
Detect Specific Movement Patterns Based on
Gyro and Accelerometer Data

Niklas He Robin Olofsson
dic15nhe@student.lu.se dic15rol@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Jan Eric Larsson

Assistant Supervisor: Per Eriksson

Axis Supervisors: Peter Eneroth and Johan Förberg

Examiner: Maria Kihl

June 10, 2020



© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund



Abstract

Wearable security cameras has been used by police officers and other agents work-
ing within the field of security for many years. Some of these cameras are equipped
with an accelerometer and gyroscope sensor that can be used to detect if some-
thing is happening to the wearer of the camera. Ideally, the recording should
start automatically if the camera is affected by sudden movements, for example
if the wearer of the camera is being attacked. If this happens, then the camera
should start recording immediately to capture the situation. This masters thesis
project will be about trying to develop an efficient and accurate algorithm for fall
detection with the help of the accelerometer and gyroscope sensors.

Measurements and data collection was done by attaching a body worn camera
to a user’s chest with the help of a belt. The user performed different movements
and the sensor output data was saved into separate files which was later made
into a complete data set. Each file was then plotted for analysing, evaluation and
trying to detect different patterns.

An iterative strategy has been taken for developing this algorithm meaning
that new functions and features were continuously added to the algorithm through-
out this process in order to improve its performance. This Master’s thesis project
will focus on how to detect a fall while also trying to filter out movements and
other actions that may look similar to a fall.

The developed threshold-based algorithm was able to detect falls with a sen-
sitivity of 100% and a specificity around 90%.
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Popular Science Summary

Development of a fall detection algorithm using ac-
celerometer and gyroscope sensors

Wearable cameras are used today by the police to capture footage
from crime scenes. The officer may be unable to start the camera be-
cause he is attacked and falls to the ground. An accurate fall detection
function will automate this process.

Security cameras are of high impor-
tance in today’s modern society to keep
everything safe and in order. Some of
the cameras today are equipped with
different sensors, such as an accelerom-
eter and gyroscope. With the help of
these sensors the camera is able to de-
tect if it is being attacked or exposed to
certain circumstances. One specific type
of such cameras are wearable cameras.

For some time, police officers and
other agents working within the field of
public security have been using these
wearable cameras to capture footage
from hectic situations. Ideally, the
recording should start automatically if
the camera is affected by sudden move-
ments. This could for example be if
the wearer of the camera gets attacked
and falls to the ground. If this were to
happen the user of the camera could be
unable to manually start the recording
himself because he could be injured or
physically restrained.

There are constantly new cameras

being developed with the goal of im-
proving functionality and performance.
The goal of this Master’s thesis work
will be to develop a new and more ef-
ficient algorithm for fall detection with
the help of a wearable cameras ac-
celerometer and gyroscope sensors.

The first step in the development
of this fall detection functionality was
to first understand how the sensors
worked. Sensor data was recorded by
attaching the wearable camera to a user
with the help of a belt. The placement
of the camera was right on the chest
since this is normally where a wearable
camera is placed. Different falls and
other daily activities, such as running,
walking up and down stairs and jump-
ing were considered. This was done
by asking the user of the camera to
perform these activities to the best of
his abilities. The daily activities was
recorded with ease and no problems.
However, the falls was a different story
and required great effort and determi-
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nation. The data could then be plot-
ted onto a graph to see how the sensors
reacted to a specific movement. To fur-
ther improve the accuracy and precision
(correctness) of the algorithm, different
movements, such as throwing the cam-
era, was recorded with the goal of trying
to trick the algorithm. These recordings
helped to improve the performance of
the algorithm.

The development of the algorithm in
itself was done by gradually adding new
features and functions. If a feature im-
proved the results it was added while if
the opposite happened it was removed.
A lot of combinations and testing was

done that lead to the final result. This
project then ends with a discussion of
the result produced, how the execution
could have done differently and possible
future work.

The developed algorithm was able
to detect falls at a 100% accuracy while
also avoiding false fall detections at
around 90% accuracy. The fall detection
algorithm produced in this paper was
the result of plenty of data analysing,
usage of different methods and testing.
It was indeed a fun and challenging
opportunity to sharpen ones mind and
critical thinking.
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Glossary and Abbreviations

This section contains the specific words and abbreviations that have been used
throughout this Master’s thesis project. Below is an explanation of what each
abbreviation stands for.

BWC Body Worn Camera
SCU System Control Unit
VMS Video Management System
EMS Evidence Management System
IoT Internet of Things
LFT Lower fall threshold
UFT Upper fall threshold
FI Falling index
ADL Activities of Daily Living
DTFT Discrete-time Fourier transform
DTFFT Discrete-time fast Fourier transform
TP True positive
FN False negative
TN True negative
FP False positive
SMA Simple Moving Average
GUI Graphical User Interface
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Chapter 1
Introduction

A fall is more often than not caused by an unexpected event or emergency which
can result in severe injuries and damage. It could for instance be an elder person
taking a bad step or a police officer getting attacked and falls to the ground.
During such accidents or incidents it is very possible that the victim is in need of
help and assistance.

In today’s modern society with many devices having access to an internet
connection and different sensors, a fall detection algorithm can be implemented
and provide great support. If the user is unable to physically press the help button,
an automatic fall detection algorithm can serve as a difference in these situations.
A device including a fall detection algorithm gives it the possibility to detect falls.
Such device can for instance be a smartphone or a wearable device on the wrist.
Upon detection, appropriate and necessary action can be taken which can make a
difference in many situations.

In this Master’s thesis project, a fall detection algorithm is developed and the
different steps leading up to the final result discussed. The sensor data recordings
were done with a wearable camera provided by Axis. Over 500 cases of different
movement activities in total were recorded and studied during this project. The
final fall detection algorithm was then implemented into the same wearable camera.
This wearable camera will mostly be used by police officers and other people
working within the area of public security to capture footage.

1.1 Report Structure

This report contains the results that has been produced in this 20 week long
Master’s thesis project. The project has been done with the goal of developing
a fall detection algorithm, doing research within this area and to give room for
possible future work. The report is divided into seven different chapters.

1. Introduction - This chapter will give information about the general goal of
this Master’s thesis project and its delimitations. After reading this chapter
the reader will have an overall understanding of the topic of this project. It
will also include previous work and research that has been done within the
area of fall detection.
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4 Introduction

2. System Overview - This chapter aims to give a brief overview of the hardware
that has been used and its functionality.

3. Theory - This chapter will give the reader information about the accelerom-
eter and gyroscope sensors and its different settings. It will also include
other important metrics, methods and functions that has been used in the
development of the fall detection algorithm.

4. Method - A description about the data collection and data validation will
be given in this chapter and how it was executed. It will also include the
different steps in developing the fall detection algorithm.

5. Results - The results that has been produced will be presented in this chap-
ter. It will include the performance of the different algorithms and its accu-
racy.

6. Discussion - Comments and discussion about the result will be shared in
this chapter. It will also include overall thoughts about this entire Master’s
thesis project process overall.

7. Conclusion - This chapter will wrap up this report and draw some final
conclusions about this process in general.

1.2 Purpose

The purpose and aim of this Master’s thesis work is to develop a fall detection
algorithm for an wearable device, in this case a camera. This functionality will
provide increased safety and security for the user of the camera. During emergen-
cies and other stressful and intense situations the user may forget to start a video
recording or may be unable to do so because of some physical restraint. Therefore
a function that will be able to detect these situations are of interest. The possi-
bility of automatically being able to trigger a recording upon detection of a fall is
highly attractive and of high importance.

1.3 Background

There has been plenty of development and research within the area of movement
detection. A couple of areas where movement detection is useful is analysing the
movements of sport athletes, using it for surveillance and measuring health of
elder people. One thing all these research has in common is the usage of different
sensors. Two sensor that has been found particularly useful are the accelerometer,
which measures acceleration and the gyroscope which measures angular velocity.
More information and explanation about these two sensors will be given more in
chapter 3, Theory. By reading sensor data and combining it with different signal
processing methods specific movement patterns can be detected and analysed. The
different sensors are usually placed on the wrist, ankle or chest which has all been
found useful depending on the situation.

This Master’s thesis project will focus on a more specific movement detection,
namely fall detection. A lot of previous research of fall detection has been done.
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These previous studies has however been more focused towards elderly care and
older people. The reason for this could be that the result after a fall can be much
severe and life threatening compared to if a young a healthy person falls. This
Master’s thesis project will instead focus on younger and, most likely, healthier
adults which means that the fall may look a bit different compared to an elder
person. The falls that will be recorded will mostly be performed by the authors
of this report plus additional volunteers. Seniors usually move a bit slower in life
which means that the fall that happens to them are often also slower.

The novelty that this project will provide is a couple of fall detection algorithms
and overall more research based on younger and more healthy people falling to the
ground. With the help of the collected data together with different signal process-
ing methods and algorithm design a fall detection algorithm has been developed.
It should also be possible to implement the result and apply the new research into
other devices with different use cases.

1.4 Problem Formulation

Is it possible to develop an accurate and precise fall detection algorithm with the
help of accelerometer and gyroscope data together with different signal processing
methods?

1.5 Project Aims and Main Challenges

The goal of the Master’s thesis work is to develop, evaluate and suggest algorithms
used for detection of specific movement patterns of a person. The developed
algorithms should be compared against each other in order to find the most suitable
one. A prototype of the most promising algorithm will then be implemented into
a wearable camera.

1.6 Research Questions

Fall detection is a functionality that can be implemented into many wearable
devices. There has been a lot of research done within this area and there is still
much room left for improvement. This Master’s thesis project is based on the
following research questions.

• Is it possible to detect a fall using the accelerometer and gyroscope sensors
in the camera?

• Is it possible to separate a fall from other similar movements?

• How accurately can the developed algorithms recognise a fall?

• How simple and robust can the algorithms be?



6 Introduction

1.7 Previous Work

There has been plenty of research done over the recent years in the area of fall
detection. Fall detection can be described as the functionality to recognize that
a person has fallen to the ground for some arbitrary reason. It is especially for
elder care where the research has had its focus. The reason for why elder care
has become the focus is that with age, people tend to lose their muscle strength.
This also means that they start having issues with weakening of the legs and as
a consequence of that, also their balance capabilities starts to decline. As the
balance fail, people tend to fall more frequently when they get older. Falling in
general can lead to fractures, and for the elderly people it can lead to even more
severe consequences.

Most sources that have been read agree on using both accelerometers and
gyroscope sensors attached to a person to feed the algorithm data that can be
used to recognize the falling motion. There seems to be two main techniques
for detecting falls, with the help of machine learning or a more simple threshold-
based algorithms. Many of the methods claim good abilities in detecting falls,
with sensitivity and specificity measurements not far from or reaching 100%, in
lab environments. In short, sensitivity is a measurement on the number of true
alarms detected while specificity is a measurement of how many false alarms were
avoided, more of this in Section 3.11.

