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1 Abstract

A transition probability is essentially a likelihood of ’something random’ transi-
tioning from one state of being to another. Though, more formally, for all intents
and purposes, the ’something random’ is a sequence of random events, which is
a stochastic process.

There are many stochastic processes that are valuable to understand. Ex-
amples can be found in a multitude of topics, from finance to biology and physics.
Many naturally occurring stochastic processes cannot be explicitly defined. How-
ever, there are many stochastic models that describe their behaviour very well.
Once a stochastic model is established, transition probabilities for the underlying
stochastic process can also be described, which in turn allows some predictability.

Estimations of transition probabilities are often limited in terms of conver-
gence. The Euler-Maruyama (E-M) method for instance, is a numerical method
for approximating Stochastic differential equations that represent the behaviour
of stochastic processes. This means that it effectively approximates transition
probabilities between time-steps of a process. The E-M method is weakly con-
vergent with order 1, which entails that the error of the approximation decreases
linearly with the size of the time-step.

In this study, the aim is to beat the aforementioned linear decrease in error
of approximation via an analytic approximation using a combination of the E-M
method and the Laplace method for some well known stochastic models. The two
methods work neatly in conjunction, however, a correctional function is necessary
for the Laplace method to work due to the nature of the problem. The resulting
approach shows astonishingly good results with room for further improvements.
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2 Transition Probability

A transition probability is the probability of transition of a stochastic process from a certain state
X(τi) = xi to another. State changes will often be time dependent and so the transition probabilities
are as well. The probability in (1) symbolizes the probability of a process Xt being in state xN at time
τN given that at time τ0 the process was in state x0

p(XτN = xN |Xτ0 = x0) . (1)

When analysing transition probabilities of a time dependent process Xt, as in (1), it is an advantage to
look at an interval of time [0, T ] partition into n equidistant subintervals 0 = τ0 < τ1 < τ2 < . . . < τN =
T . For notational simplicity the transition probability in (1) is written: p(XτN |Xτ0).

The approximation of transition probabilities considered in this study is approached by attempting to
adapt the probabilities to an integral form for which Laplace method is applicable. In order to express
(1) in integral form, the process Xt is assumed to be Markovian1, which is the case for many relevant
stochastic models. Then by using the Law of Total Probability, and the Strong Markov Property2,
the transition probability (1) can be expressed as an integral of a product of transition probabilities as
follows.

p(Xτn |Xτ0) =

∫
Ω

p(Xτn , Xτn−1
, ..., Xτ1 |Xτ0)dXτn−1

, ..., dXτ1

=

∫
Ω

p(Xτn |Xτn−1)·p(Xτn−1 |Xτn−2)·...·p(Xτ2 |Xτ1)·p(Xτ1 |Xτ0)dXτn−1 , ..., dXτ1 .

(2)

The transition probability factors inside the integral can be represented as Gaussian by utilizing the
Euler - Maruyama (E-M) method which is focal to then applying the Laplace method to (2).

Euler-Maruyama Method

The E-M method is a numerical approximation of a stochastic differential equation (SDE). The main
application of the E-M method in this study, is that it enables the factors p(Xτi |Xτi−1) in (2) to be
represented as Gaussian densities. The following is to show the reasoning behind the E-M method.

The E-M method approximates a SDE of the following form. (where a, b are potentially some C4 smooth
functions)

dXt = a(Xt)dt+ b(Xt)dWt ,

with initial condition X0 = x0 and where Wt is the Weiner process with independent Gaussian incre-
ments and W0 = 0.

The E-M approximation is found through means of a discretization of the interval of interest such as
0 = t0 < t1 < t2 < ... < tN = T in a typical case [0, T ], where δ = tn − tn−1 = T/N for n ∈ {0, ..., N}
Xn is now recursively defined as

Xn+1 = Xn +

∫ tn+1

tn

a(Xt)dt+

∫ tn+1

tn

b(Xt)dWt .

By Itô - Taylor expansion the following approximations are made:∫ tn+1

tn

a(Xt)dt ≈ a(Xn)δ ,

1The process is only dependent on the last known value
2τi are stopping times for the process
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∫ tn+1

tn

b(Xt)dWt ≈ b(Xn)∆Wn .

The following recursive relationship can be tested numerically for convergence order

Xn+1 = Xn + a(Xn)δ + b(Xn)∆Wn ,

with ∆Wn = Wn+1 −Wn ∼ N(0, δ) . It is commonly known that if X is Gaussian with mean µ and
variance δ then

Z =
X − µ√

δ
⇒ ∆Wn ∼

√
δN(0, 1)

where Z is standard Gaussian. In other words, the probability to transition from Xn to Xn+1 is Gaussian
with mean a(Xn)δ and standard deviation b(Xn)

√
δ, from the E-M method it follows that

p(Xτn+1 |Xτn) ∼= ϕ
(
Xτn+1 ;Xτn + a(Xτn)δ, b(Xτn)

√
δ
)

(3)

where ϕ (X;µ, σ) is common convention for that X is a Gaussian variable with mean µ and standard
deviation σ.

