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Due to the climate crisis, more developing and emerging economies are considering to 

implement climate policies. However, since economic development remains high on their 

respective agendas, understanding economic consequences of such policies is crucial. The 

Porter hypothesis suggests in this respect that climate policy could benefit growth under 

certain circumstances by encouraging innovation, technological upgrading and structural 

change towards high-tech sectors. The paper analyses this hypothesis in the context of 

emission trading pilots in China, in particular investigating how the policy affected overall 

economic outcomes, innovation and structural change. To this end, a difference-in-difference 

analysis comparing pilot and non-pilot provinces as well as an in-depth case study of Beijing 

are used. The latter employs a proxy for strictness and coverage as an explanatory variable in 

first-differenced OLS regressions. The results confirm the effectiveness of the policy in 

reducing energy consumption and CO2 emissions, and both analyses show a significant 

positive effect on economic outcomes and innovation. The analyses additionally indicate 

different effects on low- and high-tech sectors in Beijing. High-tech sectors reduce their 

energy consumption, increase investment in research and improve both profits and output. In 

contrast, low-tech sectors neither reduce energy consumption nor increase research 

investment and, likely as a consequence of compliance costs, their output and profits suffer 

from the policy. In conclusion, the paper confirms the Porter hypothesis and a positive 

economic impact of the policy, most likely due to increased innovation and structural change. 
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1 Introduction  

“We can avoid climate and ecological catastrophe. Humans are very adaptable: 

We can still fix this. But the opportunity to do so will not last for long. We must start today. 

We have no more excuses.”  

- Greta Thunberg, April 2019 (Thunberg, 2019, p. 67) 

Well before Greta Thunberg and millions of young people alongside her raised international 

attention on the issue, we knew about the dangers of the climate crisis. A crisis that threatens 

not only biodiversity and ecosystems, but also food security, safety and by extension human 

well-being around the world (IPCC, 2014). Developed Western nations, in particular the 

United States and the European Union, have historically been the largest emitters of CO2. 

However, China’s fast economic development, especially after the country acceded to the 

WTO in 2001, has allowed the country to become the world’s largest CO2 emitter around 

2004 (Olivier et al. 2015). As of 2015, it is responsible for around 30% of the world’s overall 

CO2 emissions (Olivier et al. 2015). Over recent years, however, the awareness of 

environmental problems and climate change within China has risen (Kuhn & Zhang, 2014). 

Public concerns about pollution and a changing economic structure therefore led to a change 

in government priorities (Averchenkova et al. 2016), motivating President Xi to announce that 

China would take “a driving seat in international cooperation to respond to climate change” 

and become a “torchbearer in the global endeavour for ecological civilization” (Xi, 2017, p. 

4). Policy efforts towards a reduction of carbon emissions were increased, following the goal 

to peak around 2030 or before (PRC, 2015).  

An essential step on this path was the establishment of several pilot emission trading schemes 

(ETS) on city and provincial level starting in 2013. The fact that these systems were 

introduced in a range of first-tier1 cities across China and had a high coverage (Liu et al. 

2015) shows that they were not just experiments but rather actual instruments of climate 

policy. Following the saying “crossing the river by feeling the stones” by Deng Xiaoping, 

which has since become a Chinese government principle, they were furthermore meant to 

prepare the establishment of a national emission trading scheme (Goulder et al. 2017) to be 

implemented by the end of 2017. Although the implementation of this national ETS was 

delayed due to concerns about transparency and political pressure, the Chinese government 

expects a breakthrough by the end of 2020 (Reuters, 2020). Therefore, the emission trading 

pilots are currently in the spotlight and understanding their effects on environment and 

economy has become crucially important with respect to the question whether China can “still 

fix this” (Thunberg, 2019, p. 67), especially since relaxed environmental policies are seen as 

contributing to China’s comparative advantage (Song & Wang, 2018). 

 
1 The Chinese tier system is a hierarchy of cities. Even though not official, it is often referred to in the media and 

well known within China. Cities of the first tier are the most important economic and cultural centers of China. 
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Climate policy is also gaining traction in other emerging economies, exemplified by the 

recent introduction of carbon taxes in Argentina and South Africa as well as the launch of 

Mexico’s national pilot ETS in January of 2020 (ICAP, 2020). Just as in the case of China, 

economic development is, due to remaining poverty, still high on the agendas of many 

emerging economies, which makes understanding economic consequences crucial for the 

question whether or to engage in climate policy. Since the Chinese ETS pilots were the first 

implementation of carbon pricing in an emerging country apart from the relatively 

unsuccessful implementation of emission trading in Kazakhstan around the same time (ICAP, 

2020), understanding the effects of the policy in China therefore offers insights beyond China 

itself. It additionally represents an ideal case in order to analyse the effects of climate policy 

instruments in a broader emerging economy context. 

Econometric research on economic impacts of the Chinese emission trading pilots is however 

relatively scarce and existing studies are mostly ex-ante simulations (Shi et al. 2018), in large 

part due to a delay in data availability. Therefore, first extended econometric analyses have 

only been published very recently in spring of 2020, namely papers by Zhang Haijun et al. 

(2020) and Zhang Wei et al. (2020). These studies, however, contradict each other, which 

points to the need for additional research. Furthermore, research into the so-called Porter 

hypothesis (Porter & van der Linde, 1995), which suggests potentially positive impacts of 

environmental policy, is very limited (Shi et al. 2018), in particular concerning first-mover 

advantages and competitiveness (Dechezleprêtre & Sato 2017). While traditional views 

emphasize that environmental policy is harmful for economic development (see e.g. McGuire 

1982), this hypothesis offers a way to reconcile the two by proposing that such policy could, 

similar to Mr. Hyde in Stevenson’s novel, have a hidden positive side with regards to growth. 

It suggests that environmental policy, in this case climate policy, could foster growth by 

forcing economically beneficial innovation and effectiveness-enhancing upgrading of 

facilities, which are otherwise not implemented due to market failures or imperfect decision-

making (Porter & van der Linde, 1995). This positive effect seems plausible in the case of 

China, given the country’s record with inefficient and outdated production facilities (Zhu et 

al. 2017). The hypothesis also suggests that such policy, if aligned with global trends, could 

push innovation in the right direction and strengthen new sectors, allowing them to gain an 

early-mover advantage. Such an effect is likely given the dynamic nature of the Chinese 

economy and fits the Chinese goal to transform its economy and strengthen high-tech sectors 

as fist mentioned in the 12th five-year plan (National People's Congress of China, 2011). 

1.1 Research problem 

Therefore, the Porter hypothesis raises the question whether the pilot ETS in China had a 

positive impact on the economy, in particular on overall economic outcomes, innovation, and 

structural change. Answering that could also allow to understand whether climate policy, in 

particular carbon pricing, could be a way for an emerging economy close to the technology 

frontier to boost innovation as well as structural change and therefore a remedy against the 

middle-income-trap. This question, however, cannot stand alone, as other aspects of the 

policy have also to be considered, in particular, whether the policy reduced carbon emissions.  
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Given the limited and contradictory literature on the economic effects of emission trading in 

China, in particular with respect to the Porter hypothesis, this paper contributes to the 

literature by providing an in-depth and holistic analysis of the economic effects of the policy.  

Following the Porter hypothesis, which suggests an impact on overall outcomes, innovation 

and structural change, it therefore analyses three different research hypotheses: 

H1:  The introduction of emission trading in China had a positive impact on overall 

economic outcomes in the pilot provinces.  

H2:  Emission trading positively impacted research and innovation in the pilot 

provinces. 

H3:  High-tech sectors benefitted more from the introduction of the policy, which 

thereby contributed to structural change towards these sectors.  

The fact that eight different pilot ETS were implemented, namely in Beijing, Tianjin, 

Shanghai, Shenzhen, Chongqing, Hubei, Guangdong and Fujian, representing 18% of the 

population and 30% of the GDP of China (Liu et al. 2015), supports this analysis since it 

effectively creates a natural experiment as the provinces were at least in theory selected to 

represent “regional diversity in terms of development” (Han et al. 2012, p. 22). Furthermore, 

the policy was adopted and slightly changed over time due to its pilot nature, which adds 

variation that will additionally be used to understand the underlying effects better.  

1.2 Aim and scope 

This work aims to contribute to the literature on economic effects of climate policy in 

emerging economies, specifically concerning emission trading and the Porter hypothesis. It 

does so by adding to the so far relatively limited literature on the Chinese emission trading 

pilots. It firstly employs a holistic econometric approach, as it focuses not only on overall 

economic effects but also on effects on innovation and structural change in order to obtain a 

broad picture of the channels suggested by the Porter hypothesis. Secondly, it analyses effects 

on provincial level as well as sectoral effects for the case of Beijing, which adds to the holistic 

perspective. It differs in this respect from the literature as the effects on different sectors and 

on structural change were so far rarely covered. Thirdly, this work extends existing studies by 

two years until 2018, since the most extensive analysis of the pilots so far, which to the best 

of the author’s knowledge is the one by Zhang Haijun et al. (2020), ends in 2016.  

The study is thereby highly relevant, both in light of the ongoing climate crisis and because an 

increasing number of emerging economies seek to implement climate policy. In particular 

since the Chinese government hopes to roll-out the national ETS this year (2020), there is 

additionally a high level of attention being paid to evaluations of the pilot ETS, which adds to 

the overall relevance. 
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1.3 Thesis outline 

The thesis is structured as follows. Firstly, a background, both on emission trading, its 

implementation in China as well as on the Porter hypothesis is provided. Then, data used for 

the analysis is presented and discussed before the employed methodology is explained in 

section four. Following the methodology, the results of the analysis are presented in two 

different parts. The first part contains an analysis on the provincial level, using an extended 

difference-in-difference approach. Due to certain data limitations, this analysis is then 

extended by a case study of the Beijing pilot ETS, using characteristics of the Beijing ETS as 

explanatory variables for economic outcomes. The thesis is finalized with a discussion of the 

obtained results, including their limitations, and a conclusion. This is followed by a 

bibliography and the appendix, providing additional regression results and model 

specification test results.  
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2 Theory 

2.1 Emission trading and its application in China 

When it comes to climate policy, different options have been brought forward over the years. 

While command-and-control approaches were traditionally the norm for environmental 

policy, market-based solutions have gradually gained momentum. The underlying reasons for 

this development are mostly attributed to the fact that these approaches are seen as more 

flexible and cost-effective ways to achieve the targeted emission reductions (Aldy & Stavins, 

2012). Within the family of market- and price-based approaches, there is, however, some 

controversy about whether a carbon tax or more quantity-focused approaches, e.g. an 

emission trading system, are preferable (Goulder & Schein, 2013). The general difference 

between the two is that a carbon tax allows the regulator to directly set the price of emitted 

CO2, while the latter allows to set an overall emissions cap for covered sectors and 

implements trading for emission rights. While a carbon tax is both easier to implement and 

more predictable for covered firms, it can be argued that emission trading is more predictable 

for the regulator since an explicit overall level of emissions is targeted. Especially since many 

countries submit concrete CO2 reduction targets as their Nationally Determined Contributions 

within context of the Paris agreement, this might therefore be beneficial as it facilitates 

linking Paris agreement pledges with national policy. It has also been argued that the 

innovation effect of emission trading might be stronger (Chen et al. 2020). This could be due 

to companies having to engage in trading, making them more aware of the policy. In contrast, 

emission trading, however, suffers from potential price volatility (Goulder & Schein, 2013) as 

it is more vulnerable to external shocks. Due to their respective advantages, both systems are 

currently in use around the world. The fact that the EU and China, which are among the three 

largest economies in the world by GDP (World Bank, 2020), have chosen to establish an ETS 

has, however, given this approach particular relevance for academic studies.  

The mechanism of an ETS is relatively simple: The policymaker sets a cap on the total 

amount of emissions for selected sectors and a specified timeframe. Then, a number of 

tradable emissions allowances equal to the cap are either distributed for free, sold or auctioned 

to covered firms. At the end of the compliance period, firms have to surrender a number of 

allowances equal to their emissions during the period. If a company has too few allowances, it 

needs to purchase more from the market, while it can sell allowances if it has a surplus. This 

trading aspect of the approach does not only create a price for emissions allowing firms to 

either innovate and reduce emissions or to buy allowances, it also forces firms to engage and, 

therefore, fosters awareness of this price. ETS are, however, highly complex to implement, 

and a policymaker has to fine-tune several design elements, including cap setting, sectoral 

coverage, firm-size thresholds, and the form of allocating allowances, including sector-

specific allocation quotas (German Federal Ministry for the Environment, 2016).  
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The US possessed historic dominance in terms of establishing emission trading schemes due 

to its early implementation of such schemes for SO2 and NOx (Burtraw & Szambelan, 2010). 

