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Abstract

This paper evaluates the low-cost optical sensor OPC-N3 from Alphasense as a suitable
scientific instrument for measuring particulate matter levels in air, both outdoors and in-
doors. The time-keeping and data-retrieval was additionally improved by connecting the
OPC-N3 to an Arduino microcontroller equipped with a real-time clock (RTC) module
and an external SD card. Inter-comparison tests demonstrated good agreement between
four co-located sensors, with approximately 15% relative standard deviation (RSD) before
separation for indoor and outdoor measurements, and 13% after. The RSD was observed
to increase during periods of very high and very low concentration. Indoor and outdoor
measurements were run over 10 days, during which the times of relevant activities were
logged. The median ratio of indoor to outdoor concentration was found to be 0.37 for
PM1, 0.44 for PM2.5, and 0.53 for PM10. Time series of PM1, PM2.5, and PM10 mass con-
centrations displayed considerably clear trends in accordance with activities, most notably
cooking, burning candles, and vaping outdoors. While the indoor particulate matter con-
centration was generally lower than outdoors, indoor activities appeared to have a more
significant contribution to the concentration of particulate matter than recorded outdoor
sources. The accuracy of the sensors was additionally evaluated through comparison of
PM10 values from the outdoor sensors and from Lund Municipality’s TEOM instrument,
which resulted in a reasonable correlation (median ratio of 1.15) despite the instruments
not being co-located. The OPC-N3 sensor was deemed to be a su�ciently precise sensor
for detecting trends in particulate matter concentrations, and a good tool for extending
the spatial and temporal resolution of air quality monitoring networks. The results of this
paper prompt the need for further research to give a more comprehensive evaluation of the
OPC-N3, namely, longer measurement periods to evaluate seasonal variation and possible
accumulation of errors, a more controlled analysis of sensor response to individual indoor
sources, and co-location of the OPC-N3 with reference particulate matter measurement
instruments.
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Chapter 1

Introduction

1.1 Particulate Matter

Particulate matter, otherwise known as aerosol particles, refers to the solid and liquid
particles of varying composition, size, and origin, which are suspended in air. The size of
these particles varies from the nanometer scale to several tens of microns (Hinds, 1982).
Although there are some natural sources, anthropogenic sources have led to particulate
matter becoming a major air pollutant with detrimental consequences to human health
and the environment. Based on guidelines and models from the World Health Organiza-
tion (WHO) (2016), approximately 90% of the human population is exposed to unclean
air, representing the biggest environmental risk to human health, with outdoor air pollu-
tion alone causing around 3 million premature deaths globally each year. Poor air quality
is not only limited to outdoors; indoor air quality is a↵ected by pollutants from outdoors
as well as sources indoors. However, there is a lack of quantitative understanding of indoor
sources of particulate matter, accompanied by a lack of regulations for indoor exposure
(Koivisto et al., 2019).

1.1.1 Formation and Sources of Particulate Matter

Particulate matter is formed in two ways: primary particles are emitted directly to the
atmosphere, while secondary particles form in the atmosphere from gaseous pollutants.
In the latter, precursor pollutant gases can condensate onto pre-existing particles, or
form new particles through nucleation. There are many natural sources of particulate
matter, such as wind-borne dust, sea spray, and pollen. The predominant anthropogenic
sources are fossil fuel combustion, agricultural processes, and industrial emissions. In-
doors, aerosol particles can be generated by activities such as cooking, burning candles,
cleaning or cosmetic aerosol sprays, wood-fires, vacuuming, and the general re-suspension
of dust due to movement. Additionally, the infiltration of outdoor air occurs through
doors, windows, and gaps around them, as well as either natural or mechanical ventila-
tion.

1.1.2 Properties of Particulate Matter

Particulate matter varies in shape: suspended liquid particles are predominantly approxi-
mately spherical, while solid aerosol particles exist in more non-uniform shapes. However,
measurement techniques and models often have to assume the particles are spherical, as-
signing an equivalent diameter such that the resulting sphere retains the same physical
attributes of the irregular particle. The aerodynamic diameter is the equivalent diameter
of a spherical particle with standard particle density (1000 kg/m3) and the same settling
velocity of the irregular particle, and is the primary property used to describe particle size.

When measuring, regulating, and monitoring particulate matter, it is usually grouped
into two size fractions: PM10 and PM2.5, which represent coarse particles with an aerody-
namic diameter less than 10 µm, and fine particles less than 2.5 µm, respectively. Ultra-fine
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particles less than 0.1 µm (PM0.1) are sometimes classified separately.

Particulate matter is most commonly measured by mass concentration. This is the mass
of particulate matter in a unit volume of aerosol, usually with units g/m3. The number
concentration is another property commonly measured, di↵ering from mass concentration
since smaller particles contribute more to particle numbers than mass, and vice versa for
larger particles.

1.1.3 E↵ects on Health and Environment

There is strong epidemiological evidence that exposure to air pollution leads to acute
lower respiratory infection, chronic obstructive pulmonary disease, ischeamic heart dis-
ease, stroke, and lung cancer (WHO, 2016). There are many other acute and chronic
health ailments which have been linked to particulate air pollution, including conditions
impacting the central nervous system and cognitive ability (Concas et al., 2019). The size
of the particles roughly determines how harmful they will be, since the smaller they are,
the easier they can penetrate deep into the airways and lodge in the lungs (Valavanidis
et al., 2008).

Considering some studies (European Commission, 2003; Klepeis et al., 2001) suggest
the average person spends 85–90% of their time indoors, the sources and e↵ects of indoor
particulate matter is particularly important. Generally, levels inside are expected to be
lower than outside, provided there are no major sources such as smoking indoors. Less
is known about the e↵ects of specifically indoor particulate matter pollution, in part due
to the inherent challenge of measuring and regulating people’s private residences. The
price, portability, and useability of low-cost sensors can help to fill this knowledge gap,
for example with the application to citizen scientists participating in air quality networks.

