter updating. The in-sample period should be kept constant 

throughout the study to be comparable across methods and testing years. By changing the length 

of the in-sample period, different levels of standard deviations will be used to predict ES for 

the out of sample year. It should be studied whether or not an increase, or decrease, of the in-

sample period’s length has a consistent impact on the correctness of estimations. The issue of 

this dependence is an intriguing one, which could be usefully explored, such that, to give an 

example, a shorter in-sample period might have a more accurate level of standard deviation 

comparing to the testing year as they are timely more close or whether a longer in-sample period 

might ensure stability among ES estimates and thus, is estimating it correctly more often.  

 

Moreover, as acknowledged in delimitations, due to a timely restriction put on this thesis, the 

EVT was not tested; however, it was argued to be a well-performing method by existing 

literature and thus, should be tested in further research that implements a similar representative 

portfolio of a bank’s trading book.  

 

The findings of this study have a number of important implications for future practice of 

estimating ES correctly. The information and findings can be used to develop targeted courses 

of actions for when estimating ES: 

§ To imply an ES estimation method that proved to perform constant between periods 

(such as the Student’s t-distribution with GARCH), when the underlying condition of 

the to-be-estimated period is unknown or uncertain  

§ To imply an ES estimation method that proved to perform better in either calm or 

stressed period (such as the Normal distribution with constant volatility for calm 

periods), when the underlying condition of the to-be-estimated period can be forecasted 

with certainty  

§ To determine an appropriate and stable in-sample period (based on length and level of 

standard deviation) to achieve more accurate and correct ES estimates  
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Appendix  
 

Appendix 1: Excel Formulas and Functions 
 

Section Description Excel Function 

Data 
Return Data Return = LN(Data_t) - LN(Data_t-1) 

Descriptive 
Statistics  Minimum = MIN(Data) 

  Maximum = MAX(Data) 

  Mean  = AVERAGE(Data) 

  Median  = MEDIAN(Data) 

  Standard 
Deviation = STDEV.S(Data) 

  Skewness = SKEW(Data) 

  Kurtosis  = KURT(Data) 

BS Option 
Pricing  Yearly Volatility = SQRT(252)*STDEV.S(Data(T)) 

  Option price C t-1 =(NORM.DIST(d1,0,1,TRUE)*S[t])-
(NORM.DIST(d2,0,1,TRUE)*K*EXP(-r*t)) 

Portfolio 
Constructi
on 

Portfolio 1 =(Equity/2)*0.45+(Proxies for IR and 
CS/4)*0.05+Commodity*0.35+FX*0.1+Option*0.05 
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  Portfolio 2 =(Equity/2)*0.5+(Proxies for IR and 
CS/4)*0.05+Commodity*0.2+FX*0.2+Option*0.05 

  Portfolio 3 =(Equity/2)*0.52+(Proxies for IR and 
CS/4)*0.05+Commodity*0.3+FX*0.05+Option*0.08 

  Portfolio 4 =(Equity/2)*0.55+(Proxies for IR and 
CS/4)*0.1+Commodity*0.2+FX*0.05+Option*0.1 

  Portfolio 5 =(Equity/2)*0.65+(Proxies for IR and 
CS/4)*0.1+Commodity*0.1+FX*0.1+Option*0.05 

Normal 
Distributio
n GARCH 

Residual (t) =Data(t)-mu 

  Time varying 
variance (t=1) =STDEV(Data of 750 observations) 

  Time varying 
variance (all t>1) 

=SQRT(omega+alpha*residual(t-1)^2+beta*time varying variance 
(t-1)) 

  Loglikelihood =-0.5*LN(time varying variance(t))-(residual(t)^2/(2*time varying 
variance(t)^2)) 

  Max Sum =SUM(Loglikelihood for all t) 

Student t 
constant 
volatility 

z(t) =(Data(t)-mu)/time varying variance(t) 

  ML constant 
sigma 

=LN(GAMMA((v+1)/2))-LN(GAMMA(v/2))-0.5*LN(PI()*(v-2))-
0.5*(LN(sigma)^2)+(1+v)*LN(1+((z(t)^2)/(v-2)))) 

Student t 
GARCH ML GARCH 

=LN(GAMMA((v+1)/2))-LN(GAMMA(v/2))-0.5*LN(PI()*(v-2))-
0.5*(LN(time varying volatility (t)^2)+(1+v)*LN(1+((z(t)^2)/(v-

2)))) 
skewed 
Student t 
constant 
volatility 

I(t) =IF(z(t)<m/s,-1,1) 
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  ML constant 
sigma 

=LN(2/(xsi+(1/xsi)))+LN(GAMMA((v+1)/2))-0.5*LN(PI()*(v-2))-
LN(GAMMA(v/2))+LN(s/sigma)-

