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Abstract

The purpose of this report is to investigate a branch and bound algorithm
designed to construct monotone smoothing splines. The splines are defined as
the solution of a minimization problem, where one wants to find a curve with
non-negative derivative everywhere, that fits a data set consisting of points in
the plane, while also being sufficiently smooth. The report describes the theory
necessary to understand the mathematical background of the algorithm. The
theory shows existence and uniqueness of a minimizer and uses the Karush-
Kuhn-Tucker (KKT) conditions for vector spaces to reduce the problem to a
finite dimensional optimization problem. The report also shows some results
that can be used to improve the algorithm and reduce the search space from 2n

to 1.84n, where n is the number of data points. In practice the running time
is often faster, although it can depend on some parameters as well as the data
set.
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1 Introduction

This report will explore an algorithm for constructing monotone smoothing splines.
The purpose of splines is to fit a curve to a set of data points (tk, αk), on an interval
[0, T ]. Fitting a curve to a set of data points can be done in several ways. One
way is to fit a parameterized function to the data. Then the parameters could be
estimated using for example least squares regression. Another approach is to use
smoothing splines. Then the approach is to find a curve that fits the given data, with
the additional condition that the curve shouldn’t change too fast. More precisely, we
want to find the minimizer of∫ T

0

(ẍ(t))2dt+ λ

n∑
k=0

(x(tk)− αk)2.

Monotonous smoothing splines satisfy the additional condition that ẋ(t) ≥ 0, at
all points on the interval. We will also include some additional constraints, such that
the function should be positive and bounded by some maximal value.

Previous work on monotonous smoothing splines can be found for example in
Egerstedt and Martin [3]. The algorithm that is explored in this report is a branch
and bound method outlined in Maad Sasane [1]. The idea is that on each interval
between two data points, the function must be of one of two types. The next chapter
will include large parts of the mathematical theory and proofs necessary to show this.
Chapter 3 will describe the actual algorithm, and give some proofs of correctness of
it. Here is also shown some improvements that can be made to reduce the algorithm’s
time complexity. In Chapter 4 we discuss the performance of the algorithm.
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2 Monotone smoothing splines

In this section we find some mathematical properties that is needed to construct an
algorithm that can find solutions to the problem of computing monotone smoothing
splines. The general idea is to show that on each interval between the spline knots,
there are two possibilities for what type of function there can be. If it is known what
values the function and its derivative should have at the spline knots, then one can
find exactly what the optimal function should be. For this reason, the problem can
be rephrased as an optimization problem over these values at the spline knots.

First of all, let us formulate the problem again with a few more details. Given a
set of points (ti, αi), i = 1, 2, . . . , n, with t1 = 0, tn = T , we want to find the minimizer
of ∫ T

0

ẍ(t)2dt+ λ

n∑
i=1

(x(ti)− αi)2 (1)

subject to 
x ∈ H2(0, T )

ẋ ≥ 0

x(0) = 0

x(T ) ≤ xmax.

Here H2(0, T ) is the Sobolov space of twice weakly differentiable functions, defined
on the interval (0, T ), such that the L2-norm is finite for the function, and its two
weak derivatives. A function u defined on an interval [a, b] has a weak derivative v if∫ b

a

u(t)ϕ′(t)dt = −
∫ b

a

v(t)ϕ(t)dt,

for all smooth functions ϕ(x) with ϕ(a) = ϕ(b) = 0. This definition essentially says
that partial integration should work as expected. When a function is differentiable,
the derivative is the same as the weak derivative. One example of functions that
are relevant for this problem that are weakly differentiable but not differentiable, are
functions with left and right derivatives, that do not coincide at a finite number of
points.

This space is a Hilbert space which is one reason for using this space rather than
C2, the space of twice continuously differentiable functions. The Sobolev space has
the norm

||x||H2 = ||x||L2 + ||ẋ||L2 + ||ẍ||L2 =

(∫ T

0

x2dt

)1/2

+

(∫ T

0

ẋ2dt

)1/2

+

(∫ T

0

ẍ2dt

)1/2

.
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One useful property is that H2(0, T ) ⊂ C1(0, T ), i.e. the functions are continuously
differentiable, and there exists a constant C such that supt∈[0,t] |x(t)| ≤ C||x||H2 , see
e.g. Renardy and Rogers [8].

In the introduction, we mentioned that we want the function to be bounded by
some value xmax. Since the function is increasing it is enough to impose this condition
at t = T . The condition x(0) = 0, could also be replaced by x(0) ≥ 0, depending on
the situation, the proofs below are valid in both cases. This would for example be the
case if one wanted to estimate a cumulative distribution function given data. Then
one could also use xmax = 1. The left endpoint 0 of the entire interval is just chosen
for convenience, as the data could be shifted in t-direction to an arbitrary starting
point.

The main difficulty with this problem is how to deal with the monotonicity cri-
terion. We will therefore first show what happens when this criterion is not present,
which also yields a result that will be useful later.

Theorem 1. Let x(t) ∈ H2(0, 1) with x(0) = x0, x(1) = x1, ẋ(0) = ẋ0 and ẋ(1) = ẋ1.
Then the minimizer of ∫ 1

0

ẍ(t)2dt (2)

will be a third degree polynomial.

Proof. Let x(t) be a third degree polynomial with correct values for x(0), x(1), ẋ(0)
and ẋ(1). Any other valid function can be written as x + h where h(t) is an H2

function with
h(0) = h(1) = ḣ(0) = ḣ(1) = 0. (3)

Then ∫ 1

0

(ẍ+ ḧ)2dt =

∫ 1

0

(ẍ2 + 2ẍḧ+ ḧ2)dt.

Since x is a third degree polynomial, ẍ = At+B and we get∫ 1

0

2ẍḧdt = 2

∫ 1

0

(Atḧ+Bḧ)dt = 2A

∫ 1

0

tḧdt+ 2B

∫ 1

0

ḧdt.

The second term becomes ḣ(1)− ḣ(0) = 0 and with integration by parts we get∫ 1

0

tḧdt = [tḧ]10 −
∫
ḧdt = (1 · ḣ(1)− 0 · ḣ(0))− (h(1)− h(0)) = 0.

This shows that ∫ 1

0

2ẍḧdt = 0.
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Together with
∫ 1

0
ḧ2 ≥ 0 we get∫ 1

0

(ẍ+ ḧ)2dt =

∫ 1

0

(ẍ2 + 2ẍḧ+ ḧ2)dt ≥
∫ 1

0

ẍ2dt,

and thus the third degree polynomial x is optimal. In addition we only get equality if∫ 1

0
ḧ2dt = 0 and together with (3) we see that this can only occur if h ≡ 0. Therefore

our minimizer is unique.

If the values of the function and its derivatives are known at the spline knots,
then the sum in (1) is fixed and on every subinterval a third degree polynomial is op-
timal. This would be a valid function since the function is continuously differentiable
everywhere, and is twice differentiable everywhere except at the spline knots. If we
consider these values to be variables, we could minimize the expression depending on
these variables.

The solution will depend on the choice of λ. There are ways to estimate the best
choice of λ, for example by leaving out some points and fitting the curve to the rest
of the points and see what choice of λ gives best fit to the removed points. More on
this can be found in Wang [2]. We will not discuss further the problem of finding the
optimal choice of λ.

We will now turn our attention back to the problem of finding monotone smoothing
splines. The rest of this section will first of all show that there is a unique minimizer to
(1). Once we know that this exists, we will use an infinite dimensional version of the
Karush-Kuhn-Tucker (KKT) conditions, to find some properties of this minimizer.
Finally this can be used to characterize the optimal function on an interval when the
third degree polynomial doesn’t work.

2.1 Existence and uniqueness of the minimizer

To show the existence of the minimizer we will utilize a theorem that is stated below.
First however we will define some additional concepts that are used in this theorem.

Some concepts from functional analysis is used. One of them is the concept of
dual spaces. Given a normed vector space X, we can define a space consisting of all
linear and bounded functionals, going from X to R. A functional f is bounded if
there exists a constant C such that |f(x)| ≤ C||x||X for all x ∈ X. We denote this
space by X∗. When applying a function x∗ ∈ X∗ on an element x ∈ X the notation
〈x, x∗〉 is often used. A space is called reflexive if the dual space of the dual space
can be identified with the original space. This is always true for Hilbert spaces, see
e.g. [8].
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Definition 2.1. Let {sn} be a sequence of real numbers. Let E be the set of numbers
x in R ∪ {−∞,+∞}, such that snk

→ x for some subsequnce {snk
}. We define the

limit inferior and the limit superior

lim inf
n→∞

sn = inf E and lim sup
n→∞

sn = supE.