However, the EU challenged this dominant stance by introducing the EU ETS in 2005, which 

became the most extensive emission trading system in the world (Borghesi et al. 2016) and 

will probably hold that title until the Chinese National ETS is fully operational. Partially 

based on the experiences made in the EU and on its own experience with the Clean 

Development Mechanism, the National Development and Reform Commission of China 

announced in April of 2011 that it would roll out ETS Pilots in seven selected cities and 

provinces (Han et al. 2012). The cities Beijing, Shanghai, Tianjin, Chongqing, Shenzhen as 

well as the provinces Guangdong and Hubei (see Figure 1) were selected to represent 

“regional diversity in terms of development” (Han et al. 2012, p. 22). Fujian joined as the 8th 

pilot in 2016 (ICAP, 2020). They were then tasked to set their own carbon reduction targets 

and to design the characteristics of their ETS, which means that considerable variation 

between the technical details and the level of ambition of the different pilots can be observed. 

These differences in ambition are crucial to acknowledge as Zhang Kangkang et al. (2019) 

show that the ETS did only lead to reductions in the carbon intensity of output in some 

provinces, most notably in Beijing and Guangdong. This is underlined by Hu et al. (2017) 

who analyse the Beijing pilot in comparison to the other pilots and show that capacity, as well 

as awareness, differ fundamentally between the systems, while they furthermore argue that 

the ETS of Hubei and Beijing are the ones with the highest capacity. This is interesting as the 

economic structures of the capital Beijing and the industrial province Hubei are 

fundamentally different. Hubei is more representative of China as a whole (Qi et al. 2014), 

while Beijing is more modern and marked by high technology sectors, which indicates that 

the implementation quality might not be dependent on economic development and partly 

exogenous to it. All pilots, however, have a generally high coverage of between 33 and 60% 

of national emissions (Liu et al. 2015), which shows that the effort being made is significant. 

This is supported by the findings of Fan and Todorova (2017), who show that emitters in 

different regions have factored in the carbon price in production decisions. This is confirmed 

by several rounds of the China Carbon Pricing Survey, in which the majority of stakeholders 

have consistently answered that the ETS would affect their investment decisions (Jotzo et al. 

2013; De Boer et al. 2015; De Boer et al. 2017; Slater et al. 2017; Slater et al. 2019). 

Beijing 

Tianjin 

Hubei 

Chongqing 

Shanghai 

Fujian 

Guangdong 

Shenzhen 

Figure 1 - ETS pilots in China  
(own work based on https://mapchart.net/) 
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Regarding the technical details of the ETS pilots, however, considerable differences between 

the pilots have to be noted. Inclusion thresholds range from 5.000 tons of CO2 in the second 

phase of the Beijing ETS to 20.000 tons in Tianjin and Guangdong, while the sectoral 

coverage also differs, with Beijing sticking out by including almost all industrial and service 

sectors (ICAP, 2020). Together, these differences imply that the actual percentage of covered 

emissions ranges from 40-60% and that both the overall cap and the number of covered 

companies differ widely (Xiong et al. 2015). Prices also fundamentally differ and even though 

trading gradually evolved, markets in many pilots, e.g. Beijing (Hu et al. 2017), are still not 

fully developed, with trading remaining limited in scale and peaking around commitment 

deadlines. Furthermore, the way of allocating allowances differs slightly. Most pilots allocate 

the majority of their allowances for free based either on grandparenting, meaning based on a 

given entity’s historical emissions, like during the first two phases of the EU ETS, or industry 

benchmarking like during latter phases of the EU ETS (Ling et al. 2015). Some pilots also 

auction off a share of the allowances (Hu et al. 2017). Reporting and verification are however 

similar, as emission reports in all pilots have to be verified by a third party (ICAP, 2020). A 

detailed overview of the different pilots is provided in Table 1.  

Table 1 - Overview over technical details of the ETS pilots. Source: ICAP 2020 

Pilot Launch Industry coverage Inclusion 

threshold 

Share of 

emissions 

covered 

Covered 

entities 

(2018) 

Allowance allocation  

Beijing Nov 

2013 

All industrial and non-

industrial companies 

and entities, the 

service sector, and 

public transport. 

5,000 t 

CO2/year 

40% 903 Free allocation using 

grandparenting for 

existing facilities and 

benchmarking for new 

entrants, expanded 

capacity and power. 

Auctions are possible.  

Chongqing June 

2014 

Power, electrolytic 

aluminium, iron, 

ferroalloys, calcium 

carbide, cement, 

caustic soda, steel. 

20,000 t 

CO2/year or 

10,000 tce/year 

50% 195 Free allocation using 

grandparenting. 

Fujian Sept 

2016 

Electricity, 

petrochemical, 

chemical, building 

materials, iron and 

steel, nonferrous 

metals, paper, 

aviation, and ceramics. 

10,000 tce/year 60% 255 Free allocation using 

benchmarking or 

grandparenting based 

on historical emission 

intensity, depending on 

the sector. Auctions are 

possible.  

Guangdong Dec 

2013 

Power, iron and steel, 

cement, papermaking, 

aviation, and 

petrochemicals 

20,000 t 

CO2/year or 

10,000 tce/year. 

60% 242 Free allocation using 

grandparenting, 

historical intensity, or 

benchmarking, 

depending on the 

sector. A share of the 

allowances is 

auctioned.  

Hubei April 

2014 

Most industrial 

sectors, including 

power and heat, iron 

and steel, chemicals, 

textile, cement and 

automobile 

manufacturing. 

10.000 tce/year 45% 338 Free allocation using 

grandparenting or 

benchmarks, 

depending on the 

sector. Auctions are 

possible.  
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Shanghai Nov 

2013 

Most industrial 

sectors, including 

chemicals, power and 

heat, iron and steel and 

petrochemicals. Hotels 

and financial, aviation 

and shipping.  

20,000t C 

CO2/year or 

10,000 tce/year, 

lower for 

transport, 

buildings, firms 

covered earlier. 

57% 298 Free allocation using 

benchmarks, historical 

emission intensity or 

historical emissions, 

depending on the 

sector. Auctions are 

possible.  

Shenzhen June 

2013 

Power, water, gas, 

manufacturing sectors, 

buildings, port and 

subway sectors, public 

buses, and other non-

transport sectors. 

3,000 t 

CO2e/year, 

10.000m2 for 

government 

buildings. 

40% 794 

(2017) 

Free allocation using 

benchmarking and 

grandparenting, 

depending on the 

sector.  

Tianjin Dec 

2013 

Heat and electricity 

production, iron and 

steel, petrochemicals, 

chemicals, and oil and 

gas exploration. 

20,000t 

CO2/year 

55% 107 Free allocation using 

grandparenting and 

benchmarking for new 

entrants. No auctions 

before 2019.  

The Beijing ETS deserves a closer look as this work features a case study specifically 

targeting the city. This is particularly important with respect to the allocation method, as the 

approach used in Beijing is slightly different from other provinces in the sense that although 

Beijing uses grandparenting and benchmarking like the others, an emission reduction factor is 

also used (Ling et al. 2015). Besides Beijing, only Guangdong uses this approach. This factor, 

differing between sectors, is multiplied with historical emissions in order to create a decline in 

the number of allowances, which makes the ETS stricter over time. The factor will therefore 

be used for the analysis of the Beijing case study as this adds variation, especially since the 

factor does not develop linearly. Apart from this particularity, Beijing also sticks out due to 

comparatively higher fines for non-compliance as companies can be fined op to 50.000 CNY 

for failing to submit reports and up to five times the average market price for not surrendering 

a sufficient amount of allowances (ICAP, 2020).  

In a nutshell, the pilots implemented in China starting in 2013 share a relatively high coverage 

and a comparatively high level of ambition, while there are also significant regional 

differences. Trading and market activity are however limited, which is most likely attributable  

to the minimal experience companies have with the instrument, as the fact that trading tends 

to rise sharply in close proximity to deadlines points towards the necessity of trading for 

compliance. Even though prices are relatively low and the markets not yet fully mature, this 

could strengthen the policy effect as it can be assumed that companies inexperienced with 

trading will reduce their emissions instead, even if it most likely lowers the economic 

efficiency of the instrument. And even though the prices are lower than in other markets 

(ICAP, 2020), many companies in China still benefit from very low production costs and 

weak environmental policy (Song & Wang, 2018). Therefore, even a lower carbon price 

might already impact them. This is also confirmed by the high share of companies reporting 

that the ETS would impact their investment decisions, as explained above. 

  



 

 9 

2.2 The Porter hypothesis: What is the economic impact 

of environmental regulation? 

In the mind of the public and political decision-makers, the question of the economic impact 

of environmental regulation seemed to have a clear answer in the 1990s (Meyer, 1995). 

Although it has long been acknowledged in economics that such regulation can solve social 

inefficiencies and contribute to overall welfare, conventional wisdom held that environmental 

regulation would increase costs for firms and thereby hurt industrial output alongside with 

competitiveness (McGuire, 1982; Kalt, 1985; Jorgenson & Wilcoxen, 1990). However, this 

traditional notion was fundamentally questioned when Porter and van der Linde suggested in 

1995 that there could be cases in which “properly designed environmental standards can 

trigger innovation that may partially or more than fully offset the costs of complying with 

them” (Porter & van der Linde, 1995, p. 98). This argument has since led to a considerable 

stream of literature about the growth effects of environmental regulation, discussing and 

further developing what has come to be known as the Porter hypothesis. In the traditional 

sense, it follows from the assumption of an imperfect decision-making process within 

companies due to either market failures, such as market power, asymmetric information or 

spill over of research and development (R&D), or of organizational failures (Ambec et al. 

2013). Such imperfect decision-making could lead to underinvestment in environmentally 

friendly technology, even if such investments would benefit firms, for example by increasing 

the efficiency of resource use (Porter & van der Linde, 1995). Some other channels were 

additionally suggested, including better market access and the possibility to sell pollution-

control technology (Mohr & Saha, 2008).  

Especially since the original paper of Porter and van der Linde (1995) is not empirical and 

instead based on anecdotal evidence, it has been a matter of extended scientific debate ever 

since (Ambec et al. 2013). In the course of this debate, a system of different versions of the 

Porter hypothesis has emerged, in particular differentiating between a weak, strong and 

narrow form. Following Ambec et al. (2013), the weak form refers to environmental 

regulation having a positive effect on innovation, which is essentially the main channel for a 

potential overall effect suggested by the original paper. The narrow form, sometimes referred 

to as the narrow weak form, focuses that even more by referring to a positive effect on 

environmentally friendly or green innovation. Closest to the original argument is, however, 

the strong form, which relates to overall economic outcomes, stating that the positive Porter 

effect on growth, productivity or profits stemming from increased innovation and efficiency 

outweighs the negative impact of additional costs, leading to a net gain from the regulation. 

Most of the existing literature follows this system with the majority of studies focusing on the 

weak or the narrow weak form, namely on the innovation effects of environmental regulation. 

Even though there remains some controversy, this part of the Porter hypothesis is generally 

supported by literature (Ambec et al. 2013). Lanoie et al. (2011) for example confirm the 

weak Porter hypothesis analysing survey data from OECD countries, while Kneller and 

Manderson (2012) confirm the narrow form, finding evidence for an effect on environmental 

R&D, but not on its overall level.  
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Of particular importance in this context are however findings related to emission trading 

systems, where the EU ETS has been the focus of researchers for years, even if econometric 

evidence is still scarce (Teixidó et al. 2019). While an early study by Löfgren et al. (2014) for 

the case of Sweden did not find an effect of the EU ETS, Borghesi et al. (2015), Rogge (2016) 

as well as Calel and Dechezlepretre (2016) confirm a positive innovation effect. So do the 

majority of non-econometric studies analysed by Teixidó et al. (2019). A paper by Bel and 

Joseph (2018) could solve the controversy between Löfgren et al. (2014) and the other studies 

in this regard, as it shows that stringency of the regulation is what crucially drives innovation 

in the case of the EU ETS. Keeping the systematic problems of the EU ETS in the beginning 

in mind, in particular the low allowance prices, therefore serves as a good explanation for 

why Löfgren et al. did not find innovation effects. This is further underlined by generally high 

production costs and a history of strong environmental regulation in Sweden, which makes it 

even less likely that a low allowance price leads to innovation. Teixidó et al. (2019) support 

this line of reasoning as they argue that a more robust setup of the EU ETS can be expected to 

lead to a stronger innovation effect in following years, even though econometric evidence in 

that regard was not yet available at the time of their study.  

