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Abstract

The products produced in rich countries are very di�erent from the products produced in
poor countries. Why? Unreliable electricity is often cited as one of the main challenges
facing industrial production in less developed economies. In this paper, I connect these two
observations by linking interruptions in the production enviroment to the sophistication
of the production output. Using a data set covering more than 500,000 observations of
manufacturing plants in India between 2000 and 2016, I �nd evidence suggesting that the
level of interruption, modeled here using electricity shortages, contained in a plant's input
supply is strongly associated with whether or not more complex products have a positive
relationship with plant revenues. This suggests a new pathway between the production
environment at the local level and the aggregate complexity of the economy.
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1 Introduction

The products produced in rich countries are very di�erent from the products produced in
poor countries. Why? There is a growing empirical literature showing that the di�erence
between countries' economic sophistication, de�ned by the kinds of products they produce,
explain large variation in GDP per capita (see �gure 5). However, very little empirical
evidence examines the micro-foundations behind these di�erences.

From the literature on economic complexity and product upgrading, we know that the
productive capabilities in an economy is an important predictor of economic growth (Haus-
mann and Hidalgo, 2011). However, despite open markets and vast access to information,
developing economy uptake to more sophisticated production have been a slow and path
dependent process (Hidalgo et al., 2007).

At the same time, the access to reliable electricity is often highlighted as one of the key
challenges facing industrial production in less developed economies. The approach taken
to quantify this e�ect is usually based on production stoppages at the unit level (plants,
factories or �rms). In this paper, I propose a di�erent pathway between a more disruptive
production environment and the level of sophistication in the economy. Speci�cally, I
argue that only taking into account the e�ect of production failures at the plant level
underestimates the true e�ect of a disruptive environment on production networks and
incentives.

The mechanism is simple. If more complex products require more intermediate inputs or
more steps in production, interruptions or failures in production processes punish them
harder than simpler ones. If these disruption-costs are punitive enough, investors will
put their money elsewhere and producers will choose less complex products. Given that
electricity is an important input in manufacturing - most factories cannot produce anything
without running lights, machines, and motors - an unreliably supply could signi�cantly
reduce the productivity of a plant. To test for this e�ect, I examine the ability of electricity
interruptions in the production environment to explain the complexity of products made
at the plant level of in India between 2000 and 2016.

The approach taken in this paper is primarily related to three strands of literature. First,
the literature of economic complexity and the sophistication of an economy's capability
base (Frenken et al., 2007; Hausmann et al., 2013; Tacchella et al., 2012). In addition, to
develop the relation between production disruptions and product complexity, I draw on O-
ring-type e�ects as modelled in Kremer (1993) and Jones (2011), and the recent literature
on volatility in production networks (Acemoglu et al., 2012). While the latter is mainly
concerned with aggregate e�ect of sectoral shocks, the importance of input-output linkages
are equally relevant at the plant level.

1.1 Aim and research questions

The objective of this research is to explore the relationship between interruptions in the
supply of electricity, here taking the role of the more general production interruptions, and
the sophistication of manufacturing production.

More speci�cally, I'm interested in whether an uncertain production environment can help
explain the di�erence in economic complexity observed at the factory level. To analyse
this e�ect, I put together an extensive set of data on electricity-, state- and plant-level
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indicators covering seventeen years across thirty Indian states. Two overall questions guides
the research:

1. How is the impact of production interruptions - in the form of electricity shortages -
on factory output related to the sophistication of the factory's production?

2. What relationship, if any, does this association between complexity and interruptions
have with the complexity of the manufacturing sector in India in the long run?

The �rst question explores how electricity shortages interact with production sophistication
at the plant level. The second question address the impact of this interaction, as it expresses
itself in the type of products being made in the economy. In section 3.3 I turn the two
research questions into a set of testable hypotheses.

1.2 Structure of thesis

In the following, I �rst brie�y present the background of the widespread electricity shortages
in India and its relationship to the manufacturing sector. Second, I develop the theoretical
connection between interruptions in production chains, sophistication of economic activity,
and electricity shortages. From this model, I construct a set of hypothesis to test against
the empirical data. In section 4 I present the data sources used in the analysis. Section
5 presents the construction and operationalisation of my key variables. Here, I also detail
my empirical strategy. Section 6 and 7 presents the results of the analysis and discusses
the �ndings. Finally, I conclude.
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Figure 1: Production disruptions tend to have a higher frequency in poorer, less complex economies.
The color of points are country economic complexity index values (ECI), where blue is more com-
plex. Gray crosses has a missing complexity value. Lines are SLR �ts to ln(GDP/cap). Disruption
data is from World Bank (2020c). ECI data is from Simoes and Hidalgo (2011). Countries are
not surveyed the same years, so complexity and GDP/cap values have been matched to the newest
survey year for each country before 2017. No country has more than one observation.
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2 Background

In the last few years, India has made enormous strides in expanding the quality of the
electricity supply. Since 2018, the electricity grid has reached 100% coverage of villages
and the distance between the average de�cit of required power has been reduced to a less
than a percent from an average of 8.5% in 2012. This has in large parts been accomplished
by a massive expansion in the generative ability of the power sector: between 2007 and
2017 the capacity more than doubled (Zhang, 2018). Until recently, however, the electricity
sector was plagued by poor market incentives, large technical losses and a rapidly increasing
demand. This has led to endemic shortages during the past decades.

There are several reasons behind the persistent shortages. Despite the fact the electricity
has been open to private enterprises since the 1991 liberalization, state- and government
run companies still accounted for 80% of electricity generation in 2010 (split 51% to 29%),
as well as most retail distribution companies. For decades, state-run distribution companies
have provided �xed-fee electricity provision to agricultural consumers. These un-meetered
prices have then been partly paid for by electricity prices for industrial use at almost four
times the price (Allcott et al., 2016). For many years, this has led to a "quality-subsidy"
trap, where distributors provide poor-quality electricity, consumers accept this because of
the low price and the public underwrites the losses of the distribution companies (McRae,
2015).

Despite the government subsidies, distribution companies have run with large yearly de�cits:
between 1992 and 2010, such companies reported a loss of a 61 billion 2004-USD dollars
in total (Allcott et al., 2016). This has led to large underinvestment in the sector. An
example of such underinvestment is the "understanding" signed by investors after liber-
alization in 1991 to build 50 gigawatts of power-generation capacity. Of these 50, 4 was
build. Similarly, between 1997 and 2007, only half of the 71 gigawatts capacity planned
for construction was realized (CEA, 2013). In addition to the under-capacity comes a
large amount of technical losses. For instance, between 1994 and 2009, Indian thermal
plants were o�ine about 28% of the time due to forced outages, planned maintenance, and
shortages in coal.

In the same period, the size of the Indian economy more than doubled and the population
added some 250 million people. Together, the inability for companies to clear the mar-
ket, underinvestment, rapid population growth, and massive increases in the size of the
economy, this led to wide spread shortages during the study period (2000-2016).

These shortages provide signi�cant barriers to the daily operations of companies. Figure 2
shows the results from two Enterprise Surveys conducted by the World Bank (World Bank,
2020a,b). In 2005, electricity is listed as by far the greatest obstacle. While electricity has
been overtaken by corruption as the main concern of companies, more than 30% still
perceive that access to power is at least a major obstacle to their operations in 2014.

Such industry-agriculture pricing distortions and lack of reliable power is bound to cause
production frictions. The importance of electricity in production ine�ciencies have recently
been documented in several settings at the level of the individual �rm (Grainger and Zhang,
2017; Abeberese et al., 2019; Fisher-Vanden et al., 2015).

Two India-speci�c patterns are worth highlighting here: the importance of the quality of
electricity, rather than just electricity alone, and the evidence on output-costs of electricity
shortages. Samad and Zhang (2016) and Chakravorty et al. (2014) both �nd improvements
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in incomes from access to electricity, but much larger income gains from access to quality
electricity (from 9.6% to 17% and from 9% to 28.6%)1. Abeberese (2017) �nds that
increases in electricity prices reduces the electricity- and machine-intensity of activities,
leading to smaller growth in production output. Finally, Allcott et al. (2016) �nds a 5% -
10% reduction in plant-level pro�ts from shortages in electricity, with a lower productivity-
penalty due to generator substitution.

Corruption Electricity High taxes Other

WBES 2005

0

200

400

600

WBES 2014

0

10000

20000

30000

WBES 2005

0

200

400

0 1 2 3 4

WBES 2014

0

10000

20000

30000

40000

0 1 2 3 4

No obstacle Minor obstacle Moderate obstacle Major obstacle Very severe obstacle

Figure 2: Electricity remains an important concern for �rms in India. Top �gures: while the share
of managers that list electricity quality as the main constraint to their success has fallen between
2005 and 2014, it remains high. Bottom �gures: the share of �rms that name electricity as a major
obstacle, or worse, to their current operations is still around 30 %. Source: World Bank enterprise
surveys in India: 2005 and 2014 (World Bank, 2020b,a). Vertical axis is �rm counts for 2005 and
weighted counts for 2014.

1The latter study only non-agricultural incomes.
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3 Literature and theoretical framework

3.1 Product complexity

Since Adam Smith it has been a truism that wealth comes from the economic e�ciency
of division of labor. The greater the market available, the deeper its participants can
specialize and the greater the bene�t. This suggests that economic wealth is connected to
the increasing number of activities and complexity of interactions in the economy (Romer,
1990).

If the size of the market limits the specialization of �rms and workers, the globalization
of labor- and input-markets should facilitate broad economic wealth creation. When all
countries can exploit the global markets, why then have national di�erences in the gross
domestic product (GDP) per capita skyrocketed during the last two hundred years (Pritch-
ett, 1997)? Despite 50 years of unprecedented international connectivity, international
trade, and globalisation (and some notable growth spurts), the data show that develop-
ing countries (as a group) are not catching up to more advanced economies (Johnson and
Papageorgiou, 2020).

The literature on economic complexity provides one possible answer. If some spill-over
e�ects from the individual activities that arise from specialization - like property rights,
tacit know-how, infrastructure, regulation - cannot be imported, they need to be present
in the local economy. The productivity of a country then lies in these non-tradable �eco-
nomic capabilities�, and the di�erences between countries owe (partly) to their number, the
complimentarity, and the interactions of these capabilities (Hidalgo et al., 2007; Hausmann
et al., 2013).

There are competing methods (Tacchella et al., 2012; Hidalgo and Hausmann, 2009; Inoua,
2016), but approaches to quantifying these capabilities share a common conceptual ground-
ing. Given the di�culties in de�ning and measuring discrete capabilities, researchers have
taken an agnostic approach to speci�c nature of capabilities. The basic intuition is simple.
Say that a set of capabilities are required to e�ectively produce a product. We can assume
that a country that e�ectively makes the given product posses the necessary capability
base. It follows then that products that are produced by many countries requires less rare-
or non-tradable capabilities, while rarer products require more complex capabilities. Some
products, however, will happen to be present in only a few places for reasons unrelated to
the abilities of the economy (diamonds, ostrich eggs). This is solved by implementing an
iterative algorithm that repeatedly weighs the complexity of products by the complexity
of the countries that export them. See appendix B for a de�nition of the algorithm used
in this paper.

