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Abstract of chapter 1
For = ≥ 2 the number of mixing =-step subshifts of finite type (sft) over the alphabet
{0, 1} is proven to be at least 15/16 times the number of transitive =-step sfts.
A conjecture assumes the latter to be at least

2(3·2
=−1−=) .

Abstract of chapter 2
The alternating colouring function is defined. Strings over the alphabet {0, 1}
are divided in colourable and non-colourable ones. The points in the subshift
of finite type defined by forbidding all non-colourable strings of a certain length
alternate between states of one colour and states of the other colour. The number of
non-colourable strings of length = ≥ 2 is proven to be 2 · (�=−2 + 1) where � is the
sequence of Jacobsthal numbers.
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Preface

This thesis is to be handed in at Lund University as the written report of the Master’s
Degree Project of the Master’s programme in Mathematics.

Chapter 0 is an introduction to symbolic dynamics and de Bruijn graphs. For the
reader with basic knowledge of the notions and notations used in set theory it should
provide the definitions and ideas needed to understand the upcoming chapters. The
introduction is mainly based on the first four chapters of Lind and Marcus 1995, a
book the author wants to recommend for a more detailed understanding.

The book includes the aptly sentence: ‘Be warned that terminology in graph theory
is notoriously nonstandard.’ Different authors use different terminology for the same
notions. What this thesis calls vertices and edges other authors call nodes and arcs,
what this thesis calls a walk others call a path, what is called a path here others call
a simple path and so on. Where uncertain the author of this thesis has decided to
choose the terminology as it is used by the source that is probably consulted most
often in present-day academia: Wikipedia contributors 2020b.
Since Lind and Marcus 1995 do not cover de Bruijn graphs, that information has

been taken from Wikipedia contributors 2020a.
Chapter 1 tries to give a lower bound for the number of mixing subshifts of finite

type (sft) with a certain step length. To do that first the number of mixing sfts is
related to the number of transitive ones. Then a corollary is stated to estimate the
number of transitive sfts.

Chapter 2 introduces the alternating colouring of strings. Some strings have to be
declared non-colourable. Forbidding all those strings naturally leads to an sft.
Appendix A gives the values of the alternating colouring function for strings of

length up to and including 7.
To make the main ideas of the thesis accessible to those who paid for the author’s

education with their tax money (and due to requirement by the university) in
appendix B there is a popular scientific summary in English, Swedish and German.
Although chapter 0 focuses on those concepts that will be used in the upcoming

chapters, it can be interesting as a general short introduction to graphs and subshifts
of finite type. Chapters 1 and 2 only present the results of investigations and are
written for the reader intending to build on them. Unless stated, all proofs given in
those chapters are due to the author.
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Preface

Inspired by conventional string indexing chapters, sections, results, equations
and figures are numbered starting from zero. To keep the convention in the printed
version to have odd pages on the right and even pages on the left page numbering
is excepted from that. Section numbers are always given together with the chapter
numbers, separated by a dot. Results are numbered inside the sections and their
number is separated from the section number by another dot. Equations are also
numbered inside the section, but their number is separated from the section number
by a hyphen. Also, equation numbers are always given in brackets. Finally figures
and tables are numbered directly inside the chapter and their number is separated
from the chapter number by a hyphen.
In proofs some equality =, implication =⇒ , membership ∈ and similar relation

signs are decorated with an equation reference. If unsure why a certain relation
holds the equation referred to should justify it. In the PDF version of this thesis the
references are clickable.

Important resources that have not been mentioned so far are the On-Line Encyclo-
pedia of Integer Sequences1 and the programming language Python, both of which
have been very helpful tools. The visualisations of graphs have been drawn using
Lucidchart2; the text is typeset with LATEX using Overleaf3. The author is grateful
for all those who have contributed to LATEX writing packages or giving advice in the
forums of the world wide web. Especially to mention among them is the team behind
the KOMA-script which provides the layout for this thesis.
If the popular scientific summary is comprehensible it is thanks to the feedback

given by Theresa Hahner. Finally, the author wants to thank his adviser Jörg
Schmeling and his examiner Tomas Persson at the Centre for Mathematical Sciences
at Lund University for their support throughout the degree project.

Lund, June 2020
Jonathan Garbe

1https://oeis.org/
2https://www.lucidchart.com/
3https://www.overleaf.com/
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0 Introduction

0.0 Strings
Let = ∈ N and � be a finite set. Then the elements in �= are called strings over the – string
alphabet �. Instead of strings, also the terms word and block are used. For F ∈ �=
the length = of F is denoted #F. (The same notation is also used for the cardinality – length
of a finite set.) The set �∗ is defined as – �∗

�∗ =
⋃
=∈N

�=.

As a shorthand, also notations like the following will be used:

�even =
⋃

= is even
�= �≥2 =

⋃
=≥2

�=

While there are different ways to define �= (if seeing natural numbers as von
Neumann ordinals, one can define it as the set of all functions =→ �), one has to
make sure that for < ≠ = the sets �< and �= do not intersect for the length of strings
over � to be defined. It does not work for example to represent strings of zeroes and
ones by their binary representation setting � = {0, 1}, �= = {0, . . . , 2= − 1}, because
then 00102 = 102, so the length is not clear. More relevant than the formal way
around this problem is however the notation. The setA2 is defined as {0, 1} and may – the set A2
be identified with {0, 1}, but 00 is always to be seen as a string of length 2, thereby
not equal with 0 which is a string of length 1.
For any alphabet � the set �0 contains exactly one element: The empty string ϵ, – empty

string ϵthe only string of length 0. To cover the possible string lengths the natural numbers
N are considered to contain 0.
For an alphabet � and two strings D, E ∈ �∗ the concatenation DE is a string of – concatena-

tionlength #D+#E consisting of the characters of the first string followed by the characters
of the second string. For D = 001, E = 0110 the concatenation DE = 0010110.
For : ∈ N concatenating D : times with itself is denoted D: : D0 = ϵ, D4 = DDDD,
(011)2 = 011011 and D:+1 = D:D.
A string B is called a substring of F if there are strings D, E such that F = DBE. If D – substring

can be chosen to be ϵ B is called a prefix of F; if E can be ϵ B is a suffix. It can be – prefix
– suffix

1



0 Introduction

both: 0100 is both a prefix and a suffix of 0100100. If D, E can at the same time be
chosen to be non-empty B is called a proper infix. – proper infix
The characters in a string are addressed by subscripts:

00101100 = 0 00101101 = 0 00101102 = 1 00101106 = 0.

The substring of a string F that starts with the character in position y and ends with
the character in position z where y, z < #F is denoted by F [y, z+1) . The notation
[y, z + 1) shall remind of the half open interval including y but excluding z. The
author prefers it because the length of the substring is exactly the difference of the
two numbers in the subscript: #(0010110) [3,5) = #(01) = 2 = 5 − 3.

Reading a string backwards gives its reverse. The reverse of 0010110 is 0110100. – reverse
Strings that equal their reverse are called palindromes. 0010100 is an example for a – palindrome
palindrome, ϵ another. The notion of a complement of a string is restricted to A∗2: It – complement
is the string one gets by substituting the 0s by 1s and vice versa. The complement of
0010110 is 1101001.
The notion of a string can be extended to infinite sequences of characters from a

finite alphabet �. An infinite string F ∈ �N contains exactly one character F: ∈ � – infinite
stringfor each natural number : ∈ N. �N is a different object than �∗: The set �∗ contains

only finite strings, �N only infinite.
A bi-infinite string F ∈ �Z contains a character F: ∈ � for each integer : ∈ Z. – bi-infinite

stringThe term full shift can refer either to �N or to �Z. In this thesis however shifts are
– full shiftalways considered subsets of �N.

2



0.1 Graphs

Figure 0-0: The simple digraph ({0, 1, 2, 3}, {01, 03, 12, 13, 30}).

0.1 Graphs

For many objects studied in symbolic dynamics there are different ways to formalise
a certain notion. Just as the unit circle can be thought of either as R/Z or as a
subset of R2 or C, there are different ways to formally represent an edge, a walk or a
subgraph. Each of them has its benefits and usually one will choose the one that is
most convenient in a certain situation.

Informally a directed graph (short digraph) is an object that can be represented by – directed
graph
– digraph

a graphic of points that are connected by arrows. An example gives figure 0-0. The
points are called vertices or nodes while the arrows are called edges or arcs.

– vertex
– edge

If there is at most one edge in each direction between two vertices a digraph is
called simple, otherwise it is said to be a multidigraph.

– simple
digraph
–multidigraph

Formally a digraph consists of a vertex set + and an edge set � ⊆ +2 (although
even for the edge set another representation will be introduced later). The two
elements of an edge are called starting point and endpoint.

– starting
point of an
edge
– endpoint of
an edge

There are also undirected graphs where the edges connect the vertices in both
directions instead of being one way roads, however they are not relevant for this
thesis. Here a graph should always be understood as a directed one.
Starting from a certain vertex called starting point, following a finite number of

– starting
point of a
walk

edges until terminating at an endpoint results in a walk. In figure 0-0 13012 is a walk

– endpoint of
a walk
– walk

while 0123 is not because there is no edge connecting 2 and 3. Formally a walk can
be defined as a string either in the vertex set (in that case with the condition that any

3



0 Introduction

substring of length 2 is contained in the edge set) or in the edge set (in that case with
the condition that the starting point of each edge coincides with the endpoint of the
previous). The length of a walk is the number of edges that are passed which is one – length of a

walkless than the number of vertices passed. A walk of length 0 is called empty.
– empty walkNote a crucial difference between the representations: If defining a walk as a string

of edges, there is only one empty walk and that one does not have a defined starting
nor endpoint. When seeing a walk as a string of vertices, even an empty walk does
have starting and endpoint (which are identical) and hence there are as many walks
of length 0 as there are vertices in the graph.
If a walk does not use the same edge twice it is called a trail. If it does not even – trail

use the same vertex twice, it is called a path. Note that any path is a trail as when – path
using the same edge twice one also uses starting and endpoint of that edge twice.
Instead of using the string of vertices or edges, a path can also be represented by just
the set of edges as the order is clear. If starting and endpoint of a walk coincide, the
walk is called closed. A closed trail is called a circuit. A cycle is what comes closest – closed walk

– circuit
– cycle

to a closed path: Only start and endpoint of a cycle coincide; all other vertices are
visited only once.

This thesis will usually use the word cycle for a set of edges: In that case, start and
endpoint are not determined. A cycle passes equally many edges as vertices and the
length of it is at most the length of the vertex set. For some digraphs there are cycles
that actually pass every single vertex. Such cycles are called Hamiltonian. – Hamiltonian

cycle
– infinite walk

Infinite walks and bi-infinite walks are natural extensions of the concept of a walk.

– bi-infinite
walk

They are (bi-) infinite strings such that their substrings of length 2 are edges in the
digraph. The set of all (bi-) infinite walks in a certain digraph is called the vertex

– vertex shift

shift of that digraph.
A vertex that is not the endpoint for any edge is called a source. Walks that do

– sourcenot start at a source can never reach it. The poetic metaphor of flowing water is also
used for naming the counterpart: A vertex that is not the starting point for any edge
is called a sink. Walks cannot start at sinks but they may end there. As an umbrella – sink
term, sources and sinks are said to be stranded. A vertex that is both a source and a – stranded

vertexsink is called isolated.
– isolated
vertex

A digraph is said to be essential if it does not contain any stranded vertices. It

– essential
digraph

is strongly connected if there is a walk from any vertex to any other vertex. Every

– strongly
connected
digraph

strongly connected digraph is essential, but not vice versa.
Here a difference between �N and �Z becomes apparent: While sinks can never

appear in infinite nor in bi-infinite walks, infinite walks can start at a source while
bi-infinite walks cannot contain any stranded vertices at all.
A digraph (+ ′, �′) is said to be a subgraph of another digraph (+, �) if + ′ ⊆ +

– subgraphand �′ ⊆ � . Note that one cannot just choose any subsets because all starting and
endpoints of the edges in �′ must be included in + ′. (+ ′, �′) is spanning if + ′ = + .

– spanning
subgraph

4



0.1 Graphs

Figure 0-1: The line graph of the graph in figure 0-0. The original graph can be seen
faded in the background. The new vertices are what previously were
the edges. The new edges correspond two the walks of length 2 in the
original graph.

The line graph (�, !) of a digraph (+, �) is a digraph constructed by setting – line graph

! =

{(
(D, E), (F, G)

)
∈ �2; E = F

}
.

The new vertices of the line graph are the old edges and two of them are connected
by a new edge if and only if the endpoint of one old edge is the starting point of the
next. Figure 0-1 shows the line graph of the digraph in figure 0-0.
In his proof de Bruijn 1946 already uses the notion of a line graph but calls it

doubling.
The walks in a digraph represented by strings of edges are exactly the walks in the

line graph represented by strings of vertices. However, the original walk is one step
longer than the associated walk in the line graph.
Following this definition ! ⊆ (+2)2 � +4. However, edges could also be seen as

elements in +3: Instead of{(
01, 12

)
,
(
01, 13

)
,
(
03, 30

)
,
(
13, 30

)
,
(
30, 01

)
,
(
30, 03

)}
in figure 0-1 the edge set can shortly be expressed as{

012, 013, 030, 130, 301, 303
}
.
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0 Introduction

©«
0 1 2 3

0 0 1 0 1
1 0 0 1 1
2 0 0 0 0
3 1 0 0 0

ª®®®®¬
©«

01 03 12 13 30
01 0 0 1 1 0
03 0 0 0 0 1
12 0 0 0 0 0
13 0 0 0 0 1
30 1 1 0 0 0

ª®®®®®®¬
Figure 0-2: The adjacency matrix for the digraph in figure 0-0 and the one for its line

graph which is shown in figure 0-1.

©«
0 1 2 3

0 1 0 1 1
1 1 0 0 0
2 0 0 0 0
3 0 1 0 1

ª®®®®¬
©«
0 1 2 3

0 1 1 0 1
1 0 1 0 1
2 0 0 0 0
3 1 0 1 1

ª®®®®¬
©«
0 1 2 3

0 1 1 1 2
1 1 0 1 1
2 0 0 0 0
3 1 1 0 1

ª®®®®¬
Figure 0-3: The 2nd, 3rd and 4th power of the matrix on the left of figure 0-2. The

graph corresponding to the 2nd power is shown in figure 0-4.

The vertex shift of the line graph is called the edge shift of the original graph. – edge shift
Another representation of a digraph with vertex set + is its adjacency matrix – adjacency

matrix< ∈ {0, 1}+×+ . For D, E ∈ + the entry <D,E is 1 if there is an edge connecting D
and E and 0 otherwise. The adjacency matrix of the graph in figure 0-0 is given in
figure 0-2. Note that the row 2 contains only zeroes. That corresponds to the vertex 2
being a sink. A source would correspond to a column of zeroes. A matrix having at
least a one in each row and column hence corresponds to an essential graph and is
therefore itself called essential. – essential

matrixFor a multidigraph the adjacency matrix is found in N+×+ rather than {0, 1}+×+ .
The entry <D,E ∈ N then gives information on how many edges there are connecting
D and E.