1.7.1 Thresholds

Huynh et al. [1]-[2] uses the total sum vector, also known as magnitude of both
the accelerometer and gyroscope output data, to construct two new signals. For
the signal consisting of the accelerometer magnitude samples, when a local mini-
mum passes a certain threshold called the lower fall threshold (LFT) samples are
recorded for 0.5 s, referred to as the fall window period. If both the accelerome-
ter and gyroscope magnitude signals passes the two upper fall thresholds (UFT)
within the fall window, the algorithm will alarm that a fall has been detected.
Huynh et al. [2] presents results of sensitivity between 81.37% - 97.36% and speci-
ficity of 75.93% - 99.38%. It is worth noting that it is possible to maximize one of
these two measurements at the cost of a lower score on the other, it depends on
the use case of what is wanted and acceptable.

G. Brown and M. Eklund [3] has a similar approach to their presented algo-
rithms as to Huynh et al. [1]-[2]. The similarity is the use of an upper thresholds
for the accelerometer, while it differs in the lack of a lower threshold for the ac-
celerometer, does not use a gyroscope sensor, looks for large changes in user angle
(calculated from the accelerometer output), analyses deviations from the subjects
normal posture, such as a subject lying horizontal on the floor after a fall. It
must be noted that with posture analysis the algorithm becomes dependent on
the mounting of the recording device, and great care must be taken to not mis-
interpret the output data. G. Brown and M. Eklund [3], claims a sensitivity of
around 90% and a specificity of 95%.

Kangas et al. [4] compares different algorithms and parameters that can be
used in threshold based algorithms, and one of them is the falling index measure-
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ment. Shortly described Falling index (FI) is a measurement on how much or how
fast the axes of the signal changes over a certain time window, closely related to the
concept of a derivative. More details about falling index is presented in Subsection
3.9. Placement of the sensors on the subjects and the effects on the algorithms are
also examined. The placements examined are waist, head and wrist, where it is
found that the wrist is not an applicable placement for the compared algorithms.
Kangas et al. [4] present a sensitivity varying between 76% - 97% and a specificity
of 100%.

A key difference between the previous work mentioned in this section and this
Master’s thesis work is the intended user group. All of the previous work research
have been focused on elder care and elderly people wearing the recording devices
(it is worth noting that most recordings were done by young adults up to middle
aged subjects), however this is not the intended user group of this Master’s thesis
work.

1.7.2 Machine Learning

Another popular approach into solving this fall detection problem is with the use
of machine learning. When using machine learning it is important to note that
this method usually requires a much larger data set compared to a approach of
not using machine learning. The reason for this is because the algorithm requires
a lot of data to train on in order to make it as accurate as possible.

Yin et al. [5] published a research paper which had the goal of trying to detect
different human activity, such as running and sitting, by using machine learning
to analyze the data. Here they used a Android phone equipped with both accel-
ermoter och gyroscope as the device to record sensor data. The phone was placed
in the pocket during recording. Three of the different machine learning classifiers
they used were: J48 which uses decision trees, support vector machine (SVM)
for trying to find nearest data point and Perceptron which trains by comparing
output. The results they got from the three mentioned machine learning classfiers
was very promising. Each classifier had accuracy of over 99% in detecting different
human activities.

Vallabah et al. [6] performed a similar study to the one in this Master’s
thesis project where they tried to detect falls while separating it from other daily
activities, such as bending forward and sitting down. In this research project they
used a prerecorded data set that included other sensors then accelerometer and
gyroscope such as a magnetometer. It can also be noted that the sensors were
placed in the pocket. A couple of different machine learning classifiers was used in
this research including the ones Yin used in their research mentioned above. The
result was measured using sensitivity and specificity to see how good each machine
learning classifiers was. Here they were able to get sensitivity of between 85.11%
to 90.70% and a specificity of between 72.73% to 83.78%.

The main concept of using a machine learning overall is to first train a classifier
and then make it good enough so that it can detect specific features and movements
such as running, jumping and falling on its own.

The reason machine learning was not used in this Master’s thesis project was
because it required a big data set for the machine learning classifiers to train on.
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There was also a risk that the final algorithm would get too complicated since it
was also going to be directly implemented into the camera. The reader might also
wonder why available datasets have not been used in this Master’s thesis project
and the main reason for that was because the data was not compatible. A lot of
the sensors was placed at the wrong location, such as on the ankle or wrist, during
recording of data and the data overall was a bit unorganised and difficult to read.

1.8 Delimitations

The algorithm developed in this Master’s thesis project will mainly be about de-
tecting an arbitrary fall. The algorithm should also be able to avoid triggering on
other daily activities such as sitting and walking. There has also be some research
done with trying to detect different pushes but the main focus is on fall detection.
The data used in this project was recorded only by young adults and the sensor
was always placed on the chest. Other places to put the sensors such as wrist
and ankle will not be attempted. This report will not focus on how the hardware
that has been used works. It is also assumed that the final algorithm is for the
camera that has been used for collecting data. Testing to see if the final algorithm
works on other devices with similar sensors will not be done in this Master’s thesis
project.

1.9 Axis Communications

Axis Communications is a company that manufactures cameras for the physical
security and video surveillance industries. The company was founded in Lund,
Sweden and has today around 3000 employs in over 50 countries. New products
are constantly being developed and innovated and the wearable camera used in
this Master’s thesis project is one of them [7].

1.10 Contributions

This report and Master’s thesis project has been done by Niklas He and Robin
Olofsson for the Department of Electrical and Information Technology at the Fac-
ulty of Engineering, Lund University. The work has overall been evenly distributed
with a couple of distinctions:

Niklas He has written a majority of the Result chapter. He has also provided
with overall necessary equipment that has been used.

Robin Olofsson has written a majority of the Theory and Discussion chapter
and also creating most of the figures used in this report. He has also developed
and tested different functions and methods in Python.

Both students has helped collecting data, generating ideas and writing code
throughout this entire process. They have also both helped reviewing and writing
this report.



Chapter 2
System Overview

The system consists of a body worn camera (BWC), a docking station, a system
control unit (SCU), video and evidence management systems (VMS & EMS).
Together these items form a secure system that allows the users to capture video
of their everyday work and store it in the cloud in an VSM or EMS. The system
fulfills the requirements that allow the captured videos to be used in legal matters,
making the everyday life of the users more secure.

2.1 Body Worn Camera

The BWC is a wearable camera as indicated by the name. It is equipped with
two buttons, one button for starting and stopping recording and one button for
turning it on and off. It allows the wearer to start video recordings with the
press of the button and the pre-buffer allows the camera to include actions that
happened before the wearer actually started the recording. The BWC is displayed
in Figure 2.1.

2.2 Docking Station

The docking station allows the BWC to charge up its battery and also more
importantly transfer the recordings done during the session to an SCU. Figure
2.2 shows an image of the docking station together with a BWC charging in it.

2.3 System Control Unit

The SCU temporarily stores recordings until they are transferred to either a VMS
or an EMS. It also provides system administrators the possibility to manage the
BWC users with specific configurations that alter certain aspects of the BWC. The
SCU can be seen in Figure 2.3.

9
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Figure 2.1: The Body Worn Camera (BWC)

Figure 2.2: The BWC Docking station with a BWC in it
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Figure 2.3: The System Control Unit (SCU)

2.4 Video Management System & Evidence Management Sys-
tem

This is the end destination for the video or potential evidence, which allows for
secure storage in the cloud. If necessary the recordings here can be viewed by
authorized personnel.
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Chapter 3
Theory

3.1 Accelerometer

One of the sensors that has been used in this Master’s thesis project is a triaxial
accelerometer. A triaxial accelerometer returns an estimate of acceleration in the
x, y and z axes from which velocity and placement of the sensor can be calculated.
Accelerometers can be used as motion detectors as well as for position sensing [8].
This sensor is widely available today and are often integrated into smartphones,
wearables and Internet of Things (IoT) device among others.

3.1.1 Acceleration

Acceleration is defined as the rate of which velocity changes over time [9]. It
is measured in the unit m/s2. In the real world, acceleration can be seen as a
vector of three dimensions, x, y and z. As it is a vector is also has a magnitude
and a direction, meaning that a change in acceleration is not limited to only the
magnitude.

Gravity affects all objects on earth with a constant acceleration, pulling them
towards the center of earth. The gravitational constant varies from 9.78 m/s2 to
9.83 m/s2 depending on where on earth it is measured [9]. See Figure 3.1 for
an illustration of gravity in a 3-axis coordinate system. Throughout the rest of
this report, the gravitational constant will have the value of g = 9.82m/s2, unless
stated otherwise.

Integrating acceleration over time will give the change in velocity over that
time period. By further integrating the velocity will give the traveled distance or
change in position.

3.1.2 Settings

Many accelerometers today have the option to change settings that will affect the
sensors output data. One setting is the scale setting that affects the sensor total
range and the sensor precision. The total range may start at ±2 g or lower, and
increase with a factor of two, ±4 g, ±8 g and so forth. The trade-off in using a
higher sensor range is that there is a compromise in the sensors precision. A reason
for this is due to the fact that the same amount of bits for output data is used for
all settings [10].

13
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Figure 3.1: The gravity vector in a 3-axis coordinate system.

Another setting is the sensor data output rate, also known as the sample rate.
The possible output data rate from the sensor is usually in fixed values. Examples
are 50 Hz or lower, 100 Hz, 200 Hz or higher [10]. The impact of the sensor data
output rate setting is explained more in detail in Section 3.3.

3.2 Gyroscope

The second sensor that is used in this Master’s thesis project is the triaxial gy-
roscope. A gyroscope is a device that measures angular velocity. Just like the
acceleromter, the gyroscope returns an estimate of angular velocity in the x, y and
z axes. This type of sensor is also commonly seen together with an accelerometer
sensor in the same type of devices as mentioned in Section 3.1. Some accelerometer
and gyroscope sensors are integrated on the same chip with compact footprints as
small as the ones used in some smartwatches, that is 2.5 mm x 3 mm x 0.83 mm
[11].

3.2.1 Angular Velocity

Angular velocity is defined as the rate of which angular displacement or position
changes over time [13]. It is measured in the unit rad/s or deg/s. In the same
way as for acceleration, angular velocity can also be seen as a three dimensional
vector with a magnitude and a direction. In Figure 3.2 the relation between the
accelerometer axes x_acc, y_acc, z_acc and the gyroscope axes x_gyr, y_gyr,
z_gyr can be seen. Using the right hand and putting the thumb in the positive
direction of an accelerometer axis, the direction out from the fingers will tell the
positive direction of the corresponding gyroscope axis.
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Integrating angular velocity over a time period will give the change in angular
distance or position. Calculating the derivative of angular velocity will result in
the angular acceleration.

Figure 3.2: The axes of accelerometer and gyroscope combined.