Laplace Method

The Laplace method is now relevant as the factors p(Xτi |Xτi−1) are of the form

1

σ(Xτi−1
)
√

2πδ
exp

−1

2

[
Xτi − a(Xτi−1

)δ)
√
δb(Xτi−1

)

]2
 ,

where b(Xτi−1) and a(Xτi−1) represent some functions which determine the standard deviation and
expectation of Xτi respectively. Utilizing the fact that products of exponentials are exponentials of
sums, it is reasonable to say that the integral in (2) will have the form∫

Ω

g(Xτn , Xτn−1
, . . . , Xτ0)ef(Xτn ,Xτn−1

,...,Xτ0 )dXτn−1
, . . . , dXτ1 ,

which is precisely the type of function that the Laplace method is made to approximate.

The Laplace approximation gives an analytic approximation of an integral of the form∫
Ω

g(x)ecf(x)dx ,

If the function f of variables x = x1, x2, ..., xn from some domain Ω to the real numbers Rn, (f : Ω −→
Rn), has a unique maximum xF in Ω, is three times differentiable close to x and (g : Ω −→ Rn) is
continuously differentiable in said neighbourhood and bounded in Ω, then:∫

Ω

g(x)ecf(x)dx = ecf(xF)

(
2π

c

)n
2

(
g(xF)√

detH(f)(xF)
+
O(c)√
c

)
, (4)

where H(f)(xF) represents the Hessian of f evaluated at xF.

Here O(c) is an error term function which decreases faster than
√
c as c grows, c is a scalar and the crux

(arguably) of the approximation is that it grows more accurate as c increases ( Lapiński, 2019). When
dealing with a single variable, the approximation can be written as:∫

Ω

g(x)ecf(x)dx = ecf(x)F

√
2π

c|f ′′(xF)|

(
g(xF) +

O(c)√
c

)
. (5)
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2.1 Explicit Solution to a Simple Transition Probability

In order to test the validity of using the Laplace method, it is appropriate to look at the case when
n = 2 since the conditional probability can be solved explicitly, and compare the result with the Laplace
approximation. Following the expression in (2), the transition probability when n = 2 is written

p(Xτ2 |Xτ0) =

∫
Ω

p(Xτ2 |Xτ1)·p(Xτ1 |Xτ0)dXτ1 . (6)

The conditional probabilities in the integral are then evaluated using the explicit E-M method. In other
words, the conditional distribution of Xτ1 given Xτ0 will inherit parameters from the distribution of the
process at the previous time-step Xτ0 as discussed in the previous section. Then,

p(Xτ1 |Xτ0) ∼= ϕ
(
Xτ1 ;Xτ0 + µ(Xτ0)δ, σ(Xτ0)

√
δ
)

=
1

σ(Xτ0)
√

2πδ
e
− 1

2

[
Xτ1
−(Xτ0

+µ(Xτ0
)δ)

√
δσ(Xτ0 )

]2

,

with

δ = τi − τi−1 .

The conditional probability of Xτ2 on Xτ1 does not need to inherit parameters since information about
the process at the end point of the interval is already known. So instead the implicit3 E-M is used to
infer parameters for Xτ1 . Hence,

p(Xτ2 |Xτ1) ∼= ϕ
(
Xτ2 ;Xτ1 + µ(Xτ2)δ, σ(Xτ2)

√
δ
)
,

due to the form of ϕ the above is identically:

ϕ
(
Xτ1 ;Xτ2 − µ(Xτ2)δ, σ(Xτ2)

√
δ
)
.

The integral (6) can then be written as:

C0,2 ·
∫

Ω

exp

(
−1

2

([
Xτ1 − (Xτ2 − µ(Xτ2)δ)√

δσ(Xτ2)

]2

+

[
Xτ1 − (Xτ0 + µ(Xτ0)δ)√

δσ(Xτ0)

]2
))

dXτ1 ,

with

C0,2 =
1

σ(Xτ0)
√
δσ(Xτ2)

√
δ
√

2π
√

2π
=

1

σ(Xτ0)σ(Xτ2)δ2π
.

This indefinite integral can be solved assuming µ(Xτ2), µ(Xτ0), σ(Xτ2) and σ(Xτ0) do not depend on
Xτ1 , which in this case is a reasonable assumption since the process at τ0 and τ2 are known. In the
following, µ(Xτi)δ = µi and σ(Xτi) = σi are used for cleaner expressions.(

− 1

2δ

)
f(Xτ1) =

(
− 1

2δ

)([
Xτ1 − (Xτ2 − µ2)

σ2

]2

+

[
Xτ1 − (Xτ0 + µ0)

σ0

]2
)
,

f(Xτ1) =

(
1

σ2
2

)[
X2
τ1 − 2Xτ1(Xτ2 − µ2)

]
+

(
1

σ0
2

)[
X2
τ1 − 2Xτ1(Xτ0 + µ0)

]
+ α

=

(
1

σ2
2σ0

2

)[
(σ0

2 + σ2
2)X2

τ1 − 2Xτ1(σ0(Xτ2 − µ2) + σ2(Xτ0 + µ0))
]

+ α ,

where α does not contain any Xτ1 terms and

3Analogous to the explicit E-M but for a step ’back’ in time. The implicit E-M requires more conditions than the
explicit E-M on σ(Xτi ), however for the purpose of the explicit solution it can be assumed that the conditions are met
without impeding on the result.
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α =

(
(Xτ2 − µ2)2

σ2
2

)
+

(
(Xτ0 + µ0)2

σ0
2

)
.