This framework has proven to be a strong predictor of economic performance. Figure 5
shows the robust relationship between country-level economic complexity and GDP per
capita (PPP). Since natural resources are a product of geographical luck rather than pro-
ductive know-how, I separate out economies with more than 10% of resource rents as share
of total GDP. Hausmann et al. (2013) shows how the deviations from the observed trend
of economic complexity of economies and their GDP/cap is a strong predictor of economic
growth, suggesting that they converge to the sophistication of their capabilities (that is,
countries below the trend line growth fast, while countries above slows down). Not only
does aggregate complexity matter: economies moving into more complex products are more
egalitarian (Hartmann et al., 2017), are less carbon-intensive (Can and Gozgor, 2017), and
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Figure 4: The tripartite graph (left) represents the theoretical model: countries (C) can make the
products (P) their capabilities (A) allows them to. The bipartite graph (right) is what we observe
in the trade data: countries export a set of products, and from this set of products, we infer
their capabilities. For example, every country can produce product three. This suggests that the
capabilities required to produce it are ubiquitous. In addition, we can see that the only product
country three can make is the one every country produces. This suggest that country three does not
have a sophisticated capability-base. In contrast, country one can produce all products including
product one, which it is the only one that can produce. Here, country one and product one would
the most complex.

have less volatile job-markets (Adam et al., 2019).

The aggregate-level economic complexity is the outcome of a myriad of micro-level deci-
sions, historical conditions, �rm decisions. Despite the fact that the economic complexity
algorithm explicitly de�nes aggregate economic complexity as the collection of products'
complexity, the factors that drive micro-level economic sophistication are not very well
understood, and have seen very little empirical study.

3.2 Interruptions in production networks and economic complexity

I now turn to the relationship between my main variable of interest, the complexity of prod-
ucts at the plant level, and my main explanatory variable, unreliable electricity. Through-
out the rest of the paper I use plant, factory, and �rm interchangeably. Speci�cally, this
section will argue that interruptions in production networks (such as unreliable electricity)
can signi�cantly reduce �rms' incentive and ability to produce complex products.

To understand the role of disruptions on products, it is helpful to look at a simple model
of production. Disruptions to a plant can happen in two ways: at the level of plant itself,
or somewhere in the production chain. I start from the production setup in Acemoglu
et al. (2012) used in much of the recent literature on shocks in aggregate production
networks. For now, I take one plant to be representative of the production in a given
sector, where each plant makes a unique product that can either be sold to consumers or
used as intermediate input in the production of a di�erent product. We can then model a
multi-sector production by

xi = (zili)
α(

n∏
j=1

x
wi,j

i,j )1−α

8
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Figure 5: Simple linear best �ts on ln(GDP/cap) (PPP, 2011 intl $) by ECI. Data on resource
rents is from World Bank (2020e), GDP/cap is from World Bank (2020d) Observations are from
2010.
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Figure 6: For each product observations are the average ln(GDP/cap) of the �ve richest (red) and
�ve poorest (blue) signi�cant exporters (countries). The triangular shape suggests an important
facet of the distribution of products: while richer countries tend to export all kinds of products,
poorer countries seem to face some threshold to compete in more complex products. To be a sig-
ni�cant exporter, a country must export the product with a revealed comparative advantage ≥ 1
(Balassa, 1965). GDP/cap is from World Bank (2020d). Observations are from 2010.
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where xi is the output of plant i, li is the amount of labor hired by plant i and α ∈ (0, 1)
is the share of labor in production. zi models some risk of production failure (or delay)
due to exogenous factors (e.g. �re, theft, power outages, corruption). More accurately,
zi is one minus the risk of failure. In this paper, the interruption I test is unreliable
electricity. xi,j is the amount of the output by plant j that is used as intermediate input
in the production of xi. wi,j ≥ 0 is the amount of good j in the total intermediate input
used in the production of good i, and thus represents a sort of production recipe for plant
i. I also take

∑
j wi,j = 1, i.e. there are constant returns to scale.

Figure 7: Three stylized input-output con�gurations in a four sector economy. Each node represents
a plant or an economic sector. Arrows show supply relations. The left-most model thus have one
plant (4) needing inputs from three other plants (1, 2, 3).

At the individual plant i, zi is the only source of production failure in this model. However,
it is important to note that each individual intermediate input (xi,j for j = 1, 2, ..., n)
needed for production is also made at a plant, with its own risk of failure. Thus, a
potentially large share of disruptions to plant i's production occur through disruptions in
it its supplier network. The left-most graph in �gure 7 shows this relationship: should
plant one fail to deliver, this impacts the productivity of sector four.

The importance of a failure in one of a plant's suppliers depends on how substitutable
intermediate inputs are. If the ability of plants to substitute between di�erent types of
intermediate inputs are close to 0, the expected output of a factory declines rapidly when n
increases. In the simple case that the output of a factory is just the value of the intermediate
inputs and the distribution of z is equal across factories, the relationship between expected
output and the number of inputs n can be written as n · (zn) and is identical to the O-ring
problem in Kremer (1993)2 (see �gure 11).

Substitutability varies naturally between inputs, and speci�c elasticities of input and out-
put losses is an ongoing research area (Brummitt et al., 2017; Carvalho, 2014). Much of
the recent research on the propagation of shocks through production networks suggest that
declines in input availability has a large e�ect on output for the consuming sector, at least
in the short term. For instance, using a 2011 earthquake in Japan as an exogenous shock,
Boehm et al. (2019) �nds evidence of a near 1-to-1 ratio between input and output losses.
This points to elasticities (ability to change one input for another) of intermediate inputs
in manufacturing around 0.

This e�ect is supported by Barrot and Sauvagnat (2016) who �nd that �rm-speci�c shocks
propagate through production-networks for more speci�c inputs. If more complex produc-
tion require a larger number of intermediate inputs or more speci�c (less substitutable)
inputs, disruptions will punish the output of complex products more. Intuitively this makes

2Here it is assumed that failure in a production ruins the whole production for that period. That is, a
�re cannot burn only half the production and electricity shortages cannot last just half the period. These
assumptions are only relevant for the example, not the general argument.
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sense: more parts goes into medical imaging equipment than baked goods. Similarly, lenses
and microchips are highly speci�c, while cane sugar could feasibly replace beet sugar.

A second e�ect is modelled in the middle graph in �gure 7. Here, supply-relationships
depend completely on the output of the node at one stage earlier in the production process.
This highlights an important mechanism. If a plant is dependent on the output of another
plant, which is again dependent on intermediate inputs, and so on for n stages, then risks
multiply in production chains. The e�ect of losses in the source sector has (decreasing)
knock-on e�ects throughout the production chain3. If the outputs at each production
stage increase in value, which is a reasonable assumption, failures in later stages are more
expensive than in earlier ones.

Taken together, the two points highlighted thus far suggests an important path-way be-
tween the complexity of plants and interruptions in the production environment. We would
expect more primary production (that is, less complex production) in more disruptive en-
vironments if A) more complex products are punished harder by supply-chain unreliability
since these products have longer production chains, and B) longer production chains locate
their later stages in more reliable environments. This corresponds well with the picture in
�gure 1.

Furthermore, since risks propagate through production inputs, the marginal returns to
increases in primary inputs (like labor) are higher in high-disruption environments. The
risks an individual plant faces scales with increases in the share of intermediate inputs
(1− α) but not with increases in the share of labor (α). For instance, in the extreme case
of α = 1 no intermediate inputs are used and the risk to a plant i's production is fully
contained in zi.

The right most con�guration in �gure 7 depicts a con�guration we would expect to meet
in a real economy. Here, the output of node four depends directly on sector three, but
with sector three's output depending on inputs from two sectors. A shock to sector one,
for instance, would in this case be moderated both by sector three's relative dependence
on outputs from node one (vs node two), by node three's connection between input and
output, and by the degree to which sector four relies on inputs from sector three.

A key result in the seminal paper by Kremer (1993) is that under certain conditions (when
quality is not a substitute for quantity and a production function that looks like the one
outlined above) an economy will have a larger aggregate output by matching quality in
inputs. Quality is Kremer's version of the z used in this paper. To illustrate the idea of
matching, say that two �rms make one product product each with same simple output
function: output is just equal to the number of inputs, n. If production again has z risk of
failing (and ruining the output), we can write the expected output as n(zn). Each product
is similar in its use of inputs, and there are four suppliers available, two highly reliable zh
and two less so zl. These can be matched or mixed in production. We thus have two ways
of organizing the production: 2(z2

h) + 2(z2
l ) or 2(zlzh) + 2(zlzh). If zh = 1 and zl = 0.5, the

matched output is 2.5 and the mixed is 2. That is, using the same plants and the same

3Decreasing because not all the value of a production process comes from the input.
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number of inputs we get a 25% higher outcome by matching4.

This is an important result for explaining what kinds of products are made in an economy.
If production chains match their risk of interruption, even very small di�erences in the
risk of having some kind of production delay can have large e�ects on where investors and
producers choose to place their production infrastructure. The large output penalty to
even a few weak links in a production chain suggests that regions may need to reach a
certain threshold of production reliability to enter into production of more complex goods.
This interpretation is a possible explanation for the pattern seen in �gure 6. This e�ect
in turn opens the possibility of an S-curve style e�ect (see Brummitt et al. (2017) for a
dynamic model of such an e�ect): as long as a certain �oor of reliability is not met in
the aggregate economy, even a few weak links limits the incentive for investments in more
complex productions. This increases the relative marginal returns on producing more
primary and simpler goods, which limits the necessity for �xing disruptions.

With regards to electricity-driven interruptions, a potentially important caveat is the abil-
ity of plants to invest in bu�ers against disruptions by purchasing a generator. However,
generator electricity is more expensive and they depreciate over time. This means that
substituting away from the central electricity supply imposes a kind of input-tax on the
production5. In this vein, Abeberese (2017) �nds that higher electricity prices leads to self-
selection into less machine heavy and low-productivity activities. This suggests another
pathway between economic complexity and electricity quality.

To summarize, I highlight three important interactions between interruptions and economic
complexity at the production-level:

1. Production failures are more costly the longer down the production chain they occur.
While some of this e�ect should be observed in the loss of plant-level revenues due to
the higher price of inputs, this value loss will act more in the pre-production choice
of where to place production, especially so for �rms controlling a larger share of the
whole value chain.

2. As the necessary interactions to produce a product increase, small increases in the risk
of failure increases the expected cost of output losses exponentially. If the production
process is subject to the constraint of very speci�c inputs, even very small increases
in the unreliability of impose quantitatively large output penalties.

3. In terms of production networks, these interactions takes place primarily at the
supply-use (or input-output) level. This means that in a typical production function,
the e�ects above does not increase with the share of labor used in making products,
but does increase with the reliance on intermediate inputs.

This means that if complex products are typically further down the chain of production, if
they rely on a greater number of inputs, or if their inputs are more speci�c, I would expect

4For a proof that this is always true, we can follow Kremer (1993):

(zh − zl)
2 >0

z2h + z2l − 2zhzl >0

z2h + z2l >2zhz1

5It also requires that suppliers upstream from the self-generating factory invest in generators. I don't
test for "self-generating" matching in this paper.
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the complexity of production and the impact of interruptions to be positively related (that
is, as the complexity of production increases, so does the impact of disruptions).

3.3 Hypotheses

Based on the discussion on the relationship between product complexity and production
interruptions in the previous section, I identify �ve hypotheses to build my analysis around.
I specify all hypotheses as null-hypotheses I attempt to reject in the tests.

The �rst set of hypotheses forms the basis of my further analysis. I expect that a higher
marginal product sophistication (plant complexity) is positively associated with higher
plant revenues. Given the general importance of electricity and intermediate inputs in
manufacturing, I also expect that both state-level and supply-chain electricity interruptions
is negatively related to plant revenue. This provides the �rst set of hypotheses:

> H10: Plant level complexity is not associated with higher revenues.

> H20: The level of state-wide electricity shortages is not associated with variation in
plant revenues.

> H30: The level of supply-chain electricity shortages is not associated with variation in
plant revenues.

