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Abstract

The quantum mechanical equivalent of the classical Hall effect can lead to in-
teresting results in solid state physics. A similar effect, that has received attention
in recent years, occurs when large spin-orbit coupling is present in a material, the
so-called quantum-spin Hall effect. In two-dimensional materials it leads to so-
called helical edge states that exhibit counter-propagating electron states located
at the edge with spin-momentum locking protected by time-reversal symmetry.
That means, different spin species travel in different directions along the edge and
cannot be scattered into each other unless time-reversal is broken by a magnetic
contribution. Two-dimensional materials hosting these quantum spin Hall states
are commonly called two-dimensional topological insulators.

In this thesis we investigate the electronic structure of the edge states in the
presence of magnetic impurities with rotating magnetic moments. Since they break
time reversal symmetry, the impurities lead to backscattering and the density of
states can be altered drastically in their presence. To calculate the time-averaged
density of states, a Floquet-like approach is applied to the single-particle Green’s
function of the 2 × 2 effective edge Hamiltonian of the Bernevig-Hughes-Zhang
model with impurities. The rotation of the impurities in the x-z-plane leads to the
density of states transitioning between a gapped and an ungapped state, which in
turn leads to drastically different shapes of the density of states depending on the
driving frequency.

A numerical model is derived and criteria for choosing reasonable numerical
cut-offs are given. The resulting density of states looks different for different driv-
ing frequencies. Slow driving, compared to a time scale defined by the magnetic
impurity strength, leads to a density of states comparable to the average over static
impurities for different impurity orientations. Fast driving effectively does not alter
the low energy density of states, leaving it constant around the center, with distinct
resonances at energies related to the driving frequency. Driving with frequencies
around the time scale defined by the impurities leads to different results, exhibiting
additional resonances, broadened due to the impurity nature of the system.
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1 Introduction
One of the largest fields of physics is condensed matter physics. It generally deals with
the physics of matter made up of a big number of constituents. Relatively recently the
field of topology, topological states and topological phase transitions has arisen as an area
of interest within condensed matter physics. In this introduction we will give a short
overview of the effects and developments within this area of condensed matter physics
that are relevant for this thesis.

1.1 The quantum Hall effect and Topology
The quantum mechanical equivalent of the classical Hall effect that leads to a quantized
conductance was predicted in 1975 [1] and measurements in two-dimensional (2D) electron
systems were undertaken in 1978 [2]. The classical Hall effect can be seen in a conducting
plate with a current in one direction and a magnetic field perpendicular to the plate. This
leads to the so-called Hall voltage, which can be understood classically by considering the
Lorentz force acting on the moving charge carriers. It is perpendicular to the direction
of movement of the carriers and thus leads to a potential difference across the plate, the
Hall voltage. In strong magnetic fields the electrons are forced onto circular orbits and
a quantum mechanical treatment leads to quantized orbits with discrete energies, the
so-called Landau levels. This leads to the so-called chiral edge states [3], that can be
understood in a semi classical picture. On the edges of the plate the charge carriers can
not complete the orbit and are reflected back into the plate, where they again follow the
circular orbit and ”bounce” along the edge in these so-called skipping orbits [4]. This is
visualized in Fig. 1.1. Transport in Quantum Hall (QH) systems takes place via the chiral
edge channels, which do not take into account the spin of the carriers. Because of the
discrete Landau levels the conductance is quantized. In 1980 the exact quantization of
the Hall conductance was measured [5] and the QH effect thereby confirmed. Due to the
required presence of a magnetic field for the QH effect, time-reversal symmetry (TRS) is
explicitly broken in these systems.

B
FIG. 1.1: Edge channels in QH system due to circular orbits ”bouncing” along the edge.

Another property of the chiral edge states is that they appear within the bulk gap in the
spectrum of the system that is opened by the external magnetic field. The band structure
also provides an entry point to the notion of topology within solid state physics. In
mathematics one of the most commonly employed examples of topology is the equivalence
of a coffee mug and a donut. These two objects can be classified by the number of holes
in their 2D surface, and can be transformed into each other smoothly. Similarly, the gaps
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in the spectrum can be classified by whether they can be transformed into each other by
a smooth deformation of the bands or not [6]. This concept holds the key to classifying
the states responsible for the quantized Hall conductance mentioned earlier. In the
classical notion the order parameters defined by spontaneous symmetry breaking assume
a non-zero expectation value in an ordered phase. The transition of this order parameter
from zero to a finite value defines a phase transition of matter. Matter in a QH state
could not be classified according to the classically known order parameters [5], meaning
there was no known order parameter that changed when transitioning from a non-QH to
a QH state. Instead the notion topological invariants had to be introduced to distinguish
these states and the edge states can only exist in a certain class of topologically distinct
gaps.

1.2 Topological insulators
In so called quantum-spin-Hall (QSH) systems there are two counter-propagating edge
states. In a picture similar to the semi-classical one for QH systems the circular orbits
are caused by spin-orbit coupling in the material and thus the two spin species travel in
different directions on the circular orbits. Consequently, on the edges two spin polarized
channels propagating in opposite directions are formed. Such states are called helical edge
states [6]. Figure 1.2 schematically shows these states on the edge of a 2D host material.
A difference to the QH effect is the opposite direction of propagation of the two spin
channels (red/blue) indicated by the black arrows.

FIG. 1.2: Edge channels carrying different spin species (red/blue) on the edge of a 2D material.

The QSH effect, in contrast to the QH effect, conserves TRS due to the channels
having opposite propagation direction. It is caused by spin-orbit coupling and thus can
be realized without an external magnetic field, but requires materials with big spin-orbit
coupling. It was proposed in 2006 [7] and first measured in 2007 [8] in HgTe/(Hg,Cd)Te
quantum wells. Essentially the 2D host material consists of two CdTe layers with a
HgTe layer in between, leading to a inversion of valence and conduction band in the
HgTe layer at a critical thickness. This means that e.g. bands belonging to a certain
symmetry classes now act as valence band, while in bulk they would lay energetically
higher and act as conduction band. Consequently, the conduction and valence band
can belong to different symmetry classes, depending on the quantum well geometry [6].
These types of 2D materials, naturally hosting the QSH states, are called 2D topological
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insulators (TIs). The edge channels can be described by the one-dimensional (1D) massless
Dirac equation [6, 9], which again highlights the counter-propagating nature of the edge
channels visualized in Fig. 1.2. Following the predictions, various measurements on 2D
TI HgTe systems, e.g. resistance measurements [10, 11] and current imaging [12], have
been undertaken and the predicted properties have been confirmed [13]. Following the
HgTe related discoveries InAs/GaSb/AlSb Type-II semi-conductor quantum wells were
also predicted to host QSH states in 2008 [14]. Subsequently, in these systems resistance
measurements [15–17] and edge current imaging experiments [18] were performed. The
2D TI model can also be generalized to three-dimensional (3D) materials that host surface
states, for example in BiSb alloys [6, 19, 20]. Furthermore, efforts are made to demonstrate
a quantum mechanical analogue to the anomalous Hall effect, the quantum-anomalous
Hall effect, in 3D and 2D systems [21–24]. The anomalous Hall effect is similar to the
Hall effect but is not caused by an external magnetic field, but by a magnetization of the
material. The quantum-anomalous Hall effect again is the quantum mechanical version
with quantized electron orbits caused by the magnetization [25, 26].

TIs in general promise a great range of applications in various areas. First of all,
dissipationless transport via the edge channels opens up possibilities in low-power infor-
mation processing and spintronics [13], for example the behavior of field-effect transistors
made from 3D TIs have been studied recently [27]. Aside from that, by coupling super-
conductors to TIs, systems that should support Majorana bound states can be achieved
and applications for topological quantum computing are proposed [6, 28]. Majorana
bound states are quasi-particles, associated with super-conductivity, that are their own
anti-particle and follow non-abelian exchange statistics. In addition to the electronic
properties, TIs also show interesting optical properties , like non–isotropic and ultrahigh
refractive indices that can find application in optoelectronic and optical devices [29]. TI
based materials have also been used to realize nanometric holograms , projections of
images that appear when a carefully designed nano structure is illuminated by a laser and
viewed from a certain angle. These promise advances for example in data storage devices
[30].

1.3 Impurities, scattering and opening of bandgaps in TIs
Another aspect in TI systems are the effects of impurities on the QH and QSH states.
While in reality it is very hard to produce completely clean systems and foreign atoms
in the crystal lattice act as impurities, often these foreign atoms are even desired and
purposefully introduced into the system. This is called doping and is usually done to
alter the electronic properties of the system. In this project we will concern ourselves
with these doping impurities. However, sometimes also local perturbations, for example
by an extremely focused laser, can be viewed as single impurities [31]. Since the TI edge
states are protected by TRS, potential disorder does not lead to a gap in the density of
states. Magnetic contributions break TRS and can lead to a gap, depending on their
orientation. For doping impurities it is possible to dope certain TI materials during the
growth with Mn atoms that can be magnetically aligned in the process [32]. For this kind
of magnetically aligned, static impurities there have been theoretical studies on 3D [33]
as well as on 2D TI systems [34]. Magnetic impurities explicitly break TRS and in both
cases magnetically aligned impurities lead to a gap in the density of states, similar to the
gap formed by an external magnetic field. Furthermore, in both the mentioned studies
the gap has been shown to close for rising electric potential of the impurities. There are
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other gap opening mechanisms, for example current induced gaps in 3D TIs [35] or finite
size effects in 2D strips [36] which will not be considered here.

This project focuses on randomly placed, dynamic, aligned magnetic impurities. More
specifically, we consider impurities located on the edge channels of 2D TIs, harmonically
rotating in the x-z-plane. The aim is to investigate the time-averaged density of states in
this system. Figure 1.3 schematically shows this set-up with the edge channels (red/blue)
and the impurities (yellow) placed on them, rotating in the x-z-plane (indicated by the
black arrows). This rotation of the impurities could for example be experimentally real-
ized by ferromagnetic resonance. Similar to nuclear magnetic resonance, ferromagnetic
resonance describes the precession of the magnetization of a material induced via an ex-
ternal field. Ferromagnetic resonance has been used to probe Mn doped semiconductors
[37]. Another way to induce rotating magnetization is free precession of Mn, but the
precession is rather quickly damped [38]. The magnetization is given by the impurities
and thus the precession of it indicates a rotation of the impurities magnetic momenta ,
which we assume to be in phase.

FIG. 1.3: Randomly placed, aligned rotating magnetic impurities (yellow) on the 1D Edge
channels (red/blue).

The choice of the plane of rotation in our system is not arbitrary. A magnetization in
the direction of the spin-polarization of the edge states will not open a gap in the edge
channel density of states whereas a magnetization perpendicular to the polarization will
open a gap. The rotation between these two orientations should thus lead to the density
of states transitioning between an ungapped and a gapped state. This will significantly
alter the time-averaged density of states. The framework to find the density of states will
be Green’s function theory [39, 40] and the time dependence will be treated employing
methods related to Floquet theory [41–48]. Note here, that we are working with intrinsic
TIs and are not looking at so called Floquet-TIs [49] which are materials externally driven
into a topological phase. Green’s functions and Floquet theory will be introduced in
section 2, along with other theoretical tools. In section 3 a very general matrix equation
to find the Green’s function for a driven system will be derived, before discussing the
application to the 2D TI system in section 4 along with numerical considerations. The
results and discussion can be found in section 5, before we give a brief summary and an
outlook in section 6. The numerical code and various detailed calculations and additional
plots can be found in the appendices after the references.
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2 Theoretical methods and model
In this section we will introduce the most important concepts used to perform analytical
and numerical calculations on 2D TI systems. First, we will introduce some general
basics of Green’s function theory, the main tool used to deduce the density of states.
Then we will give an introduction to the Floquet formalism, followed by a closer look
at the Hamiltonian of 2D TIs, namely the BHZ model, and an application of Green’s
function theory to it.

2.1 Green’s function
One of the most popular equations in quantum physics is the time-dependent Schrödinger
equation

(H − i~∂t)ψ(t) = 0. (2.1)

It describes the time-evolution of a wave-function ψ(t) in a system defined by the Hamilto-
nian H. Regardless whether the Hamiltonian is a differential operator, the time derivative
makes the Schrödinger equation a differential equation. In order to solve this class of prob-
lems, a rich mathematical toolkit has been developed. A popular tool in this kit are the
single-particle Green’s functions of the many-body system. Here we will give a short in-
troduction to the most relevant aspects following Refs. [39, 40]. The particularly relevant
retarded Green’s function is defined as

gR(~r, σ, t;~r′, σ′, t′) = −iθ(t− t′) 〈{Ψσ(~r, t),Ψ
†
σ′(~r

′, t′)}〉 (2.2)

in it’s general form for Fermions. Here Ψ†
σ(~r, t) and Ψσ(~r, t) are quantum field creation

and annihilation operators at position ~r and time t with spin σ in second quantization
and {·, ·} denotes the anti-commutator. In the non-interacting case this is equivalent to
defining it as a solution of the so-called equation of motion,

[i~∂t −H(~r)] g(~r, t;~r′, t′) = δ(t− t′)δ(~r − ~r′), (2.3)

where the spin indices σ, σ′ lead to a matrix structure of the Green’s function. The
solution corresponding to the retarded Green’s function can be written as

gR(~r, t;~r′, t′) = −iθ(t− t′) 〈~r|e−iH(t−t′)|~r′〉 . (2.4)

This form highlights the similarity of the two formulations. It also explains the name
retarded Green’s function when looking at how it describes the time-propagation of a
known wave function ψ at time t′ via the integral equation

ψ(~r, t) =

∫
d~r′ gR(~r, t;~r′, t′)ψ(~r′, t′). (2.5)

The time evolution via the retarded Green’s function depends on the wave function at an
earlier time t′. This is also the origin of the name propagator, often used for the retarded
Green’s function. Furthermore, this shows that the retarded Green’s function is of interest
for physicists since it contains all the information about the time-evolution and dynamics
of a physical system. Physically Eq. (2.5) describes, what happens to a state or particle
inserted into an empty many-body system at time t′. It is the so-called single particle
Green’s function of the many body system.
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Mathematically speaking, the Green’s function is a fundamental solution to the
Schrödinger equation and as such we can often employ mathematical tools to find it.
One of the most important approaches is the Fourier transformation to other coordinate
systems, e.g. from the real-space to the momentum domain or the time to the energy-
domain, since they convert derivatives to multiplications and Dirac-δ-functions to simple
unit elements. These transformations sometimes allow to find Green’s functions and will
often be used in the following chapters. The main difficulty lies in the transformation
back to the original coordinates and will typically involve residue calculus.