3.2.2 Settings

In the same way as for the accelerometer, the gyroscope have a similar scale setting
that will affect the sensors total range and precision. Example of some gyroscope
settings are ±125 deg/s or lower, ±250 deg/s and ±500 deg/s or higher [12].

The gyroscope sensor also has a ability to output data at different rates. De-
pending on the use it can be good to use the same sample rates for both the
accelerometer and the gyroscope, as then for each accelerometer sample there will
be a corresponding sample for the gyroscope. However since both sensors may
output timestamps for each sample they produce, the use of non matching sample
rates is also possible without having a synchronization problem.

3.3 Sampling

Sampling is a term of measuring output data or some sort of values from a sensor.
Using an accelerometer sample as an example, a single sample would be three
decimal values, one value from each of the three axes x, y and z, e.g. x=3.22,
y=1.45 and z=7.52.

3.3.1 Sampling Frequency

Sampling is done at a particular rate or a frequency, this is called sampling fre-
quency. Sampling frequency is measured in Hz or samples/s. Example of a sam-
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pling frequency that has been used in a previous research is 120hz [14]. This means
that 120 samples are generated per second.

3.3.2 Nyquist Rate

The Nyquist rate is the minimum rate that a time discrete signal x(t) can be
sampled at and still be reconstructed correctly [15]. This rate is 2 times or larger
than the signal bandwidth. To be able to correctly reconstruct the signal of a
person walking at a constant pace of 2 steps per second, i.e. 2 Hz whether that
would be data from an accelerometer or gyroscope, the sample rate would need
to be 4 Hz or higher. The effects of having a lower sample rate than the signal
component with the highest frequency can often be observed in movies or video
recordings of fast spinning objects, e.g. the helicopter rotary blades. The rotary
blades will often look like they are moving very slowly, alternating spin directions
or not moving at all.

It is also important to take the Nyquist rate into account when performing a
Fourier transform, see Section 3.6.

3.4 Activities of Daily Living

Activities of Daily Living (ADL) is a term first coined by Dr. Sidney Katz and
his team of professionals at the Benjamin Rose Hospital in Cleveland, Ohio in the
late 1950s [16]. Index of ADLs is a measurement of how well a person can perform
certain activities related to daily living. The ADLs may differ from person to
person and the area of research. Some examples of ADLs are sitting, standing,
walking, walking in stairs, laying down etc. The concept of ADL is commonly
used in elderly health care and rehabilitation areas.

As will be seen in Section 3.11, this term is of high importance when it comes
to preventing false alarms in regards to the different event detection algorithms
that will be presented.

3.5 Vector Magnitude

The magnitude of a three dimensional vector can be calculated with the expression
seen in equation 3.1. Since each value is squared to the power of two, the magni-
tude of a vector is always zero or positive. This also means that the directional
information of a vector is lost after calculating its magnitude.

Magnitude =
√
x2 + y2 + z2 (3.1)

3.5.1 Signal Magnitudes

Equation 3.1 can be applied to the output data of the triaxial accelerometer and
triaxial gyroscope. The result of this can be seen in equation 3.2 and 3.3 respec-
tively.

MagnitudeAccelerometer =
√
x2
acc + y2acc + z2acc (3.2)
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MagnitudeGyroscope =
√

x2
gyr + y2gyr + z2gyr (3.3)

3.6 Fourier Transform

The Fourier transform of a continuous time signal, x(t) is defined as the frequency
content of the signal, often denoted X(f) [17]. The Fourier transform moves from
the time domain to the frequency domain. The formula for calculating the Fourier
transform of a time discrete signal is seen in equation 3.4. ϕ(f) is the phase shift.

X(f) = F{x(t)} = ∫
∞

−∞

x(t)e−j2πftdt = ∣X(f)∣ejϕ(f) (3.4)

Analysing a signal in the frequency domain gives information about a signals
frequency components, which can be useful for signals with repetitive patterns.
ADLs, such as walking and running are examples of signals that contain repetitive
patterns

To move from the frequency domain to the time domain an inverse Fourier
transform may be performed, seen in equation 3.5.

x(t) = F−1{X(f)} = ∫
∞

−∞

X(f)ej2πftdf (3.5)

In computer applications it is more common to work with discrete time signals.
There is a discrete version of the Fourier transform, called the discrete-time Fourier
transform (DTFT) but more commonly a more efficient and faster variant of this
is used, called the discrete-time fast Fourier transform (DTFFT).

3.7 Filters

A filter is a tool in signal processing that can be used to separate or restore a
signal. Signal separation can be used to remove some unwanted components or
features of a signal. This could for example be to remove signals with some specific
frequencies in the frequency domain. Signal restoration is used when a signal has
been damaged in some way. The filters that have been used in this Master’s thesis
project are low-pass filters and high-pass filters [18] .

3.7.1 Low-Pass Filter

A low-pass filter (LPF) is used to filter out all high frequencies. A LPF allows
signals to pass with a frequency lower than a chosen limit, called the cutoff fre-
quency, and thus removes and blocks frequencies higher than this cutoff frequency.
The cutoff frequency for determining if it is a high frequency signal is set by the
user [19].
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3.7.2 High-Pass Filter

A high-pass filter (HPF) is very similar to a LPF with the difference that it instead
let all high frequencies pass and blocks all low frequencies. The cutoff frequency
for determining if it is a low frequency signal is set by the user [19].

3.8 Time Shifting and subtracting

Time shifting is a method that is used in an attempt to detect repetitive patterns
in a signal. An example of such repetitive signal can be a walk pattern or a
run pattern. The detection is done by comparing the original signal with a time
delayed version of itself. If the signal is periodic and the pattern of the signal is
repetitive then the pattern will be detected by subtracting the two signals with
each other. If the time Shifting works, the result can be that it is easier to identify
the important part of the signal that would otherwise be hidden by the repetitive
patterns.

3.9 Falling Index

Another metric that was used to improve the precision of the fall detection al-
gorithm is the Falling Index (FI) [4]. The FI is calculated using the the formula
shown in equation 3.6.

FI =
¿
ÁÁÀ 80

∑
i=0

(xi − xi−1)2 +
80

∑
i=0

(yi − yi−1)2 +
80

∑
i=0

(zi − zi−1)2 (3.6)

As previously mentioned, the output data from the BWC gave the accelerom-
eter and gyroscope data in its three axis: x, y and z. These are the values that are
used to calculate the FI. x in the formula stands for the x value, y stands for the
y value and z stands for the z value from the sensors. The formula also includes
summation signs and sums together all the samples within a fixed window. An
example of such a window is 80 (corresponding to 0.4 s), meaning that 80 values
of x, y and z are needed to calculate the FI. The FI can be seen as a measurement
that determines how much the signal is changing during a time window. The
higher the value of FI the faster the signal is changing in that time window.

3.10 Simple Moving Average

The simple moving average (SMA) is another metric that has been used to improve
the fall detection algorithm. The formula for calculating a SMA can be found in
equation 3.7. As can be seen, the calculation is done by adding together a certain
amount of values and then dividing by the total amount of values. The total
amount of values can be called the window size, n, and a large window size means
a more accurate average value. An example of a window size is 100, meaning that
100 values are added together and then divided by 100 to get the SMA. The SMA
is a good tool for making high spike less harmful for the signal since with a large
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enough window size the high spike will be evened out. The result of this is that it
will give a much smoother final graph since it contains less noise disturbances.

XSMA =
1

n

n−1

∑
i=0

xi (3.7)

3.11 Performance Measurements

When developing an algorithm used for binary event detection, i.e. the event
happened or the event did not happen, there is a need for measurements that
tell how well an algorithm performs. Some measurements that suit this area very
well are the statistical terms of specificity and sensitivity, which are explained in
Subsection 3.11.2 and 3.11.1.

3.11.1 Sensitivity

Sensitivity uses the terms true positives (TP) and false negatives (FN). The sen-
sitivity measurement is calculated in according to equation 3.8 [21].

Sensitivity = nbr.TP

nbr.TP + nbr.FN
(3.8)

To explain this measurement in detail, let there be an algorithm, which is
solely used to detect events of type A. When this algorithm is run on a data set
containing only events of type A, the algorithm will tell how many events of type
A it detected, that is the number of true positives. If the algorithm fail to detect
some number of events of type A, then those are called false negatives, as they
should have been classified as events of type A. The sensitivity measurement will
be a number between 0 and 1, and is usually expressed in percent, where 0% means
that no events were detected, and 100% means that all events were detected. 100%
is the sought after result.

3.11.2 Specificity

Specificity uses the terms true negatives (TN) and false positives (FP) and is
calculated in accordance with equation 3.9 [21].

Specificity = nbr.TN

nbr.TN + nbr.FP
(3.9)

Let there be the same algorithm as in Section 3.11.1. This time the algorithm
is used on a data set containing only events of types that are not A, or in other
words the complement of the event A, e.g. event B, C, D and so on. Events that
are detected as A are considered false positives as there are no A events in the
data set, whereas for data in the data set where nothing is detected is considered
true negative. The specificity measurement is in the same way as the sensitivity
measurement a value between 0 and 1, where 0% means that all events were falsely
detected as A, whereas 100% means that no events were mistaken for the event A.
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3.12 Cross-Validation

Cross-validation is a method used to validate a data set and for evaluating how
well an algorithm can generalize when trained on some data set [22]. It begins by
splitting the collected data set into a fix number of pieces, e.g. five pieces. For
each iteration from one to five, one data set piece is selected as the validation set,
and the remaining pieces are used for training the algorithm, i.e. finding good
parameters, see Figure 3.3. Once the algorithm has been trained, validation is
done on the validation data set piece by calculating the measurements of sensitivity
and specificity. When all iterations are done, each data set piece, have taken turns
to be the validation set, and five performance measurements are given, where
each measurement contains sensitivity and a specificity measurements. Averages
for sensitivity and specificity measurements are calculated and used to give an
indication of how well a model will perform.

Figure 3.3: Cross validation by splitting the original data set in five
equally sized pieces.

Even though five models were trained, these are not supposed to be used with
new data, they are only meant to find how well the algorithm can generalize on
data.

The benefits of cross-valdiation versus a regular single training data set and
validation data set is that if only one split is performed, it may be an unlucky one,
e.g. all the easy data is put in the training set and the difficult in the validation
set or vice versa, whereas multiple splits will have a lesser risk of being affected
by this.



Chapter 4
Method

This chapter will describe the different methods that has been used in this Master’s
thesis project. It will contain motivations and explanations on why a certain
method was used. It will also include details and other decisions that was made
during the development of the fall detection algorithms.

4.1 Data Collection Method

The majority of the data collection was performed by the two students doing this
Master’s thesis project. Each student performed an equal amount of recordings
and the reason for this was so that the distribution would be even, i.e. no over-
representation. Below is some general information about the two participants.