A perk of adjacency matrices is the information their powers provide: For ! ∈ N
the matrix entry (<!)D,E is the number of walks of length ! there are from D to E.
The multidigraph that corresponds to the !th power of the adjacency matrix of a
digraph is also called the !th power of that digraph. The 2nd power of the digraph is – power of a

digraph

6



0.1 Graphs

Figure 0-4: The 2nd power graph of the digraph in figure 0-0. The vertex set is the
same as in the original digraph. With the exception of 00 and 33 the
edges are drawn such that they touch the vertex the corresponding walk
of length 2 passed in the original graph.

shown in figure 0-4, its adjacency matrix together with those of even higher power in
figure 0-3. The 2nd power of a graph and its line graph are related: They have equally
many edges because both in the 2nd power graph and in the line graph each edge
correspond to a walk of length 2 in the original graph. However a crucial difference
is that powers preserve the vertex set; line graphs do not.
The question whether there is a walk from an edge D ∈ + to another edge E ∈ +

can be reformulated in terms of the adjacency matrix < by asking whether there is
an ! ∈ N such that (<!)D,E > 0. If for any D, E ∈ + there is such an ! the matrix
is called irreducible. Therefore a digraph is strongly connected if and only if its – irreducible

matrixadjacency matrix is irreducible.
Since ! may depend on D and E even if a matrix < is irreducible that does not

mean there is an ! ∈ N such that every entry in <! is positive. If there is an !
such that <! contains only positive values, < is called primitive. Since a primitive – primitive

matrixmatrix < must be irreducible and an irreducible matrix essential, < contains no row
or column of zeroes, so in fact for any ; ≥ ! the matrix <; contains only positive
entries.

For any vertex set + , the digraph (+,+2) where there is an edge in both directions
between any two vertices is called complete. The complete digraph is the line graph – complete

digraphof a multidigraph with only one vertex but #+ edges from that vertex to itself. Any
digraph is a subgraph of the complete digraph of the vertex set. The adjacency matrix

7



0 Introduction

Figure 0-5: The 1-dimensional de Bruijn graph over the alphabet A2. It is the
complete graph over A2.

of a complete digraph is the matrix filled with ones.

0.2 Sfts
The complete digraph with vertex set � is also called the 1-dimensional de Bruijn
graph over the alphabet �. For = ≥ 1 the =-dimensional de Bruijn graph is the line – de Bruijn

graphgraph of the (=− 1)-dimensional de Bruijn graph. Figures 0-5, 0-6, 0-7 and 0-8 show
the 1-, 2-, 3- and 4-dimensional de Bruijn graphs over the alphabet A2, figure 0-9
their adjacency matrices.
Here the idea just mentioned has been extended: Instead of seeing the edge set

of the 3-dimensional de Bruijn graph as a subset of ((A2
2)

2)2, they are just seen as
a subset of A4

2. In fact the edge set is equivalent to A4
2 and will from now on be

treated as being equal to A4
2. In general, the edge set of the =-dimensional de Bruijn

graph is A=+1
2 while the vertex set is A=

2 . Two vertices D, E ∈ �
= are connected by

an edge if and only if the suffix of length = − 1 of D equals the prefix of length = − 1
of E, meaning that D and E have a large intersection. The starting point of an edge is
its prefix of length =, the endpoint is the suffix of length =.

For = ∈ N a walk in the =-dimensional de Bruijn graph over the alphabet � would
be a string over the alphabet �= (an element in (�=)∗ that is). An example for a path
in the 3-dimensional de Bruijn graph over A2 would be (001, 010, 101, 011, 110).
The path is shown in figure 0-10. However a natural projection keeping the starting

8



0.2 Sfts

Figure 0-6: The 2-dimensional de Bruijn graph over the alphabet A2. It is the line
graph of the 1-dimensional de Bruijn graph.

Figure 0-7: The 3-dimensional de Bruijn graph over the alphabet A2

9



0 Introduction

Figure 0-8: The 4-dimensional de Bruijn graph over the alphabet A2

10



0.2 Sfts

(0 1
0 1 1
1 1 1

) ©«
00 01 10 11

00 1 1 0 0
01 0 0 1 1
10 1 1 0 0
11 0 0 1 1

ª®®®®¬
©«

000 001 010 011 100 101 110 111
000 1 1 0 0 0 0 0 0
001 0 0 1 1 0 0 0 0
010 0 0 0 0 1 1 0 0
011 0 0 0 0 0 0 1 1
100 1 1 0 0 0 0 0 0
101 0 0 1 1 0 0 0 0
110 0 0 0 0 1 1 0 0
111 0 0 0 0 0 0 1 1

ª®®®®®®®®®®®®¬
Figure 0-9: The adjacency matrices of the 1-, 2- and 3-dimensional de Bruijn graph

over the alphabet A2
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0 Introduction

Figure 0-10: The 3-dimensional de Bruijn graph. The vertices and edges that are
part of the path 0010110 are highlighted blue. This shows why it is
sufficient to give a set of edges to define a path: The vertices and their
order are then clear. 001 is the starting point of the path; 110 is its
endpoint.

point completely but only the last character from the following vertices preserves the
information while collapsing the expression to 0010110.
In general, walks in the =-dimensional de Bruijn graph will be seen as elements

in A≥=2 . If :, = ≥ 1 and F ∈ �:+= shall be considered a walk in the =-dimensional
de Bruijn graph, F [0,=) is the starting point, F [0,=+1) is the first edge, F [1,1+=) is the
second vertex the walk passes, F [:,:+=) is the endpoint.
One has to be careful that the length of the string differs from the length of the

walk it represents. As a walk F has length : because it contains : substrings of
length = + 1 representing an edge each. The length of F as a string however is : + =.
#F shall always refer to the latter.
For = ∈ N an =-dimensional de Bruijn subgraph is a spanning subgraph of the – de Bruijn

subgraph=-dimensional de Bruijn graph. F ∈ �≥= is a walk in a certain de Bruijn subgraph if
and only if all substrings of length = + 1 are in the edge set.
Using this shorthand to express walks, also the notion of infinite walks has to

be refined accordingly: For = ∈ N the infinite walks in an =-dimensional de Bruijn
subgraph are the infinite strings whose substrings of length = + 1 can be found in
the edge set. The vertex shift one thus gets is called an =-step shift of finite type, – =-step shift

of finite typeabbreviated sft. The edge shift of an =-dimensional de Bruijn graph equals the vertex
– sftshift of the (= + 1)-dimensional de Bruijn graph.

12



0.2 Sfts

Figure 0-11: A 3-dimensional de Bruijn subgraph. Here 000, 001, 100 are stranded,
000, 001 are sources, 000, 100 are sinks, 000 is isolated. 111 is not
a sink and can occur in the associated sft. The graph is not strongly
connected, so the sft is not transitive.

Alternatively, an sft can be constructed by taking a finite set � of finite strings and
removing from the full shift any point that contains an element in �. One might ask
the question what happens if � contains strings of different length. However, instead
of forbidding a string F of length 3 one can equivalently forbid all strings of length 5
that contain F. This observation points to a problem: While different sfts must arise
from different de Bruijn subgraphs, two different de Bruijn subgraphs can lead to the
same sft. Any de Bruijn subgraph not containing a closed walk for example will lead
to an empty shift. An important exception will be given in lemma 1.0.0.

There is also a more general notion of a shift that is constructed by forbidding an – shift
arbitrary (and possibly infinite) set of substrings.

A shift becomes a dynamic object by introducing the shift operator f : �Z → �Z – shift
operatorfor some alphabet � as (

f(F)
)
: = F:+1.

Note that an sft (and in fact any shift) is closed under the shift operator.
When looking at a certain string one can say that with each time step that passes,

the string is shifted one place to the left. Alternatively one can focus on the place
with index 0 and consider that as the current state. With each time step passing a
new character appears. Instead of imagining an object that spreads infinitely long in
space one can think of a single character that somehow also contains information

13



0 Introduction

Graph Adjacency matrix Vertex shift
essential ⇐⇒ essential
⇑ ⇑

strongly connected ⇐⇒ irreducible ⇐⇒ transitive
⇑ ⇑ ⇑

primitive ⇐⇒ primitive ⇐⇒ mixing

Table 0-12: Different names for equivalent properties, expressed in terms of graphs,
adjacency matrices and vertex shifts.

about how it is going to change over time. Say, a machine with an 7-segment display
showing a new character each second.

Now another difference between �N and �Z can be formulated: In the latter object
the shift operator is invertible, the shift is a reversible system. Restricting f to �N
leads to a loss of information in each step.
The dynamical property of an sft being transitive corresponds to the de Bruijn – transitive sft

subgraph being strongly connected. It means that whenever both D and E occur as a
substring somewhere in a certain sft, then there is also a single point containing first
D and at some later position E.

An sft is mixing if its de Bruijn subgraph is primitive. Table 0-12 relates different – mixing sft
properties of graphs, their adjacency matrices and vertex shifts. In the literature, the
terms are sometimes used interchangeably, also graphs and sfts can for example be
called irreducible.

14



1 Counting the mixing sfts

1.0 Counting the mixing sfts among the transitive
ones

Lemma 1.0.0. For = ∈ N the number of transitive =-step sfts equals the number of
strongly connected =-dimensional de Bruijn subgraphs.

Proof. Each transitive =-step sft is described by an =-dimensional de Bruijn subgraph,
so there are at least as many =-dimensional de Bruijn subgraphs as there are transitive
=-step sfts. It is left to show that different strongly connected de Bruijn subgraphs of
the same dimension describe different sfts.
If two strongly connected de Bruijn subgraphs of the same dimensions are not

equal, one of them contains an edge the other does not. Since the digraph which
contains that edge is strongly connected there is a closed walk passing that edge and
so there is an infinite walk doing so. That infinite walk is a point in one sft but not in
the other so the sfts differ.

Corollary 1.0.1. For = ∈ N the number of mixing =-step sfts equals the number of
primitive =-dimensional de Bruijn subgraphs.

Proof. Since an sft is mixing if and only if it is described by a primitive de Bruijn
subgraph and because amixing sft is transitive the statement follows from lemma 1.0.0.

Lemma 1.0.2. Let =, ?, @, A, B ∈ N such that

= ≥ B · @2 ∧ A · ? − B · @ = 1. (1.0-0)

Then
∃C, D ∈ N C · ? + D · @ = =.

Proof. The statement is trivial for @ = 0, so let @ > 0. Pick ;, < ∈ N such that

= = ; · @ + < ∧ < < @. (1.0-1)

15



1 Counting the mixing sfts

Then

; · @ (1.0-1)
= = − <

(1.0-1)
> = − @

(1.0-0)
≥ B · @2 − @ =

(
B · @ − 1

)
· @,

so ; ≥ B · @ ≥ B · <. Set C = < · A, D = ; − B · <. Then

C · ? + D · @ = < · A · ? + ; · @ − B · < · @
= < ·

(
A · ? − B · @

)
+ ; · @

(1.0-0)
= < + ; · @

(1.0-1)
= =.

Corollary 1.0.3. Let a strongly connected digraph contain two closed walks with
lengths ? and @ respectively such that A · ? − B · @ = 1. Let < be the number of steps
needed to go from any vertex to any other vertex and

; ≥ 3 · < + B · @2. (1.0-2)

Then for any vertices -,. there is a walk of length ; from - to . .

Proof. Let
% be a vertex in the closed walk of length ?,
& a vertex in the closed walk of length @,
y ≤ < the length of a walk from - to %,
z ≤ < the length of a walk from % to &,
: ≤ < the length of a walk from & to . .

Set

= = ; −
(
y + z + :

)
. (1.0-3)

Then

=
(1.0-3)(1.0-2)
≥ 3 · < + B · @2 − 3 · < = B · @2,

so by lemma 1.0.2 there are C, D ∈ N such that

C · ? + D · @ = =. (1.0-4)

Consider the following walk:
• Go from - to %,
• follow C times the closed walk of length ?,
• go to &,

16



1.0 Counting the mixing sfts among the transitive ones

Figure 1-0: An example for a strongly connected digraph with two closed walks
whose lengths are relatively prime, in this case 2 and 3

• follow D times the closed walk of length @,
• go to . .

The length of the walk is

y + C · ? + z + D · @ + : (1.0-4)
= = + y + z + : (1.0-3)

= ;.

Example. Consider the graph in figure 1-0. It is strongly connected; any vertex can
be reached from another by a walk of at most length 5. Moreover it contains a cycle
of length 2 and another one of length 3. Using the letters in which corollary 1.0.3
is formulated one can set ? = 2, @ = 3, A = 2, B = 1, < = 5. Hence for any number
; ≥ 3 · < + B · @2 = 24 there should be a walk of length ; from vertex - to vertex . .
For example set ; = 28. The = used in the proof becomes 23 and a possible choice
for C and D is C = 10, D = 1. That leads to the walk -%(,%)10,&(/.&)1/. which
can be shortened to - (%,)11(&/. )2 and passes 1 + 11 · 2 + 2 · 3 = 29 vertices so
has the desired length 28.

Corollary 1.0.4. A strongly connected digraph is primitive if and only if it contains
two closed walks whose lengths are relatively prime.

Proof. Recall that a digraph is called primitive if there is an ! ∈ N such that for any
; ≥ ! there is a walk of length ; from any vertex to any other vertex. The existence
of such a walk under the conditions given has been proven in corollary 1.0.3.
To see the reverse implication note that any primitive digraph contains closed

walks of length ! and of length ! + 1 which are relatively prime.

17



1 Counting the mixing sfts

Figure 1-1: The 3-dimensional de Bruijn graph. The edges in L4 are coloured blue.
Removing any of them would disconnect the graph. The edges in M4

are coloured red. As long as the edges in L4 are present, they can be
removed without disconnecting the graph.

Remark. Corollary 1.0.4 is a formulation of theorem 4.5.8 in Lind and Marcus 1995.
There it is proven using the adjacency matrix rather than the graph itself.

Notation. Let = ≥ 2. The following notation will be used:

M= =

{
0=, 01=−20, 10=−21, 1=

}
L= =

{
0=−11, 01=−1, 10=−1, 1=−10

}
Lemma 1.0.5. Let = ≥ 1 and 2 ⊆ A=+1

2 be a strongly connected =-dimensional de
Bruijn subgraph. Then

L=+1 ⊆ 2.

Proof. 0=1 and 1=0 are the only edges leading away from 0= and 1= respectively
while 10= and 01= are the only ones leading to them. Dropping any of them would
disconnect the graph.

Lemma 1.0.6. Let = ≥ 1 and 2 ⊆ A=+1
2 be a strongly connected =-dimensional de

Bruijn subgraph. Then 2 \ M=+1 is still strongly connected.

18



1.0 Counting the mixing sfts among the transitive ones

Proof. ConsiderF ∈ A≥=2 as a walk in c (meaning that∀: < #F−= F [:,:+=+1) ∈ 2).
The substrings 0=+1, 1=+1 of F can be replaced by 0=, 1= which are necessarily allowed
in F due to the fact that 2 is spanning. The substrings 01=−10, 10=−11 of F can be
replaced by 01=0, 10=1 which are allowed according to lemma 1.0.5.

Corollary 1.0.7. Let = ≥ 1 and 2 ⊆ A=+1
2 be a strongly connected =-dimensional de

Bruijn subgraph such that 2 ∩ M=+1 ≠ ∅. Then 2 is primitive.

Proof. Pick a closed walk F ∈ A≥=2 in 2 that passes all edges in L=+1. Create another
walk F̃ ∈ A≥=2 in 2 by performing exactly one of the substitutions described in the
proof of lemma 1.0.6, in one or the other direction. Then |#F̃ − #F | = 1, so #F̃ and
#F are relatively prime. Hence by corollary 1.0.4 2 is primitive.

Counterexample. The condition given in corollary 1.0.7 is sufficient, but not neces-
sary. Consider A5

2 as the edge set of the 4-dimensional de Bruijn graph. A5
2 \ M

5 is
still mixing.