Completing the square gives

f(Xτ1) =

(
1

σ2
2σ0

2

)
(σ0

2 + σ2
2)

[
Xτ1 −

σ0(Xτ2 − µ2) + σ2(Xτ0 + µ0)

(σ0
2 + σ2

2)

]2

+ α− β ,

where β does not contain any Xτ1 terms and

β =
[σ0(Xτ2 − µ2) + σ2(Xτ0 + µ0)]2

σ2
2σ0

2(σ0
2 + σ2

2)
.

The integral (6) can now be represented as

C0,2 ·
∫

Ω

e−
1
2δ [f̂(Xτ1 )+α−β]dXτ1 ,

where f̂(Xτ1) = f(Xτ1)−α+β. Recall that α and β do not contain the integrand, so they can be moved

out of the integral. Also recognize the form of f̂(Xτ1) and rewrite the coefficient C0,2

f̂(Xτ1) =

(
σ0

2 + σ2
2

σ2
2σ0

2

)
[Xτ1 − ξ]

2
,

C0,2 =
1

σ0σ2δ2π
=

1
√
σ0

2 + σ2
2
√
δ2π

(√
σ0

2 + σ2
2

σ0σ2

√
δ2π

)
.

The above entails that∫
Ω

p(Xτ2 |Xτ1)·p(Xτ1 |Xτ0)dXτ1 =
e−

1
2δ [α−β]

√
σ0

2 + σ2
2
√
δ2π

∫
Ω

(√
σ0

2 + σ2
2

σ0σ2

√
δ2π

)
e−

1
2δ f̂(Xτ1 )dXτ1 . (7)

At this point, the form of a density function of a Gaussian random variable with some 1
σ̂ =

(√
σ0

2+σ2
2

σ0σ2

√
δ

)
and some µ̂ = ξ becomes apparent. Since the domain of integration is the entire state-space, the integral
part of (5) is simply the total probability: 1, what remains is:

p(Xτ2 |Xτ0) =
e−

1
2δ [α−β]

√
σ0

2 + σ2
2
√
δ2π

. (8)

Further evaluating the exponent in (6) :

α =

(
(Xτ2 − µ2)2

σ2
2

)
+

(
(Xτ0 + µ0)2

σ0
2

)
,

β =
[σ0(Xτ2 − µ2) + σ2(Xτ0 + µ0)]2

σ2
2σ0

2(σ0
2 + σ2

2)
,
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so,

α− β =
1

σ2
2σ0

2(σ0
2 + σ2

2)
[(Xτ2 − µ2)2σ0

2(σ0
2 + σ2

2) + (Xτ0 + µ0)2σ2
2(σ0

2 + σ2
2)− (σ0

2)2(Xτ2 − µ2)2

− σ2
2σ0

2(Xτ2 − µ2)(Xτ0 + µ0)− (σ2
2)2(Xτ0 + µ0)2]

=
(Xτ2 − µ2)2 − (Xτ2 − µ2)(Xτ0 + µ0) + (Xτ0 + µ0)2

σ0
2 + σ2

2

=

(
((Xτ2 − µ2)− (Xτ0 + µ0))2

σ2
0 + σ2

2

)
=

(
((Xτ2 −Xτ0)− (µ2 + µ0))2

σ2
0 + σ2

2

)
.

(9)

The result has the form of a Gaussian density function which depends on the initial and final points of
the process

p(Xτ2 |Xτ0) =
1

√
σ0

2 + σ2
2
√
δ2π

exp

[(
− 1

2δ

)
((Xτ2 −Xτ0)− (µ2 + µ0))2

σ2
0 + σ2

2

]
= ϕ

(
Xτ2 −Xτ0 ;µ(Xτ2)δ + µ(Xτ0)δ,

√
(σ2(Xτ0) + σ2(Xτ2))δ

)
.

In essence, what is going on is illustrated in figure 1. An approximation of the intermediate distribution
at time τ1 is inferred from the distributions at times τ0 and τ2. The E-M approximation becomes
increasingly accurate as the distance between intermediate points decreases. In other words, the smaller
|τ1 − τ0| is, the smaller the error in the E-M estimate of the distribution at Xτ1 becomes.