Since the pilot ETS in China only commenced in 2013, econometric evidence on their 

innovation effects is still limited. The few very recent studies that exist paint a mixed picture 

concerning the narrow Porter hypothesis. Zhang Lu et al. (2019), for example, find an effect 

on green innovation, while Lyu et al. (2020) find no significant effect, however using only a 

simple difference-in-difference (DiD) approach. An earlier simulation by Lin et al. (2018) 

also predicts a positive effect on green innovation, however alongside with crowding-out, 

causing an overall negative effect.  

Generally speaking, it is, therefore, safe to say that both the weak and the narrow forms of the 

Porter hypothesis experience academic support amidst an ongoing debate. What matters for 

the larger question of economic impacts of environmental regulation is, however, the strong 

version of the Porter hypothesis, i.e. whether the overall effect is positive. In this respect, the 

results in the literature are substantially more controversial, even though the strongly adverse 

effects suggested by traditional literature, in particular that regulation drives industries out of 

the market as suggested by McGuire (1982), are rarely found. However, many studies 

concerned with the Porter hypothesis also find no clear support of a positive effect, meaning 

the strong form of the hypothesis, for instance Rubashkina et al. (2015), Anger and 

Oberndorfer (2008) as well as Rexhäuser and Rammer (2014), which find neither a positive 

nor a negative effect of environmental regulation on firm performance and profitability, 

respectively. It can, however, be argued that the absence of strong adverse effects by itself 

already indicates that there is some Porter mechanism at play since it can reasonably be 

assumed that environmental regulation leads at least to some costs for covered firms. 

Furthermore, despite empirical results being generally mixed, more recent studies tend to 

support the strong Porter hypothesis (Lanoie et al. 2008), while results seem to depend on the 

research design and the context of analysis. Regarding the former, Lankoski (2010) for 

example argues that a central issue of the literature might be that the time dimension is not 

taken into account since Lanoie et al. (2008) find a positive effect both on innovation and 

productivity using lags in their analysis. The latter, namely the importance of context, is 

shown by Albrizio et al. (2017) who find that environmental regulation leads to an increase in 

productivity growth only in the most advanced economies close to the technology frontier. 
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Despite these mixed results obtained for developed economies, it can be argued that the Porter 

mechanism might be stronger in emerging economies, in particular in China, which is, at least 

in some regions, relatively close to the technology frontier (Wang et al. 2013) and therefore, 

following the reasoning of Albrizio et al. (2017), comparatively well positioned. The main 

reason behind this potentially stronger effect is the challenge of the middle-income trap. Even 

though China has been able to modernize its economy relatively well so far, at least in some 

regions, it is still at risk to fall into this trap (Glawe & Wagner, 2016), meaning that failing to 

consistently climb the technological ladder could lead to a situation of decreasing economic 

growth in the medium run. In order to overcome that, sustained industrial upgrading, 

diversification, innovation and the development of a comparative advantage in new products 

are essential (Lin & Treichel, 2012; Kharas & Kohli, 2011; Engel & Taglioni, 2017).  

The Chinese government is aware of this challenge and therefore seeks to fundamentally 

transform its economy, as first mentioned in the 12th five-year plan (Xielin Liu, 2017). 

Crucial aspects of this transformation are innovation and the development of “new strategic 

industries … while continuing to strengthen and enlarge high-tech industries” (National 

People's Congress of China, 2011, p. 9). While the former relates directly to the original 

notion behind the Porter hypothesis, the latter opens up another way in which environmental 

regulation could increase economic growth and provide a remedy against the middle-income 

trap. Regulation could in particular benefit high-tech sectors by “aligning profits with low-

emission investment and innovation [and by] channel[ing] private capital flows” (Partnership 

for Market Readiness, 2016, p. 2) towards these sectors. It could thereby work similar to a 

modern version of the industrial policy applied in several East Asian economies in the past. 

This is supported by a main argument presented in the original Porter and van der Linde 

(1995) paper, which has however only received limited attention in the literature. In addition 

to the argument about effectiveness-enhancing innovation, the authors talk about a potential 

positive economic effect through a competitive first-mover advantage in new sectors. They 

argue that if “national environmental standards anticipate and are consistent with international 

trends in environmental protection” (Porter & van der Linde, 1995, p. 105), environmental 

regulation could pressure domestic companies to innovate in the right direction and thereby 

give them a competitive advantage. Even in the 90s, they furthermore argued for the 

importance of this channel since “world demand is moving rapidly in the direction of valuing 

low-pollution and energy-efficient products” (Porter & van der Linde, 1995, p. 104), 

something that has arguably accelerated over recent years as the world is at least somewhat 

collectively moving towards a low-carbon future. This channel could even be more important 

than innovation alone, since, as Porter and van der Linde themselves admit, there is a form of 

pollution-reducing innovation that produces no positive economic side effects. The argument 

is also in line with traditional views on first-mover advantage, as Lieberman and Montgomery 

(1988) for instance argue that even though there are broad first-mover advantages, some 

disadvantages can stop firms from innovating, for instance free-rider problems, uncertainty 

and incumbent inertia. Environmental regulation could therefore push firms to innovate, 

allowing them to reap first-mover advantages and thereby strengthen new and innovative 

sectors, supporting structural change towards these sectors. However, according to 

Dechezleprêtre and Sato (2017), there is no empirical study that has analysed this as of now, 

although Costantini et al. (2012) find a general positive effect of environmental regulation on 

green sectors and exports for the EU.  
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Albeit, some limited research on first-mover advantage due to environmental regulation in 

combination with subsidies has been conducted in a particular context, namely regarding 

innovation in the solar industry in Europe and its interaction with the emergence of the same 

industry in China. Groba (2014) confirms the strong Porter hypothesis for this case and shows 

that European policy supported strong European export performance. He furthermore shows 

that the earlier the policy was introduced, the stronger its effect was, which is in line with the 

first-mover advantage argument. The most prominent case in this respect is Germany, which 

became the world’s second-largest exporter of solar energy technology components around 

2003. However, China became the world’s largest exporter soon afterwards, which is why 

critics claimed that the German technological leadership was quickly lost and the policy 

merely supported the solar industry in China. Quitzow (2015), however, shows this to be an 

overly simplified argument as German companies were facing constraints to scale-up 

production and therefore entered in cooperation with Chinese firms to do so. Chinese 

entrepreneurs, in turn, were more dynamic and could quickly scale-up production. They also 

increased their research, especially when the Chinese government started to push for an 

extension of domestic solar capacity (Quitzow, 2015). Groba and Cao (2015) expand on this 

by showing that China gained a comparative advantage relatively fast and that provincial 

R&D spending in China had a positive impact on exports of solar components. This very 

particular case of the solar industry therefore offers three main insights. Firstly, it provides 

support for the theory on first-mover advantage and a strengthening of high-tech sectors for 

the case of environmental regulation in Europe. Secondly, it shows that Chinese companies 

were quick to exploit new developments and enter new sectors, implying a high potential for 

fast adaptation to environmental regulations within China. And thirdly, it shows that domestic 

R&D spending as well as an increasing market for green technology within China, which are 

also both expected consequences of the Chinese pilot ETS, led to a strengthening of a 

particular high-tech sector in China.  

In addition to this structural change channel, some characteristics of the Chinese economy 

could also lead to a faster and more committed reaction to implemented policy, causing 

effects to be observable despite prices and regulations that appear relatively weak from a 

European standpoint. These include the more dynamic nature of the Chinese economy, a 

history of government intervention and industrial policy as well as a high share of state-

owned companies. Furthermore, environmental policy could force state-owned companies 

struggling with a lack of efficiency (Zhu et al. 2017) to innovate and upgrade their equipment, 

which could additionally imply that the traditional channel of efficiency-enhancing innovation 

could be more pronounced in China. 

However, there is little empirical evidence on the overall economic effect of the ETS in China 

so far, and the existing literature is contradictory. Most papers concerned with the ETS Pilots 

are ex-ante simulations (Shi et al. 2018), for example, Liu et al. (2017), Zhang et al. (2016) 

and Dong et al. (2019), the latter of which at least includes a small empirical part using data 

from the first two years after implementation. These papers find either no or only very weak 

adverse effects on the economy, which at least gives some support to a Porter-style 

mechanism if it is assumed that the policy leads to some costs for the firms, which seems 

likely given the extent of the pilots. That the ETS in China is a highly important issue, in 

particular in light of the expected rollout of the national ETS, is, however, reflected in the fact 

that new research on the topic has been published very recently, most notably an article by 



 

 13 

Zhang Haijun et al. (2020), which was released in the April 2020 volume of Energy and looks 

into the effects of the ETS on carbon reduction and industrial output. Although the authors 

only use data up to 2016, therefore taking two years less into account than this analysis, they 

manage to confirm not only an impact on carbon emissions, but also a positive effect on 

industrial output in line with the strong Porter hypothesis. In contrast to that stands another 

study by Zhang Wei et al. (2020) from mid-March, using a sectoral approach and finding a 

negative effect on output, however using only data up to 2015, virtually one year after 

implementation. More comprehensive empirical studies in this context exist for earlier 

environmental policy programs, namely the trading scheme for SO2 (Ren et al. 2020) and the 

China Low Carbon Pilot (CLCP) program which started in five Chinese provinces in 2010 

(Yang et al. 2019). These two studies found that the respective policy programs both 

encouraged innovation and industrial growth, in line with the Porter hypothesis, while Ren et 

al. (2020) additionally found that the observed effect was stronger with stricter enforcement. 

It can, therefore, be said that the literature provides some support for the strong Porter 

hypothesis in the context of China. This support furthermore appears to be more robust than 

in the case of the broader literature, which might be related to the arguments presented before.  

In a nutshell, the literature generally tends to confirm both the weak and the narrow Porter 

hypothesis. While findings concerning the strong Porter hypothesis are generally relatively 

mixed, they are less so for the case of China and tend to support the strong Porter hypothesis. 

However, empirical research so far has been very scarce, in particular regarding emission 

trading and the effects on structural change towards high-tech sectors. The same applies to an 

emerging country context, in particular to China, where the effects might be even stronger. In 

light of the climate crisis, it is, however, crucial to better understand the entirety of the Porter 

hypothesis system in the context of emerging economies, especially China, as they are 

responsible for a substantial and growing share of global CO2 emissions. Since economic 

development is however still imperative for these countries due to remaining poverty, 

understanding whether climate policy leads to economic damages or might even support their 

transition is therefore essential for the ongoing policy debate. 
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3 Data 

This analysis is mostly conducted with official economic data, stemming from a range of 

Chinese statistical publications. The most important of these, which was used for the 

provincial level analysis, is the China Statistical Yearbook for the Years 2011 to 2019. 

Additionally, the China Statistical Yearbook on Science and Technology, as well as the China 

Statistics Yearbook on High Technology Industry, were also used. For the case study of 

Beijing, most of the data stems from the Beijing Statistical Yearbook for the Years 2015 to 

2019. Generally speaking, there is some controversy about the accuracy of Chinese statistical 

data, even though that was mainly an issue during the first years of China’s economic 

opening, since the statistical offices could not keep up with the rapid economic development, 

and less so afterwards (Holz, 2004). Some doubts however remain, and many researchers are 

critical of Chinese data, especially in light of the lack of independence of China’s National 

Bureau of Statistics (NBS), but analyses have found no explicit biases or large error margins 

for overall GDP statistics (Holz, 2014). It has, however, to be mentioned that it is challenging 

to even reliably check the quality of official statistics (Plekhanov, 2017).  

Provincial data has been found to be manipulated in the past, although it was mostly the NBS 

itself highlighting these issues (Plekhanov, 2017). Given that the detailed provincial-level 

data used stems from the capital Beijing itself, there is, however, less potential for data 

manipulation. There is furthermore no reason to believe that there might be systematic data 

manipulation in favour of the pilot provinces. Given that the pilots were mostly established in 

larger cities, it is instead reasonable to assume that the institutional capacity and the central 

government’s control is stronger there, which could be expected to lead to lower GDP values 

in comparison to other provinces with more opportunities for data manipulation. This would 

bias the obtained results, if they are positive, downwards and therefore poses no problem to 

the analysis. Additionally, there is effectively no alternative to the usage of official Chinese 

data and this analysis would not have been possible otherwise.  

