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Abstract

It is clear from evidence such as rotational curves and cosmic microwave background
measurements that dark matter exists. The light dark matter experiment (LDMX) will
search for dark matter in the sub-GeV range. It will do this using missing-momentum
measurements of electrons interacting with a Tungsten target. The electron will recoil and
be measured in the electromagnetic calorimeter (ECal) of the experiment. The accuracy of
this measurement is vital for the result of the experiment. Therefore, the ECal design will
draw from the Phase-II high granularity upgrade of the Compact muon solenoid (CMS)
forward ECal.
This thesis have investigated the possibility of using artificial neural networks (ANNs) to
improve the energy resolution of the ECal. This was performed on simulation data based
on the LDMX framework. Both convolutional neural networks (CNNs) and dense neural
networks (DNNs) were trained on the data and compared with a linear fit between ECal
readout energy and the original electron energy.
The analysis have shown that CNNs can improve the energy resolution of the ECal com-
pared to both the DNN and linear fit who perform similarly. Some inconsistencies in how
the models performed on different energies was discovered. Finally, solutions to this and
suggestions for future work is discussed.





List of abbreviations

ANN = Artifical neural network
CNN = Convolutional neural network
DNN = Dense neural network
QED = Quantum electron dynamics
QCD = Quantum chromo dynamics
LDMX = Light dark matter experiment
DM = Dark matter
ECal = Electromagnetic calorimeter
HCal = Hadronic calorimter
QFT = Quantum field theory
WIMP = Weakly interacting massive particle
SM = Standard model
CMS = Compact muon solenoid
MSE = Mean squared error
MLP = Multi layered perceptron
SGD = Stochastic gradient descent
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1 Introduction

Particle physics attempts to describe the smallest form of matter and how it interacts. The
Standard Model (SM) governs our current understanding of particle physics. There is
however a lot of discoveries left to be made. Dark matter (DM) is one problem that the
SM has yet to find a confirmed solution to. There exist much evidence for the presence of
dark matter in the Universe. The first was formed by Fritz Swicky [1] in the 1930s. He ob-
served that galaxies in the Coma Cluster were moving too fast for the visible matter that
he could observe. Rotational curves of galaxies were studied by Vera Rubin and William
Kent Ford Jr [2] in the 1970s. The velocity measured in these curves should decrease
steadily towards the edge of the visible matter in the galaxies. In contrast to this hypoth-
esis, the curves were mostly flat indicating a halo of dark matter surrounding the galaxies.

The light dark matter experiment [3] (LDMX) will as its primary focus try to detect light
thermal dark matter in the mass range of ∼ MeV − GeV. The experimental design is
unique in its current form and the experiment will implement an extensive and promis-
ing search for light dark matter. The experiment will perform a missing-momentum mea-
surement with a 4-16 GeV electron beam impinging on a Tungsten fixed target. The signal
event is produced through "dark bremsstrahlung" where dark matter particles carry away
a large fraction of the electron energy. This electron recoils of the target with transverse
momentum and is measured in the electromagnetic calorimeter (ECal). If a big fraction of
the electron energy is missing from the measurement it could be a signal of dark matter de-
tection. A hadronic calorimeter is situated behind and beside the ECal to veto background
events were the electron interacts with the target to create non dark matter particles. The
energy and momentum measurement of the electron is very important to the sensitivity
of the experiment. The ECal design is therefore based on upgrade on the CMS forward
ECal [4], which has a very high granularity.

Artificial neural networks (ANNs) is a very prominent machine learning technique that
emulate how the neurons in our brain works. They can approximate complex functions
by using many connected nodes. CNNs is one type of ANN that have had a rise in the
recent decade with improvements within model architecture as well as in CPU and GPU
performance. CNNs are extensively used for image analysis which makes it suitable for
tasks that are image-like. The aim of this thesis is therefore to attempt to study the energy
resolution (i.e. how well the calorimeter can measure a showering particle’s energy) of
the LDMX ECal with convolutional neural networks (CNNs). The high granularity in the
LDMX design gives good grounds to enable the high pattern recognition ability of CNNs.
Previous attempts at this task has also shown promising results [5, 6, 7], although at dif-
ferent energy ranges.

The thesis will cover the relevant physics in chapter 2 and 3, followed by a description
of LDMX in chapter 4. Chapter 5 will give an overview in how neural networks work.
The methodology of the thesis is covered in chapter 6 and the analysis in the form of re-
sults and discussion in chapter 7 and 8. Lastly, conclusion are given in chapter 9 with an
outlook and overview of further studies in chapter 10.
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2 The Standard Model

The standard model describes the different particles in nature and how they interact
through forces. The particles are divided into two main groups: fermions and bosons.
Fermions are half integer spin particles that follow Fermi-Dirac statistics. Particularly, this
means that they follow the Pauli exclusion principle which says that two indistinguish-
able fermions cannot occupy the same quantum state. The fermions are further divided
into leptons and quarks. Leptons consist of the electron, muon and tauon as well as their
neutrino counterpart and the anti-particles as shown in the lower part of figure 1. Quarks
are divided into six flavours: up, down, charm, strange, top and bottom and their re-
spective anti-particles. These are, similar to the leptons, divided into three generations.
The mass of the particles increase with increasing generations. All of the visible matter
is made up of fermions. The other group called bosons are the mediators of the forces
that determine the interactions between the fermions. The bosons have integer-spin and
follow Bose-Einstein statistics, which therefore means they can occupy the same quantum
state. The mediators of the forces are called gauge bosons and have spin-1. There also
exists a spin-0 boson called called the Higgs boson which is the particle that give mass to
the others [8].