2.2 Spectral function and density of states
From the retarded Green’s function in energy-momentum domain we can define the so-
called spectral function as

A(k,E) = −2ImTr gR(k,E). (2.6)

The trace describes the sum over all spin states, since for spinfull particles the Green’s
function will generally be a matrix. The spectral function describes the distribution of
available states in the momentum domain at energy E and is similar to the band structure
of a system. For example, for free electrons the spectral function will be 2πδ(E − E(k))
where E(k) is the dispersion relation. Interactions, either between particles or in the sys-
tem, e.g. scattering, will lead to a broadening of the δ-functions [39]. Nevertheless, the
spectral function is an appropriate tool to visualize the spectral distribution of single elec-
tron states in heatmap-like plots, sometimes referred to as the low energy band structure
[33].

This spectral distribution directly leads to the density of states, that can be seen as
the number of available states in an energy interval. Thus, summing up all states at a
given energy E and performing the continuous limit leads to the density of states

D(E) = −2
∑
k

ImTr gR(k,E) → − 1

π

∫
dkTr gR(k,E). (2.7)

If the Green’s function is found, for example, in real space as gR(x, x′, E), instead of
momentum space it simply reads

D(E) = − 1

π
ImTr gR(x, x, E). (2.8)

In this thesis we will be working with the single particle Green’s function, which means
that when referring to the density of states in the rest of this thesis we mean the density
of single-electron states.

The spectral function and the density of states are important physical properties, since
they can be experimentally accessed. For example tunnel spectroscopy can be used to
measure the density of states [39] and recently angle-resolved photoemission spectroscopy
in current carrying devices in non-equilibrium states has been used to measure the spectral
function [50].

2.3 Floquet theory
The Green’s function approach from section 2.1 also holds for an arbitrary time-dependent
Hamiltonian, but in practice it is usually very difficult to find the Green’s function. A
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useful method, developed to understand time-periodic systems, is Floquet theory. Here we
will briefly introduce this well known approach, following the descriptions for example in
Refs. [41, 45, 47]. Compared to perturbation theory approaches it respects the periodicity
of the driving and thus avoids so-called secular terms. Secular terms are linear or non-
periodic in time and therefore do not respect the periodicity given by the driving. They
typically appear in time-dependent perturbation theory [41].

Floquet theory gives a framework for solving the time-dependent Schrödinger equation
for systems described by a time-periodic Hamiltonian H(t + T ) = H(t), suppressing all
other coordinates, if not explicitly needed. This periodic time-dependence will in our
case be given by the impurity potential, but in general there is no requirement for the
periodicity to be contained in a potential. It can also be an intrinsic property of the
Hamiltonian.

The dynamics of the system are then described by the time-dependent Schrödinger
equation

(H(t)− i~∂t)ψ(t) = 0. (2.9)

To solve this we can invoke the so-called Floquet theorem, that gives the existence of
solutions of the form

ψα(t) = exp
(
−iεα

~
t
)
Φα(t). (2.10)

These are called Floquet-state solutions and consist of the quasi-energy exponential
exp(−iεα/~t) and the time-periodic Floquet modes Φα(t) = Φα(t + T ). In a sense, the
Floquet theorem is analogous to the Bloch theorem for periodic solids, but the period-
icity lies in the time-coordinate instead of the spacial coordinate. Hence, in analogy
to the quasi-momenta in the Bloch theorem, the εα are called the quasi-energies. The
quasi-energies are unique up to multiples of the driving ~Ω = ~2π/T and we can, again
similar to the Bloch theorem, define a Brillouin zone containing the unique eigenvalues
like −~Ω/2 ≤ εα < ~Ω/2. The periodicity condition for the quasi-energies becomes clear,
when we define the hermitian operator

H(t) = H(t)− i~∂t, (2.11)

giving the eigenvalue problem

H(t)Φα(t) = εαΦα(t), (2.12)

that is also called the Floquet equation. With n ∈ Z we see that Φα′ = Φα exp(inΩt) =
Φα,n solves Eq. (2.12) with a quasi-energy εα′ = εα + n~Ω. Furthermore, these two solu-
tions result in the same Floquet-state solution (2.10) and thus we can write a periodicity
condition for the quasi-energies

εα,n = εα + n~Ω. (2.13)

To solve the eigenvalue problem, it is useful to define a composite Hilbert space R⊗ T ,
composed of the space R, spanned by the eigenfunctions of the time-independent part of
the Hamiltonian H(t) = H0 +H1(t) and the T -periodic functions T . We can define the
composite scalar product for functions f, g ∈ R⊗ T as

〈〈f |g〉〉 = 1

T

∫ T

0

dt
∫

dq f ∗(q, t)g(q, t). (2.14)
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If H0 has a complete, orthonormal set of eigenfunctions φn, the Floquet modes can be
decomposed in terms of these and as eigenvectors of H(t) they fulfill the orthonormality
condition

〈〈Φα,n|Φβ,m〉〉 = δα,βδm,n. (2.15)

Furthermore, they form a complete set in the composite space∑
α

∑
n

= Φ∗
α,n(q, t)Φα,n(q

′, t′) = δ(q − q′)δ(t− t′). (2.16)

Solving the eigenvalue problem in the composite Hilbert space allows us to construct the
Floquet-state solutions from the Floquet modes |Φα(t)〉 written in the space R. These,
in turn, give us the time evolution of any initial state as

|ψ(t)〉 =
∑
α

cα exp(−iεαt/~) |Φα(t)〉 , (2.17)

where cα = 〈Φα(0)|ψ(0)〉 for an initial state |ψ(0)〉 [41].
It is also possible to find the time-averaged Green’s function from this approach either

via a spectral representation of the propagator (see for example page 239 in Ref.[41]) or
a matrix continued fraction approach on the Floquet Hamiltonian [44]. In the following
paragraph the calculations to find the Floquet Hamiltonian in the composite space are
performed for an exemplary two-level-system that we will later use in a similar form.

2.3.1 Two-level system

For a simple two-level system with harmonic perturbations a very general Hamiltonian
reads

H(t) = H0σz +
∑

i=x,y,z

Hiσi sin(Ωt+ φi) (2.18)

and can for example describe a spin-1/2-particle in a harmonically time-dependent mag-
netic field. It is also similar to the effective edge Hamiltonian of the BHZ model in
momentum space for a fixed momentum and with a harmonic perturbation by a magnetic
field. The Floquet theorem provides that solutions to the time-dependent Schrödinger
equation are composed of time-periodic Floquet modes with the same period as the per-
turbation. That means we can Fourier-decompose the Floquet modes like

|Φα(t)〉 =
∞∑

n=−∞

|cnα〉 exp(inΩt), (2.19)

where Ω is the driving frequency. We can now decompose the |cnα〉 in terms of the complete
set |+〉 , |−〉 of eigenvectors of H0σz according to

|Φα(t)〉 =
∑

k=+,−

∞∑
n=−∞

cnα,k |k〉 exp(inΩt), (2.20)

and inserting this into the Floquet-equation results in∑
k=+,−

∞∑
n=−∞

(
H(t)− i~ ∂

∂t

)
cnα,k |k〉 exp(inΩt) =

∑
k=+,−

∞∑
n=−∞

εαc
n
α,k |k〉 exp(inΩt). (2.21)
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Multiplying by 〈k| exp(−imΩt) and integrating over one driving period gives the matrix
equation

∞∑
n=−∞

∑
k=+,−

〈〈j,m|H(t)− i~ ∂
∂t

|k, n〉〉 cnα,k = εαc
m
α,j, (2.22)

where we introduced the notation 〈k| exp(−imΩt) = 〈k,m| and the composite space scalar
product, denoted by 〈〈. . . | . . . | . . .〉〉 has been used. This is the eigenvalue problem we have
to solve to find the quasi-energies. Defining

Hm−n =
1

T

∫ T

0

dtH(t) exp(−i(m− n)Ωt), (2.23)

we can calculate the matrix

〈〈j,m|H(t)− i~ ∂
∂t

|k, n〉〉 = 〈j|Hm−n |k〉+ n~Ωδn,mδj,k (2.24)

and use a eigenvalue/eigenfunction routine to find the quasi-energies. In the two-dimen-
sional basis |+〉 , |−〉 we can perform the integral to find Hm−n

〈j|Hm−n |k〉 = 1

T

∫ T

0

dtH(t) exp(−i(m− n)Ωt)

=
1

T

∫ T

0

dt
(
H0σz exp(−i(m− n)Ωt)

+
∑

i=x,y,z

Hiσi sin(Ωt+ φi) exp(−i(m− n)Ωt)

)

= H0σz
1

T

∫ T

0

dt exp(−i(m− n)Ωt)︸ ︷︷ ︸
=δn,m

+
∑

i=x,y,z

Hiσi
1

T

∫ T

0

dt sin(Ωt+ φi)︸ ︷︷ ︸
=

exp(i(Ωt+φi))−exp(Ωt+φi)

2i

exp(−i(m− n)Ωt)

= H0σzδm,n −
i
2

∑
i=x,y,z

Hiσi(exp(iφi)δm,n+1 − exp(−iφi)δm,n−1). (2.25)

This then leads to a matrix representation of the Floquet-Hamiltonian

. . . . . .

. . . H0σz − ~Ωσ0 − i
2

∑
iHiσi exp(iφi)

i
2

∑
iHiσi exp(−iφi) H0σz − i

2

∑
iHiσi exp(iφi)

i
2

∑
iHiσi exp(−iφi) H0σz + ~Ωσ0

. . .
. . . . . .


. (2.26)

For practical purposes the Fourier series can be truncated at a finite component with
index nmax, resulting in a ((2nmax + 1) · 2) × ((2nmax + 1) · 2) matrix for the eigenvalue
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problem, i.e. (2nmax+1)2 2× 2 blocks, that can then be treated numerically, for example
to find the Floquet-state solutions. For H0 = ~νFkσz, appearing later in this thesis, we
can calculate the quasi-energies depending on the momentum k and thereby find a quasi-
band-structure, that will be an important tool to find appropriate truncation indices for
numerical calculations later on.

2.4 2D topological insulators and the BHZ model
The above mentioned tools will be used to investigate the properties of 2D TI edge states.
Here we will introduce the model describing them.

2.4.1 Full BHZ Hamiltonian

The model used to describe 2D TIs is the so-called BHZ model introduced in 2006 [7].
The BHZ Hamiltonian was originally developed to investigate HgTe/CdTe quantum wells
by considering the band structure of the two materials in a quantum well together with
various symmetries. It reads

HBHZ =

(
h
(
~k
)

0

0 h∗(−~k)

)
, (2.27a)

h
(
~k
)
= ε

(
~k
)
+ di

(
~k
)
σi, (2.27b)

ε
(
~k
)
= C −D(k2x + k2y), (2.27c)

di

(
~k
)
=
[
Akx,−Aky,M

(
~k
)]
, (2.27d)

M
(
~k
)
=M −B(k2x + k2y), (2.27e)

with A, B, C, D and M being material parameters depending on the specific quantum
well geometry [6]. The parameters M and B are commonly called Dirac– and Newton–
mass respectively and make up the mass term M(~k), that describes separation between
electron and hole bands. It turns out, that the sign relation between M and B determines,
whether the system is in a topological state or not. C and D describe the position and
shape of the bands considered, where e.g. C = 0 and D = 0 corresponds to a completely
symmetric band structure around the gap center. For us the most important parameter
is A since it is associated with the Fermi velocity of the edge states.

This model Hamiltonian can be explicitly solved on an infinite half-plane resulting
in two states Ψ↑,Ψ↓ localized at the edge for certain parameters. [6, 36, 51–53]. The
properties of these edge states have been theoretically investigated also for systems other
than HgTe/CdTe structures, for example in Bi-thin films confirming the localization at
the edge [54]. The two edge states exhibit opposite spin and momentum orientation, so
one spin species travels along the edge in one direction, while the other spin species travels
in the opposite direction, visualized in Fig. 1.2.

