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Populärvetenskaplig introduktion: Färgblödning i hög hastighet

Figure 1: En illustration av kromatisk aberration,
där ljus av olika färger fokuseras i olika punkter,
vilket innebär att fokuset blir utspritt.

Färgblödning, eller mer formellt kroma-
tisk aberration, uppst̊ar när ljus som
best̊ar av mer än en v̊aglängd, till ex-
empel vitt ljus, inte kan fokuseras till
samma punkt av en lins, s̊asom illustr-
eras i Figur 1. I detta fall orsakas det av
att ljus av olika v̊aglängder bryts olika
beroende p̊a materialet det passerar
igenom. Ett väldigt välkänt exempel
av detta är avbildat p̊a albumomslaget
till Pink Floyds ”The Dark Side of the
Moon”, som visar en str̊ale av vitt ljus
som skickas genom ett glasprisma vilket
f̊ar dess färgkomponenter att spridas ut.
Detta åtgärdas oftast med användningen av en akromatisk lins, det vill säga en kompositlins
som best̊ar av tv̊a eller flera linser av olika material och kurvatur som är konstruerad för
att fokusera ljus i samma punkt oberoende av dess v̊aglängd. Den kromatiska aberration
som kommer att diskuteras här är däremot inte densamma som färgblödning under vanliga
omständigheter, utan kommer att vara den som p̊aträffas inom attofysik.

S̊a vad är attofysik? Attofysik är ett forskningsomr̊ade där reaktioner och processer p̊a
attosekundsskalor (10−18 sekunder) undersöks med hjälp av ultrakorta laserpulser. Dessa
tidsskalor är för korta för att en tillräckligt kort laserpuls ska kunna genereras av en vanlig
laser, därför måste de istället genereras i en gas genom svängningarna av en stark, fokuserad,
laserpuls. D̊a skapas skarpt ultravioletta pulser som har en pulslängd p̊a hundratals at-
tosekunder, s̊a kallade attosekundpulser. Dessa pulser lider dock av en väldigt stark kroma-
tisk aberration när de fokuseras trots att akromatiska instrument används för detta.

Detta sker p̊a grund av att de olika v̊aglängderna som genereras p̊averkas olika mycket av
drivlaserns intensitet och har olika spridningsvinklar, s̊a kallad divergens, som en konsekvens
av detta. Det är allts̊a p̊a grund av att olika v̊aglängdskomponenter har annorlunda diver-
gens som kromatisk aberration sker när attosekundpulser fokuseras. För att åtgärda detta s̊a
krävs det d̊a att den drivande laserns intensitet jämnas ut över hela generationsomr̊adet, s̊a
att intensiteten är likadan överallt. Detta hade inneburit att skillnaden i divergens hade min-
skats skarpt mellan de olika attosekundpulskomponenterna. Detta hade i sin tur möjliggjort
högkvalitativa fokus.

Syftet med detta projekt är allts̊a att försöka utveckla en metod som möjliggör bra
fokusering av attosekundpulser. Detta görs här genom manipulering av drivlaserns v̊agfront
med hjälp av optiska instrument. Målet är allts̊a att kunna korrigera optiska aberrationer i
drivlasern och manipulera den p̊a ett s̊adant sätt att en jämn intensitet uppn̊as för att den
kromatiska aberration som förhindrar fokusering av attopulser ska kunna elimineras.
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Abstract

Attosecond pulses obtained via high harmonic generation often suffer from chromatic
aberration. This is inherent from the generation process as a consequence of the spatial
profile of the driving laser pulses. Consequently, the focus positions and divergences
of consecutive harmonics vary, leading to chromatic aberration which prevents high-
quality refocusing as is critically required for applications.

The aim of this project is to develop a way of diminishing this chromatic aberration
through spatial phase manipulation of the driving laser pulses. This is done through
use of a spatial light modulator in conjunction with a phase-retrieval and beam-shaping
program which was developed during the project. Harmonic spectra and driving beam
foci are recorded with an extreme ultraviolet spectrometer and an infrared-sensitive
camera, respectively.

It is shown that the spatial light modulator in conjunction with the written program
can successfully correct aberrated beams, leading to an increase in peak intensity and a
decrease in beam width near the focus. However, reducing the divergence of generated
harmonics through beam shaping turned out to be complicated.

It was concluded that the ability to measure the average harmonic intensities and
peak intensities of the driving field over several iterations during the experiment is
a necessary step. Additionally, different types of focus-improving techniques, such
as other phase-retrieval algorithms and Zernike optimization could be used in future
iterations to potentially improve focus correction, which would assist beam shaping.
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1 Introduction

What is a harmonic? A harmonic refers to a signal which has a frequency which is an integer
multiple of some reference frequency. The first thing that may come to mind when harmonics
are brought up might be music, where acoustic harmonics are often used in the composition
of songs. Here, however, the harmonics of interest are instead harmonics of light. In 1961 it
was first observed that strong laser light could cause the emission of light harmonics [1]. The
process of generating several light harmonics of higher orders is referred to as High harmonic
generation (HHG). Similarly to the generation of harmonic overtones in music instruments,
light harmonics are often very weak compared to their driving field. Unlike acoustic harmon-
ics, however, in HHG there is a tendency for light harmonics to form ”plateaus” of similar
intensity up to a certain point, known as a cutoff [2]. This means that harmonic pulses from
HHG consist of many consecutive, but similarly intense, odd harmonics. These harmonics
are generated in time with the oscillations of the driving laser field, which is very quick even
for light with longer wavelengths than visible light! As an example, infrared light has fre-
quencies between 1-400 THz [3]. This makes high harmonic pulses excellent for pump-probe
experiments aimed at observing processes which occur at very short time scales [4]. In fact
HHG is very important within the field of attosecond (10−18 s) physics. Attosecond physics
today makes use of HHG to produce ultrashort pulses of Extreme ultraviolet (XUV) light
with large bandwidths, that is, light constituted by a large variety of frequencies, like an
extremely energetic version of white light. Attosecond pulses are interesting because of their
ability to probe effects at very short time scales, such as the ionization time delay of an
atom [5]. Attosecond pulses do however have a problem with chromatic aberration when
they are refocused. This simply means that the light which is generated in HHG can not be
refocused into a small spot easily, but rather smears out in space around where one might
expect the focus to be. Normally this can happen when any light with a large bandwidth
passes through a lens which is not made to accommodate a bandwidth that large. In the
case of HHG, however, this is not only caused by the component wavelengths being very
different from one another, as there are optics which can, to some extent, adjust for this.
It is also caused by their different spatial wavefronts as they are generated. This effectively
means that most generated harmonics will focus in different places, with several harmonics
not forming a focus after generation at all. These harmonics are referred to as having a ”vir-
tual” focus, because they propagate as though their focus lies before the point at which they
were generated. This variation in focus positions makes it tough to refocus these harmonic
pulses, even when disregarding the difference in wavelength. It has been suggested that this
can be mitigated through controlling the spatial intensity profile of the driving laser [6] and
that is what this project sets out to do.

The basic aim of the project is therefore relatively simple: namely to investigate the pos-
sibility of reducing this aforementioned chromatic aberration by manipulating the spatial
intensity profile of the driving field. This will be carried out by shaping the spatial phase of
the driving laser by using a Spatial light modulator (SLM) such that the wavefront causes
the beam to propagate in such a way that an intensity profile better suited for low-divergence
HHG is obtained. The SLM in essence functions by slowing down different parts of an in-
coming beam differently. This manipulates the wavefront of the beam and can be used to
control, to some degree, how a beam of light develops in terms of intensity as it propagates
through space. Here, this type of spatial beam shaping has been used to modify the beam
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profile used in driving HHG. In order to then observe the divergence of these harmonics, they
were recorded with an XUV photon spectrometer.

Additionally, the project will aim to develop a method to use the SLM for wavefront correc-
tion, that is, using an SLM to compensate for optical aberrations in a system. This is similar
to shaping a beam with the SLM, but requires one to know the spatial phase of the incoming
light. This can be found through use of a phase-retrieval algorithm, that is, an algorithm
which calculates the phase of a beam given that its intensity profile can be measured in at
least two planes. One can then use the SLM to give the beam a flat wavefront which ideally
improves the beam’s focus. This may also be useful in order to be able to implement the
beam shaping mentioned previously, as a phase meant for beam shaping may not interact in
a desired way with an aberrated phase. Using a phase-retrieval algorithm in conjunction with
an SLM for the purpose of wavefront correction has been done before [7], the novelty here
lies in using it in conjunction with the beam shaping properties of the SLM in the process of
HHG. The phase-retrieval algorithm used will be evaluated based on its improvement of the
focus, which most clearly shows itself with the increase in peak intensity.

To summarize, the main aim of this project is to use an SLM to reduce aberrations and
shape the driving beam used in HHG. This was done in order to diminish the chromatic
aberration observed upon the refocusing of attosecond pulses. This was carried out through
the development of a phase-retrieval algorithm and integrating it and an SLM into a currently
existing experimental setup. HHG was performed and divergence measurements of harmonics
were taken and evaluated.

2 Theory

2.1 High Harmonic generation and Attosecond pulses

2.1.1 High Harmonic generation: The semi-classical model and its consequences

HHG in a gas is fairly well described with a semi-classical model which is structured in three
steps. Firstly, the driving laser field distorts the atomic potential, causing it to oscillate
periodically along with the laser field. When the atom’s potential then is strongly distorted,
tunnel ionization becomes possible. Secondly, immediately after ionization, the electron is
accelerated away from the atom, but as the electric field oscillates in the other direction, the
electron is accelerated back towards the atom. Thirdly it may recombine with the parent
ion and emit a photon with an energy equivalent to the ionization energy of the atom and
the electron’s kinetic energy upon return. This process is illustrated in Figure 2 and is a
fairly intuitive image to someone who is familiar with atomic physics. It can also be used to
provide a derivation of the energy of the harmonics.