Whenever a sequence converges we have that lim sup sn = lim inf sn = lim sn.
However, while lim sn doesn’t have to exist, lim infn→∞ sn and lim supn→∞ sn always
exist when −∞ and ∞ are amended to the real numbers. This can be seen as the
set E will never be empty. If the sequence is unbounded it will contain either ∞ or
−∞, otherwise it is part of a compact set and will have a convergent subsequence.

Definition 2.2. Let H be a Hilbert space. A sequence xn ∈ H is weakly convergent
to x ∈ H if

f(xn)→ f(x)

for all f ∈ H∗. We denote this by xn ⇀ x.

Similarly to how a set can be closed if all convergent sequences converge to a point
in the set we say that a set is weakly closed if xn ⇀ x implies that x belongs to the
set.

The following theorem from Struwe [7] is used to show the existance of a minimizer.

Theorem 2. Suppose V is a reflexive Banach space with norm || · ||, and let M ⊂ V be
a weakly closed subset of V . Suppose E : M → R∪{∞} is a coercive and (sequentially)
weakly lower semi-continuous on M with respect to V , that is the following conditions
are fulfilled

1. E(u)→∞ as ||u|| → ∞, u ∈M

2. For any u ∈M , any sequence (un) in M such that un ⇀ u in V there holds:

E(u) ≤ lim inf
n→∞

E(un).

Then E is bounded from below on M and attains its infimum in M .

We use this theorem to show the existence of a solution to our minimization
problem. In order to use it we will also need the following lemma to show that the
feasible set is weakly closed.

Theorem 3 (Mazur’s lemma). Let X be a Banach space and suppose

un ⇀ u
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in X. Then there exists a function N : N 7→ N, and a sequence of sets of real numbers
{α(n)k}N(n)

k=n such that α(n)k ≥ 0 and
∑N(n)

k=n α(n)k = 1 such that the sequence

vn :=

N(n)∑
k=n

α(n)kuk

converges strongly to u in X.

Essentially the theorem states that given a weakly convergent sequence, one can
construct a new sequence consisting of convex combinations of the elements in the
first sequence, such that the new sequence converges strongly to the limit element.

Lemma 1. There exists a constant C such that for x(t) ∈ H2((0, T )) with x(0) ≥ 0,

x̄ = 1
T

∫ T
0
xdt and ¯̇x = 1

T

∫ T
0
ẋdt, we have

||x||H2 ≤ C(||ẍ||L2 + |x̄|+ |¯̇x|).

Proof. Without loss of generality, assume that the interval is (0, 1). By removing the
mean value of the function we get according to the Poincaré inequality, see e.g. Evans
[10], that there exists a positive constant C, independent of x, such that

||x− x̄||L2 =

(∫ 1

0

(x− x̄)2dt

)1/2

≤ C

(∫ 1

0

ẋ2dt

)1/2

= C||ẋ||L2 .

Using the triangle inequality, we get

||x||L2 ≤ ||x− x̄||L2 + ||x̄||L2 ≤ C||ẋ||L2 + |x̄|

Similarly
||ẋ− ¯̇x||L2 ≤ C||ẍ||L2 .

and
||ẋ||L2 ≤ C||ẍ||L2 + |¯̇x|.

We now get

||x||H2 = ||x||L2 + ||ẋ||L2 + ||ẍ||L2 ≤ (C + 1)||ẋ||L2 + ||ẍ||L2 + |x̄| ≤
≤ (C2 + C + 1)||ẍ||L2 + |x̄|+ (C + 1)|¯̇x|,

which finishes the proof.
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Theorem 4. Let X = {x ∈ H2((0, T ));x(0) = 0, ẋ(t) ≥ 0 ∀t ∈ (0, T ), x(T ) ≤ xmax},
with m ≥ 2. Then there exists a unique solution x∗ to the problem

min
x∈X

(
1

2

∫ T

0

ẍ(t)2dt+
1

2

m∑
i=1

(x(ti)− αi)2

)
. (4)

Proof. We apply Theorem 2 to the problem to show that the problem has a unique
minimizer. First of all X ⊂ H2(0, T ) which is reflexive. We also need to show that
our space X is weakly closed. Suppose that un converges weakly to u0. Then Mazur’s
lemma shows that there exists a sequence vn that converges strongly to u0, where
each element in (vn) is a convex combination of elements in (un). Since X is convex
it follows that (vn) ∈ X and since X is closed it follows that u0 must lie in X. Thus
X is weakly closed.

We start by showing the coerciveness. Above we showed that

||x||H2 ≤ C||ẍ||L2 + |x̄|+ |¯̇x|.

Thus for ||x||H2 to go to infinity, either ||ẍ||L2 , |x̄| or |¯̇x| has to go to infinity. Neither
of the last two terms can go to infinity. Since the function is bounded the maximal
value of |x̄| is T · xmax. If |¯̇x| → ∞ then∫ T

0

ẋdt = x(T )− x(0)→∞.

Since x(0) ≥ 0, x(T ) → ∞ which contradicts that the function is bounded. If
||ẍ||L2 → ∞ then the integral part of (4) goes to infinity, and since the sum is non-
negative, the entire functional goes to infinity.

Now we show the weak lower semi-continuity. Define g by g : x 7→
∫ T

0
ẍẍ0dt and

note that g ∈ X∗. It is clearly linear and that it is bounded follows from Cauchy-
Schwarz inequality

||g(x)|| =
∫ T

0

ẍẍ0dt ≤ ||ẍ||L2||ẍ0||L2 ≤ ||ẍ0||L2||x||H2 .

Suppose that xn ⇀ x0. We have that

0 ≤
∫ T

0

(ẍn − ẍ0)2dt

Therefore

0 ≤ lim inf
n→∞

∫ T

0

(ẍn − ẍ0)2dt = lim inf
n→∞

∫ T

0

ẍ2
ndt− 2

∫ T

0

ẍ0ẍndt+

∫ T

0

ẍ2
0dt
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Since g ∈ X∗ and xn converges weakly to x0 we get that the middle term converges
to 2

∫ T
0
ẍ2

0dt. Thus

0 ≤ lim inf
n→∞

(

∫ T

0

ẍ2
ndt−

∫ T

0

ẍ2
0dt)

The last term does not depend on n and can thus be moved out of the limit and to
the other side of the inequality. This gives us∫ T

0

ẍ2
0dt ≤ lim inf

∫ T

0

ẍ2
ndt,

which is exactly the lower semicontinuity for the first term.
Now we will prove this for the sum as well. For fixed t ∈ [0, T ], let ht(x) = x(t).

This is a linear functional and it is bounded as well since

|ht(x)| = |x(t)| ≤ sup
t∈[0,T ]

|x(t)| ≤ C||x||H2 .

Thus if xk ⇀ x we get ht(xk)→ ht(x), or equivalently xk(t)→ x(t). Due to continuity
of the square function we get that

lim
k→∞

m∑
i=1

(xk(ti)− αi)2 =
m∑
i=1

(x(ti)− αi)2

We will prove the uniqueness of the minimizer by showing that the function we
minimize in (4) is strictly convex. We denote this function by f . We start by showing

that x 7→
∫ T

0
x2dt is strictly convex. Let u, v ∈ X, and λ, µ with 0 ≤ λ, µ ≤ 1 and

λ+ µ = 1. Then∫ T

0

(λu+ µv)2dt = λ2

∫ T

0

u2dt+ µ2

∫ T

0

v2dt+ 2λµ

∫ T

0

uvdt ≤

≤ λ2||u||2L2 + µ2||v||2L2 + 2λµ||u||L2||u||L2 = (λ||u||L2 + µ||v||L2)2 ≤

≤ λ||u||2L2 + µ||v||2L2 = λ

∫ T

0

u2dt+ µ

∫ T

0

v2dt,

where the first inequality is the Cauchy-Schwarz inequality and the last inequality
is due to convexity of the square function. To get equality when 0 < λ < 1 in the
first inequality we need u = kv, or for either u or v to be the zero function. To
get equality in the last inequality we get ||u||L2 = ||v||L2 since x2 is strictly convex.
Thus for equality we need u = ±v, but both u and −u cannot belong to X unless
u ≡ 0. Either way we get u = v. Hence we have strict convexity. This shows that
x 7→

∫ T
0
ẍ2dt is convex, but not strictly since functions can differ by a linear function
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and still have the same second derivative. Convexity of the sum part of f follows
from convexity of the square function.