Corollary 1.0.8. Let = ≥ 2 and�= be the set of all strongly connected =-dimensional
de Bruijn subgraphs. Then #�= is divisible by 16.

Proof. Set �̃= = {2 \ M=+1; 2 ∈ �=}. According to lemma 1.0.6 still �̃= ⊆ �=, so

�= =

{
0 ∪ 2; 0 ⊆ M=+1 ∧ 2 ∈ �̃=

}
and hence #�= = #(PM=+1 × �̃=) = 16 · �̃=.

Theorem 1.0.9. Let = ≥ 2, �= be the set of all strongly connected =-dimensional de
Bruijn subgraphs and "= ⊆ �= the primitive ones among them. Then

#"= ≥
15
16
· #�=. (1.0-5)

Proof. Set

"̃= =

{
0 ∪ 2; 0 ⊆ M=+1 ∧ 0 ≠ ∅ ∧ 2 ∈ �= \ "=

}
. (1.0-6)

According to corollary 1.0.7 "̃= ⊆ "=, so

#"= ≥ #"̃=
(1.0-6)
= #

((
PM=+1 \

{
∅
})
×

(
�= \ "=

) )
=

(
#
(
PM=+1

)
− 1

)
·
(
#�= − #"=

)
= 15 ·

(
#�= − #"=

)
.

The statement follows from some linear manipulations.
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1 Counting the mixing sfts

= 1 2 3 4
#�= 4 16 560 1215712

Table 1-2: The number #�= of strongly connected =-dimensional de Bruijn subgraphs.
For = ∈ {3, 4} the numbers have been computed with Python and the
networkx package.

Corollary 1.0.10. For = ≥ 2 the number of mixing =-step sfts is at least 15/16 times
the number of transitive ones.

Proof. This follows directly from theorem 1.0.9 and lemma 1.0.0 with corollary 1.0.1.

Counterexample. Both equality and strict inequality occur:

#"2 =
15
16
· #�2

#"4 >
15
16
· #�4

1.1 Counting the transitive sfts
Notation. Let 0 be a path through a simple digraph (thought of as a set of edges)
and & a vertex that 0 passes. Then 0(&) denotes the vertex such that (&, 0(&)) ∈ 0.
Similarly, 0−1(&) is defined such that (0−1(&), &) ∈ 0.

Lemma 1.1.0. Let (+, �) be a simple digraph including two different but intersecting
Hamiltonian cycles. Let � be the set of strongly connected, spanning subgraphs of
(+, �). Then

#� ≥ 2 · 2#�−#+ .

Proof. Let 0, 1 ⊆ � be Hamiltonian cycles such that 0 ∩ 1 ≠ ∅. Set

� = {2 ⊆ � ; 0 ⊆ 2}
� =

{
2 ⊆ � ; 1 ⊆ 2

}
.

Then

#� = #
{
0 ∪ 3; 3 ⊆ � \ 0

}
= #

(
P

(
� \ 0

) )
= 2#�−#0 = 2#�−#+ = #�,

20



1.1 Counting the transitive sfts

so

#� = #
(
� ∪ �

)
+ #

(
� \

(
� ∪ �

) )
= #� + #� − #

(
� ∩ �

)
+ #

(
� \

(
� ∪ �

) )
= 2 · 2#�−#+ − #

(
� ∩ �

)
+ #

(
� \

(
� ∪ �

) )
.

The aim is now to construct an injection 5 : � ∩ �� � \ (� ∪ �). Note that 0 ∩ 1
cannot be a closed path. (In fact, usually it will not even be a path.) Since (+, �)
is simple, there are vertices &, ' such that there is a path from & to ' in 0 ∩ 1
but 0−1(&) ≠ 1−1(&) ∧ 0(') ≠ 1('), meaning that &, ' denote the starting and
endpoint of a locally maximal path in 0 ∩ 1. For 2 ∈ � ∩ � set

5 (2) = 2 \
{(
0−1 (&)

, &

)
,
(
', 1(')

)}
.

Since {(
0−1 (&)

, &

)
,
(
', 1(')

)}
⊆ 2

5 is injective and clearly 5 (2) ∉ � ∪ �. To see that 5 (2) is connected note that
whenever there is no path from a certain vertex to another in 5 (2) ∩ 0, there is a path
in 5 (2) ∩ 1.

Remark. Here the Hamiltonian cycles are regarded as sets of edges. Besides that
being convenient to formulate the proof it is important that two cycles are regarded as
different only if they actually pass different edges. Counting the same cycle starting
at different vertices several times would lead to wrong numbers.

Counterexample. The inequality in lemma 1.1.0 cannot be replaced by equality: In
the 3-dimensional de Bruijn graph there are two intersecting Hamiltonian cycles and
#+ = 8, #� = 16. However

#� = 560 > 512 = 2 · 2#�−#+ .

Fact 1.1.1. Let = ≥ 1 and #�= be the number of Hamiltonian cycles in the =-dimen-
sional de Bruijn graph. Then

#�= = 2(2
=−1−=) . (1.1-0)
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1 Counting the mixing sfts

= 1 2 3 4 5 6
#�= 1 1 2 16 2048 67108864

Table 1-3: The first six members of de Bruijn’s sequence. #�= is the number of
Hamiltonian cycles in the =-dimensional de Bruijn graph.

Remark. Fact 1.1.1 was famously proven by de Bruijn 1946, after whom #� was
called the de Bruijn sequence and which also led to the name de Bruijn graph. – de Bruijn

sequenceHowever, de Bruijn 1975 discovered that Flye Sainte-Marie 1894 already had
published a proof of the same fact.

Conjecture 1.1.2. Let � be a set of Hamiltonian cycles in (+, �) such that⋂� ≠ ∅.
Let � be the number of strongly connected, spanning subgraphs of (+, �). Then

#� ≥ #� · 2#�−#+ . (1.1-1)

Remark. For #� ≤ 1 the conjecture holds trivially while the case #� = 2 has been
established as lemma 1.1.0.

Corollary 1.1.3. Let = ≥ 1 and �= be the set of strongly connected =-dimensional
de Bruijn subgraphs. Then

#�= ≥ 2(3·2
=−1−=) . (1.1-2)

Proof. Let �= ⊆ A=+1
2 be the set of Hamiltonian cycles in the =-dimensional de

Bruijn graph. According to lemma 1.0.5
⋂
�= ⊇ L=+1 ≠ ∅, so

#�=
(1.1-1)
≥ #�= · 2(2

=+1−2=) (1.1-0)= 2(2
=−1−=) · 2(2=+1−2=) = 2(3·2

=−1−=) .

Corollary 1.1.4. Let = ≥ 2 and "= be the number of primitive =-dimensional de
Bruijn subgraphs. Then

#"= ≥ 15 · 2(3·2=−1−=−4) .

Proof.

#"=

(1.0-5)
≥ 15

16
· #�=

(1.1-2)
≥ 15

16
· 2(3·2=−1−=) = 15 · 2(3·2=−1−=−4)

Remark. The proofs of corollaries 1.1.3 and 1.1.4 assume conjecture 1.1.2 to hold.

Remark. Always have lemma 1.0.0 and corollary 1.0.1 in mind connecting the
number of transitive and mixing sfts with the number of strongly connected and
primitive de Bruijn subgraphs, respectively.
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2 Alternating Colouring
The aim of this chapter is to define the alternating colouring function k which has
some interesting properties. Figures 2-10 and 2-13 give an impression of how k

structures de Bruijn graphs and infinite strings. The definition will however not be
given earlier than in the beginning of section 2.4 because it uses the functions b and
q which shall be introduced and studied first.

2.0 Notation
Notation. Define ;, A : A≥1

2 → A∗2, < : A≥2
2 → A∗2, ', � : A∗2 → A

∗
2, ), �) : – ;, A , <, ', �,

) , �)N→ A∗2 by

; (F) = F [0,#F−1)
A (F) = F [1,#F)
< = ; ◦ A

'
(
F0 . . . F#F−1

)
= F#F−1 . . . F0

�
(
F0 . . . F#F−1

)
= �

(
F0

)
. . . �

(
F#F−1

)
, where �

(
0
)
= 1 ∧ �

(
1
)
= 0

)= =


ϵ if = = 0
)=−10 if = odd
)=−11 if = even > 0

�)= = �
(
)=

)
.

Remark. ; (F), A (F) are prefix and suffix with length #F−1 of F. <(F) is the proper
infix of length #F − 2. '(F) is the reverse of F (meaning that F is a palindrome
if and only if '(F) = F) while � (F) is its complement. )=, �)= are the strings of
length = starting with 0, 1 respectively and alternating between 0 and 1.

Example.

;
(
0010110

)
= 001011

A
(
0010110

)
= 010110
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2 Alternating Colouring

F ϵ 0 1 00 01 10 11
b (F) 0 0 0 0 1 -1 0
F 000 001 010 011 100 101 110 111
b (F) 0 1 0 1 -1 0 -1 0

Table 2-0: b (F) for F ∈ A≤3
2

<
(
0010110

)
= 01011

'
(
0010110

)
= 0110100

�
(
0010110

)
= 1101001

)7 = 0101010
�)7 = 1010101

Observation 2.0.0.

; ◦ A = A ◦ ; (2.0-0)
; ◦ < = < ◦ ; ∧ A ◦ < = < ◦ A (2.0-1)
' ◦ ; = A ◦ ' ∧ ' ◦ A = ; ◦ ' (2.0-2)

' ◦ < = < ◦ ' (2.0-3)
� ◦ ; = ; ◦ � ∧ � ◦ A = A ◦ � (2.0-4)

� ◦ < = < ◦ � (2.0-5)
' ◦ � = � ◦ ' (2.0-6)

2.1 The function b
– the function
bDefinition. b: A∗2 → {−1, 0, 1} is defined recursively by

b (F) =


0 if F = ϵ
1 if F ∈ {)}even≥0

−1 if F ∈ {�)}even≥0

sgn(b (; (F)) + b (A (F))) else.

Remark. The function b tells on which side of the vertical axis a vertex appears in
a de Bruijn graph when drawn as is done in the examples given in this thesis. In
figures 2-1 to 2-4 the background is coloured according to the value of b evaluated
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2.1 The function b

Figure 2-1: The 1-dimensional de Bruijn graph. The vertex 0 and the edge 10 are
coloured red indicating that q(0) = q(10) = −1 while the vertex 1 and
the edge 01 are coloured blue indicating q(1) = q(01) = 1. The edges
00, 11 and the background are coloured green because b (0) = b (1) =
q(00) = q(11).

on the vertices. The vertices F for which b (F) = 0 are found in the centre. The letter
b was chosen with the word x-axis in mind.

Lemma 2.1.0.

b ◦ � = b ◦ ' = −b (2.1-0)

Proof. By induction on #F.

b
(
� (ϵ)

)
= −b (ϵ) = b

(
'(ϵ)

)
= 0

Now assume, the statement holds for #F < =. Let #F = =.
If F ∈ {)}even ∪ {�)}even, the statement follows directly from the definition of b.

Otherwise, (
b ◦ �

)
(F) = sgn

( (
b ◦ ; ◦ �

)
(F) +

(
b ◦ A ◦ �

)
(F)

)
(2.0-4)
= sgn

( (
b ◦ � ◦ ;

)
(F) +

(
b ◦ � ◦ A

)
(F)

)
(2.1-0)
= − sgn

( (
b ◦ ;

)
(F) +

(
b ◦ A

)
(F)

)
= − b (F)
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2 Alternating Colouring

Figure 2-2: The 2-dimensional de Bruijn graph. The vertices and edges are coloured
red if q = −1, green if q = 0 and blue if q = 1. The background
of the vertex 10 is painted red because b (10) = −1. In the centre the
background is green because b (00) = b (11) = 0 and for the vertex 01 it
is blue because b (01) = 1.

(
b ◦ '

)
(F) = sgn

( (
b ◦ ; ◦ '

)
(F) +

(
b ◦ A ◦ '

)
(F)

)
(2.0-2)
= sgn

( (
b ◦ ' ◦ A

)
(F) +

(
b ◦ ' ◦ ;

)
(F)

)
(2.1-0)
= − sgn

( (
b ◦ A

)
(F) +

(
b ◦ ;

)
(F)

)
= − b (F).

Corollary 2.1.1. Let F ∈ A∗2 be a palindrome. Then

b (F) = 0. (2.1-1)

Proof. Since for a palindrome F, '(F) = F, equation (2.1-0) becomes

b (F) = −b (F)

which establishes the statement.

Counterexample. 001101 is an example for a string that is not a palindrome although

b
(
001101

)
= 0.
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2.1 The function b

Figure 2-3: The 3-dimensional de Bruijn graph. The vertices and edges are coloured
red if q = −1, green if q = 0 and blue if q = 1. The background of the
vertices is painted red where b = −1, green where b = 0 and blue where
b = 1. Note that since the vertices have odd length, none of them is
green.

Corollary 2.1.2. Let : be odd. Then

b

(
) :

)
= b

(
�) :

)
= 0. (2.1-2)

Proof. Since ) : , �) : are palindromes the statement follows directly from corollary
2.1.1.

Observation 2.1.3. Let F ∈ A≥1
2 .

b (F) = 0 ⇐⇒ F ∉ {)}even ∪
{
�)

}even ∧ b
(
; (F)

)
= −b

(
A (F)

)
(2.1-3)

Corollary 2.1.4. Let F ∈ A≥1
2 such that b (; (F)), b (A (F)) ≠ 0. Then

b (F) = 0 ⇐⇒ b
(
; (F)

)
≠ b

(
A (F)

)
(2.1-4)

Proof. From corollary 2.1.2 it follows that F ∉ {)}even ∪ {�)}even, so the statement
follows from observation 2.1.3.

Remark. When b (; (F)), b (A (F)) ≠ 0, it is equivalent to say b (; (F)) = −b (A (F))
or b (; (F)) ≠ b (A (F)). For aesthetic reasons, the latter formulation will be preferred,
also in future occasions.
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2 Alternating Colouring

Figure 2-4: The 4-dimensional de Bruijn graph. The vertices and edges are coloured
red if q = −1, green if q = 0 and blue if q = 1. The background of
the vertices is painted red where b = −1, green where b = 0 and blue
where b = 1. Note that since the edges have odd length, none of them
is green while the green vertices are exactly those that also have green
background.
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2.1 The function b

Lemma 2.1.5. Let F ∈ A≥1
2 such that b (F) ≠ 0. Then

b
(
; (F)

)
≠ 0 =⇒ b (F) = b

(
; (F)

)
(2.1-5)

b
(
A (F)

)
≠ 0 =⇒ b (F) = b

(
A (F)

)
. (2.1-6)

Proof. From b (; (F)) ≠ 0 ∨ b (A (F)) ≠ 0 it follows that F
(2.1-2)
∉ {)}even ∪ {�)}even,

so

b (F) = sgn
(
b
(
; (F)

)
+ b

(
A (F)

) )
.

Now if one of the summands is non-zero, b (F) must either equal that summand or
be zero.

Lemma 2.1.6. Let y, z ≥ 1. Then

b
(
0y1 z

)
= 1. (2.1-7)

Proof. Induction on y + z. b (01) = 1, which establishes the statement for y + z = 2.
Now assume the statement holds for y + z < = ∈ N. Let y + z = =.

b
(
0y1 z

)
= sgn

(
b

(
0y1 z−1

)
+ b

(
0y−11 z

))
,

where by the induction hypothesis at least one of the summands is 1 while the other
cannot be negative either. The statement follows.