Figure 1: The particle in the standard model [9].

There exists four fundamental fources and among these two are easier experienced in the
macro scale of everyday life. The graviational force is what holds us on the surface of
the earth and the electromagnetic force can be seen acting everywhere in our current dig-
ital world. The gravitational force is the weakest of the forces which makes it hard to
study within the field of particle physics. A mediator particle called the graviton has been
theorized but have so far not been detected. Therefore the gravitational force is mainly un-
derstood on macro-scales where it has a noticeable effect, which means it is not described
within the standard model. The electromagnetic force describes the interactions between
electrical charges and the interactions between light and matter. This force was well de-
scribed already in 1865 by James Clerk Maxwell. The force is mediated by the massless
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photon, which means that the range of the force is infinite although it decays with 1
d2 ,

where d is the distance between two charges. After the arrival of quantum mechanics in
the beginning of the 20th century a quantum field theory (QFT), quantum electrodynam-
ics (QED) was formulated by Richard Feynman in the 1960s [10].

The source of why the strength of the electromagnetic force decays over distance in QED
is called screening. This property comes from quantum fluctuation, where a particle can
emit and absorb another particle during a very short time. This phenomenon is explained
by Heisenberg’s uncertainty principle, which states that the product of the uncertainty
of two complementary observables in a system must be greater that h̄

2 . This can be ap-
plied to the energy and time of a system: ∆t ∝ h̄

∆E . Therefore, a certain amount of energy
can be created during a certain amount of time without violating conservation of energy.
These quantum fluctuations lead to the fact that electrons continuously emit and absorb
photons. These photons can split into electron-positron pairs, which screen the original
charge of the electron. This means that at increasing distances the effective charge of the
electron is reduced, thereby reducing the strength of the electromagnetic force [10].

Contrary to these long range forces the weak and strong nuclear forces only apply on short
distances. The mediators of the weak force are the W−, W+ and Z0 bosons. These media-
tor particle are all very heavy, about 80-90 times the mass of the proton. This means that
the interaction length of the weak force is very small following the argument of quantum
fluctuations. A higher mass means higher energy therefore the lifetime of the quantum
fluctuated mediator particle will be shorter giving a shorter range to interact. The main
example of the weak force is β−-decay, where a neutron decays into a proton, an electron
and an electron antineutrino [8].

A theory called the electroweak theory combines the electromagnetic force and the weak
nuclear force at high energies. The idea for the theory comes from the similar interactions
mediated by the Z0 and the γ. To unify these forces, two neutral bosons B and W0 had
to be introduced. The γ and Z0 are combinations of the W0 and B. This combination is
achieved assuming gauge invariance under a certain transformation. A problem with this
assumption is that gauge invariance implies that the spin-1 gauge bosons have zero mass.
This is not the case for the weak force mediators. To combat this problem the Higgs field
was theorized. Certain particles can interact with the Higgs field through the mediator
spin-0 particle called the Higgs boson. The important property of the Higgs field is that
it has a non-zero value in its vacuum state, which is not invariant under a gauge transfor-
mation. This breaks the symmetry of the electroweak theory, thus enabling the massive
weak bosons [8].

The last force is the strongest, therefore the name the strong nuclear force. The strong
force only interacts with the quarks and its own mediator particle, with a range of 10−15

m. Because of this short range of the force it was first theorized to have a heavy mediator
particle similar to the weak force. The π-meson was discovered in 1947 and was thought
to be the mediator particle. This idea was soon after discarded as the π-meson had too
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weak of an interaction to be the mediator particle. The interaction that the π-meson me-
diates is a residual effect of the strong force and is the interaction that binds protons and
neutron together in the nucleus. During the following years more and more hadrons were
discovered which lead to the idea that these were composite particles. The quark model
was introduced in 1963 and was successful at explaining the currently observed hadrons.
Two problems emerged with the initial model. Firstly, no observations of a single quark
had been made, only composite particles made from them. Secondly, one hadron(∆++)
seemed to imply that the quarks violated Pauli’s exclusion principle. From these prob-
lems a new quantum variable called color was introduced. The QFT for the strong force
is therefore called Quantum Chromo Dynamics (QCD). The color states were called red,
green, blue as well as their three respective anti-colors. This solved the second problem
because the quark could differ in the color quantum number. It also posed a solution
to the first problem with the hypothesis that only color-neutral states could be observed.
Color-neutral meaning a combination of the three colors or a combination of a color and
its anti-color [10].

The mediator particle is the massless gluon. The color charge of a quark can be changed by
the emission or absorption of a gluon. In order to conserve the color charge quantity the
gluon must carry the initial color as well as the anti-color of the final color. This means that
contrary to the electromagnetic force where the photon has no charge, the gluon will be
able to self-interact. This self-interaction leads to two important properties of the strong
force called color confinement and asymptotic freedom. Color confinement means that
the force becomes stronger with increasing distance leading to the quarks being confined
within hadrons. Asymptotic freedom means that the interactions gets weaker at shorter
distances leading to the quarks behaving more like free particles. In QCD the phenomena
of screening exists similar to QED as the gluon can pair produce into a quark-antiquark
pair. Additionally, because of the self-interacting nature of the gluon it can also fluctuate
into a gluon pair that anti-screens the charge of the original quark. The effect of anti-
screening is much larger than screening which gives this property that the strong force
coupling increases at long range and becomes lower at short range [10].