This shows that f is convex, now we want to show that it is strictly convex. We
want to show that

f(λu+ (1− λ)v) = λf(u) + (1− λ)f(v) =⇒ u = v.

Since both the integral and the sum is convex, we need equality both for the integral
and the sum. Due to the strict convexity shown above, we need ü = v̈. Thus
v = u + At + B. Choosing two square terms from the sum, we get from strict
convexity that at these points, say t1 and t2, we need u(t1) = u(t2) and v(t1) = v(t2).
But then A = B = 0 and the strict convexity follows.

2.2 Functions of bounded variation, Stieltjes integrals and
classification of the dual space of C([a, b])

We now introduce a class of functions called functions of bounded variation. These
will together with a generalization of the Riemann integral be used to classify all
bounded functionals on the space of continuous functions.

Definition 2.3. The space BV [a, b] is called the space of bounded variation and
consists of all functions on [a, b]→ R such that the total variation is finite. The total
variation is defined as

T.V.(f) = sup
n∑
i=1

|f(xi)− f(xi−1)|

where the supremum is taken over all finite partitions a = x0 < x1 < ... < xn−1 <
xn = b of the interval.

The norm of an element in BV [a, b] is

||f ||BV [a,b] = |f(a)|+ T.V.(f)

Essentially, the space consists of functions that do not change their function values
too much. An important subclass is the normalized space of functions of bounded
variation. This space removes some of the functions, that for our purposes are too
similar.

Definition 2.4. The normalized space of functions of bounded variation denoted
NBV [a, b] consists of all functions of bounded variation on [a, b] which vanish at the
point a and which are continuous from the right in (a,b). The norm of an element in
this space is ||v|| = T.V.(v).
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We use a generalization of the Riemann integral called Riemann-Stieltjes integeral,
or only Stiltjes integral. The theory behind this is in many ways similar to the
Riemann integral. Apart from the integrand f(x), we now have an additional function
α(x) of bounded variation. Similar to the Riemann integral we partition the interval
we integrate over into several subintervals and approximate f(x) with some value
it obtains on these subintervals. However, instead of multiplying this function value
with the length of the subinterval, we multiply with the difference in α-values between
the endpoints.

More formally, let a = t1 < t2 < · · · < tn = b be a partition of [a, b]. Then we
define the integral ∫ b

a

f(x)dα(x)

as the limit of
n−1∑
i=1

f(ci)(α(ti+1)− α(ti))

as the largest distance between the points in the partition goes to 0. The value ci
lies between ti and ti+1. This value exists when α is of bounded variation and f is
continuous.

If the function α is differentiable we have∫ b

a

fdα =

∫ b

a

fα′dx. (5)

We also have integration by parts∫ b

a

fdα = f(b)α(b)− f(a)α(a)−
∫ b

a

αdf. (6)

If α and f are differentiable this can be shown using (5) together with integration
by parts as usual. However, this is true even when these additional restrictions on f
and α do not hold. See Appell et al. [9].

The following theorem shows how we can characterize the dual space of C([a, b]).

Theorem 5. Let f be a bounded linear functional on on X = C[a, b]. Then there is
a function v of bounded variation on [a, b] such that for all x ∈ X

f(x) =

∫ b

a

x(t)dv(t)

and such that the norm of f is the total variation of v on [a, b]. Conversely, every
function of bounded variation on [a, b] defines a bounded linear functional on X in
this way.

The representation of C[a, b] becomes unique if we instead use functions inNBV [a, b]
[4].
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2.3 The Karush-Kuhn-Tucker (KKT) conditions

We will soon state an infinite dimensional version of the KKT conditions, but first
we need some more definitions. This theory can be found in Luenberger [4].

We will first define a way to talk about inequalities in vector spaces. To do that
we first need to define a cone.

Definition 2.5. Let X be a vector space. A set P ⊂ X is a cone if x ∈ P implies
that αx ∈ P , for positive numbers α.

These can be used to define inequalities between elements in a vector space.

Definition 2.6. Let P be a convex cone in a normed vector space X. For x, y ∈ X,
we write x ≥ y (with respect to P ) if x − y ∈ P . We write x > y if x − y is in the
interior of P . The cone P defining this relation is called the positive cone in X.

Throughout the report we will for C([0, T ]) use the positive cone of functions that
are non-negative on the entire interval.

When we have a positive cone in a normed space X we obtain a positive cone in
the dual X∗ defined as

P ∗ = {x∗ ∈ X∗ : 〈x, x∗〉 ≥ 0 ∀x ∈ P}.

A generalization of directional derivatives to vector spaces are the Gateaux deriva-
tives.

Definition 2.7. Let X be a vector space, Y a normed space and T (x) a transfor-
mation defined on D ⊂ X with range R ⊂ Y . Let x ∈ D and let h ∈ X. If the
limit

δT (x;h) = lim
α→0

1

α
(T (x+ αh)− T (x)) (7)

exists, it is called the Gateaux differential of T at x with increment h. If the limit (7)
exists for all h ∈ X, the transformation T is said to be Gateaux differentiable at x.

When T is a functional, i.e. Y = R, this can be written using ordinary derivatives
as

δf(x, h) =
d

dα
f(x+ αh)|α=0.

We can also define stationary points for functionals, similar to how these are
defined for ordinary derivatives.

Definition 2.8. Let f be a functional defined on a vector space X, and suppose it
is Gateaux differentiable. We say that f has a stationary point in x0 if

δf(x0, h) = 0,

for all h ∈ X.
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Stationary points in vector spaces have some similar properties as stationary points
in Rn. For example, if a real valued function is defined on a vector space X and is
Gateaux differentiable everywhere, then a necessary condition for a point to be a local
extreme point is that it is a stationary point.

We need one more definition before we are ready to state the KKT-conditions for
vector spaces.

Definition 2.9. Let X be a vector space and let Z be a normed space with a positive
cone P having nonempty interior. Let G be a mapping G : X → Z which has a
Gateaux differential that is linear in its increment. A point x0 ∈ X is said to be a
regular point of the inequality G(x) ≤ 0 if G(x0) ≤ 0 and there is an h ∈ X such that
G(x0) + δG(x0;h) < 0.

We now use a variant of the KKT-conditions applicable to vector spaces. The
following theorem is taken from Luenberger [4].

Theorem 6 (Generalized Karush-Kuhn-Tucker theorem). Let X be a vector space
and Z a normed space having a positive cone P . Assume that P contains an interior
point.
Let f be a Gateaux differentiable real-valued functional on X and G a Gateaux dif-
ferentiable mapping from X into Z. Assume that the Gateaux differentials are linear
in their increments. Suppose that x0 minimizes f subject to G(x) ≤ 0 and that x0 is
a regular point of the inequality G(x) ≤ 0. Then there is a z∗0 ∈ Z∗, z∗0 ≥ 0 such that
the Lagrangian

f(x) + 〈G(x), z∗0〉

is stationary at x0; furthermore, 〈G(x0), z∗0〉 = 0.

Comparing this to the finite dimensional KKT-conditions, see for example [6], we
can see some differences and similarities. First of all this version only deals with
inequality constraints. One could think that an equality constraint could be replaced
with two inequality constraints, but then no point would be regular. The regularity
also excludes choosing the positive cone as a point to force equality.

Otherwise the concept is rather similar. We add something to our function that
forces a minimizer to become a stationary point of the Lagrangian. We now add
〈G(x), z∗0〉, which may look a bit different from Lagrange multipliers. But in the case
of a finite dimensional space, linear functionals are precisely dot products.

We also have the counterpart to the complementary slackness condition with
〈G(x0), z∗0〉 = 0, and that z∗0 ≥ 0. Once again this is exactly the same in finite
dimensions.

In order to apply this theorem on our problem we need to choose the different sets
and functions used, in order to fit our problem.
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First of all we define the space X. We want to have the inequalities in G so we
let X = {x ∈ H2((0, T )), x(0) = 0}. We choose Z = C([0, T ])× R with norm

||(w, α)|| = (||w||2∞ + |α|2)1/2

Let G(x) = (−ẋ, x(T )− xmax). Since ẋ ∈ H1((0, T )) ⊂ C([0, T ]), we have G(x) ∈
Z.

We use the positive cone P = {(w, α) ∈ Z;w ≥ 0, α ≥ 0}. Then we see that
G(x) ≤ 0 is exactly the inequalities ẋ ≥ 0 and x(T ) ≤ xmax.