If we treat the electron immediately after ionization classically, we can get rather simple,
Newtonian, expressions for the electron’s motion. This is largely accomplished by neglecting
any effect not due to the electric field of the laser, which we can afford to do due to the
field strength of the laser. The expression for the electron’s acceleration can in this classical
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Figure 2: This figure illustrates the semi-classical three-step model of HHG. Step 1 is the
tunnel ionization of an electron out of a distorted atomic potential. Step 2 is the acceleration
of the electron after its exit from parent atom and 3 is the recapture of the electron as the
atomic potential has shifted due to the external driving field, leading to the emission of XUV
radiation.

model be described as:
d2x

dt2
= −eE0

me

sin (ωt) (1)

where x is the position of the electron, t represents time, e is the elementary charge, me is
the electron mass, E0 is the electric field strength of the laser, and ω is the angular frequency
of the laser field. We also have a few initial conditions to set into place, namely that the
time at which the electron is ionized is t = t0 and that x(t0) = 0 and dx(t0)

dt
= 0. If we then

integrate Equation 1 with respect to time with these parameters in mind, we get:

dx

dt
=

eE0

meω
[cos (ωt)− cos (ωt0)] , (2)

and subsequently:

x =
eE0

meω2
[sin (ωt)− sin (ωt0)− ω(t− t0) cos (ωt0)] . (3)

Equations 2 and 3 give us the ability to classically calculate the kinetic energy of the electron
as it recombines and its recombination time respectively. The kinetic energy, using Equation
2 is given by the expression:

Ek =
1

2
m

(
dx

dt

)2

=
e2E2

0

2mω
[cos (ωt)− cos (ωt0)]2 = 2Up[cos (ωt)− cos (ωt0)]2. (4)

Where Up is the ponderomotive energy. The maximum kinetic energy of the electron can,
using Equation 4, be calculated to be 3.17Up [8]. Since intensity is proportional to the square
of the electric field strength, this also gives that the ponderomotive energy is proportional
to the laser intensity [3]. With this, it becomes apparent that both recombination time and
kinetic energy upon recombination are dependent upon the ionization time. Additionally, if
one plots the frequency of emitted photons at recombination as a function of return time,
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Figure 3: This graph shows the emission frequency caused by HHG as a function of electron
return time. The two black lines represent the linear approximations of the recombination
time as given by Equation 5. Where tts and ttl are the threshold return times for short
and long trajectories, tps and tpl are the approximated threshold return times for the linear
approximation of the short and long trajectories respectively. Similarly, tc is the actual return
time for the cutoff frequency with tcs and tcl being the approximated cutoff times for the short
and long trajectories respectively.

as is illustrated in Figure 3 one can observe that each frequency, apart from the maximum,
is represented twice, one for a shorter, and one for a longer return time. These are referred
to as the ’short’ and ’long’ electron trajectories which represent identical energies but for
different recombination times. For a significant portion of these two trajectories, emission
frequency can be approximated as a linear function of return time [6]. For our purposes, we
will use a simple function with recombination time as a function of frequency:

ti(Ω) = tpi + (tci − tpi)
Ω− Ωt

Ωc − Ωt

, (5)

where i refers to the short or long trajectory depending on which one is being considered, tpi
and tci refer to the threshold return times and cutoff return times respectively for the different
linearly approximated trajectories, whereas Ω, Ωc and Ωt represent the frequency, cutoff
frequency and threshold frequency of our emissions, respectively. Most of these quantities
are illustrated in Figure 5. If we then assume there are no other significant effects on the
emission times, we can treat ti(Ω) as a delay of our emissions and integrate Equation 5 with
respect to Ω− Ωt and treat this as an expression for the spectral phase [6]:

Φi(Ω) = Φi(Ωt) + tti(Ω− Ωt) +
tci − tti

2

(Ω− Ωt)
2

Ωc − Ωt

. (6)

From our previous equations of motion, we know that the recombination times are indepen-
dent of the energy of the laser field, we also know that the energy threshold of the photons
is determined by the ionization potential of the atom itself and the maximal kinetic energy
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of the electron, giving the expression h̄Ωc = (3.17Up + UI), where h̄ is the reduced Planck
constant and UI represents the ionization potential. This means that the second term in
Equation 6 is independent of the intensity of the driving laser. One can then use the follow-
ing expression:

Ωc − Ωt = 3.17
Up
h̄

= 3.17
e2Iλ2

8π2c3h̄ε0me

, (7)

where I is the intensity of the driving field, c is the speed of light in vacuum and ε0 is the
vacuum permittivity [8]. Using Equation 7 in the third term of Equation 6, one gets that the
third term is inversely proportional to the intensity, with a similar magnitude, but opposite
sign between the short and long-trajectory versions [6]. Additionally, the first term is pro-
portional to the laser intensity for the long trajectory and zero for the short, with a constant
of proportionality several orders of magnitude larger than that of the third term, causing the
first-order term to outweigh it in long-trajectory phase calculations [6]. In effect, this means
that differences in the driving laser intensity have a much larger and more visible effect on
the phase of long-trajectory emissions relative to the short-trajectory ones. An effect of the
third term is that the dipole phases of different harmonics are affected differently by inten-
sity. This means that there is, via dipole coupling, a direct link between the spatial intensity
profile of the driving field and the spatial phase profile of the generated harmonics. Since
the frequency of the radiation in each harmonic is different, this means that if the driving
intensity is not uniform in the generation volume, different harmonics will have different
divergences. Thus their phase and thereby their wavefront, will be impacted differently by a
non-homogeneous intensity in the generation volume. This is what causes the difference in
focal positions at generation. In practice, this leads to chromatic aberration when one at-
tempts to refocus these harmonics, as illustrated in Figure 4. Thus, if one intends to refocus
the harmonic pulses at a later time, one might wish to use an intensity distribution which
is as flat as possible when generating harmonics. This would lead to a flat phase difference
between harmonics and would ideally give all harmonics similarly positioned foci, reducing
the chromatic aberration, hence increasing the quality of the focus.

2.1.2 High Harmonic generation: Harmonics and attosecond pulses

Given equations 1, 2 and 3 above, one can see that for a constant driving field, or at least
a several-cycle pulsed driving field, one could anticipate an emitted pulse of light for every
half-cycle of the driving field with a sign inversion between each half-cycle pulse. If one wants
to look at the interference between these two pulses, one gets the following expression for the
electric field:

E(t) = E1(t)−E1(t− T

2
), (8)

where E(t) represents the total electric field, E1(t) represents the electric field of a single
half-cycle pulse and T represents the time it takes to one complete pulse cycle of the driving
field. We also want to use the spectral amplitudes, given by FT, defined as follows [8]:

A(Ω) =

∫
E(t) exp (−iΩt) dt. (9)

Then we insert Equation 8 into Equation 9 and define A1(Ω) so that we get:

A = A1(Ω)−
∫

E1

(
t− T

2

)
exp [−iΩt] dt.
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Figure 4: This figure illustrates an attempt at achromatic refocusing of several harmonics
from HHG. The differently colored lines represent the beam widths of different harmonics.
When generated, due to the volume of generation being the same for most harmonics, the
beam width of the harmonic pulse upon generation is fairly uniform. However, this means
that if all generated harmonics have different phase fronts, their foci will all be located in
different planes along the optical axis of the system, as illustrated. This also means that
an attempt to achromatically refocus these beams by means of some advanced optics, here
represented by a lens-like object, will result in different harmonics being focused in different
spots, leading to chromatic aberration.

We can, using our knowledge of the function of the electric field, get:

A(Ω) = A1(Ω)−
∫

E1(t) exp

[
−iΩt+

T

2

]
dt = A1(Ω)

(
1− exp

[
−iΩT

2

])
.

If we look at what this means in terms of physical frequencies by looking at the absolute
square of the spectral amplitude, we get:

|A(Ω)|2 = 4|A1(Ω)|2 sin2

(
ΩT

4

)
We can see that this gives |A(Ω)|2 = 0 for ΩT

4
= nπ where n is an integer, and maximal

values when ΩT
4

= (2n+1)π
2

. This in turn means that when the frequency Ω = 4nπ
T

= 2nω,
|A(Ω)|2 = 0, meaning that even harmonics of the driving field are not emitted. We can

also see that the values of Ω at the maxima of |A(Ω)|2 are Ω = (2n+1)2π
T

= (2n+ 1)ω, which
corresponds to odd harmonics of the driving field. This pattern can be further generalized for
larger amounts of pulses [8] and explains why only odd orders of harmonics are observed for
this type of HHG, this is reflected in spectrometer measurements of the emitted harmonics
as well. Additionally, the fact that the emission of these pulses occurs during a fraction of a
cycle of the driving field gives them a duration in the low femtoseconds or high attoseconds
with some chirp. This also means that each pulse of the driving field produces a pulse train
of harmonic pulses whose envelope is related to the amplitude of the driving field.

6



2.2 Fourier optics

2.2.1 Free-space light propagation

When one considers the propagation of light, one of the simplest possible cases is that of
a plane wave, which has a complex amplitude U(x, y, z) = A exp [−i(kxx+ kyy + kzz)] [3],
where x, y and z represent spatial coordinates, i is the imaginary unit, A is the complex
envelope of the wave, and kx, ky and kz are the x, y and z components, respectively, of the
wavevector k. The wavenumber, which is the magnitude of the wavevector, is given by k =
2π
λ

, with: k =
√
k2
x + k2

y + k2
z . If we think of z as the ”main axis” of our system, we can define

the z-component in terms of its angles in the x and y direction relative to the z-axis, θx =
sin−1 (kx/k) and θy = sin−1 (ky/k) respectively, this definition will be useful later. If we then
consider the complex amplitude in the plane (x, y, 0), it is in effect identical to a harmonic
function f(x, y) = A exp [−i2π(νxx+ νyy)] where νx = kx

2π
and νy = ky

2π
, partially illustrated

in Figure 5. Given the above results, we can now use the angles which were defined before to
give us the expression: θx = sin−1 1

νxλ
and θx = sin−1 1

νxλ
, which for sufficiently small angles θx

and θy, can be approximated to be θx ≈ 1
νxλ

and θy ≈ 1
νyλ

. This approximation is valid when

we deal with light which is well collimated enough to follow the paraxial approximation [3],
such as a Gaussian beam, and this condition will be assumed to be fulfilled from this point on.

The knowledge that any plane wave has a corresponding 2-dimensional harmonic function
is highly useful. The reason for this is that we to a fairly good degree can approximate
most paraxial waves as a superposition of plane waves with a small angular spread relative
to the optical axis. By extension, this means that in a given plane, a paraxial wave can be
considered as a superposition of many harmonic functions. Because of the fact that both
the FT and the Inverse Fourier transform (IFT) deal with decomposing a function into its
harmonic wave constituents and the inverse, this becomes the basis of Fourier optics.

Now, an important part of optics is describing how light propagates, one of the most basic
examples of this being a wave propagating in free space between two planes, separated by
some distance d. If we assume our wave to be monochromatic with some wavelength λ, this
means our whole system is shift-invariant and can therefore be completely characterized by
its own transfer function [3]. We can then set the source plane to be at z = 0 and the target
plane at z = d, with complex amplitudes f = (x, y) = U(x, y, 0) and g(x, y) = U(x, y, d)
respectively. Since we want to find the transfer function of the system we can use the
function f(x, y) = A exp [−i2π(νxx+ νyy)] from before, which we know at z = 0 corresponds
to the harmonic decomposition of the plane wave U(x, y, z) = A exp [−i(kxx+ kyy + kzz)].
This means that our target plane at z = d is g(x, y) = A exp [−i(kxx+ kyy + kzd)]. Since the
transfer function is simply the factor by which our harmonic source function is multiplied by
to produce the target function, we can get it via division of the two functions. This yields

H(νx, νy, d) =
g(x, y)

f(x, y)
=
U(x, y, d)

U(x, y, 0)
= exp [−ikzd] = exp

[
−i2πd

√
λ−2 − ν2

x − ν2
y

]
,

which is known as the transfer function of free space.

The transfer function of free space can be further simplified if we take into consideration that
we are working within the paraxial approximation. We can then use the same approximation
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Figure 5: This figure illustrates the decomposition of the wavevector of a plane wave, depicted
in red, in two dimensions. kx represents the projection of the wavevector onto the x axis,
and Λx refers to the spatial period of the light wave along the x axis. It is the frequency of
this period in space which is referred to as the spatial frequency νx. This frequency can then
used to describe the harmonic function which characterizes a plane wave in space passing
through a single two-dimensional plane.

as before to relate the plane wave angles and spatial frequencies, such that θ2 = θ2
x + θ2

y ≈
λ2(νx + νy) which gives us H(νx, νy, d) ≈ exp

[
−i2πd

λ

√
1− θ

]
, which with a Taylor expansion

becomes H(νx, νy, d) ≈ exp
[
−i2πd

λ
(1− θ2

2
+ ...)

