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Abstract

With the implementation of the Fundamental Review of the Trading Book in Jan-

uary of 2022, financial institutions will be obligated to implement Expected Shortfall

as a means of determining market risk capital. With the transition from Value at

Risk to Expected Shortfall, the question of how to accurately forecast Expected

Shortfall arises. This paper investigates the forecasting ability of non-parametric

and parametric approaches used for estimating Expected Shortfall. More specif-

ically, the paper considers, Basic Historical Simulation, Age-Weighted Historical

Simulation, Volatility-Weighted Historical Simulation as well as parametric mod-

els based on a Normal distribution, t-distribution and on Extreme Value Theory.

As a number of previous studies have investigated the ability of various estimation

approaches’ ability not to underestimate market risk, the concept of overestima-

tion of risk is introduced. The empirical results indicate that while the conditional

Peaks Over Threshold approach yields the most satisfactory results when only un-

derestimation is of a concern, the Volatility-Weighted Historical Simulation most

accurately forecasts Expected shortfall when the concept of overestimation is intro-

duced.

Keywords: Value at Risk, Expected Shortfall, Normal distribution, t-distribution,

Historical Simulation, Extreme Value Theory, Peaks Over Threshold
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1 Introduction

In the context of financial institutions, the concept of risk can be divided into two main

categories: business- and non-business risk (Hull, 2018). Business risk can be defined as

a firm’s exposure to strategic risks such as entering new markets and/or producing new

products (Hull, 2018). Non-business risk can further be broken down into three categories:

credit risk, being the risk that the counterparty fails to meet their financial obligations,

operational risk, or the failure of internal systems and controls, and market risk, defined

as the risk associated with changes in market conditions (Hull, 2018). The subject of this

paper is centered around the concept of market risk.

The 1997 U.S. Securities and Exchange Commission ruling, requiring U.S public com-

panies to disclose information concerning their derivatives trading activities, along with

the Basel II Accord of 1999 issued by the Basel Committee on Banking Supervision, led

to the widespread usage of Value at Risk (VaR) as a means of measuring market risk

(Jorion, 2007). VaR is a measure of the minimum loss ¸, such that the probability of a

loss L larger than ¸ is less than a certain predetermined probability (Jorion, 2007). One

of the critiques of VaR however is that it fails to account for large losses that have a

very small probability of occurring (Jorion, 2007). The limitations of VaR as a measure

of market risk became apparent during the financial crisis of 2008. As the risk measures

employed leading up to the financially turbulent year of 2008 failed to adequately reflect

market risk, the years following the crisis gave rise to a revision of risk measures (BIS,

2013).

In order to augment the apparent shortcomings of VaR and in order to capture tail-

risk events, a new market risk measure known as Expected Shortfall (ES) is currently

being implemented. With the implementation of the Fundamental Review of the Trading

Book in January of 2022, banks will be obligated to implement ES in order to account for

tail-risk events (BIS, 2013). ES is the average VaR for all confidence levels greater than

or equal to confidence level – (Hull, 2018). Thus ES takes into account extreme events

that have a very low probability of occurring, which VaR fails to account for (Hull, 2018).

The implementation of ES as a risk measure gives rise to the question of how the

underlying loss distribution should be modelled and of how ES should be estimated. This

paper is concerned with estimating ES using both parametric approaches (which assumes

that the loss distribution can be modelled by a probability distribution such as the Normal
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distribution) and non-parametric approaches (which relies on the empirical distribution).

The paper will thus o�er a complement to the current contemporary literature on how

well, and at which times di�erent approaches to estimating ES perform optimally.

1.1 Purpose

The purpose of the paper is to contribute to the current literature on estimating ES

by implementing a series of parametric and non-parametric approaches to estimating

ES and to evaluate which model best captures market risk. Three non-parametric ap-

proaches are considered: Basic Historical Simulation (BHS), Age-weighted Historical Sim-

ulation (AWHS) and Volatility-Weighted Historical Simulation (VWHS). The paramet-

ric approaches evaluated are: ES under a Normal distribution and under a Student’s

t-distribution, using both constant volatility and an Exponentially-Weighted Moving Av-

erage (EWMA) model for the two respective distributional assumptions. Furthermore,

ES estimates based on Extreme Value Theory (EVT), more specifically using Peaks Over

Threshold (POT) and Conditional POT, are evaluated. Each approach is evaluated based

on the daily returns of the S&P 500 index from 1962-2019. As ES is a relatively new risk

measure, that is currently being implemented, finding a model that produces accurate ES

forecasts is of high relevance. Furthermore, while previous research on the topic of ES

estimation approaches’ ability not to underestimate risk has been extensive, research that

takes the idea of overestimation of risk into account is very scarce. As the paper takes

both under- and overestimation of risk into account, the paper will o�er a complement to

the current literature on estimating ES.