Next, I turn the predictions from section 3.2. Given that state-level shortage should act
at plant-level, I expect it to be negatively associated with plant revenues, but not that it
interacts with complexity. On the contrary, as outlined in the model above, I expect that
shortages in the supply chain will have an increasingly large e�ect as plants become more
complex. This gives me my next hypothesis test:

> H40: The association between a plant's complexity and revenues does not change across
di�erent levels of supply-chain electricity shortages.

Finally, the �fth hypothesis relates to the long-run association between interruptions and
the kinds of productive capability that is present in the economy. If there is a matching
e�ect in the entry choices producers make, I would expect that the level of electricity
shortages in a state in previous years would dis-incentivize the entry of more complex
plants. As before, I specify this as a null hypothesis to reject:

> H50: The previous level of shortages in a state is not associated with the complexity of
new plants.

For all of the following hypotheses tests I use the standard rejection threshold of 95% (p
< 0.05).

In section 5.1 I present how I operationalize the variables used to test the claims above. I
detail my empirical strategy to test hypothesis H10 through H40 in section 5.2.1. I present
approach to testing the long-run changes of H50 in section 5.2.2.
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4 Data

To perform the tests described in section 5.2 I collect a broad set of data on states, man-
ufacturing plants, and socio-economic indicators. I present it here.

4.1 Economic complexity

I collect data on the complexity of products and countries from the Observatory of Eco-
nomic Complexity (OEC) (Simoes and Hidalgo, 2011). They provide highly disaggregated
data on the economic complexity of products down to the Harmonized System (HS) six-
digit level. Here I use products at the four-digit level, classi�ed by the HS 1996-revision.
For details on how the complexity of a product is calculated, see appendix B.

4.2 Electricity shortages

My data on electricity shortages comes from India's Central Electricity Authority (CEA).
The main feature of the dataset is a measure of shortages based on the di�erence be-
tween the observed consumption of electricity and the estimated counterfactual demand.
I extract the energy data from the Power Supply Position of States section of the annual
Load Generation Balance Reports published by the CEA (CEA, 2017). Digital versions
are only available from 2009-10 at the earliest. For earlier years (1998-2009) I use the
dataset constructed by Allcott et al. (2016) who worked in collaboration with the CEA
to collect, digitize, and clean earlier reports. I then perform an extra step of cleaning up
inconsistencies in the early-years set of observations.

4.3 Manufacturing plants

I use plant level data from the Annual Survey of Industries (ASI) (MOSPI, 2016). The
ASI is the primary source of information on industry in India and is collected annually
by the Indian Ministry of Statistics and Programme Implementation (MOSPI). The ASI
covers the manufacturing units in the registered sector. All registered factories with more
than 100 employees (the �census scheme�) are surveyed every year. Smaller factories are
randomly sampled every year, strati�ed by industry and state. For the years 2000-2003,
the census scheme covered factories with more than 200 workers. Until 2004 the sampling
scheme covered around 1/3 of all registered factories. Since then, it has covered around
1/5. For each plant, the ASI provides comprehensive information relating to input, output,
value added, employment, and assets. For any analysis using the ASI data, unless otherwise
speci�ed, I use the yearly sample weights supplied with the data.

Importantly, the ASI is a unique source of product-level output6. In the earlier years of
my sample, products are listed according to their 5-digit ASI Commodity Classi�cation
(ASICC) codes, whereas later years are listed in NPCMS-2011 codes. This is a non-trivial
change in classi�cation system. Given a di�erent classi�cation structure, products can

6As an example of the granularity of the original data, the ASICC and NPCMS-2011 codes distinguish
between detergent paste, detergent cake, and detergent powder. The HS-96 series groups these together at
the four digit level, but distinguishes them from "Organic surface-active agents (not soap); surface-active,
washing (including auxiliary washing) and cleaning preparations".
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both change in complexity and importance in output-volume. To assign complexity values
to plant's production, I convert the product classi�cation into Harmonized System 1996
(HS96) codes through a series of concordances. For a walk-through, see appendix A.

There are a couple of important shortcomings when using ASI data. First, while the census
schemes covers all factories with more than 100 (or 200) workers and the sampling scheme
is a representative sample of smaller factories, they apply only to registered factories. Na-
garaj (2002) shows that only around 48% and 43% of the manufacturing establishments
covered in the economic census for 1980 and 1990 appear in the ASI for the given year. Ad-
ditionally, there is a possibility of under-reporting a plant's value-added for tax-avoidance
purposes. However, if the non-included factories or the under-reported value-added are not
strongly related to electricity shortages or to product complexity, the results should not
be in�uenced. Even if these issues persist to years covered by my sample, the ASI covers
a signi�cant part of the Indian manufacturing sector.

In the raw dataset (2000-2016) there are 908,010 observations of plants. The data set
require substantial cleaning. For example, factories can be observed in the survey even
if they have closed down. After cleaning the dataset according to the procedure outlined
in appendix A, I am left with 565,223 plant-in-year observations between 2000 and 2016
across 30 states7.

4.4 State-wise variables

I get data on state-wise net domestic product, both total and per capita, from the Reserve
Bank of India (RBI). While both series are in constant prices, there are often multiple
base-years available. When there are observations for the same year using di�erent base-
years, I use the newest. The choice of base is not a completely trivial issue, since there are
often substantial di�erences for estimates for the same year measured against two di�erent
base-years. For instance, after rebasing GDP in 1999-2000, the total net domestic gross
product increases by almost 65% compared to the same year (1999-2000) measured using
1993-94 as a base. To make sure that rebasing the GDP does not drive results spuriously,
I rerun all the main tests with indicator variables for the base year.

From the RBI I also collect data on the total population in each state, the share of popu-
lation that lives in urban and rural areas and the population density. These variables are
mainly used in robustness checks. These values are only available at the 10-year census
intervals (1991-2001-2011). For years in between I create a simple imputation of change be-
tween observations evenly spaced out on years. For any analysis using population controls,
I exclude years after 2011 (last available census). I also collect individual level microdata
on from the Indian National Sample Surveys (NSS) (NSSO, 2016). The NSS is conducted
by the National Sample Survey O�ce (NSSO) and provides high frequency representative
data on a variety of socio-economic outcomes. Surveys are structured as rounds, with each
round typically covering a year. From the NSS I clean and aggregate rounds from 2000
through 2015 to state-wise information on the share of the population that has completed
at least a secondary education as well as the share of people between 15-60 years of age
(which proxies for the size of the potential work force).

7I also exclude a few state (and state-like regions) due to either A) having very few years included in
the CEA reports (Lakshadweep, Damordar Valley Corporation, and Telangana), B) because they are not
present in the RBI data (Dadra and Nagar Haveli), and C) if they have too few observations in the �nal
base sample (Andaman and Nicobar Islands, Arunachal Pradesh).
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5 Methodology

In this section I �rst develop the variables used to test the hypotheses presented in section
3.3. I outline the empirical strategy in section 5.2. I present the results of the analysis in
section 6.

5.1 Key variables

5.1.1 Plant complexity

For each plant, I quantify the complexity of its production output as the weighted average
the complexity-values for each product it produces. I assign weights based on the value of
the production of each product. That is, the complexity for factory f at time t, Cf,t, is
de�ned as:

Cf,t =
∑
p

PCIp,t
Of,p,t∑
pOf,p,t

where PCIp,t is the product complexity of product p at time t and Of,p,t is the output (in
current prices) of factory f in product p at time t. The value of the production output is
calculated as the net unit sale value of a given product times the amount of units sold.

This de�nition potentially underestimates the complexity of multi-product factories that
produce complex products, but also happens to sell a lot of their low-complexity products.
I therefore also include a stricter measure of plant complexity, Cmax

f,t , that uses only the
most complex product in a factory's product-portfolio, regardless of the output volume.
Alternatively, this measure can be thought of as the top-line or "complexity capacity" of
a given plant.

Cmax

f,t = max{Q1,tI1,f,t, ... , Qp,tIp,t}

where

Ip,f,t =

{
1 if Of,p,t ≥ 0

0 if Of,p,t = 0

5.1.2 Electricity shortage

At the end of each year, the Central Electricity Authority (CEA) and the Regional Power
Committees estimate the monthly counterfactual quantity that would have been demanded
in each Indian state if there were no shortages. This annual �gure, listed in current prices,
is the assessed demand of electricity in a state (A). The sum of electricity available from
power plants and net imports is the energy available (E). The measure of shortages (S or
Shortage) is then de�ned as the percent of demand in state s in year t that is not met:
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Ss,t =
As,t − Es,t

As,t

In addition, the CEA reports a measure of the power shortages during peak hours (Sp).
This �peak shortage� is de�ned analogously to S but using only peak assessed demand
(Ap) and peak energy available (Ep):

Sps,t =
Aps,t − E

p
s,t

Aps,t

The �nal sample consists of state-year observations of 30 states from 1998-2016.

5.1.3 Supply chain shortage

In addition to the CEA estimated electricity shortage, I construct a separate measure of
supply-shortages. As discussed in section 3.2, using only the plant-state shortage relation-
ship underestimates the importance of connections between di�erent plants in production
networks. In order to construct my measure of supply-chain quality, I need to connect
three di�erent sets of information. First, I have the interruption-variable, Shortage, on the
state-level. Next, I know which plants produce which products, how much of them each
contributes, and in which states they are located. Finally, I also have information on what
kinds of inputs plants use. I connect them in two steps.

First, for each year, I �nd how much of each product is produced in each state. I then
assign a weighted "production shortage"-average to each product. Formally, I �nd the
product-shortage value for product p Sp in year t by weighting the shortage of each state
by the share of the product that is produced there:

Sp,t =
∑
s

wp,s,tSs,t

where wp,s,t is the share of product p's total yearly output that is accounted for by state
s in year t. As before Ss,t is the average shortage for state s in year t. It is important to
note that this metric does not take into account any spatial relationships. If the supply-
linkages is strongly conditioned on geographical closeness this approach will mis-assign
the importance of shortages in industries. That is, I make the implicit assumption that
industry-wide output is distributed evenly geographically. Since the ASI does not carry
information of where plants source their inputs from, I can't account for this e�ect.

Second, for each plant I �nd the importance of each input. I de�ne this as the purchase-
value of the input-product as a share of the plants total revenue. Then, for each plant in
each year, I attach the "product-shortage" value of their inputs. I multiply this value by
the product's share of the individual plant's revenues and sum the result for all products for
each plant. This has two advantages: it means that products are given importance relative
to their importance to the plant, and that the supply-shortage is more important for plants
that use more intermediate inputs (because the supply uncertainty is less important for
plants that hardly use any inputs) to create their revenue. Formally, let mf,p,t be the
ratio between the amount of product p plant f lists as input (expressed in current prices)
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divided by the total revenue of plant f . The supply shortage value for plant f in a given
year t is then found in Df,t (D for disruption, to distinguish it from S):

Df,t =
∑
p

mf,p,tSp,t

Note that the m values does not necessarily sum to one, since it is weighted by the share
of revenues, not by share of all inputs. This means that plants with a smaller share of
inputs in their production process will be assigned a smaller supply shortage, even if the
product-shortage of the input is high.8

5.2 Empirical strategy

In this section I outline the empirical strategy I use to test hypotheses presented above.
As a general approach, I use variations over several di�erent speci�cations of least squares
regressions with �xed e�ects. I present the tests for hypotheses H10, H20, H30, and H40

in 5.2.1 and the test for hypothesis H50 in 5.2.2, respectively.

5.2.1 Plant revenues, complexity, and electricity shortages

In this section, I describe how I test hypotheses 1 to 4 through a regression analysis.