• Participant 1: Age: 23, Height: 174 cm , Weight: 68 kg, Male

• Participant 2: Age: 23, Height: 197 cm , Weight: 87 kg, Male

The difference between the two participants was quite drastic so the results
offer a bit of diversification to a certain degree. Invitations were sent out to
friends and other people but they were mostly declined. The reason for this was
most likely because the idea of falling to the ground and risking getting hurt or
injured did not seem to promising. Another reason was that social distancing was
of high importance during the time this Master’s thesis project took place. A
higher number of participants could perhaps have offered a larger diversification
and more evenly distributed data set.

The data collection or sampling was done over multiple sessions spread out
over the Master’s thesis project. First the sensor settings used are explained,
then some comments on an Android application that was built, and finally the
validation of the data collection settings and method is described.

4.1.1 Sensor settings

As mentioned in Section 3.3, the accelerometer and gyroscope can have different
sensor settings that affect the sensor range, precision, and also output data at
different output rates. The settings used for this Master’s thesis project, are
explained in Subsections Sampling Frequency, Accelerometer Scale and Gyroscope
Scale.

21
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Sampling Frequency

Looking at previous work, G. Brown and M. Eklund [3] used a sample frequency
of 80 Hz, while Kangas et al. [4] started with a sample frequency of 400 Hz, and
let the samples be re sampled and median filtered with a window of 3 samples,
bringing the sample frequency down to 50 Hz, as a way to reduce the amount of
data and the noise.

Since storage or performance was no problem it was initially decided to capture
samples with a high sample frequency of 500 Hz. This would leave the possibility
open to at a later stage perform down sampling or median filtering. However
when analyzing the output data captured with 500 Hz it was discovered that due
to technical difficulties with sample timestamps missing out, it was not appropriate
to keep the sample rate at 500 Hz. As a consequence of this it was decided to lower
the sampling frequency to 200 Hz to resolve this issue. This proved however to
not be a major problem since close to none information was lost. The majority of
the sensor recordings were therefore recorded with a sample frequency of 200 Hz.

Accelerometer Scale

Huynh et al. [1]-[2] uses a wide accelerometer scale setting of ±16 g, while G.
Brown and M. Eklund [3] uses a slightly lower setting of ±10 g. Kangas et al. [4]
differentiates from the other sources by sampling with the setting ±12 g and then
restricting the amplitude to ±2 g and ±3 g, since ±12 g was said not to provided
much more information than ±3 g. ±2 g however was found to be insufficient for
the algorithms that they presented.

During the Master’s thesis project, the majority of the sensor recordings were
done with an accelerometer scale value corresponding to the accelerometer sensor
range of ±16 g, leaving the possibility open to simulate lower levels at the cost of
accuracy. The reason for this was because some of the falls and other activities
gave very high values and without ±16 g the range would have been too low. The
other range options were ±2 g, ±4 g and ±8 g.

Gyroscope Scale

Once again Huynh et al. [1]-[2], as with the accelerometer, use a wide gyroscope
setting of ±2000 dps, indicating that information gained with the wider range
setting is worth more than the loss in sensor accuracy with a lower setting.

During the Master’s thesis project, the majority of the sensor recordings were
done with a gyroscope scale value corresponding to the gyroscope sensor range of
±2000 dps or ±34.9 rad/s. The reason for this is the same as with the accelerom-
eter. Some of the falls and other activities ave very high values and without
±2000 dps the range would have been too low. The other range options were
±250 dps, ±500 dps and ±1000 dps.

4.1.2 Android

At an early stage of the Master’s thesis work it was decided that smartphones could
be useful help. The reason for this was because the majority of smartphones today
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are equipped with both accelerometer and gyroscope sensors. These smartphone
sensors could be used to record sensor output data and compare this with the
output data from the BWC. The comparison of sensor data will serve as a method
to ensure that the sampled data of the BWC is correct for the different sensor
settings. It will also give an indication of the quality of the sampled data, i.e. how
well does the sensors perform. Therefore a decision was made to develop a simple
and usable application for this exact purpose.

Android [23], was chosen as the target platform due to the availability of An-
droid smartphones and the students previous knowledge with developing Android
applications.

Sensors Application

The application developed was given the name Sensors. It was developed using
Android Studio [24], and written in Java code.

In Figure 4.1 a screenshot of the sensor application can be seen. The applica-
tion consists of a single view. From top to bottom it shows, acceleration in all three
axis, x, y, z from the accelerometer, angular velocity in all three axis, z, y, z from
the gyroscope, a variable target sample rate from 1-500 Hz, the actual achieved
sample rate for the two sensors independently, time elapsed if saving samples to
a file, and the option to start a recording and save it to a local file. Finally the
sensors can be stopped or started manually, which is useful if the user wants to
record the sensor output data while the screen is off.

It may be noted that in Figure 4.1 the sample rate is set to 201 Hz, however in
reality only 100 Hz is achieved, this is due to a limitation of running the application
on an Android virtual device. When running the application on real life Android
smartphones a sample rate of 500 Hz was achievable.

4.1.3 Validating the BWC Data Collection Settings

To validate that the sensors were actually using the intended settings, a few simple
tests were done.

Sampling Frequency

Validation of sample frequency is done by firstly calculating the expected period
time of samples, T, when sampling at F = 200 Hz, using equation 4.1.

T = 1/F = 1/200 = 0.005 s (4.1)

The period time is the time between samples. Each sample will generate a
sensor output timestamp, ti, so calculating the average period time, Taverage, over
all the samples, N, can be done by using equation 4.2, for a recording. This means
that errors may be detected and the setting can be validated.

Taverage =
1

N

N−2

∑
i=0

ti+1 − ti (4.2)
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Figure 4.1: The Android application Sensors, running on a virtual
device, highlighting the application’s capabilities.
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Accelerometer Scale

The accelerometer scale setting is tested by holding the BWC with one hand and
making a fast hand movement, like a throw movement, and registering the maxed
out value for each axis. If the max values can reach 16 g, then this settings is
validated.

Gyroscope Scale

The gyroscope scale setting is tested by holding the BWC with two hands and
making fast tilting movements forwards and backwards while keeping the hands
somewhat stationary and registering the maxed out values. If the max values
corresponds to ±2000 dps or ±34.9 rad/s in each axis then this settings is validated.

4.1.4 Validating the Data Collection Method

When the data collection settings had been validated, the next step was to look at
the data and make sure that it was correct. This was done by starting a recording
to get sensor data and then plotting it onto a graph.

Shakings

Initially recordings were done by simply holding the BWC with one hand, and
making some simple and recognizable movements, until it was clear that the sam-
pling method worked as intended. Some recordings were done using a clip that
would be attached to the participants clothing, e.g. at the top of a T-shirt. Figure
4.2 shows an image of the clip attachment. After beginning to analyze the data it
became clear that there were issues with unintended shaking of the BWC. This was
because the clip attachment was not very stable and also the participants clothing
was a bit loose. Figure 4.3 shows a setup using the clip attachment. The result
of this became that there was a lot of shaking and high signals when performing
a ADL such as walking and running. This shaking damages the data because the
data no longer only contains the real movement of the subject. Tests with differ-
ent attachments were made in an attempt to deal with the shaking. A magnetic
attachment, see Figure 4.4, had the same issues as the previous attachment. It
was found that the best attachment was by using a regular belt by locking the
BWC into place against the subject chest. This setup by using a belt to attach
the BWC can be seen in Figure 4.5. A comparison of jogging forwards, turning
around and jogging back to the starting position with a clip versus with a belt can
be seen in Figure 4.6.

As can be seen in Figure 4.6, the difference in magnitude for the accelerometer
are at peak levels 300% (3.26 g vs 9.77 g at t = 17.3 s) and for the gyroscope around
400% (2.42 rad/s vs 10.15 rad/s at t = 5.12 s), which is a significant difference.

BWC and Smartphone

To verify that there were no errors with the sensors in the BWC or the way
data was retrieved from it, comparisons with the sensor outputs of a smartphone
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Figure 4.2: A participant is using the clip attachment for a recording.

Figure 4.3: The clip attachment used for some recordings. When
used, the clip attachment is attached to the clothes of the par-
ticipant together with the BWC.
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Figure 4.4: The magnet attachment used for some recordings.
When used, the magnet attachment is attached to the clothes
of the participant together with the BWC.

Figure 4.5: A participant is using the belt for a recording.
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(a) Jogging with a belt as attachment.

(b) Jogging with a clip as attachment.

Figure 4.6: A comparison of using a belt as attachment to the
(upper plot) versus using a clip (lower plot).
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was done. In Figure 4.7 the comparison of the magnitude of some simple hand
movements can be seen and visually comparing them shows that they perform
very similarly. The recordings were made in parallel.

Two BWCs

To verify that there were no errors on the specific device that was used for data
recording that could impact the collected data negatively, comparisons with an-
other BWC was made. In Figure 4.8 the comparison of the magnitude from walking
forwards, turn around and walking back to the starting position can be seen. By
just visually comparing them, as with the previous comparison, shows that they
perform very similarly.

4.2 Collected Data

During the Master’s thesis work various interesting sensor data was recorded. The
gathered data was grouped into four categories, being Activities of Daily Living,
Fall, Push and External Daily BWC Movements. In total 100 ADLs, 79 falls, 46
pushes and 115 external daily BWC movements were recorded. A small database
was created to store all the different files in a organized and accessible way.

4.2.1 Activities of Daily Living

In Table 4.1, all the recordings of daily activity that was done in this Master’s
thesis work are listed, and a brief description for each activity is given. Some
of the activities listed in the table are inspired from the sources in the previous
work section 1.7, however since most of these articles were focused on elder care,
it was decided to add some more scenarios that seemed relevant to the intended
users of this Master’s thesis work. Having a large list of daily activities allows
for determining what kinds of daily activities that are possible to distinguish from
falling and which ones that may sometimes lead to false alarms due to them having
similar signal characteristics.

In Figure 4.9 the magnitude signals from a person walking in stairs can be seen,
and in Figure 4.10 the magnitude signals of a person sitting down and standing
up fast can be seen.

4.2.2 Fall

It was decided that falls would be recorded and analyzed in four different directions.
These directions were backwards, forwards, fall to the right and fall to the left. A
list of these fall is shown in Table 4.2. The reason for including all four directions
was because this would cover a wider variety of possible ways to fall. Most of the
falls recorded were from a static position meaning that there was no movement
before the fall. The reason for this was because the difference between a static
and a moving fall was not very big. It was also easier for the participants to make
each fall more consistent.
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(a) BWC used for the comparison.

(b) Smartphone used for the comparison.

Figure 4.7: A comparison between the sensors from a BWC and
a smartphone showing the magnitude of the signals generated
when performing some simple hand movements.
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(a) BWC 1 used for the comparison.

(b) BWC 2 used for the comparison.

Figure 4.8: A comparison of the sensors from two BWCs showing
the magnitude of the signals generated when walking.
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Table 4.1: Summarizes the sensor data recordings done on ADL.

Activities of daily living (ADL)
Name of recording Description Nbr. of files

Normal walk Normal walking pace forwards,
turn around, walk back to

start.