One can also see that P has interior points, for example the function g(x) = 1
together with xmax

2
.

According to Theorem 5 we can identify Z∗ with NBV ([0, T ])×R. We now give
a description of the positive cone in Z∗.

Lemma 2. The positive cone P ∗ in Z∗ is

P ∗ = {(ν, µ) ∈ NBV ([0, T ])× R; ν is nondecreasing and µ ≥ 0}.

Proof. To show that this is the case, if z ∈ P and z∗ ∈ P ∗ then 〈z, z∗〉 ≥ 0. On the
other hand we can find elements in z ∈ P such that if z∗ ∈ Z∗ \ P ∗ then 〈z, z∗〉 < 0.
First of all, suppose we have µ < 0, then we can choose the element z to be the zero
function and the number 1. Then 〈z, z∗〉 = −µ.

On the other hand if ν, is not nondecreasing on the whole interval, then there
exists 0 ≤ a1 < b1 ≤ T such that ν(b1) − ν(a1) = −4δ < 0. We will assume b1 < T ,
as the case b1 = T can be treated similarly. Due to right continuity, we can find
a2, b2 with a1 < a2 < b1 < b2 < T , such that for any a ∈ [a1, a2], b ∈ [b1, b2] we
have ν(b) − ν(a) < −3δ. Since ν is of bounded variation the total variation, V , of
ν on the interval [a1, a2] is finite. Divide this interval into n subintervals. Since the
total variation on each subinterval must sum to V we can conclude that at least one
subinterval must have a total variation of at most V

n
. Choosing n large enough we can

find an interval [A1, A2] with total variation less than δ. We define B1, B2 similarly.
We define the function g(t) that is zero outside of [A1, B2], has the value 1 on [A2, B1]
and such that the graph of g is a straight line on [A1, A2] and [B1, B2], so that g(t) is
continuous.

Let 0 = t0 < t1 < · · · < tk1 = A1 < · · · < tk2 = A2 < · · · < tk3 = B1 < · · · < tk4 =
B2 < · · · < tn = T be a partition of [0, T ], which includes the points A1, A2, B1, B2.
Let ci ∈ (ti, ti+1). Then g(ci) = 0 outside of the interval [A1, B2] and g(ci) ≤ 1 inside
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the interval. We have

n−1∑
i=0

g(ci) (ν(ti+1)− ν(ti)) =

k1−1∑
i=0

g(ci) (ν(ti+1)− ν(ti))+

k2−1∑
i=k1

g(ci) (ν(ti+1)− ν(ti)) +

+

k3−1∑
i=k2

g(ci) (ν(ti+1)− ν(ti))+

k4−1∑
i=k3

g(ci) (ν(ti+1)− ν(ti))+
n−1∑
i=k4

g(ci) (ν(ti+1)− ν(ti)) ≤

≤
k2−1∑
i=k1

g(ci)|ν(ti+1)− ν(ti)|+
k3−1∑
i=k2

1 · (ν(ti+1)− ν(ti)) +

k4−1∑
i=k3

g(ci)|ν(ti+1)− ν(ti)| ≤

≤
k2−1∑
i=k1

|ν(ti+1)− ν(ti)|+ ν(B1)− ν(A2) +

k4−1∑
i=k3

|ν(ti+1)− ν(ti)| ≤

≤ δ − 3δ +
δ

3
= −δ < 0.

This holds for any such partition and it follows that∫ T

0

g(t)dν(t) < 0.

The Gateaux differential of G is

lim
α→0

G(x+ αh)−G(x)

α
=

= lim
α→0

(−ẋ− αḣ, x(T ) + αh(T )− xmax)− (−ẋ, x(T )− xmax)
α

=

= lim
α→0

(−αḣ, αh(T ))

α
= (−ḣ, h(T )).

This is clearly linear in the increment.
We now compute the Gateuax differential of f .

lim
α→0

1

2α

(∫ T

0

(ẍ+ αḧ)2dt−
∫ T

0

ẍ2dt+
m∑
i=1

(x(ti) + αh(ti)− αi)2 −
m∑
i=1

(x(ti)− αi)2

)
=

= lim
α→0

1

2

(∫ T

0

αḧ2 + 2ẍḧdt+
m∑
i=1

h(ti)(αh(ti) + 2x(ti)− 2αi)

)
=

=

∫ T

0

ẍḧdt+
m∑
i=1

h(ti)(x(ti)− αi)
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This is also linear in its increments.
In order to use the KKT-conditions we need to decide which points are regular.

The following lemma shows that all points are regular.

Lemma 3. Every x ∈ X with G(x) ≤ 0 is a regular point of the inequality G(x) ≤ 0.

Proof. We need to show that if G(x) ≤ 0 there is an h ∈ X such that

(−ẋ, x(T )− xmax) + (−ḣ, h(T )) = (−ẋ− ḣ, x(T ) + h(T )− xmax) < 0.

This is equivalent to {
−ẋ− ḣ < 0

x(T ) + h(T )− xmax < 0.

This can be achieved by letting h = xmax

2T
t− x(t). Then h ∈ X and both inequalities

are true, which finishes the proof.

Lemma 4. Let x∗ ∈ X be the minimizer of the minimization problem (1), and denote
u∗ = ẍ∗. Then u∗ is affine on each subinterval of [ti−1, ti) where ẋ∗ > 0.

Proof. By using the KKT-conditions, there exists s∗ = (ν∗, µ∗) ∈ P ∗, i.e. ν∗ ∈
NBV ([0, T ]) and µ∗ ∈ R, with µ∗ ≥ 0 and ν∗ non-decreasing, such that∫ T

0

ẍ∗(t)ḧ(t)dt+
m∑
i=1

(x∗(ti)− αi)h(ti)−
∫ T

0

ḣ(t)dν∗(t) + µ∗h(T ) = 0, (8)

for all h ∈ X. We also get

−
∫ T

0

ẋ∗(t)dν∗ + µ∗(x∗(T )− xmax) = 0. (9)

Due to the conditions on x∗, ν∗ and µ∗ we get

−
∫ T

0

ẋ∗(t)dν∗ ≤ 0 and µ∗(x∗(T )− xmax) ≤ 0,

which together with equation (9) shows that both terms has to equal zero. For the
integral this means that if ẋ∗ > 0 on an interval, then ν∗ has to be constant on this
interval. Otherwise this part would contribute with a positive value, and no other
part of the integral can contribute with a negative value.

The second integral in equation (8) can be rewritten, using integration by parts,
as ∫ T

0

ḣ(t)dν∗(t) = ḣ(T )ν∗(T )− ḣ(0)ν∗(0)−
∫ T

0

ν∗(t)dḣ(t)
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Since ḣ is differentiable the last integral can be rewritten as
∫ T

0
ν∗(t)ḧ(t)dt. Thus we

can rewrite equation (8) and get∫ T

0

(ẍ∗(t) +ν∗)ḧ(t)dt+
m∑
i=1

wi(x∗(ti)−αi)h(ti) + ḣ(0)ν∗(0)− ḣ(T )ν∗(T ) +µ∗h(T ) = 0.

In particular this holds for h that is zero everywhere except in the interior of one of
the intervals. This gives us ∫ ti+1

ti

(ẍ∗(t) + ν∗)ḧ(t)dt = 0

for all h ∈ C∞0 (ti, ti+1). Then it can be shown that ẍ∗(t) +ν∗ is affine on this interval,
see e.g. Hörmander [11]. If ẋ∗ > 0 on this interval then ν∗ is constant here and hence
ẍ∗ is affine on this interval.

2.4 Derivation of the optimal function on each subinterval

These results can now be used to find the optimal curve on an interval, given that
the values and the derivatives are known at both endpoints. When a third degree
polynomial is increasing this will still be optimal also when the monotinicity constraint
is added, but when it is not, we need another type of curve. We first find a necessary
and sufficient condition for when the third degree polynomial is increasing.

Theorem 7. Let P (t) be a third degree polynomial defined on the interval [0, tF ], with
P (0) = 0, P (tF ) = xF , P ′(0) = ẋ0 and P ′(tF ) = ẋF . This polynomial is increasing if
and only if

xF ≥
tF
3

(
ẋ0 + ẋF −

√
ẋ0ẋF

)
.

Proof. The third degree polynomial that goes through the points (0, 0), (tF , xF ) and
has a derivative that passes through (0, ẋ0) and (tF , ẋF ) is

P (t) =

(
ẋ0 + ẋF
t2F

− 2xF
t3F

)
t3 +

(
3xF
t2F
− 2ẋ0 + ẋF

tF

)
t2 + ẋ0t,

with derivative

P ′(t) = 3

(
ẋ0 + ẋF
t2F

− 2xF
t3F

)
t2 + 2

(
3xF
t2F
− 2ẋ0 + ẋF

tF

)
t+ ẋ0.