1.2 Delimitation

The main delimitation when attempting to find the optimal method for estimating ES is

that time restricts one from implementing a greater number of approaches. Several other

approaches, such as modelling the loss distribution using a Stable Paretian distribution

or a skewed distribution have for example been carried out in previous research. Further-

more, when carrying out the VWHS, the paper is restricted to forecasting volatility using

an EWMA model. Volatility can be modelled in many di�erent ways. Various GARCH

models have for example been implemented in previous research. Ideally, the number

of investigated approaches would be increased. Nevertheless, the paper considers eleven
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di�erent approaches which should serve the purpose of this paper well.

One delimitation when implementing EVT is concerned with the degree of subjectivity

when deciding on which threshold value to be used (McNeil, 1997). The problem can be

formulated as: Which threshold value should be selected such that it is low enough that

su�cient data for the estimation of parameters can be collected, and high enough that

losses larger than the threshold value are considered “extreme”? As there is no clear

answer to this question, a “reasonable” threshold has to be decided on. In this paper the

95-quantile of the previous five years’ losses is used. This is however by no means the

only approach.

When carrying out the non-parametric approaches (BHS, AWHS and VWHS), a rolling

window in used. As with the threshold value in the EVT approach, there is no clear

answer as to how long the rolling window should be. For the purpose of this paper, a

rolling window of the previous 250 trading days in used. Taking only the last 250 trading

days into account should arguably be su�cient in order to have enough data for estimation

as well as to avoid using old data that does not reflect current market conditions. If time

were not of the essence, many di�erent window-lengths would be used.

1.3 Outline

The first section of the paper provides a theoretical background of the properties and

definitions of the risk measures VaR and ES. Furthermore, the section provides an in-

troduction to the various methods implemented in the methodology of the research. A

review and discussion of previous research and literature on the topic is presented in the

subsequent section. Following the literature review is a section on the methodology used

to implement the various estimation approaches. The methods used for conducting the

various parametric, non-parametric and EVT approaches are introduced in this section.

In the subsequent section, the results from testing the various approaches are presented.

The final two sections, Conclusion and Further Research, compare and contrast the vari-

ous approaches as well as o�er suggestions for conducting further research on the topic.
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2 Theoretical Background

2.1 Coherency

Before providing an explanation of VaR and ES, a discussion of the desirable properties

of a risk measure (R) is warranted. Whether or not a risk measure is coherent is based

on if it satisfies four criteria (Artzner, Delbaen, Eber & Heath, 1999), the first being

monotonicity. In mathematical terms, monotonicity is defined as:

LA Æ LB ∆ R(LA) Æ R(LB) (1)

The intuition behind this argument is that if the loss of asset A is less than or equal to

asset B in every future state, the risk of asset A should be less than or equal to asset B

in order to satisfy the condition of monotonicity (Hull, 2018).

The second criterion of coherency is subadditivity. Expressed in mathematical terms

the argument states that:

R(LA+B) Æ R(LA) + R(LB) (2)

The intuition behind this property is that the risk measure should encourage diversifica-

tion, in other words the risk of a portfolio comprised of assets A and B should be less

than or equal to the risk of asset A plus the risk of asset B (Hull, 2018).

The third criterion, determining if a risk measure is positively homogeneous states

that:

h > 0 ∆ R(hL) = h · R(L) (3)

The equation states that if the portfolio is scaled by a factor h, then the risk of the

portfolio should increase/decrease by the scaling factor h (Hull, 2018).

Lastly, the finial criterion for a coherent risk measure concerns whether or not the risk

measure is translation invariant. This property is satisfied if:

9



R(L ≠ a) = R(L) ≠ a (4)

In this equation, a is an amount invested in the risk-free asset. The equation states that

if a is invested in the risk-free asset, the loss distribution of the new portfolio should shift

to the left and should thus decrease the risk of the new portfolio by the same amount

(Hull, 2018).

2.2 Value at Risk

Although the main risk measure discussed in this paper is ES, as VaR is a part of the

definition of ES, and the implementation of ES is motivated by the drawbacks of VaR, an

explanation of the term is warranted. Mathematically, VaR is defined as:

V aRa(L) = min{¸ : Pr(L > ¸) Æ 1 ≠ –} (5)

The equation states that the VaR at confidence level a is equal to the smallest loss ¸,

such that the probability of a loss (L) greater than ¸ is less than or equal to 1 - – for

some predetermined holding period (usually 1 or 10 days) (Jorion, 2007). Although, VaR

has become a prevalent risk measure among financial institutions it does su�er from a

major drawback, that limits its suitability as a risk measure. VaR is only a quantile and

is completely blind to the size of losses greater than VaR (Jorion, 2007). In other words,

if an asset A can take on two future states, a loss of 10 with 99% probability or a loss

x with 1% probability, V aR0.975 is una�ected by the size of x. This apparent drawback

necessitates the implementation of a risk measure that does account for the magnitude of

improbable losses.