15

Fast walk with turns Fast walking pace around two
tables in an 8-shape.

2

Jogging Jogging pace, same route as
normal walk.

4

Running Subject max running pace, 30
m, turn around, 30 m back to

start.

13

Normal walk in stairs Up and down, stair lengths of
8 - 20 steps.

14

Fast walk in stairs Up and down, stair lengths of
8 - 20 steps.

20

Jump down Jump down from three stair
steps.

15

Sit down & stand up Chair seat is approximately 30
cm from ground.

6

Tie shoes Kneel down, tie shoes, stand
up (varying speed).

4

Jump Vertical jump. 6
Elevator 6 floors up and down. 1

Table 4.2: Summarizes the sensor data recordings done on falling.

Falling
Name of recording Description Nbr. of files

Fall backwards Fall on two mattresses with a
total thickness of

approximately 15 cm.

19

Fall forwards Same as above. 20
Fall to the right Same as above. 20
Fall to the left Same as above. 20
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Figure 4.9: The magnitude signals of the accelerometer and gyro-
scope from a person walking up the stairs, turning around, and
walking back down.
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Figure 4.10: The magnitude signals of the accelerometer and gyro-
scope from a person sitting down and standing up fast, repeated
three times consecutively.

As mentioned in the Table 4.2, the fall was done on two mattresses with a
total thickness of approximately 15 cm, see Figure 4.11. This most likely made
each fall a bit more soft compared to a real fall but each participant definitely felt
the impact when landing on the ground.

The magnitude signals of a fall can be seen in Figure 4.12.

4.2.3 Push

Similarly to the recording of falling, pushes were performed in the same four di-
rections and recorded, see Table 4.3. The reason for this was, just like above, to
cover a wider range of possible pushes. Since push is a much easier case to record
compared to a fall, the recordings here were most likely accurate to a push that
can happen in real life.

The magnitude signals of a push can be seen in Figure 4.13.

4.2.4 External Daily BWC Movements

Two not so uncommon things that the BWC users do are detaching the camera
from their clothing and putting it away, either for docking or just placing it on a
table. The second thing is reattaching it again, all while the device is operating.
These movements completely change the conditions of what is being recorded.
Instead of recording the movements of the camera wearers body, the BWC will



Method 35

(a) The top view of the two mattresses. (b) The side view of the two mattresses.

Figure 4.11: The setup used when recording falls.

Figure 4.12: The magnitude signals of the accelerometer and gyro-
scope from a backwards fall.



36 Method

Table 4.3: Summarizes the sensor data recordings done on pushing.

Push
Name of recording Description Nbr. of files

Back push Push the subject on the back. 20
Front push Push the subject on the chest. 8

Push from right Push the subject on the right
shoulder.

9

Push from left Push the subject on the left
shoulder.

9

Figure 4.13: The magnitude signals of the accelerometer and gyro-
scope from a person being pushed from behind.
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instead record some sort of hand movements. To prevent these movement patterns
from falsely being classified as falls, some recordings of these movements were
done, see Table 4.4. These movements were given the name external daily BWC
movements. The reason for including this topic is because one of the research
question in this Master’s thesis project is: “ How accurate can the algorithm
recognise a fall”. In order to answer this question, it seemed relevant to explore
this kind of movements since they were a risk for triggering a false detection.

Table 4.4: Summarizes the sensor data recordings done on external
daily BWC movements.

External daily BWC movements
Name of recording Description Nbr. of files

Normal/fast put BWC on
table

Move BWC from chest to
table.

20

Soft put BWC on table Move BWC from chest to
table gently.

20

Take BWC from table
and attach to clip

Clip is attached to
subject.

20

Take BWC from table
and attach to clothing

Clip is attached to BWC. 20

Docking the BWC Put BWC in the docking
station.

20

The magnitude signals of a external daily BWC movement can be seen in
Figure 4.14.

4.3 Python

The programming language Python was used extensively throughout the project
for validating collected data, analyzing collected data, implementing algorithms
and evaluating the performance of the algorithms on the collected data. Python
was chosen as it meets the scientific requirements of the Master’s thesis work, it
is open source software, freely available [25] and due to the thesis workers pre-
vious knowledge in developing Python applications. To perform all of what is
enumerated above, mainly three Python packages were used, NumPy, SciPy and
matplotlib, which are explained more in detail in the three subsections below.

4.3.1 NumPy

The NumPy package provides the implementation and functionality for 1- to N-
dimensional arrays as well as basic mathematical operations to manipulate the
data stored in these arrays [26]. The reason for using the Numpy package was
because it made the code more efficient and it was also more convenient to work
with 1- to N-dimensional arrays.
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Figure 4.14: The magnitude signals of the accelerometer and gyro-
scope from a person taking the BWC from a table and attaching
it to the clip which is already attached to the person’s clothing.
The gyroscope spikes around 8 s in, occurs due to the attach-
ment has to be done upside down and then turned 180 degrees
in snapping motions.
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4.3.2 SciPy

The SciPy package provides among other features useful functions within the area
of signal processing. Examples of this are low-pass and high-pass filters and fourier
transform [27]. The reason for not creating and implementing the functions from
the beginning was because it was much more convenient and easier to use the
SciPy package. This also guaranteed that there were no errors in the functions
which could have been the case if they were implemented from the scratch.

4.3.3 matplotlib - pyplot

The Matplotlib package is used for visualization of data through 2D and 3D graph-
ical plots [28]. In this Master’s thesis work report, the majority of the plotted data
figures come from this library. Examples of usage are plotting the three different
axes of the accelerometer or gyroscope, x, y and z over time in a 2D figure.

4.3.4 Testing Algorithms and Functions

The testing of each algorithm and function was done by creating a graphical user
interface (GUI) and then adding a button for each algorithm or function. The
GUI was created using Python and is shown in Figure 4.15. This GUI proved to
be very useful since it saved a lot of time when comparing the different algorithms
against each other. It was also very convenient and easy to add new functions and
remove old ones.

Figure 4.15: Graphical user interface (GUI) used to test each func-
tion and algorithm

The GUI is divided into four different sections: plot, parameter finder, event
detection and other.
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The "plot" section lists all the function that are used to plot graphs. It could
for instance be to plot the magnitude of a forward fall.

The "parameter finder" section contains the functions that are used to find
different thresholds for the algorithms.

The "event detection" section contains functions that are used to calculate
specificity and sensitivity of each algorithm.

Lastly, the "other" category contains functions that might be useful but was
not part of any algorithm or function.

4.4 Testing Previous Fall Detection Algorithms

The literature study done before the start of this Master’s thesis project gave a
lot of knowledge about the general concept of fall detection. It gave a good idea
on how the development of the fall detection algorithm could be done but it also
showed the different algorithms and results of the previous studies and what they
had found. This gave the opportunity to verify the precision and accuracy of the
developed algorithm in this Master’s thesis project. By comparing the result of
this Master’s thesis project against previous studies it gave a good idea on the
quality of the fall detection algorithm.

A couple of different tests with previous algorithms were done to see their
overall performance. It has to however be taken into account that some of these
studies only focused on falls and did not focus on a wide range of ADLs. It
was noticed that fast movements such as running and jumping could be detected
as a fall and some of the previous researched did not test this, unlike what has
been done in this Master’s thesis project. It was also seen that external BWC
movements had the chance of triggering the fall detection algorithm. The tests
was done by using the different parameters together with the algorithm that was
found in the previous research against the collected data set from this Master’s
thesis project.

4.5 Fall Detection Algorithm Development

The development of the fall detection algorithm has been an iterative process,
meaning that new functionality was continuously added. The decision whether a
new function was going to be kept or not was decided based on the sensitivity and
specificity values it received upon testing. It was easy to keep track of previous
result or to retest an old algorithm with the help of the GUI shown in Figure
4.15. The reason for choosing an iterative process was because the algorithm
development required a lot of repetitive testing e.g. when changing parameters
and adding new features, so it seemed only natural to go with this process.

4.5.1 Algorithm Development using Thresholds

The reason for exploring and testing thresholds was because a lot of previous
research [1], [2], [3], [4] had used thresholds as part of their core algorithm and



Method 41

also received very promising results, see Section 1.7, Previous Work. Another
reason was because the idea also seemed easy to understand and implement.

The main idea behind thresholds is that a value is determined to be set as
a threshold. If that value is reached it will be triggered and noticed. It is also
possible to have multiple thresholds and each threshold could represent different
things. Example of such thresholds that have been used in this Master’s thesis
project are explained below. By using thresholds it opened up many opportunities
for testing and experimenting. The process of finding the best mix of threshold
was an iterative process as previously mentioned.

Magnitude Thresholds

The accelerometer and gyroscope produced sensor data in its three axis x, y and z
which can seen as a vector as previously mentioned. The magnitude is calculated
by combining each of these values using equation 3.1, i.e. equation 3.2 and 3.3 for
the accelerometer and gyroscope respectively. The reason for using the magnitude
is because the directional information of the vector is lost after calculating its
magnitude. This is a good thing since it allows the BWC to be placed in an
arbitrary position, e.g. it does not matter if the camera is turned up or down
or slightly tilted since the magnitude will be the same. This means that the
BWC position during the data collection did not have to be identical between
each recording.

The magnitudes thresholds that have been used in this Master’s thesis project
is a lower fall threshold (LFT) for the accelerometer, an upper fall threshold (UFT)
for the accelerometer and an UFT for the gyroscope. The reason for choosing these
particular thresholds was because other previous research [1], [2], [3], [4] have used
these magnitude thresholds. There was also some testing done that lead to the
conclusion that these thresholds were a good fit for fall detection. The three
thresholds can be seen as the red horizontal lines in Figure 4.16.

Another kind of threshold that has been used was found after studying different
graphs of both falls, ADLs and external daily BWC movements. It was found that
all the falls were under a certain threshold in both the accelerometer magnitude
and gyroscope magnitude. With the help of this knowledge it was decided to add a
maximum threshold for removing too large magnitude signals, these large signals
were often present in external daily BWC movements. An example of such a signal
can be found in Figure 4.14. The reason for adding these additional thresholds
was because it was an easy way to remove and distinguish between falls and large
magnitude signals. It was also easy to implement these additions to the algorithm.
A graph including all the thresholds can be found in Figure 4.17.

A sliding time window had also to be selected for detecting a fall. If all the
three thresholds (LFT, UFT and UFT) were exceeded within this time window
that meant that a fall had occurred. An example of such time window could be
1.5 s, and a shorter one of 0.5 s can be seen in Figure 4.16 as the yellow area. So
each time window required a separate search. A fall happens very fast but can also
vary slightly in duration so it was important to make sure that the fall window
was of appropriate length. The size of the time window was determined through
testing and studying the results.
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Figure 4.16: A simple threshold function using three thresholds
LFT_acc, UFT_acc and UFT_gyr and a time window of 0.5
s, as presented by Huynh et al. [1]-[2], visualized on a forward
fall.
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Figure 4.17: All the magnitude thresholds.
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Magnitude Thresholds with Order

After plotting a couple of graphs and then studying and examining each one, it
was discovered that all the falls shared a similar pattern. Figure 4.12 and 4.16
shows examples of fall patterns, when falling in two different directions. It can be
seen that the plot dips down before rising up to its top. Because of this, another
requirement was implemented that checked the order in which each threshold was
exceeded. The order for this was that the accelerometer LFT had to first be
exceeded before both UFTs for it to be classified as a fall.