Another reason for the interest in monitoring particulate matter is its a↵ect on the cli-
mate. Particulate matter interacts in the atmosphere in complex ways and consequently
there is a high degree of uncertainty surrounding aerosol-cloud interactions and related
e↵ects on radiative forcing (Intergovernmental Panel on Climate Change, 2013). Even
though some particles like black carbon (soot) absorb sunlight and cause Earth’s atmo-
sphere to warm, there is likely a net cooling e↵ect on the climate, since other particles can
increase the Earth’s albedo and reflect solar radiation away from Earth. Consequently,
models show that the total removal of aerosol particles of anthropogenic origin from the
atmosphere would cause the Earth to warm by 0.7 �C (Samset et al., 2018).

The European Union (EU) limits ambient PM2.5 exposure to 25 µg/m3 per year, and
daily PM10 exposure to 50 µg/m3 or annually 40 µg/m3 (European Environment Agency,
2016). WHO (2006) regulations are even stricter, with PM2.5 exposure limited to 25 µg/m3

per day or 10 µg/m3 yearly, while the PM10 yearly limit is reduced to 20 µg/m3. However,
there are currently no equivalent regulations or global standards for indoor concentrations
of particulate pollutants.
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1.2 Measuring Particulate Matter

Given the health and climate-related consequences, measuring and monitoring particu-
late matter is highly important. The European Standard 12341:2014 describes the rec-
ommended reference method for measuring PM2.5 and PM10 mass concentration as the
gravimetric measurement method (Swedish Standards Institute, 2020). This method in-
volves sampling the particulate matter on filters over 24 hours, before weighing them on a
mass balance. It is validated for measuring particles in the range of 1–150µg/m3 for PM10

and 1–120 µg/m3 for PM2.5. However, other methods can be used for o�cial air quality
monitoring if they are deemed to be equivalent under standard conditions, possibly with
a correction factor applied.

An example of an equivalent instrument is the Tapered Element Oscillating Microbalance
(TEOM). This instrument measures the mass concentration of aerosol particles using a
small, hollow glass tube which oscillates at di↵erent frequencies depending on how much
its inertia is changed by the mass of the deposited particles. Since the TEOM can be
sensitive to humidity and temperature fluctuations, it requires a heated inlet to minimise
the deposition of water droplets on the filter. Heating the sample can also cause some
semi-volatile components of the particulate mass to be removed, which can be corrected
for with the addition of a Filter Dynamic Measurement System (FDMS) module.

1.2.1 Optical Measurement of Particulate Matter

Aside from gravimetric instruments, optical techniques can be used to measure concen-
trations of particulate matter, since scattered light can be detected for particles as small
as 0.1 µm. Compared to other methods, optical instruments can provide continuous, in-
stantaneous measurements, with information on the size distribution of the particles and
minimal disturbance to the aerosol. The main disadvantage of optical instruments is the
sensitivity of scattering to slight variations in particle size or shape, refractive index (RI),
or the scattering angle (Hinds, 1982).

The mode of scattering depends on the diameter of the particle. Below 0.05 µm, Rayleigh
scattering is predominant, while above around 100 µm, geometric optics can describe the
scattering. In the middle range, elastic scattering of light according to the more com-
plicated Mie theory dominates. Mie scattering is the generalised solution to Maxwell’s
equations, describing the scattering of light through a homogeneous spherical medium
with a di↵erent RI than the surrounding medium (Acharya, 2017). This occurs when the
particle diameter is approximately equal to or larger than the wavelength of the incident
light, such as is the case for most aerosol particles. In optical instruments, when a particle
passes in front of the light source (usually a laser beam), some light is scattered towards
the sensor which registers an intensity based on the particle’s diameter. The larger the
particle, the wider the peak in intensity will be. As long as the air flow is constant, the
diameter of the particle can be estimated and subsequently used to calculate the mass
concentration in the air.
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1.2.2 Low-cost Sensors

The methods described above may result in high accuracy and precision, but the in-
struments themselves are relatively large and expensive (Njalsson and Novosselov, 2018).
Therefore, they often lack the spatial and sometimes temporal resolution required to un-
derstand and assess particulate matter levels on the local scale, where they tend to be
more inhomogeneous (Holstius et al., 2013). Low-cost sensors for measuring air quality
are emerging as alternatives or additions to traditional methods and resulting in the area
of research surrounding them quickly expanding. Firstly, by being more a↵ordable, a
greater number of sensors can be deployed in networks of sensors. Their smaller size,
portability, and useability are of additional benefit. However, while these aspects are
improved, there may be a trade-o↵ in the quality of the data (Yuval et al., 2019). The
European Commissions’ review of air quality monitoring sensors (Karagulian et al., 2019)
cautions low-cost sensors’ susceptibility to atmospheric conditions and levels of pollution
concentration, only accepting good agreement with reference measurements when the co-
e�cient of determination, R2, is greater than 0.75 and the slope of regression line is within
1 ± 0.5.

1.2.3 OPC-N3

The low-cost sensor used in this study is the OPC-N3 (Optical Particle Counter) released
in January 2019 by Alphasense. The OPC-N3 is sold for AC338 at the time of writing,
which is comparatively more expensive than other particulate matter sensors on the mar-
ket from manufacturers such as Plantower, Winsen, and Nova Fitness, which can be as
cheap as AC15–AC30 (Karagulian et al., 2019). The higher price of the OPC-N3 is justi-
fied by its wider range of particle size classification, the use of a laser as opposed to light
emitting diodes (LEDs), and larger measurement chamber. Considering the reference and
equivalent instruments used in environmental monitoring stations can cost hundreds of
thousands of euros, the OPC-N3 is still considered a low-cost sensor.

As the name suggests, the OPC-N3 uses optics to detect, size, and count particulate
matter. A class 1 diode laser 1 with wavelength 658 nm is scattered by particles drawn
into the sensor through a 7 mm inlet with the help of a motorised fan. All particles are
represented with a spherical equivalent size regardless of their shape, akin to most other
OPCs. Polystyrene Spherical Latex (PSL) particles with known diameter and RI are used
in calibration since these properties allow the scattering to be predicted with Mie theory.