2.3 Expected Shortfall

Due to the drawbacks of VaR, in particular its failure to account for extreme events, the

Basel Committee on Banking Supervision has proposed the implementation of ES as a

substitute to VaR (BIS, 2013). ES is defined as:
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ES–(L) = 1
1 ≠ –

⁄
1

–
V aRx(L)dx (6)

The equation can be interpreted as the average VaR for all confidence levels greater than

or equal to a (Hull, 2018). Hence, ES is arguably a superior risk measure as it does satisfy

all four criteria of a coherent risk measure as well as takes high and unlikely losses into

account (Hull, 2018).

2.4 Maximum Likelihood Estimation

In probability theory, one attempts to carry out mathematical modelling by allowing for

randomness. When carrying out inference theory, one essentially moves in the opposite

direction, by attempting to draw conclusions about the mathematical model from a set

of observations (Anevski, 2017). In other words, one assumes a known distribution with

unknown parameters and attempts to answer the question: Given a set of observations,

what are the parameter values that would most likely yield the given observations. One

method for obtaining estimators is Maximum Likelihood Estimation (MLE). Using MLE

one assumes that a set of independently and identically distributed random variables

(x1, x2, ..., xn) are distributed according to a density function f œ F = {f◊ : ◊ œ �}

(Anevski, 2017). The likelihood function can thus be defined as:

G(◊) =
nŸ

i=1

f◊(xi) (7)

As the logarithm is a monotonic transformation, the log-likelihood function can be max-

imized instead, defining the log-likelihood function by:

g(◊) =
nÿ

i=1

logf◊(xi) (8)

The maximum likelihood estimator of the parameter (◊) can thus be computed by solving:

◊̂ = argmax◊œ�
g(◊) (9)
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3 Previous Research

As VaR has been the dominant risk measure and has permeated through risk management

departments and academic curricula for several decades, research conducted on estimation

approaches of VaR has been extensive. ES has however only recently come into widespread

usage. Thus, previous research on optimal approaches to estimating ES is scarcer. The

following section is concerned with providing an overview of some of the previous research

which has been conducted in the field.

Baran and Witzany (2011) compare and contrast the ES estimates of an Historical

Simulation and EVT approach. Baran and Witzany (2011) consider an EVT approach,

where a Generalized Pareto Distribution is used to model the tails of the distribution.

The EVT approach used by Baran and Witzany (2011) attempts to account for time-

varying volatility by implementing an AR(1)-GARCH(1,1) process. The data considered

is a hypothetical trading book from 2003 to 2011. The portfolio is constructed using the

Euro STOXX 50 index and the PX index, as well as an FX option with the Czech Koruna

as underlying asset. Baran and Witzany (2011) find that all three approaches (Historical

Simulation, EVT, and EVT-GARCH) manage to provide relatively accurate forecasts,

and that using EVT-GARCH produces the most accurate estimates.

Sobreira and Louro (2020) examine a series of parametric-, non-parametric- and EVT

methods to estimate VaR and ES using data from stocks traded on the Lisbon stock

exchange. Sobreira and Louro (2020) implement a Normal distribution, t-distribution,

Generalized Error distribution (GED), skewed Normal, skewed t-distribution and skewed

GED as parametric distributions and HS, RiskMetrics and EVT as non-parametric meth-

ods, where di�erent GARCH models are used as volatility estimates. In order to evaluate

the VaR and ES estimates Sobreira and Louro (2020) conduct several backtesting proce-

dures, including "Testing ES Directly" by Acerbi and Szekely. The results show that an

EVT model with asymmetric GARCH as volatility is the best performing model, Sobreira

and Louro (2020) also suggest that larger sample sizes provide better results.

Harmantzis, Linyan and Yifan (2006) investigate the performance of di�erent models

in measuring VaR and ES. The authors are primarily concerned with investigating if mod-

els that capture rare events more accurately predict risk than models that do not. The

data used is the daily returns of six major stock indices (S&P500, DAX, CAC, Nikkei, TSE

and FTSE) and four currency pairs (USD/EUR, USD/JPY, USD/GBP and USD/CAD)
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for a ten-year period. The daily returns are modelled using the Empirical distribution,

Gaussian distribution, Peaks Over Threshold, and Stable Paretian distribution. The re-

sults of Harmantzis, Linyan and Yifan (2006) suggest that models that capture rare events

more accurately predict risk. Furthermore, Harmantzis, Linyan and Yifan (2006) provide

empirical evidence that POT and the Empirical distribution give accurate estimations,

while the Gaussian model tends to underestimate ES.

Similar research has also been conducted by Marinelli, D’Addona and Rachev (2007),

who investigate the predictive accuracy of VaR and ES models based on the assumption of

Stable Paretian returns, Gaussian returns and on EVT. Marinelli, D’Addona and Rachev

(2007) consider the daily returns of two stock indices (S&P500 and NASDAQ) and two

stocks (Amazon and Microsoft). Marinelli, D’Addona and Rachev (2007) further suggest

that stable models tend to outperform the models based on EVT when estimating VaR

and that POT methods tend to give more accurate forecasts when estimating ES.