Let Ogf,t be the (natural log of) revenue (total gross sales) of a plant f in year t expressed
in 2004 constant Rs. This my dependent variable. I add controls for the number of
workers employed by each plant (averaged over a year) Ef,t, the prosperity in the state
(net domestic product per capita, constant prices) Ns,t, and the share of revenue paid as
wagesWs,t. To make sure revenues are not just driven by large turnovers, I also control for
the plant's position in the distribution of total production costs in the year I observe the
plant. I use the distribution instead of the actual monetary value because I don't have a
reliable de�ator for the total production costs9. I take the Z-score of the total production
costs of the plant by by subtracting the average value of observed plants in the same year,
and dividing by the standard deviation. I denote this value as Xz

f,t,i. I then add �xed
e�ect controls for state Rs, year Tt, two-digit industry Ii. Finally, I add my variables
of interest: plant complexity Cf,t and the two disruption variables, Shortage (Ss,t) and
Supply shortage (Df,t). I also include an interaction term between complexity and each of
the two electricity shortage variables.

The interaction term is added to address hypothesis 4 on how supply chain shortages
a�ect the impact of complexity on plant output. One of the key predictions from the
discussion on the relationship between more complex production and disruptions is that
electricity shortages at the plant level should a�ect the plant-revenue more or less equally
across complexity level. Disruptions in the supply-chain, however, should not. As the
importance of intermediate products in a plant's production increases, especially if they

8This measure only takes into account downstream e�ects. Should there also be an e�ect where factories
that has to stop their work because shortages result in customers buying less input it would have an e�ect
on supplying industries. However, unless more complex factories are more likely to be situated as a supplier
to other factories, it is hard to see how this downstream link would e�ect plant-complexity.

9In contrary to only adjusting prices of plant output, this was unfeasible because it would involve
de�ating wages, energy inputs, intermediate inputs, etc, separately.
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themselves have a long supply line, the lost value of input-supply disruptions increases. In
other words, for more complex plants, we would expect that shortages in the supply-chain
increases in importance. We can test this relationship by modelling the average revenues
of plants, but adding an interaction term between the two di�erent kinds of shortages
and complexity. If it is true that supply chain interruptions is more important for more
complex plants, I would expect that the interaction between complexity and supply-chain
shortage is signi�cant and negative, but the interaction between the state shortage and
complexity is less so1011.

To keep at least some legibility, let all the plant-level controls (E, W , Xz) be contained
in PLANT and the �xed e�ect indicators (R, T , I) be contained in FE. I also display
only the three coe�cients I'm interested in: the coe�cient of complexity on revenues, the
coe�cient of electricity shortages on revenues, and their interaction.

Indexing plants by f , years by t, and states by s this gives me the full form of my main
two main equations:

Ogf,t,i = βcompCf,t + βshortSs,t + βS×CCf,t × Ss,t + PLANT + FE (1)

Ogf,t,i = βcompCf,t + βsupplyDs,t + βD×CCf,t × Ss,t + PLANT + FE (2)

I test for hypothesis H10, H20, and H30 using the coe�cient signi�cance test by step-
wise adding the variables for complexity (C), state-level shortage (S), and supply chain
shortages (D). To be precise, I test the signi�cance of coe�cients βcomp, βshort, and βsupple
in explaining the revenues of plants.

For hypothesis H40, on how supply chain shortages alter the e�ect of complexity on plant
revenue, I turn to the βD×C coe�cient. If βD×C is statistically signi�cant and negative,
it suggests as plants supply shortages increase, the added value of a plant being more
complex declines.

Notice that I conduct my tests with clustered standard errors. Since my shortage variable
is applied at the level of states in di�erent years, plants that are observed in the same
year and state have potentially correlated errors. To adjust for this I cluster my standard
errors by state-years (so that "Jammu and Kashmir in 2009" is one cluster and "Jammu
and Kashmir in 2010" is another).

I present the results from the regressions above, as well as some alternative models, in
section 6.2.

5.2.2 Electricity shortages and long-run changes

I now turn to the e�ect of longer-run shortages on the distribution of factories. Are plants
with a more complex production output less likely to be constructed in states that have

10This assumes that plants do not have the majority of their supply chain in the same state.
11I only have a good industry-speci�c (3-digit) de�ator of gross sales up to 2011, meaning that I limit

my sample to the plants observed between 2000 and 2011 for the main analysis. I further restrict it by
removing the observations that are �agged by the procedure described in appendix A.1. This leaves me
with some 285,000 observations of plants from 2000 to 2011.
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unreliable electricity? The analysis described here constitutes the test for hypothesis H50:
if the rolling two-year average state level shortage, S̄, is signi�cantly associated with the
complexity of new plants in the state, I reject the null hypothesis.

The ASI asks plants when they had �rst year of commercial production. This makes it
possible to date the entry of the plant, and match it with the state shortage variable S.
While the productive capital in the manufacturing sector, like factory machinery, is pre-
sumably relatively static and product speci�c, there is no guarantee that a plant produces
the same product at the time of survey and the time of the inaugural production. This
means that the plant complexity observed is not necessarily the plant complexity at entry.

Since I do not have across-year plant indicators, lumping all plants that is introduced during
my sample means that there is a risk of observing the same factories again and again. This
entails that it is possible that any results is being driven by factories correlating with
themselves. I therefore limit the analysis to observing factories exactly 2 years after their
reported inaugural production (no overlap).12 This allows plants to have a year getting
started, but is not so far removed at that observations of plant-characteristics at entry are
unlikely to hold.

Essentially, this analysis asks: how is the complexity of plants observed two years after their
initial year of production (reported, but not observed) related to the average electricity
shortage in the year of their initial production and the year before? For instance, if a plant
observed in Assam in 2005 reports that it had its �rst commercial production in 2003, I
assign the average shortage of 2001-2003 in as Assam to this observation.

As before, I use robust standard errors and cluster by state-years. To account for the
concerns about downward biased standard errors due to serial correlation discussed in
Bertrand et al. (2004) (that is, if some e�ect "contained" the shortage outcomes carries
over to other years), I also cluster by state as a robustness check.

I test hypothesis H50 in two con�gurations: a minimal and an expanded model. As before,
let Cf,i,s,t be the complexity of a plant f with its �rst year of production in year t indexed
by 2-digit NIC industry i and state s. I repeat all of the following analyses using Cmax

as well. I then de�ne S̄s,t as the average shortage in the year of entry and the year prior
in state s.13 Rs and Tt represents state and year speci�c indicator variables. Finally, Ii
represents industry indicators. While I would prefer use industry-year dummies to control
for speci�c temporal industry trends (like an event or demand - policy, climate, etc - that
in�uences the entry of plants within an industry, but is not related to shortages), the
(relatively) few observations means that some state-industry-entry year groups becomes
very small.

Again, I only display the coe�cient I'm interested in. The regression equation then takes
the form:

Cf,i,s,t = βS̄S̄s,t +Rs + Tt + Ii,t (3)

Here, the S̄s,t takes on the role of possible producers' knowledge or expectation of z in the

12Estimates were slightly smaller, but essentially the same, when using plants observed three years after
entry instead.

13It is worth noting that I de�ne the lagged shortage as the average value of the Ss,t variable across
the years, not the ratio between the average availability and demand over the period (since, presumably,
producers won't be interested in overall power capacity, only the amount they are short).

20



theoretical model discussed earlier. That is, are they willing to start up a factory, if they
believe the electrical infrastructure is poor?

I also test using a more expansive model that controls for various factors that could have an
"attraction" e�ect on the entry of plants at the state-level. While most of the di�erences
between states should be caught in the �xed e�ects, I now allow for variance in the share of
the population that are working age (15-60), the share of people with at least a secondary
education completed, the growth of the state economy and the total size of the state
economy.

If the coe�cient for the two-year average state electricity shortage S̄, βS̄ is signi�cantly
associated with the complexity values of new plants in both the minimal and the expanded
model, I reject hypothesis H50.
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Table 1: World Bank Enterprise Surveys and the Shortage variable

Self-gen share Obstacle Power quality Self-gen share Obstacle

(1) (2) (3) (4) (5)

Shortage 66.787∗∗ 4.672∗∗∗ −8.509∗ 45.567∗∗∗ 10.823∗∗

(21.129) (0.470) (3.367) (12.081) (4.038)

Constant 15.835∗∗∗ 2.118∗∗∗ 6.290∗∗∗ 4.827∗∗∗ 1.463∗∗∗

(2.843) (0.092) (0.306) (1.002) (0.258)

Industry FE Yes Yes Yes Yes Yes
Obervations: 1126 2278 2270 4712 7365
WBES: 2005 2005 2005 2014 2014

Notes: Column one, two, and three are based on the WBES in India in 2005. Column four and �ve
are from the WBES in India in 2014. Dependent variable in column (1) and (4) is the reported share
of self-generated electricity. Column (2) and (5) are the degree to which electricity is an obstacle to
the �rms operation (from 0: "No obstacle" to 4: "Very severe obstacle"). Column (3) only exists
for the 2005-survey and is the reported quality of the power grid (from 1: "Extremely bad" to 10:
"Excellent"). All columns use industry-�xed e�ects. Standard errors are robust and clustered by
state.

6 Analysis and results

In this section I present the �ndings from the analysis detailed in section 5.2. I �rst discuss
some initial results on the validity of the electricity shortage variable. I then turn to the
results from testing hypotheses H10, H20, H30 (6.2.1), H40 (6.2.2), and H50 (6.3).

6.1 Validity of electricity variable

The shortage observations depends on an o�cial estimation of the non-shortage demand
and is likely to be a�ected by measurement error. To con�rm that the energy data is
meaningful, I run a series of simple regression tests to "ground truth" state shortages
to microdata on the experience of manufacturing �rms. The World Bank periodically
conducts enterprise surveys in a range of countries. These surveys cover a broad variety
of indicators on the production environment of �rms, including perceived challenges and
quality of public service provision. Survey data is available for India from 2005 and 2014
(World Bank, 2020a,b)14. As shown in Table 1, the shortage variable is a signi�cant
predictor (at the p < 0.05 level) of the reported quality of the electricity supply (2005),
the severity of electricity quality as a barrier to doing business (2005, 2014), the share of
electricity generated by �rms' own generator (2005, 2014)15.

While there is likely to be some degree of attenuation bias in the shortage variable, it is a
signi�cant predictor of electricity quality across �rms and time. To add, Alam (2013) use
a measure based on night light composites to identify blackouts and shows that it is highly
correlated with the peak version of the shortage variable. This suggests that the shortage
measurements carry meaningful information on the electricity reliability at the state level.

14The 2005 and 2014 sample covers 2,286 and 7,365 �rms, respectively. The 2005 survey does not employ
sample weights. For the 2014 survey, I use the strict weighting scheme.

15The reason the power quality variable is only listed for 2005 is that the questionnaire have been
updated.
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Figure 8: Distribution of factories by complexity for the sample used in the main analysis on the
interaction between Shortage and complexity.

6.2 Interaction between shortages and complexity

I now present the results from the analysis outlined in section 5.2.1 on the relationship
between plant revenues, electricity shortages, and interruptions in the supply chain. I �rst
address hypotheses H10, H20, and H30. Lastly I present the �ndings on the interaction
e�ects on plant complexity and electricity shortages in the supply chain (H40).

6.2.1 Revenues, complexity and shortages (H10, H20, and H30)

Table 2 and 3 displays the results from the regression in equation 1 and 2.

As for hypothesis H10, column (1) through (7) shows that the complexity of a plant
explains a statistically signi�cant part of the variation on plant revenues, under a range of
controls and using both measures of electricity interruption (with and without interactions).
Since the adjusted revenues are expressed in their natural log, the coe�cients are readily
interpreted: without the interaction e�ects, a one unit increase in PCI of a plant's most
complex product is associated with a marginal increase in revenues of 15% (see Table 3).
The equivalent number is more more pedestrian 4% for the average complexity of the plant
(see Table 2). Since PCI-values are standardized for each year, a one unit increase means
producing products that are one standard deviation more complex. However, given that I
test for interaction e�ects in the next section, one should be careful about interpreting the
association between complexity and revenues separately.