Figure 1: Illustration of possible distributions of an Arithmetic Brownian Motion process Xt at times
τ0 and τ2 as well as an E-M approximated distribution at time τ1. The green hatched arrow shows a
hypothetical most probable path.
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2.2 Laplace Method Solution to a Simple Transition Probability

Having solved the integral in (6) explicitly, the result can be compared to the Laplace method approxi-
mation. As before

p(Xτ2 |Xτ0) = C0,2 ·
∫

Ω

exp

(
− 1

2δ
f(Xτ1)

)
dXτ1 ,

f(Xτ1) =

([
Xτ1 − (Xτ2 − µ2)

σ2

]2

+

[
Xτ1 − (Xτ0 + µ0)

σ0

]2
)
,

C0,2 =
1

σ(Xτ0)σ(Xτ2)δ2π
.

The transition probability follows the desired form, f(Xτ1) is three times differentiable, and g(x) =
1 (while assuming C0,2 does not depend on Xτ1). The derivatives are then needed to evaluate the
approximation, here again it is assumed that µ(Xτ2), µ(Xτ0), σ(Xτ2) and σ(Xτ0) do not depend on Xτ1 :

f ′(Xτ1) =
2

σ2
2

(Xτ1 − (Xτ2 − µ2)) +
2

σ2
0

(Xτ1 − (Xτ0 + µ0)) ,

f ′′(Xτ1) =
2

σ2
2

+
2

σ2
0

.

Then setting f ′(Xτ1) = 0 to find the maxima

Xτ1

(
1

σ2
2

+
1

σ2
0

)
=

1

σ2
2

(Xτ2 − µ2) +
1

σ2
0

(Xτ0 + µ0) ,

which implies that the maxima

XF
τ1 =

σ2
0σ

2
2

σ2
0 + σ2

2

(
1

σ2
2

(Xτ2 − µ2) +
1

σ2
0

(Xτ0 + µ0)

)
=

σ2
0

σ2
0 + σ2

2

(Xτ2 − µ2) +
σ2

2

σ2
0 + σ2

2

(Xτ0 + µ0) .

It is now apparent that evaluating the function f at the maxima XF
τ1 :

f(XF
τ1) =

(
1

σ2
0 + σ2

2

)2

(σ2
0 + σ2

2)((Xτ2 − µ2)− (Xτ0 + µ0))2

=

(
((Xτ2 − µ2)− (Xτ0 + µ0))2

σ2
0 + σ2

2

)
,

Since

p(Xτ2 |Xτ0) = C0,2 ·
∫

Ω

exp

(
− 1

2δ
f(Xτ1)

)
dXτ1 ,

using the Laplace method approximation in (5),

p(Xτ2 |Xτ0) = C0,2 · exp

(
− 1

2δ
f(XF

τ1)

)√
2π

c|f ′′(xF)|

(
1 +
O(c)√
c

)
.

The above when evaluated at

f(XF
τ1) =

(
((Xτ2 − µ2)− (Xτ0 + µ0))2

σ2
0 + σ2

2

)
,

and
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C0,2

√
2π

c|f ′′(xF)|
=

1

σ0σ2δ2π

√√√√ 2π

1
2δ

(
2
σ2
2

+ 2
σ2
0

) =
1

√
2πδ

√
σ0

2σ2
2
(

1
σ2
2

+ 1
σ2
0

) =
1√

2πδ(σ2
2 + σ2

0)
,

gives

p(Xτ2 |Xτ0) =
1

√
σ0

2 + σ2
2
√
δ2π

exp

[(
1

2δ

)(
− ((Xτ2 −Xτ0)− (µ2 + µ0))2

σ2
0 + σ2

2

)]1 +
O
(

1
2δ

)√(
1
2δ

)
 ,

The above turns out to be the exact same as the explicit solution previously solved in 2.1 if the error
term is zero, which it is. This is not unexpected when considering the behaviour of the function f(Xτ1).
The Laplace method utilizes a Taylor expansion of the function f(Xτ1), consequentially the error term
comes from the sum of Taylor terms after the second derivative term. The function f(Xτ1) has no non-
zero derivatives after the second derivative4, and hence the error function term O

(
1
2δ

)
vanishes from the

above approximation.

2.3 Example: Arithmetic Brownian Motion

At this point it is fitting to show a simple example of what is going on using the results from 2.1 and
2.2. An appropriate simple process is the Arithmetic Brownian Motion (ABM) process Xt where µ(·)
and σ(·) of Xτ2 and Xτ0 are both µ and σ. The SDE of an ABM is:

dXt = µdt+ σdWt .

Note that µ and σ do not depend on the integrand Xτ1 ,they are in fact constants, this entails that using
the explicit E-M method, the result will be exact:

Xn+1 = Xn + µδ + σ∆Wn .

In other words, the conditional probabilities can be written as

p(Xτ1 |Xτ0) ∼= ϕ(Xτ1 ;Xτ0 + µ(Xτ0)δ, σ(Xτ0)
√
δ) = ϕ(Xτ1 ;Xτ0 + µδ, σ

√
δ) ,

p(Xτ2 |Xτ1) ∼= ϕ(Xτ1 ;Xτ2 − µ(Xτ2)δ, σ(Xτ2)
√
δ) = ϕ(Xτ1 ;Xτ2 − µδ, σ

√
δ) .