2.1 Calorimetry

Most particle physics experiments today uses some form of calorimetry to detect and mea-
sure energies of particles. A calorimeter is a block of material that absorbs particles and
converts the energy absorbed into an electric signal. The interactions between the in-
coming particle and the calorimeter creates showers of secondary particles with lowering
energy. Calorimeters are usually divided into an electromagnetic and a hadronic part. In
this thesis the focus will be on the electromagnetic calorimeter so therefore we will only
cover that type of calorimeters here [11].

The interactions between electromagnetic calorimeters and particles like photons and elec-
trons are well understood through a few QED-processes. The average energy loss of an
electron is illustrated in figure 2. From this it is clear that for energies above 20 MeV
the process of bremsstrahlung dominates. This process occurs when electrons get de-
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flected and decelerated by a positive nucleus, whereby the electron radiates a photon. At
these energies pair-production is the dominant process for photons. These two processes
together create a cascading effect of generating more and more photons and electron-
positron pairs with decreasing energy into what is called a electromagnetic shower. At
lower energies ionization and thermal excitation dominate for electrons and positrons, for
photons it is Compton scattering and photoelectric effect. At these lower energies, energy
is therefore dissipated slowly into the atoms of the material instead of cascading into new
particles [11].

Figure 2: Fractional energy loss per radiation length for electrons and positrons in lead as a func-
tion of energy [12].

Two different kinds of ECals exists called homogeneous and sampling. Homogeneous
calorimeters consist of one homogeneous medium that both absorbs and measures energy
at the same time. Sampling calorimeters have instead two different mediums designed for
absorbing and measuring. The main advantage of the homogeneous calorimeter is the in-
creased energy resolution, which is a result of the particles depositing all of its energy
within the measuring material. In contrast to the sampling case where some energy is
always not measured as it deposits in the absorbing layer. The advantage of sampling
calorimeters is that both materials can be optimized to its task. This also means that sam-
pling calorimeters can be easier to segment given them better positional resolution and
particle identification. Therefore sampling calorimeters is the main calorimeter used in
detectors today [11].

A very important property of an electromagnetic calorimeter is the energy resolution. This
is a measurement of how accurate the energy of an incident particle can be determined.
The resolution is computed by first creating a distribution of the difference between the
particles energy and the measured energy ∆E = Etrue− Emeasured. This distribution should
have a Gaussian form. By fitting a Gaussian to the distribution and taking the first stan-
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dard deviation (this corresponds to 68% of the events) of this distribution one get a es-
timate of how wide the inaccuracy is. This sigma is then divided by the correct energy
of the events to get the energy resolution. The resolution is usually expressed in three
different terms,

σ(∆E)
E

=
a√
E
⊕ b

E
⊕ c (1)

where ⊕ indicates a quadratic sum. The three terms on the right hand side represent
different processes that can generate uncertainty in the energy resolution. The first term
is called the stochastic term and represents fluctuations in the creation and absorption
of shower particles. Differences in how the electron deposits its energy in the layers of
sampling calorimeters will also add to the stochastic term. The second term is a noise
term that comes from electronic noise in the readout electronics. This is therefore very
dependent on the setup used and it becomes the dominant term over the stochastic at
lower energies. The third term is a constant that includes all effects that do not depend on
the energy of incident particle. These come from imperfections in the calorimeter material
and readout system, aging, radiation damage, etc. This term is primarily important at
higher energies where the other terms fall off [11].

3 Dark Matter

The first experimental evidence for dark matter was first discovered in the 1930s by Fritz
Zwicky [1]. Zwicky observed that the galaxies in the Coma Cluster were moving faster
than what the visible matter in the cluster would predict. From this he postulated that
there must exists some form of dark matter that would contribute to the gravitational force
needed for the faster orbits. Further evidence was put forth by Vera Rubin and William
Kent Ford Jr [2] in the 1970s. They observed the rotational curves of galaxies similar to the
one in figure 3, which is a plot of the angular velocity of the gas and stars as a function of
the distance from the center. According to the visible mass in the galaxies these rotational
curves where expected to decrease slowly as the distance from the center increased. In-
stead Rubin and Ford measured that the curve remained mostly flat in several galaxies.
To explain this behavior, galaxies should have a halo of dark matter that adds the extra
mass to support the higher velocities measured.

Additionally, evidence for dark matter have also come in the form of gravitational lensing
measurements. Einstein’s theory of general relativity predicts that mass can bend light.
This phenomena can then be used to infer the existence of mass even when it can not
be observed. These measurements generated evidence that the dark matter in galaxies
spread out much further than the visible matter in the galaxies. This had not previously
been observed as rotational curves only give measurements were there is visible mass.
The estimation of how much dark matter exists in the Universe comes from measurements
of the cosmic microwave background (CMB). The CMB is remnant radiation originating
from the hot early Universe. Measurements of this radiation gives valuable insight into
the early Universe and therefore estimations for many cosmological constants and densi-
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Figure 3: Galactic rotational curve of NGC 6503 showing the data collected and predicted contri-
butions from disk matter, gas matter and a dark matter halo [13].

ties. These measurements gives an estimate that 5% of the energy in the Universe comes
from visible matter and 26% from dark matter. The rest is called dark energy and is an-
other mystery within physics that will not be further discussed here [14].