2.4.2 Effective edge Hamiltonian

The Hamiltonian (2.27a) for an infinite half-plane can be projected onto the edge states
Ψ↑,Ψ↓ via Hα,β

edge(k) = 〈Ψα|HBHZ |Ψβ〉. For a symmetric bulk band structure this leads to
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the effective edge Hamiltonian [6]

Hedge = Akxσz = ~νFkxσz. (2.28)

This Hamiltonian now describes the one-dimensional edge of the half-plane and highlights
counter-propagating structure of the states. The physical meaning of the only appearing
BHZ parameter A as the slope of the edge state dispersion, giving the Fermi velocity,
becomes apparent. This effective edge Hamiltonian holds as long as the considered energy
lies well within the bulk band gap of the full BHZ Hamiltonian (2.27a). It also has the
matrix-structure of a two-level system, motivating the comparison to a driven two-level
system later on. Transformation to real space yields the Hamiltonian

Hedge = − i~νF∂xσz. (2.29)

2.4.3 Gap-opening via magnetic fields

The effect of a homogeneous magnetic field on the spectrum and density of states of the
effective edge Hamiltonian can explicitly be calculated. If we look at the spectrum of
the effective edge Hamiltonian in Eq. (2.28), we find a crossing of the linear dispersion
branches at k = 0 and no gap. A homogeneous magnetization in the x-y-plane causes
a coupling of the two branches via off-diagonal terms in the Hamiltonian and thus the
crossing turns into an avoided crossing. This opens a gap in the spectrum, which can
be seen in Fig. 2.1 (ungapped in red and gapped in gray), together with the bulk band
structure from the full BHZ Hamiltonian (blue). To calculate the density of states for
such a case, assume a magnetization, for example in x-direction, i.e. H = Hedge + ∆σx.
The eigenvalues of this are determined by

0 = det(H − E) = det

(
~νFk − E ∆

∆ ~νFk − E

)
= −(~νFk)2 + E2 −∆2, (2.30)

from which we can calculate the energies as

E = ±
√

∆2 + (~νFk)2. (2.31)

We see that the band edge lies at k = 0, so we expect the gap width in the density of
states to be 2∆. To explicitly calculate the density of states, we start with the equation
of motion in momentum space

[E − (H0 +M)]G(k,E) = 1 (2.32)

which can be formally rearranged to

G(k,E) = [E − (H0 +M)]−1 . (2.33)

Here, and in all following calculations of this type, we use square brackets to emphasize
that [E − (H0 +M)] is an operator and thus the inversion is not necessarily trivial. As-
suming a magnetic field in x-direction we get M = ∆σx and we can perform the inversion
by expanding with the Pauli-conjugate E + (H0 +M) leading to

G(k,E) =
E + ~νFkσz +∆σx
E2 − (~νFk)2 −∆2

. (2.34)
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k

E

Edge states
Edge states gapped
Bulk states

2Δ

FIG. 2.1: Typical band structure of a 2D TI with the bulk bands (blue) from diagonalizing
the full 4× 4 BHZ model and the edge states with and without a magnetic field (red and gray
respectively) from diagonalizing the effective edge Hamiltonian

The density of states can be found from this via the spectral function

D(E) = −Im

(
TrG(x, x, E)

π

)
. (2.35)

The transformation to position space is

G(x, x′, E) =

∫ ∞

−∞

dk
2π

G(k,E)eik(x−x′) (2.36)

and the integration can be performed using the residue theorem, remembering that E
carries a small positive imaginary part and carefully keeping track of the pole positions.
Detailed calculations can be found in Appendix A.1 and lead to

D(E) = −Im

(
TrG(x, x, E)

π

)
=

1

π~νF
|E|√

E2 −∆2
θ(E2 −∆2) =

1

π~νF
DOS(E). (2.37)

Here we can see the density of states for zero magnetization is constant and takes on
the value 1

π~νF
. In the rest of the thesis we will refer to density of states relative to the

constant one for a clean system, denoted by DOS(E). The resulting graph for the density
of states is shown in Fig. 2.2(A), where we can clearly see the sharp real gap with edges
at ±∆ and the approach to a constant non-zero density of states far away from the gap.

2.4.4 Impurity potential and static impurities

Impurities located on the edge channels can be modeled in the edge Hamiltonian Eq. (2.29)
as δ-scatterers by

H = − i~νF∂xσz + V (x, t) + ~M(x, t)~σ, (2.38a)

V (x, t) =
∑
l

Vl(t)δ(x− xl) (2.38b)

~M(x, t)~σ =
∑
l

~Ml(t)~σδ(x− xl). (2.38c)
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FIG. 2.2: Density of states as a function of energy for (A) a homogeneous magnetic field of
strength ∆ in x-direction, (B) static impurities using the Born approximation, (C) static impu-
rities using the self-consistent Born approximation and (D) using the numeric model introduced
later in the static case. Note the different axis limits for the homogeneous field.

In the general form the l-th impurity has a potential strength of Vl(t) and a magnetic
moment of ~Ml(t) that can differ from impurity to impurity. In a previous work [34]
we investigated equal, magnetically aligned, static impurities pointing in x-direction, i.e.
Vl(t) = V0 and ~Ml(t) = M0~ex for all impurity sites l, that lead to a gap in the density
of states. This gap is closed by a rising potential part V0. The previous work on static
impurities used the self-consistent Born-Approximation as well as a numeric impurity
averaging approach that is equivalent to the numeric model introduced later, if static
impurities are used. Generally, the approaches match very well and show that the influence
of the impurities usually leads to a broadening of the dispersion branches, often washing
out features that would be sharp if caused by homogeneous fields (compare Fig. 2.2). The
mechanism can be seen very well in the Born-approximation as an imaginary part in the
self-energy in the Dyson equation leading to the density of states displayed in Fig. 2.2.
Another system recently receiving attention is a single non-magnetic but periodically
driven impurity, employing Floquet-theory to find the local density of states around the
impurity site [31].

In this thesis we investigate equal, randomly placed, magnetically aligned, harmon-
ically rotating impurities with a static potential part. The rotation considered is in
the x-z-plane, such that the impurity potentials can be written as Vl(t) = V0 and
~Ml(t) =M0(sin(Ωt)~ex + cos(Ωt)~ez), leading to the Hamiltonian

H = −i~νF∂xσz + (V0 +M0(sin(Ωt)~ex + cos(Ωt)~ez)~σ)
∑
l

δ(x− xl). (2.39)

The system can be visualized as in Fig. 1.3 and the model Hamiltonian Eq. (2.39) will be
used frequently to calculate the density of states via the Green’s function.
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3 Integral equation for the matrix Green’s function
In this section a matrix formalism for the Green’s function for time-periodic systems is
derived and subsequently applied to a simple two-level system. The goal of this formalism
is to find the Fourier series of the Green’s function. The zeroth component of that Fourier
series is then the time-averaged contribution which can be used to find the time averaged
density of states via Eq. (2.8). The time-averaged density of states is frequently used to
investigate dynamically driven systems [49, 55].

3.1 Matrix Green’s function equation
A general time-dependent Hamiltonian can be written in the form

H(t) = H0 + V (t). (3.1)

In our case, it will be a time-dependent potential term due to the rotating impurities, but
in general it can be any time dependent contribution, e.g. a time-dependent interaction
or kinetic energy term. The equation of motion for the Green’s function is

[i~∂t − (H0 + V (t))]G(t, t′) = δ(t− t′) (3.2)

and can be rewritten as an integral equation

G(t, t′) = g(t− t′) +

∫
dt1 g(t− t1)V (t1)G(t1, t

′). (3.3)

Here g(t− t′) is the Green’s function related to H0 determined by the ”free” equation of
motion

[i~∂t −H0] g(t− t′) = δ(t− t′). (3.4)

For a time-periodic part V (t+T ) = V (t) we can use Picard iteration to inductively prove
that the Green’s function is also time-periodic with period T , i.e. G(t+T, t′+T ) = G(t, t′).
The Picard iteration produces a series according to the recursion relation

G[n+1](t, t′) = g(t− t′) +

∫
dt1 g(t− t1)V (t1)G

[n](t1, t), (3.5)

with initial value

G[0](t, t′) = g(t− t′). (3.6)

This series converges for physically relevant cases, essentially the Lipschitz-continuity of
the Hamiltonian in G [56]. It can readily be seen that

G[0](t+ T, t′ + T ) = g((t+ T )− (t′ + T )) = g(t− t′) = G[0](t, t′). (3.7)

Using the induction assumption G[n](t+ T, t′ + T ) = G[n](t, t′) we find

G[n+1](t+ T, t′ + T ) = g(t− t′) +

∫
dt1 g(t+ T − t1)V (t1)G

[n](t1, t
′ + T )

= g(t− t′) +

∫
dt1 g(t+ T − t1)V (t1)G

[n](t1 − T, t′), (3.8)
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and with the change of variables t1 − T → t1 and the periodicity of V (t) it follows that

G[n+1](t+ T, t′ + T ) = g(t− t′) +

∫
dt1 g(t− t1)V (t1 + T )G[n](t1, t

′)

= g(t− t′) +

∫
dt1 g(t− t1)V (t1)G

[n](t1, t
′)

≡ G[n+1](t, t′). (3.9)
By induction this proves the time-periodicity. We can now define the Fourier transform
with respect to t′ as

G̃(t, E) =

∫
dτ eiE~ τG(t, t− τ). (3.10)

Analogously to the proof before it can be shown that G̃(t, E) is also time-periodic, i.e.
G̃(t+ T,E) = G̃(t, E). The time-periodicity now allows us to write the Green’s function
as a Fourier series

G̃(t, E) =
∑
n∈Z

ein
2π
T

tG̃n(E), (3.11)

where the Fourier components G̃n(E) are defined according to

G̃n(E) =
1

T

∫ T

0

dt e−in 2π
T

tG̃(t, E). (3.12)

Applying Eq. (3.10) to the integral Eq. (3.3) after some calculation gives

G̃(t, E) = g̃(E) +

∫
dτ1 ei

E
~ τ1g(τ1)V (t− τ1)G̃(t− τ1, E), (3.13)

where g̃(E) is the Fourier transform of g(t− t′) according to Eq. (3.10). This in turn can
be used to calculate the Fourier coefficients

G̃n(E) = g̃(E)δn,0

+
1

T

∫ T

0

dt e−in 2π
T

t

∫
dτ1 ei

E
~ τ1g(τ1)V (t− τ1)G̃(t− τ1, E)

= g̃(E)δn,0

+
∑
n1,n2

∫
dτ1 ei

E
~ τ1g(τ1)Vn1G̃n2(E)e

−i(n1+n2)
2π
T

τ1δn,n1+n2 , (3.14)

where the Fourier series according to (3.11) for V (t) and G̃(t, E) have been inserted. The
Kronecker delta δn,n1+n2 is introduced by the t-integral

1

T

∫ T

0

dt ei(n1+n2−n) 2π
T

t = δn,n1+n2 . (3.15)

Performing the sum and collecting the exponentials leads to

G̃n(E) = g̃(E)δn,0 +
∑
n1

∫
dτ1 ei

E
~ τ1g(τ1)Vn1G̃n−n1(E)e

−in 2π
T

τ1

= g̃(E)δn,0 +
∑
n1

∫
dτ1 ei

1
~ (E−n~Ω)τ1g(τ1)Vn1G̃n−n1(E)

= g̃(E)δn,0 + g̃(E − n~Ω)
∑
m

VmG̃n−m(E). (3.16)
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This set of coupled equations is fairly general and holds for time-periodic potentials, as
long as the Picard-series converges.

For static potentials, i.e. V (t) = const., all but the zeroth Fourier component of V
vanish and the equations decouple to

G̃0(E) = g̃(E) + g̃(E)V0G̃0(E) (3.17a)
G̃n(E) = 0, n 6= 0. (3.17b)

The Green’s function is then also time-independent and this approach also includes the
static impurities case discussed in Ref. [34].

For harmonic driving we get

V (t) = V0 + V+e
iΩt + V †

+e
−iΩt (3.18)

resulting in

G̃n(E) = g̃(E)δn,0 + g̃(E − n~Ω)V0G̃n(E)

+ g̃(E − n~Ω)V+G̃n−1(E)

+ g̃(E − n~Ω)V †
+G̃n+1(E). (3.19)

This can be rearranged to

g̃(E)δn,0 = (1− g̃(E − n~Ω)V0)G̃n(E)

− g̃(E − n~Ω)V+G̃n−1(E)

− g̃(E − n~Ω)V †
+G̃n+1(E), (3.20)

which highlights the matrix form of this equation

. . . . . .

. . . 1− g̃(E + ~Ω)V0 −g̃(E + ~Ω)V †
+

−g̃(E)V+ 1− g̃(E)V0 −g̃(E)V †
+

−g̃(E − ~Ω)V+ 1− g̃(E − ~Ω)V0
. . .

. . . . . .





...
G̃−1(E)

G̃0(E)

G̃1(E)
...

 =


...
0

g̃(E)
0
...

 . (3.21)

This resembles the block-tri-diagonal structure of a Floquet-matrix. In principle, higher
Fourier components of the driving term V (t) will cause further off-diagonals to appear
which could be included to look at non-harmonic driving, but at a numerical cost. The
time-independent part of the Green’s function is then simply the zeroth Fourier component
G̃0(E) and can be used to access the time-averaged quantities derived from the Green’s
function.

3.2 Application to a driven two-level system
The matrix Eq. (3.16) is very general and holds for many systems. In particular, the
necessary assumptions are the existence of the Fourier series of the periodic potential and
the convergence of the Picard series. Generally, solving this equation can become very
difficult, but for some cases it can readily be solved. We will now show that the explicit
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solution to a simple example system also solves the matrix Eq. (3.16). The example system
will be a diagonally driven two-level system described by the Hamiltonian

H = kσz + V σz sinΩt. (3.22)

This corresponds to the effective edge Hamiltonian in the BHZ model with a driven
homogeneous magnetic field in z-direction. The exact solutions for the Fourier components
of the Greens function for this system are

G̃n(E) = in
∑
l

Jn−l

(
V σz
~Ω

)
Jl

(
−V σz

~Ω

)
g̃(E − l~Ω), (3.23)

where the Jn are Bessel functions of the first kind and applied to the Pauli-z-matrices
have to be understood as

Jk

(
V σz
~Ω

)
=

(
Jk
(

V
~Ω

)
0

0 Jk
(
− V

~Ω

)) . (3.24)

The calculations can be found in Appendix B. We will show that the explicit solution
Eq. (3.23) is equivalent to the matrix equation (3.16) from the integral Green’s function
approach.