While the explanatory power a plant's complexity adds to the model is very small, the
association is robust across the di�erent speci�cations. I reject hypothesis H10: "Plant
level complexity is not associated with higher revenues."

Surprisingly, the state-level Shortage is not found to be signi�cantly associated with
changes in plant revenues. Although the coe�cient on Shortage is negative in both Table
2 and 3, it is statistically insigni�cant in both cases. I therefore cannot reject hypothesis
H20: "The level of state-wide electricity shortages is not associated with variation in plant
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revenues."

Next I turn to hypothesis H30. The strongly signi�cant Supply shortage coe�cient in
column (5) in Table 2 and 3 suggests that marginal increases in interruptions in a plant's
suppliers is associated with a loss of plant revenues. I reject hypothesis H30: "The level
of supply-chain electricity shortages is not associated with variation in plant revenues."

While they are not reported here, I also run a number of di�erent variations using inter-
mediate input share of revenues, electricity intensity (revenue/kWh), and log-forms of the
predictors. None of the results reported above is sensitive to any of these alternatives.

In conclusion, I �nd signi�cant positive associations between marginal increases in the
complexity of a plant's production and signi�cant negative associations between marginal
increases in the amount of shortages contained in a plants supply-network and its revenues.
I don't �nd a signi�cant relationship between marginal changes in state-level electricity
shortage and variations in plant revenue. I therefore reject hypotheses H10 and H30, but
not H20.

6.2.2 Interaction between supply-chain shortages and plant complexity (H40)

I now turn to the main e�ect studied in this paper: the relationship between a plant's
complexity and supply chain shortages. Again, Table 2 and 3 displays the main results.
Column (5), (6), and (7) shows the result from using Supply shortage as control, adding
an interaction with complexity, and further adding state-level Shortage as control. The
coe�cient of the Supply shortage is signi�cant and negative at each step.

The most important result is in the interaction with either of the complexity measures.
The negative complexity × Supply shortage coe�cient means that as the plants get more
complex, the negative association between electricity shortages on plant revenues becomes
increasingly strong. Analogously, it could be interpreted as when Supply shortages increase,
it becomes increasingly less pro�table to produce more complex products.

To make sure that the result is not just driven by within-state shortages, I run the same
analysis using the state-level Shortage. This version of the model is reported in column (4)
(with Shortage alone) and column (7) (using Shortage as a control). While the Shortage
interaction on Cf is mildly signi�cant in column (4), the fact that it, contrary to the Supply
shortage coe�cient, is insigni�cant alone, interacted with Cmaxf and as a control for the
Supply shortage interaction with Cf , suggests that the result is less robust.

If complex production processes are punished more severely by interruptions, we would
expect that electricity shortages in their supply chain would be more costly to the revenue
of plants as you move up in the complexity distribution. This is precisely the picture that
emerges in Table 2 and 3. I further explore the relationship in two ways.

The theoretical model predicts that while reliance on inputs (namely speci�c inputs) have
multiplying e�ects on the level of shortage-induced losses, a larger share of labour in
production should not have this e�ect. I would therefore expect that the interaction e�ect
between the wage-share of revenues and Supply shortages to be in the opposite direction: as
the level in supply-chain interruptions increase, higher shares of wages to revenue (proxying
for labor inputs) will be increasingly positive for plant revenue. Column (1) in Table 4
shows that while the coe�cient of wage shares alone remain negatively related to revenues,
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in the face of supply chain interruptions, the e�ect is completely reversed.16 I also tests
for the relationship between the amount a plant spends on intermediate inputs (as share
of revenue) and the Supply shortage. There is no signi�cant relationship. Given the noisy
model, this could be due to a weak e�ect being lost. It could also, however, highlight the
fact that inputs are not alike: some inputs are highly speci�c and vulnerable to supply-
interruptions, while others are not. Based on the data presented here, it is not possible to
make judgement either way.

In addition, I run a test with a slightly adjusted sample. The Supply shortage variable
is highly skewed for a few observations (around 30). In column (1) and (2) of Table 5 I
remove all the observation that have a Supply shortage value above one. A supply shortage
value of more than one would indicate that plants use more than all of their revenue on
inputs, and that they source all of these inputs from a state that has a Shortage value of
1 - that is, no electricity available at all. I run the two main regressions again. Column
(3) and (4) in the same table further limits the sample to only include plants that list at
least one input, no matter its share of their revenues. Just removing the 32 observations
increases the importance of both the Supply shortage variable and its mitigating e�ect on
plant complexity even further. Indeed, from the e�ect on revenues being stronger than the
dampening e�ect on complexity, the reverse is now observed17.

Similarly to the previous section, I repeat the tests with di�erent variations in controls,
including electricity intensity (kWh/revenue). I also test the interaction using centered
versions of Cf , C

max
f and Supply shortage. None of the results change signi�cantly.

Together, these results are strongly in line with the theoretical predictions. Three e�ects
are worth highlighting.

� First, the analysis showed a weak- or non-existing relationship between the amount
of state-level Shortage and the association of complexity and revenues.

� Second, the analysis found a persistently strong association between higher levels of
supply-network shortages and a less positive relationship between plant complexity
and revenues.

� Finally, the association between the share of revenues paid in wages and plant rev-
enues is reversed as the level of Supply shortages increase. This suggest that plants
with a high share of wages paid relative to revenue are relatively less adversely im-
pacted by supply interruptions.

16I only report the relationship to Cmax, but the outcome is statistically identical for C.
17One should be careful making too strong claims about the numerical impact of the shortages, though.

Depending on the sample used, the mean value of the Supply shortage variable ranges around 0.04-0.045,
with a standard deviation of about the same, meaning that it is very easy to make conclusions on out-of-
sample values.
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Table 4: Association between Supply shortages, wage-share, intermediate input share, and
revenues.

(1) (2) (3) (4)

(Intercept) 16.82∗∗∗ 16.77∗∗∗ 16.73∗∗∗ 16.73∗∗∗

(0.07) (0.06) (0.07) (0.06)
Cmaxf 0.15∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.15∗∗∗

(0.01) (0.01) (0.01) (0.01)
Supply shortage −2.62∗∗∗ −1.33∗∗∗

(0.33) (0.21)
Wage/rev share −4.60∗∗∗ −4.39∗∗∗ −4.41∗∗∗ −4.40∗∗∗

(0.07) (0.06) (0.09) (0.06)
Self-gen (1) 1.22∗∗∗ 1.22∗∗∗ 1.23∗∗∗ 1.23∗∗∗

(0.04) (0.04) (0.04) (0.04)
Number of employees 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00)
Production costs (z) 0.31∗∗∗ 0.31∗∗∗ 0.31∗∗∗ 0.31∗∗∗

(0.05) (0.05) (0.05) (0.05)
State NDP/cap 0.00∗∗ 0.00∗∗ 0.00∗∗ 0.00∗∗

(0.00) (0.00) (0.00) (0.00)
Supply shortage × wage/rev share 3.49∗∗∗

(0.79)
Int. input/rev share 0.00∗ −0.00

(0.00) (0.00)
Int. input share × Supply shortage −0.00

(0.00)
Shortage −0.10 −0.09

(0.20) (0.18)
Shortage × wage/rev share 0.10

(0.93)
Shortage × int. input share 0.00

(0.00)

R2 0.41 0.41 0.41 0.41
Adj. R2 0.41 0.41 0.41 0.41
Num. obs. 285126 285126 285126 285126
RMSE 2.70 2.70 2.71 2.71
N Clusters 331 331 331 331

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

1 This table presents a modi�ed version of the equation in 6.2, here with focus on the interac-
tion between wage/revenue share, intermediate input/share (products), shortages and plant
revenue. The dependent variable in all columns is the natural log of yearly total plant revenue
(constant 2004 Rs). Independent variables are the same as in Table 3 except for the inclu-
sion of Int. input/rev share, which is the purchase value of intermediate input products as a
share of revenues (the given plant in the given year). Each column includes state-, two-digit
industry-, and year �xed e�ects. Standard errors are robust and clustered by state-year.
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Table 5: Association between the complexity of plants and Supply shortage:
adjusted sample.

(1) (2) (3) (4)

(Intercept) 16.79∗∗∗ 16.64∗∗∗ 16.84∗∗∗ 16.70∗∗∗

(0.06) (0.06) (0.07) (0.07)
Cmaxf 0.18∗∗∗ 0.21∗∗∗

(0.01) (0.02)
Supply shortage −1.99∗∗∗ −2.15∗∗∗ −2.34∗∗∗ −2.61∗∗∗

(0.24) (0.24) (0.23) (0.23)
Wage/rev share −4.40∗∗∗ −4.38∗∗∗ −4.40∗∗∗ −4.38∗∗∗

(0.06) (0.06) (0.06) (0.06)
Self-gen (1) 1.22∗∗∗ 1.23∗∗∗ 1.22∗∗∗ 1.22∗∗∗

(0.04) (0.04) (0.04) (0.04)
Number of employees 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00)
Production costs (z) 0.31∗∗∗ 0.32∗∗∗ 0.29∗∗∗ 0.30∗∗∗

(0.05) (0.05) (0.05) (0.05)
State NDP/cap 0.00∗∗ 0.00∗∗∗ 0.00∗ 0.00∗

(0.00) (0.00) (0.00) (0.00)
Cmaxf × Supply shortage −0.56∗∗ −1.15∗∗∗

(0.21) (0.22)
Cf 0.07∗∗∗ 0.11∗∗∗

(0.01) (0.02)
Cf × Supply shortage −0.76∗∗∗ −1.43∗∗∗

(0.22) (0.23)

R2 0.41 0.41 0.41 0.41
Adj. R2 0.41 0.41 0.41 0.41
Num. obs. 285094 285094 266539 266539
RMSE 2.70 2.71 2.68 2.69
N Clusters 331 331 331 331

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

1 This table presents the results of the same analysis as in Table 2 and 3 (interaction
between Supply shortage and plant complexity), but with a slightly adjusted
dataset. Column (1) and (2) restricts the sample to �lter very few strong outlier-
values (values above 1 is removed). Column (3) and (4) also restricts the sample
to plants that have at least 1 intermediate input. Each column still includes
state-, two-digit industry-, and year �xed e�ects. Standard errors are robust and
clustered by state-year.
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Figure 9: Distribution of factories in the plant-entry sample (2-year after entry). Some states only
have a few factories that are observed after their initial production. However, all results hold after
rerunning the tests without the least represented states. The vertical axis is the (unweighted) count
of factories with the given Cmax

f in the state/year.

6.3 Do shortages discourage the entry of complex plants?

I now present the results from the regression model highlighted in section 5.2.2.

First, a note about the sample size. Limiting the analysis to only plants observed in a set
amount of time of their initial production naturally reduces the sample size substantially
- from around 500,000 observations to around 20,00018. Figure 9 show that some states
are reduced to very few observations. For my main analysis, I run the regression excluding
the four least represented states (Chandigarh, Manipur, Nagaland, and Sikkim). All the
�ndings were repeated when using the full sample. It is also worth noting that in �gure
9, there is no evidence of increasing left-skew in the distribution of complexity as time
moves forward. This suggests that the e�ect is not just driven by all factories getting
more complex with time (so that plant entries in later years carry the signi�cance). To
make sure of this, I rerun the analysis with a variable that indicates the median and mean
complexity of all plants entering in the given year (not reported). This control does not
change any of the results.