One of the most common theories for dark matter is that it comes from non-gravitational
interactions during the early hot Universe. If the DM-SM interaction rate exceeds the Hub-
ble expansion rate during the early Universe, a lingering concentration of DM is assured.
This theoretical scenario is called thermal dark matter and has an allowed mass range be-
tween ∼ MeV− ∼ 10 TeV [3]. In the upper half of that mass window ∼ GeV− ∼ 10 TeV
is one of the most promising candidates for dark matter called weakly interacting mas-
sive paricles (WIMPs). These theorized particles that interact through a force of similar
strength to the electroweak force, already existed in another field of theoretical particle
physics called super symmetry. Therefore WIMPs were seen as an excellent candidate that
would solve two questions at once. So far no conclusive detection evidence of WIMPs has
been found [14]. The lower half of the mass window∼ MeV−GeV has been hard to probe
with traditional experiments. This scenario has been raised as critical to test for in both
the CERN and US particle physics strategy reports [15, 16]. The scenario is motivated by
"hidden-sector" [17] theories where dark matter is neutral under SM and interacts trough a
dark mediator particle like the dark photon mentioned in the next section, but has enough
of a coupling to ordinary matter to enable the interactions needed for the creation of dark
matter during the early Universe.
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4 Light Dark Matter eXperiment (LDMX)

The primary goal of LDMX [3] is to search for thermal light dark matter in the sub-GeV
range but also with sensitivity for other dark matter particles at a mass range extending
to below keV. This is done through a missing-momentum measurement in a fixed-target
experiment with an electron beam. The momentum of the outgoing particles is measured
and compared to the incident electron. If a difference is observed it could indicate the
production of a new particle. The theorized processes for producing dark matter are il-
lustrated in figure 4. The two processes occur through either a dark matter version of
bremsstrahlung followed by decay of the dark photon into dark matter particles or di-
rect production. This particle can not be detected with the detector setup so there will be
missing momentum in the measurement [3].

Figure 4: The two processes that LDMX especially wants to look for. On the left is direct darkmatter
production and on the right production through a mediator particle [3].

A dark matter signal contains three distinct features, these include a recoiled electron(i.e.
a electron that interacts with the target and deflects with reduced energy) with energy far
less than the beam energy but detectable, non-zero transverse momentum and a lack of
signal in the remainder of the detector setup. To perform an accurate measurement of
the recoil electron, the setup that can be viewed in figure 5 will consist of a recoil tracker

Figure 5: A cut-through view of the detector setup for LDMX, showing the guiding 18D36 dipole
magnet as well as tracking, target, ECal and HCal [3].
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following the target followed by a electromagnetic calorimeter (ECal). The recoil tracker
will measure the path and the momentum of the outgoing electron. The ECal, a high
granularity sampling calorimeter will mainly measure the energy of the recoiling electron
as well as other particles created in the target that shower electromagnetically. A tagging
tracker upstream of the target aims to veto events with stray low-energy electron coming
from beam defects. A hadronic calorimater (HCal) follows the ECal to veto background
events where hadronic particles are created that would escape the ECal. To achieve suffi-
cient statistics for the experiment, the beam is proposed to have a high-bunch repetition
(≈ 40MHz) with 108 electrons per second with very few electrons interacting with the
detector setup at the same time. The Phase-I beam energy will be 4 GeV, following by a
increase in steps to potentially 16 GeV to be able to probe most of the sub-GeV dark matter
candidates [3].

The ECal design for LDMX draws from the Phase-II high granularity calorimeter upgrade
for the CMS detector [4]. The Tungsten-Silicon sampling calorimeter design has a hexago-
nal sensor structure and the LDMX setup will contain 32 layers with 7 hexagons as shown
by figure 6. The CMS design will have a maximum of 320 µm thick silicon, to get better
energy resolution and better detection of hadrons LDMX will increase the thickness to
≈ 500− 700 µm. The highest granularity considered for the CMS design is ≈ 432 pads
with an area of 0.52 cm2 on a sensor made out of a 8" wafer [3].

Figure 6: The xy distribution of the ECal cell centers are shown in red. The ECal is clearly struc-
tured in hexagonal divisions [3].
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5 Artificial Neural Networks

Artificial neural networks(ANN) is a machine learning technique that is inspired after the
neurons in our human brain. The network consists of multiple connected nodes that add
up to construct a complicated functionality. The network is trained on data with known
targets to create an approximate function that maps the input to the target output. In
this thesis all information and details about ANNs are gathered from lectures notes by M.
Ohlsson and P. Edén [18].

ANNs have mainly been used for regression tasks, classification and in recent years image
recognition and generation through CNNs. In regression problems the goal is to predict a
certain value from the input data. This can be a simple example like linear regression or a
more complicated function like the one attempted in this project, mapping the energy of
a shower in a detector from the calorimeter hit data. Classification is a task where the net-
work tries to label the data according to the correct class label. An example of this is the
very popular MNIST problem where pictures of handwritten numbers between 0-9 are
labeled by the ANN. These are all examples of supervised learning were the data comes
with labels. There are many other learning methods that will not be covered here.

5.1 The Perceptron

The simplest form of a neural network is called a peceptron. An illustration of this con-
struct is shown in figure 7.

Figure 7: Illustration of the perceptron and how it computes output from input. Inputs are multi-
plied with the weights and summed up and then finally sent through an activation function [19].