For a periodic potential V (t) = V σz sinΩt =
V σz

2i (eiΩt − e−iΩt) the matrix Eq. (3.16)
reduces to

G̃n(E) = g̃(E)δn,0 + g̃(E − n~Ω)
(
V σz
2i

)
G̃n−1(E)

+ g̃(E − n~Ω)
(
−V σz

2i

)
G̃n+1(E) (3.25)

We start with Eq. (3.23) by adding a 0 and introducing a factor of 1 to get

G̃n(E) = g̃(E)δn,0 − g̃(E)δn,0︸ ︷︷ ︸
=0

+ g̃(E − n~Ω)g̃(E − n~Ω)−1︸ ︷︷ ︸
=1

G̃n(E). (3.26)

Noting that g̃(E)δn,0 = g̃(E−n~Ω)δn,0 and g̃(E−n~Ω)−1 = E−n~Ω−kσz = g̃(E)−1−n~Ω,
we can write

G̃n(E) = g̃(E)δn,0 − g̃(E − n~Ω)
[
δn,0 − (g̃(E)−1 − n~Ω)G̃n(E)

]
︸ ︷︷ ︸

(∗)

. (3.27)

To rewrite the last part (∗) we note that

δn,0 = inδn,0 = inJn(0) = inJn(Ṽ − Ṽ ) = in
∑
l

Jn−l(Ṽ )Jl(−Ṽ ), (3.28)

where we used Neumanns addition theorem for Bessel functions in the last step. This has
the same form as the sum in Eq. (3.23) and allows us to write (∗) as

(∗) = in
∑
l

Jn−l(Ṽ )Jl(−Ṽ )

1− g̃(E)−1g̃(E − l~Ω)︸ ︷︷ ︸
(∗∗)

+n~Ωg̃(E − l~Ω)

 . (3.29)
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We can calculate (∗∗) to be

1− g̃(E)−1g̃(E − l~Ω) =
E − l~Ω− kσz
E − l~Ω− kσz

− (E − kσz)

E − l~Ω− kσz

=
E − l~Ω− kσz − (E − kσz)

E − l~Ω− kσz
= (−l~Ω)g̃(E − l~Ω). (3.30)

These calculations can also be done going back to the integral representation of g̃(E) in
terms of the formal solution g(τ) and using integration by parts. Inserting back into (∗)
leads to

(∗) = in
∑
l

Jn−l(Ṽ )Jl(−Ṽ ) [(−l~Ω)g̃(E − l~ω) + n~Ωg̃(E − l~Ω)]

= in
∑
l

(n− l)~ΩJn−l(Ṽ )Jl(−Ṽ )g̃(E − l~Ω)

= in
∑
l

V σz
2

2(n− l)

Ṽ
~ΩJn−l(Ṽ )Jl(−Ṽ )g̃(E − l~Ω). (3.31)

We can now apply the recursion relation 2k
x
Jn(x) = Jn−1(x) + Jn+1(x) to get

(∗) = in
∑
l

V σz
2

(Jn−1−l(Ṽ ) + Jn+1−l(Ṽ ))Jl(−Ṽ )g̃(E − l~Ω)

= − V σz
2i in−1

∑
l

Jn−1−l

(
V σz
~Ω

)
Jl

(
−V σz

~Ω

)
g̃(E − l~Ω)

+
V σz
2i in+1

∑
l

Jn+1−l

(
V σz
~Ω

)
Jl

(
−V σz

~Ω

)
g̃(E − l~Ω)

= − V σz
2i G̃n−1(E) +

V σz
2i G̃n+1(E). (3.32)

Inserting this in Eq. (3.27) we arrive at

G̃n(E) = g̃(E)δn,0 + g̃(E − n~Ω)
(
V σz
2i

)
G̃n−1(E)

+ g̃(E − n~Ω)
(
−V σz

2i

)
G̃n+1(E), (3.33)

which is precisely Eq. (3.25). This confirms that the Matrix Green’s function approach
produces exact results for this case. For the numerical implementation one has to ap-
proximate the Fourier components and truncate the series at an appropriate place to get
finite-dimensional matrices.
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4 Application to the impurity edge system
To apply the matrix Eq. (3.21) from the previous section, we need to write our system
in a particular form. In this section we will derive this specific form for an effective
edge impurity system and introduce scaling and cut-off parameters to obtain useful, finite
dimensional matrices before we will introduce a basic impurity averaging method.

4.1 Impurity Green’s function and dynamic potential
In this section we will derive an equation for the real space Green’s function of the effective
edge Hamiltonian with impurities having a static potential part and dynamic magnetic
moment. This will be done in such way that we can directly apply the matrix Eq. (3.21).
Additionally, we calculate the needed transformation from time to energy domain.

4.1.1 Real-space integral equation

In its most general form the edge Hamiltonian looks like

H = −i~νF∂xσz + V (x) + ~M(x, t)~σ, (4.1)

providing the equation of motion[
−i~∂t + i~νF∂xσz − V (x)− ~M(x, t)~σ

]
G(x, x′, t, t′) = δ(x− x′)δ(t− t′). (4.2)

The diagonal, static contribution V (x) can be treated exactly. Introducing a unitary
matrix

UV (x, x
′) = e

i σz
~νF

(∫ x
−∞ dy V (y)−

∫ x′
−∞ dy V (y)

)
, (4.3)

the Green’s function can be rewritten as

G(x, x′, t, t′) = UV (x, x
′)G̃(x, x′, t, t′). (4.4)

Inserting this into Eq. (4.2) and multiplying by U †
V (x, x

′) from the left provides[
−i~∂t + i~νFσz∂x − U †

V (x, x
′) ~M(x, t)~σUV (x, x

′)
]
G̃(x, x′, t, t′) = δ(x− x′)δ(t− t′) (4.5)

and with the free Green’s function g0(x− x′, t− t′), defined by

[−i~∂t + i~νF∂xσz] g0(x− x′, t− t′) = δ(x− x′)δ(t− t′), (4.6)

we can write this as the integral equation

G̃(x, x′, t, t′) = g0(x− x′, t− t′)

+

∫ ∫
dx1 dt1 g0(x− x1, t− t1)

× U †
V (x1, x

′) ~M(x1, t1)~σUV (x1, x
′)G̃(x1, x

′, t1, t
′). (4.7)
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This is an integral equation for G̃(x, x′, t, t′) and the corresponding integral equation for
G(x, x′, t, t′) can be found by multiplying with UV (x, x

′) from the and applying Eq. (4.4).
The result is

G(x, x′, t, t′) = g(x, x′, t− t′)

+

∫ ∫
dx1 dt1 UV (x, x

′)g0(x− x1, t− t1)

× U †
V (x1, x

′) ~M(x1, t1)~σG(x1, x
′, t1, t

′). (4.8)

Here we used the corresponding definition of Eq. (4.4) for g0. This can be further simplified
by noticing that UV and g0 are diagonal matrices and therefore commute. We can calculate

UV (x, x
′)g0(x− x1, t− t1)U

†
V (x1, x

′) = UV (x, x
′)U †

V (x1, x
′)g0(x− x1, t− t1)

= UV (x, x1)g0(x− x1, t− t1)

= g(x, x1, t− t1) (4.9)

and write Eq. (4.8) as

G(x, x′, t, t′) = g(x, x′, t− t′)

+

∫ ∫
dx1 dt1 g(x, x1, t− t1) ~M(x1, t1)~σG(x1, x

′, t1, t
′). (4.10)

Note that up to this point no further assumptions on the form of V (x) and ~M(x, t)~σ have
been made. The calculations have shown, that in principle a static magnetic part in z-
direction can be absorbed into the free Green’s function g(x, x′, t− t′) as an overall phase
factor, but at the cost of losing the overall translational invariance of the free Green’s
function g. The practical limitations are then, that V (x) is t-independent and that the
integral in the exponent in Eq. (4.3) can be solved. Whether or not that is viable is a
separate consideration.The main concern for the next step is the form of the magnetic
contribution ~M(x, t)~σ.

4.1.2 Dynamic impurity matrix Green’s function

We now want to introduce the impurity nature of the perturbation by setting

~M(x, t)~σ =
∑
l

~Ml(t)~σδ(x− xl). (4.11)

This enables us to evaluate the x-integral in Eq. (4.10) and write

G(x, x′, t, t′) = g(x, x′, t− t′) +
∑
l

∫
dt1 g(x, xl, t− t1) ~Ml(t1)~σG(xl, x

′, t1, t
′). (4.12)

By evaluating this equation at the impurity positions we can write

G(xm, xn, t, t
′) = g(xm, xn, t− t′)

+
∑
l

∫
dt1 g(xm, xl, t− t1) ~Ml(t1)~σG(xl, xn, t1, t

′)

= g(xm, xn, t− t′)

+
∑
l

∑
k

∫
dt1 g(xm, xl, t− t1)( ~Ml(t1)~σδl,k)G(xk, xn, t1, t

′), (4.13)
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where we introduced an additional sum over a Kronecker-delta in the last step. By defining
the matrix notation

[G(t, t′)]m,n = G(xm, xn, t, t
′), (4.14a)

[g(t− t′)]m,n = g(xm, xn, t− t′), (4.14b)
[M(t)]m,n = ( ~Mm(t)~σ)δm,n, (4.14c)

we can write the integral equation in full matrix form as

G(t, t′) = g(t− t′) +

∫
dt1 g(t− t1)M(t1)G(t1, t

′) (4.15)

which has precisely the form of Eq. (3.3), such that we can apply the formalism constructed
in section 3 and solve the corresponding matrix Eq. (3.16) to find the Green’s function for
the dynamic impurity problem.

Note that the matrix form with the impurity indices is enabled by the delta-shape of
the impurities, not the form of ~Ml(t)~σ, thus it is in principle also possible to treat dynamic
potential parts by adapting the matrix M(t). Similarly static diagonal contributions can
be incorporated in g(t − t′). In this form we can also see, that information about the
impurity positions in the equation for G(t, t′) is contained in g(t− t′), while information
about the impurities themselves, i.e. strength of the individual δ-impurities, is contained
in M(t).

4.1.3 Transformation to energy domain

To apply the matrix Eq. (3.21) we now have to calculate the potential impurity Green’s
function in Energy domain g̃(E). It is the Fourier transform of g(t − t′) and can be
calculated block-wise via the free Green’s function and the unitary UV (x, x

′) according
to Eq. (4.4). The free real-space Green’s function in Energy domain is also used for the
static impurity case [34] and reads

g0(x− x′, E) =
−i
2~νF

[
e

E(x−x′)
~νF θ(x− x′)(1 + σz)

+e
−E(x−x′)

~νF (1− θ(x− x′))(1− σz)

]
. (4.16)

The calculations can be found in Appendix A.2. We can also evaluate the integral in the
exponential in UV (x, x

′) if we insert the potential part of the impurities

V (x) =
∑
l

Vlδ(x− xl). (4.17)

and find

UV (x, x
′) = e

i σz
~νF

∑
l Vl(θ(x−xl)−θ(x′−xl)). (4.18)

Evaluation at the impurity positions, remembering to treat the Heaviside functions in a
weak sense, i.e. limx→0 θ(x) = 1/2, then gives the blocks of g̃(E).
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FIG. 4.1: Nimp rotating impurities (yellow arrows) in a finite interval (0, L)

4.1.4 Fourier decomposition of the potential matrix

This far we have not specified the exact form of ~Ml(t)~σ. The formalism allows for any
time-periodic function here, but we are interested in a particularly easy case, namely
harmonically driven, equal impurities rotating in the x-z-plane. That means, we assume
~Ml(t) =M0(sin(Ωt), 0, cos(Ωt)) for all l. Writing the sin / cos-functions as complex expo-

nentials we can then calculate

~Ml(t)~σ =M0(sin(Ωt)~ex + cos(Ωt)~ez)~σ =
M0

2i
(σx + iσz)e

iΩt − M0

2i
(σx − iσz)e

−iΩt. (4.19)

In this form we can immediately identify the diagonal blocks of V+ to be M0

2i
(σx + iσz)

and we have found all parts we need to calculate the full Green’s function.

4.2 Parameters and scaling
For the numerical implementation we want to write the input parameters in appropriate
units. Similarly, we have to take a look at the numerical parameters in order to have a
finite dimensional problem and still find physically relevant results.

If we look at an impurity system with Nimp static impurities placed in an interval
(0, L), i.e. M(x) =

∑Nimp

l=1 Mδ(x− xl) where xl ∈ (0, L) (compare Fig. 4.1, for details on
projecting the 3D impurity distribution onto the edge state see Ref [34]), we can write the
average magnetization ∆ as

∆ =
1

L

∫ L

0

M(x) dx =

Nimp∑
l=1

M
1

L

∫ L

0

δ(x− xl) dx︸ ︷︷ ︸
=1

=
Nimp

L
M = nM (4.20)

with the impurity density n =
Nimp

L
. Here we can interpret the interval with the static im-

purities as a barrier with an average magnetization ∆, i.e. H(x) = ~νFkσz+∆σx(θ(x)θ(L−
x)). Assuming xl 6= xk for any two impurities l and k, the continuous limit n→ ∞ while
∆ = nM = const. results in precisely this Hamiltonian. This justifies the interpretation
as a barrier. From the calculations in section 2.4.3 we know that a homogeneous magne-
tization ∆ in x-direction opens a gap with edges at E = ±∆. This motivates measuring
the energy in terms of this gap size ∆.

In the barrier picture we can also solve the stationary Schrödinger equation explicitly.
Outside the barrier the two components decouple and we get counter-propagating free
waves ∝ exp(±iE/(~νF )x) in the upper/lower component. Inside the magnetic barrier
the Schrödinger equation reads (suppressing the arguments of the wave function)

(−i~νFσz∂x +∆σx)Ψ = EΨ. (4.21)
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This can be written as a set of coupled ordinary differential equations

∂xΨ1 = iẼΨ1 − i∆̃Ψ2 (4.22a)
−∂xΨ2 = iẼΨ2 − i∆̃Ψ1, (4.22b)

where Ẽ = E/~νF and ∆̃ = ∆/~νF . For x < 0 and x > L (outside the barrier) these decouple
and give the plane wave solutions mentioned earlier. Eq. (4.22a) can be rewritten as

Ψ2 =
i
∆̃
∂xΨ1 +

Ẽ

∆̃
Ψ1 (4.23)

and inserted into Eq. (4.22b). The first derivatives cancel out and multiplying by i∆̃ leads
to

∂2xΨ1 = (∆̃2 − Ẽ2)Ψ1. (4.24)

The same equation is found in a similar manner for Ψ2. This shows that the wave equations
will be super-positions of exp(±

√
∆̃2 − Ẽ2x). The exact form can be found demanding

continuity at the barriers edges. We will find an exponential decay into the barrier with
a decay length (at E = 0) of l∆ = 1/∆̃ = ~νF/∆. An important thing to notice is that due
to the E-dependence of the decay length we will not get sharp edge boundaries, since for
energies close to the gap edge we will get tunneling and there will be states penetrating
the gap.