Apart from the main indicators, which stem from the statistical publications described above, 

the dataset was complemented using a range of other sources. The estimated CO2 emissions, 

for example, stem from Shan et al. (2020, 2017, 2016). They are generally robust, but earlier 

years suffer from scarcity and a low quality of underlying data. The earlier years are, 

however, not used in this paper, and the regressions using CO2 emissions as the dependent 

variable are not a central part of the analysis, which makes this less of an issue. That is 

furthermore the case as a similar analysis is repeated for the Beijing case study, using energy 

consumption from official sources. Global fossil fuel prices, namely of Oil, Gas and Coal, are 

obtained from the economic database of the federal reserve of St. Louis and originally 

sourced from the International Monetary Fund (2020a, 2020b) and the US Energy 

Information Administration (2020). They can, therefore, be assumed to be reliable, although 

they are not the actual prices in China. Since they are only used to reflect broad developments 

in these prices, this issue is, however, not crucial for the quality of the results.  
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The number of covered entities, which is used in order to create the main explanatory variable 

in the Beijing case study is obtained from the Annual Report of Beijing Carbon Market in the 

years 2014-2018, which is published by the China Beijing Environment Exchange, the 

authorized trading platform for carbon trading in Beijing. It is, therefore, most likely reliable. 

The emission reduction factor, the second variable used to create the main explanatory 

variable for the Beijing case study, is directly taken from the official 2018 Beijing enterprise 

(unit) quota verification method document (original: 北京市企业（单位）配额核定方法（
2018版）, Beijing Municipal Bureau of Ecology and Environment, 2019). The latter two 

variables were combined in order to create a proxy for coverage and strictness of the Beijing 

ETS. Although this approach is not ideal, it is a sufficiently good approximation of the overall 

pressure put on the economy by the ETS. It is furthermore the best available measure as the 

trading activity in the pilots is relatively limited and prices in carbon trading furthermore 

closely related to overall economic developments. Therefore, the usage of prices would not be 

an exogenous and reliable indicator of ETS strictness, which is even more so as it has to be 

assumed that, given the limited trading activity in Beijing (Hu et al. 2017), some companies, 

in particular state-owned ones, just comply with the emission reduction factor. 
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4 Methods 

In order to analyse the hypotheses described before, two separate sets of regressions are 

performed. The first of these sets focuses on provinces, comparing the provinces with ETS 

pilots to similar provinces that did not implement the policy, using an extended difference-in-

difference approach. Since there are significant heterogeneities between the provinces 

concerning data availability, in particular regarding sector-level data, this first set of 

regressions is, however, limited to macroeconomic indicators on provincial economic activity. 

This only allows relatively limited insights into potential channels and drivers of the observed 

macroeconomic developments. It is also ignorant of the strictness of the implemented policy, 

which can be relevant for the effect, as demonstrated by Bel and Joseph (2018). In order to 

address these shortcomings, the first set of difference-in-difference regressions on provincial 

level is complemented by a second set of regressions focusing on Beijing in particular. 

According to the literature, Beijing has one of the most mature carbon markets, second only 

to Hubei (Hu et al. 2017) and previous studies have shown that the Beijing ETS was effective 

in reducing carbon intensity of output, while the one implemented in Hubei was not (Zhang 

Kangkang et al. 2019). In comparison to Hubei, the availability of data for Beijing is 

furthermore substantially better, which is why Beijing was chosen as a case study. This choice 

somewhat limits the conclusions that can be drawn, which will be addressed in detail in the 

discussion following the presentation of the main results. The Beijing case study focuses only 

on the period during which the ETS was in force and instead of employing a difference-in-

difference approach uses weighted least squares regressions in first differences, employing 

measures of the strictness of the Beijing ETS as the main explanatory variable. By focusing 

on the sectoral level, it thereby allows a better understanding of the underlying dynamics. 

Both models have in common that they use panel data with provinces in one case and sectors, 

following a slightly adapted Chinese Standard Industrial Classification to account for changes 

in the reporting over time, in the other case. This naturally raises specific issues, in particular 

concerns regarding unit roots and potentially spurious regressions. In order to address these 

issues, Harris-Tzavalis unit root tests are performed in both cases for all variables of interest. 

These tests show, as expected, a considerable indication of unit root presence for many of the 

variables. In order to remove unit roots and to avoid issues of spurious regression, both the 

non-matched regressions in the first as well as all regressions in the second part are performed 

in first differences. Unit root tests show that after this transformation, no variable used 

exhibits a unit root, while additional Harris-Tzavalis or Wooldridge unit root tests are 

employed after the regressions and sectoral cluster-robust standard errors are implemented in 

order to ensure that no issues remain. For the panel difference-in-difference approach with 

matched provinces, this is, however, not an issue as data is matched based on pre-treatment 

trends. Furthermore, all variables were transformed into real values before the unit-root tests. 

For these transformations, the GDP deflator was used for the majority of macroeconomic 

indicators on the provincial and sectoral level since the limited data available for the case of 

China did not allow a more detailed selection of deflators. For costs that are closely connected 
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to firms’ personnel expenses, however, namely management expenses and R&D 

expenditures, average wages were used as a deflator. Output and sales value of new products 

were deflated using the CPI, while exports were deflated using the average CNY USD 

exchange rate. Changes to the usage of deflators did however not lead to fundamentally 

different results. This is in particular the case as sign and significance of estimators are the 

main focus of this analysis because different matching strategies and the creation of a proxy 

for ETS implementation strictness do not allow a direct interpretation of the estimators.  

After these transformations, the regression model for the first set of regressions follows the 

one pictured below, with changing variable choices for each regression sub-set. The variable 

of interest is a pilot dummy, which is one if a province i currently has an ETS implemented 

and zero otherwise. Controlling for level differences between pilot and non-pilot provinces 

with a time-invariant dummy is only necessary for the models that do not employ provincial 

fixed effects, which most models do. In cases where a random-effects estimator was used 

after performing a Hausman test however, such a dummy is introduced in order to show this 

level difference. Since time fixed effects for year t are also employed in every regression, it is 

furthermore not necessary to control for pre- and post-treatment phases.  

𝑌𝑖,𝑡 = 𝛽0 + 𝛽1𝑝𝑖𝑙𝑜𝑡𝑖,𝑡 + 𝛽2𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡 + 𝑦𝑒𝑎𝑟𝑡 + 𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒𝑖 + 𝑢𝑖 

While the model shown above follows the general intuition behind difference-in-difference 

approaches, which are widely used in policy evaluation, the case of ETS Pilots in China is 

different from conventional applications. The difference thereby comes down to the fact that 

the pilot ETS were implemented at different points in time. This difference in implementation 

timing is usually solved by simply including time and unit fixed effects (Goodman-Bacon, 

2018), as in the basic version of the approach employed in this analysis. This is however not 

without problems since knowledge regarding this approach is relatively limited, as Goodman-

Bacon (2018) points out. According to Goodman-Bacon (2018), such an approach actually 

leads to an estimated coefficient that represents the weighted average of all difference in 

difference estimators comparing different timing groups. Such an estimated coefficient, 

however, only represents the unbiased average treatment effect if the effects are homogenous 

and if the treatment effect does not change over time, both of which are assumptions that are 

difficult to make in this case.  

Apart from the issues related to differences in treatment timing, there are also two additional 

assumptions necessary in order to be able to interpret estimators in this case as the average 

treatment effect. Following Morgan and Winship (2015), these are that the hypothetical 

outcome under treatment is the same for both the treated and the control group and that the 

hypothetical outcome without treatment is also the same for both groups. And even though 

the Chinese government announced that the selection of the Pilot provinces was meant to 

represent diversity (Han et al. 2012), the fact that Beijing, Shanghai, Chongqing and Tianjin, 

which are the four biggest cities in China, are part of the seven pilot provinces shows that this 

is not the case in practice. Furthermore, Guangdong, which is home to cities number five and 

six, Guangzhou and Shenzhen, is also part of the pilot provinces. The only exceptions are 

Hubei, which resembles the average economic structure of China as a whole, and Fujian.  
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Therefore, it cannot reasonably be assumed that the treatment, namely the implementation of 

the pilot ETS, was random. In order to deal with this issue, the fixed- or random-effects 

regressions employ a range of controls tailored to each individual regression. As these 

controls account for important potential baseline differences, it can be somewhat reasonably 

assumed that the regressions using these controls satisfy the second assumption, namely that, 

conditional on the controls, the outcome without treatment would have been the same. Since 

Albrizio et al. (2017), however, show that the effect of environmental policy differs between 

countries with respect to their proximity to the technology frontier, which can be extended to 

Chinese provinces, it cannot be expected that the outcome in the case of treatment would be 

the same for both groups, implying that the first assumption does not hold. Following Morgan 

and Winship (2015), rejecting the first assumption while maintaining the second implies that 

the estimated effect can only be interpreted as the average treatment effect on the treated.  

Nevertheless, even if the interpretation is limited to the average treatment effect on the 

treated, issues with this approach remain in addition to the problem of variation in treatment 

timing. Firstly, even though a test for parallel trends using the years 2010 to 2014 is 

performed before the regressions, doubts about the equality in pre-treatment trends remain, in 

particular because rejecting the null-hypothesis of differences in pre-treatment trends is not 

the same as proving that they are the same. Secondly, even though controlling for a range of 

variables should in theory allow the assumption of equal outcomes without treatment for both 

the treated and the untreated provinces, the inclusion of the wide range of fundamentally 

different provinces across China implies a larger risk of unobserved differences. 

In order to overcome these issues, regressions using matched pairs of provinces are 

implemented in addition to the simple random- or fixed-effects difference-in-difference 

regressions, which are therefore mostly used as robustness tests. Matching provinces based on 

a range of variables has the advantage that it compares only similar provinces with each other, 

reducing the risk of large unobserved heterogeneities. Nevertheless, the issue of potentially 

different policy effects on different provinces remains, which also only allows an 

interpretation of the estimator as the average treatment effect on the treated.  

A regression using matched data is in this case, however, challenging in two ways. On the one 

hand, using these models with panel data implies that matching provinces in levels is not 

sufficient, but that matching instead has to take both level differences and pre-treatment 

outcome trends into account. On the other hand, the variation in treatment timing leads to the 

technical difficulty that conventional approaches for matching cannot be applied. Thankfully, 

Dettmann et al. (2020) have developed a Stata implementation of a modified version of the 

Heckman (1998) matching and difference-in-difference approach to be used for panels with 

differences in treatment timing. This approach enables a flexible choice of the period of pre-

treatment trends used for matching and allows to adjust the point in time at which the 

treatment effect is estimated. This comes in handy in this case as timing differences in the 

treatment effect realization can easily be accounted for. It furthermore solves the issue of time 

bias as described by Goodman-Bacon (2018), implying that changes in unobservable 

variables over time have implications for difference-in-difference applications with varying 

treatment time. Therefore, a difference-in-difference model using provinces matched by the 

Dettmann et al. (2020) approach is used as the main regression model in the first part of this 

analysis.  
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The approach for the second set of regressions, namely the Beijing case study, is slightly 

different. Instead of a difference-in-difference approach, policy variables determining the 

theoretical strictness of the ETS pilot are used as explanatory variables in weighted least 

squares regressions. This allows a better understanding of the underlying dynamics and 

functions as a robustness test. If the mechanism can be shown both in a comparison between 

provinces and by using policy developments within a given province over time, one could 

convincingly argue that the effect is indeed connected to the ETS. The general model follows 

the one shown below, namely a weighted least squares regression with analytical weights 

corresponding to the number of companies n in the given sector i. These weights were 

implemented since the regressions, in this case, are essentially regressions using group 

averages, which is why only weighing allows an accurate representation of the whole 

economy (Angrist & Pischke, 2008). Furthermore, as in the regressions before, sectoral 

cluster-robust standard errors are implemented in order to account for potential correlation 

between sectoral observations over time. This is, however, only a precaution, since residual 

unit root tests are also implemented after the regressions to ensure that autocorrelation is not 

an issue.  