]
. We then neglect all orders over the second,

which is also justifiable due to the paraxial assumption, leaving us with the so-called Fresnel
approximation of the free space transfer function:

H(νx, νy, d) ≈ exp [−ikd] exp
[
iπdλ(ν2

x + ν2
y)
]

(10)

This simplified transfer function can then be used to calculate the propagation of more
complicated waves than a plane wave. However, since we normally work with the complex
amplitude of a wave, we need to decompose it into its harmonic wave components by using
the FT. The mathematical definition of the FT is as follows:

F (νx, νy) =

∞∫∫
−∞

f(x, y) exp [i2π(νxx+ νyy)] dx dy,

Where we use that f(x, y) = U(x, y, 0), such that we perform the operation FU(x, y, 0)] =
F (νx, νy) where F signifies the FT. Now that the decomposition of the harmonic has been
acquired, we may simply multiply it by the Fresnel propagator with d set to an appropriate
distance and the λ of our wave, leaving us with H(νx, νy, d) ·F (νx, νy). Now, in order to find
out what the wave looks like after propagation to our target plane we need to reconstitute
the complex wave function from its harmonic components. This is done via IFT, which is
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Figure 6: This figure illustrates how a plane wave incident on a thin lens focuses in the focal
plane of said lens. Notably, this figure is only accurate when small angles relative to the
optical axis of the lens, here z, are considered.

defined as:

f(x, y) =

∞∫∫
−∞

F (νx, νy) exp [−i2π(νxx+ νyy)] dνx dνy.

If we perform the IFT on the expression H(νx, νy, d) ·F (νx, νy) into the above equation, this
leaves us with our complex amplitude g(x, y) = U(x, y, d) calculated by the operation

g(x, y) = U(x, y, d) = F−1{F [U(x, y, 0)] ·H(νx, νy, d)} (11)

where F−1 represents the IFT. This is the expression for free space Fresnel propagation.

2.2.2 The Fourier transform property of converging lenses

In practice, if one wishes to move from the far field to the near field of a beam, this can be
carried out using a converging lens. Mathematically, this can be simulated through a spatial
FT of the electric field and as such is used in the algorithms discussed in the coming sections.
This can be understood best, if one first considers what the FT represents and the effect of
a lens on a plane wave separately.

If we consider a very basic scenario where there is only a plane wave incident on a thin
converging lens at some small angle θ relative to the optical axis, the focus will be located
in the focal plane. The focal plane lies a distance away from the lens equivalent to its focal
length f in the direction of propagation. The focus in the focal plane will be located an
orthogonal distance θ · f from the optical axis, dependent on the orientation of the incoming
light [3]. This is illustrated in Figure 6. For example, if the angle of incidence of a plane wave
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on a lens is (θx, θy, 0), where the z axis represents the optical axis which forms an orthogonal
basis with the x and y axes, is focused by a converging lens centered at (0,0,0) the focus will
be located at the coordinates (θxf , θyf , f). We then consider that for small angles, the angle
of an incident plane wave along an axis orthogonal to propagation x can be described with a
spatial frequency θx = λνx. Here λ represents the wavelength of the light and νx represents
the spatial frequency decomposition of the light wave when projected onto the x-axis. If we
then apply this to a paraxial wave, like a Gaussian beam, we can decompose this into many
plane waves at the lens, given that we are indeed dealing with a well-collimated beam with
low divergence. For the decomposed plane waves, the above shows us that for the point (x,
y, f), where the focus of a component plane wave incident on a lens at angles θx and θy
is located in the focal plane, we have: x = θxf = λνxf and y = θyf = λνyf respectively.
We call the function which describes the complex amplitude of the paraxial wave at some
point a distance d before the lens f(x, y). This function has an FT which is proportional to
the complex amplitude in the focal plane, the function of which we call g(x, y). When we
evaluate the FT of f(x, y) at νx = x

λf
and νy = y

λf
respectively, we get:

g(x, y) ∝ F

(
x

λf
,
x

λf

)
.

Through use of Fresnel propagation of the individual component waves one gets the complex
amplitude [3]:

g(x, y) =
i

λf
exp [−ik(d+ f)] exp

(
iπ

(x2 + y2)(d− f)

λf 2

)
F

(
x

λf
,
y

λf

)
,

where k = 2π
f

is the wave number. This gives the following relation between the intensity in

the focal plane, which is just |g(x, y)|2, and the FT:

I(x, y) =
1

(λf)2

∣∣∣∣F ( x

λf
,
y

λf

)∣∣∣∣2 (12)

This relationship between the FT and the complex amplitude is highly useful for mathemat-
ically simulating the propagation of light.

2.2.3 Sampling for discrete Fourier transforms

When considering a continuous FT as above, one considers all of two-dimensional space in
both the source plane and the FT plane, however, for a discrete FT like the ones used for
digital image or signal processing this is not feasible. The fidelity with which one can describe
a signal or image by discrete sampling is determined by to what degree it is sampled. Under-
sampling will generally give rise to artifacts, if not completely distorting the signal beyond
understanding, this makes it important to understand how much sampling is appropriate.
This is what will be discussed in this section.

To use an example, while an analog image, such as one taken with a film camera, is continuous,
a digital image is discrete, that is, sampled. This can be thought of as subdividing the analog
image into M by N sections, where each section contains a value associated with that portion
of the image, for example a number which represents the color in that area. Each sample
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Figure 7: This figure illustrates the relevant quantities relevant to interpolation in a discrete
FT from a matrix in the spatial domain to one in the spatial frequency domain, here simplified
to one dimension.

makes up a point in an M by N matrix where the distance between each point in the different
dimensions can be referred to as ∆x and ∆y. The inverse of these sampling distances is what
is called the sampling frequency, which will come up later. It is possible to deduce the length
of this plane in each dimension by simply multiplying the amount of samples in each direction
with its associated sampling distance, like Lx = ∆xN and Ly = ∆yM . In order to include
every part of the original image when sampling, the sampled width must be strictly larger
than the image one wishes to sample. Of course, simply having a wide sampled image does
not necessarily give any information if it has not been sampled enough, meaning that details
are lost. Thus analogously, there is also a need to define a sampling frequency which is
high enough to include all the information we want. The expression for this is given by the
Nyquist-Shannon sampling theorem, which tells us that the sampling frequency must strictly
be more than twice as large as the bandwidth of the image we wish to resolve [9]. This yields
an interesting result, namely that the absolutely highest frequency which can be described
by a given discrete system, also known as the Nyquist frequency, in each dimension is given
by:

νNx =
1

2∆x
, νNy =

1

2∆y
. (13)

These quantities are illustrated in Figure 7 in one dimension. Knowledge of the depicted
quantities together with the fact that the matrices in each domain consist of N elements
means that it is possible to calculate the spacing in the frequency domain. When this is
combined with Equation 12 it becomes possible to calculate the physical size of the Fourier
plane when used for optical propagation.

2.3 Phase-retrieval algorithms

In order to be able to correct the wavefront of the laser, one must first know what its wavefront
looks like. This would normally be done with some type of wavefront detector, such as a
Shack-Hartmann wavefront sensor [10]. Here, we instead use a number of algorithms which
have been designed specifically for wavefront reconstruction by means of phase retrieval from
amplitude measurements.
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Figure 8: This figure illustrates how an iteration of the GSA is performed, with an iteration
number of k. A, A’ represent the measured amplitude in the source and target planes
respectively, and their counterparts Ak and A’k refer to the magnitude of the amplitude
given by propagation. φk and θk refer to the calculated phase in a given iteration in the
source and target planes, respectively, and φ1 refers to the random phase used in the first
iteration of the algorithm, indicated by 1’. Step 1 is where the source amplitude is multiplied
with the phase from the previous iteration (or φ1) and an FT is performed. Step 2 is the
extraction of the amplitude from the transformed system, and step 3 is the multiplication of
the phase from step 2 with the measured target plane amplitude and the performance of an
IFT on this system. Step 4 finishes the cycle by extracting the amplitude and phase from
this step and passing the phase on for the next iteration of the system.

2.3.1 The Gerchberg-Saxton algorithm

The first algorithm employed here, and possibly the oldest, is known as the Gerchberg-Saxton
algorithm (GSA) [11]. The GSA is in principle rather simple and requires only two inputs:
the image/beam amplitude in its image plane and in a plane to which it is Fourier related,
such as its Fourier plane. The algorithm in its first iteration takes the image plane ampli-
tude and applies a random phase across the image and performs an FT on it. The phase of
the resulting simulated Fourier plane is then extracted and applied to the measured Fourier
plane amplitude and an IFT is performed, transforming it back into the image plane. At this
point, the algorithm starts over but uses the phase given by the previous iteration instead
of a randomly generated one. This process is repeated, and will decrease the discrepancies
between the transformed images and the input images until the error reaches a minimum
[11]. The phase can be extracted and used as reference for wavefront correction.

The GSA has the advantage that it can be mathematically proven that the error from one
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iteration to the next can never worsen [11], with error here defined as:∑MN
n |Akn − An|2∑MN

n |An|2
,

where M and N are the dimensions of the amplitude matrices, and An and Akn are the mea-
sured and calculated amplitudes at the nth point in the matrix, respectively. This guarantees
that the algorithm will never diverge, but not that it will converge to the correct solution
every time [12, 13]. As such, the GSA makes for a good baseline algorithm for phase retrieval,
but it is not necessarily the best one available. The algorithm in its kth iteration is described
in Figure 8, and is carried out entirely using the below equations:

fk(x, y) = |f(x, y)| · eiφk , (14)

where fk(x, y) represents the current iteration of the complex amplitude of the source plane,
|f(x, y)| represents the measured source amplitude and φk represents the currently calculated
phase in the source plane. This is propagated to the target plane via FT, giving the below
step:

Fk(u, v) = F [fk(x, y)] = |Fk(u, v)| · eiθk , (15)

where Fk(u, v) is the complex amplitude in the target plane after propagating fk(x, y) via FT
and θk is the calculated phase in the target plane. The phase is then extracted and combined
with the measured focal plane amplitude, giving the below:

F ′k(u, v) = |F (u, v)| · eiθk , (16)

where F ′k(u, v) is the adjusted focal amplitude, and |F (u, v)| is the measured focal plane
amplitude. An IFT is then used to bring us to the last step:

f ′k(x, y) = F−1[F ′k(u, v)] = |f ′k(x, y)| · eiφk+1 , (17)

where f ′k(x, y) is the adjusted source plane field amplitude and φk+1 is the phase to be used
as input in the following iteration of the algorithm. In the very first step, φ1 is usually set to
be a random phase profile. This is done in order to avoid running into problems which are
related to convergence for centrosymmetric amplitude profiles [11].