0.5*(v+1)*LN(1+(((s*z(t)+m)^2*xsi^(-2*I(t)))/(v-2))) 

skewed 
Student t 
GARCH 

ML GARCH 
=LN(2/(xsi+(1/xsi)))+LN(GAMMA((v+1)/2))-0.5*LN(PI()*(v-2))-

LN(GAMMA(v/2))+LN(s/time varying volatility (t))-
0.5*(v+1)*LN(1+(((s*z(t)+m)^2*xsi^(-2*I(t)))/(v-2))) 

VWHS 
Estimation Jan. =GARCH SD Normal Distribution first estimate in Jan from test 

period 

  
Scaled Loss 
GARCH 
STD(t+1) Jan.  

=Data*(Jan./GARCH SD(t)) 

VaR and 
ES 
estimations
: 

Constant mean (t) =AVERAGE(in-sample data[rolling window]) 

  Constant 
volatility (t) =STDEV.S(in-sample data[rolling window]) 

Normal 
Distributio

n 

VaR N (t) 
constant volatility  =constant mean(t)+constant volatility(t)*NORM.S.INV(0.975) 

  ES N (t) constant 
volatility  

=constant mean(t)+constant 
volatility(t)*(NORM.S.DIST(NORM.S.INV(0.975),0)/(1-0.975)) 

  
Violations ES N 
(t) constant 
volatility  

=(Data(t)*(IF(Data(t)>VaR N (t),1,0))/ES N (t)) 

  VaR N GARCH 
(t) 

=constant mean(t)+GARCH Normal time varying volatility 
(t)*NORM.S.INV(0.975) 

  ES N GARCH (t) =constant mean(t)+GARCH Normal time varying volatility 
(t)*(NORM.S.DIST(NORM.S.INV(0.975),0)/(1-0.975)) 

  Violations ES N 
GARCH (t) =(Data(t)*(IF(Data(t)>VaR N GARCH (t),1,0))/ES N GARCH (t)) 

Student t  v Student t 
constant volatility  estimated by solver 
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  v Student t 
GARCH  estimated by solver 

  VaR t (t) constant 
volatility  

=constant mean (t)+SQRT(((v Student t constant volatility-2)/v 
Student t constant volatility))*constant volatility (t)*T.INV(0.975,v 

Student t constant volatility) 

  ES t (t) constant 
volatility  

=constant mean(t)+SQRT(((v Student t constant volatility-2)/v 
Student t constant volatility))*constant volatility 

(t)*T.DIST(T.INV(0.975,v Student t constant volatility),v Student t 
constant volatility,0)/(1-0.975)*((v Student t constant 

volatility+((T.INV(0.975,v Student t constant volatility))^2))/(v 
Student t constant volatility-1)) 

  Violations ES t (t) 
constant volatility  =(Data(t)*(IF(Data(t)>VaR t (t),1,0))/ES t (t)) 

  VaR t GARCH (t) 
=constant mean+SQRT(((v Student t GARCH-2)/v Student t 

GARCH))*GARCH t time varying volatility(t)*T.INV(0.975,v 
Student t GARCH) 

  ES t GARCH (t) 

=constant mean+SQRT(((v Student t GARCH-2)/v Student t 
GARCH))*GARCH t time varying volatility 

(t)*T.DIST(T.INV(0.975,v Student t GARCH),v Student t 
GARCH,0)/(1-0.975)*((v Student t GARCH+((T.INV(0.975,v 

Student t GARCH))^2))/(v Student t GARCH-1)) 

  Violations ES t 
GARCH (t) =(Data(t)*(IF(Data(t)>VaR t GARCH (t),1,0))/ES t GARCH (t)) 

Skew t 
constant 
volatility  

[v, xsi, mu] skew t 
constant volatility estimated by solver 

  m skew t constant 
volatility  

=(((GAMMA(((v skew t constant-1)/2)))*SQRT(v skew t constant-
2))/((SQRT(PI()))*GAMMA(v skew t constant/2)))*(xsi skew t 

constant-(1/xsi skew t constant)) 

  s skew t constant 
volatility  

=SQRT((xsi skew t constant^2+(1/(xsi skew t constant^2))-1)-m 
skew t constant^2) 
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Quantile skew t 
(prob.) constant 
volatility  

=(IF(prob.<(1/(1+xsi skew t constant^2)), ((1/xsi skew t 
constant)*T.INV((prob./2)*(1+xsi skew t constant^2),v skew t 

constant)-m skew t constant)/s skew t constant, ((-xsi skew t 
constant)*T.INV(((1-prob.)/2)*(1+(1/xsi skew t constant^-2)),v 

skew t constant)-m skew t constant)/s skew t constant)) 

  
VaR skew t (t) 
constant volatility 
(prob.) 