The output y is computed by adding all the inputs xi multiplied with their corresponding
weight ωi. To the sum a bias is also added to more easily enable shifts in the model
function. To make notation simpler usually x0 = 1 and ω0 is the value of the bias.

y(x) = σ

(
N

∑
i=0

xi ·ωi

)
(2)
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The activation function σ can take a few different forms. The linear activation function
σ(x) = x is the original function used and is always used as output activation in regression
tasks where the value of the output is important. Rectified linear unit (ReLU) is another
activation function shown in equation 3 which is very popular currently especially in use
with convolutional neural networks (CNNs). These are the two activation functions used
in this project but there are many other such as tangential, sigmoid and softmax.

σ(x) =

{
x if x ≥ 0
0 if x < 0

(3)

5.2 Multi layered perceptron

With the perceptron only basic problems that are linear can be solved. To achieve a non-
linear function more layers need to be added with non-linear activation functions. The
equation for a multi layered perceptron (MLP) with two layers, K inputs, J nodes in the
hidden layer, n events and a single output is,

y(xn) = σo

(
J

∑
j

ωj · σh

(
K

∑
k

ω̃jkxnk

))
(4)

where h and o stands for hidden and output. The amount of layers and nodes are hy-
per parameters that can be adjusted depending on how complex a function the network
attempts to learn.

5.3 Training the network

As previously mentioned the network is trained on labeled data where the answer is
given. This is effectively done by computing an error between the output of the network
y and the labels d. There are several error functions but the most common error function
used in regression problems is the mean squared error (MSE). By convention a 1

2 factor is
introduced to the MSE to cancel the 2 that comes from the derivative.

E(ω) =
1

2N

N

∑
n=1

(dn − y(xn))
2 (5)

By minimizing E with respect to ω the function y can approximate the mapping that gives
the labels d. The algorithm used for minimizing the error is called gradient descent. When
it comes to the MLP this process is usually called back-propagation. The algorithm works
by initiating all weights to a random value. Then the output y(xn) is computed for each
input xn. Then the gradient of the error function w.r.t the weights is computed and a step
is taken in the negative direction. The weight update for each layer of weights from the
MLP defined in equation 4 is,

∆ωj = −η
∂E
∂ωj

, ∆ω̃jk = −η
∂E

∂ω̃jk
. (6)
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, where η is called learning rate and defines how big the updates should be. This method
averages the weight update over all inputs xn because E = 1

N ∑n En, with En = (dn −
y(xn))2. Stocastic gradient descent (SGD) offers a slight variation to this. Instead of the
full batch of all inputs, weights are updated in mini-batches instead,

∆ωj = −η
1
P

P

∑
p=1

∂Ep

∂ωj
, ∆ω̃jk = −η

1
P

P

∑
p=1

∂Ep

∂ω̃jk
, (7)

where P is the mini-batch size and is treated as a hyperparameter. The inputs are divided
into different mini-batches and after one mini-batch update one iteration has been com-
pleted. After all iterations are done and the input set has been trained on once, an epoch
has been completed. One might worry that SGD will give worse performance than gradi-
ent descent as taking all inputs to consideration would give a more consistent result. This
is true but gradient descent can be very computationally heavy and also training too well
is a problem for networks that is covered in section 5.4.

The data set that is used to train and evaluate an ANN model is usually divided into
a training set, validation set and testing set. The biggest set is the training set that is used
during training of the weights. The validation set is used during training after each epoch
to test the performance of the network on data that it has not trained on. This data set is
usually used to differentiate between different models and to search for optimal hyperpa-
rameters. Because the validation set is used in determining models and hyperparameters,
the model might have bias to that data. Therefore, an additional test set is used to give an
unbiased performance estimate of the model.

5.4 Generalization

The model can usually train very well but the network is built to be applied to other
unseen data. Therefore, the generalization performance is important i.e. the performance
of the ANN model on new unseen data. The essential problem within neural networks is
the balance between underfitting and overfitting. Overfitting is when the network train so
much on the training data that it performs worse on new data as illustrated by the left side

Figure 8: Left: The network gives a good fit on the training data but does not generalize well.
Right: The network generalizes better to the new unseen data [18].
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of figure 8. Underfitting is instead when the network performs bad on new data because
it has not achieved a well enought mapping of the desired function. Balancing these two
problems is the key to the networks generalization performance.

5.5 Dropout

One very prominent method used to generalize the network is dropout [20]. This method
removes nodes during training with a probability p as illustrated by figure 9. Removing
the node means that all input and output weights are not involved in that part of the
training. This procedure is randomized each mini-batch so that each iteration trains on a
slightly different network.

Figure 9: Left: An MLP with two hidden layers. Right: The same network but with dropout
applied where some of the hidden nodes have been removed as well as their weights [18].

The method ensures that the network cannot train too well on the data set. The final
network will be a complex ensemble of many slightly different networks. In fact there is a
concept in neural networks called ensemble machines were an averaged output of several
different network usually outperforms the best network of that set.

5.6 Convolution neural network (CNN)

CNNs are mostly used for image analysis or on data that is "image-like". CNNs utilise
image filters instead of nodes that scan over the input data with the same set of weights
applying to all of the input. The filter applies the process of convolution, in practise cross-
correlation is done instead which is the same thing just that the output image will not
be flipped. The equation for cross-correlation with I(i, j) being the input image, K(n, m)
being the filter and O(i, j) being the output,

O(i, j) = (I ∗ K)(i, j) = ∑
n

∑
m

I(i + n, j + m)K(n, m). (8)
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Illustrating this with a 3x3 image matrix cross-correlated by a 2x2 filter,1 4 7
2 5 8
3 6 9

 ∗ [1 2
1 −1

]
=

[
(1 + 8 + 2− 5) (4 + 14 + 5− 8)
(2 + 10 + 3− 6) (5 + 16 + 6− 9)

]
=

[
6 15
9 18

]
(9)

Note that the output image is smaller than the input image. Usually the image is padded
with zeroes so that the output image retains the original size. Another operation called
pooling will instead downsample the image, pooling will be covered in section 5.6.2.