A explanation behind the appearance of a fall signal is because when a person
falls to the ground the person is in a state of free fall in the direction of the gravity,
true free fall occurs when the accelerometer shows 0 g. The duration a person is
in this state depends on the height of the fall. Upon hitting the ground, there is
a quick change in the direction of the acceleration, to stop the accumulated fall
velocity in a short period of time, which means that the graph will spike up. The
aftermath of a fall is usually that the person is unable to move for a short amount
of time and that explains the flat line. The gyroscope shows there is a lot of change
in angular velocity which is another sign of a fall.

Falling Index Thresholds

As previously mentioned in the Theory chapter, FI is a measurement that de-
termines how much a signal is changing during a time window. Since each time
window produced a single value it meant that the falling index could be plotted.
Figure 4.18 shows an example of a falling index plot of a fall and a short jog. The
graph showing the fall also includes all the FI thresholds.

After studying and examining different FI graphs of falls, ADLs and external
BWC movements it was found that falls happened within a certain range of FI
values. For this reason, just like with the maximum and minimum magnitude
thresholds, a minimum FI threshold for accelerometer, a maximum FI threshold
for accelerometer and a maximum FI threshold for gyroscope were introduced.

A fall is in general an action that is very fast compared to an ADL such as
jogging or sitting down. This means that a high value will be obtained when cal-
culating the FI during a fall. After inspecting different falling graphs the discovery
was made that this does necessary not mean that the accelerometer and gyroscope
will produce high values during a fall. This meant that these falls would not be
detected if compared to the magnitude thresholds previously mentioned since their
values were too low. This issue could however be solved by introducing an upper
FI threshold for the accelerometer and gyroscope. This was done by if the signal
exceeded the accelerometer and gyroscope FI thresholds the magnitude thresholds
(both UFTs) would be lowered. By doing this, a couple of falls that had low
magnitude values compared to other falls could still be detected as falls.

Simple Moving Average Thresholds

The last kind of threshold that was used in this Master’s thesis project was a sim-
ple moving average threshold for the accelerometer magnitude and the gyroscope
magnitude. The SMA is calculated using equation 3.7 and produces one value.
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(a) Falling index of a forward fall and all the FI thresholds.

(b) Falling index of a jog.

Figure 4.18: Two figures of falling index plots for a forward fall and
jogging.
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As previously mentioned the SMA can be a helpful tool for filtering out noise and
unwanted spikes in a signal by making the signal smoother.

The reason for introducing the SMA threshold was because it was seen that a
fall often produces a much higher SMA value compared to an ADL or an external
BWC movement. It was also seen, after inspecting multiple graphs of different
types, that a fall produces a wider signal which was the reason why it gave a high
SMA value. A wide signal signifies that an event happened over a longer time
period compared to an event with a narrow signal. This means that a lot ADLs
and external BWC movements could avoid fall detection by setting a sufficiently
large SMA threshold. Just like with the magnitude thresholds, a maximum SMA
threshold for accelerometer and a maximum SMA threshold for gyroscope was
added. A SMA plot including all the thresholds for a fall is shown in Figure 4.19.
The zero-padding in the end of the SMA signal is present since SMA produces
fewer values than the length of the original magnitude signal.

Figure 4.19: The simple moving average signal of a fall forward.

A SMA plot for jogging is shown in Figure 4.20

4.5.2 Signal Shifting to Detect Repetitive Patterns

This idea was tested and explored with the help of the method mentioned in
Section 3.8. The goal behind this method was that if a signal was very long and
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Figure 4.20: The simple moving average signal of a jog.

contained a lot of repetitive patterns it would be easier to identify which part of the
signal contained an event, such as a fall. A signal containing repetitive patterns,
such as walking or running, could be evened out to a certain degree with the help
of this method. This meant that the resulting signal would be somewhat close to
a flat line during the repetitive part of the signal. This method had not been tried
in previous research but seemed easy to implement and test and for that reason it
was proceeded. It also seemed to have the potential to give good results.

4.5.3 Filtering to Remove Shaking

This method was used with the goal of trying to filter and remove unwanted
shakings and disturbances that occurred in the signals. The result of this would
be that each signal would be easier to read and do calculations on. The first step
in this process was to find the frequency range of which shakings and disturbances
occurred. This was done with the help of Fourier Transform that was briefly
explained in Section 3.4. After finding the frequency range of shakings, a high
pass filter could then be applied to get rid of these frequencies. The filter functions
used were from the SciPy Python library.

4.5.4 Modifications to Falling Index

The initial falling index was calculated with the formula shown in equation 3.6.
Although the result from this equation was very promising, it could still be further
improved. With the help and assistance of a supervisor, it was suggested to make
the window size for each axis one step larger. The reason for this was because it
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was supposed to give a slightly more even signal and also to filter out a couple
more small spikes and unwanted noise. The initial sample distance window size
was two and the new window size became three. The equation for the new falling
index formula is shown in equation 4.3.

FI =
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4.5.5 Inactivity Measurement After Possible Fall

This technique was introduced in an attempt to remove external BWC movements
that involved dissociation between the BWC and the user. Example of such ex-
ternal BWC movements is when a user is placing the BWC on a table or in the
docking station.

The aftermath of a fall is usually that the person is unable to move for a short
amount of time and it is easy to think that there is going to be complete inactivity
during this period. This is however not the case since the person will bounce
a little bit on the ground upon falling. On the other hand, when putting the
BWC down on a table the sensors will show no change because in this situation
the BWC is completely still. Graphs that demonstrate this is shown in Figure
4.21. The yellow windows in the figure are the inactivity measurement windows.
A calculation can therefore be made to separate a fall from this kind of external
BWC movement. This would then result in an overall better and more accurate
fall detection algorithm.

This method is performed by doing a calculation on the accelerometer mag-
nitude signal one second after the fall detection. This calculation is done by
summarising the absolute value of the difference between the signal value and the
gravitation, which is 1, for each sample over a time period of 1 s. Another thresh-
old was then introduced and if the value is lower then the threshold it will not be
classified as a fall.

4.6 Optimizing an Algorithm for Different Purposes

The main goal of the developed algorithm was to detect falls. This means that it
was important that all the falls get detected and it was acceptable with a couple
of false fall detections. The reason for this was because one of the end user of
the BWC was police officers and it was important to capture all potential useful
footage. It was decided that this trade-off between detecting all falls and avoid
false fall detections was acceptable and necessary.

This however does have some drawbacks on the overall performance and accu-
racy since a slow and light fall will cause all the parameter values used for thresh-
olds to be lowered. By having lower thresholds this also means that a couple of
ADLs and external BWC movements maybe be falsely detected as falls.

Because of this, it was decided to create two different sets of parameters. The
first set of parameters was about capturing and detecting all the falls, meaning
that the sensitivity for falls was 100% and the value of the specificity for ADL
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Figure 4.21: The upper graphs shows the inactivity measurement
after a fall. The lower graph shows the inactivity measurement
after putting the BWC on a table.
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and external BWC movements was arbitrary. The measurement for performance
is done with the sensitivity and specificity metric explained in Section 3.11. The
second set of parameters was created with the goal of trying to get a high value
on the sensitivity for falls while also prioritizing a high value on the specificity for
ADLs and external BWC movements. This means that the target was to get a as
high value as possible on all three metrics.

4.7 Method for Measuring Algorithm Performance

The measurement to determine how good an algorithm performs, is done with
the sensitivity and specificity metric explained in Section 3.11. In this Master’s
thesis project a total amount of 340 data files have been collected. These data
files were also used to determine how good each algorithm was. From these data
files a training set and a testing set was created. The training set was used to find
all the different parameters for the threshold. These parameters was then later
used when testing teach algorithm on the test set. It is important to separate the
training set from the test set in order to get a correct and unbiased result. To
find these different sets, the cross validation method explained in Section 3.12 has
been used.

The second test on the different fall detection algorithms was done by using
the entire database to find two sets parameters. The first set of parameters was
about trying to detect all the falls, meaning that the sensitivity for falls should
be 100% and see how this affected the specificity of ADLs and external BWC
movements. The second set of parameters was about trying to optimise all three
metrics, sensitivity for fall and specificity for ADLs and external BWC movements.
This was also mentioned in the previous section.



Chapter 5
Results

This chapter will contain all the findings and results that have been made in this
Master’s thesis project. The results will be presented using tables and graphs
together with descriptive text. The structure of this chapter will include seven
sections where each section will contain and explain its own kind of result.

The first section will contain the five different algorithms that have been de-
veloped. The second section will contain the different parameters that have been
used for each algorithm. It can be noted that each algorithm will have two sets
of parameters. The third section contains the performance and accuracy of each
algorithm. This section will show how good each algorithm was. The fourth sec-
tion will contain the result after testing algorithms from previous research on the
data set that was produced in this Master’s thesis project. The last section will
be about the cross validation method. The decision was made to carry out this
method only on the best performing algorithm. The reason for this was that it
seemed futile and meaningless to do it with a worse performing algorithm since it
will mostly likely not be used in the final product. The last two sections will be
about the results found when time shifting and filtering a signal.

5.1 The Developed Algorithms

This section will describe the five different algorithms have been developed and
tested. The description will contain all the thresholds and functions that the
algorithm uses. Below is a list of the algorithms and its parameters.

• Algorithm 1: This algorithm used magnitude thresholds and contained a
LFT for accelerometer, UFT for accelerometer, UFT for gyroscope, maxi-
mum UFT for accelerometer and maximum UFT for gyroscope. The order
does not matter, meaning that the order in which each threshold gets met
is unimportant.

• Algorithm 2: This algorithm contained the same thresholds as algorithm
1 but here the order in which each threshold was met mattered.

• Algorithm 3: This algorithm contained the same thresholds as Algorithm
2 and the order of meeting the thresholds was also included. Additional
thresholds that was added was the inactivity measurement, a minimum FI
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threshold for the accelerometer, maximum FI threshold for the accelerome-
ter and a maximum FI threshold for the gyroscope.

• Algorithm 4: This algorithm used SMA thresholds and contained a LFT
for accelerometer, UFT for accelerometer, UFT for gyroscope, maximum
UFT for accelerometer and maximum UFT for gyroscope. The order in
which each threshold was met mattered.

• Algorithm 5: This algorithm contained the same thresholds as algorithm
4. Additional thresholds that was added was a minimum FI threshold for the
accelerometer, maximum FI threshold for the accelerometer and a maximum
FI threshold for the gyroscope.