𝑌𝑖,𝑡 = 𝛽0√𝑛𝑖 + 𝛽1𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑟𝑎𝑑𝑖𝑛𝑔𝑖,𝑡√𝑛𝑖 + 𝛽2𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑡√𝑛𝑖 + 𝑢𝑖√𝑛𝑖 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑟𝑎𝑑𝑖𝑛𝑔𝑖,𝑡 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑖,𝑡 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠𝑡 

As shown above, the main explanatory variable in these regressions is an interaction term 

between the number of covered entities in year t and the emission reduction factor specific to 

sector i and year t. The difficulty is, however, that the quota for electricity is not very clear as 

it depends on the individual mix of coal, gas and other facilities a given electricity provider 

has in service. Since this furthermore changes over time, the average of all emission reduction 

factors was instead chosen for the electricity sector. Due to the significant coal intensity of the 

Chinese electricity mix and the fact that the emission reduction factor is very low for coal, 

this is most likely portraying the policy as too strict for the electricity sector. Since the 

hypothesis, however, expects a positive effect of strictness, an overestimation of strictness can 

only lead to an underestimation of the effect. Potential positive results would therefore still be 

valid. The other part of the interaction term is the number of covered entities. Due to 

adjustments in policy, monitoring as well as opening and closing of enterprises, this number 

changes from year to year and, most importantly, increases sharply in 2016 as the threshold 

for inclusion in the ETS was lowered. Therefore, the number of entities included in the ETS is 

a good proxy for its overall scope, which in connection with its strictness, meaning the 

emission reduction factor, measures the overall extent of the ETS reasonably well. The higher 

the emission trading variable therefore is, the stronger the ETS implementation is in a given 

year for a given sector. The actual price of allowances traded was, however, not taken into 

account, as the trading activity was still relatively limited.  This approach could be improved 

by using the number of entities covered in each given sector. However, even though the 

government of Beijing releases a list of covered entities every year, many companies have no 

easily accessible information, which makes it highly challenging to assign them to a given 

sector and therefore exceeds the scope of this work. 
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Since it can reasonably be assumed that both the emission reduction factor and the coverage, 

which are both politically determined beforehand, are independent of economic developments 

in given sectors, a basic first-difference weighted least squares approach is sufficient for the 

analysis. In comparison to the matching strategy in the first set of regressions, there is 

however more room for potential issues regarding the model specification, which is why both 

a Link specification test and a Wooldridge unit root test are implemented after every 

regression. Because this analysis builds not only on one fundamental hypothesis, but on one 

central hypothesis and two additional ones regarding potential channels, both the provincial- 

and the sectoral-level regressions are implemented using a range of different variables. This 

also implies the usage of slightly different controls and matching strategies in each case, 

which is, however, clearly described in the following results.  
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5 Empirical analysis  

5.1 Provincial-level results 

As stated before, the first part of the analysis focuses on the provincial level, implementing 

both a panel difference-in-difference (DiD) model with matched data, which takes differences 

in treatment timing into account, and a simpler fixed or random-effects model. The latter is 

mainly implemented as a robustness check as the disregard for differences in treatment timing 

as well as the relatively simple test for pre-treatment trends most likely leads to biases. In 

order to further test the robustness of the results, the panel difference-in-difference approach 

is repeated using leads instead of the actual value, which should turn out to be insignificant. 

With respect to the analysis it has additionally to be mentioned that the Shenzhen pilot was 

excluded, as there is less data available for the city and it overlaps with the Guangdong pilot. 

Tibet was furthermore excluded due to a lack of data, but as it is only one of many non-

treated provinces its exclusion should not have a significant impact on the results. It 

furthermore has to be noted that the matching strategy employed for the main regression did 

not in all cases find matching partners for all pilot provinces, which is why in some of the 

following regressions the outcomes of the main regression are not observed for all of them. In 

most cases, however, not more than one province was not matched. In combination with the 

fact that the observations focus more on sign and significance of estimators than on their 

absolute value and since the overall DiD model is additionally implemented as a robustness 

check, this should however not have a crucial impact on the results.  

Focusing on the first research hypothesis, namely on the question whether a strong Porter 

hypothesis mechanism, meaning a positive effect of the implemented policy on economic 

outcomes, is observable, provincial per capita GDP was chosen as an outcome measure. For 

the main analysis, provinces were matched based on the pre-treatment trend in the outcome 

variable during the period between three and one years before policy implementation. This 

timeframe was chosen since it can be assumed that companies, knowing about the upcoming 

ETS implementation, changed their behaviour shortly before. Therefore, the trend could 

already be different during the year leading up to implementation, a problem sometimes being 

referred to as the Ashenfelter-dip, following Ashenfelter (1978). Additionally, overall GDP, 

investment level and, in order to control for the structure of the economy, secondary and 

tertiary value added were used for matching. Pre-regression diagnostics show no significant 

difference between the chosen province-pairs with regard to these measures, and in particular 

the difference in pre-treatment trends is minimal. The results of these variable balance tests 

for the entire provincial-level analysis can be found in Appendix 3. The outcome was then 

observed two years after implementation of the policy to account for a potential delay in the 

effect. For the robustness check, random effects were chosen following Hausman-test results 

on the 5% significance level.  
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The implemented explanatory variables control for drivers of economic development, 

economic structure, trade and, since there might be a connection between international fossil-

fuel markets and the policy, the crude oil price. The results of these regressions are displayed 

in Table 2 below.  

Table 2 - Regression results. Dependent variable: Provincial GDP per capita 

 Panel DiD Random effects 

DiD 

Fixed effects 

(test for trend) 

Panel DiD lead 

Post treatment -50.92** 

(0.015) 

 

 

 

 

-73.78 

(0.166) 

Average treatment 

effect on the treated 

58.28*** 

(0.002) 

19.30** 

(0.027) 

 

 

119.9 

(0.113) 

Treated  

 

3.63 

(0.455) 

 

 

 

 

Trend for the 

treated until 2014 

 

 

 6.73* 

(0.058) 

 

 

Trend until 2014  

 

 

 

-0.85 

(0.577) 

 

 

Year FE yes yes no yes 

Controls constant constant; investment; foreign investment; 

secondary share; primary share; research 

share; imports; trade; oil price 

constant 

N 85 240 240 40 

R2 0.9466 0.4800 0.3188 0.8460 

Cluster-robust standard errors, p-values in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 

The results for the principal regression show a positive and significant average treatment 

effect on the treated on the 1% significance level. Even though the effect is not large, it still 

corresponds to approximately one quarter of the standard deviation in per capita GDP and is 

therefore also economically significant. The results consequently show a strong positive effect 

of the policy on per capita GDP, which confirms the strong version of the Porter hypothesis. 

The random-effects regression implemented as a robustness check supports these results and 

also shows a positive and significant effect on the 5% level, although there is a slight 

indication for a difference in pre-treatment trends. A further robustness check shows that the 

lead of the explanatory variable of interest does not have a significant effect, which 

underscores the robustness of the employed model.  

The Porter hypothesis furthermore suggests an increase in research and innovation as the 

main channel behind such an increase in economic output. In order to study this hypothesis, 

the following analysis uses data from a previous study, namely Lyu et al. (2020), who created 

a provincial innovation index for China up until 2016. The authors of this study failed to 

confirm an innovation effect using this index as a dependent variable but implemented a 

different and simpler econometric strategy. Neither did they match similar provinces, using all 

other provinces as the comparison group instead, nor did they compare pre-treatment trends, 

only implementing two counterfactual tests shifting the main explanatory variable in time. 

Additionally, their study suffered from the inclusion of carbon emissions and investment in 

pollution control as explanatory variables, since a properly working ETS would reduce carbon 

emissions and increase investment in pollution control. The authors furthermore control for 

per capita GDP, which, as shown before, is positively influenced by the ETS.  
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Therefore, controlling for these three variables controls effectively for the channel through 

which the implementation of an ETS could have a positive impact and therefore, by 

construction, leads to a negatively biased estimate. It, therefore, seems reasonable to repeat 

the analysis presented in Lyu et al. (2020) using the general framework of this paper. As in 

the case of the first set of regressions, the main focus is placed on the panel difference-in-

difference strategy, with provinces being matched based on three-year pre-treatment trends as 

well as on per capita GDP and tertiary industry value added in order to control for economic 

structure, in particular the importance of the service industry for a given province. Because 

the dataset covers a shorter period, the three years directly before the policy implementation 

were chosen for the pre-treatment trend, which is however not problematic as the indicator 

used measures the innovation outcome for which an Ashenfelter-dip is less likely. The 

differences between these variables are not significant, and in particular, the difference in pre-

treatment trends is marginal, even being lower in the case of the treated units, which would 

lend additional support to the robustness of the results in case of a positive treatment effect. 

The outcome is observed two years after implementation, as in the first analysis. Additionally, 

a robustness check is implemented, in this case a fixed effects regression following Hausman-

test results. The control variables used are similar to the first case, including international 

fossil fuel prices and industrial structure, while long-term determinants of innovation, namely 

the number of R&D institutions and the overall full-time R&D personnel are added. Lastly, a 

regression using a lead of the main explanatory variable is implemented. Results are displayed 

in Table 3 below. 

Table 3 - Regression results. Dependent variable: Innovation index (Lyu et al. 2020) 

 Panel DiD Fixed effects Fixed effects 

(test for trend) 

Panel DiD 

lead 

Post treatment -0.101 

(0.262) 

 

 

 

 

0.082 

(0.255) 

Average treatment 

effect on the treated 

0.123** 

(0.031) 

0.0417** 

(0.028) 

 

 

-0.0027 

(0.961) 

Trend for the treated 

until 2014 

 

 

 

 

-0.0018 

(0.894) 

 

 

Trend until 2014   

 

-0.0192** 

(0.005) 

 

 

Year FE yes yes no yes 

Controls constant constant; trade; tertiary value added; 

secondary value added; investment; 

foreign investment; research and 

development institutions; R&D personnel 

constant 

N 76 180 117 54 

R2 0.5325 0.1496 0.1923 0.621 

Cluster-robust standard errors, p-values in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
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The results for the principal panel difference-in-difference regression show a significant and 

positive average treatment effect on the treated on the 5% significance level. The magnitude 

of the effect is comparable to one standard deviation, which shows that the results are also 

significant in the economic sense. The fixed effects regression confirms this finding with a 

positive and significant result of comparable magnitude, while there is no indication for a 

statistically significant difference in pre-2014 trends. The panel difference-in-difference 

regression using leads produces non-significant results, which further supports the robustness 

of the findings. These results confirm the weak version of the Porter hypothesis, namely that 

the introduction of the ETS leads to an increase in innovation. Thereby, they stand in contrast 

to the results obtained by Lyu et al. (2020) mentioned earlier. 

Since this contrast to the Lyu et al. (2020) results is somewhat surprising given the usage of 

the same index, their approach was replicated in a follow-up analysis. These replication 

exercises, which are reported in Appendix 1, mostly failed to reproduce any significant 

negative estimates, although without the inclusion of the investment in pollution control 

variable, which was not available. The only way in which the replication led to a negative 

estimator close to significance on a 10% significance level was by performing the analysis not 

in differences, but in levels. This is, however, highly problematic as many of the variables 

exhibit unit roots, which implies that the risk of a spurious regression is high. Additionally, 

following the reasoning regarding problems caused by the inclusion of per capita GDP 

described before, the analysis was repeated while excluding per capita GDP from the set of 

controls. This led to a positive and significant treatment effect, even in the regression in 

levels, suggesting that the inclusion of per capita GDP entirely drives the negative effect 

shown in the Lyu et al. paper. The analysis thereby supports the approach of this paper and 

calls the Lyu et al. (2020) results in question. It, however, also proves a connection between 

innovation and per capita GDP in the context of the ETS policy, which naturally raises the 

issue of direction of causality. Following the theoretical reasoning behind the Porter 

hypothesis, the implementation of the policy would cause both innovation and an efficiency-

increasing reorganization of firms. It thereby already suggests both a direct and an indirect 

innovation-related effect on economic outcomes and thus a simultaneous impact on both. 

Another channel could, however, be that raising GDP increases spending on R&D and 

thereby innovation. Unfortunately, using lags of both variables in regressions on each other 

leads to insignificant results, which implies that innovation and GDP are simultaneously 

determined, making it impossible to determine the direction of causality in the limited scope 

of this work.  

Before turning to the case study of Beijing, two additional questions remain to be answered, 

which, even though not part of the main analysis, are essential to understand the full picture of 

the ETS pilots. The first one is whether the ETS had any environmental effect, meaning 

whether the policy was effective. The second one, which matters both with regards to the first 

one and with regards to the economic effects, is whether inter-provincial carbon leakage, 

meaning the shift of carbon-heavy industry out of the ETS provinces, was an issue. In order to 

answer both these questions, the panel difference-in-difference approach used before is 

employed in a set of regressions with the estimated provincial CO2 emissions until 2017 as 

the dependent variable. These CO2 emissions are estimated values using the IPCC sectoral 

approach as calculated by Shan et al. (2020, 2017, 2016). As in the case of the regressions 

before, provinces are matched on pre-treatment trends as well as on GDP and trade.  
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Since in this case, however, both the Ashenfelter-dip and a short timeframe are an issue, only 

the years one and two before the implementation are used, which is very short to establish a 

trend. Since these analyses are however only an addition to the main analysis, it should not be 

a crucial issue, but has to be kept in mind. In order to answer the question of whether the 

policy affected CO2 emissions, a pilot dummy is used to indicate treatment, just as before. 

The question of carbon leakage is, however, analysed by using a dummy that is one if a given 

province in a given year is next to an ETS pilot province. Assuming that companies that have 

their centre of operations in one of the major cities would not shift production far away, one 

should see significant positive CO2 emission effects of the policy in surrounding provinces in 

the case of carbon leakage. The results are displayed in Table 4 below.  