The decay length can be related to the impurity strength via ∆ = nM and ∆̃ = ∆/~νF
which motivates giving M in units of ~νF . Furthermore, we can relate the impurity
strength to the size of the system via the impurity density like

l∆ =
1

n M
~νF

=
1

Nimp

L
M
~νF

⇒ L

l∆
= Nimp

M

~νF
. (4.25)

By choosing L/l∆ to be big enough, so we do not get significant tunneling through the
barrier (say L/l∆ = 6 → 8), and choosing the impurity strength we can calculate the
number of impurities in the system needed to avoid significant tunneling. Additionally,
we have to ensure that we have enough impurities to be able to see multi-impurity effects.

The last physical parameter that has to be considered is the driving frequency Ω.
There are two separate approaches that lead to the same conclusion. Firstly, we can
consider the response time of the system with regards to a change from a gapped to an
ungapped state. This will be done in a later section. Alternatively, we can simply notice
that in the matrix Eq. (3.21) ~Ω will always appear in the argument of the free Green’s
function added to the energy E. Thus, giving ~Ω on the same scale as E is the natural
choice.

In summary our input parameters for the numerical model will be M/~νF for the mag-
netic strength, V/M for the potential strength, E/∆ for the energy and ~Ω/∆ for the driving
frequency. Additionally, we introduced the parameter L/l∆ that controls the system length
and determines the number of impurities via 4.25.

The numerical parameters are the number of Fourier components determined by the
biggest Fourier index nmax, and the number of impurity averaging runs nruns, that will
be discussed separately in the following chapters.
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4.2.1 Realistic parameters

While the numerical parameters will be given by practical considerations, the physical
parameters can be chosen somewhat freely. In our previous work Ref. [34] for static
impurities the connection between 3D impurities in a realistic system and the effective
1D impurity strength has been drawn. This was done by projecting δ-impurities in a 3D
system onto the edge states. The results translate to 0.02 < M/~νF < 0.4 as a realistic
range for the magnetic impurity strength.

In realistic systems finite size effects that open a gap by coupling opposing edges need
to be taken into account [36, 57]. Since we are using an effective single edge model,
starting out from an infinite half-plane with only one edge, these effects are excluded
from our calculations and do not need to be considered.

For numerical reasons, however, we need to avoid impurities being placed too closely
together. We can manually place a lower bound on the impurity distance when creating
random impurity distributions. If we choose the minimal distance to be ∆imps = 10−6L
we can calculate

∆imps = 10−6 = 10−6 · 8l∆ = 8 · 10−6 1

nM
(4.26)

Typically, we will have values of M/~νF = 0.2 and 3D doping densities of n3D ≈ 1013 −
1017 1/cm [4] which translates to a 1D doping density of n1D = 3

√
n3D ≈ 104 − 106 1/cm.

Inserting this leaves us with ∆imps ≈ 10−2 − 10−4 1/nm, so the minimal impurity distance
is approximately in the Å-range. Considering the lattice constant in HgTe and InAs is
approximately 0.6Å, this minimal impurity distance is a reasonable choice.

4.3 Fourier component estimates
In addition to a finite number of impurities, to end up with a finite dimensional matrix
equation that can then be solved numerically the Fourier series for G(t, E) has to be
truncated. Finding suitable truncation indices can be approached in two different pictures
and here we will discuss these approaches to find reasonable truncation indices for the
Fourier series for different driving regimes.

System response time If we look at the energy range around the gap, we can look at
the dynamics in a static gapped and a static ungapped system , i.e. impurities aligned
in x/z–direction respectively. In both cases the system can be diagonalized and we can
write the time evolution operator as

U(t) = exp

((
iE+

~ t 0

0 iE−
~ t

))
, (4.27)

where E± are the respective eigen-energies of the system. For the gapped system they are
E± = ±

√
∆2 + (~νFk)2 and for the ungapped system E± = ±(∆ + ~νFk). Since we are

using the effective edge Hamiltonian, we consider momenta k well within the bulk band
edges and as a rough estimate for the fastest dynamics 2∆/~ shall suffice. That means, in
the dynamic system around the band gap no effects faster than this should occur and
Fourier components with frequencies higher than 2∆/~ will be sufficiently small. Since the
Fourier decomposition is performed in terms of the driving frequency Ω, we can require
2∆/~Ω . nmax for the cut-off. Here we can again see that scaling ~Ω similar to the Energy
is the most natural way for a reasonable scaling.
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Band structure Alternatively, we can look at the quasi-energy band structure given
by the eigenvalues En of the Floquet Hamiltonian. The Floquet Hamiltonian can be
calculated similarly to section 2.3.1. Consider a homogeneous rotating magnetic field,
i.e. a Hamiltonian H = H0 + ∆(sin(Ωt)σx + cos(Ωt)σz). In momentum domain the
Hamiltonian reads H0(k) = ~νFkσz and we have a two-level system for a fixed value of
k. Similar to section 2.3.1, we can use the Floquet Hamiltonian and, after truncating,
calculate the eigenvalues to find a quasi-band structure. Firstly, note that the quasi
energies follow the rule En = E0 − n~Ω, so every Fourier component corresponds to a
quasi energy in the band structure that is shifted by ±~Ω. The off-diagonal blocks in the
Floquet Hamiltonian introduce a coupling between these branches. If the Fourier series
is truncated at nmax, higher bands and the coupling to them is not considered. This can
be seen by a violation of the periodicity condition En = E0 − n~Ω and means that to get
reasonable results we need to make sure we carry enough Fourier components such that
the quasi-energies in the desired energy range are periodic. The periodicity of the quasi-
energies indicates whether the cut-off for the Fourier series was large enough. Naturally,
this means that the cut-off will also be determined by the energy range in which the
density of states is to be calculated.

Alternatively to calculating the band structure directly, we can use the matrix
Eq. (3.21) and truncate it to calculate G0(k,E) explicitly. For nmax = 2 this gives

G0(k,E) =

(
1− g̃(k,E)

[
V+

g̃(k,E + ~Ω)
1− g̃(k,E + ~Ω)V+g̃(k,E + 2~Ω)V †

+

V †
+

+V †
+

g̃(k,E − ~Ω)
1− g̃(k,E − ~Ω)V †

+g̃(k,E − 2~Ω)V+
V+

])−1

g̃(k,E) (4.28)

and via the spectral function the band structure can be calculated. Integration over the
momentum k then gives the density of states DOS(E), which can not be achieved as easily
with the direct approach via the diagonalized Floquet Hamiltonian. This approach is
equivalent to the matrix continuous fraction method used to solve other harmonically
driven systems [31, 44]. For solving our system like this, a limitation is that we need to
add a small imaginary part to the energy in the free Green’s function for convergence.
This imaginary part leads to a broadening of the quasi-band structure branches. That
means, to get the correct result in the numerical integration the k-resolution, at least
around the peaks, has to be high enough, which poses an additional numerical challenge.
In principle the broadening affects branches of the same sub band equally, but different
sub bands will be affected differently. This symmetrical broadening is comparable to
the broadening caused by the self-energy in the (self-consistent) Born approximation for
the static case for purely electric impurities [34]. The asymmetric behavior due to the
interaction of the magnetic and potential part can possibly be modeled by adding small
off-diagonal imaginary parts. Another drawback is that the explicit solution for higher
cut-offs involves many matrix inversions and will thus get numerically expensive. Since
we will only use this method to get rough estimates for the cut-off, we limit ourselves to
nmax = 2 as calculated above. For driving frequencies corresponding to energies bigger
than the barrier height this should lead to reasonable results.

In the following subsections we will compare the two band structure approaches for
different driving frequencies, put them into context with the response time approach and
motivate suitable cut-offs for the impurity system.
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4.3.1 High frequency limit

In the high frequency case the separation of the quasi-energy bands is large compared
to ∆. The gap size coming from the coupling between the sub bands will be governed
by ∆, which in turn means we need to investigate an energy range around ~Ω/2 and
expect resonances with a width of around ∆. To see these resonances we need an energy
resolution lower than ∆. Figure 4.2 shows the results of the two quasi band structure
approaches. For the matrix equation case an imaginary part of 10−2 was added in the
free Green’s function. From the response time considerations we expect to need only
very few Fourier components and as expected the weight of the first sub band is very
low compared to the main band. It can be seen in the inset that focuses on the area of
the first crossing. Nonetheless, the avoided crossings lead to resonances in the density of
states at E = ±~Ω/2, as expected, while crossings with the next sub band are not visible
at all. Overall, the matrix Green’s function band structure coincides with the direct quasi
band structure as expected and keeping additional Fourier components (gray dashed lines)
does not influence the lower bands. A very low number of Fourier components will give
reasonable results.

high

In
te

n
si

ty
 (

a.
u
.)

FIG. 4.2: Band structure calculated directly from the Floquet-Hamiltonian (right; red and
Grey dashed lines) and directly by keeping the first two Fourier components (right; heatmap)
for a homogeneous dynamic magnetic barrier and density of states via integration of the heatmap
(left). Floquet parameters: ~Ω/∆ = 50.0, nmax = 2 (red) and nmax = 10 (gray).

4.3.2 Around resonance

If we consider driving frequencies closer to ∆/~, which we call resonance from here on,
the picture changes. Figure 4.3 shows the results for ~Ω/∆ = 0.9 with an imaginary part
of 10−3 in the free Green’s function. As expected, the direct quasi band structure for
nmax = 2 (red lines) matches the results of the matrix Green’s function heatmap. It is
clearly visible that the highest bands carry very little weight in this case. Nevertheless,
the influence of the higher bands cannot be neglected as the quasi energies are clearly not
periodic and the shape of the bands significantly changes when truncating at nmax = 10
(gray dashed lines). This is a good visualization for the fact that it is important to carry
the higher bands even though the Fourier components will be very small. In this case it
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means that we need to carry more than two Fourier components to get reasonable results.
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FIG. 4.3: Band structure calculated directly from the Floquet-Hamiltonian (right; red and
gray dashed lines) and directly by keeping the first two Fourier components (right; heatmap) for
a homogeneous dynamic magnetic barrier and density of states via integration of the heatmap
(left). Floquet parameters: ~Ω/∆ = 0.9, nmax = 2 (red) and nmax = 10 (gray).

The results for ~Ω/∆ = 2.0 plotted in Fig. 4.4 interestingly show a slightly different
picture. Again for nmax = 2 the spectrum of the Floquet Hamiltonian (red lines) matches
the heatmap (calculated with an imaginary part of 10−3 in the free Green’s function), but
here the results for nmax = 10 (gray dashed lines) do not significantly differ in shape for
the populated bands. We can observe a small shift in the band edges, so the edges in the
density of states will be slightly shifted towards the gap center.
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FIG. 4.4: Band structure calculated directly from the Floquet-Hamiltonian (right; red and
gray dashed lines) and directly by keeping the first two Fourier components (right; heatmap) for
a homogeneous dynamic magnetic barrier and density of states via integration of the heatmap
(left). Floquet parameters: ~Ω/∆ = 2.0, nmax = 2 (red) and nmax = 10 (gray).
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4.3.3 Low frequency limit

For frequencies well below the resonance the response time of the system already suggests
that truncation at nmax = 2 will not give reasonable results and thus the heatmap plot
has been disregarded here. In Fig. 4.5 the results of the direct band structure calculations
for ~Ω/∆ = 0.2 can be seen for different cut-offs. While the response time considerations
suggest that not more than ten bands will be populated, we can clearly see that for
nmax = 10 (blue, right) the periodicity condition is violated. For nmax = 25 (red, left) the
bands are periodic and the results will be reasonable.
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FIG. 4.5: Band structure calculated directly from the Floquet-Hamiltonian for a homogeneous
dynamic magnetic barrier. Floquet parameters: ~Ω/∆ = 0.2, nmax = 25 (red) and nmax = 10
(blue).

4.4 Impurity averaging
Solving the matrix Eq. (3.21) allows us to calculate the Green’s function and therefore the
density of states for one specific impurity distribution. That could be measured by probing
the density of states or spectral function locally, for example at an impurity site. In reality
we are usually not interested in these local properties, but in averages over larger areas
that govern for example the transport properties. They can be accessed by averaging over
many local measurements or probing larger areas. Therefore, we will employ a numerical
impurity averaging procedure by creating random impurity distributions and averaging
over the density of states in the center of the impurity region for a large number of random
distributions. We use the results for the center impurity to avoid tunneling contributions
due to the finite system length. This averaging method corresponds to lining up many
random impurity areas up to a long, realistic system. Note here, that M(t), and therefore
V±, does not change for different impurity distributions (we assume a uniform rotation
of all the magnetic moments) with the same number of impurities. Only g̃(E) has to be
adapted for each impurity distribution.