We want to find exactly when P ′(t) ≥ 0 for all t ∈ [0, tF ]. To simplify the calculations,
we will use P ′(t) = At2 +Bt+C. If A ≤ 0 then P ′(t) ≥ 0 on the interval since both
P ′(0) and P ′(tF ) are non-negative. Thus P is increasing if xF ≥ tF

2
(ẋ0 + ẋF ).
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Now suppose that A > 0, i.e. xF < tF
2

(ẋ0 + ẋF ). The smallest value of P ′(t)
is obtained at t = − B

2A
. If this point lies outside the interval then the function is

positive since it is positive at the edges of the interval. This happens if

− B

2A
≤ 0 ⇐⇒ B ≥ 0 ⇐⇒ xF ≥

tF
3

(2ẋ0 + ẋF )

or if

− B

2A
≥ tF ⇐⇒ B + 2AtF ≤ 0 ⇐⇒ xF ≥

tF
3

(ẋ0 + 2ẋF ).

If 0 < − B
2A

< tF , i.e. xF < tF
3

min{ẋ0 + 2ẋF , 2ẋ0 + ẋF}, then the function is
positive if and only if P ′(− B

2A
) ≥ 0.

P ′(− B

2A
) = C−B

2

4A
≥ 0 ⇐⇒ 4AC−B2 =

4ẋ0ẋF
t2F
−4

(
3xF
t2F
− ẋ0 + ẋF

tF

)2

≥ 0 ⇐⇒

⇐⇒ tF
3

(ẋ0 + ẋF −
√
ẋ0ẋF ) ≤ xF ≤

tF
3

(ẋ0 + ẋF +
√
ẋ0ẋF )

The upper inequality is fulfilled since xF <
tF
3

min{ẋ0 + 2ẋF , 2ẋ0 + ẋF} ≤ tF
3

(ẋ0 +
ẋF +

√
ẋ0ẋF ). Therefore, in this case, we get xF ≥ tF

3
(ẋ0 + ẋF −

√
ẋ0ẋF ) for the

function to be positive.
If xF ≥ tF

3
(ẋ0 + ẋF −

√
ẋ0ẋF ) then one of the cases above shows that the function

is increasing. On the other hand if the function is increasing, one of the inequalities
has to hold and the smallest value xF can take is tF

3
(ẋ0 + ẋF −

√
ẋ0ẋF ).

Theorem 8. The minimizer of ∫ tF

0

ẍ(t)2dt

subject to {
x ∈ H2(0, tF )

ẋ(t) ≥ 0 for 0 ≤ t ≤ tF
and


x(0) = 0

x(tF ) = xF

ẋ(0) = ẋ0

ẋ(tF ) = ẋF

is

f1(t) = ẋ0t+

(
3xF
t2F
− 2ẋ0 + ẋF

tF

)
t2 +

(
ẋ0 + ẋF
t2F

− 2xF
t3F

)
t3

if xF ≥ tF
3

(ẋ0 + ẋF −
√
ẋ0ẋF ), and otherwise
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f2(t) =



xF ẋ
3/2
0

ẋ
3/2
0 +ẋ

3/2
F

+
(ẋ

3/2
0 +ẋ

3/2
F )2

27x2F

(
t− 3xF ẋ

1/2
0

ẋ
3/2
0 +ẋ

3/2
F

)3

if 0 ≤ t <
3xF ẋ

1/2
0

ẋ
3/2
0 +ẋ

3/2
F

3xF ẋ
3/2
0

ẋ
3/2
0 +ẋ

3/2
F

if
3xF ẋ

1/2
0

ẋ
3/2
0 +ẋ

3/2
F

≤ t ≤ tF −
3xF ẋ

1/2
F

ẋ
3/2
0 +ẋ

3/2
F

xF ẋ
3/2
0

ẋ
3/2
0 +ẋ

3/2
F

+
(ẋ

3/2
0 +ẋ

3/2
F )2

27x2F

(
t− tF +

3xF ẋ
1/2
F

ẋ
3/2
0 +ẋ

3/2
F

)3

if tF −
3xF ẋ

1/2
F

ẋ
3/2
0 +ẋ

3/2
F

< t ≤ tF .

The value of the integral is∫ tF

0

(f ′′i )2 =

4
(ẋ20+ẋ2F )(∆t)2−3∆x(ẋ0+ẋF )∆t+3(∆x)2+ẋ0ẋF (∆t)2

(∆t)3
if i = 1

4
9∆x

(
ẋ

3/2
0 + ẋ

3/2
F

)2

if i = 2.

If the curve starts in another point (t0, x0) then the curve is moved correctly by
adding x0, replacing t with t− t0, tF by tF − t0 and xF with xF − x0.

Worth noting is that the second type of function is only a function if ∆x ≤
∆t
3

(ẋ0+ẋF−
√
ẋ0ẋF ), otherwise the intervals will overlap. The function is continuously

differentiable.

Proof. We have already shown that the third degree polynomial is increasing if xF ≥
tF
3

(ẋ0 + ẋF −
√
ẋ0ẋF ). This will be optimal as shown in Theorem 1.

We will now continue to show that when xF < tF
3

(ẋ0 + ẋF −
√
ẋ0ẋF ) we get the

second type of function. By Lemma 4 we know that if there are no points for which
ẋ∗ is 0 then the ẍ∗ is affine and the optimal function is a third degree polynomial. But
as could be seen above this does not give us an increasing function in this case. Thus
there has to be some point or interval where ẋ∗ = 0. Let us assume that this interval
is [t1, t2] and that x∗ = A on this interval. In order to get an admissible function we
need that ẋ(t1) = ẋ(t2) = 0. We can now try to fit the optimal curve satisfying these
conditions, i.e, one third degree polynomial on [0, t1] and another on [t2, tF ]. For this
to become a function we need 0 < t1 ≤ t2 < tF . We will however, not include the
boundary t1 ≤ t2 for now since, as will be apparent later, this is not necessary. One
can also note that we also include functions where the interval on which ẋ∗ = 0 is not
really an interval but rather just a point, which happens when t1 = t2.

The value of the integral we want to minimize becomes, as a function of the
parameters t1, t2, A,

f(A, t1, t2) =
4

t31
(ẋ2

0t
2
1 − 3Aẋ0t1 + 3A2)+

+
4

(tf − t2)3
(ẋ2

0(tf − t2)2 − 3(xF − A)ẋ0(tF − t2) + 3(xF − A)2).
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The gradient of this function is

∇f =


4
t31

(6A− 3ẋ0t1) + 4
(tF−t2)3

(3ẋf (tF − t2)− 6(xF − A))

−4ẋ20
t21

+ 24Aẋ0
t31
− 36A2

t41
4ẋ2F

(tF−t2)2
− 24(xF−A)ẋF

(tF−t2)3
+

36(xf−A)2

(tF−t2)4

 .
We now find stationary points by finding points where the gradient is zero. This gives
us the following system of equations

4
t31

(6A− 3ẋ0t1) + 4
(tF−t2)3

(3ẋf (tF − t2)− 6(xF − A)) = 0

−4ẋ20
t21

+ 24Aẋ0
t31
− 36A2

t41
= 0

4ẋ2F
(tF−t2)2

− 24(xF−A)ẋF
(tF−t2)3

+
36(xf−A)2

(tF−t2)4
= 0

(10)

The second and third equation can be rewritten as a square, giving us{
( ẋ0
t1
− 3A

t21
)2 = 0

( ẋF
tF−t2

− 3(xF−A)
(tF−t2)2

)2 = 0

showing that {
ẋ0t1 = 3A

ẋF (tF − t2) = 3(xF − A).

With this the first equation in (10) can be rewritten as

ẋ0(tF − t2)2 = ẋF t
2
1,

and with some substitutions we get

(ẋ3
F − ẋ3

0)t21 + 6xF ẋ
2
0t1 − 9x2

F ẋ0 = 0.

Assuming ẋF 6= ẋ0 we can solve for t1 and get

t1 = − 3xF ẋ
2
0

ẋ3
F − ẋ3

0

±

√(
3xF ẋ2

0

ẋ3
F − ẋ3

0

)2

+
9x2

F ẋ0

ẋ3
F − ẋ3

0

.