The sensor can sort and count particles into 24 bins according to their size, between
a range of 0.3 µm and 40 µm. The particle size histogram data is then automatically used
to calculate the mass of particulate matter per unit volume of air (µg/m3) for PM1, PM2.5

and PM10. This calculation assumes a default particle density of 1.65 g/cm3 and RI =
1.5. Table 1.1 below displays some of the specifications of the OPC-N3.

1
Class 1 lasers are considered safe under normal operating conditions. The OPC does not contain any

user-serviceable parts and therefore the user should never experience direct exposure to the laser while

it remains enclosed within the device.
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Table 1.1: Technical specification of the OPC-N3.

Specification Value

Particle range 0.35–40 µm
Maximum particle count rate 10 000 particles/s
Detection limit (PM10) 0.01 µg/m3–1500mg/m3

Sample flow rate 280 mL/min
Current, measurement mode 180 mA (<45 mA in standby)
Temperature range -10–50 �C
Humidity range 0–95%
Weight <105 g

This model is an update of the original OPC-N2 sensor, developed at the Centre for
Atmospheric and Instrumentation Research at the University of Hertfordshire. The two
models are similar with regards to specifications, however the OPC-N3 has an increased
particle detection range, and improved laminar flow, allowing the sensor to stay cleaner
in highly polluted environments (Alphasense, 2018). As the OPC-N3 is relatively new
there are naturally fewer pre-exisiting published studies evaluating its accuracy.

Studies performed with the OPC-N2 model have yielded varied results. The OPC-N2
has been observed to overestimate the output when RH is above 80–90% (Badura et al.,
2018), a result of water vapor condensing on particulate matter in high RH environments,
increasing their size and mass (Feinberg et al., 2018). Crilley et al. (2018) reported mea-
surements within 33% of TEOM-FDMS data after correction for relative humidity (RH),
while inter-comparison of 14 sensors gave a precision of 22 ± 13% for PM10, concluding
that, “they would be suitable devices for applications where the spatial variability in par-
ticle concentration was to be determined”. Alternatively, Badura et al. (2018) found that
without RH correction, the OPC-N2 sensors displayed only moderate precision, with a
RSD = 20%, and an overestimation of TEOM data by a factor of 4.5–5. In a comparison
to low-cost sensor models by Plantower, Bulot et al. (2019) found the OPC-N2 showed
more variability across three measurement locations, possibly reflecting a higher precision
and, “better capacity to measure short-term localised events or be linked to external en-
vironmental factors”.

Since the OPC-N3 alone is unable to attach a time-stamp to the data it records, the
user is required to write down the start and stop time, and manually extrapolate the
time-stamps in between. Problems can arise with this method when the sensor loses
power, which is known to occur in the field, particularly in remote areas. This project
improves the time-keeping capabilities of the OPC-N3 sensor to combat this issue by con-
necting an Arduino micro-controller so that the integration of a RTC can be facilitated.

Alphasense recommends the OPC-N3 for use in measuring both indoor and outdoor par-
ticulate matter concentrations. After the addition of a time-stamp, the precision of the
sensor will be tested by co-locating four units. Furthermore, its ability to distinguish
between di↵erent particle source–activities in indoor and outdoor environments will be
evaluated.
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Chapter 2

Method

2.1 Connecting the Arduino and RTC

This section describes the process of connecting a RTC to the OPC-N3 via Arduino. This
allows each measurement taken by the sensor to be saved with a timestamp, which is par-
ticularly useful when analysing results from several sensors, and if the power is interrupted
during measurements. An added benefit of collecting data through the Arduino and SD
card is that the OPC-N3 can easily be used with Apple and Unix operating systems,
whereas the Alphasense software can only be run by computers running Windows.

2.1.1 Electronic Components

An Arduino UNO micro-controller board was used to connect and program the RTC and
the OPC-N3. A PCF8523 model RTC is pre-assembled on the Data Logger Shield from
Adafruit, which is a modular circuit board also containing a SD card and a CR1220 coin
cell battery. The RTC is a ‘I2C’ device, meaning two wires are used for communication:
the serial clock (SCL) and serial data (SDA). The device uses a 32.768 kHz quartz crystal
for time-keeping, and the coin cell battery allows the RTC to continuously record the
current time even when the Arduino looses power (Earl, 2020). Without the RTC, the
Arduino is only capable of counting the number of milliseconds since it was last powered.
The OPC and Arduino were connected via a 6-pin serial peripheral interface (SPI).

2.1.2 Assembly

To connect the shield to the Arduino, 0.1” male headers were soldered to the shield, as well
as a 2⇥3 female header to connect to the Arduino’s ICSP (In-Circuit Serial Programming)
pins. Two resistors of 220⌦ and 150⌦ were soldered directly to the prototyping area on
the shield so that voltage to the SS pin would be reduced to 3.3 V. The SPI wires were
also soldered directly to the prototyping area on the shield. The two user-configurable
LEDs on the shield were connected to pins 2 and 3 and coded to turn on if an error
occurred with the SD card or file.

Figure 1: OPC-N3 wired to the Arduino and data logger shield.
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2.1.3 Code

To program the date and time to the RTC, the Arduino library RTClib.h from Adafruit
was installed. This allowed the RTC to adopt the current time and date of the computer
when the sketch 1 was compiled. To allow communication between the Arduino and the
OPC, a sketch was provided by Alphasense and modified to accommodate communication
to the RTC and SD card. The original Arduino sketch programmed the sensor to take
ten 1-second measurements in a 1-minute cycle, and rest the fan and laser during the
remainder of the period, thereby maximising the lifetime of the sensor. This code was
modified so that the sensor would continually record data every second as long as it was
connected to power. Furthermore, the sketch was modified so that the time and date
would be appended to the beginning of each row of data. The data was saved in comma
separated text files.