Corollary 2.1.7.

b
(
1 z0y

)
= −1 (2.1-8)

Proof.

b
(
1 z0y

) (2.1-0)
= −b

(
0y1 z

) (2.1-7)
= −1

Lemma 2.1.8. Let : ≥ 2. Then

b

(
) :0

)
=

{
0 if : is even
−1 if : is odd

(2.1-9)

b

(
) :1

)
= 1 (2.1-10)

b

(
�) :0

)
= −1 (2.1-11)

b

(
�) :1

)
=

{
0 if : is even
1 if : is odd.

(2.1-12)
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2 Alternating Colouring

Proof. By induction on : . Note first, that the statement holds for : = 2. Assume
then that it holds for a certain : ≥ 2.
Case : is even:

b

(
) :+10

)
= sgn

(
b

(
) :+1

)
+ b

(
�) :0

)) (2.1-2),(2.1-11)
= sgn

(
0 − 1

)
= −1

b

(
) :+11

)
= b

(
) :+2

)
= 1

b

(
�) :+10

)
= b

(
�) :+2

)
= −1

b

(
�) :+11

)
= sgn

(
b

(
�) :+1

)
+ b

(
) :1

)) (2.1-2),(2.1-10)
= sgn

(
0 + 1

)
= 1

Case : is odd:

b

(
) :+10

)
= b

(
) :+2

) (2.1-2)
= 0

b

(
) :+11

)
= sgn

(
b

(
) :+1

)
+ b

(
�) :1

)) (2.1-12)
= sgn

(
1 + 1

)
= 1

b

(
�) :+10

)
= sgn

(
b

(
�) :+1

)
+ b

(
) :0

)) (2.1-9)
= sgn

(
−1 − 1

)
= −1

b

(
�) :+11

)
= b

(
�) :+2

) (2.1-2)
= 0

Lemma 2.1.9. Let F ∈ A≥1
2 such that b (; (F)) = b (A (F)) = 0. Then

b (F) = 0 =⇒ F ∈
{
0
}∗ ∪ {

1
}∗ (2.1-13)

b (F) = 1 =⇒ F ∈ {)}even (2.1-14)
b (F) = −1 =⇒ F ∈

{
�)

}even. (2.1-15)

Proof. Induction on #F. For #F ≤ 2 there are only finitely many cases to consider.
Now assume the statements holds for #F < =. Let #F = = ≥ 3 ∧ b (; (F)) =
b (A (F)) = 0, which means that

b

(
;2(F)

)
= −b

(
<(F)

)
= b

(
A2(F)

)
.

If <(F) ∈ {)}even ∪ {�)}even, the statement follows from lemma 2.1.8. Otherwise,
the above equation can be rewritten the following way:

sgn
((
b ◦ ;3

)
(F) +

(
b ◦ ;2 ◦ A

)
(F)

)
= − sgn

((
b ◦ ;2 ◦ A

)
(F) +

(
b ◦ ; ◦ A2

)
(F)

)
= sgn

((
b ◦ ; ◦ A2

)
(F) +

(
b ◦ A3

)
(F)

)
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2.1 The function b

Some playing with the minus sign yields:

sgn
((
b ◦ ;3

)
(F) −

(
−b ◦ ;2 ◦ A

)
(F)

)
= sgn

((
−b ◦ ;2 ◦ A

)
(F) −

(
b ◦ ; ◦ A2

)
(F)

)
= sgn

((
b ◦ ; ◦ A2

)
(F) −

(
−b ◦ A3

)
(F)

)
Hence, one of the following three statements must hold:(

b ◦ ;3
)
(F) <

(
−b ◦ ;2 ◦ A

)
(F) <

(
b ◦ ; ◦ A2

)
(F) <

(
−b ◦ A3

)
(F)

∨
(
b ◦ ;3

)
(F) =

(
−b ◦ ;2 ◦ A

)
(F) =

(
b ◦ ; ◦ A2

)
(F) =

(
−b ◦ A3

)
(F)

∨
(
b ◦ ;3

)
(F) >

(
−b ◦ ;2 ◦ A

)
(F) >

(
b ◦ ; ◦ A2

)
(F) >

(
−b ◦ A3

)
(F)

However, since img b = {−1, 0, 1}, the strict inequalities cannot hold, meaning that
the equality does. Then

b

(
;2(F)

)
= b

(
<(F)

)
= b

(
A2(F)

)
= 0,

so by the induction hypothesis

; (F), A (F) ∈
{
0
}∗ ∪ {

1
}∗

and since #F ≥ 3,

F ∈
{
0
}∗ ∪ {

1
}∗.

Remark. The argument used in this proof, considering ;3, ;2 ◦ A, ; ◦ A2 and A3 of a
certain string and using the fact that the functions b and q only attain three different
values will be important also for the proof of lemma 2.2.9.

Lemma 2.1.10. Let F ∈ A≥2
2 such that b (F) = 0. Then

b
(
<(F)

)
= 0. (2.1-16)

Proof. If <(F) ∈ {)}odd ∪ {�)}odd the statement follows from corollary 2.1.2 so
assume it is not. b (F) = 0 implies that b (; (F)) = −b (A (F)). By lemma 2.1.9 either
F ∈ {)}even ∪ {�)}even or F ∈ {0}∗ ∪ {1}∗ or b (; (F)) = −b (A (F)) ≠ 0. However,
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2 Alternating Colouring

the first case can be excluded since b (F) = 0. In the second case, b (<(F)) (2.1-1)= 0.
In the third case

sgn
(
b

(
;2(F)

)
+ b

(
<(F)

) )
= − sgn

(
b
(
<(F)

)
+ b

(
A2(F)

))
≠ 0,

which can be reformulated to

sgn

(
b
(
<(F)

)
−

(
−b

(
;2(F)

)))
= sgn

((
−b

(
A2(F)

))
− b

(
<(F)

))
≠ 0,

so

−b
(
;2(F)

)
< b

(
<(F)

)
< −b

(
A2(F)

)
∨ −b

(
;2(F)

)
> b

(
<(F)

)
> −b

(
A2(F)

)
.

It follows that b (<(F)) = 0.

Remark. The number 2.1.11 is omitted in numbering the results to keep the similarity
between section 2.1 and 2.2. There is nothing equivalent to say about the function b
as is said about the function q in corollary 2.2.11.

Lemma 2.1.12. Let F ∈ A≥2
2 such that b (;2(F)) = b (A2(F)) ≠ 0. Then

b
(
<(F)

)
≠ 0. (2.1-17)

Proof. First of all, note that #F ≥ 4, as otherwise b (;2(F)) = 0. For #F = 4,
F ∈ {)4, �)4}, so b (<(F)) ≠ 0. Assume now that #F ≥ 5 and start with
considering the case ;2(F) ∈ {)}even. Then <(F) ∈ {�)#F−30, �)#F−31}, so
b (<(F))

(2.1-11),(2.1-12)
≠ 0. Similarly, the cases ;2(F) ∈ {�)}even ∨ A2(F) ∈ {)}even ∪

{�)}even can be considered. In all other cases, assume b (<(F)) = 0. Then(
b ◦ ;2 ◦ A

)
(F) (2.1-3)=

(
−b ◦ ; ◦ A2

)
(F), (2.1-18)

so

b

(
;2(F)

)
= b

(
A2(F)

)
≠ 0 ⇐⇒

sgn
((
b ◦ ;3

)
(F) +

(
b ◦ ;2 ◦ A

)
(F)

)
= sgn

((
b ◦ ; ◦ A2

)
(F) +

(
b ◦ A3

)
(F)

)
≠ 0

(2.1-18)
⇐⇒

sgn
((
b ◦ ;3

)
(F) +

(
b ◦ ;2 ◦ A

)
(F)

)
= sgn

((
b ◦ A3

)
(F) −

(
b ◦ ;2 ◦ A

)
(F)

)
≠ 0

=⇒
(
b ◦ ;2 ◦ A

)
(F) = 0.
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2.1 The function b

From (b ◦ <) (F) = (b ◦ ;2 ◦ A) (F) = (b ◦ ; ◦ A2) (F) = 0 it follows by lemma 2.1.9
that <(F) ∈ {0}∗ ∪ {1}∗. However, then

b

(
;2(F)

)
≤ 0 ≤ b

(
A2(F)

)
,

a contradiction.

Remark. One could try to redefine b in an attempt to shrink the subset of A∗2 on
which b is 0. However lemma 2.1.12 shows that that is not easily possible: Already
now b is zero only for vertices in the de Bruijn graph that have preceding and
succeeding vertices with different b-value.

Lemma 2.1.13. Let = ≥ 2, F ∈ A=
2 such that b (<(F)) = 0. Then

b
(
; (F)

)
= b

(
A (F)

)
= 0 ⇐⇒ F ∈

{
0=, 1=

}
(2.1-19)

b
(
; (F)

)
= b

(
A (F)

)
= 1 ⇐⇒ F ∈

{
0)=−1, )=−11

}
∧ = is odd (2.1-20)

b
(
; (F)

)
= b

(
A (F)

)
= −1 ⇐⇒ F ∈

{
�)=−10, 1�)=−1

}
∧ = is odd (2.1-21)

b
(
; (F)

)
= 0 ∧ b

(
A (F)

)
= 1 ⇐⇒ F = 0=−11 (2.1-22)

b
(
; (F)

)
= 0 ∧ b

(
A (F)

)
= −1 ⇐⇒ F = 1=−10 (2.1-23)

b
(
; (F)

)
= 1 ∧ b

(
A (F)

)
= 0 ⇐⇒ F = 01=−1 (2.1-24)

b
(
; (F)

)
= −1 ∧ b

(
A (F)

)
= 0 ⇐⇒ F = 10=−1. (2.1-25)

Proof.
(2.1-19), (2.1-22), (2.1-23) From b (; (F)) = b (<(F)) = 0 it follows that

b

(
;2(F)

)
= 0.

Hence by lemma 2.1.9 ; (F) ∈ {0=−1, 1=−1}
(2.1-24), (2.1-25) Similarly one finds in these cases that A (F) ∈ {0=−1, 1=−1}.
(2.1-20), (2.1-21) Assume <(F) ∉ {)}odd ∪ {�)}odd. Then

b

(
;2(F)

)
= b

(
A2(F)

)
≠ 0

which according to lemma 2.1.12 implies that <(F) ≠ 0, a contradiction. Also,
F must not be a palindrome, leaving exactly these four cases.

Remark. Already at this point, #{F ∈ A=
2 ; b (F) = 0} could be investigated. However,

that result shall be postponed until section 2.5, as the relevance of that set and its size
will be more obvious by then.
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Lemma 2.1.14. Let F ∈ A≥4
2 such that b (; (F)) ≠ b (<(F)) = −1 ≠ b (A (F)). Then

F ∈ {)}even.

Proof. Note that b (; (F)) = b (A (F)) = 0 as anything else would contradict
lemma 2.1.5. By lemma 2.1.9

F ∈
{
0
}∗ ∪ {

1
}∗ ∪ {)}even ∪

{
�)

}even,

but only F ∈ {)}even satisfies b (<(F)) = −1.

Theorem 2.1.15. Let :, = ∈ N and F ∈ A:+=
2 be such that

F [0,=) = F [:,:+=) ∧ ∃y < : b

(
F [y,y+=)

)
= 1.

Then

∃ z < : b

(
F [ z, z+=)

)
= −1.

Proof. Induction on =. As it suffices to consider cycles in the =-dimensional de
Bruijn graph (instead of any closed walk F represents), there are only finitely many
cases to consider for = ∈ {0, 1, 2}. Now assume the statement holds for a certain =.
Let F ∈ A:+=+1

2 such that

F [0,=+1) = F [:,:+=+1) ∧ ∃y < : b

(
F [y,y+=+1)

)
= 1.

If F [y,y+=+2) ∈ {)}odd then b (F [y+1,y+=+2)) = −1, which would already establish the
statement and if F [y,y+=+2) = )=+11 then b (F [y+2,y+=+2)) = 1. Otherwise F [y,y+=+1) ∉
{)}even so either b (F [y,y+=)) = 1∨b (F [y+1,y+=+1)) = 1. In any case either the statement
is already established or there is a substring of length = to which b assigns the value
1.

Define F̃ by replacing any occurrence of )=+2 in F by )=, meaning that )=+2 is
not a substring of F̃. Set :̃ = #F̃ − (= + 1). Note that{

F̃ [y,y+=); y < :̃
}
⊆

{
F [y,y+=); y < :

}
(in words: any substring of length = of F̃ is also a substring of F), however{

F [y,y+=); y < :
}
⊆

{
F̃ [y,y+=); y < :̃

}
∪

{
�)=

}
.

(In words: the only substring of length = that has been removed by constructing F̃
from F is �)=.) Since b (�)=) ≠ 1, it follows that still ∃y < :̃ b (F̃ [y,y+=)) = 1. This
also shows that :̃ ≥ 1 and hence #F̃ ≥ = + 2.
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2.1 The function b

First, consider the case F̃ [0,=) ≠ F̃ [ :̃ ,:̃+=) . That implies F̃ [ :̃ ,:̃+=+1) ≠ F [:,:+=+1) ,
which is possible only if F [:−1,:+=+1) = )

=+2, so F [0,=+1) = F [:,:+=+1) = �)=+1 and
hence F̃ [1,=+1) = F̃ [ :̃+1,:̃+=+1) = )=. By the induction hypothesis,

∃ z 1 ≤ z < :̃ + 1 ∧ b
(
F̃ [ z, z+=)

)
= −1. (2.1-26)

If F̃ [0,=) = F̃ [ :̃ ,:̃+=) , the induction hypothesis directly gives ∃ z < :̃ b (F̃ [ z, z+=)) =
−1. If z = 0, one can also pick z = :̃ , so also in this case equation (2.1-26) holds.

Then by lemma 2.1.14

b

(
F̃ [ z−1, z+=)

)
= −1 ∨ b

(
F̃ [ z, z+=+1)

)
= −1 ∨ F̃ [ z−1, z+=+1) = )

=+2,

where the third option is excluded by the definition of F̃. The statement now follows
from the fact that {

F̃ [y,y+=+1); y < :̃
}
⊆

{
F [y,y+=+1); y < :

}
.

(In words: any substring of length = + 1 of F̃ is also a substring of F.)

Remark. The statement also holds when switching the rolls of 1 and −1; the proof is
analogous.
Using the notion of b as defining a left, a centre and a right part of the de Bruijn

graph, theorem 2.1.15 tells that there are no non-empty closed walks in the right part.
Figure 2-4 does not contain non-trivial closed walks in the blue (or red) highlighted
area.

The proof idea is simpler than it seems: A string representing a walk in a certain
de Bruijn graph also represents a walk in the de Bruijn graph one dimension lower.
If a walk passes a vertex E for which b (E) = −1 of a graph by the construction of
the b function it will also do so in a higher dimensional de Bruijn graph – with one
notable exception: The vertex �)= for even =. Take for example the walk 0101 in the
2-dimensional de Bruijn graph. Glancing at figure 2-2 shows that this walk passes
both the area with blue and the area with red background. Now consider the same
string a walk through the 3-dimensional de Bruijn graph. A look at figure 2-3 tells
that the graph does not pass the area with red background. This one exception is
what makes the construction of F̃ necessary.

Corollary 2.1.16. Let = ∈ N. The sft generated by prohibiting the strings in{
F ∈ A=

2 ; b (F) ≠ 1
}

is empty.