Simplifying we get

t1 =
3xF ẋ

1/2
0

ẋ
3/2
F + ẋ

3/2
0

or t1 =
3xF ẋ

1/2
0

ẋ
3/2
0 − ẋ3/2

F

.
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The second solution for t1 makes either t1 < 0 or t2 > tF leaving us with only the
first solution. Then 

t2 = tF − 3xF ẋ
1/2
0

ẋ
3/2
0 +ẋ

3/2
F

A =
xF ẋ

3/2
0

ẋ
3/2
F +ẋ

3/2
0

If ẋF = ẋ0 we get the same expressions.
For both the intervals [0, t1] and [t2, tF ] we have that ∆x ≥ ∆t

3
(vl + vr +

√
vlvr),

and the third degree polynomials are thus increasing.
We can also see that t1 ≤ t2, or

3xF ẋ0

ẋ
3/2
0 + ẋ

3/2
F

≤ tF −
3xF ẋF

ẋ
3/2
0 + ẋ

3/2
F

whenever ∆x < ∆t
3

(vl + vr +
√
vlvr). This holds since if xF ≤ tF

3
(ẋ0 + ẋF −

√
ẋ0ẋF )

then

3xF ẋ0

ẋ
3/2
0 + ẋ

3/2
F

+
3xF ẋF

ẋ
3/2
0 + ẋ

3/2
F

≤
3 tF

3
(ẋ0 + ẋF −

√
ẋ0ẋF )ẋ0

ẋ
3/2
0 + ẋ

3/2
F

+
3 tF

3
(ẋ0 + ẋF −

√
ẋ0ẋF )ẋF

ẋ
3/2
0 + ẋ

3/2
F

=

=
tF (ẋ0 + ẋF −

√
ẋ0ẋF )(ẋ

1/2
0 + ẋ

1/2
F )

ẋ
3/2
0 + ẋ

3/2
F

= tF

We see that the function value approaches ∞ as t1 → 0 or t2 → tf . The same
is true when A goes to ±∞ since the coefficient in front of A2 is positive. Since
the function is differentiable everywhere on our area, the found point must be the
minimum. These values for t1, t2 and A gives us the function found in the theorem.
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3 Algorithm

In the previous section we found that given the values of the function and its deriva-
tive at the spline knots, we can find the optimal curve. Hence to find the optimal
curve when these are not known, we can consider these values to be variables of an
optimization problem. With

V (∆x, vl, vr,∆t) =

4
(v2l +v2r)(∆t)2−3∆x(vl+vr)∆t+3(∆x)2+vlvr(∆t)2

(∆t)3
if ∆x ≥ ∆t

3
(vl + vr

√
vlvr)

4
9∆x

(
v

3/2
l + v

3/2
r

)2

otherwise,
(11)

we thus want to minimize

n−1∑
i=1

V (xi+1 − xi, vi, vi+1, ti+1 − ti) +
λ

2

n∑
i=1

(xi − αi)2, (12)

subject to 
xi+1 − xi ≥ 0

vi ≥ 0

x0 = 0

xn ≤ xmax

The variables xi and vi corresponds to the value of the function and the derivative,
respectively, at spline knot i. All ti and αi are fixed.

The function (11) is a piecewise defined function and will cause the function (12) to
be defined differently in different regions of the R2n-space. The regions are separated
by surfaces for which xi+1 − xi = ti+1−ti

3
(vi+1 + vi −

√
vi+1vi). We refer to these as

interfaces between regions.
However minimizing this seemed to give unstable results when using a numerical

solver for optimization with constraints such as Matlabs’s fmincon on problems
with more than 10 subintervals, and therefore an alternative algorithm was suggested
in Maad Sasane [1]. This algorithm will be explored in this section. There will also
be a section discussing the use of only fmincon as it seems that one can improve the
performance of this significantly.

The idea of the algorithm is to split the problem into subproblems, each of which
are easier, and where one of them will have the correct solution. The subproblems
are constructed by choosing to use only one of the rows in (11) per interval and
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disregarding the additional conditions of the variables. For each of these subproblems
we find the minimizer and checks if this solution also is a solution to the original
problem. This is done by checking for each subinterval that ∆x ≥ ∆t

3
(vl +vr−

√
vlvr)

if the interval is of type one and that we have the opposite inequality otherwise.
We will say that an interval is of type 1 if it uses the first line, and otherwise that

it is of type 2. We start with the subproblem where all intervals are of type 1, then
all subproblems where one interval is of type 2, then with two intervals of type 2 and
so on. With n intervals, this gives us 2n subproblems.

The following sections will prove that the algorithm is correct, as well as some
additional properties, that can be used.

3.1 Convexity of the problems

We now show that our minimization problems are convex. This is highly useful since
then we can be certain that we have a global minimum whenever we find a local
minimum. To show convexity we will use Sylvester’s criterion, see for example Böiers
[6].

Lemma 5 (Sylvester’s criterion). A symmetric matrix H is positive definite if and
only if each of the leading principal minors are positive. If the determinant of the
entire matrix is 0 instead of positive then the matrix is positive semidefinite.

Theorem 9. Each of the subproblems is strictly convex.

Each of these functions is convex. Since the points ti are fixed we only consider
them as functions of the other variables.

Proof. The function in each subproblem consists of a sum of functions of the two
types of functions defined in (11). We will show that each of these is convex by
showing that the Hessian is positive semidefinite on the interior of the domain, i.e.
when each of the variables are positive. Then by continuity we get that it is convex
on the entire domain.

f(x, vl, vr) = 4
(v2
l + v2

r)(∆t)
2 − 3x(vl + vr)∆t+ 3(x)2 + vlvr(∆t)

2

(∆t)3

We get the following gradient

∇f =
4

(∆t)3
(−3∆t(vl + vr) + 6x, (∆t)2(2vl + vr)− 3∆tx, (∆t)2(vl + 2vr)− 3∆tx),

and the Hessian is

4

(∆t)3

 6 −3∆t −3∆t
−3∆t 2(∆t)2 (∆t)2

−3∆t (∆t)2 2(∆t)2

 .
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We compute the leading principal minors (ignoring the factor 4
(∆t)3

):∣∣[6]∣∣ = 6 > 0

and ∣∣∣∣[ 6 −3∆t
−3∆t 2(∆t)2

]∣∣∣∣ = 12(∆t)2 − 9(∆t)2 = 3(∆t)2 > 0

since ∆t > 0. The determinant of the entire matrix is∣∣∣∣∣∣
 6 −3∆t −3∆t
−3∆t 2(∆t)2 (∆t)2

−3∆t (∆t)2 2(∆t)2

∣∣∣∣∣∣ = 0.

The first two are strictly positive and the last is 0 which according to Lemma
5 shows that the Hessian is positively semidefinite on the interior and therefore the
function is convex.

As for the second function,

g(x, vl, vr) =
1

x

(
v

3/2
l + v3/2

r

)2

,

we get the gradient

∇g =

(
− 1

x2

(
v

3/2
l + v3/2

r

)2

,
3
√
vl
x

(
v

3/2
l + v3/2

r

)
,
3
√
vr
x

(
v

3/2
l + v3/2

r

))
and Hessian

H =


2
x3

(
v

3/2
l + v

3/2
r

)2

− 3
x2
√
vl

(
v

3/2
l + v

3/2
r

)
− 3
x2
√
vr

(
v

3/2
l + v

3/2
r

)
− 3
x2
√
vl

(
v

3/2
l + v

3/2
r

)
3
x
(2vl + 1

2
v
−1/2
l v

3/2
r ) 9

2x

√
vlvr

− 3
x2
√
vr

(
v

3/2
l + v

3/2
r

)
9

2x

√
vlvr

3
x
(2vr + 1

2
v

3/2
l v

−1/2
r )

 .
Once again we compute the leading principal minors∣∣∣[ 2

x3

(
v

3/2
l + v

3/2
r

)2]∣∣∣ > 0,

on the interior.
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∣∣∣∣∣∣
 2

x3

(
v

3/2
l + v

3/2
r

)2

− 3
x2
√
vl

(
v

3/2
l + v

3/2
r

)
− 3
x2
√
vl

(
v

3/2
l + v

3/2
r

)
3
x
(2vl + 1

2
v
−1/2
l v

3/2
r )

∣∣∣∣∣∣ =

=
6

x4

(
v

3/2
l + v3/2

r

)2
(

2vl +
1

2
v
−1/2
l v3/2

r

)
− 9

x4
vl

(
v

3/2
l + v3/2

r

)2

=

=
3

x4
vl

(
v

3/2
l + v3/2

r

)2

+
6

x4

(
v

3/2
l + v3/2

r

)2 1

2
v
−1/2
l v3/2

r > 0,

|H| = 9

2x5

(
v

3/2
l + v3/2

r

)2 (
vlvr + v

−1/2
l v5/2

r + v
5/2
l v−1/2

r

)
> 0

Thus this is function is also convex on the interior of the domain.
In both of these functions we use xi+1− xi instead of x but such a composition of

an affine function and a convex function is still convex.
Each subproblem is a sum of the two types of functions above, using the appro-

priate variables for each interval and, as well as the sum
∑

i(xi−αi)2. Since the sum
of convex functions are convex we get that each subproblem is convex.