As with the aforementioned papers, Jadhav, Ramanathan and Naik-Nimbalkar (2009)

consider both parametric and non-parametric approaches to estimating ES. The para-

metric approaches include: a Gaussian approach, EVT approach as well as a Stable

Paretian approach. Jadhav, Ramanathan and Naik-Nimbalkar (2009) also consider the

non-parametric, Historical method. The methods are carried out on the daily returns of

the Indian BSE and NSE as well as on the NYSE and LSE. The authors find that the

Historical method produces more accurate forecasts of risk than the parametric methods.

Furthermore, Jadhav, Ramanathan and Naik-Nimbalkar (2009) is one of few articles that

makes reference to overestimation of ES. The authors argue that due to the presence

of outliers in the data, the Historical method often leads to overestimation. In order to

augment the Historical method, the authors propose a new non-parametric method which

attempts to get rid of outliers in the data. Empirical evidence is provided for the fact the

proposed new non-parametric method does not underestimate ES and that it solves the

problem of overestimation (Jadhav, Ramanathan & Naik-Nimbalkar, 2009).

LU and Huang (2007) compare three di�erent models for estimating VaR. The first

model, referred to by LU and Huang (2007) as “standard-EWMA” is derived from JPMor-

gan’s RiskMetrics and uses a Gaussian distribution with EWMA forecasting. The second

method evaluated is the “robust-EWMA” procedure proposed by Guermat and Harris

(2002). The procedure proposed by Guermat and Harris (2002) attempts to augment the
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standard-EWMA approach used in RiskMetrics by modelling the loss distribution using a

Laplace distribution. Furthermore, LU and Huang (2007) attempt to take both skewness

and heavy tails of financial data into account by deriving a third method that they refer

to as “skewed-EWMA”. Instead of using a regular Laplace distribution as used in the

research conducted by Guermat and Harris (2002), LU and Huang (2007) implement an

asymmetric Laplace distribution. Through backtesting the three proceedures, LU and

Huang (2007) find that the skewed-EWMA approach produces more accurate forecasts

than the standard-EWMA and robust-EWMA approaches.

In Bredin and Hyde (2004), ES is not considered, but the performance of two di�erent

VaR methods are evaluated on the foreign exchange market (the Irish Punt against six

other currencies). The first model evaluated is based on an orthogonal GARCH approach

and the later on an EWMA approach. The empirical evidence gathered by Bredin and

Hyde (2004) suggests that the orthogonal GARCH approach is more accurate but that

the EWMA approach is more conservative.

Degiannakis and Potamia (2017) attempt to provide VaR and ES forecasts using a

AR(1)-GARCH(1,1) and AR(1)-HAR-RV-skT approach. The approaches are carried out

on various markets including: equity-, commodity- and foreign exchange markets. Using

a 95%, 97.5% and 99% confidence interval, the empirical results provided by Degian-

nakis and Potamia (2017) suggest that the AR(1)-GARCH(1,1) yields the most accurate

forecasts. Furthermore, Degiannakis and Potamia (2017) suggest implementing a 97.5%

confidence interval, in line with the Basel Committees proposal to replace 99% VaR with

97.5% ES.

A test of the parametric approaches to estimating ES is also indirectly a test of the

normality of returns. Mandelbrot (1963) and Fama (1965) reject the idea that stock re-

turns follow a Normal distribution. Mandelbrot (1963) and Fama (1965) suggest instead

that stock returns have leptokurtic properties, that is, the tails of the distribution are fat-

ter. This would suggest that ES models that implement a Student’s t-distribution should

provide more accurate estimations of ES than their normally distributed counterparts.
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4 Methodology

4.1 Data Description and Data Processing

In order to evaluate the ES estimation approaches, the adjusted closing prices of the S&P

500 are used. The adjusted closing price is the closing price of the index, adjusted for

both dividends and stock splits. The adjusted closing price of the S&P500 from 1957 to

2019 are collected from the Bloomberg database. The reason for including 1957-1961 in

the collected data is that, even though only the period 1962 to 2019 is evaluated, the five

years leading up to 1962 are used as sample data in the EVT approach.

With the adjusted closing prices collected, the loss scenarios for all trading days be-

tween 1957 and 2019 are calculated. The formula for calculating the loss scenario is

expressed as:

Lt = ≠K
Pt ≠ Pt≠1

Pt≠1

(10)

Where Lt is the loss scenario at time t, Pt is the adjusted closing price at time t, Pt≠1 is

the adjusted closing price at time t ≠ 1 and K is the invested capital. The value of K

is arbitrary and does not a�ect the results of the backtests of the various approaches. A

value of 1000 is used for K throughout the paper. With the inclusion of a minus sign on

the right-hand side of the equation, a loss (gain) is characterized by a positive (negative)

value of L.