Table 4 - Regression results. Dependent variable: Estimated CO2 emissions 

 Pilot province Borders with pilot province 

Post treatment 19.84 

(0.120) 

-43.65 

(0.114) 

Average treatment 

effect on the treated 

-19.55* 

(0.079) 

15.15 

(0.513) 

N 88 124 

R2 0.334 0.254 

Cluster-robust standard errors, p-values in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 

These results confirm that the policy did have a significant negative effect on overall CO2 

emissions in the pilot provinces themselves, with the estimator being significant on the 10% 

level. Regarding the second question, the estimated effect of the artificial proximity dummy 

turns out to be non-significant on any conventional significance level. Due to concerns 

regarding the fact that Hubei is surrounded by many provinces, which could weaken the 

estimated results, the analysis was repeated without the provinces surrounding Hubei, which 

also did not lead to significant results. Even though this approach is rudimentary and does not 

prove the absence of carbon leakage, it does, however, indicate that it is not a crucial issue 

and therefore does most likely not drive the emission reductions observed for pilot provinces.  

Generally speaking, the provincial-level analysis has confirmed both the strong and the weak 

version of the Porter hypothesis as the regressions have demonstrated a positive effect of the 

policy on both per capita GDP and innovation. Furthermore, it could be confirmed that the 

policy was effective in the sense that it did reduce CO2 emissions in pilot provinces, while the 

absence of a significant effect for surrounding provinces suggests only limited carbon 

leakage. This first part, however, did not allow an analysis of the structural change effect or of 

channel effects more broadly, which is why the analysis was, as mentioned before, extended 

to include a case study of sectoral effects of the ETS policy in Beijing, the results of which 

are presented in the following. 
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5.2 The sectoral effects of the Beijing ETS - a case study 

The implementation of an ETS pilot in the Chinese capital of Beijing was a very fortunate 

policy decision, both from an environmental and an analytical point of view. Given 

considerable heterogeneities concerning data availability and institutional capacity between 

the provinces, the implementation of the policy in the capital, where both of these are 

considerably better than in other provinces, allows a detailed case study in a setting where the 

policy was implemented comparatively well. It thereby allows an analysis on a sectoral level 

which also takes a broader range of variables for the potential channels into account and 

allows a better control of other effects. However, because of this, the effects in Beijing have 

to be seen as an upper boundary, and it is to assume that other pilots had weaker effects.  

In order to analyse the sectoral effects in more detail, each analysis is once implemented for 

all sectors before the main explanatory variable is interacted with group dummies in two 

additional regression sets. Firstly, sectors are divided into high- and low-tech, following the 

definition of high-tech sectors used in the Beijing statistical yearbook, which includes 

pharmaceuticals, aircraft and spacecraft, electronic and communication equipment, electronic 

computer and office equipment, medical equipment and meters, chemical manufacturing and 

transport equipment. The second group division is then made between sectors with high and 

low energy consumption, classifying each sector within the lowest four deciles of average 

total energy consumption as low and the remaining ones as high. Since it is not known how 

many companies are above or below the inclusion threshold, this is an approximation and will 

be used as a robustness test, as only sectors with a high absolute energy consumption should 

be included in the ETS and therefore be affected by the policy.  

The first analysis for the Beijing case study is both a test of the model employed and of the 

effectiveness of the ETS policy. In order to achieve both these aims, the regression model 

described above and in the methodology section is employed using total sectoral energy 

consumption as the dependent variable, which the ETS policy, if effective, can be expected to 

significantly lower. Even though CO2 emissions would have been the better indicator, the 

quality of available sectoral data in this respect is not sufficient, which is why energy 

consumption was used instead. This makes additional sense since most of the energy in China 

is produced using coal, which is why energy consumption can be assumed to be closely 

related to overall CO2 emissions. As described above, the regressions are weighted least 

squares (WLS) regressions in first differences, using an interaction of the emission reduction 

factor and the total number of covered entities as the main explanatory variable. The 

timeframe of the analysis spans from 2014, when the policy was effectively implemented 

after the official launch in December of 2013, to 2018. A constant as well as a range of sector-

level controls is used. The latter control for broad firm-based variables, which are expected to 

influence the overall energy consumption through a sector’s economic activity, including the 

number of employees, assets, liabilities and the number of enterprises in a given sector. 

Furthermore, finished products and inventories are included to give a clear picture of the 

actual production activities within the given year. The amount of governmental and foreign 

funds for research is additionally used as a control variable to determine the level of foreign 

or government involvement in a given sector.  
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An index for fossil energy costs is also used as a control, effectively multiplying a sector’s 

consumption of coal and oil- as well as gas-based fossil fuels with developments in the 

corresponding world-market prices. This is however only an approximation as data on price 

developments within China could not be obtained, while in particular coal is heavily 

subsidized. The results of the first set of regressions are shown in Table 5 below.  

Table 5 - Regression results. Dependent variable: Total energy consumption 

 Weighted least squares High- /low-tech WLS Robustness check WLS 

Emission trading -0.0220* 

(0.079) 

  

 

Emission trading * high-

tech 

 

 

-0.0992*** 

(0.000) 

 

 

Emission trading * low-

tech 

 

 

-0.0221 

(0.396) 

 

 

Emission trading * high 

energy consumption 

 

 

 

 

-0.0235* 

(0.066) 

Emission trading * low 

energy consumption 

 

 

 

 

0.00931 

(0.594) 

Controls constant, average number of employees, current assets, liabilities, finished 

products, inventories, energy costs, foreign R&D funds, governmental R&D funds, 

number of enterprises 

N 131 131 131 

R2 0.320 0.409 0.321 

Wooldridge test 0.306 0.293 0.304 

Link test 1 (p-value) 0.000 0.000 0.000 

Link test 2 (p-value) 0.430 0.862 0.437 

Cluster-robust standard errors, p-values in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 

The results of this first set of regressions are interesting, as the negative and on a 10% level 

significant estimator for the principal regression confirms that the policy was effective in 

reducing overall energy consumption. These results also indicate that the strategy employed is 

the right approach as they are in line with the theory on the relatively straightforward issue of 

the environmental effectiveness of the policy. The implemented specification tests support 

these results. The link test indicates no model specification issues as, if the model is correctly 

specified, the first estimator is expected to be significant and the second one is expected to be 

insignificant, which is the case. The Wooldridge test furthermore fails reject the null-

hypothesis of no unit-root presence at all conventional significance levels for all regressions. 

The regression focusing on high- and low-tech sectors furthermore shows that the policy had 

a significant and negative impact on total energy consumption of high-tech sectors on all 

conventional significance levels. Low-tech sectors did, however, not significantly reduce their 

energy consumption as a consequence of the policy. The last regression shows, as expected, 

no significant impact on sectors with low energy consumption and a negative and significant 

impact on the 10% level for high energy-consuming sectors. It therefore confirms the 

robustness of the results.  
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Generally speaking, these results confirm that the ETS worked as intended and reduced 

energy consumption, which is in line with the results on CO2 emissions obtained in the 

provincial level analysis before, additionally confirming the employed model as well as the 

robustness of the results. The regressions for high- and low-tech sectors however offer further 

insights. The negative effect for high-tech sectors shows that these sectors were, in fact, able 

to reduce their energy consumption relatively fast, reacting to policy changes within the same 

year. The results for low-tech sectors, on the other hand, show that they did not significantly 

reduce their energy consumption. This suggests a considerable difference in their respective 

reaction to the policy. Although this theory cannot be confirmed from this first regression 

alone, these results could imply that low-tech industries did not have the opportunity for 

improvement, either due to technical or economic reasons, and therefore opted to pay a fine or 

buy allowances instead. High-tech sectors, on the other hand, managed to reduce their 

emissions, potentially through innovation. Concerning the Porter hypothesis, this could 

indicate that the latter might be able to reap potential Porter-style benefits, while the former 

might not. In order to thoroughly discuss this theory, however, further analyses are necessary.  

After confirming the effectiveness of the policy in reducing energy consumption, the overall 

economic effects are the next crucial issue to analyse. The sectoral level approach and better 

data availability allow in this case a more detailed analysis, looking at both enterprise profits 

and sectoral output. This division is in so far interesting as the policy might have different 

effects on both indicators. On the one hand, it seems plausible that the policy leads to short-

term costs due to increased investment in technical upgrading as well as in research and 

development, which would most likely affect profits negatively, even though energy savings 

and other improvements might also already pay off in the short run. Total output, on the other 

hand, is likely to be less impacted by these short-term investments while being directly 

affected by technological improvements and the upgrading of facilities, which is why in this 

case a positive effect could be expected within a shorter timeframe, at least if the Porter 

hypothesis and the predicted effectiveness increases would be confirmed.  

Starting with the effect on profits, the same model is implemented as in the first set of 

regressions. There are however some slight changes to the control variables. Fixed assets are 

added, since it can be assumed that the amount of fixed assets, and by extension of production 

facilities that might need upgrading, could be related to emission trading and its effects on 

profits. Furthermore, the analysis for low- and high-tech sectors is extended to include a 

regression using the first lag of the main explanatory variable instead to allow a better 

understanding of the effects over time. The results are displayed in Table 6 below.  
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Table 6 - Regression results. Dependent variable: Total profits 

 Weighted least 

squares 

High- / low-tech 

WLS 

Lagged high- / 

low-tech WLS 

Robustness 

check WLS 

Emission trading 15.36** 

(0.029) 

  

 

 

 

Emission trading * high-tech  

 

12.18* 

(0.055) 

18.93* 

(0.059) 

 

 

Emission trading * low-tech  

 

-17.15** 

(0.034) 

-15.14 

(0.104) 

 

 

Emission trading * high 

energy consumption 

 

 

 

 

 

 

16.11** 

(0.028) 

Emission trading * low energy 

consumption 

 

 

 

 

 

 

-8.595 

(0.113) 

Controls constant, average number of employees, current assets, fixed assets, 

liabilities, finished products, inventories, energy costs, foreign R&D funds, 

governmental R&D funds, number of enterprises, exports  

N 131 131 130 131 

R2 0.752 0.754 0.745 0.754 

Wooldridge test 0.902 0.830  0.903 

Link test 1 (p-value) 0.000 0.000  0.000 

Link test 2 (p-value) 0.192 0.184  0.210 

Cluster-robust standard errors, p-values in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 

The estimator for the emission trading variable in the principal regression turns out to be 

positive and significant on the 5% level, while link and Wooldridge tests show no indication 

for model misspecification or autocorrelation. Given the theoretical deliberations above, this 

is all the more interesting, as it was to expect that profits would suffer most from the 

necessary expenses for innovation and upgrading in the short run. These results, therefore, 

clearly confirm the strong Porter hypothesis for the case of the Beijing ETS as the 

implementation of the policy raised profits even in the short run. As before, the following 

regressions for high- and low-tech sectors mirror these results but allow fascinating additional 

insights. The estimator for high-tech sectors is significant and positive on the 10% level, 

indicating a positive effect on profits for these sectors. The regression using the first lag 

shows furthermore that this estimated effect stays significant and even grows over time, 

which indicates both additional costs in the short run, as suggested before, and a consistent 

positive effect on profits. The picture for the low-tech sectors is however very different, as the 

estimator, in this case, is significant and negative on the 5% level. The fact that the first lag is 

insignificant furthermore adds to the theory that the policy leads to short term impacts for 

these sectors, which would be consistent with increased costs for either the purchase of 

allowances or due to fines. The last regression again confirms a significant effect on sectors 

with high energy consumption and no significant effect on sectors with low energy 

consumption, underlining the robustness of the results.  

Following the observations made before, these regressions confirm not only the strong Porter 

hypothesis, but also shed additional light on the different reactions of high- and low-tech 

sectors. High-tech sectors, which, as shown before, reacted to the policy by reducing energy 

consumption, potentially reap the benefits of their investment and experience a positive Porter 

effect on their profits that even grows stronger over time. Low-tech sectors, on the other hand, 

failed not only to reduce energy consumption, but also suffer from a negative impact on their 

profits, likely as a consequence of increasing compliance costs.  
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However, one could argue that these effects could be due to an overallocation of allowances 

to particular sectors, mirroring the experiences with the EU ETS generating large windfall 

profits for some sectors in its early phase (Branger & Quirion, 2015). In this case, such an 

effect seems, however, less likely for two reasons. Firstly, the high-tech sectors which 

profited from the policy did also significantly reduce their energy usage, which would not 

have been the case if there was a significant oversupply of certificates. If the following 

analyses should also confirm a positive effect on innovation for high-tech sectors, this point 

would be even stronger. Secondly, the very erratic market behaviour of the Beijing carbon 

market, the limited trading as well as the relatively low prices (Hu et al. 2017) make a 

significant positive impact on profits through this channel highly unlikely.  