The program has been run in 10 batches of 100 random impurity distributions, mean-
ing the Green’s function was calculated for 100 random impurity distributions, averaged
over these, saved to a file and then repeated 10 times. This was done mainly do avoid
filling the hard drive with unnecessary data, since we are not interested in the results
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for single distributions. Running it in these smaller batches still gives a way of check-
ing the convergence, without saving an excessive number of files. The batch size can be
adapted in the program if the convergence is ensured otherwise. To get the end result of
nruns = 1000 impurity averaging runs the average over these 10 batches is calculated. If
we denote the results of single batches by DOSi(E) we can write the standard deviation
from the end result DOS(E) for N = 10 batches as

Std(E) =

√∑N
i=1 (DOSi(E)−DOS(E))2

N − 1
. (4.29)

To see the effect of averaging over more impurity distributions we can replace DOSi(E)
with means of several batches, i.e. using for example all possible combinations of two
distinct batches (corresponds to averaging over 200 impurity distributions), and take the
standard deviation over all these combinations. In the case of N = 2 this means we
take every possible distinct combination of two batches and calculate the average for all
the combinations. That leaves us with 10!/(10 − 2)! possible results for averaging over
200 impurity distributions that we can calculate from our 10 batches. For these then
the standard deviation from the average over all runs is calculated. Figure 4.6 shows the
resulting averaged density of states (bottom) along with the standard deviation from the
results for every possible combination of batch-averages for the given number of runs for
typical parameters. It can be seen that the biggest standard deviation for averages over
900 runs is around 0.01 , which means, that if we take the average over any 9 of the
batches instead of all 10 batches, the result will on average not differ more than that.
This shows that the impurity averaging already converges well enough to not obstruct the
prominent features. This is also the case for other relevant parameters, for some of which
similar plots can be found in Appendix C.
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FIG. 4.6: Standard deviation from the mean over 10 batches (100 runs per batch) for all
possible combinations of N batches. Floquet parameters: ~Ω/∆ = 2.0, nmax = 6. Impurity
parameters: M/~νF = 0.2, V/M = 0, L/l∆ = 8.0
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5 Results and discussion
In this chapter we will solve the matrix Eq. (3.21) for reasonable parameters and compare
the resulting density of states for equally spaced impurities that can be seen as a discrete
limit of a homogeneous barrier with results for randomly distributed impurities with
impurity averaging. Additionally, we will compare to appropriate results obtained by
other means. The discussion will be divided into two parts. Firstly, a part dealing with
purely magnetic impurities that can be directly compared to different approaches for a
homogeneous barrier and, secondly, a section where we investigate the influence of the
potential part more closely. Note here, that the results are the impurity averaged density
of states at the center of the impurity region, i.e. to calculate the density of states the
sub-matrix of G(E) corresponding to the impurity closest to the center is picked. This
is done to minimize tunneling contributions and to be able to compare to realistic, much
bigger systems, as already discussed in section 4.4.

5.1 Purely magnetic impurities
As before, the discussion focuses on the high–, resonant– and low–frequency case sepa-
rately.

5.1.1 High frequency limit

For high driving frequencies we expect a flat density of states for an energy range of a
few ∆ around 0 and additional resonances at E = ±~Ω/2. Thus, the energy range has
been chosen large compared to the static impurity gap size. In Fig. 5.1 the density of
states for equally (blue) and randomly distributed (red) impurities for ~Ω = 50.0 along
with the density of states from the homogeneous barrier (gray dashed) from Fig. 4.2 (left)
is shown. As expected, the resonances at E = ±~Ω/2 can be seen in all three curves
and while the random impurity curve matches the homogeneous barrier very well, there
are additional resonances in the equally distributed impurity case. The regular structure
and the fact that the resonances are not present in the impurity averaged case hint at a
connection to the equal spacing of the impurities. For random impurity distributions the
resonances at E = ±~Ω/2 can also be seen, but there are no distinct additional resonances
as the curves look mainly like noise (not shown). The spacing changes for different
impurity strength M (not shown). Since the numerical model determines the number of
impurities in the interval, and thereby the impurity distance, via the impurity strength, it
is not obvious whether the effect depends on the impurity strength, the position/distance
or both. This could in principle be investigated closer with slight alterations in the
program and parameters. Furthermore, for different, high driving frequencies (not shown)
the features also move in such a way that resonances lie at E = ±~Ω/2 and a coincidental
match can be excluded. The higher order resonances at E = ±3~Ω/2 are not visible in
any of the curves. Since in the static case the impurities lead to a broadening of the
branches in the band structure, the higher order resonances could be very narrow and are
thus likely washed out and thereby suppressed.

5.1.2 Around resonance

Figure 5.2 shows the density of states for two different frequencies around the resonance.
As expected from the considerations in section 4.3, the results from the homogeneous
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FIG. 5.1: High driving frequency density of states as a function of energy for equally distributed
impurities (blue), random impurities averaged over Nruns = 1000 distributions (red) and for a
homogeneous barrier keeping two Fourier components (gray). Floquet parameters: ~Ω/∆ = 50.0,
nmax = 3. Impurity parameters: M/~νF = 0.2, L/l∆ = 8.0

barrier (gray dashed) do not match very well for ~Ω/∆ = 0.9 (upper). Interestingly,
the biggest resonance peaks still match the position of the main peaks for the equally
distributed (blue) and random (red) impurities but coincidence cannot be excluded from
this. For ~Ω/∆ = 2.0 (lower) the gap positions for equally distributed (blue) and random
(red) impurities follow the predictions from the homogeneous barrier with a slight shift
towards E = 0. This is consistent with the observation that higher bands in this case only
push the lower bands towards the center, while they do not change the shape of the bands
significantly. The impurity nature of the system in both cases washes the structures out
and as expected that effect is stronger for the impurity averaging case when compared to
the equally distributed impurities.

In both cases we can also observe that the density of states is flat for bigger energies
and that the deeper dips lie closer to the center. This suggests that the higher quasi
energy bands cannot be populated. Since higher bands correspond to higher Fourier
components and therefore a faster dynamic, these findings are consistent with the response
time considerations from section 4.3. Additionally, for energies beyond the static band
gap edge ±∆ tunneling trough the barrier should become significant and may contribute
to this effect.

5.1.3 Low frequency limit

As before, the density of states for the homogeneous barrier truncating at nmax = 2 will
not be usable in the low frequency case. Since in the low frequency limit the response
time of the system is much faster than the rotation of the impurities, we can assume the
density of states at a time t to correspond to the static density of states for the impurity
orientation at that time. The density of states from the matrix Green’s function being the
average over one driving period allows us to compare the numerical results to the average
over the density of states for several static impurity orientations. The results for the
static cases have been calculated via the self-consistent Born approximation described
in Ref. [34]. Figure 5.3 shows the results from the numerical approach again for equally
spaced impurities (blue), impurity averaging (red) and averaging over static impurity
densities of states (gray dashed), matching reasonably well.

We can better understand the shape of the density of states in the picture of the quasi

31



-5 -4 -3 -2 -1 0 1 2 3 4 50

1

2

3

4
D

O
S(

E)
/ = 0.9 eq. distributed imps.

random imps.
barrier, 2 FC

-5 -4 -3 -2 -1 0 1 2 3 4 5
E/

0

1

2

3

4

D
O

S(
E)

/ = 2.0 eq. distributed imps.
random imps.
barrier, 2 FC

FIG. 5.2: Density of states as a function of energy for equally distributed impurities (blue),
random impurities averaged over Nruns = 1000 distributions (red) and for a homogeneous barrier
keeping two Fourier components (gray) for driving with ~Ω u ∆. Floquet parameters: ~Ω/∆ =
0.9, nmax = 10 (top) and ~Ω/∆ = 2.0, nmax = 6 (bottom). Impurity parameters: M/~νF = 0.2,
L/l∆ = 8.0

energy sub bands. From previous considerations we know that we need a big number
of sub bands. The sub bands corresponding to a frequency close to the resonance of
the system will be the preferred sub band while the lower bands are progressively less
populated and thereby lead to the descending shape of inside the static gap. The biggest
difference between the self-consistent Born approximation average and the matrix Green’s
function results is the behavior around E = 0, where the former declines almost to zero,
while the latter match very well and take on a finite value. This can be explained
taking into consideration, that the self-consistent Born approximation treats an infinite
impurity region, while in the numerics the impurity region is finite and thus for small
gaps tunneling through the impurity region contributes to the density of states.
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FIG. 5.3: Low driving frequency density of states as a function of energy for equally distributed
impurities (blue), random impurities averaged over Nruns = 1000 distributions (red) and via
averaging over static self-consistent Born approximation results (gray). Floquet parameters:
~Ω/∆, nmax = 25. Impurity parameters: M/~νF = 0.2, L/l∆ = 8.0, SCBA: average over results for
1000 static impurity orientations equally distributed in the x− y-plane.
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5.2 Influence of the potential part
The previous section introduced the impurity nature of the system for purely magnetic
impurities. It already became apparent that the impurities lead to a broadening of the
resonances. From the homogeneous barrier the positions of the resonances can still be
predicted, but there the potential part will only lead to a shift of the density of states
by V , while it stays symmetric around the gap center. For static impurities the impurity
potential part introduces an asymmetry and ultimately flattens the density of states [34].
This can be explained by comparing to the homogeneous case and looking at the heatmap
plots in section 4.3. In the heatmaps, e.g. Fig. 4.2, it is clearly visible that some bands
carry more weight than others. The potential part now causes an energy shift that moves
the features away from the area, where the bands carry weight. Especially, if the potential
part moves the features up in energy, the features below the center gain weight and will
enhanced until they pass the center, while the features above are weakened. We expect a
similar behavior in the dynamic case. As before three separate driving frequency ranges
are investigated.
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FIG. 5.4: High driving frequency density of states as a function of energy for different potential
strengths with details around one resonance. Floquet parameters: ~Ω/∆ = 50.0 and nmax = 3.
Impurity parameters: Nruns = 1000, M/~νF = 0.2, L/l∆ = 8.0

5.2.1 High frequency limit

For the high frequency case we again chose the number of Fourier components according
to the estimations earlier. In Fig. 5.4 the density of states for different potential strengths
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is shown. Again we can see resonances at ±~Ω/2∆, while the higher resonances at ±3~Ω/2∆
do not appear. For small potential parts they are simply shifted by V and show a slight
asymmetry, while for strong potentials they disappear completely and we find a flat density
of states. This is an inherent property of the magnetic impurity system, since for a barrier
the potential contribution merrily shifts the level energy levels equally. In the static
impurity case the potential contribution leads to a non-zero imaginary self-energy in the
Dyson-equation [34] and thus broadens the energy branches. Similarly, this effect washes
the dynamic resonances out.

5.2.2 Around resonance

For the two cases around resonance, displayed in Fig. 5.5, the asymmetry introduced by
the potential part is well visible. Small values sharpen some of resonance visibly, while for
rising potential part the density of states quickly flattens. For ~Ω/∆ = 2.0 (blue) the first
resonance below zero is already shrinking at V = 1.0 while for ~Ω/∆ = 0.9 (red) this does
not seem to be the case. The driving frequency might have an effect on how strong the
influence of the potential part is. Looking at development until V = 5.0 one can suspect
that the lower driving frequency reduces the flattening due to V , but it is not entirely
clear from this data.
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FIG. 5.5: Density of states as a function of energy for different potential strengths for driving
with ~Ω u ∆. Floquet parameters: ~Ω/∆ = 2.0, nmax = 6 (blue) and ~Ω/∆ = 0.9, nmax = 10
(red). Impurity parameters: Nruns = 1000, M/~νF = 0.2, L/l∆ = 8.0
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5.2.3 Low frequency limit

In the low frequency limit we can again compare the numeric results to the self-consistent
Born approximation averaged over many impurity orientations , since the response time
of the system is much faster than the driving. Figure 5.6 shows the matrix equation results
(blue) along with the self-consistent Born approximation results (gray). The curves match
reasonably well, only showing a slight shift, confirming that the average over static results
is suitable for the slow driving case. As the matrix equation in the static case reduces
to an equation matching the self-consistent Born approximation very well [34] this is not
surprising and confirms that there are no additional effects when driving significantly
slower than the system response time.

-2 -1 0 1 20

1

2
V/M = 0.0

rand. imps.
SCBA

-2 -1 0 1 20

1

2
V/M = 1.0

-2 -1 0 1 20

1

2

D
O

S(
E) V/M = 2.0

-2 -1 0 1 20

1

2
V/M = 2.5

-2 -1 0 1 2
(E V)/

0

1

2
V/M = 5.0

FIG. 5.6: Density of states as a function of energy for different potential strengths from the
matrix equation (blue) and via averaging over static self-consistent Born approximation results
(gray). Floquet parameters: ~Ω/∆ = 0.2 and nmax = 25. Impurity parameters: Nruns = 1000,
M/~νF = 0.2, L/l∆ = 8.0, SCBA: average over results for 1000 impurity orientations equally
distributed in the x− y-plane.
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6 Summary and outlook
Here we will give a short summary of the results of this thesis, also considering the
methods and limitations. Moreover, we will give an overview over which aspects might
deserve further investigation and in what direction the project will be developed for the
preparation of a manuscript.

In section 1, after a brief overview over the field and the history of TIs, we gave a
visualization of the model we are working with in this thesis. Section 2 addressed the
basic toolkit and introduced the model Hamiltonian on which this thesis is build. The
concept of the single particle Green’s function has been established to access the density
of states of a system via the spectral function. The necessary basics of Floquet theory
have been explained and applied to a two-level system. Subsequently, the BHZ model
has been introduced. To construct the random edge impurity Hamiltonian Eq. (2.39),
the effective 2 × 2 edge Hamiltonian has been presented and after demonstrating the
effects of a magnetic field in this system, the impurity potential has been introduced. The
main limitation of this effective edge Hamiltonian is that it neglects the presence of bulk
states and is only valid for energies well within the bulk band gap, defined by the BHZ
parameters. In our case, this limitation is not very severe due to the scaling in terms of
the static impurity gap ∆ = nM we applied. By tuning the impurity density, in principle,
we can always choose to operate on a small enough energy scale. To compare with a real
experiment, one would then have to check, if the parameters are in a range, where our
model is applicable. To investigate the effect taking in consideration the in the bulk
states the full 4× 4 BHZ Hamiltonian would have to be considered.

Since one of the most important parts of the problem is finding the Green’s function,
section 3 was dedicated to deriving a very general matrix equation for a broad range of
time-periodic Hamiltonians. The derived matrix Eq. (3.16) can also be solved for more
complicated periodic Hamiltonians, although the numerical costs can be very high, since
then the block-tridiagonal structure is lost. For harmonically driven systems Eq. (3.21)
follows directly and this is the main result that was used in the following chapters.

Section 4 was dedicated to applying the matrix Eq. (3.21) to our model Hamiltonian.
A big part of this was finding suitable finite cut-offs for the model, so the matrix equations
can be numerically solved. On the one hand the impurity system leads to a 2Nimp×2Nimp

matrix (factor two due to the spin), so the number of impurities has to be limited. That
has to be done considering tunneling through the impurity region as well. On the other
hand it is important to get a reasonable cut-off for the Fourier series expansion of the
Green’s function. It turned out that to get a valid results, not only the response time of
the system has to be considered, but also the shape of the Floquet sub bands. The quasi-
band structure has been found for a homogeneous magnetization that can be treated in
momentum space via the matrix Eq. (3.21). This combination leads to the result that for
small driving frequencies the number of Fourier components that need to be carried is a
lot higher than for high frequency driving. That means that slow driving is numerically
more expensive in this model. Finally, to treat the random impurities, we introduced an
impurity averaging procedure.