=constant mean (t)+sigma skew t constant*Quantile skew t 
constant(prob.) 

  ES skew t (t) 
constant volatility  =AVERAGE(VaR skew t (t) constant volatility for all prob.) 

  
Violations ES 
skew t (t) constant 
volatility  

=Data(t)*(IF(Data(t)>VaR skew t (t) constant (prob.),1,0))/ES skew 
t (t) constant 

  

Average 
Violations ES 
skew t (t) constant 
volatility  

=AVERAGE(Violations ES skew t (t) constant volatility ) 

Skew t 
GARCH 

[v, xsi, mu, alpha, 
beta, omega] skew 
t GARCH 

estimated by solver 

  m skew t GARCH 
=(((GAMMA(((v skew t GARCH-1)/2)))*SQRT(v skew t GARCH-

2))/((SQRT(PI()))*GAMMA(v skew t GARCH/2)))*(xsi skew t 
GARCH-(1/xsi skew t GARCH)) 

  s skew t GARCH =SQRT((xsi skew t GARCH^2+(1/(xsi skew t GARCH^2))-1)-m 
skew t GARCH^2) 

  Quantile skew t 
(prob.) GARCH 

=(IF(prob.<(1/(1+xsi skew t GARCH^2)), ((1/xsi skew t 
GARCH)*T.INV((prob./2)*(1+xsi skew t GARCH^2),v skew t 

GARCH)-m skew t GARCH)/s skew t GARCH, ((-xsi skew t 
GARCH)*T.INV(((1-prob.)/2)*(1+(1/xsi skew t GARCH^-2)),v 

skew t GARCH)-m skew t GARCH)/s skew t GARCH)) 

  VaR skew t (t) 
GARCH (prob.) 

=constant mean (t)+sigma skew t GARCH*Quantile skew t 
GARCH(prob.) 

  ES skew t (t) 
GARCH =AVERAGE(VaR skew t (t) GARCH for all prob.) 
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  Violation ES skew 
t  (t) GARCH 

=Data(t)*(IF(Data(t)>VaR skew t (t) GARCH (prob.),1,0))/ES 
skew t (t) GARCH 

  
Average Violation 
ES skew t  (t) 
GARCH 

=AVERAGE(Violation ES skew t   
(t) GARCH) 

BHS 
constant 
volatility  

VaR BHS (t) =PERCENTILE.INC(750 obs. input data (t),0.975) 

  ES BHS (t) =AVERAGEIF(750 obs. Input data, CONCATENATE(">",VaR 
BHS(t))) 

  Violations ES 
BHS (t) =Data(t)*(IF(Data(t)>VaR BHS (t), 1, 0))/ES BHS (t) 

VWHS 
GARCH 

VaR VWHS 
GARCH (t) (start 
at t=750) 

=PERCENTILE.INC(Scaled Loss GARCH STD Jan. 1: Scaled 
Loss GARCH STD Jan. 749),0.975) 

  Violations VWHS 
GARCH (t) =IF(Data(t=750)>VaR HS GARCH (t=750),1,0) 

  
ES VWHS 
GARCH (t) (start 
at t=750) 

=AVERAGEIF(Sclaed Loss GARCH STD Jan.1:Scaled Loss 
GARCH STD Jan.749, CONCATENATE(">",VaR HS GARCH 

750)) 

  
Violations ES 
VWHS GARCH 
(t) 

=Data(t)*(IF(Data(t)>VaR HS GARCH (t), 1, 0))/ES HS GARCH 
(t) 

Backtest: 
Test 
Statistics 

T*(1-alpha) =252*(1-0.975) 

  ES-N =-(1/T*(1-alpha))*SUM(Violations ES N (t) constant volatility)+1 

  ES-N-GARCH =-(1/T*(1-alpha))*SUM(Violations ES N (t) GARCH)+1 

  ES-t =-(1/T*(1-alpha))*SUM(Violations ES t (t) constant volatility)+1 
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  ES-t-GARCH =-(1/T*(1-alpha))*SUM(Violations ES t (t) GARCH)+1 

  ES-skew t- 
constant 

=-(1/T*(1-alpha))*SUM(Average Violations ES skew t (t) constant 
volatility)+1 

  ES-skew t- 
GARCH 

=-(1/T*(1-alpha))*SUM(Average Violations ES skew t (t) 
GARCH)+1 

  ES-BHS =-(1/T*(1-alpha))*SUM(Violations ES BHS(t))+1 

  ES-VWHS-
GARCH =-(1/T*(1-alpha))*SUM(Violations ES VWHS GARCH (t))+1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