From the solution (9), the following is found for the Arithmetic Brownian Motion transition probability:

p(Xτ2 |Xτ0) ∼= ϕ
(
Xτ2 −Xτ0 ; 2µδ, σ

√
2δ
)
,

where if T = 1 and δ = 1
2

p(Xτ2 |Xτ0) ∼= ϕ (Xτ2 −Xτ0 ;µ, σ) .

The result is a Gaussian form distribution with parameters that agree with the model being estimated,
and some representation of Xτ1 in terms of Xτ2 and Xτ0 . In other words for this relatively straight
forward process, the conditional probability corresponds to the probability of a change in the process
Xt of magnitude Xτ2 −Xτ0 over the time period T . Note that this was for n = 2 and µ(Xτ2), µ(Xτ0),
σ(Xτ2) and σ(Xτ0) do not depend on Xτ1 . However, when n > 2 and if µ(Xτi), σ(Xτi) are dependant
on (Xτj ) for i 6= j ∈ (1, ..., n− 1) an explicit solution will be far less trivial.

4Since we have assumed that µ(Xτ2 ),µ(Xτ0 ),σ(Xτ2 ) and σ(Xτ0 ) do not depend on Xτ1
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3 The Laplace Method on General Transition probabilities

The Laplace approximation has given an exact equivalence to the explicit solution under certain con-
ditions. As mentioned previously, it would not be simple to find an explicit solution to an integral of
the form (2) when n begins to grow larger, or perhaps when the integrands begin to have dependencies
on one another, as is the case with several models of stochastic processes. This however, is where the
Laplace approximation shines.
The Laplace approximation considers the situation when the σ(Xτi)’s may have dependence on Xτj ’s for
i, j ∈ (1, ..., n − 1) that are being integrated in (2), since it considers a function g(x) in in the approxi-
mation. The approximation also considers the case where the µ(Xτi)’s depend on Xτj ’s.

It is clear from the definition of the Laplace approximation in (4) that it also allows for the multivariate
case, which is the case when increasing the number of time-steps. Due to the form of the E-M method
approximation, 1

2δ can be factored out of the function in the exponent, even in the multivariate case.
Then letting 1

2δ = c such that (2) can be written∫
Ω

g(Xτn , Xτn−1
, . . . , Xτ0)e

1
2δ f̂(Xτn ,Xτn−1

,...,Xτ0 )dXτn−1
, . . . , dXτ1

When the number of time-steps increases, the time-step size δ decreases, which then if 1
2δ = c, c will

increase, which as previously discussed will decrease the error of the Laplace approximation. i.e.

δ ↓ ⇒ 1

2δ
↑ ⇒ c ↑ ⇒ O(c)√

c
↓ ,

where the latter is the error term of the Laplace approximation. This is one of the core reasons for
considering that the Laplace method may be a perfect candidate as estimator for transition probabilities.

However, there is (of course) a caveat. The standard Laplace method is entirely capable of estimating the
transition probabilities since the functions progressively change for each increase in c. For each increase
in number of steps, the functions f(x) and g(x) increase in number of variables and are, in a sense,
amended to compensate for each new factor p(Xτi |Xτi−1). For instance, increasing n = 2 to n = 3 would
change the integral from ∫

Ω

g(Xτ2 , Xτ1 , Xτ0)e
1
2δ f̂(Xτ2 ,Xτ1 ,Xτ0 )dXτ1

to ∫
Ω

g(Xτ3 , Xτ2 , Xτ1 , Xτ0)e
1
2δ f̂(Xτ3 ,Xτ2 ,Xτ1 ,Xτ0 )dXτ2dXτ1 ,

where, though 1
2δ = c is larger in the second case when n = 3, nothing is to say that the error when

n = 3 is smaller than when n = 2. In other words, contrary to how the Laplace approximation is meant
to be used — for explicit functions — the functions to be integrated g(x), f(x) have dependence5 on c.

Hence, without altering the Laplace function, c ↑ will not necessarily minimize the error term O(c)√
c

.

3.1 Compensating for the Function Increment Dependence

The Laplace approximation does not consider function dependence on the value c. Thus, the approxima-
tion does not necessarily converge to the value of the true integral solely by increasing c. This becomes
clear when considering the evolution of gc(x) and

√
detH(fc)(x) as c grows and as the vector of variables

x grows. In order to ensure convergence, the following factor of the Laplace Approximation must be
considered:

(
2π

c

)n
2

(
gc(x

F)√
detH(fc)(xF)

+
O(c)√
c

)
(10)

5Henceforth referred to as fc(x) & gc(x) to highlight c dependence
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Considering the Hessian H(fc)(x):

Owing thanks to the Markovian assumption of the stochastic processes considered, and the E-M estima-
tion method, the Hessian of fc will be sparse since each of the xi’s will only depend on the previous xi−1

so the following holds ∀ i, j s.t |i− j| > 1:

∂2f

∂xi∂xj
= 0

In fact the Hessian will always be Tridiagonal when looking at functions composed by Gaussian form
factors. A positive consequence is that the Hessian operations will be considerably less computation-
ally heavy but also, the determinant of a Tridiagonal matrix of the following form (Muir & Metzler, 2003)

Note: α and β here are not related to those in 2

hn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 β1 0 0 0 0 0 . . . 0

γ1 α2 β2 0 0 0 0 . . .
...