2.3.2 Input-output algorithms

Input-output algorithm refers not only to a specific algorithm, but also to a family of al-
gorithms, all of which are dedicated to phase retrieval. The three main algorithms will be
discussed here, these are: the titular Input-output (I/O), the Output-output (O/O) and the
Hybrid input-output algorithm (HIOA) [14] which is the one used in this work. The key
difference between these algorithms and the GSA lies not only in what is done in the fourth
step of the algorithm, which is the main difference, but also in how they make use of the
three initial steps. That is, the FT of the image plane, the phase extraction in the Fourier
plane and the IFT of the adjusted Fourier plane. The GSA functions like a closed loop
until the desired phases in either plane can be extracted at the end. The input-output algo-
rithms instead form what could be called open algorithms with a first and a last step. These
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Figure 9: This figure illustrates an iteration of the I/O algorithm. It is carried out similarly
to an iteration of the GSA, with exception of the last step, which uses values from several
inputs and previous points in the iteration, which makes it appear far more complicated, but
it only makes use of the same quantities as the GSA with the exception of the constant β
and the set γ. Steps 1-3 are carried out more or less identically to the ones in the GSA as
described in Figure 8. Step 4 has here been divided into two steps, 4a, and 4b. 4a represents
the step where the measured source amplitude is combined with the phase of the previous
step to form the amplitude in places where the measured amplitude is not zero. 4b represents
a step similar to step 4 in the GSA, with the exception that it subtracts the result of the IFT
from the input of the previous iteration and sets this as the value of the amplitude where the
source amplitude is zero.

algorithms use the outputs to varying degrees in order to drive the inputs of further iterations.

The I/O utilizes the same first steps as the GSA. But when the next iteration is started,
rather than simply applying the phase from the IFT to the measured amplitude it instead
uses the input for the previous iteration as well. This new input is subtracted with the
output of the previous iteration, with some prefactor β determined by circumstances of use,
but usually set to < 1 [14], where the original input amplitude is equal to zero. The use of
the previous iteration’s input in combination with the output is what gives this algorithm its
name. This is carried out by the algorithm in replacing the fourth step with the one below:

fk+1(x, y) =

{
|f(x, y)| · eiφk , (x, y) /∈ γ,
fk(x, y)− βf ′k(x, y), (x, y) ∈ γ
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Figure 10: Illustrated here is a diagram of the O/O algorithm. It is structured somewhat
similarly to the I/O as described in Figure 9 with a split in step 4, except it does not make
use of values from previous iterations. Step 4a is identical to step 4 from the GSA, but only
applies to a subset of the source plane, where 4b returns a diminished amplitude of the IFT
output in places where the amplitude would simply be zero in the GSA.

Where β is a scaling factor chosen to be between 0.5 and 1 [17], and where γ refers to the set
of points in the source plane where the measured field amplitude is zero. What this changes
in each iteration of the algorithm is illustrated in Figure 9.

The O/O is similar in structure to the I/O with the exception that one replaces every instance
of the previous iteration’s input with its output. This means that if one chooses the prefactor
β = 1 one gets an algorithm which is functionally identical to the GSA [14]. The algorithm
is illustrated in Figure 10, and the below equation replaces step four in the GSA:

fk+1(x, y) =

{
|f(x, y)| · eiφk+1 , (x, y) /∈ γ,
f ′k(x, y)− βf ′k(x, y), (x, y) ∈ γ

The above algorithms each have their advantages and disadvantages relative to one another.
For example, similarly to the GSA, the O/O may stagnate without reaching a solution but
may otherwise be faster than the I/O.

The HIOA is an algorithm which synthesizes the two methods of I/O and O/O into one and
in doing so, attempts to transcend their weaknesses. What this means in practice, is that
the HIOA uses as its input for a new iteration the phase from the output multiplied with the
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Figure 11: Illustrated here is a flow diagram of the HIOA. Its step 4a is identical to that of
the O/O algorithm, and its step 4b is identical to that of the I/O algorithm, but is otherwise
identical in structure to either of them.

original input amplitude, as in the GSA and O/O, but where the original amplitude is zero,
it uses the previous iteration’s input subtracted with the output multiplied with the factor
β as before. The point of this, in contrast to previous algorithms, is to introduce a sign flip
between different iterations in areas where errors are more persistent, so as to avoid getting
stuck in local error minima with persistent errors. The HIOA is the most efficient phase
retrieval algorithm introduced so far [14] but it has its share of issues as well. It is hard to
judge the accuracy of the HIOA in the same way as the GSA, because while it can be good
at retrieving the wavefront, due to its nature as an open algorithm, it is more concerned
with generating outputs which will yield a correct phase in the end, rather than gradually
minimizing the error. This means that the error, as defined for the GSA, may not be as good
of an indicator of the accuracy of the wavefront here.

The HIOA is identical to the GSA with the exception of step 4, as illustrated in Figure 11,
which for the HIOA is replaced by the below, which can be seen to be a mixture of both
previous algorithms:

fk+1(x, y) =

{
|f(x, y)| · eiφk+1 , (x, y) /∈ γ,
fk(x, y)− βf ′k(x, y), (x, y) ∈ γ

(18)
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2.3.3 Three-plane intensity algorithm

The three-plane intensity measurement algorithm is based on the GSA, however, while the
GSA relies on propagating back and forth between two planes through use of the FT, the
three-plane algorithm uses intensity measurements in three planes and propagates between
them. This propagation can be done in any way which is appropriate for the distance
propagated. It is here done with a Fresnel transfer function propagator as described in
Section 2.2.1 above. The algorithm starts in a plane of choice and propagates to a second
plane, where the phase is extracted and multiplied with the measured plane amplitude,
similarly to the GSA, this is done again, so that the third and last plane is reached. The
third and last plane is propagated all the way back to the first position, without stopping
at the second position between them, and upon this the cycle starts over. This modified
cycle is illustrated in Figure 12. Despite its simplicity, effectively only being a single step
added to the GSA, this algorithm can be seen to be more effective in some circumstances
than the regular GSA insofar as it has been shown to reproduce more complicated wavefronts
with smaller errors without stagnation, which is seemingly caused by the fact that it requires
more information as input [15]. Propagation is done within the Fresnel approximation, as has
been assumed in Section 2.2.1. This gives the possibility of using Equation 11 for purposes
of propagation, which we do, with the exception that the definition for H(νx, νy, d)} is not
given by Equation 10, and is instead given by:

H(νx, νy, z)} = e−iλzπ(ν2x+ν2y)

Which is the Fresnel approximation of the free-space transfer function with the first term
removed, as it only contributes a flat phase in the direction of propagation, and can therefore
be neglected here [9].

2.3.4 Multi-image Gerchberg-Saxton algorithm

An algorithm in a similar vein as the previous one, the Multiple-measurement averaging
algorithm (MMAA) carries out propagation from the source plane to several target planes in
parallel [16]. Each of these planes function similarly to the GSA in that the algorithm simply
propagates back and forth. This time, however, when the planes are propagated back to the
source, the phase and amplitude is averaged in the source plane. This new source is now
propagated in parallel to each target again, this is illustrated in Figure 13. This algorithm has
the drawback of running more calculations in the background, making it more costly. What
makes it so appealing, though, is how robust it is to camera noise for applications where this
is an issue. Functionally, this is nearly identical to the three-plane intensity measurements,
only that propagation is carried out several times in parallel with propagation to slightly
different positions.

2.3.5 Spatial phase perturbation algorithm

The next algorithm to be discussed is the Spatial phase perturbation algorithm (SPPA). The
SPPA is fundamentally nearly identical to the GSA with one exception. This exception is
the ”phase perturbation” which gives the algorithm its name. What this means in practice is
that at the end of each iteration of what normally would be the GSA, a random phase profile,
multiplied by some factor 0 < α < 1 is added to the phase. There should also be some factor
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Figure 12: Shown here is a diagram of the three-plane intensity algorithm. It is structured
similarly to the GSA described in Figure 8 but with more steps, and instead of simply
using the FT directly, propagation between several planes is carried out. Step 1 consists
of propagating the input phase and amplitude to a second plane, and step 2 consists of
extracting the phase from that plane, to be combined with its measured amplitude in step
3. This procedure is then repeated for the second to third plane propagation and from the
third to first plane in steps 3-6.

dependent on the iteration number such that this random phase steadily decreases to zero
over several iterations, leaving the last iterations to be calculated like the normal GSA. In
effect, this small random phase addition have the effect of ”scrambling” the FT of the image
in each iteration to a decreasing degree. This seems counterintuitive at first, but in most
cases this causes an eventual convergence to a smaller error than the regular GSA [17]. The
reason for this lies in the fact that the error of the GSA cannot increase between iterations,
as mentioned above. Consequentially, the GSA is at risk of getting stuck in a local error
minimum from which it cannot get out. This behaviour of reaching a local minima and
staying there is usually what is meant when the GSA is referred to as having stagnated.

The point of the SPPA is thus to run the regular GSA with a mechanism which makes it
possible for the algorithm to ”shake itself loose” from local minima and other possible causes
of stagnation. The perturbation must, however, gradually decrease to zero at some point
if the algorithm is to be able to converge at all. This algorithm may take many iterations
before it converges as it needs a long, gradual decrease of the perturbation for best results.
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Figure 13: This figure shows a diagram of the MMA. Step 1 of this algorithm is similar to
the GSA, except that parallel propagation from the source plane to a given amount of planes
in space is performed instead of an FT. Step 2 consists of the extraction of the phase from
all these separate planes and multiplying them with their respective measured amplitudes.
Step 3 then consists of propagation of all separate planes back to the source plane. Step 4
then consists of taking the average phase from this propagation and combining it with the
measured source amplitude.

The algorithm has, however, been shown to converge to errors much lower than that of either
the GSA or the HIOA on their own, and is more robust to random noise in the amplitude
measurements [17]. This algorithm can be used on its own, but the spatial perturbation
component can be implemented as a component in most other algorithms. It is important
to note, however, that this may not be suitable or helpful for all algorithms. The HIOA for
example, has its own mechanism for avoiding stagnation and is thus not likely to benefit from
this spatial perturbation and it may in fact be harmful to convergence.

The SPPA is similar to the GSA except for the last few steps, and for one step, the difference
is purely notational. The exact differences may be noted by comparing the below equations
to their equivalents equations 16 and 17.

f ′k(x, y) = F−1[F ′k(u, v)] = |f ′k(x, y)| · eiφ′k

Where φ′k is used in place of φk from equation 16, and the last step is replaced by:

fk+1(x, y) = |f(x, y)| · eiφk+1 = |f(x, y)| · ei(φ′k+∆φk)

Where ∆φk is described by:

∆φk = α ·
(

1− k

K

)
· (random phase from 0 to 2π)
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Figure 14: This diagram illustrates the SPPA, which is identical to the GSA, as described in
Figure 8, with the exception of a random, decreasing, phase which is added to the outgoing
phase in step 4.

Where α is a scaling factor, and K is the amount of iterations for which the perturbation is
used in the algorithm.

This algorithm has been shown to have a better convergence than either the HIOA or the
GSA [17], but it has the drawback of needing to run through at least K iterations before one
can rely on the phase or amplitude output. Depending on what the appropriate magnitude
K has, it may take very long for the algorithm to converge relative to other methods.