6.3.1 Entry of new plants: minimal model (H50)

Do higher average shortages in a state dissuade the entry of factories with a complex pro-
duction? Table 6 o�ers some tentative evidence that the previous quality of the electricity
supply is in fact associated with which kinds of plants starts producing in a state. Column
(1) and (2) shows the results from the minimal model. Both the most complex products
produced in a plant and the plant's average complexity is positively associated with a
smaller degree of electricity disruptions. The size of the e�ect, however, is very small: a
one percentage point increase in the average shortage over the previous years is associated
with a 0.006 decrease in the PCI of the products a plant produces.

18Since I don't use the adjusted revenues in this analysis, I can include my full sample of factories.
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In column (3) and (4), I change the plant-level complexity value with the median complexity
of all plants within their two-digit industry code. A negative coe�cient would mean here
that plants in more complex industries would enter into states with lower average shortages.
There is no evidence that this is the case. These columns exclude the industry-�xed e�ects
used in the other columns. Column (5) shows the linear probability that a plant entering
into a state with higher average electricity shortages will possess a generator. The result
is positive and strongly signi�cant. Finally, column (6) shows that the electricity/revenue
share of new plants is not signi�cantly associated with the state's past shortage.

It is worth highlighting that the two-digit industry of plants accounts for almost all of
the variance explained in the model. This is perhaps unsurprising as we would expect the
variation in production complexity to be much greater between di�erent industries than
within them. Given the large e�ect of industry-indicators, I also test an expanded model
where I exclude indicators for some of the con�gurations. I now move to this model.

6.3.2 Entry of new plants: expanded model (H50)

Table 7 and 8 shows the marginal association between S̄ and Cf and Cmaxf in the model
with an expanded group of controls. Column (1)-(3) excludes industry-e�ects. Again the
average electricity shortage retains a robust, but weak, association with the kinds of plants
that begin production. The result is strongest when adding all controls, including the
industry-indicator: controlling for the share of the population with a secondary education,
the share of people in working age, the prosperity of the state, the economic growth in the
state, and the size of the total economy, a one percentage point increase in the electricity
shortage of the past two years is associated with a 0.009 decrease in the PCI of the most
complex products new plants produce (and a slightly smaller decrease in the average).
Column (5) highlights the importance of the industry the plant belongs to: the model's
explanatory power barely changes using only the entry year-, state- and industry-�xed
e�ects.

In conclusion, while the quantitative e�ect is very small, the data show a weak association
between the two-year average electricity shortage in a state and the type of factories that
enters into operation. Given that this result is robust to a variety of controls, including
changing the error-clustering to states (rather than state-year), adding a control for overall
change in production complexity in India, and a range of di�erent combinations of controls,
and using both the maximum and the average complexity of the products plants produce,
I reject hypothesis H50: "The association between a plant's complexity and revenues does
not change across di�erent levels of supply-chain electricity shortages."
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Table 6: Association between complexity of new plants, electricity use, and shortages

Cmaxf Cf Cmaxind Cind Self-gen (1) Electricity rev share

(Intercept) −1.24∗∗∗ −1.31∗∗∗ −0.41∗∗∗ −0.50∗∗∗ 180.09
(0.07) (0.07) (0.05) (0.05) (434.39)

S̄s,t −0.60∗ −0.61∗ 0.33 0.32 0.53∗∗∗ −9433.58
(0.30) (0.29) (0.23) (0.22) (0.13) (7225.74)

R2 0.50 0.50 0.08 0.07 0.26 0.02
Adj. R2 0.50 0.50 0.07 0.07 0.26 0.01
Num. obs. 18974 18974 18974 18974 17680 12329
RMSE 1.18 1.14 1.27 1.19 0.67 16237.57
N Clusters 420 420 420 420 418 280

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

1 This table presents the results from equation 3. S̄ is the two-year average state shortage at the time of entry.
Column (1) is the complexity of the most complex product a plant produces. Column (2) is the weighted
average complexity of the products it produces. Column (3) and (4) are the median Cmax and C of plants
in an industry (2-digit level). In column (5) and (6) the dependent variable has been changed to the linear
probability of a factory self-generating electricity and the adjusted revenue per kWh electricity used. All
columns use �xed e�ects on state and year, but only column (1), (2), (5), and (6) uses 2-digit industry �xed
e�ects. Standard errors are robust and clustered by state-year .
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Table 7: Association between the most complex product produced in new plants (Cmax
f )

and electricity shortages: more controls

(1) (2) (3) (4) (5)

(Intercept) 0.29 −1.52 1.38 2.99∗ −1.24∗∗∗

(0.67) (1.87) (1.88) (1.39) (0.07)
S̄s,t −0.80∗ −0.76∗ −0.78∗ −0.92∗∗∗ −0.61∗

(0.33) (0.33) (0.32) (0.25) (0.30)
Share with sec. education 0.08 −0.32 −0.16 −0.14

(0.74) (0.81) (0.78) (0.58)
Share between 15 and 60 −1.19 −0.78 −0.40 −0.14

(1.10) (1.14) (1.09) (0.82)
ln(State NDP/cap) 0.18 −0.24 −0.53∗∗∗

(0.17) (0.19) (0.14)
State NDP/cap growth −0.21 −0.25 −0.10

(0.17) (0.17) (0.14)
ln(State NDP) 0.45∗∗∗ 0.51∗∗∗

(0.11) (0.09)

R2 0.09 0.09 0.09 0.51 0.51
Adj. R2 0.09 0.09 0.09 0.51 0.50
Num. obs. 15450 15450 15450 15450 18839
RMSE 1.58 1.58 1.58 1.16 1.18
N Clusters 313 313 313 313 383

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

1 This table presents the results from the model of new plants with expanded controls. The
dependent variables in all �ve columns in the complexity of the most complex product
produced by a new plant (Cmax

f,t ). The independent variables in order: the two-year
average state shortage at the time of entry, the share of population that has completed
(at minimum) a secondary education, the share of the population between 15 and 60 years
old, the natural log of state net domestic product by capita (constant prices), the yearly
change in net domestic product by capita (constant prices), the natural log of total state
net domestic product (constant prices, divided by 1 mio). Columns (1) through (3) use
state- and entry-year �xed e�ects. Column (4) and (5) also use two-digit industry �xed
e�ects. All standard errors are robust and clustered by state-year.
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Table 8: Association between the complexity of new plants (Cf ) and electricity short-
ages: more controls

(1) (2) (3) (4) (5)

(Intercept) −0.06 −1.47 1.36 3.01∗ −1.31∗∗∗

(0.65) (1.75) (1.75) (1.28) (0.07)
S̄s,t −0.69∗ −0.66∗ −0.69∗ −0.85∗∗ −0.61∗

(0.32) (0.32) (0.31) (0.26) (0.29)
Share with sec. education −0.18 −0.50 −0.34 −0.35

(0.69) (0.74) (0.71) (0.53)
Share between 15 and 60 −0.68 −0.34 0.02 0.27

(1.07) (1.11) (1.07) (0.80)
ln(State NDP/cap) 0.14 −0.27 −0.57∗∗∗

(0.16) (0.18) (0.13)
State NDP/cap growth −0.18 −0.22 −0.07

(0.16) (0.15) (0.13)
ln(State NDP) 0.44∗∗∗ 0.54∗∗∗

(0.11) (0.09)

R2 0.08 0.08 0.08 0.50 0.50
Adj. R2 0.08 0.08 0.08 0.50 0.50
Num. obs. 15450 15450 15450 15450 18839
RMSE 1.52 1.52 1.52 1.12 1.14
N Clusters 313 313 313 313 383

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

1 This Table presents the results from the model on new plants with expanded controls.
The dependent variables in all �ve columns in weighted average complexity of new plants
(Cf,t). The independent variables in order: the two-year average state shortage at the
time of entry, the share of population that has completed (at minimum) a secondary
education, the share of the population between 15 and 60 years old, the natural log of
state net domestic product by capita (constant prices), the yearly change in net domestic
product by capita (constant prices), the natural log of total state net domestic product
(constant prices, divided by 1 mio). Columns (1) through (3) use state- and entry-year
�xed e�ects. Column (4) and (5) also use two-digit industry �xed e�ects. All standard
errors are robust and clustered by state-year.
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7 Discussion

In this section I discuss the most important �ndings from the analyses presented in the
previous section, how they relate to the theoretical model from the framework, as well as
some important limitations.

7.1 Findings

Based on the framework developed in section 3.2 I made several theoretical predictions
on the relationship between interruptions at the plant- and supply-chain level and the
complexity of the products that a plant makes. In section 3.3 I translated them into a
set of hypotheses to test my data against. How well did these predictions stand up to the
�ndings from the empirical analysis?

The �rst set of hypotheses (1 to 3) were the "basic" predictions: all else equal, a higher
product complexity is associated with higher revenues and a higher level of electricity
interruptions is associated with lower revenues. While both measures of plant complexity
and the supply shortage variable matched expectations (although with a small e�ect size),
it is surprising that the state-level shortage was not associated with lower average revenues.
For example, Allcott et al. (2016) estimates a substantial loss in revenues based directly
on the same measure. Theoretically, I would expect there to be a relationship. A higher
amount of time without electricity would more production down-time. Even for plants
using generators, the higher prices of electricity inputs should be observed in the data.

Two reasons could plausibly explain the di�erent result. First, they use an IV-approach to
instruments for changes in the state-level shortages. This reduces a lot of ambiguous rela-
tionship between factors that impact both revenues and shortages (like economic growth).
Second, they have access to individual plant-level indicators across di�erent sample years.
Again, this reduces the noise in the data signi�cantly: by using plant-level indicators,
they are able to control all the intrinsic between-plant heterogeneity. In my model, the
di�erences between plants becomes added statistical noise. Finally, since their sample
(1992-2010) is di�erent from mine (2000-2010 for the speci�c analysis), it is possible (but
unlikely) that the relationship does not hold for only a subset of the years.

Next, an important implication from the model discussed in section 3.1 is that while elec-
tricity shortages acting at the plant-level - such as outages on the general supply network -
will act on plants in a similar way (depending on their electricity intensity), disruptions in
the supply chain will not. Testing for this e�ect, I �nd a signi�cant relationship between a
decreasing association between increases in marginal product complexity and higher plant
revenues as the level of supply shortages increase. In other words, the data suggest that
if there is a high degree of supply-chain uncertainty, the more complex factories gets less
pro�table (compared to less complex factories). Such an interaction e�ect is not observed
between the state-level shortages and the association between plant complexity and rev-
enues19.

So what does such a �nding mean? Essentially, this suggests that in higher uncertainty
environments, such as many developing economies, it becomes less attractive to invest in
a more complex production setup. Given the relatively strong interaction coe�cient of

19While one term, Cf × Ss, was weakly signi�cant under a speci�c set of controls, all the other combi-
nations were not. I therefore disregard that result here.
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supply-shortages on the bene�t of complexity, this suggest that for at given level of dis-
ruption in the production environment, producers can "overshoot" the complexity of their
production. Should there also exist a higher price of entry into producing more complex
products, this could have a signi�cant impact on the incentives to invest in higher com-
plexity production technology. This point is highlighted by the result that while a higher
wage/revenue share is strongly negatively associated with plant revenues, the interaction
between wage-share and shortages in the input supply is strongly positive. This suggests
that, again, the presence of a more disruptive production environment perverts incen-
tives away from what usually considered preferable (less primary industry, more complex
production).

Finally, I �nd a weak but signi�cant association between the two-year average state wide
electricity shortage and the complexity of new factories. In this test, we can think of
the two-year average electricity shortages as a proxy for potential entrants knowledge or
belief about how reliable the electricity supply is. This result suggests that producers and
investors are less willing to begin production of higher complexity products if they believe
that the state-wide electricity is more unreliable.