5.6.1 Sparse connectivity and weight sharing.

The important properties that differentiate CNNs from normal ANNs is sparse connectiv-
ity and sharing of weights. If we imagine this in 1D, sparse connectivity is illustrated in
figure 10. For the MLP every input adds to every hidden nodes through its weights. For
the CNN this is restricted through the size of the filter. For the figure the filter has a size
of 3 meaning that only three input values contributes to a hidden node.

Sharing of weights is illustrated by the color in the figure below. The convolution fil-
ter that scans the input stays the same for all inputs so that weights are shared between
the inputs. The idea here is that properties of the image that are important for the network
is important in equal ways over the entire image. This means that the CNN usually has
way fewer weights to train for the same feature extraction on large images.

Figure 10: Above: The figure illustrates how weights behave within the MLP, all nodes are con-
nected with indidividual weights. Below: For the CNN one hidden node is only connected to a
limited amount of input nodes. Also the weights are shared illustrated by the colors so that the
same weight is applied at multiple points [18].
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5.6.2 Building the CNN

The CNN usually consist of layers with three components: the convolution stage, activa-
tion stage and pooling stage. The activation stage usually consists of a ReLU activation
function which is also what will be implemented in this project. The pooling stage takes
the values of the hidden layer and summarize them according to some algorithm. The
most common pooling is max pooling which replaces the value of the node in the layer
by the maximum in a given neighbourhood. This is illustrated on the left side of figure
11. Pooling is very often used to down-sample the data. This is illustrated in the right
part of figure 11 where the maxpooling filter has a size of 3 and moves with 2 steps so that
the size of the data is reduced from 7 to 3. The idea with pooling is to make the output
invariant to small differences in the input.

Figure 11: Left: The max pooling layer takes the input of in this case two nodes around the current
node and replaces it with the maximum value. Right: Here the max pooling move with two nodes
each time which means that the image is downsampled [18].

To finally build the complete CNN several parameters need to be considered. Firstly how
many convolutional layers that will be used. For each layer the filter sizes for both the
convolutional stage and the pooling stage. The amount of pixels that the filter and the
pooling operations move, also called stride, is also a hyperparameter that needs to be
determined.

6 Method

6.1 Software

The Keras API [21] is used running together with the machine learning library Tensorflow
[22]. All code is written in Python with PyROOT [23] used to access the generated data.
All code was run on the Aurora Cluster at the center for scientific and technical computing
at Lund University (LUNARC).

6.2 Data

All the data used in this thesis is simulated using the Geant4-based [24] LDMX frame-
work. Two data sets were generated with 100000 events from a linear 0-3 GeV distribution
shown in figure 12 in red. This energy range was chosen as it would emulate the energy
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range of a recoil electron coming from a beam with an energy of either 4 GeV(0-1.5 GeV)
or 8 GeV(0-3 GeV). Both sets generated an electron close to the ECal, 200 mm ahead of
the target. This was done to ensure better control over the electron entering the ECal. The
first data set has no angle distribution and will therefore enter the ECal in the center. The
second set has an isotropic angle distribution between 160◦- 180◦or 17

9 π − 2π for θ and
0◦to 360◦for φ. θ is defined as the angle to the z-axis with 180◦being directed downstream
towards the ECal and 0◦being directed upstream towards the target. φ is defined as the
angle on the transverse plane to the z-axis. The electron will therefore be generated in a
20◦cone distribution towards the ECal. The x, y and z distributions for both these data
sets are visible in figure 13. It’s clear that the angle set has a wider distribution in x and y
while the z distribution is almost identical. The discreetness from the values in figure 13
comes from the position of the ECal cells, the x-distribution is separated by 4.3 mm for all
cells. The y-distribution is different depending on which hexagon in the ECal observed.
Within a hexagon all y positions are separated by 7.5 mm. Between some ECal hexagons
there is a shift in 2.5 mm for the y-distribution.

For both data sets two separate kinds of data exists. The simulation comes with ECal
simulation hits, which are generated by how the particle interact with the ECal in the sim-
ulation and where each hit has a value that corresponds to the energy deposited. Using
a reconstruction algorithm from the LDMX software hits more similar to actual calorime-
ter hits were created. With this reconstruction, layer weights are applied to the different
z-layers, also some small noise are randomly added to the data. The data was converted
from the initial data sets in ROOT [23] to 3D array in Numpy [25] format. The energy
distributions of the sum of the ECal hits in these arrays is shown scaled to the range of the
true values in figure 12 together with the true distribution. The dimensions in (x,y,z) were
for the first set: (24,48,28) and for the second set: (32,54,26). The size of these array comes
from looking at the x,y,z distributions and also from consideration of the memory size of
the data. The cut into arrays therefore excludes some hits from the simulation, for the first
set the fraction of include hits over all hits is 0.966 and for the second set it is 0.970.

Figure 12: Energy distribution of the data sets with the set without angle dist. on the left and the
160◦-180◦set on the right. The distribution of the sim hits and recon hits array energy sum is also
added and scaled to the same range as the true energy.
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Figure 13: Left: The x, y and z distribution from the simulation of the first no angle data set. Right:
The x, y and z distribution from the simulation of the second 160◦-180◦data set.