4.2 Holding Period and Confidence Level

When estimating VaR and ES, both the holding period (h) and the confidence level (–)

a�ect the estimate (Hull, 2018). The holding period is defined as the total number of days

that the losses are measured over. In order to get as many loss observations as possible,

the holding period is set to one day for the remainder of this paper. As for the confidence

level (–), 97.5% is used in accordance with BIS (2013). The confidence level is defined as

the probability of a loss exceeding VaR occurring over the course of the holding period

being equal to 1 ≠ – (Hull, 2018).
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4.3 Non-Parametric Approaches

The approaches used in this paper for estimating VaR and ES can be divided into para-

metric and non-parametric approaches. What separates the two approaches is the way

in which assumptions are made about the underlying loss distribution (Geisser, John-

son & Wiley InterScience, 2006). The parametric approaches make assumptions about

the underlying distributional and attempt to model the observed losses accordingly. As

far as non-parametric approaches are concerned, no assumptions about the underlying

distributional have to be made. Instead, the empirical loss distribution is used. The

non-parametric approaches investigated in this paper are BHS, AWHS and VWHS.

4.3.1 Basic Historical Simulation

The most straight-forward approach of the investigated non-parametric approaches is

BHS. This approach uses the observed losses from the previous year to estimate VaR

and ES (Hull, 2018). Using the previous year’s loss observations directly, the ES for a

particular day can be estimated using Equation 6. Theoretically, any length of sample

data can be used for BHS. However, in order to account for changing market conditions,

and due to the fact that old loss observations are deemed less likely to reflect current

conditions accurately, only the last year’s loss observations are used as sample data in

this paper. Furthermore, for the BHS as well as for the other approaches, an – of 0.975

is used.

4.3.2 Age-Weighted Historical Simulation

AWHS is analogous to BHS in the sense that it relies on the empirical loss distribution.

The way in which it deviates from regular BHS is that it attempts to take current market

conditions into account by placing a larger weight on more recent observations. In the

aforementioned BHS, all historical losses are assigned the same weight (1/N). When

implementing AWHS, older loss observations are assigned a lower weight. The weights

are assigned accordingly (newest to oldest) (Richardson, Boudoukh & Whitelaw, 1997):
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ÊN = 1≠⁄
1≠⁄N

ÊN≠1 = ⁄ÊN

ÊN≠2 = ⁄
2
ÊN

...

Ê2 = ⁄
N≠2

ÊN

Ê1 = ⁄
N≠1

ÊN

When determining the weight of each observed loss, the term ⁄ is used as a decay factor

(Richardson, Boudoukh & Whitelaw, 1997). A value of ⁄ is selected between 0 and 1

depending on how much importance older observations are deemed to have (Richardson,

Boudoukh & Whitelaw, 1997). Throughout this paper a decay rate of ⁄ = 0.99 is used and

the previous year’s loss observations are taken into account. This implies that the weight

is halved approximately every 70 days (the loss at T = t ≠ 70 is given approximately half

the weight of the loss at time T = t). The advantage of using AWHS as opposed to BHS is

that current market conditions are taken into account to a greater extent. Furthermore,

using AWHS, ghost e�ects, that is a sudden large shift in VaR and ES estimates as a

result of a large loss observation falling out o� sample, are reduced (Dowd, 2005).

4.3.3 Volatility-Weighted Historical Simulation

With the empirical finding that volatility tends to cluster into times of high volatility

and times of lower volatility (Mandelbrot, 1963) arises the need to create an approach

for estimating ES that takes this phenomena into account. One such method is VWHS

as suggested by Hull and White (1999). The rationale behind using VWHS is that if

volatility in the current holding period is below average, then volatility is likely to be

below average in the next holding period as well (Hull & White, 1999). Thus, if volatility

in the current holding period is above (bellow) average, the estimates for VaR and ES are

adjusted upwards (downwards). As in the case of BHS, the losses (¸1, ¸2, ¸3, ..., ¸T ) of the

previous year are used. The loss observations are rescaled accordingly:
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¸
ú
1

= ‡T +1
‡1

¸1

¸
ú
2

= ‡T +1
‡2

¸2

...

¸
ú
T ≠1

= ‡T +1
‡T ≠1

¸T ≠1

¸
ú
T = ‡T +1

‡T
¸T

In the above expression, ‡1, ‡2, ..., ‡T ≠1, ‡T are the volatilities associated with each re-

spective loss observation. Furthermore, the term ‡T +1 is a forecast of the next holding

period’s volatility. As the next period’s volatility is not directly observable, an estimation

of ‡T +1 is required. For this purpose, an EWMA model is implemented accordingly:

‡
2

T +1
= 1 ≠ ⁄

1 ≠ ⁄T

Tÿ

t=1

⁄
T ≠t

Á
2

t (11)

When dealing with large values of T , the expression can be rewritten as:

‡
2

T +1
¥ (1 ≠ ⁄)Á2

T + ⁄‡
2

T (12)

Where ÁT is the unexpected return at time T , ‡T is the volatility at time T and ⁄ is a

fixed constant. The value of ⁄ can be changed in order to alter the e�ect of deviating

volatilities. However, for the purpose of this paper, and in line with Longerstaey and

Spencer (1996), a fixed value of ⁄ of 0.94 is used.