Almost more interesting than the effect on profits is, however, the effect on value added. 

While increasing costs do affect profits in the short run, it is to expect that efficiency 

increases as a reaction to the policy would have a more direct impact on sectoral value added. 

In order to look into this, a similar strategy is employed with sectoral value added as the 

dependent variable. In these regressions, less control variables are employed as it is to assume 

that output is less sensitive to developments in assets and liabilities of a sector. Sales income 

from new products is, however, added as a control in order to limit the analysis to efficiency 

increases in the existing production. The results are displayed in Table 7 below.  

Table 7 - Regression results. Dependent variable: Total value added 

 Weighted least 

squares 

High- / low-tech 

WLS 

Lagged high- / 

low-tech WLS 

Robustness check 

WLS 

Emission trading 23.64** 

(0.012) 

  

 

 

 

Emission trading * high-

tech 

 

 

17.06 

(0.222) 

46.72* 

(0.067) 

 

 

Emission trading * low-

tech 

 

 

-26.70*** 

(0.001) 

-1.670 

(0.967) 

 

 

Emission trading * high 

energy consumption 

 

 

 

 

 

 

25.87*** 

(0.008) 

Emission trading * low 

energy consumption 

 

 

 

 

 

 

-0.154 

(0.988) 

Controls constant, output of new products, average number of employees, energy costs, 

foreign R&D funds, governmental R&D funds, number of enterprises 

N 131 131 130 131 

R2 0.781 0.781 0.808 0.782 

Wooldridge test 0.145 0.137  0.143 

Link test 1 (p-value) 0.000 0.000  0.000 

Link test 2 (p-value) 0.123 0.122  0.119 

Cluster-robust standard errors, p-values in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 

With regards to sectoral value added, the estimator of interest in the main regression is 

positive and significant on a 5% significance level, mirroring the results obtained before. The 

Wooldridge and link tests give furthermore no reason for concern. The fact that the 

regressions found overall positive effects for both profits and output furthermore shows the 

robustness of the approach and underlines that the implementation of the policy led to 

efficiency increases, confirming the strong Porter hypothesis. The regressions for high- and 

low-tech sectors are also similar to the results obtained before, although they show that the 

output effect for high-tech sectors is only significant after the first period.  
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This is puzzling since the effect on profits was directly observable for these sectors, but is 

likely related to the inclusion of the output value of new products as a control. New products 

might have raised the profits in a shorter amount of time while output increases in the existing 

production took longer to materialize. This observation, alongside with the fact that the effect 

raises and gains significance over time, however, supports the theoretical argument that 

companies innovate as a reaction to the policy and therefore increase the efficiency of 

production over time. The estimator for low-tech companies, however, is negative and only 

the main estimator is significant on the 1% level, while the lag is not. This also supports the 

argument made before. Following the theory that low-tech companies did not innovate, but 

instead paid a fine or bought allowances, it would be reasonable to assume that their value 

added also suffered mostly in the short run because these costs or a potential reduction of 

production to lower emissions would have occurred in the same year. The increase of output 

for high-tech sectors in combination with the decrease for low-tech ones also shows a 

structural change towards high-tech sectors, which confirms the structural change channel. 

The third set of regressions shows that the effect on low energy consuming sectors is 

insignificant while it is positive and significant on the 1% level for high energy consuming 

ones, supporting the robustness of the results.  

In order to fully understand the mechanics, however, it is crucial to also look at the effect on 

research and development once again. Following the Porter hypothesis, firms should increase 

investment in R&D as a reaction to the policy, which would then explain the increases in 

output and profits observed before. In order to get a clear picture on the reaction of 

enterprises, sectoral R&D expenditures were used as the dependent variable, which offers 

additional insights after analysing the effects on innovation outcomes previously. The controls 

are similar to the regressions before, although assets and liabilities were added again. Exports 

were also controlled for as it is to expect that exporting firms have a different innovation 

dynamic. The results of the regressions are displayed in Table 8 below.  

Table 8 - Regression results. Dependent variable: R&D expenditure  

 Weighted least 

squares 

High- / low-tech 

WLS 

Lagged high- / 

low-tech WLS 

Robustness 

check WLS 

Emission trading 0.00121* 

(0.084) 

  

 

 

 

Emission trading * high-tech  

 

0.00153** 

(0.041) 

0.000828 

(0.336) 

 

 

Emission trading * low-tech  

 

-0.00107 

(0.187) 

-0.000722 

(0.420) 

 

 

Emission trading * high 

energy consumption 

 

 

 

 

 

 

0.00128* 

(0.076) 

Emission trading * low 

energy consumption 

 

 

 

 

 

 

0.000443 

(0.699) 

Controls constant, average number of employees, assets, liabilities, foreign R&D funds, 

governmental R&D funds, number of enterprises, exports 

N 131 131 130 131 

R2 0.709 0.709 0.489 0.702 

Wooldridge test 0.195 0.989  0.199 

Link test 1 (p-value) 0.000 0.000  0.000 

Link test 2 (p-value) 0.000 0.000  0.000 

Cluster-robust standard errors, p-values in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
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For the case of R&D expenditures, the estimator of the main explanatory variable is positive 

and significant on the 10% significance level. After the two previous regressions confirmed 

the strong Porter hypothesis, this additionally confirms the weak Porter hypothesis and shows 

that the main channel suggested by the Porter hypothesis, namely increased spending on R&D 

and innovation, is indeed a plausible explanation for the results obtained before, even though 

internal improvements and an upgrading of facilities are potentially additional channels. The 

regressions for high- and low-tech sectors continue to improve the picture of the differing 

dynamics for both groups. The estimator for high-tech sectors is positive and significant on 

the 5% level and therefore indicates that companies in these sectors increased their investment 

in R&D, which most likely is at least one of the causes for the previously observed results. 

The effect is, however, only observable for the first period, which was to expect. While it is 

intuitive that investment in innovation pays off over longer periods, explaining significant 

results for lags in previous regressions, such an effect is less likely for expenditure on 

innovation as it is the direct response to the policy. Thereby, the insignificance of the lag adds 

robustness to the results and indicates that the increase in R&D expenditure was not an effect 

of increasing profits or output but its cause, as it should otherwise also rise over time. The 

estimator for low-tech sectors is insignificant in all regressions, which supports previous 

findings and shows that these sectors failed to innovate as a reaction to the policy, explaining 

negative outcomes for profits and output. The last regression again confirms the robustness of 

the results as the estimator for high-energy-consuming sectors is significant, while the one for 

low-energy-consuming ones is not.  

However, although the Wooldridge test is no reason for concern, the link test, as well as the 

distribution of the residuals for this set of regressions, indicate slight issues with the model 

specification. These could however not be fully solved by modifications of the model itself. In 

order to test whether the results are nevertheless valid, the presented set of regressions was 

repeated using the number of R&D personnel instead of R&D expenditures as the dependent 

variable. The specification tests do not raise similar concerns in this case, while the results, 

which are reported in Appendix 2, are similar to the ones presented above. The only 

difference is that the results are also consistent using the first lag, indicating a different 

dynamic of personnel development, and that the effect on low-tech sectors is negative in this 

case, potentially suggesting that companies in these sectors had to lay people off as a 

consequence of negative profit and output consequences.  

To summarise, the case study of Beijing has on one hand confirmed the effectiveness of the 

policy as well as both the strong and the weak version of the Porter hypothesis, in line with 

the results obtained for the provincial level before. This confirms both the first and the second 

research hypothesis, namely that the policy positively affected overall economic outcomes 

and innovation. On the other hand, it has furthermore shown that the policy effects on energy 

consumption, value added, profits and R&D expenditure differ fundamentally between high- 

and low-tech sectors. The results thereby indicate that the Porter effect is observable for high-

tech sectors, which benefit from the policy. It is however not detectable for low-tech sectors, 

which experience negative effects in line with traditional theory. As a consequence, the results 

also show that the policy had structural change effects, confirming the third research 

hypothesis.  
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5.3 Discussion 

The results obtained from both the provincial level analysis as well as the Beijing case study 

are fascinating for a multitude of reasons. Firstly, the fact that both analyses confirm the same 

results on output and innovation, using different strategies and analytic levels, shows that the 

results are highly robust, which is also supported by the implemented robustness tests. 

Secondly, the results are entirely in line with the original Porter hypothesis as they confirm 

both its weak and strong version. Regarding the latter, both analyses of output, looking at per 

capita GDP and sectoral value added, respectively confirm a significant positive effect and 

therefore the first research hypothesis of this paper. Regarding the former, both the provincial 

level analysis using an index of innovation and the sectoral level analysis looking at enterprise 

expenditures on research and development confirm that the implementation of the policy had 

a significant positive effect on innovation. The analyses thereby confirm the second research 

hypothesis. Thirdly, the analyses of CO2 emissions and energy consumption show that the 

policy did have the intended effect and reduced both.  

More interesting than these general insights are, however, the different impacts found for 

high- and low-tech sectors. All regressions for the Beijing case study suggest fundamentally 

different policy effects on the sectors in each group. The results show that high-tech sectors 

reduced their emissions as a reaction to the policy and, at the same time, increased 

expenditure on research and development. The policy furthermore increased profits and 

output in these sectors, which is, following the Porter hypothesis, likely due to the increased 

investment in research and development, even though the channel itself could not be clearly 

verified empirically. Additional channels, for example improvements in internal management 

and an upgrade of technical facilities, are therefore plausible additional options. Low-tech 

sectors, however, were affected by the policy in a fundamentally different way. The results 

show that they failed to reduce emissions and did not increase investment in research and 

development following the implementation of the policy. At the same time, their profits and 

output were negatively affected. Following the Porter hypothesis, this could be attributed to a 

lack of both innovation and efficiency improvement as a response to the policy, which in turn 

did not only prohibit the reaping of Porter-style benefits, but furthermore led to a stronger 

exposure to negative consequences of the policy. The observed difference in output for high- 

and low-tech sectors therefore also confirms the third and last research hypothesis of this 

paper, as it shows a structural change effect in favour of high-tech sectors. This suggests that 

the implementation of the ETS supported China in its attempt to transform its economy to 

high-tech sectors and might, therefore, be a way to reduce its dependency on outdated and 

energy-intensive low-tech manufacturing, offering a way to escape the middle-income trap.  

These results, however, also have their limitations. Firstly, the sectoral effects were only 

observed for Beijing, which already enjoys a high presence of high-tech and service sectors. 

Furthermore, exemplified by the presence of some of the most prestigious universities in 

China, Beijing showcases a high potential for innovation given its economic structure and 

high human capital. It, therefore, has to be assumed that the overall effects on other provinces 

with a higher share of low-tech industry are less positive than for the case of Beijing.  
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This also extends to the first part of the analysis. As most of the pilots were established in 

first-tier cities and since the estimated effect can only be interpreted as the average treatment 

effect on the treated, the results only apply to these settings. Additionally, given the strong 

presence of high-tech sectors in these cities, this could imply that the positive effect of the 

policy on these sectors could be the driver of the overall positive impacts. Provinces that are 

less innovative and more reliant on low-tech manufacturing might instead see an overall 

negative impact as the policy would potentially impact a large part of their economy 

negatively. The same is true for other emerging economies. Since China is relatively close to 

the technology frontier, at least in comparison to other emerging economies, the results 

obtained here are even less generalizable for other less innovative emerging economies than 

they are for other provinces within China. They show, albeit, that environmental or climate 

policies, in particular emission trading, can be tools to push innovation and sectoral 

transformation in leading cities and provinces of an emerging economy and might help them 

to transform their economy away from low-tech manufacturing. This also applies to 

industrialized economies with remaining low efficiency and low-tech manufacturing.  

Additionally, it might also be possible that the unique character of the Chinese economy with 

its high share of state-owned companies and the existence of many low-efficiency facilities 

supported the strong positive effect, which might further limit the generalizability of the 

obtained results, at least for countries not sharing these characteristics. In comparison to other 

emerging economies, the institutional capacity of the Chinese state is also high (Popov, 2011), 

which furthermore has to be kept in mind. The fact that Beijing is one of the innovation 

centres of China might additionally lead to more substantial effects on research and 

innovation, as some companies might channel their research efforts there, which could imply 

an upward bias for the effect on expenditures in research and development.  

Other limitations of this work include the usage of non-optimal deflators as well as the limited 

time frame of the analysis, which did not allow a detailed look at potential effects over longer 

periods of time. Even though the literature suggests increasingly positive effects over more 

extended periods of time, this could therefore not be analysed within the scope of this work. 