2.3.6 GS/HIOA

The Hybrid Gerchberg-Saxton and hybrid input-output algorithm (GS/HIOA) is, as the
name implies, a combination of the GSA and the HIOA. What this means in practice is
that the algorithm is run in cycles of some amount n of iterations. The first out of every
n iterations in the algorithm is run as a GSA iteration and the remaining n − 1 iterations
in the cycle is run as iterations of HIOA. It could hypothetically be run with a different
balance of GSA to HIOA iterations, but literature seems to indicate that one GSA iteration
per cycle is optimal [17]. The cycle size appears to have an effect on the error size, with a
cycle with too few iterations often not converging as well as possible, whereas extending the
cycle too much only causes it to converge more slowly [17]. It thus appears preferable to start
with a larger cycle size, as opposed to a smaller one. This algorithm seems, according to
literature, to converge to a smaller error more quickly than any other algorithm tested, at the
expense of being slightly less robust to noise than the SPPA above [17]. This algorithm has
the drawback that it can only be run in some integer number of cycles, which may make it
difficult to estimate how many cycles should be used if one does not monitor the error in real
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time. The algorithm may also take a few cycles before the calculated error actually decreases
below that calculated by either the HIOA or the GSA for the same amount of iterations.
Ultimately though, this seems to be one of the stronger options for phase retrieval, as it
seems faster than both SPP and MMAA due to its apparently faster convergence [17], and a
much shorter computation time of each iteration, respectively.

2.3.7 Zernike Polynomials

Zernike polynomials are a specific set of polynomials which form an orthogonal basis over a
circular area, meaning they can be used to take on any value over a given circular area, sim-
ilarly to how the Cartesian coordinates (x, y and z) can be used in regular three-dimensional
space. They are of special interest in optics, as they are defined in such a way that individual
polynomials describe different types of optical aberrations [18]. Some of the low-order Zernike
polynomials are illustrated in Figure 15 A consequence of this is that any wavefront which
is calculated over a circular area, such as a Gaussian beam, can be decomposed into Zernike
polynomials. It was used in conjunction with one of the above algorithms in the following
way: a full phase reconstruction is done via an algorithm. The resultant phase is afterwards
decomposed over the radius of the beam into Zernike polynomials. This decomposition may
then be used to approximately reconstruct the wavefront for the SLM. The benefit of doing
this is that the Zernike-approximated wavefront does not have odd discontinuities in the
phase front which may cause speckles or other odd behavior when the beam is focused. The
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fact that the polynomials are orthogonal means that one could hypothetically use only a few
Zernike polynomials instead of the full wavefront in order to partially compensate for optical
aberrations.

The advantage of the Zernike polynomials, as mentioned before, is that they correspond to
well-known aberrations of an optical system, such as astigmatism, spherical aberration and
comas. This means that when one uses them to compensate for a reconstructed wavefront,
one can potentially identify different types of aberrations and use this knowledge to examine
the setup. Using the knowledge of what type of error occurs, one can use this to correct the
experimental setup itself, if possible.

2.4 Phase modulation with spatial light modulators

As stated in the introduction, this project will aim to perform a divergence minimization of
attosecond pulses through modulation of the spatial phase of the driving laser. This phase
modulation will allow for the shaping of the beam into an intensity profile more suited for
generation. The driving field which is used for HHG commonly has a Gaussian intensity pro-
file. If one also takes into account that the beam intensity affects the phase of the generated
harmonics, as discussed in Section 2.1.1, using a beam with a Gaussian intensity distribu-
tion will give rise to an increased curvature in the wavefront of these harmonics. This could
theoretically be ameliorated by instead using a so-called ”flat-top” beam which ideally has a
constant intensity across the entire beam profile. With an equal spatial intensity distribution,
the divergence across the generating volume should be minimized. Furthermore, the focal
positions (virtual or real) of consecutive harmonics would be closer together.

Being able to use a flat-top beam profile would require that the original Gaussian beam is
reshaped. This reshaping could be done by a phase modulation of the beam wavefront by
use of an SLM. An SLM is a device whose main purpose it is to manipulate the phase of
incoming light based on its spatial position. An SLM often has a system of ”pixels”, similar
to those on a computer screen, as its active surface. The kind of SLM used here is a Liquid
crystal on silicon (LCoS) SLM and is described in Figure 16. The refractive index change
along the extraordinary axis of the liquid crystals allows the operator to fine-tune the optical
path distance through the cells, which allows fairly precise control of the phase of incoming
light. By controlling the SLM via a computer, one can then shape the wavefront of the
reflected beam. This will upon sufficient propagation of the beam, such as after focusing it
with a lens, cause it to take on an intensity profile which is associated with such a phase.
There is, however, an omitted step from the above procedure, namely the requirement of a
beam with a relatively flat phase being used as input. Otherwise, the applied phase may fail
to have the desired effect. Thus, in addition to using an SLM to shape the beam, it will also
be used here to correct for aberrations in the beam wavefront.

The SLM itself effectively interacts with the computer as a screen which can display greyscale
images in 8-bit, that is pixels with color values from 0 to 255 which corresponds to a scaling
level from black to white. The greyscale value which corresponds to a phase shift of 2π
depends on the wavelength used. The phase imparted by the SLM scales linearly starting
from 0, and knowing this makes it possible to convert from phase to a greyscale image. When
an image is projected onto the SLM ”screen” from the computer, it uses the value of each
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Figure 16: This figure illustrates a cross-section of the surface of an LCoS SLM. The layers
displayed from left to right corresponding to their position from bottom to surface in the
active aperture of the SLM. The pictured small cells of nematically orientated and uniaxially
birefringent liquid crystals are positioned on a silicon substrate and arranged such that each
cell is on top of one of the pixels shown to the left of the mirror. Phase change is induced
by changing the voltage between the pixels and the transparent electrode which causes the
molecules to rotate and the refractive index in the cell to change. The direction of the applied
electric field is described by the arrow labeled E. The change in refractive index itself has to
do with a gradual rotation of the individual molecules in the liquid crystal cells as illustrated
from top to bottom in the figure. This change in each of the ”pixels” effectively amounts to
adding a certain amount of phase to the reflected light. For the refractive index change to
be fully effective, the incident light must be linearly polarized such that the light encounters
the full extraordinary refractive index of the liquid crystals. This is necessary in order to
gain the largest possible modulation depth out of the SLM. The purpose of the mirror is to
ensure that as much light as possible is reflected back out of the SLM, such that the phase
manipulation has any effect. The alignment film is located on each side of the liquid crystal
cells to help keep them in place.

pixel to determine the voltage it applies over each liquid crystal cell. This in turn decides
the phase it imparts on the incoming light. The phase profile which is calculated must be
interpolated such that it fits onto the surface of the SLM and translated into a greyscale
picture format, it is then projected onto the SLM screen as an image.

There are numerous things which must be taken into account when working with an SLM,
many of which are related to its surface structure, which is illustrated in Figure 16. One of
these is the fact that not all of the light incident on the active surface of the SLM will reflect
as intended. Some of this is due to loss of power, which happens mostly due to absorption in
the transparent electrodes and scattering off the liquid crystals [19]. For the SLM used here,
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which is a Hamamatsu X13139-02, the light utilization efficiency is 97 % [20], meaning that
3% of the incoming power is lost when the SLM is used. There is also light which is reflected
off the SLM without reaching the liquid crystal cells, which will from now be referred to as
’zeroth order’ light. The amount of power which goes into the zeroth order varies from device
to device generally taking up between 5-20 % of the incoming power [21]. The zeroth order
can be separated from the properly refracted light by applying a blazed grating to the phase
profile projected onto the SLM as this will tilt the wavefront and cause them to diverge from
one another.

Another type of loss which must be taken into account are the higher orders which are
diffracted due to the discrete structure of the SLM surface, that is, the grid formed by the
crystal cells and pixels illustrated in Figure 16. These higher orders go out in nearly all
directions from the SLM surface and may need to be taken into account. These, however,
often do not take up as much power as the zeroth order and are in practice separated by
themselves due to their large angles of divergence relative to the main beam.

The SLM has an additional limitation in that it cannot be used for beam intensities which
are too high. This has to do with the temperature tolerance of the liquid crystal cells, as
an incoming beam with too high power will cause the liquid crystal structure to warm up,
which would at best decrease efficiency temporarily, and at worst permanently damage the
cells. Hence, one must be careful to choose appropriate beam size, average power and peak
power when using the SLM.

3 Implementation

The calculation of the phase profile, its interpolation and its conversion into an image is all
done with a program that was developed in the programming language LabVIEW. The algo-
rithm used below for phase retrieval was the GS/HIOA, but other algorithms were considered
and tried before this one was decided upon. All image processing required to get the camera
images suitable for FT in the algorithms, that is zero-padding, amplitude interpolation and
amplitude normalization, is also carried out in LabVIEW. Additionally, MATLAB has been
used as a benchmark comparison for individual sections of the code in order to verify that
they function correctly and for performing certain tasks within the program. These tasks in-
clude interpolation, two-dimensional phase unwrapping using a function from the MATLAB
central file exchange [22, 23] and a Zernike polynomial decomposition function, also from
MATLAB central file exchange [24].

3.1 Experimental Setup 1

The first stage of the experiment was set up on an optical table as illustrated in Figure 171.
The purpose of this stage of the experiment was mainly to test the SLM with a beam which
was completely safe for the SLM. All of the potential functions of the phase-retrieval program
were tested here in multiple iterations, including all of the above described phase-retrieval

1All experimental setup figures were in large part made with use of the image library ComponentLibrary
for optical components by Alexander Franzen [25].
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Figure 17: The optical setup as used with the diode laser. The diode has a central wavelength
of approximately 800 nm. The beam is first linearly polarized so as to reach maximum
effectiveness with the SLM. It is then passed through an adjustable telescope composed of
two lenses, lens 1 and lens 2, in addition to a pinhole. Lens 1 has a focal length of 5 cm and
lens 2 has a focal length of 10 cm, and the pinhole diameter is 0.02 mm, these components are
all positioned in adjustable mounts in an opto-mechanical cage system. All three telescope
components can be adjusted along the optical axis, the pinhole can also be moved in its
mount transversally. The telescope is set up in order to clean up and magnify the beam by
removing higher spatial frequencies, to ensure that the beam is somewhat circular. This is
done in order to make it similar to the beam later used in the actual experiment. The spatial
filtering by the pinhole gives rise to an Airy pattern, which is cut at the first minimum with
the iris placed after the telescope. After this, the light is reflected off the SLM and then
passes through lens 3, which has a focal length of 1 m. A Charge-coupled device (CCD)
camera is placed in the focus to record the amplitude of the beam in the Fourier plane. Both
the SLM and the camera are connected to a computer which controls inputs to both devices
and stores the camera recordings.

algorithms. The possibility of beam shaping was also tested here, with phase vortices and
holograms being applied to the SLM for this purpose. While the focus of this setup was on
testing the SLM, it was also used as a way of getting used to the other equipment, such as
the CCD camera and its settings, which would also be instrumental in the final experiment.
In essence, this part of the experimental work was a staging ground for further uses of the
SLM and the related setup. Most, if not all of the iterative work on programs and algorithms
were performed at this stage, with the remaining steps mostly consisting of application of
methods developed here.

A picture was taken of the beam amplitude at the SLM and the lens (the image plane)
for use in calculations. For the multi-image and multiple-intensity measurement algorithms,
multiple pictures were taken around the focus as well. The algorithm was tested until results
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Figure 18: The optical setup for the second set of experiments. Now with an external beam
from the ultrashort pulse laser coupled in rather than a diode laser, with an iris for partially
blocking the beam and a linear polarizer before the SLM to ensure that maximal efficiency is
reached. The lens used here has a focal length of 1 m. The only component which is entirely
new to this setup is the rail, which had a ruler mounted on top of it for measurements, along
with a movable base for the camera, to allow for free movement of the camera near the beam
focus.

from the wavefront correction program were deemed good enough in order to move one to
the ultrashort pulse laser and the HHG beamline.