0 γ2 α3 β3 0 0 0
0 0 γ3 α4 β4 0 0

0 0 0 γ4
. . .

. . . 0

0 0 0 0
. . .

...
... βn−1

0 . . . γn−1 αn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

can be found from the recurrence relation:

hn = αnhn−1 − γn−1βn−1hn−2 .

At this point, the form of fc(x) shows much symmetry and repetition, it is a sum of the exponents of
Gaussian form density functions. Each Xi ∈ x is contained in only two summands of function fc(x):[

Xτi − µ(Xτi−1
)

σ(Xτi−1
)

]2

+

[
Xτi+1

− µ(Xτi)

σ(Xτi)

]2

, (11)

where the functions σ(·) and µ(·) depend on the stochastic process Xt and do not depend on c. Due to
(11) the elements αi, βi, γi in the Hessian H(fc)(x) are functions that can be written as follows:

αi = α(Xτi+1
, Xτi , Xτi−1

) , βi = β(Xτi+1
, Xτi) , γi = γ(Xτi , Xτi−i) ,

since

αi =
∂2f

∂X2
i

, βi =
∂2f

∂Xi+1∂Xi
, γi =

∂2f

∂Xi∂Xi−1
. (12)

It is then possible to analyse how the determinant of the Hessian grows with n = c− 2. If it is possible
to find the behaviour of αi, βi, γi, which it is if the original criteria6 for the Laplace approximation hold,
then it is possible to explicitly find how H(fc)(x) = hc−2 grows with c.
When further looking at the symmetry in (11) and therefore (12), some extremely convenient results are
found. To begin, (11) can be split into two parts, for simplification let

Xτi−1
= z , Xτi = x , Xτi+1

= y

and

S1(x, z) =

[
x− µ(z)

σ(z)

]2

, S2(y, x) =

[
y − µ(x)

σ(x)

]2

,

6See (6)
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now let (11) = S(x, y, z) = S1(x, z) + S2(y, x) and

∂2

∂x2
S =

∂

∂x

(
∂

∂x
S1(x, z) +

∂

∂x
S2(y, x)

)
=

∂2

∂x2
S1(x, z) +

∂2

∂x2
S2(y, z) , (13)

∂2

∂x∂z
S =

∂

∂x

(
∂

∂z
S1(x, z) +

∂

∂z
S2(y, x)

)
=

∂2

∂x∂z
S1(x, z) , (14)

∂2

∂x∂y
S =

∂

∂x

(
∂

∂y
S1(x, z) +

∂

∂y
S2(y, x)

)
=

∂2

∂x∂y
S2(y, x) . (15)

Using the equality of mixed partials which only assumes that S(x, y, z) is twice differentiable, which is
already assumed when applying the Laplace method. It is then clearly also true that

∂2

∂x∂z
S1(x, z) =

∂2

∂z∂x
S1(x, z) and

∂2

∂x∂y
S2(y, x) =

∂2

∂y∂x
S2(y, x) .

The two derivatives in (14) & (15) are identical in form. In other words, they have the property

∂2

∂x∂z
S1(x, z)

∣∣∣∣
u,w

=
∂2

∂y∂x
S2(y, x)

∣∣∣∣
u,w

=
∂2

∂x∂z
S(x, y, z)

∣∣∣∣
u,w,v

=
∂2

∂y∂x
S(x, y, z)

∣∣∣∣
u,w,v

. (16)

For some dummy variables u, w, v. In fact, due to symmetry in S, there are similar properties for the
first partial derivatives

∂

∂x
S1(x, z)

∣∣∣∣
u,w

=
∂

∂y
S2(y, x)

∣∣∣∣
u,w

,

∂

∂z
S1(x, z)

∣∣∣∣
u,w

=
∂

∂x
S2(y, x)

∣∣∣∣
u,w

and

∂

∂x
S(x, y, z)

∣∣∣∣
u,w,v

=
∂

∂z
S1(x, z)

∣∣∣∣
u,v

+
∂

∂y
S2(y, x)

∣∣∣∣
w,u

, (17)

then, as a consequence, due to equality of mixed partials,

∂

∂u

(
∂

∂x
S(x, y, z)

∣∣∣∣
u,w,v

)
=

∂

∂u

(
∂

∂z
S1(x, z)

∣∣∣∣
u,v

)
+

∂

∂u

(
∂

∂y
S2(y, x)

∣∣∣∣
w,u

)

=
∂2

∂u∂v
S1(u, v) +

∂2

∂u∂w
S2(w, u)