4.4 Parametric Approaches

While non-parametric approaches to estimating ES make use of the empirical loss distri-

bution, parametric approaches instead assume that the loss distribution can be modelled

by a probability distribution such as the Normal- or t-distribution (Geisser, Johnson &

Wiley InterScience, 2006). One advantage of using a parametric approach to estimate ES

is that while non-parametric approaches to a large extent are dependent on the largest

loss in the sample period, parametric approaches are not and are thus more suitable for

managing extreme values. The parametric models in this paper are based on the Normal-

and Student’s t-distribution.
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4.4.1 Normal Distribution

The first distributional assumption made is that of a Normal distribution. A Normal

distribution is expressed by the probability density function:

f(x) = 1
‡

Ô
2fi

C

≠1
2

3
x ≠ µ

‡

42
D

for x œ (≠Œ, Œ) (13)

Where µ and ‡ are the mean and standard deviation respectively (Anevski, 2017). As-

suming that losses follow a normal distribution (L ≥ �(µ, ‡)) and due to the fact that

the Normal distribution is a continuous distribution, the following definition of VaR is

used to make the estimation:

Pr(Lt > VaR–) = 1 ≠ – (14)

The equation can be interpreted as, the probability of a loss larger than the VaR estimate

occurring, should be equal to 1≠– (Hull, 2018). As the Normal distribution is a continuous

distribution, a value for VaR can always be found. Thus, at the 0.975 confidence interval,

the VaR estimate can be expressed by:

V aR0.975(L) = µ + ‡z0.975 (15)

Where z0.975 is the 0.975-quantile for the Normal distribution (Norton, Khokhlov & Urya-

sev, 2018). Similarly, as the Normal distribution is a continuous distribution the following

definition of ES can be implemented in order to derive the necessary estimates:

ES–(L) = E [L : L > V aR–(L)] (16)

The intuition behind the equation is that the ES estimate should be equal to the expected

loss, given that the occurred loss is larger than the VaR estimate. Given Equation 16,

and assuming that losses follow a Normal distribution (L ≥ �(µ, ‡)), the estimate for ES

at the 0.975 confidence interval is given by:
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ES0.975(L) = µ + ‡
fstd(z0.975)
1 ≠ 0.975 (17)

Where fstd is the probability density function of a �(0, 1)-distributed normal variable

(Norton, Khokhlov & Uryasev, 2018). The final problem at hand when implementing the

parametric approach is how to estimate the mean and volatility parameters. For simplicity

and due to the fact that the holding period is relatively short, a µ (mean) of zero is used

in this paper. As for the volatility estimates, two di�erent approaches are implemented.

The most straightforward approach is to use the sample variance of the previous year’s

loss observations. However, this approach arguably su�ers from the disadvantage that it

fails to adequately account for current market conditions (Hull, 2018). In order to account

for changing market conditions, a model that takes time-varying volatility into account is

also implemented.

4.4.2 EWMA-N

The documented phenomena of volatility clustering gives rise to the need for a model

that is able to account for time-varying volatility (Mandelbrot, 1963). In the previous

parametric model, the sample variance is used in order to derive an estimate for ES. The

EWMA-N-approach uses an EWMA model to estimate volatility for the next holding

period (‡t+1). Thus, the same approach as in the aforementioned N-dist-approach is

implemented, with the distinction that the sample variance is substituted for the EWMA-

estimate for volatility (‡2

T +1
¥ (1 ≠ ⁄)Á2

T + ⁄‡
2

T ). The models for estimating VaR and ES

at the 0.975 confidence level can thus be stated:

V aR0.975(L) = µ + ‡t+1z0.975 (18)

ES0.975(L) = µ + ‡t+1

fstd(z0.975)
1 ≠ 0.975 (19)

4.4.3 Student’s t-distribution

One liability of modeling ES according to a Normal distribution is the empirical finding

that stock returns typically do not follow a Normal distribution (Fama, 1965). The finding
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that financial returns are characterized by excess kurtosis, that is, the distribution is

heavy-tailed in comparison to the Normal distribution, gives rise to the need to model

ES according to a distribution that accounts for "fat tails" (Hull, 2018). By introducing

the Student’s t-distribution a parameter v (degrees of freedom) is implemented in order

to control for excess kurtosis. In this regard, the Student’s t-distribution di�ers from the

regular Normal distribution, giving rise to the following probability density function:

f(x) = � [(v + 1)/2]
‡

Ò
(v ≠ 2)fi�(v/2)

C

1 + 1
v ≠ 2

3
x ≠ µ

‡

42
D≠(v+1)/2

for x œ (≠Œ, Œ) (20)

Where v is the degrees of freedom, ‡ is volatility, µ is the mean and � is the Gamma-

function (Ahsanullah, Shakil & Golam Kibria, 2014). The parameter estimates for µ and