2.2 Measurements and Analysis

This section describes the set-up of measurements for inter-comparison of sensors and
comparison of indoor and outdoor air. The measurement location was a ground-floor,
68m2 apartment with two residents, located in a student housing area in Lund, Sweden
(55�43’N, 13�13’E). Four sensors were placed in pairs in waterproof, plastic electrical boxes
with holes for the sensor inlets to draw in air (fig. 14). Placing two sensors in almost
identical conditions allowed for a more accurate inter-comparison of their precision. The
box also had an open tube on one side for pressure equalisation, in order to maintain
constant air flow as the sensor fan continually draws in air. The indoors measurement
location was a central location in the apartment hallway, at approximately head height.
Outdoors, the sensors were placed on an open-backed shelf close to the front door, also
at around head height. Figure 2 illustrates the floor plan and placement of the sensors.
RH and temperature were measured with the OPC-N3’s internal sensors.

Figure 2: Floor plan of apartment showing placement of sensors.

1
’Sketch’ is the Arduino name for a program.
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2.2.1 Inter-comparison Tests

Inter-comparison tests were performed with co-located sensors both before and after sepa-
rating them for the main run of measurements, to check the degree of agreement between
the four sensors. The four sensors were placed adjacent (within their casing) at the indoor
measurement location. The first test was run before the indoor/outdoor measurements,
and the second co-location test followed after those measurements were completed.

Inter-comparison analysis of the data from the four sensors was performed in Matlab.
Time series of both sets of data from all sensors were produced with averages over suit-
able time periods. Linear regression analysis was applied to compare each sensor to the
median of all four sensors, for PM1, PM2.5, and PM10. The median was calculated rather
than the average to minimise the e↵ect of outliers. The RSD of each data point was
plotted as a time series and an average value was determined for each PM concentration
value.

2.2.2 Measurements Indoors and Outdoors

After the first co-location test, two sensors (labelled sensors 1 and 2) were kept indoors,
while the other two (sensors 3 and 4) were moved to the outdoor measurement loca-
tion. The sensors were run for 10 days without intentional power interruption. During
this time, a log of activities was kept along with the relevant times. Activities recorded
were cooking (frying, boiling, or baking), vacuuming, vaping (outdoors), burning candles,
showering, and leaving and returning to the apartment.

For the data collected in this main measurement campaign, time series were produced
for the mass concentration of PM1, PM2.5 and PM10 with both 10 minute and 1 hour
averages. Time series plots were also produced with the average of the two indoor sen-
sors and the average of the two outdoor sensors, again with both 10-minute and 1-hour
resolution. The 10-minute averaged time series were compared with the log of activities
to ascertain whether there was a correlation between certain activities and increases in
particulate matter concentration.

Finally, the averaged hourly outdoor concentration of PM10 was compared to o�cial
Lund measurements over the same time period. In Lund, o�cial PM10 data is measured
by the local environmental government agency (Miljöförvaltningen) with a TEOM 1400ab
located at street-level (3 m above ground) on Trelleborgsvägen, west of the Lund Central
train station. A time series plot was produced and the ratio between the datasets was
also calculated and plotted against time. Additionally, a scatter plot of the outdoor OPC
readings against the Lund TEOM data was produced to assess their agreement.
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Chapter 3

Results and Discussion

3.1 Inter-comparison of Sensors

The co-located measurements before and after the indoor and outdoor measurements dis-
played relatively good agreement between sensors. However, the time series showed one
sensor was measuring noticeably lower concentrations compared to the others in both
inter-comparison tests.

The first inter-comparison test was performed overnight, when particulate matter concen-
trations are generally reduced, since particulates have a chance to settle without movement
causing re-suspension. However, the time series includes a significant peak of high con-
centration for all sizes, due to a period of vaping indoors. The time of the vaping episode
(04:10–05:10) matched with significant increases in the relative standard deviations for all
size fractions, as shown in the following figures 3–5, indicating that the precision of the
sensors su↵ered at high particle mass concentration. With the vaping event included, the
median %RSD values were 8.0%, 9.6%, and 16.7% for PM1, PM2.5, and PM10 respectively.

Figure 3: Time series of PM1 in the first co-location test with 10-minute averages and
the RSD over time.
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Figure 4: Time series of PM2.5 in the first co-location test with 10-minute averages and
the RSD over time.

Figure 5: Time series of PM10 in the first co-location test with 10-minute averages and
the RSD over time.

Particulate matter from vaping devices has typically been found to have aerodynamic
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diameters in the range of 0.25–0.45 µm (Ingebrethsen et al., 2012). Even though this
extends below the o�cial lower detection limit of the OPC-N3, it is not impossible for
some particles to be detected below 0.35 µm, due to the lognormal size distribution. Al-
phasense has measured that the sensor detects 100% of particles at 0.35 µm and 50% at
0.3 µm. Therefore, the sensor likely detects some percentage of smaller particles such as
those produced in vaping, although with a significant underestimation.

Sensor 2 proved to be measuring mass concentrations consistently below the other three
sensors. This was confirmed in the linear regression analysis, where the data points were
aligned along a smaller slope. The linear regression results for PM2.5 are shown below
in figure 6 as an example, and the similar results for PM1 and PM10 can be found in
the appendix (fig. 15–16). Linear regression for sensor 1 did result in a linear fit with
a notably higher slope than the other sensors, which appears to be due to this sensor
overestimating during peak concentrations.

Figure 6: Linear regression fit of each sensor’s PM2.5 readings in the first co-location
test against the median of all four sensors, with 1:1 line as reference.

The data points for all four sensors are mostly located very close to the 1:1 reference line.
Sensor 4 showed the best correlation to the median of all sensors, although there were
some outlying values. The regression line should logically pass through the origin, but in
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some cases the intercept reached almost 2.5. The corresponding slopes were close to 1,
but the non-zero intercepts indicate that the relation is non-linear at low concentrations.
Note that the log-log scale used to better visualise the spread of data causes the line to
bend.