3.2 Experimental Setup 2

The second stage of the experiment still used the same simple arrangement with some changes,
as illustrated in Figure 18. The purpose of this stage was primarily to measure the results of
wavefront correction applied to a beam from the ultrashort pulse laser. The laser used here
and in the following laboratory setup is a Titanium:Sapphire laser with a central wavelength
of 800 nm, emitting pulses at approximately 20 fs with an up to 5 mJ pulse energy at a
repetition rate of 1 kHz. A weak copy of the main beam was used in these experiments. The
telescope and spatial filter were therefore no longer necessary in the setup. Since the beam
was larger than the camera CCD chip, in order to take a picture of the far field, a camera
objective was used and a scale was made for the far field picture with millimeter-spaced graph
paper. In the near field, the camera was placed in the beam path on a base which could
be moved along a rail in order to easily take images in the proximity of the geometrical focus.
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Care was taken to minimize optical aberrations caused by the setup. The SLM itself is a
source of aberrations in the system due to its surface not being perfectly optically flat.

The camera was then positioned in what appeared to be the best focus of the beam with-
out any additional phase on the SLM. The algorithm was run based on an input from this
position and afterwards images were taken near the focus. This was done for several initial
positions in the vicinity of the best focus to verify whether the peak intensity did increase as
a result of the algorithm being used or not.

3.3 Experimental Setup 3

3.3.1 Harmonic generation, pre-generation chamber

In the third stage of the experiment, we wanted to investigate the effects of using the SLM
for the process of HHG. This means that it is of interest to be able to observe HHG both
with and without the SLM, and also to use the SLM to shape the driving beam in order to
observe the effect this may have on the generated harmonics. We are primarily looking for
the impact on the divergence of the harmonics by wavefront shaping.

The experiment is illustrated in Figure 19. An iris further upstream was used to put improve
on the incoming beam by partially closing it. Irises 1 and 2 were then used to align the
incoming beam into the generation chamber. The dual angled mirrors in the SLM in-coupling
area were placed on a magnetic base, which made them simple to remove and replace. This
allowed for easy iteration between working with and without SLM in the beam.

3.3.2 Harmonic generation, generation chamber

After the driving beam passes through the above system, it enters the generation chamber,
as illustrated in Figure 20, where harmonics were observed via the XUV spectrometer. The
pick-up mirror was used to align the setup each time the SLM was coupled in via the twin
mirrors on the magnetic base, as seen in Figure 19, were inserted to ensure that the beam
path was the same as before.

3.3.3 Harmonic generation, experiment

A pulse energy of 0.5 mJ, corresponding to an average power of 0.5 W, was considered safe
use without damaging the SLM. After harmonics started being generated and observed via an
XUV spectrometer, the aperture was adjusted to optimize for the cutoff and spatial shape of
the harmonic spectrum. A spectrometer measurement of HHG which was used in the results
is illustrated in Figure 21. A spectrometer measurement was taken, along with an image
of the beam profile of the driving field. The aperture was then fully opened and another
image of the focus was taken. In the following, the SLM was coupled in and the power was
measured after the SLM. The focus was recorded without the aperture. An optical plane
vortex applied on the SLM was used for alignment purposes and in order to center the beam
on the SLM. HHG was carried out with the SLM without shaping the beam.
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Figure 19: An illustration of the setup for HHG outside the generation chamber. The
beam input used here was the direct generation arm input of the external setup using the
Titanium:Sapphire ultrashort pulse laser. The start of the setup consists of an adjustable
half-wave plate (λ

2
) linear polarizer (LP (H)), to set the polarization of the incoming beam to

be linear and horizontally oriented for the SLM, the half-wave plate can also be used to adjust
the incoming beam power. The area surrounded by a dashed line marked ”SLM in-coupling
area” marks where the SLM was coupled in via two mirrors mounted on a magnetic base. This
meant that they could be easily removed to couple the SLM out of the system. Immediately
after the SLM area, another half-wave plate and linear polarizer (LP (V)) were placed to
ensure maximal conversion efficiency from horizontal to vertical polarization. The HHG
chamber requires vertically polarized light for generation, so these were adjusted to simply
rotate horizontally polarized light from the SLM into vertically polarized light without any
loss of power. Additionally, an iris (iris 1) was positioned before the focusing mirror which
focused the incoming beam for harmonic generation in the generation chamber. The beam
would then pass through the second iris (iris 2) before entering the generation chamber. The
focal length of the focusing mirror used was 50 cm. There was also a flip mirror (FM) set
up between the second iris and the focusing mirror, to make it possible to view the focused
beam outside of the generation chamber. The camera and rail was set up near the geometrical
focus.

The next step was to observe the possible impact of the SLM on the divergence of HHG. For
this purpose, three scenarios with similar peak intensities were implemented. These different
scenarios involved using similar peak intensities, but different beam profiles, which would be
achieved in various ways described below. It was necessary that the beams in the scenarios
had similar peak intensities, as critical aspects of HHG, for example the observed cutoff,
depend strongly on the intensity. In practice, this was done by comparing the harmonic
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Figure 20: A simplified illustration of the HHG setup inside the generation chamber and
the following chambers. This figure functions as a continuation of Figure 19. The first
components in the system are the gas cell, where HHG takes place, and the motor it is
attached to. This motor allows for the position of the gas cell position to be adjusted precisely
in three dimensions. In the next chamber, a ”rotatable” filter holder is positioned which holds
several filters of different materials in different slots which can be rotated between, with some
slots unfilled, leaving empty holes allowing for free passage of light if desired. The light which
passes through the empty slot or filter is then reflected off a toroidal mirror (TM) toward a
diffraction grating which is at a grazing angle relative to the incoming light. At the end of
the system is an XUV spectrometer camera. Additionally, between the TM and the grating
is a manually adjustable pick-up mirror which can be inserted into the beam path in order
to reflect light out to an alignment camera, which can be used to realign the pre-generation
chamber system whenever it is altered.

cutoffs in the different scenarios. The first scenario to be considered, was a flat-top beam,
which was generated by imposing a phase pattern consisting of a π-shift outside a given
radius on the SLM. This was tested for a few different radii and compared to two scenarios
which did not use the SLM. The second scenario kept the beam power the same as what
was used with the SLM, but peak intensity was lowered by partially closing iris 2, thereby
lowering the beam power and altering the intensity distribution. In the third scenario, the
beam power was lowered such that the peak intensity was identical. These scenarios are
illustrated in Figure 22. The divergences of the harmonics generated in these scenarios were
compared in order to determine which led to the lowest harmonic divergence. The described
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Figure 21: This figure displays a harmonic measurement as taken directly from the XUV
spectrometer, as described in Figure 20. This figure was used in the generation of Figure 32,
and can be found in the Appendix as Figure 41. In addition, all other XUV spectrometer
measurements taken may be found in the Appendix.

1
2

3

Figure 22: An approximate illustration of the three spatial intensity distribution scenarios
considered. The distribution marked 1 (red) represents the spatial intensity distribution
of the flat-top case, and scenarios 2 (blue) and 3 (violet) represent the beam having been
adjusted by decreasing the beam power and closing an aperture, respectively.

measurements were repeated for an incoming beam power of 0.75 W instead, as this gave
stronger harmonics while still being below the damage threshold of the SLM. Measurements
of the foci were also taken, all with the camera in the same position, in order to be able to
compare them.

3.4 Program for phase retrieval

While the core loop of a phase-retrieval algorithm (here the GS/HIOA, as stated above) does
not usually have a complex structure, integrating this into an experimental setup requires
some additional components. For the entirety of the process, two separate programs are used
to go from pre-experiment intensity measurements to phase manipulation in-experiment. The
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smaller of these is rather simple, it simply performs the task of intensity profile interpolation
and, if necessary, zero-padding for the purposes of matching the dimensions of the intensity
measurements in the near and far field. This program will henceforth be referred to as the
”fill-fixing program” or the ”filling fixer”. The other program, which performs most other
tasks relevant to experiments such as the phase-retrieval itself, is the only one actually used
during experiments. This program will henceforth be referred to as the ”main program” or
simply the ”program”. As an additional note, all two-dimensional matrices are generated or
zero-padded such that their column and row numbers are even, and all code is written in
LabVIEW and MATLAB. MATLAB code is integrated in the program via so-called MAT-
LAB nodes, which allows the code to give inputs to and take outputs from, MATLAB code,
provided a linked instance of MATLAB allowed to run in parallel. This is generally avoided,
but is used in a few placed where it significantly simplifies or speeds up the code.

3.4.1 Fill-fixing program

The fill-fixing program was made with the knowledge that the spatial width of the plane to
which propagation is simulated via FT is dependent on the size in which the source plane is
sampled. The optical FT properties of the lens as discussed in Section 2.2.2, more specifically
that νx = x

λf
νy = y

λf
, can be used in conjunction with Equation 13. This effectively gives us

an expression for the side length of our optical FT provided we know the sample spacing in
our original picture. Given that the discrete FT also has the same dimensions as its source
plane, the amount columns and rows can be used in combination with the side length to
determine the sample spacing in this plane as well.

The purpose of the filling fixer is thus to calculate the spatial dimensions of a given plane’s
FT or vice versa. This is done by using the appropriate focal length and wavelength in
combination with the desired spacing and side length of the plane whose dimensions are
fixed. This can be adjusted at will but in the experiment the near field plane’s sample
spacing in both directions was set to 3.69 µm, equivalent to the pixel size of the camera used,
in dimensions 4096 by 4096 to give a good resolution in the far field plane as well. For the
interpolation, the coordinates of the plane to be rescaled must be known. These coordinates
are a matter of physical measurement though, either via having a beam on a camera chip
directly, or using graph paper and calculating the distance corresponding to the size of a
pixel. Once all required information is entered, the program can be used. Depending on the
settings, the input for the source plane and the target plane can be interpolated such that
either or both planes can be rescaled onto a new matrix with a correct amount of columns
and rows with appropriate grid spacing based on the inputs given. The program then outputs
the rescaled plane as a new image with the desired dimensions and is then ready to be used
in calculations. There is also an option to perform thresholding of values on the inputs and
outputs, if this is desired. The program does need to be readjusted depending on which plane
one wishes to base the scaling on, but this can be done relatively simply.

3.4.2 Main program

The main program has several functions, the primary of which is phase retrieval by means of
one of the many algorithms explored in Section 2.3. The program has several options which
determine what tasks are performed during the runtime. These will be explained as well.
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(a) (b) (c)

Figure 23: These figures illustrate simulated spatial intensity profiles with and without phase
modification. In (a) and (b) the focus of a beam with flat phase and one with an optimized
radial π-shift are displayed, respectively. In (c), the spatial intensity profile displayed in (b)
is shown after propagation a short distance away from focus. It can be seen to have taken
on a similar shape to the profile from (a). This is the reason it is important to remain near
the focus of a π-shifted beam if a flat-top intensity distribution is required, as it is only
maintained very near the focus. Additionally peak intensity is decreased drastically when a
π-shift is applied, with the peak intensity of (b) being 29% compared that of (a). It is also
noteworthy that the peak intensity in (c) is higher than that of (b), meaning that the flat-top
beam will have so-called ”bright spots” which are separate from the flat-top focus.

The program will be described in a chronological order, but as some features are mutually
exclusive with one another or togglable, this section will not be entirely linear.