‡ can be derived with the same method as implemented for the Normal distribution. As

for the degrees of freedom (v), the following relationship between sample kurtosis and

degrees of freedom is utilized:

k = 3 + 6
v ≠ 4 … v = 4k ≠ 6

k ≠ 3 (21)

Where k is the sample kurtosis and v the degrees of freedom (Ahsanullah, Shakil & Golam

Kibria, 2014). As for the for the estimation of VaR, Equation 14 is again implemented,

yielding an expression for the VaR estimate at the 0.975 confidence level of:

V aR0.975(L) = µ +
Û

v ≠ 2
v

‡t0.975,v (22)

Where t0.975,v is the 0.975-quantile of the standard loss distribution (Norton, Khokhlov

& Uryasev, 2018). The ES estimate at the 0.975 confidence level when losses follow

a Student’s t-distribution is expressed as suggested by Norton, Khokhlov and Uryasev

(2018):

ES0.975(L) = µ +
Û

v ≠ 2
v

‡
f

ú
std(t0.975,v)
1 ≠ 0.975

A
v + t

2

0.975,v

v ≠ 1

B

(23)
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As in the case of the Normal distribution approach, parameter estimates of µ and ‡ have

to be obtained. As in the previous example, µ (mean) is assumed to be zero. As for ‡

(volatility), the sample variance is used. However, the aforementioned empirical finding

that volatility tends to cluster into times of high volatility and of low volatility, warrants

the implementation of a model that takes time-varying volatility into account.

4.4.4 EWMA-t

In order to account for time-varying volatility and to estimate volatility for the next

holding period (‡t+1) an EWMA model is implemented. In the previous parametric

model, the sample variance is used in order to derive an estimate for ES. The same

approach as in the aforementioned Student’s t-distribution approach is implemented, with

the exception that the sample variance is substituted for the EWMA estimate for volatility

(‡2

T +1
¥ (1≠⁄)Á2

T +⁄‡
2

T ). The models for estimating VaR and ES at the 0.975 confidence

level can thus be stated:

V aR0.975(L) = µ +
Û

v ≠ 2
v

‡t+1t0.975,v (24)

ES0.975(L) = µ +
Û

v ≠ 2
v

‡t+1

f
ú
std(t0.975,v)
1 ≠ 0.975

A
v + t

2

0.975,v

v ≠ 1

B

(25)

4.5 Extreme Value Theory

EVT is a method used for modelling the tail of a distribution (Hull, 2018). Gnedenko

(1943) proves the fact that the tails of many di�erent probability distributions share

common features. In the context of financial economics, this finding can be used to model

a loss distribution and hence estimate VaR and ES using the empirical distribution. The

two extreme value approaches investigated in this paper are POT and Conditional POT.

4.5.1 Peaks over Threshold

A critique of regular EVT is that it only uses the largest loss in the sample for the

analysis of VaR and ES (Hull, 2018). POT circumvents this issue, by investigating all

losses that are larger than a predetermined threshold value. Thus, the method is not as

susceptible to information loss as regular EVT. However, the problem that arises when
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implementing POT is the need to define a threshold value such that all losses above are

deemed "extreme". The problem with this rather subjective threshold value is that while

the threshold value should be su�ciently high in order to consider excess losses "extreme",

the threshold value also needs to be low enough in order to gather su�cient data for the

estimation of parameters (Hull, 2018). As a result, the decision of which threshold value

to be be implemented is not entirely objective. For the purpose of this paper, the 95th

quantile of the previous five years’ loss observations is used as a threshold value. This is

arguably a value that is low enough in order to estimate parameters and high enough to

deem losses in excess as "extreme".

The losses in excess of the predetermined threshold value (L ≠ u) are modelled. In

doing so, one assumes that L follows a stochastic process and that it can be defined by

the cumulative density function F (that is, Pr(L Æ ¸) = F (¸)) (Hull, 2018). Through the

definition of a conditional probability, a definition of the cumulative density function for

excess losses can be derived (Hull, 2018):

Fu(¸) = F (¸ + u) ≠ F (u)
1 ≠ F (u) (26)

The corollary states that:

Fu(¸ ≠ u) = F (¸) ≠ F (u)
1 ≠ F (u) (27)

By definition, F (¸) = Pr(L Æ ¸). One can derive an estimate of VaR by defining ¸ = V aR–

and solving the equation F (V aR–) = – for V aR–. However, when solving this equation,

the fact that Fu(¸ ≠ u) follows an unknown distribution becomes apparent. This issue

can however be circumvented through the use of the Pickands-Balkema-de Haan Extreme

Value Theorem (Balkema & de Haan, 1974). The theorem states that as the threshold

value u tends towards infinity, the tail to the right of u can be approximated by a GPD:

G(¸ ≠ u) =

Y
__]