5.2 Algorithm Parameters

This section will show the different parameters that have been used to produce the
result shown in Section 5.3. The different parameters used for each algorithms was
brought forward, as previously mentioned, by plotting, calculating and studying
the graphs. Each algorithm will have two sets of parameters. The first set will
be named "Set 1" and will contain the parameters used when all the falls had to
be detected, meaning that the fall sensitivity had to be 100%. The second set of
parameters will be named "Set 2" and was used for getting optimal results. This
means to get a as high value as possible on all three values together (sensitivity
for falls, specificity for ADLs and specificity external BWC movements together).

A couple of parameters have remained the same throughout all the calcula-
tions. These parameters values are shown below and have been used if that specific
parameter was part of the algorithm.

• Sample rate = 200 Hz or 200 samples/s

• Window size of fall detection = 300 samples

• FI window size = 80 samples

• SMA window size = 100 samples

The different parameter values used by each algorithm is shown in Table 5.1-
5.5. The meaning behind each parameter is explained in the table description
found above each table.

Table 5.1: Algorithm 1 parameters. P1 - LFT accelerometer (g),
P2 - UFT accelerometer (g), P3 - UFT gyroscope (rad/s), P4
- Max accelerometer (g), P5 - Max gyroscope (rad/s)

Algorithm 1
P1 P2 P3 P4 P5

Set 1 0.55 1.28 1.54 13 21.3
Set 2 0.55 2.5 4.49 7.3 11
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Table 5.2: Algorithm 2 parameters. P1 - LFT accelerometer (g),
P2 - UFT accelerometer (g), P3 - UFT gyroscope (rad/s), P4
- Max accelerometer (g), P5 - Max gyroscope (rad/s)

Algorithm 2
P1 P2 P3 P4 P5

Set 1 0.55 1.28 1.54 13 21.3
Set 2 0.55 2.5 4.49 7.3 11

Table 5.3: Algorithm 3 parameters. P1 - LFT accelerometer (g),
P2 - UFT accelerometer (g), P3 - UFT gyroscope (rad/s), P4
- Max accelerometer (g), P5 - Max gyroscope (rad/s) P6 -
FI accelerometer, P7 - FI gyroscope, P8 - New accelerometer
UFT, P9 - New gyroscope UFT, P10 Minimum FI accelerome-
ter, P11 - Max FI accelerometer, P12 - Max FI gyroscope, P13
- Inactivity measurement

Algorithm 3
P1 P2 P3 P4 P5 P6 P7

Set 1 0.62 2.45 2.9 13 21.3 2 2.4
Set 2 0.55 2.5 4.49 7.3 11 2 2.4

P8 P9 P10 P11 P12 P13
Set 1 1 1 1.5 8.3 12 10
Set 2 2.49 2.5 1.5 8 11 10

Table 5.4: Algorithm 4 parameters. P1 - LFT accelerometer (g),
P2 - UFT accelerometer (g), P3 - UFT gyroscope (rad/s), P4
- Max accelerometer (g), P5 - Max gyroscope (rad/s)

Algorithm 4
P1 P2 P3 P4 P5

Set 1 0.88 1.48 1.67 2.5 7
Set 2 0.8 1.48 1.67 2.5 5.3
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Table 5.5: Algorithm 5 parameters. P1 - LFT accelerometer (g),
P2 - UFT accelerometer (g), P3 - UFT gyroscope (rad/s), P4
- Max accelerometer (g), P5 - Max gyroscope (rad/s) P6 - FI
accelerometer, P7 - FI gyroscope, P8 - New accelerometer UFT,
P9 - New gyroscope UFT, P10 Minimum FI accelerometer, P11
- Max FI accelerometer, P12 - Max FI gyroscope

Algorithm 5
P1 P2 P3 P4 P5 P6

Set 1 0.88 1.48 1.67 2.5 7 2
Set 2 0.82 1.48 1.67 2.5 7 2

P7 P8 P9 P10 P11 P12
Set 1 2.4 1 1 1.5 8.3 12
Set 2 2.4 1.4 3 1.5 8 11

5.3 Result of Developed Algorithms

This section will present the results that have been produced by the different
algorithms. The result will be presented with the help of the sensitivity and
specificity measurements. Table 5.6 will show the result of the case where the fall
sensitivity was 100% by using the first set of parameters from Section 5.2. Table
5.7 will contain the optimised results calculated with the second set of parameters
from Section 5.2. The results shown in this section was produced using all the
fall, ADL and external BWC movement data files. Each value will be shown as a
percent (%) value.

Table 5.6: Results with 100% fall sensitivity

Result 1
Sensitivity fall Specificity ADL Specificity

external
BWC move-
ment

Algorithm 1 100 12 22.6
Algorithm 2 100 13 26
Algorithm 3 100 73 57.3
Algorithm 4 100 83 98.2
Algorithm 5 100 88 98.2

5.4 Result of Previous Research Algorithms

This section will contain the result produced by algorithms with parameters from
previous research. It will be used on the same data set as in Section 5.3. Table
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Table 5.7: Optimised Results

Result 2
Sensitivity fall Specificity ADL Specificity

external
BWC move-
ment

Algorithm 1 87.3 85 53
Algorithm 2 79.7 87 66.9
Algorithm 3 92.4 73 70.4
Algorithm 4 88.6 96 99.1
Algorithm 5 92.4 95 99.1

5.8 contains the results of all the tested algorithms.

• Huynh et al. [1] [2] - This algorithm is similar to algorithm 1 shown in
Section 5.1 except that it did not include maximum thresholds.

• Bourke et al. [29] - This is a threshold based algorithm similar to algorithm
1 but did not use a gyroscope sensor.

Table 5.8: Previous research algorithms result

Previous Research Algorithms Result
Sensitivity fall Specificity ADL Specificity

external
BWC move-
ment

Huynh et al. 65.8 59 58
Bourke et al. 49.3 57 62.6

5.5 Cross Validation

The cross validation method is explained in Section 3.12 and is used to validate
how well an algorithm generalizes on new data, and somewhat validate the data
set. Because of this, it was decided to only perform the cross validation with
one algorithm. Algorithm 4 was selected for this task because it proved to be
one of the best performers by using SMA instead of the regular magnitude. The
reason for choosing algorithm 4 instead of algorithm 5 was because it consisted
of less parameters which made it more convenient and easier to test. The result
produced by these two algorithms was also very similar. Table 5.9-5.10 shows the
cross validation method used with the collected data set and algorithm 4. Table
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5.9 will show the parameters generated by each training set. Table 5.10 will show
the results produced by each test set.

Table 5.9: Cross validation parameters. P1 - LFT acceleromter (g),
P2 - UFT acceleromter (g), P3 - UFT gyroscope (rad/s), P4 -
Max accelerometer (g), P5 - Max gyroscope (rad/s)

Cross Validation Parameters
P1 P2 P3 P4 P5

Train 1 0.88 1.48 1.48 1.98 5.62
Train 2 0.88 1.48 1.67 2.08 5.62
Train 3 0.88 1.48 1.67 2.08 5.62
Train 4 0.88 1.48 1.67 2.08 5.5
Train 5 0.86 1.48 1.67 2.08 5.62

Table 5.10: Cross validation result

Cross Validation Results
Sensitivity fall Specificity ADL Specificity

external
BWC move-
ment

Test 1 93.3 80 100
Test 2 100 85 95.6
Test 3 100 100 95.6
Test 4 93.3 75 100
Test 5 93.3 85 100
Average 95.9 85 98.2

5.6 Time Shifting

The time shifting method was first introduced in Section 3.8 with the goal of
trying to detect repetitive patterns in a signal. Example of such repetitive pattern
is running and walking. The resulting signal would be more even and easier to
read which means it would be easier to find interesting information. Although
this method has not been used too much in producing the developed fall detection
algorithms, it can still be useful for possible future work.

5.7 Filtering

The filtering method is explained in Section 3.7 with the goal of removing shakings
that occurred during data collection. These shakings could for example be the
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result of the camera being unstable during recording or some other disturbances.
The frequencies of the shakings was found with the help of fourier transform.
Figure 5.1 shows a graph after applying a LPF to a jogging signal. The blue
line is the original signal and the orange line is the filtered signal. Just like with
time shifting, this method has not been used too much when developing the fall
detection algorithms. The filtering implementation was however successful so it
can still be useful for possible future work.

Figure 5.1: Jogging signal filtered with LPF
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Chapter 6
Discussion

This chapter will show the analysis and evaluation of the produced result in detail.
It will also highlight possible sources of error that could have occurred and affected
the result. Lastly, it will include some possible future work and aspects of this
Master thesis project that could be improved.

6.1 Performance

The main task of this Master’s thesis project was to develop a simple yet robust
fall detection algorithm with as high accuracy and precision as possible. A lot of
previous research mentioned in chapter 2 was able to achieve a sensitivity of 80%
and up and a specificity of 75% and up. These limits was set as a benchmark and
the goal was to, at the very least, get above these limits. The results shown in
Table 5.7 indicate that this task has been fulfilled for most of the algorithms. It
can be worth mentioning that writers of this report are overall satisfied with the
results.

Algorithms 4 and 5 ended up particularly good overall, as can be seen in
Table 5.6 and 5.7, by calculating with SMA on the magnitude instead of just
magnitude. The reason for this was because a lot of noise could be removed, or
at least lowered, by using a large enough window when calculating the SMA. It
was also seen that falls generally takes longer time compared to for example an
external BWC movement and because of this, falls would get a higher value while
calculating the SMA. This was another reason why the SMA proved to be very
useful for fall detection. It can also be seen that by comparing algorithm 1-3 with
algorithm 4 and 5 that it gave overall better results by using SMA. The reason
why algorithm 5 performs slightly better than algorithm 4 is because algorithm 5
includes more parameters. The cost of this is that it becomes more complicated to
implement algorithm 5 compared to algorithm 4 so this trade-off has to be taken
into consideration when implementing the algorithm into a BWC.

The reason behind the difference between algorithm 1 and algorithm 2 is that
the thresholds have to be met in a specific order. By including the order, it helped
to separate between falls and ADLs plus external BWC movements because most
falls followed a specific order as previously mentioned. This means that there is a
trade-off between fall sensitivity and ADL and external BWCmovement specificity.
By including order the fall sensitivity might go down while the ADL and external

59



60 Discussion

BWC movement specificity will go up. After comparing order with no order it
could be identified that including the order gave better results, as can be seen in
Table 5.7, and that was the reason why order was added to algorithm 3-5.

The FI is included in Algorithm 3 and Algorithm 5 and is used to separate falls
from ADLs and external BWC movements. It clearly works as can be seen from
Table 5.6 and improves the performance of both algorithms. It does however make
the algorithm much more complicated since it includes many more parameters, as
can be seen in Table 5.3 and Table 5.5.