=
∂2

∂x∂z
S1(x, z) +

∂2

∂x∂y
S2(y, x) =

∂2

∂x2
S(x, y, z) ,

which combined with (17) entails that

∂2

∂x2
S(x, y, z)

∣∣∣∣
u,w,v

= 2 · ∂2

∂x∂z
S1(x, z)

∣∣∣∣
u,v

= 2 · ∂2

∂x∂y
S2(y, x)

∣∣∣∣
w,u

⇒ 1

2

∂2

∂x2
S(x, y, z)

∣∣∣∣
u,w,v

=
∂2

∂x∂z
S(x, y, z)

∣∣∣∣
u,w,v

=
∂2

∂x∂y
S(x, y, z)

∣∣∣∣
u,w,v

(18)

At this point recall that the determinant of the Hessian H(fc) can be found by the recurrence relation

hn = αnhn−1 − γn−1βn−1hn−2 ,

where γ & β are evaluated at the previous time step relative to α, so
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hn =
∂2f

∂X2
n

hn−1 −
∂2f

∂Xn−1∂Xn−2
· ∂2f

∂Xn−1∂Xn
hn−2 ,

which when represented in coherent notation is

hn =
∂2S∗

∂x∗2
hn−1 −

∂2S

∂x∂z
· ∂

2S

∂x∂y
hn−2 , (19)

where S∗ signifies a function that maintains the shape but the variables shift to one iterative step larger,
i.e.

z∗ = x , x∗ = y , y∗ = Xτi+2 .

When using said notation, along with that S−∗ is a shift one iterative step smaller and

Sz,z =
∂2S

∂z2
,

then a section of the Hessian matrix would look like

H(f) =



. . .
. . .

. . .

S−∗z,Xτi−2
S−∗z,z S−∗z,x
Sx,z Sx,x Sx,y

S∗y,x S∗y,y S∗y,Xτi+2

. . .
. . .

. . .


,

where necessarily

S−∗z,z
∣∣
u,w

= Sx,x|u,w = S∗y,y
∣∣
u,w

, (20)

which when applied to (19) gives

hn = Sx,x|u,w hn−1 −
∂2S

∂x∂z
· ∂

2S

∂x∂y
hn−2 ,

then from the equality in (18)

hn = Sx,x|u,w hn−1 −
1

2
Sx,x|u,w ·

1

2
Sx,x|u,w hn−2 = Sx,x|u,w hn−1 −

(
Sx,x|u,w

2

)2

hn−2 , (21)

which has the solution

detH(fc)(x) = hn = (C1 · n+ C2)

(
Sx,x|u,w

2

)n
, (22)

for some arbitrary C1 & C2 determined by the initial values of hn.

Considering g(x):

When applying the Laplace method to a product of Gaussian form density functions:

gc(x) =
1

σ(Xτ0)
√
δ2π
· 1

σ(Xτ1)
√
δ2π
· . . . · 1

σ(Xτc−1)
√
δ2π

,

where, again, n = c− 2 since n is the number of integrands in the integral (2) being estimated, and c is
the number of integrands but including the start and end points. The growth of gc(x) depends on the
standard deviation function σ(·) and of course

√
δ2π. It is clear that gc(x) is affected by c differently

than hc. This in turn entails that the quotient gc(x)√
hn

changes with c which in turn changes the Laplace
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approximation. Hence, a correctional function of c, let it be denoted C(c) must be factored into the

approximation. i.e. C(c) = ∆c
gc(x)√
hc−2

3.2 Estimating Independent Function Maxima

It seems that with the appropriate correctional function, the approximation can handle most of the
difficulties of solving the integral (2) which was proposed. Another problem which does arise however,
is evaluating the maximum xF. In the single variable case, the maximum was found in terms of the
end points of which information was already had. In the multivariate case, a maximum found by setting
f ′c(Xτi) = 0 will have dependence on the process at other times τj , j ∈ (1, ..., n− 1) at which the process
is not known, hence, another way of evaluating the maximum must be used.
One such optimization approach is to first make a crude approximation of the process at each time-step
by linear-interpolation and to then improve the first approximation by taking a Newton step towards
the maxima of the distribution of the process at each time-step.

x̃i = X0 + (τi − τ0)
XN −X0

τN − τ0
= X0 +

i

N
(XN −X0) .

Followed by:

˜̃x = x̃− (H(fc)(x̃))−1(5fc)(x̃) , (23)

where ˜̃x and x̃ are column vectors of the approximations of the process at each intermediate time-step,
H(fc) is the Hessian of fc and (5fc) is the gradient vector of fc also as a column vector. The idea is to
move toward the most likely outcome i.e. the maxima of the function as illustrated in figure 2.

The approximated maxima ˜̃x will be a function of XN and X0 and since the Hessian is already being
calculated for the Laplace approximation, there will not be much additional computational cost for the
algorithm.