The second co-located measurements spanned a longer time, so there were more peaks in
general, reaching concentrations comparable to the time series in the first test. However,
unlike the vaping episode, it was the periods of low concentration which caused some high
RSD values, particularly within PM10 readings (fig. 9). The median %RSD values were
still found to be 11.9%, 11.8%, and 13.8% for PM1, PM2.5, and PM10 respectively in the
second co-location test. Both inter-comparison tests therefore resulted in a higher degree
of precision (lower RSD) compared to the “moderate” result (20%) from the OPC-N2
sensors tested by Badura et al. (2018).

Figure 7: Time series of PM1 in the second co-location test with 10-minute averages
and the RSD over time.
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Figure 8: Time series of PM2.5 in the second co-location test with 10-minute averages
and the RSD over time.

Figure 9: Time series of PM10 in the second co-location test with 10-minute averages
and the RSD over time.

In the second inter-comparison test, the time series also suggested that sensor 2 was
recording lower values than the other sensors. The slope of the linear regression fit for
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sensor 2 was approximately 25% below the other sensors. The result for PM2.5 is again
shown as an example in figure 10, while similar results for PM1 and PM10 are found in
the appendix (fig. 17-18).

Figure 10: Linear regression fit of each sensor’s PM2.5 readings in the second
co-location test against the median of all four sensors, with 1:1 line as reference.

Again, the data points are clustered close to the 1:1 reference line, except for in the case
of sensor 2, where the points consistently fall below the line. It is not known what caused
this result.

It should be noted that theR2 values labelled on each linear regression plot are consistently
very high, but this does not necessarily indicate the result is good. The inter-comparison
tests would ideally be performed in a laboratory environment over equal periods of time.
By controlling variables such as aerosol concentration, the accuracy of the sensors could be
better assessed. Comparison of a greater amount of sensors would additionally improve
the confidence in the result. Nonetheless, this study concludes that the four OPC-N3
sensors were in good agreement during co-location tests before and after separation.
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3.2 Indoor and Outdoor Measurements

The indoor and outdoor measurements ran for just under 10 days. Before the pairs of
sensors were averaged, the times series from all sensors (fig. 19) showed a clear di↵erence
between the concentrations recorded by the two indoor sensors. The ratio of each pair of
sensors was plotted over time (see appendix fig. 20). This confirmed that the two sensors
inside had a higher median ratio of approximately 1.3 for all size fractions, while the two
outdoor sensors had a median ratio of approximately 1 for PM2.5 and PM10 and a lower
median ratio of 0.9 for PM1. However, the ratio of sensor 3 to 4 was more variable over
time. In averaging the two data sets for comparison between indoor and outdoor mea-
surements, the individual errors from each sensor will propagate, resulting in a di↵erent
total error.

After the respective sensors were averaged for indoor and outdoor measurements, the
average concentration was calculated for each size fraction inside and outside. As shown
in table 3.1, the average outdoor concentrations were higher. The ratio between indoor
and outdoor particle mass concentrations was also plotted for each size fraction (see ap-
pendix 21). The median ratio of each was calculated to be 0.37 for PM1, 0.44 for PM2.5,
and 0.53 for PM10. The ratio increased to between 2–100 during cooking and candle
burning.

Table 3.1: Average indoor and outdoor concentrations of particulate matter over
approximately 10 days.

Indoor Average (µg/m3) Outdoor Average (µg/m3)

PM1 1.6281 2.1824
PM2.5 4.5644 6.9318
PM10 15.7820 18.3695

The time series of 10-minute averages of indoor and outdoor measurements showed that
there were several occasions when the indoor concentration exceeded the time series. The
five highest indoor concentration peaks in each size fraction occurred at the same times.
In these cases, the concentrations reached between 10–48 µg/m3 for PM1, between 35–
230 µg/m3 for PM2.5, and between 100–800 µg/m3 for PM10. These are highly substantial
increases in comparison to the average concentrations. When comparing the times to the
activity log, four of these five peaks were found to coincide with cooking events, while the
fifth was during a time when candles were lit and extinguished. Wang et al. (2020) found
that both professional monitors and low-cost air quality sensors in a laboratory setting
barely detected when a candle was burning steadily, but had a better response once it
was extinguished and larger particles were formed. In the same study, sensors were able
to detect frying or grilling, but not boiling or broiling. Vacuuming was expected to result
in a noticeable increase in particle mass concentration, at least in PM10, but there was no
significant increase during the two occasions of vacuuming during these measurements.
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Out of 16 recorded cooking events, half were clearly identifiable by peaks in particle mass
concentration. Four had small peaks at associated times, but these were not considered
significant enough in comparison to the concentration level before and after the event.
The highest overall peak occurred when both frying and boiling occurred, while the other
strong peaks were caused mostly by frying. The ventilation hood above the stove was
always used when cooking, although it is an old and seemingly not very e↵ective system.
Despite the largest percentage of particles generated during cooking generally being in the
ultra-fine region (less than 0.1 µm) (Abdullahi et al., 2013), these results strongly indicate
that the OPC-N3 sensors are capable of measuring particles associated with cooking.

Another noticeable trend in the indoor air was the concentration decrease when the
apartment was empty or both residents were asleep. With minimised re-suspension from
movement, PM10 generally settled faster than the finer particles, which is expected due
to the heavier mass of these larger particles.

Considering outdoor air can enter the apartment when the door or windows are open,
as well as permeate through non-mechanical ventilation in all rooms, it would be ex-
pected that trends of outdoor concentrations would appear in the inside air. There were
some cases when the indoor concentrations increased without a recorded indoor activity
and could be attributed to an outdoor vaping event or increased outdoor concentration,
but with low confidence.

Outside, the majority of the peaks in concentration were caused by vaping. These events
were characterised by sharp increases and sharp decreases in concentration, unlike the
peaks due to cooking which caused a sharp increase initially, but a much more gradual
decrease in concentration afterwards. In the first few days of the measurement period,
there was ongoing maintenance work being undertaken outside of the apartment (within
100 m from the outdoor sensors). This included high-pressure cleaning of a drain, thought
to be powered by a diesel-fuelled generator, which would produce combustion particles
and precursor gases. Later, earth and pavement were dug up and re-filled using heavy
machinery. The workers were also observed to be smoking cigarettes close to the apart-
ment during this period. These sources of particulate matter could have contributed to
the heightened overall concentrations between April 14–17. The time and nature of these
events could not be as well detailed as the residents’ own activities.