The results were presented in section 5 in the form of density of states plots. As in
section 4, the discussion was divided in low, resonance and high frequency driving. First
the three cases were treated for purely magnetic impurities. The considerations in section
4 have been used as a comparison here, along with results for equally spaced impurities.
The equally spaced impurities can be seen as a discrete limit of a homogeneous magnetic
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barrier and are therefore suitable as a comparison. The density of states plots show the
influence of the random impurities on the system. In the resonance case instead of sharp
resonances the peaks for random impurities are strongly broadened, while for fast driving
the low energy density of states is flat. For higher energies peaks related to the Floquet sub
band crossings appear. Equally spaced impurities lead to additional, somewhat regular
resonances. For slow driving the results match well with the average over the density
of states for static systems with different impurity orientations. These averages have
been calculated using methods from an earlier work [34], namely the self-consistent Born
approximation. Similar to our previous works, here the influence of the potential part
was considered. As expected from the results for static impurities, the features in the
density of states get flattened for increasing potential part in all considered cases. For a
high enough potential part the density of states is flat again, as is the case for a clean
system.

Within this project there are some parts that have not been investigated in detail. For
example, the additional resonances appearing for equally spaced impurities have not been
fully explained. The most obvious explanation would be a Fabry-Pérot like resonance
behavior due to the equal spacing, but to get certainty about that a closer investigation
is needed.

Secondly, this model is focusing on the rotation of impurities in the x-z-plane. Due
to the general form of Eq. (3.21) it is easily possible to adapt the model for a rotation,
for example in the x-y-plane. That particular case would be interesting, since the density
of states in the static case does not depend on the orientation of the magnetic moment
in the x-y-plane. For slow driving one would expect a gapped density of states exactly
like the static case, while for fast driving the magnetic moments should average out and
give a flat density of states again. The transition between these two limit cases could
potentially be interesting.

The general nature of Eq. (3.21) also allows to treat cases like purely electric periodic
impurities. It might be interesting to compare the results this model produces with results
for a single dynamic electric impurity like in Ref. [31], especially since solving the matrix
equation should be equivalent to the matrix continued fraction method used there.

In previous works we also used the self-consistent Born approximation for static im-
purities. Similar to what has been done on Ref. [34], we should be able to apply the
self-consistent Born approximation to the Floquet-Hamiltonian of the impurity system.
Note here, that this is not the comparison that has been made for the low frequency case,
since there we averaged over results for static impurities. Applying the self-consistent
Born approximation to the Floquet-Hamiltonian would allow us to also investigate driv-
ing regimes other than low frequencies. This would be a good comparison to the numeric
model and could be used to see the influence of scattering processes corresponding to
crossing diagrams, which are neglected in the self-consistent Born approximation.

The focus of the manuscript we want to write following this thesis is now accessing
the transport properties, e.g. the conductance, since they are related to the Greens
function. An interesting aspect here will be, that due to spin-momentum locking in the
edge channels with the charge there is also spin transport happening. This analysis will
require the matrix equation for the edge impurity Hamiltonian to be written in a slightly
different form. The main procedure will still be the same and this thesis will serve as a
basis for the planned publication.

In the more distant future it could be interesting to look at the effects of interaction.
Due to the nature of the single particle Green’s function used here interaction effects are

37



not included. In 3D TIs these have been shown to have an influence and cause additional
gap opening mechanisms [35].

As one of the now most active fields in condensed matter physics the theory on topo-
logical materials is developing rapidly. At the same time more and more experiments are
realized and a better understanding of the fundamental effects is being reached. On of the
most intriguing fields for the application of TIs certainly is topological quantum computa-
tion. Using the intrinsic properties like dissipationless transport in the edge channels also
opens up applications in low-power information processing or spintronics. This suggests,
that TIs are going to stay a promising and important research area in the future.
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Appendices
A Residue theorem calculations
In this appendix residue theorem calculations are performed in order to transform mo-
mentum domain Green’s functions into position space for various cases.

A.1 Homogenous magnetic field
In this section we perform the residue calculations to calculate the density of states from
the momentum domain Green’s function

G(k,E) =
E + ~νFkσz +∆σx
E2 − (~νFk)2 −∆2

. (A.1)

Formally, we can write

G(x, x′, E) =

∫ ∞

−∞

dk
2π

G(k,E)eik(x−x′) (A.2)

=

∫ ∞

−∞

dk
2π

E + ~νFkσz +∆σx
E2 − (~νFk)2 −∆2

eik(x−x′) (A.3)

=
1

~νF

∫ ∞

−∞

dk
2π

E + kσz +∆σx
E2 − k2 −∆2

e
i k
~νF

(x−x′) (A.4)

where in the last step we performed the transformation k → ~νFk. The denominator can
now be rewritten as (E2−k2−∆2) = (

√
E2 −∆2−k)(

√
E2 −∆2+k) and we can see the

two poles ±
√
E2 −∆2. Here we have to remember that the energy carries a infinitesimal

imaginary part, that shifts the poles into the complex plane. For E > 0 the resulting
imaginary part after taking the square root is bigger than 0 and the positive square root
lies in the upper half-plane, while the negative one lies in the lower half-plane. When
E switches sign, so does the imaginary part and for E < 0 the positive and negative
pole lay in the lower and upper half-plane respectively. This will introduce a θ(E) in the
calculation of the residues.

To calculate the line integral over the real k-axis we complete the contour and use the
residue theorem. Depending on the sign of x− x′ we need to complete the contour in the
upper or lower half-plane such that exp(ik(x− x′)) vanishes for large k. That means for
x− x′ > 0 we need Im k > 0 so the real part of the exponent is smaller than zero and the
contour vanishes in the upper half-plane. Conversely, for x−x′ < 0 we need Im k < 0 and
need to complete the contour in the lower half-plane. Now keeping track of the position
of the poles as mentioned above we get

G(x, x′, E) =
1

~νF

∫ ∞

−∞

dk
2π

E + kσz +∆σx
E2 − k2 −∆2

e
i k
~νF

(x−x′) (A.5)

=
i

~νF
[Res(pole in upper half-plane)θ(x− x′)

− Res(poles in lower half-plane)(1− θ(x− x′))] . (A.6)

The residues for a simple pole z of a function f can be calculated according to Resf(z) =

I



lim
x→z

(x− z)f(x). This leads to

G(x, x′, E) = − i

~νF

[(
E +

√
E2 −∆2σz +∆σx

2
√
E2 −∆2

e
i
√

E2−∆2

~νF
(x−x′)

θ(E)

− E −
√
E2 −∆2σz +∆σx

2
√
E2 −∆2

e
−i

√
E2−∆2

~νF
(x−x′)

(1− θ(E))

)
θ(x− x′)

+

(
E −

√
E2 −∆2σz +∆σx

2
√
E2 −∆2

e
i
√

E2−∆2

~νF
(x−x′)

θ(E)

− E +
√
E2 −∆2σz +∆σx

2
√
E2 −∆2

e
−i

√
E2−∆2

~νF
(x−x′)

(1− θ(E))

)
× (1− θ(x− x′))] , (A.7)

from which we can calculate the density of states according to

D(E) = −Im

(
TrG(x, x, E)

π

)
. (A.8)

Remembering that the Pauli matrices are traceless and evaluating the Heaviside function
in a weak sense, i.e. θ(0) = 1/2, we find

TrG(x, x, E) = − 2i

~νF

[(
E

2
√
E2 −∆2

θ(E)− E

2
√
E2 −∆2

(1− θ(E))

)
1

2

+

(
E

2
√
E2 −∆2

θ(E)− E

2
√
E2 −∆2

(1− θ(E))

)
1

2

]
(A.9)

= − i

~νF

[
− E√

E2 −∆2
(1− 2θ(E))

]
(A.10)

It can readily be seen that

− E√
E2 −∆2

(1− 2θ(E)) =
|E|√

E2 −∆2
(A.11)

and noticing that
√
E2 −∆2 is imaginary for E2 < ∆2, we can write the density of states

as

D(E) = −Im

(
TrG(x, x, E)

π

)
=

1

π~νF
|E|√

E2 −∆2
θ(E2 −∆2). (A.12)

A.2 Free Green’s function
The free Green’s function in real-space is defined by the equation of motion

[E − (−i~νFσz∂x)] g0(x, x′, E) = δ(x− x′). (A.13)

Fourier-transformation to momentum domain yields

[E − ~νFkσz] g0(k,E) = 1, (A.14)

which can easily be inverted to find

g0(k,E) =
1

E − ~νFkσz
=

( 1
E−~νF k

0

0 1
E+~νF k

)
. (A.15)

II



The inverse transformation can be performed element-wise. Formally we write

g(x, x′, E) =
1

2π

∫ ∞

−∞
eik(x−x′)g(k,E) dk (A.16)

=
1

2π

(∫∞
−∞

eik(x−x′)

E−~νF k
dk 0

0
∫∞
−∞

eik(x−x′)

E+~νF k
dk

)
(A.17)

and remember that by convention for the retarded Green’s function the energy carries
a infinitesimal positive imaginary part. That imaginary part shifts the pole into the
complex k-plane such that we can apply the residue theorem. Just as in A.1 we now need
to carefully keep track of the poles and complete the contour appropriately. Alternatively,
one can note that this is just the above case with ∆ = 0 and we can use eq. (A.7) to find

g0(x, x
′, E) = − i

~νF

[(
E + Eσz

2E
e

i E
~νF

(x−x′)
θ(E)

− E − Eσz
2E

e
−i E

~νF
(x−x′)

(1− θ(E))

)
θ(x− x′)

+

(
E − Eσz

2E
e

i E
~νF

(x−x′)
θ(E)

− E + Eσz
2E

e
−i E

~νF
(x−x′)

(1− θ(E))

)
(1− θ(x− x′))

]
(A.18)

=
−i
2~νF

[
e

E(x−x′)
~νF θ(x− x′)(1 + σz)

+ e
−E(x−x′)

~νF (1− θ(x− x′))(1− σz)

]
, (A.19)

after cancelling the E and collecting the Heaviside functions.
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B Explicit solution for a diagonally driven two-level
system

Here the Fourier components of the Greens function for a diagonally driven two-level-
system with the Hamiltonian

H = kσz + V σz sinΩt (B.1)

are calculated.

B.1 Free problem
First solve the free propagation, where the equation of motion is

[i~∂t − kσz] g(t, t
′) = δ(t− t′) (B.2)

and has the formal solution

g(t, t′) = exp

(
− i
~

∫ t

t′
dt̄ kσz

)
θ(t− t′)

i~ (B.3)

= exp

(
− i
~
kσz(t− t′)

)
θ(t− t′)

i~ = g(t− t′). (B.4)

It only depends on the difference t− t′, and we can calculate the Fourier transform

g̃(t, E) =

∫
dτ eiE~ τg(t, t− τ) (B.5)

=

∫
dτ eiE~ τg(τ) (B.6)

= g̃(E). (B.7)

Remembering that E carries an infinitesimal imaginary part for convergence we can ex-
plicitly calculate this as

g̃(E) =

∫
dτ eiE~ τ exp

(
− i
~
kσzτ

)
θ(τ)

i~ (B.8)

=
1

i~

∫ ∞

0

dτ exp

(
i
~
(E − kσz)τ

)
(B.9)

= 0− 1

i~

(
~
i

1

E − kσz

)
(B.10)

=
1

E − kσz
(B.11)

=

(
1

E−k
0

0 1
E+k

)
(B.12)

B.2 Full system
The full equation of motion is

[i~∂t − (kσz + V σz sinΩt)]G(t, t
′) = δ(t− t′) (B.13)
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with the formal solution

G(t, t′) = exp

(
− i
~

∫ t

t′
dt̄ (kσz + V σz sinΩt̄)

)
θ(t− t′)

i~ (B.14)

= exp

(
− i
~

∫ t

t′
dt̄ V σz sinΩt̄

)
exp

(
− i
~
kσz(t− t′)

)
θ(t− t′)

i~︸ ︷︷ ︸
=g(t−t′)

(B.15)

= exp

(
− i
~
V σz

(
−cosΩt

Ω
+
cosΩt′

Ω

))
g(t− t′) (B.16)

= exp

(
iV σz
~Ω

cosΩt

)
exp

(
−iV σz

~Ω
cosΩt′

)
g(t− t′). (B.17)

The exponentials can be written as sums of Bessel functions according to

exp(iz cosφ) =
∑
n∈Z

inJn(z)einφ, (B.18)

giving

G(t, t′) =
∑
k,l

ik+lJk(Ṽ )Jl(−Ṽ )eikΩteilΩt′g(t− t′), (B.19)

where Ṽ = V σz

~Ω and the Bessel functions of the matrices have to be understood as

Jk

(
V σz
~Ω

)
=

(
Jk
(

V
~Ω

)
0

0 Jk
(
− V

~Ω

)) . (B.20)

Setting t′ = t− τ , we can write

G(t, t− τ) =
∑
k,l

ik+lJk(Ṽ )Jl(−Ṽ ) ei(k+l)Ωt︸ ︷︷ ︸
(I)

e−ilΩτg(τ)︸ ︷︷ ︸
(II)

, (B.21)

and observe some properties of G. The only t-dependent part is (I), which is periodic
with T = 2π

Ω
, so we can write this as a Fourier-series in t. The τ -dependent part (II) is

not necessarily periodic, but its independent of t. The Fourier transform will result in a
shifted g̃ in this part.