Figure 2: Illustration of Newton-Step: The blue dotted line represents the linear estimate of the maxima.
The turquoise arrows show how the estimates will more towards the more probable outcome after a
Newton-Step
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4 Applying the Developed Analytic Approximation to a CIR
Process

Due to the well known closed form transition probability density of the Cox-Ingersoll-Ross model and its
common application in statistical probability it is a suitable candidate for evaluating the performance
of the presented approximation method. Omitting particulars, the Cox-Ingersoll-Ross model follows the
Stochastic differential equation:

dXt = α(β −Xt)dt+ σ
√
XtdWt .

The process has a transition probability density given by:

p(Xτn |Xτ0) = de−d(Xτn+γXτ0 )

(
Xτn

γXτ0

)q/2
I(q, 2d

√
XτnγXτ0) , (24)

where

d =
2α

σ2(1− γ)
, q =

2αβ

σ2
− 1, γ = e−α(τn−τ0) .

And I(q, Z) is a modified Bessel function of the first kind of order q.
From analysing the recurrence relation for the determinant and the growth of gc(x) with c, the correc-
tional function C(c) for the CIR process is approximately:

∆c
gc(x)√
hc−2

= CCIR(c) ∼=

(
δ
c−3
2

σ
√

(c− 1)2c−2

)−1

. (25)

The following calculations were modelled using only explicit E-M in calculations as opposed to the
implicit E-M used as part of solving the simple case when n=2 in 2.1. In fact the implicit E-M require
extra conditions on the function σ(·) , see (Kloeden & Platen, 2013). Figures 3 & 4 show how increasing
iterations c = 3, 4, 5, 6, 7, 8, 9, 10, 11, 22, 35 in the estimations approach the true transition density given
the parameters.
Parameters in Figure 3, 4 ,5 & 6 : α = 0.5 , β = 0.05 , σ = 0.15 , X0 = 0.05 and Xn varies from 0.0025
to 0.2 in Figure 3 & 4.

Figure 3: The estimated transition density approaching the true transition density with increasing itera-
tions. Blue: True transition density, Red: Estimation of transition density with c = 3, Green: Estimation
of transition density with c = 35
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Figure 4: Zoomed in at peak of estimated transition density approaching the true transition density with
increasing iterations. Blue: True transition density, Red: Estimation of transition density with c = 3,
Green: Estimation of transition density with c = 35

As seen in Figure 4 when c = 35 the estimate is already very close to the true density. The errors at
some points of the graph are shown in Figure 4 & 5 below.

Figure 5: Loglog graph which shows how the estimates at Xn = 0.05 decrease with c from c = 3 to
c = 35 (Blue) compared to Yellow: 1√

c
and Orange: 1

c
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Figure 6: Loglog graph which shows how the estimates at Xn = 0.04 decrease with c from Blue: c = 3
to c = 35, compared to Yellow: 1√

c
and Orange: 1

c

In both Figure 5 & 6 above, clearly the errors of the estimation do not start at 0 as 1√
c

and 1
c do, but

quickly decrease faster with c. The errors are different at each point of the density as well, as can be
seen from Figure 5 & 6 since errors at Xn = 0.05 and Xn = 0.04 do not start at the same points. This
is illustrated in Figure 7 which compares the errors of the density estimation for c = 11 and c = 22. It
is clear that errors are decreasing everywhere but start at varying points depending on Xn

Figure 7: Errors for Blue:c = 11 and Orange: c = 22
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5 Conclusion

The method yielded 0 error for the Arithmetic Brownian motion process, as expected since the higher
derivatives that compose the error term are zero, and the linear approximation of the local maxima agree
with where f ′ = 0.

Though only a few results for CIR were included, different parameters yielded very similar results. The
method in general seems to perform well when c is as low as 35. This is promising for quick estimations
of the transition probabilities.
The code used to calculate the results for CIR were not entirely optimal, which is the reason for not
exceeding c = 35 since the errors begin to fluctuate around 10−4. For instance, the correctional function
C(c) was, as mentioned, approximated, in the sense that it was not adaptive to the individual maxima
points as discussed in 3.1. To improve C(c) for CIR, hn needs to be adaptive to the α(XF) since

hn = (C1 · n+ C2)

(
Sx,x|u,w

2

)n
= (C1 · n+ C2)

(
α̂(XF)

2

)n
,

where α̂ is an average. Sx,x should be evaluated at the estimated maxima XF.
Taking a second newton-step for the approximation of the maxima points of f could also improve the
approximation.

The fact that τi’s are stopping times is not actually a necessity for the transition probability for to
be represented as the integral in (2), however, the fact that they are stopping times, leads to other
applications for the method used. For instance, if the process is adaptive, and µ(Xi) or σ(Xi) change
for some sub-interval of the interval in question.
The method is versatile and will work for processes with drift and volatility functions µ(Xi) and σ(Xi)
that fulfil the conditions necessary such that the Laplace method can be applied to f and g. Judging
from the error convergence, presented in for example Figure 5, it seems that the errors quickly converge
to some small number, such that it would be redundant to use a much larger value of c.
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