Figure 11 contains the time series for PM1, PM2.5, and PM10 concentrations indoors
and outdoors, with some examples of peaks due to various activities.
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Figure 11: 10-minute averaged values of indoor and outdoor measurements. Examples
of activities which produced notable increases in particle concentration are labelled.

It was noted that the recorded temperatures, both inside and outside, were significantly
higher than expected. Indoors, the average was around 30 �C, however the apartment
is regulated to remain around 20 �C. The outdoor temperature time series displayed the
expected diurnal variations; however, the maximum value recorded was almost 38 �C and
the minimum was just above 12 �C. The air temperatures in Lund during the measure-
ment period were at least 10 �C lower. This overestimation may arise from the lower
quality of the internal temperature sensor in the OPC-N3 (the user manual cautions that
the values may not accurately reflect the ambient conditions), but could also come from
the electronics inside the sensor casing heating up. Furthermore, the outdoor sensor set-
up was exposed to direct sunlight during some periods of the measurements.

Given the sensor’s sensitivity to humidity, extra heating that in turn reduces humidity
could actually be a desired side-a↵ect. Other studies have found the reliability of OPC-N
sensors is a↵ected in conditions above 80% humidity, but the maximum RH recorded by
the internal humidity sensors during these measurements was 47%. However, the true
ambient RH could be underestimated by the lower quality of the internal sensor, or the
localised heating within the sensor casing. Since the indoor sensors were located relatively
close to the bathroom, times of showers were recorded in case the increased humidity af-
fected the particle mass concentration. Ultimately, no obvious increases associated with
showering events were found and inside concentrations did not appear to be dependent on
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humidity (see appendix fig. 22). However, when the outdoor data was plotted against RH
in figure 12, there did seem to be a correlation between high RH and increased particle
mass concentration.

Figure 12: Particle mass concentrations of outdoor PM1, PM2.5, and PM10 as a
function of relative humidity.

The RH sensitivity issue could be further explored by colour-coding the data points by
time, in order to assess if the relationship changes during daytime and nighttime. Fur-
thermore, a more accurate external RH sensor and testing in a laboratory environment
would give a more accurate assessment of the humidity e↵ect. RH correction factors have
been developed for the OPC-N3 through studies such as Crilley et al. (2018) but were not
applied in this study. Alphasense is reportedly planning to o↵er built-in temperature and
humidity compensation in the future. A heated inlet design has also been tested for the
OPC-N2 model to reduce the RH of air before sampling (Czernicki and Kallmert, 2019).
Measuring dry particles is desirable since high RH causes hydroscopic growth which alters
the properties of aerosol particles, making it more di�cult to interpret changes in particle
mass concentration.

3.3 Comparison to Reference Data

Despite the OPC-N3 sensors not being co-located with the TEOM instrument used for
monitoring the PM10 concentration in Lund, they showed relatively good agreement, as
seen in figure 13. A scatter plot of OPC sensor data against TEOM measurements showed
data was scattered around the 1:1 reference line, despite the linear regression coe�cients
not being particularly desirable (see appendix 23).
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Figure 13: Hourly averaged comparison of PM10 concentrations measured by outdoor
OPC-N3 sensors and Lund Municipality’s TEOM, and the ratio between the TEOM and

the outdoor sensors (y-axis is zoomed to range -1–5) with the median ratio shown.

During the first few days of the comparison (April 15–17), the PM10 concentrations mea-
sured by the OPC-N3 were significantly higher, with peaks occurring in the late evening
to early morning. The TEOM did measure peaks around the same times, but the aver-
age values from the outdoor OPCs registered values that were 2–4 times higher. It was
originally thought that the higher values recorded by the OPC could be a result of the
construction work or vaping events, however the timing did not fit. Since these peaks oc-
curred in the late evening to early morning, it is suspected that increased RH or reduced
mixing ratio contributed to the higher values although no conclusion was reached. The
ratio of the outdoor sensors to the TEOM data shows better agreement between the two
datasets in the later part of measurements. Negative data from the TEOM and very high
values from the outdoor sensors caused the ratio to reach large values in some cases, but
the median ratio was calculated to be 1.146.

It should be noted that the PM10 measurements from Lund are not absolutely reliable
either. The estimated uncertainty of the 1-minute TEOM is ± 2 µg/m3, which can be
compounded when taking 10-minute averages. The uncertainty comes firstly from the
lack of a FDMS unit, so semi-volatile components of particulate matter may not be mea-
sured. The data is reported to the public in near–real time with the correction factor
y = x ⇤ 1.19 + 1.15 applied, but before the data is finally validated these calibration fac-
tors need to be recalculated with the volatile correction method using data from FDMS
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reference instruments situated in Malmö. Additionally, the instrument cabinet is suscep-
tible to heating from direct sunlight and the TEOM is sensitive to significant temperature
fluctuations.

3.4 Uncertainties

The calibration of the OPC-N3 with PSL particles of known diameter and RI will lead to
the sensor underestimating particles with di↵erent properties. Depending on the origin
and type of particles, they may scatter more or less light and thus be reported di↵er-
ently by the sensor. For this reason, Badura et al. (2018) recommends the re-calibration
of low-cost sensors in the actual measurement environment with higher-grade instruments.

The placement and orientation of the sensor units may have led to some systematic
errors. Alphasense recommends the fan exhausts into an unconstrained space to maintain
uninterrupted air flow, however with the addition of two Arduino boards and attached
shields and wires, the electrical boxes became rather crowded. An inter-comparison test
could be performed with this set-up in one box, and another box containing only the
sensors, to assess the e↵ect on the data; alternatively using a larger casing would provide
a simple solution.