The last thing worth mentioning is that there is a big difference in the result
when aiming for a 100% fall sensitivity and when looking for the overall best pa-
rameters. This can be seen by comparing Table 5.6 and Table 5.7. The reason
for this is because there can be a couple of falls that are very slow, also known
at outliers, which has a very low valued signal compared to a regular fall signal.
By including these outliers it means that the all the thresholds have to be ad-
justed drastically. This also means that specificity for ADLs and external BWC
movements will be decreased since these will now be easier to be detected as falls.
Algorithm 4 and 5 is however not too effected by this as can be seen by comparing
their result from Table 5.6 and Table 5.7 and the reason for this is because of
the SMA. If a person were to implement algorithm 1 or 2 it would probably be a
wise decision to go with the optimised parameters. The reason for this is that the
overall performance would then be much better since a lot of false fall detections
would be avoided.

6.1.1 Previous Research Performance

As can be seen in Table 5.8 the previous research algorithms did not do too well on
the data set that has been collected during this Master’s thesis project. The reason
for this was because these algorithm did not take into account some ADLs and
external BWC movements and was therefore not trained for these cases. If they
were however, there is a good chance that their performance would have increased.
It can also be noted that the way they recorded their data or their lab setup was
different from what has been done here. For example, as previously mentioned
a belt have been used during data collection and this was not how the previous
research recorded their data. This most likely also affected the overall result. It
can also be worth mentioning that no previous research mentioned calculating with
SMA.

6.1.2 Parameters

The parameters that have been used can be found in Section 5.2. These parame-
ters together with the different algorithms was able to produce promising results
and a couple of reliable fall detection algorithms. As mentioned earlier, the way
these parameters was decided was through calculations and studying graphs. This
approach might not have been the ideal way to generate these parameters and
perhaps a different method could have given different parameters and a better
result.
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6.1.3 Cross validation

The main purpose of the cross validation method was to validate how well an
algorithm would generalize on new data. It can be seen in Table 5.10 that the
received average score was good which implies that the algorithm has not been
over-fitted, and that it will generalize on new data. The five different training
and testing sets were created manually by trying to distribute the different falls,
ADLs and external BWC movements evenly. This might not have been the best
option and instead a fully randomised process to generate these sets might have
been better. This could be further explored in possible future work if the cross
validation method is used again.

6.1.4 Time Shifting and Filtering

These two methods was both successfully implemented but was for most part
unused in this Master’s thesis project since they were not needed. The reason for
introducing these in the first place was to remove noise and other unwanted signals.
This problem was however solved to a large part by including threshold order, FI
and SMA in the algorithms. The lab setup used and by recording the data with the
help of a belt instead of the clip was also of assistance in solving these problems.
That was the main reason for not using these methods any further. But these two
methods produced seem to work nevertheless and there is a possibility that they
can be useful in future work or other areas that require signal processing.

6.2 Sources of Error

Errors are part of most, if not all projects. They may vary in how much of an
effect they have on their surroundings. Some errors can be small enough so that
they can be neglected, while others must be considered carefully. It is not always
easy to determine a measure on how much impact they have on their surroundings,
but nevertheless it is always important to list sources of errors and discuss them
as much as possible. In the subsections below some error sources are described
that were considered relevant for this Master’s thesis project.

6.2.1 Authenticity of Recording Setup

All the different sensor recordings of movement patterns have been done in con-
trolled environments. The most realistic recordings were the ADL recordings,
while the least realistic ones were the falls. The reasons for this is the use of
the mattresses when performing controlled falls, see Figure 4.11, while the ADL
recordings did not require any special setup. A mattress will reduce the fall im-
pact, which is good for the subject performing the fall to avoid injuries, while as
in real life the floor or ground may be e.g. concrete or some other hard material,
which will have a higher impact. Performing falls on hard floor was never done
since it would never be considered ethically acceptable.

The use of a belt when recording movement patterns is also of some concern.
As discussed earlier in Subsection 4.1.4, Validating the Data Collection Method,
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it was used to get rid of shakings of the BWC that occurred when walking or
jogging. The shakings would mask the true movements of the subjects body. In a
way it is a good thing that only the body movements are recorded, but in real life
there will always be some shakings, depending on how sturdy the BWC has been
attached. It was however said at the beginning of this Master’s thesis work that
the end users would wear not too loose clothes which would reduce the shakings.

6.2.2 Sensor Noise and Accuracy

Sensor noise is a property that is always present and affects both the accelerometer
and gyroscope. For some applications, such as communications, noise can be a
real issue, it depends on how large noise is relative to the signal of interest. When
modifying falling index in Subsection 4.5.4, by widening the distance between
samples, it did not have too large of an effect on the measurement of falling index.
This could indicate that either the sensor does not have much noise or that the
levels of the noise are too low compared to the signal of interest.

As mentioned earlier in Section 3.1.2 and 3.2.2 of the Theory chapter, the
setting that changes the sensor output range also affects the accuracy of the sensor.
There were no apparent indications of that reduced sensor accuracy from choosing
a wider sensor output range that was large enough to impact the algorithms in a
negative way. For a majority of the developed algorithms it was shown that the
wide sensor range was useful for separating falls from some external daily BWC
movements with the use of maximum magnitude thresholds, further motivating
the trade-off.

6.2.3 Analysis Tools

In Section 4.3, Python, it was mentioned that a tool for analysing recordings
and developing algorithms was made. The tool combined many powerful libraries
to provided useful functionality throughout the Master’s thesis work. As with
any software that grows in terms of lines of code, it becomes more difficult to
guarantee the correctness of every module and function. The consequences of a
bad or faulty function could be that e.g. data recordings are misinterpreted or
results are incorrect. To avoid and to detect as many code related bugs and issues
as possible, pair programming and code reviewing was done continuously.

6.3 Future Work

In this section, future work that is of interest to look further into is presented.
The future work can be both in terms of new ideas or solutions to some of the
error sources discussed in the previous section.

6.3.1 Different Placements of BWC

As the BWC is limited to a chest placement to be able to properly record video,
it was decided not to explore any other placement of the sensors as stated in the
delimitations of this Master’s thesis work. However, for detecting falls in a general
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case it might be of interest to study different sensor locations, e.g. wrist, waist,
pocket and leg in the future. Fall detection features are starting to appear in some
smartwatches, indicating that even though it seems difficult to use the information
from a sensor placed here as indicated by some articles, it is still possible. It is
not impossible to imagine putting multiple sensors across the subjects body that
work together, if it is able to improve different aspects of fall detection. In this
case, of course the user convenience cost must be taken into consideration.

6.3.2 Data Collection

There are a few ways in which data collection can be improved and extended in
this Master’s thesis work.

More Data

Collecting more data recordings of the same movement patterns can give a better
understanding of the signal variations of specific movements. Collecting more
different data recordings, such as other ADLs or more falls combined with ADLs
will give a better understanding of which movements are a problem, allow them to
be studied and eventually make it possible to separate them from falls with great
confidence, improving the algorithm.

Collect Data From More Subjects

Increasing the amount of subjects participating in the data recordings will give a
better understanding of how falls vary between different people of different weights,
lengths and flexibility. As of now most of the recordings have been done by the
two students writing this Master’s thesis work, see Section 4.1, Data Collection
Method.

It could also be of interest to try and compare collected data to what is avail-
able online, while remaining cautious on the different aspects of the data collection
methods that have been used.

More Realistic Recording Setup

As discussed in the sources of error section previously, the usage of mattresses
when falling makes the recordings less realistic. A solution to this could be to
collect data from the real users of the BWC and ask them to take notes during
the day of what they are doing for both ADls and falls.

6.3.3 Machine Learning

Since there are much research on machine learning within the context of fall detec-
tion, see Section 1.7, it would be interesting to see in what different ways it could
be applied to solve the problem and if it can improve the accuracy of the algorithm.
It does not necessarily have to be used for detecting falls, but instead as a way
to find good parameters for the threshold algorithms presented in this Master’s
thesis work. Although the results produced in this Master’s thesis project was
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very promising, it could very well be further improved with the help of machine
learning.

6.3.4 Push Detection

An idea to further improve the developed algorithm could be to also make it able
to detect different pushes. The main focus of this Master’s thesis project has been
to determine if it was possible to detect falls using accelerometers and gyroscopes,
and if possible how this could be done. As the threshold algorithms presented was
focused on fall detection it will not perform very well for push detection since they
are two distinct movements. Because of this, an idea for future research could be
to further look into possible algorithms for push detection.

There has already been some data recordings of pushes done and there already
been exist a framework for analyzing the data so it could help to speed up this
process.
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Conclusions

Five different threshold based algorithms have been developed during this 20 week
process. Algorithm 1 - 3 used magnitude in their calculations while algorithm 4 and
5 used SMA instead. After testing and verifying each algorithm, it was revealed
that all of them gave overall good results but the algorithms using SMA performed
better. The conclusion could also be drawn that the performance increased if the
algorithm included FI thresholds. These claims could be further strengthened
by comparing the results from this Master’s thesis project with previous research
algorithms since neither of these used FI or SMA.

Data from the sensors were recorded by the two writers of this report and then
saved. A data set was then built up consisting of different falls, ADLs and external
BWC movements. This data set was then used to find the different parameters
for each algorithm which then led to the results.

Two different approaches have been taken when finding the results. The first
set of results had the requirement of demanding a 100% fall sensitivity while the
second set of results aimed for overall best performance. It could be seen that
the optimised result was to be preferred for algorithm 1 - 3 while for algorithm 4
and 5 the difference was not too big. The trade-off between achieving 100% fall
sensitivity and overall performance was very considerable for algorithm 1 - 3.

Similar to the result reported from previous research, the best algorithms
developed in this Master’s thesis project was able to achieve a fall sensitivity of
close to 100% and an ADL specificity around 90%. None of the previous research
had however tested their algorithm on external daily BWC movements which has
been done here and this could be seen when comparing the results. Since these
movements are done regularly it can be said that these movements should be
included in order to avoid a lot of false fall detections.

To comment on the research questions stated in the beginning of the report,
the high sensitivity score concludes that it is possible to detect falls using an
accelerometer and a gyroscope accurately. The high specificity concludes that it
is possible to distinguish between falling movements and other daily movements.
The algorithms can be made very simple by using only a few parameters as has
been shown, with good results, and it is therefore expected to be very robust.

Methods for removing repetitive patterns and filtering unwanted noise have
also been developed. It was however shown that the sensor data produced by the
BWC did not contain too much noise and because of this no attempt to modify
the signals was needed.
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Possible future work would be to get additional data from more participant
in order to get a better variety and distribution. Different methods for finding
parameters could also be further investigated, such as including machine learning
into this process. It would definitely also be interesting to see how different place-
ments of the BWC would affect the data and the entire algorithm. There is still
many things that can be explored and new methods to be tested. It can however
be said that a well functioning fall detection algorithm implemented into a device
can definitely improve the safety of its user in today’s fast developing world.
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