Proof. Assume, there were a point D in the sft. Pick y < z ∈ N such that D [y,y+=) =
D [ z, z+=) . By definition of the sft, b (D [y,y+=)) = 1. Set F = D [y, z+=) and : = z − y. Then
theorem 2.1.15 contradicts the definition of the sft.
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2 Alternating Colouring

F ϵ 0 1 00 01 10 11
q(F) 0 -1 1 0 1 -1 0
F 000 001 010 011 100 101 110 111

q(F) -1 1 -1 -1 1 1 -1 1

Table 2-5: q(F) for F ∈ A≤3
2

2.2 The function q
Remark. Section 2.2 has the same structure as the previous one. Each result but
corollary 2.2.11 can be compared with the result of the same number in section 2.1.
Often the proofs are similar.

– the function
qDefinition. q: A∗2 → {−1, 0, 1} is defined recursively by

q(F) =


0 if F = ϵ
−1 if F ∈ {0}odd

1 if F ∈ {1}odd

sgn(q(A (F)) − q(; (F))) else.

Remark. In figures 2-1 to 2-4 the vertices and edges are coloured according to the
value q assigns to them.

Lemma 2.2.0.

q ◦ � = −q
(
q ◦ '

)
(F) =

(
−1

)#F+1 · q(F) (2.2-0)

Proof. By induction on #F.

q
(
� (ϵ)

)
= −q(ϵ) = q

(
'(ϵ)

)
=

(
−1

)0+1 · q(ϵ) = 0

Now assume, the statement holds for #F < =. Let #F = =.
If F ∈ {0}odd ∪ {1}odd, the statement follows directly from the definition of q.

Otherwise, (
q ◦ �

)
(F) = sgn

( (
q ◦ A ◦ �

)
(F) −

(
q ◦ ; ◦ �

)
(F)

)
= sgn

( (
q ◦ � ◦ A

)
(F) −

(
q ◦ � ◦ ;

)
(F)

)
= − sgn

( (
q ◦ A

)
(F) −

(
q ◦ ;

)
(F)

)
= −q(F)
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2.2 The function q

(
q ◦ '

)
(F) = sgn

( (
q ◦ A ◦ '

)
(F) −

(
q ◦ ; ◦ '

)
(F)

)
= sgn

( (
q ◦ ' ◦ ;

)
(F) −

(
q ◦ ' ◦ A

)
(F)

)
=

(
−1

)
= · sgn

( (
q ◦ ;

)
(F) −

(
q ◦ A

)
(F)

)
=

(
−1

)
=+1 · q(F)

Corollary 2.2.1. Let F ∈ Aeven
2 be a palindrome. Then

q(F) = 0.

Proof. For a palindrome F of even length, equation (2.2-0) becomes

q(F) = −q(F),

which establishes the statement.

Corollary 2.2.2. Let : be even. Then

q

(
0:

)
= q

(
1:

)
= 0 (2.2-1)

Proof. Since 0: , 1: are palindromes, the statement follows directly from corollary
2.2.1.

Observation 2.2.3. Let F ∈ A≥1
2 .

q(F) = 0 ⇐⇒ F ∉
{
0
}odd ∪

{
1
}odd ∧ q

(
; (F)

)
= q

(
A (F)

)
(2.2-2)

Corollary 2.2.4. Let F ∈ A≥1
2 such that q(; (F)), q(A (F)) ≠ 0. Then

q(F) = 0 ⇐⇒ q
(
; (F)

)
= q

(
A (F)

)
(2.2-3)

Proof. From corollary 2.2.2 it follows that F ∉ {0}odd ∪ {1}odd, so the statement
follows from observation 2.1.3.

Lemma 2.2.5. Let F ∈ A≥1
2 such that q(F) ≠ 0. Then

q
(
A (F)

)
≠ 0 =⇒ q(F) = q

(
A (F)

)
(2.2-4)

q
(
; (F)

)
≠ 0 =⇒ q(F) ≠ q

(
; (F)

)
. (2.2-5)
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Proof. From q(A (F)) ≠ 0 ∨ q(; (F)) ≠ 0 it follows that F ∉ {0}odd ∪ {1}odd, so

q(F) = sgn
(
q
(
A (F)

)
+

(
−q

(
; (F)

) ))
.

Now if one of the summands is non-zero q(F) must either equal that summand or be
zero.

Lemma 2.2.6. Let y, z ≥ 1. Then

q
(
0y1 z

)
=

(
−1

)
z+1. (2.2-6)

Proof. Induction on y + z. q(01) = 1 which establishes the statement for y + z = 2.
Now assume the statement holds for y + z < = ∈ N. Let y + z = =. Then

q
(
0y1 z

)
= sgn

(
q

(
0y−11 z

)
− q

(
0y1 z−1

))
,

where

z is even =⇒ q

(
0y−11 z

)
≤ 0 ∧ q

(
0y1 z−1

)
= 1

z is odd =⇒ q

(
0y−11 z

)
= 1 ∧ q

(
0y1 z−1

)
≤ 0.

In both cases the statement holds.

Corollary 2.2.7.

q
(
1 z0y

)
=

(
−1

)
y

Proof.

q
(
1 z0y

) (2.2-0)
=

(
−1

)
y+ z+1 · q

(
0y1 z

) (2.2-6)
=

(
−1

)
y+ z+1+ z+1 =

(
−1

)
y

Lemma 2.2.8. Let : > 0. Then q() : ) = (−1): .

Proof. Induction on : . q()1) = q(0) = −1. Now assume the statement holds for a
certain : . Then

q

(
) :+1

)
= sgn

(
q

(
�) :

)
− q

(
) :

)) (2.2-0)
= sgn

(
−2 · q

(
) :

))
= −q

(
) :

)
=

(
−1

)
:+1.

Lemma 2.2.9.

∀F ∈ A≥1
2 q

(
; (F)

)
= q

(
A (F)

)
= 0 =⇒ F ∈

{
0
}odd ∪

{
1
}odd
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Proof. Induction on #F. For #F ≤ 2 there are only finitely many cases. Now assume
the statement holds for #F < =. Let #F = = ≥ 3 and q(; (F)) = q(A (F)) = 0, which
means that

q

(
;2(F)

)
= q

(
<(F)

)
= q

(
A2(F)

)
.

By the argument used in the proof of lemma 2.1.9, one gets that in fact

q

(
;2(F)

)
= q

(
<(F)

)
= q

(
A2(F)

)
= 0,

so by the induction hypothesis,

; (F), A (F) ∈
{
0
}∗ ∪ {

1
}∗

and since #F ≥ 3,

F ∈
{
0
}∗ ∪ {

1
}∗.

#F must be odd because otherwise q(; (F)) ≠ 0.

Lemma 2.2.10. Let F ∈ A≥2
2 such that q(F) = 0. Then

q
(
<(F)

)
= 0. (2.2-7)

Proof. If <(F) ∈ {0}even ∪ {1}even the statement follows from corollary 2.2.2 so
assume that it is not. q(F) = 0 implies that q(; (F)) = q(A (F)). By lemma 2.2.9
either F ∈ {0}odd ∪ {1}odd or q(; (F)) = q(A (F)) ≠ 0. However, the first case can
be excluded since q(F) = 0. Hence

sgn
(
q
(
<(F)

)
− q

(
;2(F)

))
= sgn

(
q

(
A2(F)

)
− q

(
<(F)

) )
≠ 0,

so

q

(
;2(F)

)
< q

(
<(F)

)
< q

(
A2(F)

)
∨ q

(
;2(F)

)
> q

(
<(F)

)
> q

(
A2(F)

)
.

In both cases it follows that q(<(F)) = 0.

Corollary 2.2.11. Let F ∈ Aodd
2 . Then

q(F) ≠ 0. (2.2-8)
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Proof. Induction on #F. For #F = 1 there are only finitely many cases to consider.
Assume now, the statement is true for #F < =. Let #F = = and q(F) = 0. Then
q(<(F)) = 0, so = − 2 is odd.

Lemma 2.2.12. Let F ∈ A≥2
2 such that q(;2(F)) = q(A2(F)) ≠ 0. Then

q
(
<(F)

)
≠ 0.

Proof. #F = 2 =⇒ q(;2(F)) = 0. Now let #F ≥ 3 and q(<(F)) = 0. Then(
q ◦ ;2 ◦ A

)
(F) (2.2-2)=

(
q ◦ ; ◦ A2

)
(F) (2.2-9)

and by corollary 2.2.11 #F is even so ;2(F), A2(F) ∉ {0}odd ∪ {1}odd. Hence

q

(
;2(F)

)
= q

(
A2(F)

)
≠ 0 ⇐⇒

sgn
((
q ◦ ;2 ◦ A

)
(F) −

(
q ◦ ;3

)
(F)

)
= sgn

((
q ◦ A3

)
(F) −

(
q ◦ ; ◦ A2

)
(F)

)
≠ 0

(2.2-9)
⇐⇒

sgn
((
−q ◦ ;3

)
(F) +

(
q ◦ ;2 ◦ A

)
(F)

)
= sgn

((
q ◦ A3

)
(F) −

(
q ◦ ;2 ◦ A

)
(F)

)
≠ 0

=⇒
(
q ◦ ;2 ◦ A

)
(F) = 0,

which is impossible because #((;2 ◦ A) (F)) is odd.

Lemma 2.2.13. Let F ∈ A2
2 such that q(<(F)) = 0. Then

q(F) ≠ 0 ⇐⇒ F ∈ L≥2 =
⋃
=≥1

{
0=1, 01=, 10=, 1=0

}
.

Proof. ⇐= is established in lemma 2.2.6 and corollary 2.2.7. To show =⇒
assume F ∉ L≥2 but q(<(F)) = 0. Then ; (F), A (F) ∉ {0}odd ∪ {1}odd and by
corollary 2.2.11 #F is even, so neither is F. Hence

q
(
; (F)

)
= sgn

(
q
(
<(F)

)
− q

(
;2(F)

))
= −q

(
;2(F)

)
q
(
A (F)

)
= sgn

(
q

(
A2(F)

)
− q

(
<(F)

) )
= q

(
A2(F)

)
q(F) = sgn

(
q
(
A (F)

)
− q

(
; (F)

) )
= sgn

(
q

(
A2(F)

)
+ q

(
;2(F)

))
.

Since #(; (F)) and #(A (F)) are odd, both summands are non-zero. However, by
lemma 2.2.12 they cannot be equal either. Hence q(F) = 0.
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2.3 Relations between b and q

2.3 Relations between b and q
Lemma 2.3.0. Let F ∈ A≥2

2 such that q(<(F)) = b (<(F)) = 0. Then

q(F) = b (F). (2.3-0)

Proof. By corollary 2.2.11 #F is even. Then by lemmata 2.1.13 and 2.2.13

b (F) ≠ 0 ⇐⇒ q(F) ≠ 0 ⇐⇒ F ∈ L≥2.

Set : = #F − 1. According to lemmata 2.1.6, 2.2.6, corollaries 2.1.7 and 2.2.7

b

(
0:1

)
= b

(
01:

)
= q

(
0:1

)
= q

(
01:

)
= 1

b

(
1:0

)
= b

(
10:

)
= q

(
1:0

)
= q

(
10:

)
= −1.

Corollary 2.3.1. Let F ∈ A∗2.

q(F) = 0 ⇐⇒ #F is even ∧ b (F) = 0 (2.3-1)

Proof. Induction on #F. For #F ≤ 1 there are only finitely many cases to consider.
Now assume, the statement holds for #F < =. Let #F = =.

q(F) = 0
(2.2-8)
=⇒ #F is even

q(F) = 0
(2.2-7)
=⇒ q

(
<(F)

)
= 0

(2.3-1)
=⇒ b

(
<(F)

)
= 0

(2.3-0)
=⇒ b (F) = q(F) = 0

#F is even ∧ b (F) = 0
(2.1-16)
=⇒ #F is even ∧ b

(
<(F)

)
= 0

(2.3-1)
=⇒ q

(
<(F)

)
= 0

(2.3-0)
=⇒ q(F) = b (F) = 0

Corollary 2.3.2. Let F ∈ A≥1
2 be such that b (; (F)), b (A (F)) ≠ 0. Then

q
(
; (F)

)
= q

(
A (F)

)
⇐⇒ #F is even ∧ b

(
; (F)

)
≠ b

(
A (F)

)
(2.3-2)

Proof.

q
(
; (F)

)
= q

(
A (F)

) (2.2-3)
⇐⇒ q(F) = 0
(2.3-1)
⇐⇒ #F is even ∧ b (F) = 0
(2.1-4)
⇐⇒ #F is even ∧ b

(
; (F)

)
≠ b

(
A (F)

)
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2 Alternating Colouring

Remark. By giving a necessary and sufficient condition for the exceptions, corollary
2.3.2 shows that usually q(; (F)) ≠ q(A (F)). Later the alternating colouring function
k shall be introduced as an improvement of q for which the inequality always hold.

Lemma 2.3.3. Let F ∈ A≥2
2 such that

b

(
;2(F)

)
, b

(
A2(F)

)
≠ 0 = b

(
<(F)

)
. (2.3-3)

Then

q

(
;2(F)

)
= q

(
A2(F)

)
⇐⇒ #F is odd . (2.3-4)

Proof. Note that ; (F), A (F)
(2.3-3)
∉ {)}even ∪ {�)}even ∪ {0}∗ ∪ {1}∗, so

b
(
; (F)

)
= sgn

(
b

(
;2(F)

)
+ b

(
<(F)

) ) (2.3-3)
= b

(
;2(F)

)
(2.3-5)

b
(
A (F)

)
= sgn

(
b
(
<(F)

)
+ b

(
A2(F)

)) (2.3-3)
= b

(
A2(F)

)
(2.3-6)

q
(
; (F)

)
= sgn

(
q
(
<(F)

)
− q

(
;2(F)

)) (2.3-3)
= −q

(
;2(F)

)
(2.3-7)

q
(
A (F)

)
= sgn

(
q

(
A2(F)

)
− q

(
<(F)

) ) (2.3-3)
= q

(
A2(F)

)
. (2.3-8)

Hence

q

(
;2(F)

)
= q

(
A2(F)

) (2.3-7),(2.3-8)
⇐⇒ q

(
; (F)

)
≠ q

(
A (F)

)
(2.3-2)
⇐⇒ #F is odd ∨ b

(
; (F)

)
= b

(
A (F)

)
(2.3-5),(2.3-6)
⇐⇒ #F is odd ∨ b

(
;2(F)

)
= b

(
A2(F)

)
(2.1-17)
⇐⇒ #F is odd.

Lemma 2.3.4. Let :, = ∈ N, F ∈ AN2 such that : ≥ 1 and

∀ z ≤ :
(
b

(
F [ z, z+=)

)
≠ 0 ⇐⇒ z ∈

{
0, :

})
.

Then

q

(
F [0,=)

)
= q

(
F [:,:+=)

)
⇐⇒ = is odd ∧ b

(
F [0,=)

)
≠ b

(
F [:,:+=)

)
. (2.3-9)
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2.4 The alternating colouring function k

Proof. Since b (F [0,=)) ≠ 0, actually = ≥ 2. The cases : ∈ {1, 2} are covered by
corollary 2.3.2 and lemma 2.3.3 respectively. Now let : ≥ 3. Then by lemma 2.1.9

<(F) ∈
{
0:+=−2, 1:+=−2

}
∨ = is odd ∧ <(F) ∈

{
) :+=−2, �) :+=−2

}
Taking into account the condition b (F [0,=)), b (F [:,:+=)) ≠ 0 gives

F ∈
{
10:+=−21, 01:+=−20

}
∨ F ∈

{
0) :+=−20, 1�) :+=−21

}
∧ : is even ∧ = is odd

∨ F ∈
{
0) :+=−21, 1�) :+=−20

}
∧ : is odd ∧ = is odd.