During analysis, it became evident that there were some missing lines of data where
some seconds were not recorded to the SD card. Closer analysis showed this occurred
randomly on all four sensors. This was accounted for by using the Matlab ‘resize’ func-
tion and filling in the missing rows with ‘NaN’ (blank) values. The percentage of missing
values for each sensor varied between 0.25–1.10% (appendix table 5.1). This is most likely
attributed to the Arduino counter and the RTC falling out of synchronisation, or the serial
communication (which has no built-in error-handling) temporarily failing. The percentage
of missing rows seemed to increase with increased measurement time when comparing the
length of each co-location test and the indoor/outdoor measurement. Regardless, the per-
centage of overall missing data was deemed to be insignificantly low. This could become
an issue if shorter time resolution of measurements is required. For example, Koivisto
et al. (2019) mentions that due to the substantial temporal variability of indoor settings,
source identification often requires measurements on the scale of minutes. Additionally,
with its default settings the OPC-N3 is not programmed to operate continuously over
long periods of time. It would be interesting to explore whether these errors compound
over several weeks or months of continuous measurements.
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Chapter 4

Conclusions

Low-cost sensors for particulate matter are quickly emerging as promising instruments
to complement existing reference and equivalent air quality monitoring methods. In this
study, the optical sensor OPC-N3 from Alphasense has demonstrated close agreement
between three of four co-located sensors. The precision of the sensors was worse at high
mass concentrations of particulate matter, and also su↵ered at low concentrations (par-
ticularly for PM10).

OPC-N3 sensors measured indoor and outdoor particulate mass concentrations over 10
days, and demonstrated an ability to detect changes in concentration associated with var-
ious residential activities. The sensors reported significantly higher mass concentrations
of PM1, PM2.5, and PM10 during periods of cooking, burning candles, and vaping outside.
Even though particles generated in such activities are typically smaller than the lower
detection limit of the OPC-N3 and are thus likely underestimated, the trends detected
are still indicative of the usefulness of the sensor.

Comparison of the OPC-N3 data to PM10 concentrations measured by a TEOM showed
some correlation of trends despite the instruments not being co-located. Considerable
variations in the ratio could not be explained without further investigation.
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Chapter 5

Outlook

The results of this paper highlight opportunities for further research into the indoor and
outdoor applications of the OPC-N3. A more comprehensive evaluation of trends could
be gained by extending the measurement period, since this study was relatively short.
It would be preferable to take indoor and outdoor measurements over a longer period of
time, to evaluate if the sensors react to seasonal variations, or su↵er loss in e�ciency due
to continuous measurements.

Furthermore, one of the commonly quoted attractive qualities of low-cost sensors is their
ability to increase spatial resolution of measurements. It would therefore be interesting
to compare the results of sensors in di↵erent rooms of a building for example, to see
how well di↵erent particulate matter concentrations can be resolved on a very local scale.
Moreover, since the outdoor sensors were located in a quiet residential area, not close to
heavily-tra�cked roads, this study cannot evaluate the sensors’ performance in congested
urban environments where particulate matter concentrations would be higher.

It is recommended that to further assess how accurately the OPC-N3 can measure changes
in indoor air quality, single activities could be replicated in a controlled laboratory envi-
ronment, similar to a study by Wang et al. (2020). There are an additional number of
indoor origins of particulate matter which either were not present or not recorded in this
study (including pet dander, cosmetic aerosols, cleaning sprays, or brewing co↵ee). Fur-
thermore, the OPC-N3 results could be compared with instruments capable of detecting
particles in the submicron size distribution, to assess how much the OPC underestimates
concentrations of smaller particles.

Finally, while the addition of the Arduino microcontroller to the OPC-N3 may increase
the total cost of using the sensor, it does extend the possibilities of the OPC’s application,
especially since the OPC-N3 can work with other slave devices on the SPI bus, unlike the
previous model. Electronic modules such as motion sensors could be interesting for future
indoor air studies. Futhermore, the data logger shield user-programmable LEDs were pro-
grammed to light up when an error occurred, but this was not visible when the sensors
were in the casing. The Arduino could potentially be connected with a wifi module for
wireless data transfer. This could allow for real-time results and also avoid interrupting
the sensor set-up when collecting data. However, this would add to the cost and also
limits where the sensors could be used.

During field measurements, power interruptions tend to occur more frequently, causing
larger gaps in data. The addition of the RTC means the time and duration of these outages
can more accurately be known and accounted for in post-measurement analysis. Times-
tamps also made synchronising several data sets easier in comparison to peak-matching.
However, further modification to the Ardiuno sketch is required to better handle power
failures, should they occur. The inherent start-up errors were removed manually in anal-
ysis, however the Arduino could be programmed to begin writing to a new file on the SD
card in such a case.

26



Bibliography

Abdullahi, K. L et al. (2013). “Emissions and indoor concentrations of particulate matter
and its specific chemical components from cooking: A review”. Atmospheric Environ-
ment 71, pp. 260–294. doi: 10.1016/j.atmosenv.2013.01.061.

Acharya, R. (2017). Satellite Signal Propagation, Impairments and Mitigation. Academic
Press. Chap. 3, pp. 57–86. isbn: 9780128097328. doi: 10.1016/B978-0-12-809732-
8.00003-X.

Alphasense (2018). Alphasense Particle Counter OPC-N Range Product Update. url:
www.alphasense.com/WEB1213/wp-content/uploads/2019/02/OPC-N3-information-

update-Dec-18.pdf (visited on 05/01/2020).

Badura, M. et al. (2018). “Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitor-
ing”. Journal of Sensors. doi: 10.1155/2018/509654.

Bulot, F.M.J. et al. (2019). “Long-term field comparison of multiple low-cost particulate
matter sensors in an outdoor urban environment”. Scientific Reports 9(7497). doi:
10.1038/s41598-019-43716-3.

Concas, F. et al. (2019). “A Gap Analysis of Low-Cost Outdoor Air Quality Sensor In-
Field Calibration”. arXiv. doi: 1912.06384.

Crilley, L.R. et al. (2018). “Evaluation of a low-cost optical particle counter (Alphasense
OPC-N2) for ambient air monitoring”. Atmospheric Measurement Techniques, p. 709.
doi: 10.5194/amt-11-709-2018.