The first inputs which are processed by the program in the case of the GS/HIOA are the
source (at the lens) and target (at the focus) planes. The source plane in this case must be an
image which has been processed by the fill-fixing program first and the appropriate resolution
must be selected. The input image for the target plane can either be taken directly from the
camera or an already taken image can be chosen. Both planes can then be thresholded and
the intensities in the planes are centered, to ensure that the phase is recovered properly. The
target plane is zero-padded such that the dimensions of the two planes match. The power in
the planes are normalized with respect to one another.

It is then time for the GS/HIOA itself. This algorithm section of the program takes a few
inputs, including the above mentioned amplitude planes, which are still entirely positive and
real. Another input is the amount of iterations for which the algorithm should be run, which
effectively decides the runtime of the algorithm. The ”loop size” is another input which must
be given, it determines how many iterations should be in each cycle of the GS/HIOA, as de-
scribed by the value n in Section 2.3.6. Another input includes the algorithm constant β as
seen in Equation 18, which can be changed to alter algorithm behaviour. In the experiments β
was left at 0.7. The last input required is a random phase profile, representing φ1 in Figure 8.

After the algorithm is done, the wavelength of the light, the step distance in the source plane,
the dimensions of the source plane, and the distance between the lens and the SLM are used
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Figure 24: Pictured is the spatial phase profile used on the SLM for the correction of the beam
shown in Figure 28. Sharp edges in the phase profile are caused by wrapping of the phase.
If one compares the phase profile with the Zernike polynomials in Figure 15, the increasing
phase from the center outward in the vertical direction, along with decreasing phase in the
horizontal direction out from the center, seems to suggest that there is significant astigmatism
affecting the beam.

as inputs to propagate the beam. The algorithm output in the source plane is propagated
along the lens-SLM distance in order to compensate the difference in phase of the beam at the
SLM relative to the lens for accurate phase correction. This is performed using the modified
Fresnel propagation method described in Section 2.3.3. The conjugated plane profile is then
applied to the SLM.

The plane profile obtained from the algorithm must be re-scaled for the actual size of the
SLM and converted to 8-bit. After this, the phase is added to a flatness correction phase
profile, which compensates for the fact that the SLM is not optically flat. This correction
was provided by the manufacturer of the SLM. An example of a spatial phase generated by
the program which was used for wavefront correction in an experiment is shown in Figure
24.

There is also a separate branch of the program at this point which reads the output imme-
diately after it has been interpolated, but before it is combined with the phase correction
pattern. This branch of the program performs a two-dimensional phase unwrapping [22, 23].
This is followed by a decomposition of the wavefront into Zernike polynomials with MATLAB
code [24] into an amount of orders of polynomials given as an input. This is done in order to
observe if contributions from any specific optical aberrations that stand out can be observed
in the decomposition. This was originally intended to be used as the actual output onto the
SLM. Mostly, however, the normally calculated phase is used for this purpose. In addition to
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this, the magnitudes of the different polynomials are output as a bar chart on the front panel.

Now outside of the main section of the program, only two portions remain before output.
The first of these is the spherical phase addition feature, which can be toggled on or off. If
toggled on and given the phase matrix converted into 8-bit numbers and a radius of curva-
ture, it adds a wavefront to the phase output equivalent to one of that radius of curvature.
This can be used if one wants to move the focus position along the optical axis via the SLM.
The second of these two features is the radial π-shift. This simply adds a π-shift in terms
the calibration number to the phase outside of a given input radius in the phase matrix. The
effect of such a π-shift on a spatial intensity profile at focus and after numerical propagation
is illustrated in Figure 23.

4 Results

4.1 Experimental sections 1 and 2

When the results of the phase-retrieval algorithm are evaluated, the main object of inter-
est is the change in peak intensity as a result of the wavefront applied on the SLM. Other
measurements of interest include the beam width, quantified as the radius within which ap-
proximately 86% of the power is located. The shape of the beam profile, which is rather
qualitative, can also help indicate whether or not the wavefront has been corrected. There-
fore, these are the main categories which will be observed for the first portion of the results.

Table 1: This table contains the beam widths, where the wavefront of the beam has been
conjugated with help of the SLM and without conjugation. These are referred to as corrected
and uncorrected, respectively. Additionally, the definition of width used here is the radius
within which 86% of the beam energy is located, calculated via integration of the spatial in-
tensity profile. Focus is defined as the position the corrected beam peak intensity is maximal.
For comparison, the Rayleigh range for this focus was approximated to be 7 mm.

Distance from focus [cm] Corrected width [µm] Uncorrected width [µm]
-1 119 146
0 100 144
1 118 137
2 148 148

For the sake of clarity, when position is referred to here, this refers to the measurement of
the camera position via the rail, with a smaller distance being closer to the lens position
and vice versa, the rail and setup are shown in Figure 18. The beam passing through the
experimental setup in this set of experiments was observed to be astigmatic. Other optical
aberrations were likely also present, but astigmatism was deemed to be dominant, so the
designated ”focus” of the system was assumed to be at the point of least distortion, i.e. the
point between the sagittal and tangential foci of the beam. This point was estimated, but
was difficult to pinpoint. What could be pinpointed, however, was the position where the
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(a) (b) (c)

Figure 25: Images of the uncorrected beam profile taken near the point of least confusion. (a),
(b) and (c) are taken in positions 2 cm before, at, and after the focus at 22 cm, respectively. As
can be seen in (a) the beam has essentially split into two overlapping peaks in the horizontal
direction, whereas in (c) no such corresponding separation can be seen in the profile, although
most intensity is vertical along the center. Important to note is that the intensities here are
normalized with respect to the peak intensity in each figure. The peak intensities of each
figure can be seen in the last column of Table 2.

focus with highest peak intensity was observed, which was at 22.0 cm on the rail.

The beam widths of the beam in this instance was calculated for both the corrected and
uncorrected beam near the improved focus position and are listed in Table 1. The width
is here only calculated for positions relatively close to the center as the uncorrected beam.
When beam distortions become too significant, the radius containing 86% of the power is not
a useful metric anymore. This is more obvious for positions closer to the lens, as illustrated
in Figure 25. Instead, peak intensity will be used to compare beams. These are recorded
for beam corrections at multiple positions around the focus in Table 2. If one compares the
results of the corrected beam for correction at 22 cm in tables 1 and 2, there appears to
be a correlation for higher corrected beam peak intensities and smaller beam widths of said
beams. For this reason, the beams will instead be compared based on their peak intensities.
The results of Table 2 are plotted in Figure 26 as well.

Table 2: This table contains the peak beam intensities at different positions, as measured
by the camera, with position set to zero where the best focus was achieved. U refers to the
uncorrected beam, while the peak number refers to the position where the reference plane for
wavefront correction was located. All peaks have been normalized with respect to the best
optimized peak.

Pos. [cm] Peak -1 [a.u.] Peak 0 [a.u.] Peak 1 [a.u.] Peak 2 [a.u.] U. peak [a.u.]
-2 0.63297 0.72601 0.66984 0.30134 0.36044
-1 0.71380 0.87057 0.75824 0.56679 0.51233
0 0.74847 1.0 0.86422 0.7292 0.62295
+1 0.62686 0.82491 0.90403 0.67814 0.66647
+2 0.45472 0.76141 0.84689 0.78926 0.65519
+3 N/A 0.50427 0.60147 0.75360 0.58339
+4 N/A 0.32625 0.48132 0.53480 0.43663
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Figure 26: Illustrated here are the plotted results from Table 2. The curve indicated by
points refers to the uncorrected beam, whereas the lines refer to corrected beams, separated
by the position at which their reference plane was located.

A comparison of the beam width for the corrected and uncorrected beam as referred to in
Table 1 at the focus can be seen in Figure 28. It seems rather clear that the beam profile
has become much more close to a Gaussian beam than the original beam, indicating that
the program indeed has been successful at correcting for some aberrations. In addition, the
peak beam intensity seems to have increased in the beam with over 50% by correction in
this optimal case, when comparing the highest peak intensities of uncorrected and corrected
beams in Table 2. The next interesting point in Table 1 is at 2 cm from the focus (+2
cm), where the calculated widths are roughly equal. An intensity profile comparison in the
horizontal and vertical direction can be observed in Figure 27, where it can be seen that
the uncorrected beam is sharper in the horizontal direction. This is to be expected, as this
seems to be the sagittal focus of the beam, and the uncorrected beam can also be seen to
be wider in the vertical direction. A slight difference in width for the corrected beam in the
two axes can also be observed, with the vertical component appearing slightly wider than its
horizontal counterpart. This is likely due to that the wavefront correction of the beam is not
perfectly flattened and is still mildly aberrated.

As can be seen in Figure 26 and Table 2, there is no data recorded for peak 21 at positions
25 and 26 cm. This is due to a combination of a rapid drop in intensity and the failure of the
beam profile to form a single Gaussian peak, instead splitting, similarly to the profile as seen
in Figure 25a. This was worsened at 20 cm where it was not possible to get any functioning
correction of the beam at all. This seems to be tied to the fact that the uncorrected beam
is split into two overlapping peaks nearer the tangential focus, but no solid conclusion has
been reached about this yet.
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(a) (b)

Figure 27: These graphs show the intensity distribution at 2 cm after the focus (24 cm) in
the horizontal and vertical plane of the beam corrected at 22 cm in (a) and (b) respectively.
A comparison with the uncorrected beam intensity can also be seen in each figure.

(a) (b)

Figure 28: These figures show the intensity for the corrected beam at 22 cm, whose width
is plotted in Table 1. (a) shows a cut in the horizontal plane of the intensity as compared
with the intensity shown in Figure 25b. (b) shows the two-dimensional intensity profile of
the corrected beam. The only difference between the curves seen in (a) is the addition of a
correction pattern on the SLM.

Additionally, it can be observed in Figure 26 that the peak achieved intensity reached to
depend on where the correction of the beam seems to occur. This makes sense, as the
GS/HIOA presumes the target plane intensity to be in the focus of the lens, meaning that
the algorithm yields better results more closely to this point. This is to be expected, as the
algorithm expects the reference target plane to be in the Fourier plane. The general trend
of the corrected beams which maintain a relatively Gaussian shape, that is beams corrected
at 0, +1 and +2 cm, all approach peak intensities similar to the uncorrected beam some
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distance away from the focus. This can be more clearly seen further away from the lens, due
to the more homogeneous intensity profile of the uncorrected beam there. This similarity
in peak intensity after a certain point is caused by the fact that the shape of the wavefront
has a larger impact on the intensity when the beam is focused because there the component
wavevectors of the wavefront play an important role in determining focus size, as was dis-
cussed from Section 2.2.2. As the wavevector components of the beam’s wavefront become
spatially dispersed away from the focus, their impact on the beam shape and therefore the
wavefront correction, becomes less meaningful.

All results are taken with the same filter settings on the camera in order for them to be
comparable. It would have been possible to use less filters to view intensities below what
could be measured here, but this would have resulted in camera saturation for the highest
peaks, with the highest peak of the best corrected beam (0 cm) very nearly saturating the
camera with the settings used. Additionally, it is important to note that the program did not
produce a phase which was capable of improving the focus every time, and that the grade of
improvement this correction phase would bring could vary. However, for the planes where a
relatively good wavefront correction could be achieved, that is 0, +1 and +2, the program
was estimated to yield a correction which gave an improvement in peak intensity on the first
try more often than not, approximately 5 out of 7 times. These tests were also done with the
program running the recommended iteration sizes of 40 iterations per loop [17], but with only
2 loops or 80 iterations in total, which is in general less than recommended. It is possible
that this impacted results as well, but this is not certain. Since the aberrations we correct for
are static, it is not of ultimate importance that the correction employed here works perfectly
every time. Ultimately, from the results of this section of the experiment it does appear that
the program, in conjunction with the SLM, is capable of reducing aberrations.