In each of these cases the statement holds.

Remark. The proof idea is to determine those spots in the de Bruijn graph where
several edges F for which b (F) = 0 follow upon each other. By looking at the graphs
one gets the impression that happens only around 0=, 1= and around the centre of
odd-dimensional de Bruijn graphs, which lemma 2.1.9 confirms. In all other cases
the statement is already established by corollary 2.3.2 and lemma 2.3.3.

2.4 The alternating colouring function k
Definition. Define k : A∗2 → {−1, 0, 1} by

k(F) =
(
b (F)

)#F · q(F). (2.4-0)

k is called the alternating colouring function. – alternating
colouring
function k

F ∈ A∗2 is called colourable if k(F) ≠ 0. For = ≥ 2 the sft generated by

– colourable
string

prohibiting the strings in {F ∈ A=
2;k(F) = 0} is called the maximal =-colourable

– maximal
=-colourable
shift

shift. Any subshift of the maximal =-colourable shift is called =-colourable.

– =-colourable
shift

Remark. In figures 2-7 to 2-10 the vertices and edges are coloured according to the
value k assigns to them. Colourable are those vertices and edges that are coloured
blue or red.
The maximal =-colourable shift is the edge shift of the (= − 1)-dimensional de

Bruijn graph of which all the non-colourable edges (the green ones in figures 2-1 to
2-4 that is) have been removed. Equivalently it is the vertex shift of the =-dimensional
de Bruijn graph of which all non-colourable vertices have been removed. Note
however that such a graph does not fit the definition of a de Bruijn subgraph because
it is not spanning.
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2 Alternating Colouring

F ϵ 0 1 00 01 10 11
k(F) 0 0 0 0 1 -1 0
F 000 001 010 011 100 101 110 111

k(F) 0 1 0 -1 -1 0 1 0

Table 2-6: The values k(F) of the alternating colouring for F ∈ A≤3
2

Figure 2-7: The 1-dimensional de Bruijn graph. The edges 01 and 10 are coloured
blue and red respectively indicating that k(01) = 1 ∧ k(10) = −1. The
other two edges and the vertices are coloured green because k is 0 there.
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2.4 The alternating colouring function k

Figure 2-8: The 2-dimensional de Bruijn graph. The vertices and edges are coloured
red if k = −1, green if k = 0 and blue if k = 1.

Figure 2-9: The 3-dimensional de Bruijn graph. The vertices and edges are coloured
red if k = −1, green if k = 0 and blue if k = 1.
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2 Alternating Colouring

Figure 2-10: The 4-dimensional de Bruijn graph. The vertices and edges are coloured
red if k = −1, green if k = 0 and blue if k = 1.
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2.4 The alternating colouring function k

Lemma 2.4.0.(
k ◦ �

)
(F) =

(
−1

)#F+1 · k(F) k ◦ ' = −k (2.4-1)

Proof. (
k ◦ �

)
(F)

(2.4-0)
=

(
b
(
� (F)

) )#F · q
(
� (F)

)
(2.1-0),(2.2-0)

=
(
−b (F)

)#F · −q(F)
(2.4-0)
=

(
−1

)#F+1 · k(F)

�����
(
k ◦ '

)
(F)

(2.4-0)
=

(
b
(
'(F)

) )#F · q
(
'(F)

)
(2.1-0),(2.2-0)

=
(
−b (F)

)#F ·
(
−1

)#F+1 · q(F)
(2.4-0)
= − k(F)

Lemma 2.4.1. Let F ∈ A∗2. Then

k(F) = 0 ⇐⇒ b (F) = 0. (2.4-2)

Proof.

k(F) = 0
(2.4-0)
⇐⇒ b (F) = 0 ∨ q(F) = 0

(2.3-1)
⇐⇒ b (F) = 0

Remark. Lemma 2.4.1 will often be used without explicit reference. Saying that F is
colourable should always be understood as b (F), k(F) ≠ 0. To show colourability,
of course the easier condition b (F) ≠ 0 will be used.

Corollary 2.4.2. Let F ∈ Aeven
2 . Then

k(F) = q(F). (2.4-3)

Proof. The statement follows directly from lemma 2.4.1 and the definition of k.

Theorem 2.4.3. Let :, = ∈ N, F ∈ AN2 such that : ≥ 1 and

F [ z, z+=) is colourable ⇐⇒ z ∈
{
0, :

}
.

Then

k

(
F [0,=)

)
≠ k

(
F [:,:+=)

)
. (2.4-4)
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2 Alternating Colouring

0100111110001101...
Figure 2-11: The beginning of an infinite string F ∈ AN2 . For : ∈ N the charac-

ter on place : has been coloured red if k(F [:,:+4)) = −1, green if
k(F [:,:+4)) = 0 and blue if k(F [:,:+4)) = 1. The first character is blue
because k(0100) = 1; the second one is green because k(1001) = 0.
The last three characters are printed black because their colour depends
on the upcoming characters that are not given here. Ignoring the green
characters, always a blue character follows on a red and vice versa. The
fact that there are green characters means that this F cannot be a point
in a 4-colourable shift.

Proof. The statement can be seen as a corollary to lemma 2.3.4. First let = be even.
Then

k

(
F [0,=)

) (2.4-3)
= q

(
F [0,=)

) (2.3-9)
≠ q

(
F [:,:+=)

) (2.4-3)
= k

(
F [:,:+=)

)
.

Now let = be odd. Then

k

(
F [0,=)

) (2.4-0)
= b

(
F [0,=)

)
· q

(
F [0,=)

)
(2.3-9)
≠ b

(
F [:,:+=)

)
· q

(
F [:,:+=)

)
(2.4-0)
= k

(
F [:,:+=)

)
.

Remark. Theorem 2.4.3 states that in an infinite string, a colourable substring always
has a different k-colour than the preceding colourable substring of the same length –
no matter how many non-colourable substrings there are in between.

Corollary 2.4.4. Let F ∈ A≥1
2 be such that ; (F), A (F) are colourable. Then

k(; (F)) ≠ k(A (F)).

Proof. The statement follows from theorem 2.4.3 by regarding F as the beginning of
an infinite string and setting : = 1, = = #F − 1.

Remark. Compare corollary 2.4.4 with corollary 2.3.2. While there were some
special cases in which q(; (F)) ≠ q(A (F)) would not hold, k(; (F)) ≠ k(A (F))
always does.
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2.4 The alternating colouring function k

Figure 2-12: The 2nd power graph of the 4-dimensional de Bruijn graph. The vertices
whose b-value is zero are omitted as are the edges that represent walks
which would have passed an omitted edge. The vertices are coloured
red if b = −1 and blue if b = 1.

Remark. Consider a de Bruijn graph of which all non-colourable vertices have been
removed. Corollary 2.4.4 states that the colour of the vertices a walk passes alternates
between blue and red. For the resulting vertex shift that result will be expressed in
corollary 2.4.7.

In the even powers of such a graph there are only walks from vertices of one colour
to vertices of the same colour. Figure 2-12 shows the 2nd power of the 4-dimensional
de Bruijn subgraph without non-colourable edges.

Corollary 2.4.5. Let :, = ∈ N, F ∈ AN2 such that F [0,=) , F [:,:+=) are colourable.
Set

I = #
{
z < :;F [ z, z+=) is not colourable

}
.

Then

k

(
F [:,:+=)

)
=

(
−1

)
:−I · k

(
F [0,=)

)
. (2.4-5)

Proof. Strong induction on : . For : = 0 the statement is trivial. Now assume the
statement holds whenever : <  for a certain  ∈ N. Set

/ = #
{
z <  ;F [ z, z+=) is not colourable

}
,

: =max
{
z <  ;F [ z, z+=) is colourable

}
,
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2 Alternating Colouring

0001011100011101...
Figure 2-13: The beginning of a point F in a 4-colourable shift. For : ∈ N the

character on place : has been coloured blue if k(F [:,:+4)) = 1 and red
if k(F [:,:+4)) = −1. The sequence alternates between blue and red, a
visualisation of the alternating colouring.

I = #
{
z < :;F [ z, z+=) is not colourable

}
.

Note that / − I =  − : − 1, so

: − I =  − / − 1. (2.4-6)

Hence

k

(
F [ , +=)

) (2.4-4)
= − k

(
F [:,:+=)

)
(2.4-4)
= −

(
−1

)
:−I · k

(
F [0,=)

)
(2.4-6)
=

(
−1

)
 −/ · k

(
F [0,=)

)
.

Corollary 2.4.6. Take :, =, F, I as in corollary 2.4.5.
Let k(F [0,=)) = k(F [:,:+=)). Then

: is even ⇐⇒ I is even.

Proof. By corollary 2.4.5 (−1):−I = 1.

Corollary 2.4.7. Let = ∈ N and F be a point in an =-colourable shift. Then

∀: ∈ N k

(
F [:,:+=)

)
=

(
−1

)
: · k

(
F [0,=)

)
. (2.4-7)

Proof. The statement follows directly from corollary 2.4.5 by noting that for an
=-colourable shift, I = 0.

Remark. Corollary 2.4.7 motivates the term alternating colouring.

50



2.5 Counting the non-colourable strings

Corollary 2.4.8. Let :, = ∈ N and F be a point in an =-colourable shift such that
F [0,=) = F [:,:+=) . Then : is even.

Proof. By corollary 2.4.7 (−1): = 1.

Remark. Corollary 2.4.8 states that any closed walk among the colourable edges of
a de Bruijn graph has even length.

Corollary 2.4.9. Let = ∈ N. A non-empty, =-colourable shift is not mixing.

Proof. For any natural number there is a larger odd number, but by corollary 2.4.8
there is no walk of odd length from a word back to itself.

2.5 Counting the non-colourable strings
Observation 2.5.0. A string of length ≤ 5 is colourable if and only if it is not a
palindrome.

Lemma 2.5.1. Let = ≥ 4. Then

#
{
F ∈ A=

2 ; b
(
<(F)

)
= 0 ∧ b (F) ≠ 0

}
= 6 − 2 ·

(
−1

)
= (2.5-0)

Proof. The statement can be seen as a corollary to lemma 2.1.13. Set

, =

{
F ∈ A=

2 ; b
(
<(F)

)
= 0

}
.

Then

#
{
F ∈ A=

2 ; b
(
<(F)

)
= 0 ∧ b (F) ≠ 0

}
= #

{
F ∈ , ; b (F) ≠ 0

}
= #

{
F ∈ , ; b

(
; (F)

)
= 0 ∧ b

(
A (F)

)
≠ 0

}
+ #

{
F ∈ , ; b

(
; (F)

)
≠ 0 ∧ b

(
A (F)

)
= 0

}
+ #

{
F ∈ , ; b

(
; (F)

)
= b

(
A (F)

)
≠ 0

}
(2.1-22)
= 2

(2.1-24)
+ 2

(2.1-20),(2.1-21)
+ 2 ·

(
1 −

(
−1

)
=
)

= 6 − 2 ·
(
−1

)
=.

Corollary 2.5.2. For = ∈ N set  = = #{F ∈ A=
2 ; b (F) = 0}. Let = ≥ 4. Then

 = = 4 ·  =−2 − 6 + 2 ·
(
−1

)
=. (2.5-1)
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2 Alternating Colouring

= 0 1 2 3 4 5 6 7 8 9 10 11
�= 0 1 1 3 5 11 21 43 85 171 341 683

Table 2-14: The first Jacobsthal numbers

Proof.

 =
(2.1-16)
= #

{
F ∈ A=

2 ; b
(
<(F)

)
= 0

}
− #

{
F ∈ A=

2 ; b
(
<(F)

)
= 0 ∧ b (F) ≠ 0

}
(2.5-0)
= 4 ·  =−2 − 6 + 2 ·

(
−1

)
=.

Definition. For = ∈ N the Jacobsthal number �= is defined as – Jacobsthal
number

�= =
2= − (−1)=

3
. (2.5-2)

Fact 2.5.3. Let = ∈ N.

�=+1 = 2 · �= +
(
−1

)
= (2.5-3)

�=+2 = �=+1 + 2 · �= (2.5-4)

Remark. The definition of the Jacobsthal numbers, the values in table 2-14 and
fact 2.5.3 have been taken from Wikipedia contributors 2020c.

Theorem 2.5.4. Let = ∈ N.

 =+2 = 2 ·
(
�= + 1

)
. (2.5-5)

Proof. By induction on =. For = ≤ 1 there are only two cases to consider. Now
assume the statement holds for a certain =.

 =+4
(2.5-1)
= 4 ·  =+2 − 6 + 2 ·

(
−1

)
=

(2.5-5)
= 8 ·

(
�= + 1

)
− 6 + 2 ·

(
−1

)
=

= 2 ·
(
2 · �= +

(
−1

)
=
)
+ 4 · �= + 2

(2.5-3)
= 2 · �=+1 + 4 · �= + 2

(2.5-4)
= 2 ·

(
�=+2 + 1

)
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2.6 Colourability sources and sinks

= 0 1 2 3 4 5 6 7 8 9 10 11
 = 1 2 2 4 4 8 12 24 44 88 172 344

Table 2-15: The number  = of non-colourable strings in A=
2

Corollary 2.5.5. Let = ≥ 2. Then

= is even =⇒  = =
2= + 8

6
(2.5-6)

= is odd =⇒  = =
2= + 16

6
. (2.5-7)

Proof.

 =
(2.5-5)
= 2 ·

(
�=−2 + 1

) (2.5-2)
= 2 ·

(
2=−2 − (−1)=

3
+ 1

)
=

2= + 12 − 4 · (−1)=
6

Corollary 2.5.6. Let = be even. Then

 =+1 = 2 ·  =. (2.5-8)

Proof.

 =+1
(2.5-7)
=

2=+1 + 16
6

= 2 · 2
= + 8
6

(2.5-6)
= 2 ·  =

Corollary 2.5.7.

lim
=→∞

 =

2=
=

1
6

Proof. This follows immediately from corollary 2.5.5.

Remark. Since there are 2= strings of length =, corollary 2.5.7 tells that in the limit
1 out of 6 strings is not colourable.

Corollary 2.5.8. Let = ≥ 2. Then

 =+4 = 5 ·  =+2 − 4 ·  =.

Proof. Let 2 ∈ N. The statement follows from corollary 2.5.5 and the observation
that

5 · 2
=+2 + 2

6
− 4 · 2

= + 2
6

=
5 · 2=+2 − 2=+2 + 2

6
=

2=+4 + 2
6

.
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2 Alternating Colouring

2.6 Colourability sources and sinks
Definition. Let F ∈ A∗2. If F0, F1 are not colourable, F is called a colourability – colourability

sinksink; if 0F, 1F are not colourable, F is called a colourability source. ϵ is called the – colourability
sourcetrivial colourability sink and source.
– trivial
colourability
sink and
source

Observation 2.6.0. The reverse of a colourability source is a colourability sink and
vice versa.

Example. 010001 is a colourability sink. According to observation 2.6.0 100010 is
a colourability source.

Corollary 2.6.1. Let = ∈ N. There are equally many colourability sinks as sources
in A=

2 .

Proof. If F ∈ A=
2 is a colourability sink, '(F) is a colourability source and vice

versa. Since ' is bijective, the statement follows.

Lemma 2.6.2. If F ∈ A∗2 is a colourability sink 0F, 1F are colourable. If F is a
colourability source F0, F1 are colourable.

Proof. Assume the contrary, say b (F0) = b (0F) = 0. Then by lemma 2.1.9

0F0 ∈ {0}∗, so F ∈ {0}∗. Hence b (1F), b (F1)
(2.1-7),(2.1-8)

≠ 0, a contradiction.
Similarly if b (F1) = b (1F) = 0 one gets that b (0F), b (F0) ≠ 0.