We will now show that the subproblem is strictly convex. If f were a function of
only vl and vr it would be strictly convex. Since the (xi − αi)2 is strictly convex and
includes the xi we get that the sum is strictly convex.

Lemma 6. The two types of functions have the same gradient when ∆x = ∆t
3

(vl +
vr −

√
vlvr).

Proof. Consider the function

f(∆x, vl, vr) =

4
(v2
l + v2

r)(∆t)
2 − 3∆x(vl + vr)∆t+ 3(∆x)2 + vlvr(∆t)

2

(∆t)3
− 4

9∆x

(
v

3/2
l + v3/2

r

)2

that is the difference between the two types of cost functions. We will show that the
gradient is zero when ∆x = ∆t

3
(vl + vr −

√
vlvr).

f ′∆x =
4

(∆t)3
(6∆x− 3(vl + vr)∆t) +

4

9(∆x)2
(v

3/2
l + v3/2

r )2.

On the interesting surface we get
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f ′∆x =
4

(∆t)3
(6

∆t

3
(vl + vr −

√
vlvr)− 3(vl + vr)∆t)+

+
4

9(∆t
3

(vl + vr −
√
vlvr))2

(v
3/2
l + v3/2

r )2 =

=
4

(∆t)2
(

(v
3/2
l + v

3/2
r )2

(vl + vr −
√
vlvr)2

− (vl + vr + 2
√
vlvr) =

=
4

(∆t)2(vl + vr −
√
vlvr)2

((v
3/2
l + v3/2

r )2− (vl + vr + 2
√
vlvr)(vl + vr−

√
vlvr)

2) = 0

Expanding the denominator we now get that this equals 0.
Similar calculations shows that f ′vl = 0 at the same points:

f ′vl =
4

(∆t)3
(2vl(∆t)

2 − 3∆x∆t+ vr(∆t)
2)− 4

9∆x
(3v2

l + 3v
1/2
l v3/2

r )

and replacing ∆x we get

f ′vl =
4

∆t
(2vl − (vl + vr −

√
vlvr) + vr)−

4

∆t(vl + vr −
√
vlvr)

(v2
l + v

1/2
l v3/2

r ) =

=
4

∆t(vl + vr −
√
vlvr)

((vl +
√
vlvr)(vl + vr −

√
vlvr)− v2

l − v
1/2
l v3/2

r ) = 0

By symmetry the same holds for vr. Thus the two types of functions have the same
derivative along these borders.

This means that the function is differentiable everywhere.

Theorem 10. The original problem (12) is convex.

Proof. Clearly it is defined on a convex set. We have already shown that each of
the two types of functions is convex. We also know that the gradients of the two
types of functions are the same on the interface between the regions where they
are defined. Thus if we restrict ourselves to a line then this function will have an
increasing derivative on each side of the interface. But since the derivative is the
same there, it is increasing everywhere. This holds for any restriction of the function
to a line. Thus the problem is convex.
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3.2 Correctness of algorithm

This section will show that one of the subproblems will have the same solution as the
original problem, and that whenever a solution to a subproblem is acceptable it will
be the solution to the original problem as well.

We know that there exists a unique minimizer, x0, to the original minimization
problem. This solution will by necessity have each of its intervals belong to one of the
two types of functions, corresponding to one of the subproblems. This subproblem and
the original problem will be defined in exactly the same way, in a region containing
x0. In particular the function values and derivatives will be the same at x0 causing
this point to be a minima also for the subproblem. Due to strict convexity this will
be the only minimum of the subproblem.

On the other hand, if a point which is a minimizer to a subproblem is acceptable,
it will also be a minimizer of the original problem with the same argument. Due to
strict convexity it will be the only solution here as well.

Since we visit all subproblems until we find an acceptable minimum point we can
be sure that the solution will be found.

3.3 Bounding

This section will show that one can give some lower bounds for the minimum value
of some subproblems given the solution to others.

Definition 3.1. A solution to a subproblem is called acceptable if it is feasible and
satisfies the inequalities in (11) on each segment corresponding to the choice of func-
tion on that interval. That is for each interval ∆x ≥ ∆t

3
(vl+vr−

√
vlvr) if the interval

is of type 1 and otherwise ∆x < ∆t
3

(vl + vr −
√
vlvr).

We consider the set of subproblems as nodes in a graph consisting of several
layers, where layer k contains all subproblems with k segments that are of type 2.
Two subproblems in adjacent layers have a connection if they have the same type
of functions on all intervals except one. We consider the highest layer to be the one
containing no intervals of type two. This image motivates the following definition.

Definition 3.2. We say that a subproblem A is below another subproblem B if all
intervals that are of type 2 in B also are of type 2 in A.

It should be noted that a subproblem A can be below both subproblems B and
C, but neither B nor C is below the other.

Lemma 7. On an interval, if ∆x < ∆t
3

(vl + vr −
√
vlvr) then the function value of

type 1 is smaller than the function value of type 2.
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Proof. When ∆x < ∆t
3

(vl+vr−
√
vlvr) these variables correspond to a function. Since

we know that the third degree polynomials will be optimal, all other functions will
be worse. In particular the value of the type 2 function will be larger than the value
of the type 1 function.

Lemma 8. Any acceptable solution below another solution has a larger value.

Proof. Suppose branch b is below branch a, and b is acceptable. Let Vb be the value
of b and Va the value of a. If we keep the variables from the optimal solution in b
but change the function from type 2 to type 1 on any interval where b is of type 2
but a is of type 1. Let V be the value obtained from this. Since b is acceptable, the
values on these interval will be smaller in V than in Vb and all other intervals are the
same. Thus Vb < V . We also know that V is obtainable in a and since Va is optimal
V < Va. Hence Vb < Va.

Even though it is possible to use this to exclude some subproblems from the
search, it requires us to already know a good value for the original problem. This
is not however something we can expect to have. To get this we probably need for
one of the subproblems to give an acceptable solution and then we would already be
done.

3.4 Reducing the search space

When two intervals next to each other is of type 2, the function will be increasing
in the variable corresponding to the derivative between them. This means that this
variable will be 0 at the optimum, since it has to be non-negative. This is also true
when we have a type 2 interval is the first or last interval. This observation can
be used to reduce the number of variables needed to be optimized over for certain
branches.

Theorem 11. The optimal solution has at most two intervals of type two next to
each other.

Proof. If a type 2 interval has type 2 intervals on both sides then both vl and vr, i.e.
the variables corresponding to derivatives, will be 0. In order for such an interval to
be acceptable we need ∆x < ∆t

3
(vl+vr−√vlvr) = 0. But since we also have ∆x ≥ 0,

we cannot get an acceptable solution. This shows that the optimal solution cannot
have three intervals of type 2 next to each other.

Using the same argument one can also say that in the optimal solution the first
two intervals cannot be of type 2. The same goes for the last two intervals.
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This restriction can be used to decrease the number of different possibilities that
needs to be searched in order to find the optimum. The following theorem states
approximately how many possibilities are left.

Theorem 12. The number of subproblems needed to be solved is bounded from above
by approximately 1.84n for large n, where n is the number of intervals.

Proof. We want to find the number of sequences of length n that can be constructed
using the numbers 1 and 2, such that there never are more than two number 2 next
to each other. There also cannot be more than one 2 next to the beginning or the
end of the sequence.