Czernicki, P. et al. (2019). “Evaluation of a heated inlet to reduce humidity induced error
in low-cost particulate matter sensors”. MA thesis. Lund, Sweden: Lund University.

Earl, Bill (2020). Adafruit Data Logger Shield. url: https://learn.adafruit.com/
adafruit-data-logger-shield/overview (visited on 01/28/2020).

European Commission (Sept. 2003). “Indoor air pollution: new EU research reveals higher
risks than previously thought”. European Commission. url: https://ec.europa.
eu/commission/presscorner/detail/en/IP_03_1278.

European Environment Agency (2016). Air quality standards under the Air Quality Di-
rective, and WHO air quality guidelines. url: www.eea.europa.eu/themes/data-
and-maps/figures/air-quality-standards-under-the (visited on 04/02/2020).

Feinberg, S. et al. (2018). “Long-term evaluation of air sensor technology under ambient
conditions in Denver, Colorado”. Atmospheric Measurement Techniques (Discussions).
doi: doi.org/10.5194/amt-2018-12.

Hinds, W. C. (1982). Aerosol Technology. United States of America: John Wiley & Sons,
Inc.

Holstius, D. et al. (2013). “Field calibrations of a low-cost aerosol sensor at a regulatory
monitoring site in California”. Atmospheric Measurement Techniques Discussions 7.
doi: 10.5194/amtd-7-605-2014.

27



Ingebrethsen, Bradley J. et al. (2012). “Electronic cigarette aerosol particle size distri-
bution measurements”. Inhalation Toxicology 24(14), pp. 976–984. doi: 10.3109/
08958378.2012.744781.

Intergovernmental Panel on Climate Change (2013). Climate Change 2013 The Physical
Science Basis. Intergovernmental Panel on Climate Change. isbn: 978-92-9169-138-8.

Karagulian, F. et al. (2019). Review of sensors for air quality monitoring. Luxembourg:
Publications O�ce of the European Union. doi: 10.2760/568261.

Klepeis, N.E. et al. (2001). “The National Human Activity Pattern Survey (NHAPS)”.
Journal of Exposure Analysis and Environmental Epidemiology 11(3). doi: 10.1038/
sj.jea.7500165.

Koivisto, A.J. et al. (2019). “Source specific exposure and risk assessment for indoor
aerosols”. Science of the Total Environment, pp. 12–24.

Njalsson, T. et al. (2018). “Design and Optimisation of a Compact Low-cost Optical
Particle Sizer”. Journal of Aerosol Science 119, pp. 1–12. doi: 10.1016/j.jaerosci.
2018.01.003.

Samset, B. H. et al. (2018). “Climate Impacts From a Removal of Anthropogenic Aerosol
Emissions”.Geophysical Research Letters 45(2), pp. 1020–1029. doi: 10.1002/2017GL076079.

Swedish Standards Institute (2020). Ambient air - Standard gravimetric measurement
method for the determination of the PM10 or PM2,5 mass concentration of suspended
particulate matter. url: www.sis.se/api/document/preview/101990/ (visited on
05/07/2020).

Valavanidis, A. et al. (2008). “Airborne Particulate Matter and Human Health: Toxico-
logical Assessment and Importance of Size and Composition of Particles for Oxida-
tive Damage and Carcinogenic Mechanisms”. Journal of Environmental Science and
Health, Part C 26(4), pp. 339–362. doi: 10.1080/10590500802494538.

Wang, Z. et al. (2020). “Performance of low-cost indoor air quality monitors for PM2.5
and PM10 from residential sources”. Building and Environment 171. doi: 10.1016/
j.buildenv.2020.106654.

WHO (2006). Air quality guidelines. Global update 2005. Copenhagen, Denmark: World
Health Organization. isbn: 92-890-2192-6.

World Health Organization (WHO) (2016). Ambient air pollution: a global assessment of
exposure and burden of disease. World Health Organization, p. 121.

Yuval, H.M.M. et al. (2019). “Application of a sensor network of low cost optical particle
counters for assessing the impact of quarry emissions on its vicinity”. Atmospheric
Environment 211, pp. 29–37. doi: 10.1016/j.atmosenv.2019.04.054.

28



Appendix

Figure 14: Two OPC-N3 sensors connected to Arduinos and data logging shields inside
the plastic casing.
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Figure 15: Linear regression fit of each sensor’s PM1 readings in the first co-location
test against the median of all four sensors, with 1:1 line as reference.
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Figure 16: Linear regression fit of each sensor’s PM10 readings in the first co-location
test against the median of all four sensors, with 1:1 line as reference.
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Figure 17: Linear regression fit of each sensor’s PM1 readings in the second co-location
test against the median of all four sensors, with 1:1 line as reference.
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Figure 18: Linear regression fit of each sensor’s PM10 readings in the second
co-location test against the median of all four sensors, with 1:1 line as reference.
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Figure 19: Time series of all four sensors with 10-minute averages during inside and
outside measurements prior to averaging the pairs of sensors.
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Figure 20: Ratio of sensor 1 to sensor 2 (inside) and sensor 3 to sensor 4 (outdoors)
throughout the measurement period.

Figure 21: Indoor/outdoor ratios for PM1, PM2.5, and PM10.
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Figure 22: Particle mass concentrations of indoor PM1, PM2.5, and PM10 as a
function of relative humidity.

Figure 23: Outdoor sensors compared to Lund TEOM data for PM10 with linear
regression.
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Table 5.1: Length of data files and number of missing rows (= number of missing
seconds) for each set of measurements. The percentage of missing data is calculated.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Co-location 1
Recorded 50272 50325 50374 50328
Missing 247 138 220 124

Percentage 0,49% 0,27% 0,44% 0,25%

Measurements
Recorded 791430 792207 791815 790752
Missing 7822 7550 8366 8672

Percentage 0,99% 0,95% 1,06% 1,10%

Co-location 2
Recorded 137364 137506 137638 137513
Missing 496 347 364 425

Percentage 0,36% 0,25% 0,26% 0,31%
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