Corollary 2.6.3. The only string that is both a colourability sink and a colourability
source is ϵ .

Proof. Any non-trivial colourability sink is by lemma 2.6.2 not a colourability
source.

Remark. Corollary 2.6.3 means that removing the non-colourable edges of a de
Bruijn graph does not leave isolated vertices.

Lemma 2.6.4. Any non-trivial colourability sink is colourable.

Proof. Let F ∈ A∗2 not be colourable.

b (F) = b
(
F0

)
= 0

(2.1-3)
=⇒ b (F) = b

(
A (F)0

)
= b

(
F0

)
= 0

(2.1-13)
=⇒ F0 ∈

{
0
}∗ ∪ {

1
}∗
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2.6 Colourability sources and sinks

=⇒ F ∈
{
0
}∗

but similarly

b (F) = b
(
F1

)
= 0 =⇒ F ∈

{
1
}∗,

so F = ϵ.

Corollary 2.6.5. Any non-trivial colourability source is colourable.

Proof. Since the reverse of a colourability source is a colourability sink, the statement
follows directly from lemmata 2.1.0 and 2.6.4.

Lemma 2.6.6. If F ∈ A2∗ is a colourability sink,

b
(
0F

)
= b

(
1F

)
= b (F) (2.6-0)

q
(
0F

)
= q

(
1F

)
= q(F) (2.6-1)

k
(
0F

)
= k

(
1F

)
= b (F) · k(F). (2.6-2)

If F is a colourability source,

b
(
F0

)
= b

(
F1

)
= b (F) (2.6-3)

q
(
F0

)
= q

(
F1

)
= −q(F) (2.6-4)

k
(
F0

)
= k

(
F1

)
= −b (F) · k(F). (2.6-5)

Proof. Consider lemma 2.6.2, lemma 2.6.4 and corollary 2.6.5. For (2.6-0) and
(2.6-3) combine them with lemma 2.1.5, for (2.6-1) and (2.6-4) with lemma 2.2-5.
The following establishes (2.6-2):

k
(
0F

)
=

(
b
(
0F

) )#F+1 · q
(
0F

) (2.6-0)
=

k
(
1F

)
=

(
b
(
1F

) )#F+1 · q
(
1F

) (2.6-1)
=

(
b (F)

)#F+1 · q(F) = b (F) · k(F)

and the following (2.6-5):

k
(
F0

)
=

(
b
(
F0

) )#F+1 · q
(
F0

) (2.6-3)
=

k
(
F1

)
=

(
b
(
F1

) )#F+1 · q
(
F1

) (2.6-4)
=

(
b (F)

)#F+1 ·
(
−q(F)

)
= −b (F) · k(F).

Theorem 2.6.7. Let F ∈ A∗2. Then

F0, F1 are colourable =⇒ k
(
F0

)
= k

(
F1

)
0F, 1F are colourable =⇒ k

(
0F

)
= k

(
1F

)
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2 Alternating Colouring

Figure 2-16: The 2-dimensional de Bruijn graph. As in figure 2-8 the edges are
coloured according to the value k assigns to them. The colour of the
vertices coincides with the colour of the incoming edges and differs
from the colour of the outgoing ones.

Proof. If F is a colourability sink or source, the statement is proven in lemma 2.6.6.
Otherwise it follows from corollary 2.4.4.

Remark. Theorem 2.6.7 makes it possible to define a function that assigns to the
vertices of a de Bruijn graph a colour that corresponds to the colour of the incoming
edges while differing from the colour of the outgoing ones. Lemma 2.2.5 and
corollary 2.2.11 show that for odd-dimensional de Bruijn graphs that function is just
q. Figures 2-16 and 2-17 give examples for even-dimensional de Bruijn graphs.

Observation 2.6.8. In A≤4
2 there are no non-trivial colourability sinks or sources.

Theorem 2.6.9. For = ∈ N let (= be the number of colourability sinks in A=
2 . If

= ≥ 3,
(= =  = − 4.

Proof. Let = ≥ 3 and F ∈ A=
2 be a colourability sink. Then by lemma 2.1.10

b (A (F)) = 0. First, let = be odd. By lemma 2.1.13

b
(
F0

)
= b

(
F1

)
= 0 ⇐⇒ b

(
A (F)

)
= 0 ∧ F ∉

{
0=, 01=−1, 10=−1, 1=

}
,
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2.6 Colourability sources and sinks

Figure 2-17: The 4-dimensional de Bruijn graph. As in figure 2-10 the edges are
coloured according to the value k assigns to them. The colour of the
vertices coincides with the colour of the incoming edges and differs
from the colour of the outgoing ones.
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2 Alternating Colouring

= 0 1 2 3 4 5 6 7 8 9 10 11
(= 1 0 0 0 0 4 8 20 40 84 168 340

Table 2-18: The number (= of colourability sinks in A=
2 . There are equally many

colourability sources as sinks.

so

(= = #
{
F ∈ A=

2 ; b
(
A (F)

)
= 0

}
− 4 = 2 ·  =−1 − 4 (2.5-8)

=  = − 4.

Now let = be even. Then by lemma 2.1.13

b
(
F0

)
= b

(
F1

)
= 0

⇐⇒ b
(
A (F)

)
= 0 ∧ F ∉

{
0=, 0)=−1, )=, 01=−1, 10=−1, �)=, 1�)=−1, 1=

}
,

so

(= = #
{
F ∈ A=

2 ; b
(
A (F)

)
= 0

}
− 8

= 2 ·  =−1 − 8
(2.5-7)
= 2 · 2

=−1 + 16
6

− 8

=
2= + 8

6
− 4

(2.5-6)
=  = − 4.

Remark. Theorem 2.6.9 is a little bit more surprising than it looks at first glance:
Due to the definition of a colourability sink focusing on F0 and F1, (= rather
says something about A=+1

2 than about A=
2 .  = in contrast should be seen as an

information about A=
2 .
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A Table with b, q and k

F b (F) q(F) k(F)
ϵ 0 0 0
0 0 -1 0
1 0 1 0

00 0 0 0
01 1 1 1
10 -1 -1 -1
11 0 0 0
000 0 -1 0
001 1 1 1
010 0 -1 0
011 1 -1 -1
100 -1 1 -1
101 0 1 0
110 -1 -1 1
111 0 1 0

0000 0 0 0
0001 1 1 1
0010 1 -1 -1
0011 1 -1 -1
0100 -1 1 1
0101 1 1 1
0110 0 0 0
0111 1 1 1
1000 -1 -1 -1
1001 0 0 0
1010 -1 -1 -1
1011 1 -1 -1
1100 -1 1 1
1101 -1 1 1

F b (F) q(F) k(F)
1110 -1 -1 -1
1111 0 0 0
00000 0 -1 0
00001 1 1 1
00010 1 -1 -1
00011 1 -1 -1
00100 0 1 0
00101 1 1 1
00110 1 1 1
00111 1 1 1
01000 -1 -1 1
01001 -1 -1 1
01010 0 -1 0
01011 1 -1 -1
01100 -1 1 -1
01101 -1 1 -1
01110 0 -1 0
01111 1 -1 -1
10000 -1 1 -1
10001 0 1 0
10010 1 -1 -1
10011 1 -1 -1
10100 -1 1 -1
10101 0 1 0
10110 1 1 1
10111 1 1 1
11000 -1 -1 1
11001 -1 -1 1
11010 -1 -1 1
11011 0 -1 0
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A Table with b, q and k

F b (F) q(F) k(F)
11100 -1 1 -1
11101 -1 1 -1
11110 -1 -1 1
11111 0 1 0
000000 0 0 0
000001 1 1 1
000010 1 -1 -1
000011 1 -1 -1
000100 1 1 1
000101 1 1 1
000110 1 1 1
000111 1 1 1
001000 -1 -1 -1
001001 -1 -1 -1
001010 1 -1 -1
001011 1 -1 -1
001100 0 0 0
001101 0 0 0
001110 1 -1 -1
001111 1 -1 -1
010000 -1 1 1
010001 -1 1 1
010010 0 0 0
010011 0 0 0
010100 -1 1 1
010101 1 1 1
010110 1 1 1
010111 1 1 1
011000 -1 -1 -1
011001 -1 -1 -1
011010 -1 -1 -1
011011 -1 -1 -1
011100 -1 1 1
011101 -1 1 1
011110 0 0 0
011111 1 1 1

F b (F) q(F) k(F)
100000 -1 -1 -1
100001 0 0 0
100010 1 -1 -1
100011 1 -1 -1
100100 1 1 1
100101 1 1 1
100110 1 1 1
100111 1 1 1
101000 -1 -1 -1
101001 -1 -1 -1
101010 -1 -1 -1
101011 1 -1 -1
101100 0 0 0
101101 0 0 0
101110 1 -1 -1
101111 1 -1 -1
110000 -1 1 1
110001 -1 1 1
110010 0 0 0
110011 0 0 0
110100 -1 1 1
110101 -1 1 1
110110 1 1 1
110111 1 1 1
111000 -1 -1 -1
111001 -1 -1 -1
111010 -1 -1 -1
111011 -1 -1 -1
111100 -1 1 1
111101 -1 1 1
111110 -1 -1 -1
111111 0 0 0

0000000 0 -1 0
0000001 1 1 1
0000010 1 -1 -1
0000011 1 -1 -1
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F b (F) q(F) k(F)
0000100 1 1 1
0000101 1 1 1
0000110 1 1 1
0000111 1 1 1
0001000 0 -1 0
0001001 0 -1 0
0001010 1 -1 -1
0001011 1 -1 -1
0001100 1 -1 -1
0001101 1 -1 -1
0001110 1 -1 -1
0001111 1 -1 -1
0010000 -1 1 -1
0010001 -1 1 -1
0010010 -1 1 -1
0010011 -1 1 -1
0010100 0 1 0
0010101 1 1 1
0010110 1 1 1
0010111 1 1 1
0011000 -1 -1 1
0011001 -1 -1 1
0011010 -1 -1 1
0011011 -1 -1 1
0011100 0 1 0
0011101 0 1 0
0011110 1 1 1
0011111 1 1 1
0100000 -1 -1 1
0100001 -1 -1 1
0100010 0 -1 0
0100011 0 -1 0
0100100 1 1 1
0100101 1 1 1
0100110 1 1 1
0100111 1 1 1

F b (F) q(F) k(F)
0101000 -1 -1 1
0101001 -1 -1 1
0101010 0 -1 0
0101011 1 -1 -1
0101100 1 -1 -1
0101101 1 -1 -1
0101110 1 -1 -1
0101111 1 -1 -1
0110000 -1 1 -1
0110001 -1 1 -1
0110010 -1 1 -1
0110011 -1 1 -1
0110100 -1 1 -1
0110101 -1 1 -1
0110110 0 1 0
0110111 0 1 0
0111000 -1 -1 1
0111001 -1 -1 1
0111010 -1 -1 1
0111011 -1 -1 1
0111100 -1 1 -1
0111101 -1 1 -1
0111110 0 -1 0
0111111 1 -1 -1
1000000 -1 1 -1
1000001 0 1 0
1000010 1 -1 -1
1000011 1 -1 -1
1000100 1 1 1
1000101 1 1 1
1000110 1 1 1
1000111 1 1 1
1001000 0 -1 0
1001001 0 -1 0
1001010 1 -1 -1
1001011 1 -1 -1
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A Table with b, q and k

F b (F) q(F) k(F)
1001100 1 -1 -1
1001101 1 -1 -1
1001110 1 -1 -1
1001111 1 -1 -1
1010000 -1 1 -1
1010001 -1 1 -1
1010010 -1 1 -1
1010011 -1 1 -1
1010100 -1 1 -1
1010101 0 1 0
1010110 1 1 1
1010111 1 1 1
1011000 -1 -1 1
1011001 -1 -1 1
1011010 -1 -1 1
1011011 -1 -1 1
1011100 0 1 0
1011101 0 1 0
1011110 1 1 1
1011111 1 1 1
1100000 -1 -1 1
1100001 -1 -1 1
1100010 0 -1 0
1100011 0 -1 0
1100100 1 1 1
1100101 1 1 1
1100110 1 1 1
1100111 1 1 1
1101000 -1 -1 1
1101001 -1 -1 1
1101010 -1 -1 1
1101011 0 -1 0
1101100 1 -1 -1
1101101 1 -1 -1
1101110 1 -1 -1
1101111 1 -1 -1

F b (F) q(F) k(F)
1110000 -1 1 -1
1110001 -1 1 -1
1110010 -1 1 -1
1110011 -1 1 -1
1110100 -1 1 -1
1110101 -1 1 -1
1110110 0 1 0
1110111 0 1 0
1111000 -1 -1 1
1111001 -1 -1 1
1111010 -1 -1 1
1111011 -1 -1 1
1111100 -1 1 -1
1111101 -1 1 -1
1111110 -1 -1 1
1111111 0 1 0

These values have been computed us-
ing Python.
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B Popular scientific summaries

English
Imagine an infinite string of characters A and B. Such can be thought of as a paper – infinite

stringstrip with As and Bs written on it, one end of which one holds in the hand while the
other stretches over the horizon without ever ending. Or as a calculator that displays
a new character each second. Or as a printer with an infinite amount of paper and ink
that unfortunately only prints As and Bs. In contrast to infinite strings there are also
finite strings that have a finite length. An infinite string could for instance start like – finite strings
this:

ABBAABAAABBAABAA...

At this stage any combination (of As and Bs) is possible. The variety shall now be
shrunk: For example one can forbid the finite string AA. That means there can never
be an A that follows directly on another A. The infinite string consists then of mostly
Bs that are just sometimes interrupted by single As:

ABBABABBABABBBAB...

Instead one could also forbid the string AB. Although even here just a string of
length 2 is forbidden the effect is considerably larger: As soon as there is an A in the
infinite string the As have to continue forever because there will never be a possibility
to switch back to a B. The only infinite strings still permitted would be

• the infinite string that only contains As,
• the infinite string that only contains Bs and
• an infinite string that starts with a certain number of Bs and continues with
infinitely many As:

BBBAAAAAAAAAAAAA...

By forbidding longer words and several at the same time on can influence the
infinite string more subtly: Forbidding the words AAA and ABA for example almost
does not have consequences for the appearance of the infinite string. All strings of
length 2 are still permitted and can occur in arbitrary order in the infinite string:

ABBAABBBABBABBBA...
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Not so if one forbids the word BAA: The string AA can still occur in the beginning
of the infinite string but then never again:

AABBABABBABABBBA...

By forbidding strings of a certain length it is hence possible to even forbid shorter
strings in practice. Such is called disconnecting the infinite string. Using that – disconnect
terminology what has been previously explained can now be put the following way:
‘Forbidding AB or BAA disconnects the infinite string, forbidding AA or AAA and
ABA does not.’

Chapter 2 Now each finite string gets a colour. As an example the strings of
length 3 shall be considered. The first letter of the strings AAA and ABA are
coloured red; the first letters of the words AAB, BAA and BAB blue. An infinite
string could start like this:

AAABABAAABAAABAB...

Each character is coloured according to the string of length 3 whose first letter it is:
The first string of length 3 is AAA so the first character is red. The second string is
AAB so the second character is blue. The last two characters cannot be coloured yet
because their colour would depend on the two characters succeeding them.