4.2 Experimental section 3

At this point, in the HHG section of the experiment, the driving beam focused almost with-
out aberrations without the application of an SLM. Therefore, it was tough to achieve an
improvement that goes beyond only correcting for aberrations introduced by the SLM itself.
In this part of the experiment, however, the point of using the SLM was mainly for it to be
used as a beam shaping device in order to manipulate the divergence of the harmonics rather
than wavefront correction of the driving beam. The results of interest here are therefore
the divergence of the generated harmonics, the intensity profile of the foci and the spectral
measurements, all for the different settings with and without the SLM.

The addition of the SLM and the two mirrors required to couple it in, as illustrated in
Figure 19 reduced the measured power at the focusing mirror from 0.5 to 0.4 W. This can
be attributed to the use of the silver-coated mirrors (approximately a 4% loss) and the SLM
itself. This also led to a drop in peak intensity at the focus, as is illustrated in Figure 29,
with little change in the actual shape of the profile, as mentioned above. The beam power
was then further decreased in all cases due to the adjustment of iris 1, as described in Figure
19. The peak intensity was also affected by the radius of the π-shift in the experiment. A
comparison between the peak intensities in the focus of beams with different settings and
with no SLM coupled in can be seen in Figure 30. The peak intensity can be seen to decrease
for decreasing π-shift radius, which is to be expected, as a larger part of the beam is then
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Figure 29: This graph illustrates the intensity profile of the focused beam used for HHG with
and without the SLM. This intensity measurement is taken with all irises completely open,
which is not the conditions the rest of the experiment was conducted under.

π-shifted to interfere destructively in the focus. It can also be seen in Figure 30a that larger
radii are more similar to cases with identical aperture sizes without the SLM, as mostly
unshifted light is let through the iris. It also be seen in Figure 30 that the intensity profile
of the π-shifted beams are not much flatter than a Gaussian beam. This is likely due to the
fact that all images are taken in the same spot and have not accounted for the possibility of
the focus moving when a π-shift was applied. This means that the image may not have been
taken in the correct plane for a flat-top.
Comparisons of the intensities of the integrated harmonic spectra themselves for 0.5 W can
be seen in Figure 31. These integrated spectra are taken from the direct measurements of
the XUV spectrometer at 0.5 W, which can be found in the Appendix. The intensities of the
harmonics can here be seen to not match especially well in most scenarios. This is likely due
to the change in peak intensity between scenarios, as illustrated by Figure 30.

For the integrated spectrum when a 0.75 W input was used, as seen in Figure 32, there is
good intensity agreement for several harmonics between the three different scenarios with the
π-shift set at 3.5 mm. The harmonic near 325 eV in particular showed rather good agreement
in general, and was picked for a divergence comparison. A divergence comparison was done
by spatially integrating over single harmonics of the full spectral measurements, all of which
can be seen in the Appendix, such that the spatial width could be extracted. The vertical
dimension was here unaffected by the spectrometer grating and therefore the beam width in
the vertical dimension is used as an indication of the divergence. The harmonic which can
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(a) (b)

Figure 30: These figures show the comparison of the focal intensity for an iris setting which
was used for HHG. (a) shows a comparison with the SLM coupled out and the largest and
smallest π-shift radii, whereas (b) shows a comparison of all the π-shift radii used.
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Figure 31: This figure shows the integrated HHG spectrum with the intensities of the different
harmonics for an incoming beam with 0.5 W power. ”Power” and ”Aperture” refer to the
spectra which were measured when the beam power and aperture sizes were adjusted to
match the cutoff of the same beam, respectively. The mm distances refer to the radii of
π-shifts used. The x-axis of the figure is given in electronvolt, based on their position on the
camera, as light has here passed a diffraction grating, causing them to separate spatially by
wavelength.
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Figure 32: This figure shows the integrated HHG spectrum with the intensities of the different
harmonics for an incoming beam with 0.75 W power. The labels in the legend refer to the
method used in acquiring the measurement, as in Figure 31. The x-axis of the figure is again
given by position on the camera converted into eV via the diffraction grating prior to the
spectrometer camera.

be seen in Figure 32 at approximately 325 eV, which was determined to be harmonic 21 of
the driving field, was used for this purpose.

The width was determined by fitting a Gaussian to a spatially integrated harmonic. The
values which were acquired from this were tabulated in Table 3, and the integrated harmonics
can be seen in Figure 33. As can be seen in Table 3, the only fitted beam using the SLM
which appears to be less wide is the one using a 3.3 mm radius π-shift. However, as can be
seen in Figure 33 this is because the peak of this harmonic is a lot lower than all the other
harmonics, additionally indicating that peak intensity was significantly different in this case.
The 3.5 and 3.7 mm radii, which are the most similar in peak intensity to the non-SLM cases
are both wider, and given that the profile for 3.7 mm is not Gaussian, it is likely to be even
wider than the fit suggests. Thus, it seems like the divergence of the harmonics is reduced the
most when using a previously functioning aperture size and adjusting the power for similar
cutoff to the 3.5 mm shift, rather than using a radial π-shift or adjusting the aperture.
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Figure 33: This figure contains the integrated intensity profile across the divergence axis of
the 21:st harmonics for an input of 0.75 W. The data has here been low-pass filtered before
integration to reduce noise.

Table 3: This table contains the fitted width of the 21:st harmonic for the input beam of
0.75 W. The column on the left describes the scenarios which corresponds to the width on
the right, this column also corresponds to the cases as indicated in the legend of Figure 33.
Width units corresponds to the same arbitrary units used in Figure 33.

Scenario considered at harmonic 21 Fitted width [a.u.]
Power change 84.5
Aperture change 88.6
3.3 mm π-shift 77.7
3.5 mm π-shift 98.5
3.7 mm π-shift 92.0
3.9 mm π-shift 95.9

As discussed in Section 2.1.1, it is not only the divergences of the harmonics for different
cases which are of interest, but also the relative divergence of consecutive harmonics in a
given case. Therefore, a comparison of the widths of different harmonics was made. This
comparison was made in the 0.75 W input, 3.5 mm radius case, as this was the case with
the most similarly intense harmonics, in addition to their divergence profiles seemingly being
the most Gaussian out of all the SLM-using cases. The results of this are tabulated in Table
4 and intensity profiles are shown in Figure 34. From these results, it appears that the di-
vergence is not consistent from harmonic to harmonic. In Figure 34 a plateau-like structure
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Figure 34: This figure contains the integrated intensity profile across the divergence axis of
the harmonics in the case of a 3.5 mm radius π-shift and a beam input of 0.75 W. The data
has here been low-pass filtered before integration to reduce noise.

can be seen on the left side of the beam profile of harmonic 17 and 19, which were partially
removed in order for the fit to be possible, but regardless, harmonics 21 and 23 were rather
well-fitted and did still not show very consistent widths. It thus seems that it was not possible
to achieve identical harmonic divergences with a 3.5 mm radial shift. It appears that this is
the case for the other diameters of π-shift as well, given that their spatial intensity profiles
are similar, with different peaks, as illustrated in Figure 30. This seems to be confirmed at
a glance at the figures in the Appendix as well.

To summarize, there does not seem to be a lower divergence for π-shifted beams when
compared to their counterparts without SLM. In general, out of these, the beam with its
power adjusted for somewhat similar cutoffs seems to give a better divergence than other
cases. After the initial alignment, the focus measurement and gas cells were left as they
were, to avoid requiring realignment. Because it is possible that both different π-shifts and
different aperture sizes moved the focus somewhat, this will have impacted the effectiveness
of HHG for different beams as well. Given that the intensity profiles in Figure 30 don’t
appear to be significantly flatter than a Gaussian distribution, this may be the case. This is
something which has to be taken into consideration in any future attempts. It also appears
that the relative divergence of harmonics does not disappear for any of the π-shifted beams
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Table 4: This table contains the width of the fit of different harmonics in the case of a 3.5
mm radius shift and a 0.75W input beam. Width is in the same arbitrary units as are used
in Figure 34

Harmonic number Fitted width [a.u.]
15 86.2
17 100.6
19 110.3
21 98.5
23 94.2

either. Thus, it is possible that a phase other than a radial π-shift could be used as a way to
form a more flat intensity profile. It is also possible that this lack of flatness could be adjusted
for by finding (if possible) a plane where the spatial intensity distribution is flatter. This
was not done here, as all focal measurements were taken in the same plane. Additionally,
the fact that an extended gas target, like the gas cell, was used likely had an effect on the
divergence as well.
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5 Conclusion and outlook

In this project, a program has been written for the purpose of beam shaping and wavefront
correction in conjunction with an SLM. Several different phase-retrieval algorithms were
tested. An algorithm was then chosen and the program, together with the SLM, was used
to correct a beam wavefront. Afterwards, HHG was performed with the SLM used for beam
shaping with the aim of producing a flat-top spatial intensity distribution to drive HHG.
HHG was carried out with and without the SLM in several different scenarios.

The primary outcomes of this appears to be that the phase-retrieval program and SLM was
shown to successfully improve the focus for a beam with some obvious optical aberration.
Additionally, it was shown that the SLM in conjunction with the program can shape an
incoming beam. This in turn appears to have had some effect on the spatial intensity distri-
bution of the harmonics, which was expected. However, the desired reduction in divergence
of the XUV harmonics was not observed within the experimental work. The phase-retrieval
program also did not correct the beam significantly when a beam with an already nearly
diffraction limited spot was used.

With regards to future development, different phase-retrieval algorithms could be used in the
experiment, such as the SPPA. Moreover, one could also use Zernike optimization for focus
optimization in future iterations. That is, one could find Zernike coefficients for a number of
aberration orders that maximize the focal intensity to assist wavefront correction. If possible,
one also could try using a gas jet instead of a gas cell, as this likely affects the impact of the
driving field spatial intensity profile on the harmonics. Furthermore, one has to take into
consideration several factors, such as the possibility that the flat-top intensity profile is lo-
cated in a different plane relative to a regular focus. Additionally, a method to quantitatively
compare the intensity to drive HHG with different generation conditions would be needed.
The ability to control the focus position, focus shape and exact position of the gas jet and
intensity is a requisite for further experiments.
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Appendix: Full HHG spectra

Figure 35: 0.5 W input with aperture adjusted.

Figure 36: 0.5 W input with power adjusted.
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Figure 37: 0.5 W input with 3.5 mm shift.

Figure 38: 0.5 W input with 3.7 mm shift.
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Figure 39: 0.5 W input with 3.9 mm shift.

Figure 40: 0.75 W input with aperture adjusted.
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Figure 41: 0.75 W input with power adjusted.

Figure 42: 0.75 W input with 3.3 mm shift.
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Figure 43: 0.75 W input with 3.5 mm shift.

Figure 44: 0.75 W input with 3.7 mm shift.
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Figure 45: 0.75 W input with 3.9 mm shift.
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