Given that I �nd no complexity speci�c interaction between state-level shortages and rev-
enues, there is no clear reason for why the complexity of plant should condition whether or
not it is likely to enter into speci�c states based on their previous shortage-level20. Instead,
a possible interpretation is through the matching e�ect discussed in the theoretical model.
If we assume that plants that produce a more complex product are situated longer down
the value-chain, failures or production stops are more expensive here (at the supply-chain
level). Since the aggregate expected value of the production chain is substantially reduced
by adding even a few more easily interrupted links, we would expect that markets orga-
nize their high and low interruption industries together (Kremer, 1993). At the aggregate
level, this would mean that high value production chains would be less likely to enter into
previous high-shortage states. Should more complex products be more likely to appear in
such high-value chains, this would explain the pattern found in the data.

As a �nal point, the results presented in this paper suggests that much of the literature
that estimates the costs to low-quality electricity underestimates two e�ects. First, there
is the unaccounted for electricity disruption in supply chain network. If this e�ect is not
included, a supply-driven loss in revenues would go unnoticed in the "treatment"-group and
cause downward-biased estimates of the true output penalty to the electricity outages. To
my knowledge, this supply chain-e�ect has not been introduced in literature on electricity
costs on manufacturing output. Second, while a few papers explicitly �nd some change in
�rm behaviour, like substituting local for imported inputs (Fisher-Vanden et al., 2015) or
changing the relative share of production inputs (Abeberese, 2017), there is typically no
account of the structural e�ects on what kinds of new production is introduced into the
economy (except for explicitly electricity-related outcomes).

7.2 Limitations

I now outline a few of the limitations should be kept in mind when interpreting the results
discussed above.

20As with any of the results, this should be taken with the caveat that the statistical power of the test
might not be strong enough to detect a result, should there be one.
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7.2.1 Research design

First, and perhaps most importantly, the e�ects shown in this paper are purely associative.
I do not randomize any assignment of shortages, and I don't instrument for changes in the
electricity availability. This means that any causal claims has to be purely conjectural. In
addition, the main di�culty in testing the predictions from the framework is in controlling
from the other factors that co-move with power quality and plant complexity. Without
causal assignment, it is di�cult to assess if this research cleared that bar.

Second, I don't have any across-time plant identi�ers. While these do exist in the original
data, since the 2018 release of the ASI on MOSPI's data platform this variable have been
scrubbed. This reduces the power of the research substantially. As noted earlier, this also
strongly reduces the explanatory power of the plant-entry analysis, given the limitations it
puts on the sample size. Finally, all observations becomes signi�cantly more noisy without
speci�c plant identi�ers.

Third, given the rather small e�ect-sizes (which is, at least in some part, a function of
the lack of plant ID), strictly testing any hypotheses on the base of coe�cient p-values
potentially overstate the signi�cance of �ndings. That said, all my main results are robust
to a range of di�erent speci�cations and controls. As an additional point, some of the
key results, like the interaction between input shortages and plant complexity, is driven
by variables with a relative narrow interval of values. Hence, one should take care not to
draw conclusions on out-of-sample range values.

Finally, the result found here is only based on the Indian experience during the sample-
years, in particular that of the manufacturing sector. There is, however, no reason why the
e�ect of interruptions on the production choices could not exists in many places. The only
barrier to a similar study being replicated on developing economies elsewhere is the scarcity
of data (where the ASI is of particularly high quality, especially given the time span).
However, e�orts like the UNU-WIDER and the University of Copenhagen's Myanmar
Enterprise and Monitoring System (MEMS) would be a straight-forward candidate for a
similar study.

7.2.2 Endogeneity and attenuation bias

There are a couple of reasons the e�ect of electricity disruptions on economic activities
are di�cult to study empirically. First, the relationship is likely to have a signi�cant
endogenous component, but it is unclear in which direction. More complex production
could be related to a more intensely developed economy, which could also be related to
more stable electricity supply. On the other hand, a more developed economy could have a
more complex production, but would also have a higher electricity demand which could lead
to shortages, especially given the disconnect between market demand and the electricity
supply-sector in India (as outlined in section 2). Second, electricity reliability is di�cult to
measure without error. My electricity variable are estimations and on a quite broad unit of
measurement (states). This means that any uncertainty in the estimation of counterfactual
demand is added to the natural variation between electricity in di�erent areas in each state
and is carried into my analysis. This very likely introduces some measurement error in my
independent variable.

One way to address this issue would be to repeat the analysis using one the IV-approaches
in the literature. For instance, Allcott et al. (2016) uses the marginal extra available
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energy from hydroplants introduced by rainfall at higher elevations to instrument for yearly
variation in electricity supply. This would be valuable as an alternative to S in the analysis
of supply-shortage interaction with complexity in section 6.2.

7.2.3 Modi�able Area Unit Problem

My tests rely on �ground down� state-wide variables on electricity reliability to individual
plants. As with much of research across spatial units, this runs into the issue of arti�cial
boundaries. It is not uncommon that results that are based on aggregate units disap-
pear at more �ne-grained analysis. For instance, states might not be appropriate scale
of measurement, or be homogeneous in its distribution of reliable electricity. Min et al.
(2017) construct a power supply irregularity index of 600,000 villages in India based on
high frequency night-light photos. They show that there is substantial variance within
states. Whether or not this village variance would impact the variance on plants within
states is unclear. The authors did not respond to multiple requests, and their concrete
methodology is unclear from their work. It would be valuable to test the results from this
paper against a more �ne-grained assignment of electricity reliability (also, one that is not
estimated from o�cial side).
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8 Conclusion

In this paper I have explored the relationship between the level of electricity shortages
contained in a plant's production environment, both locally and in the supply chain, and
the economic complexity of its output.

I �rst develop a theoretical model of the connection between economic complexity and
interruptions. From this model, I then create a set of hypotheses that I bring to data.
Using a variety of di�erent regression speci�cations on a large, unit-level data set (spanning
from 2000-2016), I �nd robust evidence on the connection between electricity shortages and
production complexity in two important ways.

First, I �nd evidence suggesting that while the local electricity supply is not related to
the importance of complexity for plant revenues, interruptions in the input supply of plant
strongly conditions the association between complexity of a plant's output and revenues.

Second, I �nd a small, but robust, association between the past two-year average electricity
shortages of states and the entry choices of new plants. A higher two-year level of average
electricity shortages is associated with less complex plants entering into production in the
state.

Taken together, these results suggests an important relationship between the complexity
of an economy and its level of production disruptions. The association between interrup-
tions in the supply-chain, complexity, and revenues suggests that higher levels of risk of
production-failure (or stoppage) can lead to perverse incentives in the manufacturing sector
by increasing the returns to primary production relative to more sophisticated activities.

While these results are purely correlations, they suggest two reasons that much of the
previous literature have underestimated the costs of a poor quality power supply. The �rst
reason concerns the revenue e�ects of interruptions in the input supply. Many studies ex-
ploit some version of an instrumental variable assignment of electricity shortages to study
the loss of revenue. However, if these studies do not take into account the revenue impacts
of interruptions in the input supply, some of the variation in revenues that is caused by
electricity shortages will be mis-assigned. This creates a downward bias in the estimate
of the true cost of poor electricity. Secondly, the results presented in this paper suggests
that as interruptions contained in the supply-chains increase, the value of more complex
production decreases. This suggests that studies on the aggregate loss to electricity short-
ages also need to take into account possible self-selection into less productive industries. In
light of strong empirical evidence linking country-level economic complexity and growth,
this is especially important.
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A Appendix: Data cleaning

A.1 Cleaning Annual Survey of Industries (ASI)

The ASI is distributed by the Ministry of Statistics and Programme Implementation, Gov-
ernment of India, (MOSPI) as ten blocks for every year. These blocks require substantial
cleaning and harmonization of variables. Here I outline the �ltering procedure.

I �rst create the base sample. Plants can be included in the survey, even if they are
reported to be closed or are missing. I drop all observations not listed as open. I also drop
all factories that are not listed as in a manufacturing sector and observations that don't
report revenues (de�ned as the total gross sale value of all production output). Finally, I
drop all observations that are exact copies of other observations.

After the initial �ltering process, there can still be observations that have misreported
values of speci�c variables. When analysing these variables, I further limit the sample
using a "�agging"-system21.

I assign observations an "input-revenue" �ag if their labour or material-costs is more than
two times their revenues or if their fuel and electricity costs are greater than revenues.
Similarly, I can also observe the quantity of electricity consumed. I multiply the amount of
electricity consumed by the state-year median price paid (current Rs/kWh). If the amount
is higher than the revenue, I assign a �ag. For every time I run an analysis involving any
of these variables as an outcome, I exclude observations that are �agged. I drop all the
observations that have two or more �ags completely. If an observation reports 0 electricity
consumption, I set all electricity variables as missing for the observation. I further drop
observations on an ad-hoc basis during the analysis. When I do, this is explicitly written
in the section.

A.2 Product concordance for ASI

As mentioned in the data-section, the ASI lists products according to two di�erent classi-
�cation methods. In earlier years (before 2010) the ASICC classi�cation is used, whereas
later years lists product by their NPCMS-2011 code. The standard nomenclature for in-
ternational trade, however, is the Harmonized System classi�cation (HS). Since I assign
complexity to plants by their the products they produce, and since I calculate the com-
plexity of products by their position in the international trade network, I need to map the
HS system to the codes used in the ASI.

This is rather round-about process. The reason behind the shift from ASICC to NPCMS-
2011 is that the early scheme was severely �awed in the grouping-classi�cation and was
poorly suited to international comparison. This means that the mapping between AS-
ICC and NPCMS-2011 is imperfect. The NPCMS-2011 mapping is based directly on the
international standard Central Product Classi�cation, which again is di�erent from the
Harmonized System used in trade-accounting. I �rst match all products from the ASICC
years to the NPCMS-2011 classi�cation with the concordance Table provided by MOSPI
22. I then turn the NPCMS-2011 codes into the CPC-2 classi�cation by removing the last

21This method was inspired by Allcott et al. (2016).
22http://www.csoisw.gov.in/CMS/En/1027-npcms-national-product-classi�cation-for-manufacturing-

sector.aspx
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two digits (which are India speci�c). I use the concordance Table supplied by UNSD to
map the CPC-2 codes to HS-2007. Finally, I use turn the HS-2007 codes into HS-1996 to
match the trade data.

Often, one product code from the source classi�cation maps to two di�erent codes in the
destination classi�cations. There is no way to solve this issue completely. Instead, I create
two mappings: a "strict" and a "lenient" match. The "strict" match uses only products
that have a non-partial match and leaves other products as missing. The "lenient" ap-
proach assigns the �rst of the partial mappings as a match. Since the di�erence is usually
quite small between partially mapped products, is is usually feasible to purposely "mis-
assign" the products to a mapping that exists, rather than drop it altogether. For instance,
the ASICC listings of "Lobsters, processed/frozen" (11329), "Prawns, processed/frozen"
(11331), "Shrimps, processed/frozen" (11332) all map to two di�erent NPCMS-2011 codes:
"Crustaceans, frozen" (212500) and "Crustaceans, otherwise prepared" (212700). Sim-
ilarly, "Butter" (11411) maps to three di�erent kinds of butter (based on cattle-milk,
bu�alo-milk, or other milk) in the NPCMS-2011 system. While not particularly rigorous,
very little information should be lost on the complexity of the production output between
these three mappings. Indeed, many such categories will be clubbed together anyhow when
converting NPCMS-2011 to Harmonized System codes. It is worth noting that I use the
"strict"/"lenient" approach throughout the concordance chain. This means a substantial
product loss in the "strict" approach: products from the ASICC classi�cation (�ve digits)
that might be together in the �nal Harmonized System code can be dropped because they
map to two di�erent NPCMS-2011 codes (that are seven digits vs the four I use in the
HS-code). At any rate, while the observations are substantially reduced in some states,
the distribution of plant complexity changes very little (see �gure 10). I therefore use the
lenient approach in my main analysis.
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Figure 10: State-wise density of plant complexity by using only strict or lenient matches. All years
are pooled. Gaussian kernel.
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B Appendix: Calculating product complexity

I use product complexity-values extracted using the Hausmann-Hidalgo (HH) algorithm
(Hidalgo and Hausmann, 2009). Here I present the algorithm.