Additionally, the suggestion of an efficiency increase could not be further verified and is only 

derived from the positive output effect. The analysis of potential carbon leakage was 

furthermore relatively rudimentary, which is why carbon leakage cannot be entirely ruled out. 

Lastly, the lack of maturity of the carbon markets themselves did not allow for an analysis of 

the effect of prices or offsets, which might be an interesting topic for future research.  
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6 Conclusion 

The economic effects of environmental regulation have been subject to intense discussion, in 

particular since Porter and van der Linde (1995) suggested that environmental policy could, 

contrary to traditional belief, have positive economic implications under certain conditions. 

Their suggestion, known as the Porter hypothesis, predicts that environmental policy could, 

by encouraging innovation, efficiency increases and potential first-mover advantages if 

policies are in line with global trends, not only counterbalance its costs but lead to increases 

in overall economic outcomes.  

This paper has analysed this theory in the context of the implementation of emission trading 

pilots in China. Using both a provincial-level approach and a case study of Beijing, the 

analysis has confirmed the strong version of the Porter hypothesis, namely a positive effect on 

the overall economy. The analysis furthermore revealed that the implementation had a 

positive effect on innovation, confirming the weak version of the Porter hypothesis, and 

fostered structural change towards high-tech sectors. These results are highly robust since the 

effects on output and innovation could be shown for both the national level and the Beijing 

case study. The analysis has, therefore, achieved its objective to analyse and confirm the 

aforementioned hypotheses and to provide a holistic view of the Porter hypothesis system in 

the context of the emission trading pilots in China, including not only the overall effect, but 

also effects on innovation and structural change.   

It has additionally shown that the policy was, in fact, successful at reducing CO2 emissions 

and energy consumption and allowed some additional insights based on findings for high- and 

low-tech sectors. In this regard, the results suggest that the policy had a positive impact on 

profits and output of high-tech sectors, most likely due to increased spending on innovation 

and efficiency increases. Low-tech sectors, in contrast, suffered from the implementation of 

the policy, since they did not reduce emissions or increase spending on research and 

development and therefore did not benefit from the Porter mechanism. Instead, they 

experienced decreasing output and profits, likely due to compliance costs. In the long run, it 

can be expected that the policy will even have stronger negative impacts on their output while 

maintaining positive effects on high-tech sectors, causing structural change towards the latter.  

These findings add to the existing literature on both the Porter hypothesis and the economic 

consequences of the Chinese ETS pilots, the latter of which is still limited and engaged in an 

ongoing debate. This paper managed to add in particular the holistic approach, investigating 

both the overall effects as well as the two main channels suggested by the literature on 

provincial and sectoral level. It furthermore stands out in comparison to other literature by 

differentiating the effects for high- and low-tech sectors, allowing a better understanding of 

the Porter hypothesis and the mechanisms behind it.  
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There are, nonetheless, some limitations to this work, constraining its practical implications. 

Since this study necessarily focuses on the effects of the policy on treated provinces, which in 

this case happen to be mostly large first-tier cities in China, and since the results indicate 

positive results for high-tech sectors only, the overall positive effects that were observed are 

most likely limited to such settings. Therefore, the findings can neither be extended to less-

developed provinces within China nor to less developed emerging economies. They do, 

however, suggest that climate policy can be a tool for economic transformation in an 

emerging economy situated closely to the technology frontier, which possesses sufficiently 

strong high-tech sectors able to benefit from the policy. Even though that might not be the 

case for a country as a whole, an implementation of such a policy in the most advanced 

regions of an emerging economy might be an interesting option, following the successful 

example of China.  

The fact that the findings of this paper are mostly limited to the case of leading Chinese cities 

and provinces also points towards promising avenues for future research. Given the 

establishment of emission trading schemes and other climate policies in an increasing number 

of emerging economies, the number of potential case studies, in particular concerning policy 

effects in areas with a more traditional or low-tech economy, is set to increase in the coming 

years. This would allow further research to overcome the main limitation of this paper and to 

derive conclusions that are more broadly applicable to emerging economies. Furthermore, the 

author was also provided with data from the China Carbon Pricing Survey by the China 

Carbon Forum (Slater et al. 2019), which could not be integrated into this paper but would 

offer interesting material to study the effects of companies’ awareness and perception of the 

ETS on their reaction as well as on economic outcomes. Continuously improving provincial 

statistics in China will also allow a more detailed analysis of other provinces in the future. In 

this regard, in particular a case study of Hubei would be interesting as the province has both 

implemented a very capable ETS and has a fundamentally different economic structure than 

Beijing.  
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Appendix 1 - Replication Lyu et al. 2020 

Table Appendix 1 - Replication results. Dependent variable: Innovation index (Lyu et al. 2020) 

 Replication in 

first differences 

Test for trend Replication in 

levels 

Replication in 

levels w/out GDP 

per capita 

Average treatment 

effect on the treated 

-0.00592 

(0.886) 

 

 

-0.0580 

(0.102) 

0.0504* 

(0.070) 

Post treatment -0.0214 

(0.440) 

 

 

0.00296 

(0.907) 

0.119*** 

(0.000) 

Trend treated until 

2014 

 

 

-0.0000193 

(0.493) 

 

 

 

 

Trend until 2014  

 

0.0000123 

(0.440) 

 

 

 

 

Controls constant, per capita GDP, foreign investment, investment, 

exports 

constant, foreign 

investment, 

investment, exports 

N 180 180 210 210 

R2 0.035 0.034 0.480 0.312 

Cluster-robust standard errors. p-values in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
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Appendix 2 - Regression R&D Personnel 

Table Appendix 2 - Regression Results. Dependent variable: R&D Personnel  

 Weighted least 

squares 

High- / low-tech 

WLS 

Lagged high- / 

low-tech WLS 

Robustness 

check WLS 

Emission trading 4.974* 

(0.071) 

  

 

 

 

Emission trading * high-tech  

 

2.951* 

(0.089) 

3.024* 

(0.065) 

 

 

Emission trading * low-tech  

 

-5.884* 

(0.052) 

-7.088** 

(0.049) 

 

 

Emission trading * high 

energy consumption 

 

 

 

 

 

 

5.175* 

(0.070) 

Emission trading * low 

energy consumption 

 

 

 

 

 

 

-2.343 

(0.176) 

Controls constant, average number of employees, assets, liabilities, foreign R&D funds, 

governmental R&D funds, number of enterprises, exports 

N 131 131 130 131 

R2 0.469 0.479 0.206 0.470 

Wooldridge test 0.991 0.989  0.996 

Link test 1 (p-value) 0.000 0.000  0.000 

Link test 2 (p-value) 0.064 0.053  0.055 

Cluster-robust standard errors, p-values in parentheses 
* p < 0.1, ** p < 0.05, *** p < 0.01 
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Appendix 3 - Variable balance tests 

Table Appendix 3 - Tests for variable balance for Panel DiD in Table 2 (GDP pc)  

Variables depicted are the ones used for matching. The tests compare matched pairs.  

 

Table Appendix 4 - Tests for equality of distribution for Panel DiD in Table 2 (GDP pc)  

Variables depicted are the ones used for matching. The tests compare matched pairs. 

 

* if variance ratio outside [0.17; 5.82]
                                                                                   
outcome_dev                    68.766   67.869      2.9     0.05  0.957    2.39
RSecondaryIndustryValueAdd     118.33   118.03      0.4     0.01  0.994    1.30
RTertiaryIndustryValueAdded    136.91   101.27     49.1     0.92  0.376    1.40
RInvestment                    167.83   200.26    -33.4    -0.62  0.544    0.46
RGDP                           269.72   244.91     15.5     0.29  0.777    1.20
                                                                                   
Variable                       Treated Control    %bias      t    p>|t|    V(C)
                                     Mean                     t-test       V(T)/
                                                                                   

 Combined K-S:       0.2857    0.938      0.896
 1:                 -0.1429    0.867
 0:                  0.2857    0.565
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov outcome_dev , by(treated)
 Combined K-S:       0.1429    1.000      1.000
 1:                 -0.1429    0.867
 0:                  0.1429    0.867
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov RSecondaryIndustryValueAdd , by(treated)
 Combined K-S:       0.5714    0.203      0.135
 1:                  0.0000    1.000
 0:                  0.5714    0.102
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov RTertiaryIndustryValueAdded , by(treated)
 Combined K-S:       0.2857    0.938      0.896
 1:                 -0.2857    0.565
 0:                  0.1429    0.867
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov RInvestment , by(treated)
 Combined K-S:       0.2857    0.938      0.896
 1:                 -0.1429    0.867
 0:                  0.2857    0.565
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions
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Table Appendix 5 - Tests for variable balance for Panel DiD in Table 3 (Innovation)  

Variables depicted are the ones used for matching. The tests compare matched pairs. 

 

Table Appendix 6 - Tests for equality of distribution for Panel DiD in Table 3 (Innovation)  

Variables depicted are the ones used for matching. The tests compare matched pairs. 

 

Table Appendix 7 - Tests for variable balance for Panel DiD in Table 4 (CO2 pilots)  

Variables depicted are the ones used for matching. The tests compare matched pairs. 

 

* if variance ratio outside [0.14; 7.15]
                                                                                   
outcome_dev                    .03667     .075    -33.3    -0.58  0.577    1.22
RTertiaryIndustryValueAdded    139.36   116.34     28.1     0.49  0.636    1.21
RPerCapitaGDP                  732.35    560.7     87.1     1.51  0.162    3.45
                                                                                   
Variable                       Treated Control    %bias      t    p>|t|    V(C)
                                     Mean                     t-test       V(T)/
                                                                                   

 Combined K-S:       0.5000    0.441      0.343
 1:                 -0.5000    0.223
 0:                  0.0000    1.000
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov outcome_dev , by(treated)
 Combined K-S:       0.3333    0.893      0.837
 1:                 -0.1667    0.846
 0:                  0.3333    0.513
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov RTertiaryIndustryValueAdded , by(treated)
 Combined K-S:       0.5000    0.441      0.343
 1:                  0.0000    1.000
 0:                  0.5000    0.223
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

* if variance ratio outside [0.14; 7.15]
                                                                               
outcome_dev               -15.848    .0528    -90.1    -1.56  0.150    3.33
RTradeRegionDestination     56676    31960     40.9     0.71  0.495    4.21
RGDP                       267.17   303.69    -20.8    -0.36  0.726    1.19
                                                                               
Variable                   Treated Control    %bias      t    p>|t|    V(C)
                                 Mean                     t-test       V(T)/
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Table Appendix 8 - Tests for equality of distribution for Panel DiD in Table 4 (CO2 pilots)  

Variables depicted are the ones used for matching. The tests compare matched pairs. 

 

Table Appendix 9 - Tests for variable balance for Panel DiD in Table 4 (CO2 surrounding)  

Variables depicted are the ones used for matching. The tests compare matched pairs. 

 

Table Appendix 10 - Tests for equality of distribution for Panel DiD in Table 4 (CO2 surrounding)  

Variables depicted are the ones used for matching. The tests compare matched pairs. 

 

 Combined K-S:       0.5000    0.441      0.343
 1:                 -0.5000    0.223
 0:                  0.0000    1.000
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov outcome_dev , by(treated)
 Combined K-S:       0.3333    0.893      0.837
 1:                  0.0000    1.000
 0:                  0.3333    0.513
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov RTradeRegionDestination , by(treated)
 Combined K-S:       0.3333    0.893      0.837
 1:                 -0.3333    0.513
 0:                  0.1667    0.846
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

* if variance ratio outside [0.25; 4.03]
                                                                               
outcome_dev                18.012   1.9673     68.4     1.53  0.143    2.96
RTradeRegionDestination     22112    17731     16.0     0.36  0.724    1.69
RGDP                       267.57    236.4     23.2     0.52  0.611    1.32
                                                                               
Variable                   Treated Control    %bias      t    p>|t|    V(C)
                                 Mean                     t-test       V(T)/
                                                                               

 Combined K-S:       0.4000    0.400      0.294
 1:                 -0.1000    0.905
 0:                  0.4000    0.202
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov outcome_dev , by(treated)
      there are 19 unique values out of 20 observations.
Note: Ties exist in combined dataset;

 Combined K-S:       0.4000    0.400      0.294
 1:                 -0.1000    0.905
 0:                  0.4000    0.202
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

ksmirnov RTradeRegionDestination , by(treated)
      there are 19 unique values out of 20 observations.
Note: Ties exist in combined dataset;

 Combined K-S:       0.2000    0.988      0.976
 1:                 -0.1000    0.905
 0:                  0.2000    0.670
                                               
 Smaller group       D       P-value  Corrected

Two-sample Kolmogorov-Smirnov test for equality of distribution functions