An example array of what is fed into the network is shown in figure 14. This event is from
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the reconstruction hit 160◦-180◦ data set. Each dot corresponds to where a particle has
deposited energy in the calorimeter material.

Figure 14: The figure shows the 3D array in x,y and z of an events with an energy of 2896.32 MeV.
The intensity of the color of the dot indicates if the hit is close of far from the view point. A dot
with less intensity is further into the array than a dot with more intensity. No indication in the
figure is given to the size of the energy deposition.

6.3 Training

Three different models were used:

• One linear regression model which is comparable to conventional energy reconstruc-
tion.

• One dense(i.e. fully connected MLP) neural network (DNN). The 3D data is flat-
tened into a 1D array with 24× 48× 28 = 32256 and 32× 54× 26 = 44928 inputs.
The flattened array is then fed as the input to the first layer of the network. The first
layer is followed by a number of hidden layers all using ReLU activation functions
with dropout applied. The number of layers, dropout probability and number of
nodes is treated as hyperparameters. The last layer feeds into a single output node
with a linear activation function. The DNN was trained for 10 epochs.

• The CNN consists of 3D convolutions layers with ReLU activation and maxpooling.
The filter sizes, stride and amount of filters for convolutions and pooling was treated
as hyperparameters. After the convolutions the output array is flattened and feed
to an MLP. The number of layers, dropout probability and number of nodes is also
treated as hyperparameters. The output node has a linear activation similar to the
DNN. The CNN was trained for 20 epochs.

The error function for both network models was MSE. The Adam optimizer was used to
train the network. Both the learning rate and batch size was treated as hyperparameters.
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The networks were trained using a manual hyperparameter search which was performed
by training different models and then investigating new parameters based on the models
performance. The data set of 100000 events was divided into 87500 event for training and
12500 for validation.

After the top performing models based on validation loss for each data set were deter-
mined, energy resolution plots for all sets were computed. To do this test data sets with
10000 events each were generated with energies between 500-2500 MeV in 250 MeV steps.
Distributions of ∆E = Etrue − Epredicted were computed for all models and then a Gaussian
fit was made to these distributions to extract a 1-sigma estimate. Some of these Gaussian
fits made can be seen in figure 20 in the Appendix. The sigma estimate was then plotted
and a fit was made for each model to only the stochastic term in equation 1. This decision
was done because of the simulation data having almost no noise (small amount of noise is
added to the recon hits) and the detail of the simulations not being good enough leading
to the the constant term being unnecessary. Both fits (Gaussian and energy resolution)
was done using the curve_fit method from Pythons scipy library.

7 Results

For all CNN models two convolutional layers was deemed slightly more optimal, two lay-
ers improved the validation MSE by in general ≈ 1000− 3000 while 3 layers was deemed
too computationally heavy to search for. Earlier research [5] has also indicated that more
layers are usually not worth the computational cost. The hyperparameters for the convo-
lutions were optimized to: The first convolution has 20 filters with a size of (8x8x8) and
stride of (1x1x1) followed by (2x2x2) max pooling with a stride of (2x2x2). The second
convolution has 10 filters with a size of (4x4x4) and stride of (1x1x1) followed by (2x2x2)
max pooling with a stride of (2x2x2) again. This was followed by a MLP with 1500 nodes
in each layer with 5 layers. The rest of the optimized hyperparameters differ between data
sets and are shown in table 1.

Table 1: Table shows the most optimal hyperparameters for the CNNs as well as the validation
loss that the model achieved during training.

Data type No angle set 160◦-180◦set
Hit type Sim hits Recon hits Sim hits Recon hits

Model sign S1 S2 R1 R2 AS1 AS2 AR1 AR2
Dropout probability 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.12

learning rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
batch size 128 256 64 128 128 256 256 256

Validation loss(MSE) 34129 33130 34853 34179 34861 36991 36424 36150

For the DNNs the optimal model was very similar between the different data sets as
shown in table 2.
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Table 2: Table shows the most optimal hyperparameters for the DNNs as well as the validation
loss that the model achieved during training.

Data type No angle set 160◦-180◦set
Hit type Sim hits Recon hits Sim hits Recon hits

# of layers 5 5 5 5
# of nodes 512 512 512 400

Dropout probability 0.04 0.04 0.04 0.04
learning rate 0.00005 0.00005 0.00005 0.00001

batch size 64 32 128 32
Validation loss(MSE) 45620 53078 56306 60262

The linear fits for the four different data sets are shown in figure 15. The fits are drawn on
top of a heat map of the distribution between the sum of hit energy in the array and the
true energy of that event.

Figure 15: Linear fits from the four different data sets. The heat map shows the 2D distribution of
the event energy vs true energy. Event energy is computed from the sum of all the hits within the
array cutouts.

The energy resolution of the CNNs, DNNs and linear fits is shown in figure 17. The 8
figures correspond to the 8 different models in table 1. Each data point corresponds to
a 1-sigma estimate from a Gaussian fit of the energy difference (∆E = Etrue − Epredicted)
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distribution for that energy. All the Gaussian fits for the data points in the AS2 model
figure are shown in figure 20 in the Appendix to illustrate how the fits look. The estimate
for the energy resolution fit parameter is shown in the legend. The CNNs performs in
general better than both the DNN and the linear fit. For the sim hits the DNN has a very
poor fit to the energy resolution function, which can be seen from the uncertainty in the
fit parameter in table 3. The CNN also has some inconsistencies in this regard but its
behavior is more randomly distributed over different data sets.
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Figure 17: Energy resolution plots with two CNN models for both data sets and both data types.
Each data point is a 1-sigma estimate from a Gaussian fit to a energy difference (∆E = Etrue −
Epredicted) distribution.