Let an,0, an,1, an,2 be the number of sequences of length n, that can have 0, 1 or
2 twos respectively immediately at the beginning of the sequence. For an,2, if the
first number is a 1 we get an−1,2 sequences. If the first number is 2, we get an−1,1

sequences. This gives us an,2 = an−1,2 + an−1,1. With the same reasoning for an,1 and
an,0 we get the recursive system of equationsan,2an,1

an,0

 =

1 1 0
1 0 1
1 0 0

an−1,2

an−1,1

an−1,0

 .
We also have the initial conditionsa1,2

a1,1

a1,0

 =

2
1
1

 .
The reason for a1,1 = 1 is that the ”interval” after the last interval also can be

seen as type 2, and therefore the last number can only be a 1.
This gives us an,2an,1

an,0

 =

1 1 0
1 0 1
1 0 0

n−1 2
1
1

 .
We are interested in an,1 since we cannot have two intervals of type two in the

beginning.
This equation could be rewritten in a closed form expression, by diagonalizing the

matrix. Computing the characteristic equation gives us

λ3 − λ2 − λ− 1 = 0.

This can be solved numerically or symbolically with the help of a computer. There are
two complex roots of magnitude approximately 0.73 and a real root at approximatelly
1.84. As n tends to infinity, the complex numbers will go to zero, and the solution
will scale with 1.84n.
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It is not possible in general to say that there cannot be 2 segments of type 2
next to each other. This can be shown by a counterexample. With the dataset
t = [0, 1, 2, 3, 4], α = [0, 1, 1.1, 1.2, 2], and λ = 100000, one gets that the optimum has
segments of type [1 2 2 1]. The found function can be seen in figure 1.

Figure 1: Spline with two type two intervals next to each other.

3.5 Additional implementation details

In the optimization step of the algorithm we use fmincon in Matlab, with the in-
terior point method. This is a barrier method and it primarily uses Newtons method,
together with a conjugate gradient method if the Newton step does not work [5].
By including the gradient and the Hessian of our objective function the speed was
increased significantly.

Since each of the problems are solved numerically we cannot expect to find exactly
the minimum in each optimization step. Then if the true minimum is close to the edge
of the correct region, then the found minimum may be slightly outside this instead.
Therefore it is necessary to have some allowed tolerance when checking if the found
solution is accepted. If this is not done it is possible to not find any acceptable
solution at all. Letting ∆x be 10−4 or 10−3 seems to work well for most part. There
have not been any found cases where this produces several different solutions.

3.6 Solving the original problem directly

Including the gradient and the Hessian in the optimization step greatly increased
both speed and performance, also when solving the entire problem rather than one
of the subproblems. One possible reason for the increased stability when including
the Hessian is that the Hessian is not the same for the two types of functions on
the interface between their respective regions. Thus a finite difference approximation
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of the Hessian close to the interface is not necessarily a good one. This problem is
avoided when including the explicit value of the Hessian.

It is also important to force the function value to infinity whenevever ∆x < 0,
otherwise it was possible for ∆x to come very close to 0− and get accepted as inside
the correct region even though it was negative.
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4 Performance of the algorithm

This section will show some results of the algorithm and discuss its performance on
problems of different sizes, as well as for different choices of λ.

4.1 Data sets

Some different data sets were created to test the algorithm. The reason for not using
real data sets is that this easily allows for changing the number of points in the data
sets, as well as being able to test different shapes.

The data sets are created by choosing some increasing function. The function is
shifted in y-direction so that the initial point has the value 0. Some points are chosen
on the curve and white noise is added to the function values.

Some shapes that have been tried are linear functions, quadratic functions, the
arctan function and different cumulative distribution functions. In figure 2 one can
see examples of these.

Figure 2: Some data sets that are used.
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4.2 Effect of λ

As mentioned before, the size of λ determines how close the curve must fit the data
compared to how important it is that it is smoother. When λ goes to zero it becomes
more and more important for the curve to have a second derivative of small magnitude.
This causes the curve to be closer and closer to a straight line. A straight line will
have vl = vr = ∆x

∆t
, and all intervals of type one will be correct. Therefore it is very

fast to find the solution when λ is small. In figure 3 one can see the found spline
when using a small λ, together with a quadratic data set.

Figure 3: Small λ used to fit a spline to a data set.

On the other hand if λ is large, then the curve needs to be fitted more closely to
the points. Without the monotonicity criterion the curve would go almost exactly
through the points, with it the curve varies between steep increases and flat sections.
An interval will often have ∆x < ∆t

3
(vl + vr −

√
vlvr) when the curve is flat but one

of the derivatives is large due to the next or previous interval having a large change
in x-value. One can see an example of such a curve in figure 4.

Figure 4: Large λ used to fit a spline to a data set.
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As a consequence the solution will have more intervals of type 2 when λ is large.
This makes the algorithm significantly slower for these cases.

Usually, neither of these cases are preferable to get a good fit to the points. The
optimal is somewhere in between these extreme cases. However, to find this optimal
choice of λ one might need to be able to test both of these cases.

4.3 Problem sizes

The time it takes to solve a subproblem varies between approximately 0.02 seconds
for a problem with 10 intervals to almost 0.1 seconds when there are 100 intervals.
This, of course, depends on the computer being used, but gives a sense of the time
needed for the algorithm to run. With 15 intervals or less the algorithm runs fairly
fast regardless of shape and choice of λ. On the same computer as above, the program
finishes in less than a minute. With 20 intervals the program can run for more than
20 minutes for some data sets with large lambda. When using choices of λ that seem
to produce reasonable shapes for the curve, the time it takes depend on the data set.
The linear data set generally goes fast and can manage data sets with several hundred
points. The same goes for the quadratic data set. An example can be seen in figure
5. Neither of these generally have any intervals of type 2.

Figure 5: Spline fitted to data set with 500 points.

The arctan data set usually have some intervals that are of type 2 and therefore
takes more time, but often it is fast enough for large data sets as well. The tolerance
for when a solution is considered accepted also affects. Sometimes it found an ac-
ceptable solution when this was set to 10−2, but took too long time when it was set
to something smaller such as 10−3. The solution seemed reasonable with the larger
tolerance, and it is unclear whether the smaller tolerance would work or not, since it
would take a very long time to go through all subproblems.

37



4.4 Only using the original optimization problem

As mentioned previously, it was possible to improve the performance of solving the
original problem rather than the subproblems. When this works it is much faster since
the program then only needs to solve one optimization problem. The performance
does not seem to depend on λ.

When testing this, most times it works well. Occasionally, the program produce a
solution that clearly is not optimal, see figure 6a. However, using a different starting
point, in this case the previously bad solution, a much better result was achieved, see
figure 6b.

(a) When fitting a spline to the data set
a solution that was not optimal was found.

(b) The same data as to the left but with an-
other initial point for the optimization, pro-
ducing a good result.

Figure 6: Solutions found when solving the original optimization problem

Otherwise this has produced the same solutions as when dividing the problem into
subproblems, and can be a good option when it works.

4.5 Some additional observations

It is sometimes possible to guess the correct subproblem by starting with all intervals
as type one and solve this problem. By changing the intervals that did not fulfil
∆x ≥ ∆t

3
(vl + vr −

√
vlvr) to be of the second type instead, quite often one got an

acceptable solution.
A possible argument for why this would work for large λ is that then the solution

is mostly dependent on the squared distance to the data points. Then it matters less
if the interval is of type 1 or 2. Then by changing the intervals that are wrong one
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can get a good chance of finding the correct subproblem. On the other hand for small
λ it is highly likely that the first subproblem will be acceptable.

Another property that might be possible to make use of is that sometimes changing
an interval from type 1 to type 2 the solution to the subproblem becomes much
smaller than the optimal value for the correct subproblem. This might indicate that
subproblems below this one are unnecessary to test. If this could be proven, it could
further reduce the number of problems needed to be solved.

4.6 Discussion and conclusion

We have shown that the problem of finding monotonous smoothing splines can be
reduced to a finite dimensional optimization problem and have examined an algorithm
for solving this problem.

The number of subproblems needed to be visited in the worst case has been
reduced from 2n to 1.84n. This is still a large number for relatively small values of
data set size n. In practice the speed of the algorithm mainly depends on how many
intervals that are of type 2 in the optimal solution. When this number is low, it
goes fairly quickly but if not the algorithm takes a lot of time. How many intervals
that are of type 2 in the optimal solution depends both on the parameter λ and on
the shape of the solution. Generally, choosing a too large value for λ will cause the
algorithm to be very slow. This can be a problem when trying different choices of
λ to find the optimal choice. Sometimes it is possible to ”guess” a subproblem that
works, which can be a valid alternative to try. It is also possible that one can find the
spline by optimizing the entire problem rather than the subproblems. Still, it seems
to often be fast enough close to reasonable values forλ.

It should also be noted that all data sets were created in order to easily vary
problem sizes and shapes. Therefore one must keep in mind that the results might
be different when using real data sets that might look different from what has been
tested.
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