That red and blue characters alternate is not a coincidence but the very intent with
this colouring. The question chapter 2 investigates is: Which finite strings should be
coloured red and which ones blue to get such an alternating pattern in the infinite
string?
For many infinite strings that is just impossible. The first two characters of an

infinite word starting with
AAAA...

will always have the same colour. The solution is here to forbid the string AAAA.
Analogously of course one also has to forbid the word BBBB. It turns out that that
is not enough either: One also has to forbid the words ABBA and BAAB to find a
colouring. It is outlined in table B-0.

A coloured infinite string could then look like this:

AAABABBBAAABBBAB...

Note that two words of length 3 that have an even number of characters between
them must always have different colours. Conversely if there is an odd number of
characters between them, they have the same colour. If a finite string occurs twice
in the infinite string there has to be an odd number of characters between them.
Otherwise the same finite string would first have one colour and later another.
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Swedish – Populärvetenskaplig sammanfattning

Coloured red Coloured blue Forbidden
AAA AAB AAAA
ABA ABB ABBA
BAA BAB BAAB
BBA BBB BBBB

Table B-0: Possible colouring for strings of length 3 with forbidden strings of length 4

Chapter 1 Forbidding AAAA, ABBA, BAAB and BBBB does not disconnect the
infinite string; all strings of length 3 are still permitted and so they are in arbitrary
order. They are however bound to certain positions. What is unusual, the restrictions
are valid no matter how far one goes in the infinite string.

Forbidding some finite strings often leads to a certain minimum distance between
those that are still allowed. If one forbids the string AAA for example there must
always be a B between one AA and the next. After that minimum distance however
the string AA can again occur at any point. That is not the case when forbidding
AAAA, ABBA, BAAB and BBBB: Even if one goes 100 steps further, 1000 or a
million: Right there an AAA won’t be allowed, just because 100, 1000 and a million
are even numbers and between an AAA and the next there must be an odd number of
characters.

Constrains that structure the infinite string forever are said to prevent mixing. – prevent
mixingHow many ways are there to prevent mixing without disconnecting the infinite

string? The answer is given in chapter 1: There aren’t that many. If the infinite string
does not get disconnected in less than 1 out of 16 cases mixing is prevented.

Swedish – Populärvetenskaplig sammanfattning

En oändlig lång kedja av A:n och B:n får man föreställa sig som en papperslapp där
det står A:n och B:n på, dess ena sida man håller i handen men som sträcker sig
över horisonten utan att sluta någonstans. Eller som en miniräknare som visar ett
nytt tecken varje sekund. Eller en skrivare med oändlig tillgång till papper och bläck
men som tyvärr bara skriver ut A:n och B:n. En sådan oändlig lång kedja kallas för
bokstavsföljd en som har ändlig längd kallas för ord. En bokstavsföljd skulle kunna – bokstavs-

följd
– ord

börja så här:
ABBAABAAABBAABAA...

Än så länge är varje bokstavskombination (av A:n och B:n) möjlig. Urvalet ska nu
begränsas: Man kan till exempel förbjuda ordet AA. Det betyder att det aldrig kan
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förekomma två A:n direkt efter varandra. Bokstavsföljden består då av en massa B:n
som bara ibland bryts av enskilda A:n:

ABBABABBABABBBAB...

Istället skulle man också kunna förbjuda ordet AB. Trots att det igen förbjuds
ett ord av längd 2 är effekten betydligt större: Så snart det förekommer ett A i
bokstavsföljden kommer A:na fortsätta i all evighet för det finns aldrig en möjlighet
att byta tillbaka till ett B. De enda bokstavsföljder som fortfarande är tillåtna är

• bokstavsföljden som bara innehåller A:n,
• bokstavsföljden som bara innehåller B:n och
• en sådan som börjar med ett visst antal B:n och fortsätter med oändligt många
A:n:

BBBAAAAAAAAAAAAA...

Genom att förbjuda längre ord och flera samtidigt kan man påverka bokstavsföljden
lite mer subtilt: Att förbjuda orden AAA och ABA till exempel har nästan inga
konsekvenser för hur bokstavsföljden kommer att se ut. Alla ord med längd 2 är
fortfarande tillåtna och kan förekomma i valfri ordningsföljd i bokstavsföljden:

ABBAABBBABBABBBA...

Annars är det när man förbjuder ordet BAA: Ordet AA kan då fortfarande
förekomma i början av bokstavsföljden, sedan dock aldrig igen:

AABBABABBABABBBA...

När man förbjuder ord av en viss längd kan man genom detta i praktiken alltså
även förbjuda kortare ord. Det kallas för att man bryter bokstavsföljden. Nu kan man – bryta
uttrycka det som sades innan på följande vis: ”Att förbjuda AB eller BAA bryter
bokstavsföljden, att förbjuda AA eller AAA och ABA gör inte det.”

Kapitel 2 Nu får varje ord en färg. Som exempel ska ord av längd 3 betraktas.
Initialerna av orden AAA och ABA färgas röda; initialerna av orden AAB, BAA och
BAB blåa. En bokstavsföljd skulle kunna börja såhär:

AAABABAAABAAABAB...

Varje bokstav är färgad enligt ordet av längd 3 vars initial den är: Första ordet av
längd 3 är AAA så första bokstaven är röd. Andra ordet är AAB så andra bokstaven
är blå. De sista två bokstäverna går inte att färgas eftersom färgen beror alltid på de
två bokstäverna som följer efter.
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Att röda och blåa bokstäver alternerar är inget slump utan målet med färgningen.
Frågan som kapitel 2 tittar på är: Vilka ord borde man färga röda och vilka blåa för
att få ett sådant alternerande mönster i bokstavsföljden?
För många bokstavsföljder går det över huvud taget inte. In en sådan som börjar

med
AAAA...

kommer de första två bokstäverna alltid ha samma färg. Lösningen är här att förbjuda
ordet AAAA. Likaså får man såklart förbjuda ordet BBBB. Det visar sig att inte ens
det räcker: Man behöver även förbjuda orden ABBA och BAAB för att hitta ett sätt.
Det beskrivs i tabell B-1.

Röda färgade Blåa färgade Förbjudna
AAA AAB AAAA
ABA ABB ABBA
BAA BAB BAAB
BBA BBB BBBB

Tabell B-1: Möjlig färgning till orden av längd 3 med förbud av vissa ord av längd 4

En färgad bokstavsföljd skulle då kunna börja såhär:

AAABABBBAAABBBAB...

Man inser: Två ord av längd 3 som har ett jämnt antal bokstäver emellan sig måste
alltid har olika färger. Står däremot ett udda tal bokstäver emellan dem så har de
samma färg. När ett ord förekommer två gånger i bokstavsföljden måste det alltså
finnas ett udda tal bokstäver mellan dem. Annars skulle samma ord först ha en färg
och sedan en annan.

Kapitel 1 Att samtidigt förbjuda orden AAAA, ABBA, BAAB och BBBB bryter
inte bokstavsföljden; alla ord av längd 3 är fortfarande tillåtna och det i valfri ordning.
De är dock bundna till vissa positioner. Ovanligt är att begränsningen kvarstår oavsett
hur långt man går i bokstavsföljden.

Att förbjuda några ord leder ofta till en viss minimiavsstånd mellan de orden som
fortfarande är tillåtna. Förbjuder man ordet AAA till exempel måste det alltid finnas
ett B mellan ett AA och det nästa. Efter minimiavståndet kan ordet dock förekommer
igen när som helst. Det gäller inte när man förbjuder AAAA, ABBA, BAAB och
BBBB: Även om man går 100 steg vidare, 1000 eller en miljon: Där får inte stå ett
AAA, helt enkelt för 100, 1000 och en miljon är jämna tal och mellan ett AAA och
ett annat så måste det alltid finnas ett udda antal bokstäver.
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Inskränkningar som strukturerar bokstavsföljden för alltid sägs förhindra bland- – förhindra
blandningning.

Hur många sätt finns det att förhindra blandning utan att bryta bokstavsföljden?
Svaret ges i kapitel 1: Finns inte särskilt många. Om man inte bryter bokstavsföljden
så förhindras blandning i mindre än 1 av 16 fall.

German – Populärwissenschaftliche
Zusammenfassung
Man denke sich eine unendlich lange Aneinanderreihung der Buchstaben A und B.
Das kann man sich vorstellen wie einen Papierstreifen auf dem As und Bs stehen,
dessen Anfang man in der Hand hält, der sich aber über den Horizont erstreckt
und nie endet. Oder wie einen Taschenrechner, der jede Sekunde ein neues Zeichen
anzeigt. Oder einen Drucker mit unendlichem Vorrat an Papier und Toner, der aber
leider nur As und Bs druckt. Ein solche unendlich lange Aneinanderreihung wird
Buchstabenfolge genannt, eine endlich lange dagegen einWort. Eine Buchstabenfolge – Buchstaben-

folge
– Wort

könnte zum Beispiel folgendermaßen beginnen:

ABBAABAAABBAABAA...

Bisher ist jede beliebe Buchstabenkombination (von As und Bs) möglich. Die
Auswahl soll jetzt eingeschränkt werden: Man kann zum Beispiel das Wort AA ver-
bieten. Das bedeutet, dass nie ein A auf ein anderes folgen kann. Die Buchstabenfolge
besteht aus einem Haufen Bs, nur manchmal von einzelnen As unterbrochen:

ABBABABBABABBBAB...

Stattdessen könnte man auch das Wort AB ausschließen. Obwohl auch hier nur
ein Wort der Länge 2 verboten wird, sind die Auswirkungen viel weitreichender:
Sobald ein A in der Buchstabenfolge auftaucht, werden sich As bis in alle Ewigkeit
fortziehen, da es nie die Möglichkeit gibt, wieder zu einem B zurückzukehren. Die
einzigen Buchstabenfolgen, die jetzt noch möglich sind, sind

• die Buchstabenfolge, die ausschließlich aus As besteht,
• die Buchstabenfolge, die ausschließlich aus Bs besteht und
• eine solche, die mit einer bestimmten Anzahl Bs anfängt und sich dann mit
unendlich vielen As fortsetzt:

BBBAAAAAAAAAAAAA...

Indem man längere Wörter verbietet, und mehrere gleichzeitig, kann man die
Buchstabenfolge subtiler beeinflussen: Das Verbieten der Wörter AAA und ABA
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zum Beispiel hat kaum Auswirkungen auf das Aussehen der Buchstabenfolge. Alle
Wörter der Länge 2 sind noch erlaubt und können in beliebiger Reihenfolge in der
Buchstabenfolge vorkommen:

ABBAABBBABBABBBA...

Anders sieht das aus, wenn man das Wort BAA verbietet: Das Wort AA kann dann
zwar ganz am Anfang der Buchstabenfolge vorkommen, dann aber nie wieder:

AABBABABBABABBBA...

Wenn man Wörter einer bestimmten Länge verbietet, kann man damit also
praktisch auch kürzere Wörter verbieten. In dem Fall wird gesagt, man zerreißt die – Zerreißen
Buchstabenfolge. Mit diesem Vokabular lässt sich das bisher gesagte folgendermaßen
ausdrücken: „Das Verbieten von AB oder BAA zerreißt die Buchstabenfolge, das
Verbieten von AA oder AAA und ABA dagegen nicht.“

Kapitel 2 Jedem Wort wird jetzt eine Farbe zugewiesen. Beispielhaft werden hier
Wörter der Länge 3 betrachtet. Die Anfangsbuchstaben der Wörter AAA und ABA
werden rot eingefärbt; die Anfangsbuchstaben der Wörter AAB, BAA und BAB blau.
Eine Buchstabenfolge könnte dann folgendermaßen beginnen:

AAABABAAABAAABAB...

Jeder Buchstabe ist hier gemäß dem Wort der Länge 3 von dem er der Anfangsbuch-
stabe ist eingefärbt: Das erste Wort der Länge 3 ist AAA, also ist der erste Buchstabe
rot. Das zweite Wort ist AAB, also ist der zweite Buchstabe blau. Die letzten beiden
Buchstaben lassen sich noch nicht einfärben, da sich die Farbe immer erst aus den
beiden darauffolgenden Buchstaben ergibt.
Dass sich hier rote und blaue Buchstaben abwechseln ist kein Zufall, sondern

gerade das Ziel dieser Färbung. Die Frage, der Kapitel 2 nachgeht, ist: Welche Wörter
sollte man rot und welche blau einfärben, damit man so ein alternierendes Farbmuster
in der Buchstabenfolge bekommt?

Für viele Buchstabenfolgen geht das überhaupt nicht. In einer, die mit

AAAA...

beginnt, werden die ersten beiden Buchstaben immer dieselbe Farbe haben. Der
Ausweg hier ist, das Wort AAAA zu verbieten. Genauso muss natürlich das Wort
BBBB verboten werden. Es zeigt sich, dass auch das nicht reicht: Erst wenn man
darüber hinaus die Wörter ABBA und BAAB verbietet, lässt sich eine Lösung finden.
Sie ist in Tabelle B-2 dargestellt.
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Rot eingefärbt Blau eingefärbt Verboten
AAA AAB AAAA
ABA ABB ABBA
BAA BAB BAAB
BBA BBB BBBB

Tabelle B-2: Mögliche Färbung der Wörter der Länge 3 unter Ausschluss bestimmter
Wörter der Länge 4

Eine eingefärbte Buchstabenfolge könnte dann folgendermaßen beginnen:

AAABABBBAAABBBAB...

Man kann erkennen: Zwei Wörter der Länge 3, zwischen denen eine gerade Zahl
von Buchstaben steht, müssen immer verschiedene Farben haben. Steht dagegen eine
ungerade Zahl von Buchstaben zwischen ihnen, haben sie die gleiche Farbe. Wenn
ein Wort zweimal in der Buchstabenfolge vorkommt, muss also auch eine ungerade
Zahl an Buchstaben dazwischen stehen. Ansonsten hätte dasselbe Wort erst die eine
und später eine andere Farbe.

Kapitel 1 Das gleichzeitige Verbieten der Wörter AAAA, ABBA, BAAB und
BBBB zerreißt die Buchstabenfolge nicht; alle Wörter der Länge 3 sind weiterhin
erlaubt und zwar in beliebiger Reihenfolge. Sie sind aber an bestimmte Positionen
gebunden. Ungewöhnlich dabei ist, dass Begrenzungen bestehen bleiben, unabhängig
davon, wie weit man in der Buchstabenfolge geht.
Das Verbieten einiger Wörter führt häufig zu einem gewissen Mindestabstand

zwischen den Wörtern, die weiterhin erlaubt sind. Verbietet man das Wort AAA zum
Beispiel muss mindestens ein B zwischen einem AA und dem nächsten AA stehen.
Nach dem Mindestabstand aber kann das Wort an beliebiger Stelle wieder auftreten.
Das ist bei dem Verbieten von AAAA, ABBA, BAAB und BBBB anders: Selbst
wenn man nach einem Auftreten des Wortes AAA 100 Schritte weiter geht, 1000
oder eine Million: An der Stelle darf kein AAA stehen, schlicht weil 100, 1000 und
eine Million gerade Zahlen sind und zwischen einem AAA und dem nächsten immer
eine ungerade Zahl an Buchstaben stehen muss.
Vorgaben, die die Buchstabenfolge bis auf alle Ewigkeit strukturieren werden

Durchmischung verhindernd genannt. – Durchmi-
schung
verhindern

Wie viele Möglichkeiten gibt es, Durchmischung zu verhindern, ohne die Buch-
stabenfolge zu zerreißen? Die Antwort wird in Kapitel 1 gegeben: Nicht sehr viele.
Wenn man die Buchstabenfolge nicht zerreißt, wird in weniger als einem von 16
Fällen Durchmischung verhindert.
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