From the energy resolution fits in figure 17 an estimate and a uncertainty for the stochastic
term constants is shown in table 3.

Table 3: Table shows the energy resolution fit value with uncertainty for all data sets. All values
have unit

√
MeV.

Data type No angle set 160◦-180◦set
Hit type Sim hits Recon hits Sim hits Recon hits
CNN 1 4.91 ± 0.05 4.66 ± 0.19 4.90 ± 0.11 5.07 ± 0.07
CNN 2 4.72 ± 0.13 4.66 ± 0.16 4.82 ± 0.11 4.85 ± 0.09
DNN 5.31 ± 0.18 5.67 ± 0.04 5.66 ± 0.20 5.80 ± 0.04
Linear 5.88 ± 0.02 5.80 ± 0.04 5.85 ±0.03 5.77 ± 0.04
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8 Discussion

An important aspect of the data sets is that they mainly use only the center hexagon of the
ECal. This might give a good estimation of the energy resolution of the whole detector
but the data does not fully represent the raw data that the experiment will produce. The
data handling of the conversion to arrays could probably have been done better. Because
of the ECal design described in the method leading to gaps in the y-distribution, ≈ 2

3 of
the memory is left unused in the arrays generated. Seeing as the arrays take quite a lot of
memory (24GB and 34GB for the two data sets), optimizing this could have given space
for more events to be trained on.

One important check to establish that the results are reasonable is to compare to the en-
ergy resolution of the ECal upgrade of CMS [4]. Because the design is almost identical to
LDMX, the results should be comparable. Comparing figure 18 to figure 17 and taking
units into account we see that 0.199

√
GeV ≈ 6.29

√
MeV. Comparing this value to the lin-

ear fit values from the results in table 3 being in the range 5.67− 5.88
√

MeV we see that
the results seems reasonable. The energy resolution being slightly better in the results are
reasonable because of LDMX using thicker silicon in the simulation setup.

It’s interesting to note that the linear fit performs worse on the sim hit data sets than
the recon hit ones especially for the no angle data set. This is probably because of this
fit not being able to take the layer weights into account that are applied for the recon-

Figure 18: Energy resolution plot from the simulations of the high granularity upgrade of the CMS
forward ECal[4].
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structed hits. This means that comparing the linear fit for the sim hit data with the model
performance does not really represent how they can perform on real data, because of the
networks abilities to learn layer weights. Comparing model performance on the sim hit
data sets with the linear fit on reconstructed data instead could be an option. One prob-
lem with this is that noise is added to the recon hits which gives the reconstructed linear
fit worse performance. To combat this another data set could have been created applying
the layer weights to the sim hit data sets but unfortunately no time remained for this task.
With the current results the reconstructed data is a better indication for how the models
would perform and compare to the linear fit on real data.

Furthermore, the DNN performs very inconsistent on the sim hit data sets. This seems
like a weird behavior because as said before the only change between recon and sim hits
is layer weights and noise. The DNN should easily be able to learn the layer weights by
itself as the flattened array is still ordered. But it seems this is not the case and it might
just be the fact that the layer weights from the recon data gives the network a jump start
in the correct direction.

Something that could be improved with the method of this thesis is the hyperparame-
ter search. Doing the search manually was all I had time with this thesis but using a more
sophisticated search algorithm would be preferred to find the best performing model.
Something like grid search would give better grounds to the models being optimal.

Another aspect that could have improved the results is using ensemble machines. An
ensemble machine is a combination of several machine learning models that have trained
well on the data set. The combined validation performance of the ensemble usually out-
performs the best model and the prediction should also be more consistent. Thereby re-
ducing the inconsistencies in energy resolution shown by the CNN and the DNN in figure
17.

A time evaluation of how long the network takes to predict energies could have been
made. Because of the enormous amounts of data coming from particle physics experi-
ments it’s important that algorithms are fast to enable for event triggering. Because the
network will act on the reconstruction of event for analysis it might not need to be used
during the fast real-time triggering.

9 Conclusion

This thesis has investigated whether neural network models can improve the energy res-
olution of a calorimeter. This task was applied to data generated in LDMX simulations.
The CNNs performed better than both the DNN and the linear fit for all data sets. Some
inconsistencies in how the model follow the expected energy resolution fit was apparent.
This might be because of what the model looks for, the model not trained very well or just
because of the nature of how neural networks function.
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10 Outlook

The thesis shows that neural networks is a method that particle physics could use in the
future for improving on the energy resolution of calorimeters. Some questions remain
considering the consistency of the network. Some things to consider for further imple-
mentation is that the network might perform worse on real data that is not simulated.
Training on more data, using a more incorporating hyperparameter search or perhaps
implementing an ensemble machine could give better and more consistent results.
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Figure 20: An example of how the Gaussian fit figure looks like. All plot the distribution of the
difference ∆E between the energy predicted by the model and the correct energy. In the left row
is the model AS2, in the middle row is the sim hit Ang 160◦-180◦DNN and in the right row is the
linear fit. These figures correspond to all 1-sigma estimates for the AS2 plot in figure 17.
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