The HH algorithm is essentially an iterative calculation that repeatedly weighs products
based on the sophistication of countries that export them and countries based on the
products they export. Given the vast international di�erences in economy-sizes, the export
data is �rst binarized using the revealed comparative advantage (RCA) (Balassa, 1965).
The RCA is taken for each country in each of the around 1200 products the HS 96 series.
RCA normalizes the export share in a country's total export with the share of a product's
global export value in the value of all global exports together. Hence, RCA of country c
in product p:

RCAcp =
Xcp∑
pXcp

/ ∑
cXcp∑

c

∑
pXcp

where Xcp is the export value of country c in product p. I then de�ne an RCA matrix Mcp

with countries in rows as products in columns as:

Mcp =

{
1 if RCAcp ≥ 1

0 if RCAcp < 1

As mentioned, the economic complexity of countries and products was originally calculated
by repeatedly discounting products by their ubiquity (how many countries exports them
with RCA ≥ 1) and weighting countries by the products they export. However, follow-
ing Hausmann et al. (2013) the end-values of the algorithm can be found by �nding the
eigenvector that correspondents to the second largest eigenvalue. The product complexity
index PCI is then de�ned as:

PCI =
~Q− < ~Q >

stdev( ~Q)

where ~Q = eigenvector of M̂pp′ associated with the second largest eigenvalue and

M̂pp′ =
∑
p

McpMcp′

kc,0kp,0

And �nally, kc,0 =
∑

pMcp and kp,0 =
∑

cMcp. The end result is a product-speci�c value
of economic sophistication that is completely based on whether or not products tend to
co-occur in countries' export baskets. No assumptions are made on the intrinsic complexity
of di�erent classes of products, only that the most complex products are those that are
hardest to make, and they are made by those countries that have the best production
knowledge.
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C Appendix: Figures
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Figure 11: Expected plant output by risk and number of inputs: (A) for very small increases in
risk we see massive drops in expected output (in the example n = 10): when going from z = .95
(dashed) to z = .90 (dotted) - a decrease of 5.26% - expected output falls more than 40 %; (B)
as complexity of production increases, the drop from potential output driven by marginal decreases
in quality skyrockets. In terms of production, this suggest that small changes in the risk of failure
disproportionately punishes higher complexity producers.
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D Appendix: Tables

48



Table 9: 'Lenient' vs 'strict' matching to HS96: observations by year

year unmatched lenient strict lenient change strict change

1999 9687 8780 5376 -0.09 -0.45

2000 24676 21870 11454 -0.11 -0.54

2001 57113 50797 25762 -0.11 -0.55

2002 63136 55954 28503 -0.11 -0.55

2003 65558 57901 29455 -0.12 -0.55

2004 86605 75863 38476 -0.12 -0.56

2005 74444 65430 33053 -0.12 -0.56

2006 79707 71335 35902 -0.11 -0.55

2007 78660 70255 36000 -0.11 -0.54

2008 69988 61854 31438 -0.12 -0.55

2009 68060 66980 34139 -0.02 -0.50

2010 71788 70548 37054 -0.02 -0.48

2011 75273 75273 43178 0.00 -0.43

2012 78302 78302 44208 0.00 -0.44

2013 75156 75156 43829 0.00 -0.42

2014 78809 78809 46868 0.00 -0.41

2015 81359 81359 49344 0.00 -0.39

2016 81366 81366 48376 0.00 -0.41
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Table 10: 'Lenient' vs 'strict' matching to HS96: observations by state

state unmatched lenient strict lenient change strict change

A and N Islands 479 462 202 -0.04 -0.58

Andhra Pradesh 90398 86038 50030 -0.05 -0.45

Arunachal Pradesh 251 251 176 0.00 -0.30

Assam 20795 20314 11480 -0.02 -0.45

Bihar 13647 13270 9452 -0.03 -0.31

Chandigarh(U.T.) 5261 4755 2433 -0.10 -0.54

Chhattisgarh 19981 19343 11102 -0.03 -0.44

Dadra and Nagar Haveli 12564 11715 5546 -0.07 -0.56

Daman and Diu 14219 13161 6249 -0.07 -0.56

Delhi 25517 23626 11033 -0.07 -0.57

Goa 14441 12852 5715 -0.11 -0.60

Gujarat 109480 102425 52153 -0.06 -0.52

Haryana 49166 45289 26453 -0.08 -0.46

Himachal Pradesh 26985 25577 8942 -0.05 -0.67

Jammu and Kashmir 10171 9598 5209 -0.06 -0.49

Jharkhand 14220 13563 8483 -0.05 -0.40

Karnataka 70911 65227 34660 -0.08 -0.51

Kerala 37497 35639 20910 -0.05 -0.44

Madhya Pradesh 39901 37857 20943 -0.05 -0.48

Maharashtra 177551 162988 86218 -0.08 -0.51

Manipur 1535 1533 970 0.00 -0.37

Meghalaya 2145 2111 1394 -0.02 -0.35

Nagaland 2301 2244 1446 -0.02 -0.37

Odisha 20783 20159 11856 -0.03 -0.43

Puducherry 8447 7757 3761 -0.08 -0.55

Punjab 66850 62618 37874 -0.06 -0.43

Rajasthan 43642 41938 22892 -0.04 -0.48

Sikkim 1202 1201 377 0.00 -0.69

Tamil Nadu 126272 120292 66847 -0.05 -0.47

Telangana 9656 9656 5738 0.00 -0.41

Tripura 5802 5735 4512 -0.01 -0.22

Uttar Pradesh 95337 90631 49092 -0.05 -0.49

Uttrakhand 29273 27934 12084 -0.05 -0.59

West Bengal 53007 50073 26183 -0.06 -0.51
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Table 11: 'Lenient' vs 'strict' matching to HS96: output by year (current R)

year unmatched lenient strict lenient change strict change

1999 8.404983e+13 1.743172e+13 7.433884e+12 -0.79 -0.91

2000 4.281514e+12 4.113282e+12 2.512859e+12 -0.04 -0.41

2001 8.919334e+12 8.664177e+12 4.079980e+12 -0.03 -0.54

2002 7.570050e+12 7.294395e+12 4.059058e+12 -0.04 -0.46

2003 8.882428e+12 8.570030e+12 4.907379e+12 -0.04 -0.45

2004 9.928743e+12 9.602304e+12 5.615234e+12 -0.03 -0.43

2005 1.364389e+13 1.310630e+13 7.605898e+12 -0.04 -0.44

2006 2.343411e+14 2.321173e+14 9.896938e+13 -0.01 -0.58

2007 8.492717e+15 8.450439e+15 3.480926e+14 0.00 -0.96

2008 1.918965e+15 1.896303e+15 1.066407e+15 -0.01 -0.44

2009 3.068860e+13 3.040062e+13 1.868528e+13 -0.01 -0.39

2010 2.843052e+13 2.825666e+13 1.656423e+13 -0.01 -0.42

2011 4.113326e+13 4.113326e+13 2.691098e+13 0.00 -0.35

2012 5.222862e+13 5.222862e+13 3.460210e+13 0.00 -0.34

2013 5.441068e+13 5.441068e+13 3.383971e+13 0.00 -0.38

2014 5.901109e+13 5.901109e+13 3.601650e+13 0.00 -0.39

2015 6.000773e+13 6.000773e+13 3.883916e+13 0.00 -0.35

2016 9.163110e+15 9.163110e+15 6.761738e+15 0.00 -0.26
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Table 12: 'Lenient' vs 'strict' matching to HS96: output by state (current R)

state unmatched lenient strict lenient change strict change

A and N Islands 3.730948e+10 3.727433e+10 3.639415e+10 0.00 -0.02

Andhra Pradesh 1.141583e+14 1.091365e+14 5.515054e+13 -0.04 -0.52

Arunachal Pradesh 2.618636e+10 2.618636e+10 2.120664e+10 0.00 -0.19

Assam 1.861085e+13 1.859523e+13 1.142270e+13 0.00 -0.39

Bihar 2.959615e+13 2.958399e+13 2.451601e+13 0.00 -0.17

Chandigarh(U.T.) 2.857063e+13 2.789530e+13 2.613528e+13 -0.02 -0.09

Chhattisgarh 2.817048e+13 2.815152e+13 1.042075e+13 0.00 -0.63

Dadra and Nagar Haveli 2.262976e+14 2.258103e+14 9.721252e+13 0.00 -0.57

Daman and Diu 2.259624e+13 2.240136e+13 1.126080e+13 -0.01 -0.50

Delhi 1.989231e+14 1.976959e+14 1.754432e+14 -0.01 -0.12

Goa 3.615391e+14 3.604067e+14 2.487690e+13 0.00 -0.93

Gujarat 8.810380e+15 8.798361e+15 3.018780e+14 0.00 -0.97

Haryana 2.495809e+14 2.482845e+14 2.003876e+14 -0.01 -0.20

Himachal Pradesh 9.147398e+14 9.120361e+14 7.526687e+14 0.00 -0.18

Jammu and Kashmir 2.116757e+13 2.095423e+13 9.981348e+12 -0.01 -0.53

Jharkhand 2.413089e+14 2.409273e+14 1.457840e+13 0.00 -0.94

Karnataka 3.462383e+15 3.461098e+15 3.334097e+15 0.00 -0.04

Kerala 8.018367e+13 7.812379e+13 4.529216e+13 -0.03 -0.44

Madhya Pradesh 9.148944e+13 8.974632e+13 5.105227e+13 -0.02 -0.44

Maharashtra 1.398309e+15 1.389269e+15 5.757764e+14 -0.01 -0.59

Manipur 2.198879e+10 2.198578e+10 1.132198e+10 0.00 -0.49

Meghalaya 4.882104e+11 4.871523e+11 4.334702e+11 0.00 -0.11

Nagaland 1.405110e+11 1.404993e+11 1.353239e+11 0.00 -0.04

Odisha 1.799426e+13 1.794603e+13 1.227580e+13 0.00 -0.32

Puducherry 1.869095e+13 1.856310e+13 1.142226e+13 -0.01 -0.39

Punjab 3.392139e+14 3.341858e+14 4.290774e+13 -0.01 -0.87

Rajasthan 7.302604e+14 6.648560e+14 5.729336e+14 -0.09 -0.22

Sikkim 4.520094e+12 4.520092e+12 2.083536e+12 0.00 -0.54

Tamil Nadu 6.537198e+14 6.496537e+14 4.049141e+14 -0.01 -0.38

Telangana 2.000670e+14 2.000670e+14 1.373189e+14 0.00 -0.31

Tripura 1.642075e+11 1.641171e+11 8.823975e+10 0.00 -0.46

Uttar Pradesh 1.530646e+15 1.527540e+15 1.405733e+15 0.00 -0.08

Uttrakhand 2.797105e+14 2.788987e+14 1.394167e+14 0.00 -0.50

West Bengal 1.986139e+14 1.806156e+14 6.499627e+13 -0.09 -0.67
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