Performing the Fourier transform results in

G̃(t, E) =

∫
dτ eiE~ τG(t, t− τ) (B.22)

=
∑
k,l

ik+lJk(Ṽ )Jl(−Ṽ )ei(k+l)Ωt

∫
dτ eiE−l~Ω

~ τg(τ) (B.23)

=
∑
k,l

ik+lJk(Ṽ )Jl(−Ṽ )ei(k+l)Ωtg̃(E − l~Ω). (B.24)
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From this we can calculate the Fourier components via Eq. (3.12) as

G̃n(E) =
1

T

∫ T

0

dt e−inΩtG̃(t, E) (B.25)

=
∑
k,l

ik+lJk(Ṽ )Jl(−Ṽ )
1

T

∫ T

0

dt ei(k+l−n)Ωt︸ ︷︷ ︸
=δn,k+l=δn−l,k

g̃(E − l~Ω) (B.26)

= in
∑
l

Jn−l

(
V σz
~Ω

)
Jl

(
−V σz

~Ω

)
g̃(E − l~Ω) (B.27)
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C Impurity averaging
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D Code
The implementation of the numeric model has been done for Julia 1.3.x . Julia is
relatively new language created with speed and ease of use in mind. The main argu-
ments to use it here was the easy syntax and the speed, that seems to be comparable
or even faster than C for some cases. For more information see the documentation at
https://docs.julialang.org/en/v1/

The code below is the source code to define a module that contains all the necessary
functions to run numeric model. Effectively one simply has call the module and run the
function ”impurityaverage” with the desired parameters.

� �
module EdgeImp
###########################################################
# packages needed
using Distributed # for paralellization

5 using LinearAlgebra
using SharedArrays # for variables in parallel map
using DelimitedFiles # for writing in files
using Dates # for dates, e.g. in logfile
###########################################################

10 # functions to export
export g # unperturbed Green's function in position representation
export Gndirect # Matrix GF equation and solution
export Mimpsingle # single impurity potential matrix/FCs
export Mimp # Nimp equal, aligned impurities potential matrix/FCs

15 export impurityaverage # impurity averaging function
###########################################################

# Pauli matricies
sigma0=Matrix{ComplexF64}(I, 2, 2)

20 sigmax=Matrix{ComplexF64}([0.0 1.0; 1.0 0.0])
sigmay=Matrix{ComplexF64}([0.0 -im; im 0.0])
sigmaz=Matrix{ComplexF64}([1.0 0.0; 0.0 -1.0])
# vector containing the pauli matrices
sigma=[[sigmax];[sigmay];[sigmaz]]

25
# Inputs and typical values
# LolB=8.0 # system length parameter
# omega=1.0 # driving frequency in units of the gap
# nmax=3 # index of highest Fourier components -> 2nmax+1 total FCs

30 # Nruns=100 # No. of impurity averaging runs
# V=0.0 # potential strength of the imps relative to M
# M=0.1 # magnetic strength of the imps in units of \hbar\nu_F
# Emax=5.0 # Energy around gap center
# Enum=101 # No. of energy points

35
# free GF for impurity system
##### unperturbed Green's function sub matrices in position representation #####
function gR_V(E,u,up,LolB,V,Xvec)

########################################################
40 # E: Energy scaled in units of Delta #

# u=x/L impurity position relative to L #
# up=x'/L impurity position relative to L #
# LolB: L/l_B ratio system length/decay length, controls magnetic impurity

↪→ strength #
# V: potential part of the impurity potential relative to M

↪→ #
45 # Xvec: impurity vector containing impurity positions relative to L

↪→ #
########################################################
#initialize empty matrix
gR=zeros(ComplexF64,2,2)
# Extract number of impurities

50 N=size(Xvec)[1]
# Heaviside function
epsilon=1e-9 # Parameter controlling the Heaviside "sharpness" or width
HS=0.50*(1.0+(2.0*atan((u-up)/epsilon)/pi)) # Smooth Heaviside of width
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↪→ epsilon
# free impurity g

55 gR[1,1]=-im*exp( im*E*LolB*(u-up))*HS
gR[2,2]=-im*exp(-im*E*LolB*(u-up))*(1.0-HS)
# Calculate phase factor due do potential part
Theta =0.0
Thetap=0.0

60 for n=1:N
Theta =Theta +V*(LolB/N)*0.50*(1.0+(2.0*atan((u-Xvec[n])/epsilon)/pi))

Thetap=Thetap+V*(LolB/N)*0.50*(1.0+(2.0*atan((up-Xvec[n])/epsilon)/pi))
end
# in matrices

65 expTheta=[exp(-im*Theta) 0.0; 0.0 exp(im*Theta)]
expThetap=[exp(im*Thetap) 0.0; 0.0 exp(-im*Thetap)]
# return g0 with proper phase factors
return expTheta*gR*expThetap

end
70 ##### unperturbed Green's function in position representation, fill with

↪→ submatrices #####
function g(E,Xvec,LolB,V)

########################################################
# E: Energy scaled in units of Delta #
# LolB: L/l_B ratio system length/decay length, controls magnetic impurity

↪→ strength #
75 # V: potential part of the impurity potential relative to M

↪→ #
# Xvec: impurity vector containing impurity positions relative to L

↪→ #
########################################################
Nimp=length(Xvec) # number of impurities
g0=Matrix{ComplexF64}(undef, 2*Nimp, 2*Nimp) # initialize empty matrix

80 # fill up with the submatrices
for i=1:Nimp, j=1:Nimp

xi=Xvec[i]
xj=Xvec[j]
g0[2*i-1:2*i,2*j-1:2*j]=gR_V(E,xi,xj,LolB,V,Xvec)

85 end
return g0

end

# set up and solving of matrix GF equation
90 function Gndirect(g1::Function,V0,Vp,Vm,omega,En,nmax,Xvec...)

########################################################
# g1: "free" greens function (!!!first argument needs to be the Energy!!!,

↪→ rest in Xvec... #
# in order of arguments of g1)

↪→ #
# V0, Vp, Vm: 0th, 1st, -1st Fourier component of the impurity potential (

↪→ matching the GF) #
95 # omega: driving frequency, scaled as (\hbar omega)/Delta

↪→ #
# En: Energy in units of Delta #
# nmax: biggest fourier index, number of fourier modes=2*nmax+1 (n from -

↪→ nmax:nmax) #
# Xvec... : remaining arguments of g1 other than the energy argument

↪→ #
########################################################

100 ## set up matrix for matrix eq. ##
gfsize=size(g1(En,Xvec...))[1] # size of the submatrices
Id=Matrix{ComplexF64}(I,gfsize,gfsize) # unit matrix of GFsize
A=zeros(ComplexF64,gfsize*(2*nmax+1),gfsize*(2*nmax+1)) #initialize matrix

↪→ of the correct size 2nmax+1 blocks for -/0/+ components, blocksize=
↪→ gfsize

for n=-nmax:nmax-1 #loop over block main/upper/lower diagonal
105 # diagonal

A[1+(n+nmax)*gfsize:gfsize+(n+nmax)*gfsize,1+(n+nmax)*gfsize:gfsize+(n+
↪→ nmax)*gfsize]=(Id-g1(En-n*omega,Xvec...)*V0)

# upper minor diagonal
A[1+(n+nmax)*gfsize:gfsize+(n+nmax)*gfsize,1+(n+1+nmax)*gfsize:gfsize+(n

↪→ +1+nmax)*gfsize]=-g1(En-n*omega,Xvec...)*Vm
# lower minor diagonal

110 A[1+(n+1+nmax)*gfsize:gfsize+(n+1+nmax)*gfsize,1+(n+nmax)*gfsize:gfsize+
↪→ (n+nmax)*gfsize]=-g1(En-(n+1)*omega,Xvec...)*Vp
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end
# last diagonal block
A[1+(2*nmax)*gfsize:gfsize+(2*nmax)*gfsize,1+(2*nmax)*gfsize:gfsize+(2*nmax)

↪→ *gfsize]=(Id-g1(En-nmax*omega,Xvec...)*V0)
#######################

115 ## set up right side of matrix eq. ##
b=zeros(ComplexF64,gfsize*(2*nmax+1),gfsize)
b[gfsize*nmax+1:gfsize*nmax+gfsize,1:gfsize]=g1(En,Xvec...)
#######################
## solve matrix eq. ##

120 Gn=\(A,b)
#######################
check=(norm(A*Gn-b),norm(Gn[(end-gfsize)+1:end,:])) # check if matrix

↪→ inversion is sufficiently exact, check if fourier coefficient
↪→ vanishes

return (Gn,check)
end

125

##### creating impurity potentials and impurity distributions

# impurity potential matrices for aligned/equal imps !this is equal for all imp
↪→ distributions, calc before imp avg loop!

130 # harmonic driving in x-z-plane
function Mimp(M,Nimp)

########################################################
# M impurity stength #
# Nimp: number of impurities #

135 ########################################################
M0s=zeros(ComplexF64,2,2) # 0th FC singel imp
Mps=M/(2*im)*(sigmax+im*sigmaz) # 1st FC singel imp
Mms=Mps' # -1st FC singel imp
M0,Mp,Mm=map(x->kron(Matrix{ComplexF64}(I,Nimp,Nimp),x),(M0s,Mps,Mms)) #

↪→ kronecker product for M, 2x2 matrix on diag of big matrix, map on
↪→ three matrices

140 # returns (0th, 1st, -1st) Fourier component of the big matrix in that order
return M0,Mp,Mm

end
# from arbitrary single impurity potential
function Mimp(M0s,Mps,Mms,Nimp)

145 ########################################################
# M0,Mps,Mms: single impurity FCs #
# Nimp: number of impurities #
########################################################
M0,Mp,Mm=map(x->kron(Matrix{ComplexF64}(I,Nimp,Nimp),x),(M0s,Mps,Mms)) #

↪→ kronecker product for M, 2x2 matrix on diag of big matrix, map on
↪→ three matrices

150 # returns (0th, 1st, -1st) Fourier component of the big matrix in that order
return M0,Mp,Mm

end

# create 2x2 single impurity matrix fourier coefficients for rotation in x-z-
↪→ plane

155 function Mimpsingle(M)
M0=zeros(ComplexF64,2,2)
Mp=M/(2*im)*(sigmax+im*sigmaz)
Mm=Mp'
return (M0,Mp,Mm)

160 end

# create random impurity distribution
function imps(Nimp)

# create random impurity positions
165 #srand(2) # Set the random seed

Xvec=rand(Float64,Nimp)
sort!(Xvec) # sort the impurity position
minimaldistance=minimum(Xvec[2:Nimp]-Xvec[1:Nimp-1])
# Make sure impurities are reasonably far apart

170 while (minimaldistance<=10e-6)
Xvec=rand(Float64,Nimp)

sort!(Xvec) # sort the impurity position
minimaldistance=minimum(Xvec[2:Nimp]-Xvec[1:Nimp-1])

end
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175 # find position and index of impurity closest to the center
center=findmin(abs.(Xvec.-0.5))[2]
return Xvec,center

end

180 ##### impurity averaging #####
function impurityaverage(Nimp,Erange,M,V,omega,logfile::String,nmax=5,Nruns=100,

↪→ LolB=8.0,Gnsolve::Function=Gndirect,gfree::Function=g;dyn::Bool=true,
↪→ impdist::String="rand")

# initialize matrix
G=zeros(ComplexF64,2*(2*nmax+1),2*length(Erange))
Gcheckmax=Array{Tuple{Float64,Float64},1}[]

185 # if for dynamic/static
if dyn==true

M0,Mp,Mm=Mimp(M,Nimp) #dynamic imps
elseif dyn==false

M0s,Mps,Mms=sigmax*M,zeros(ComplexF64,2,2),zeros(ComplexF64,2,2) #static
↪→ imps

190 M0,Mp,Mm=map(x->kron(Matrix{ComplexF64}(I,Nimp,Nimp),x),(M0s,Mps,Mms))
end
# if for rand/eq
if impdist=="rand" # random impurities

for k in 1:Nruns # impurity averaging loop
195 (Xvec,center)=imps(Nimp)

### ENERGY MAP/LOOP ###
A=pmap(E->Gnsolve(gfree,M0,Mp,Mm,omega,E,nmax,Xvec,LolB,V),Erange)
G+=reduce(hcat,[reduce(vcat,g[i*2*Nimp+(2*center-1):i*2*Nimp+(2*

↪→ center),2*center-1:2*center] for i in 0:2*nmax) for g in
↪→ first.(A)]) # extract 2x2 blocks for the center impurity

Gcheckmax=vcat(Gcheckmax,(maximum(first.(last.(A))),maximum(last.(
↪→ last.(A))))) # extract check values

200 # write in logfile
if mod(k,20)==0

check1=maximum(first.(Gcheckmax))
check2=maximum(last.(Gcheckmax))
open(logfile,"a") do iolog

205 timestamp=now()
write(iolog, "[$timestamp]: finished $k of $Nruns impurity

↪→ averaging runs, biggest check values in the last
↪→ runs: inversion: $check1 , size of last Fourier
↪→ coefficient: $check2\n")

end # open
Gcheckmax=Array{Tuple{Float64,Float64},1}[] # reset check values

end # if
210 end # imp loop

elseif impdist=="eq" # equal distance imps. = barrier
Xvec=range(0.0,stop=1.0,length=Nimp)
center=findmin(abs.(Xvec.-0.5))[2]
### ENERGY MAP/LOOP ###

215 A=pmap(E->Gnsolve(gfree,M0,Mp,Mm,omega,E,nmax,Xvec,LolB,V),Erange)
G+=reduce(hcat,[reduce(vcat,g[i*2*Nimp+(2*center-1):i*2*Nimp+(2*center),

↪→ 2*center-1:2*center] for i in 0:2*nmax) for g in first.(A)]) #
↪→ extract 2x2 blocks for the center impurity

check1=maximum(first.(last.(A)))
check2=maximum(last.(last.(A)))
# write in logfile

220 open(logfile,"a") do iolog
timestamp=now()
write(iolog, "[$timestamp]: finished equally distributed impurities

↪→ run, biggest check values: inversion: $check1 , size of last
↪→ Fourier coefficient: $check2\n")

end # open
end # if

225 return G/Nruns
end

end #module� �
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