__[

1 ≠ (1 + ›
¸≠u

— )≠1/›
, if › ”= 0

1 ≠ exp
1
≠ ¸≠u

—

2
, if › = 0

Hence, by selecting a large enough u, the unknown distribution Fu can be substituted for
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G. Thus, through the use of the Pickands-Balkema-de Haan Extreme Value Theorem, one

can derive an expression for VaR:

V aR– =

Y
___]

___[

u + —
›

51
1≠–

1≠F (u)

2≠›
≠ 1

6
, when › ”= 0

u ≠ — ln 1≠–
1≠F (u)

, when › = 0

The parameter values — and › are estimated using MLE. Through the definitions of VaR

and the definition of ES, an expression for ES is stated as (Hull, 2018):

ES– =

Y
__]

__[

V aR–+—≠u›
1≠› , for › ”= 0

V aR– + —, for › = 0

4.5.2 Conditional Peaks over Threshold

In the case of the aforementioned parametric approaches, if one attempts to take current

market conditions into account by placing more emphasis on more recent loss observations

an approach such as AWHS can be used. The corollary in the case of POT is Conditional

POT. This is implemented through carrying out the standard Peaks over Threshold anal-

ysis but using GARCH/EWMA volatility models (McNeil & Frey, 2000). In this paper

an EWMA volatility model is used. Using Unconditional POT, the estimate of VaR can

be defined as:

V aR– = µ + ‡T +1q– (28)

Where ‡T +1 is the volatility derived from the EWMA model for the first day outside the

sample period, and q– is the VaR estimate derived from the regular POT model. In order

to carry out the analysis, the loss observations are standardised accordingly:

Á
ú
1

= ¸1≠¯̧

‡1

Á
ú
2

= ¸2≠¯̧

‡2
...

Á
ú
T ≠1

= ¸T ≠1≠¯̧

‡T ≠1

Á
ú
T = ¸T ≠¯̧

‡T
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Where ¸ is the average of the sample loss observation and ‡t is the volatility associated

with each respective loss. The estimates for VaR and ES under Conditional POT can

thus be expressed by:

V aR– = µ + ‡T +1V aR(Áú) (29)

ES– = µ + ‡T +1ES(Áú) (30)

Where V aR(Áú) and ES(Áú) are the VaR and ES estimates from the standardized residuals

under a GPD.

4.6 Backtesting Expected Shortfall

In order to evaluate the performance of each approach, a backtest outlined by Acerbi and

Szekely (2014) is carried out. Acerbi and Szekely (2014) propose three di�erent backtests

in their 2014 paper. The test implemented in this paper is the second test, referred to

by Acerbi and Szekely (2014) as "testing ES directly". Acerbi and Szekely (2014) assume

that each day’s profit or loss (Lt where t = 1, 2, ..., T ) follows what they refer to as

a real distribution Ft and is forecasted by a predictive distribution Pt. Assuming that

the distribution is continuous and strictly increasing, and following the aforementioned

definitions of VaR and ES, the ES at time t can be expressed by the following equation:

ES–,t = E[Lt|Lt + V aR–,t < 0] (31)

The test thus follows from the unconditional expectation:

ESa,t = E
5

LtIt

1 ≠ –

6
(32)

Where It is an indicator function defined as:

It =

Y
__]

__[

1, if Lt > V aRa,t(Lt)

0, if Lt Æ V aRa,t(Lt)
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The test statistic can thus be defined as:

Z = ≠
Tÿ

t=1

LtIt

T (1 ≠ –)ES–,t
+ 1 (33)

The null- and alternative hypothesis state that:

H0 : ES
P
–,t = ES

F
–,t for all t

H1 : ES
P
–,t < ES

F
–,t for at least one t

(34)

The intuition behind the test is that the null hypothesis states that the model correctly

estimates ES for all days t and that the alternative hypothesis states that the selected

model underestimates ES at least one day t (Acerbi & Szekely, 2014). In layman’s terms

this means that the test-statistic calculates the average ratio between the loss when the

observed loss exceeds the VaR estimate for that particular day, and the ES estimate for

that particular day (Acerbi & Szekely, 2014). Thus, if the model is correctly specified, the

expected value of the test-statistic is zero under the null hypothesis (Acerbi & Szekely,

2014).

When evaluating the test-statistic from the Acerbi and Szekely test, the natural ques-

tion is: What values of the test-statistic constitute over- and underestimation of Expected

Shortfall? As one does not know the underlying distribution of the test-statistic, it is not

directly evident which critical value to use. Acerbi and Szekely (2014) argue that the crit-

ical value does not deviate much between di�erent predictive distributions. Furthermore,

Acerbi and Szekely (2014) suggest using -0.70 as a critical value at the 5% level and -1.8 at

the 1% level. On the other end of the spectrum, overestimation of ES will arguably lead

to an ine�cient use of capital. Thus, models that systematically overestimate ES need to

be penalized accordingly. As the distribution of the test-statistic is not symmetric, using

a critical value of +0.70 would not be prudent. Andersson (2020) suggests using a critical

value of +0.59.

Another approach that can be used to evaluate ES estimates is a Basel type "Tra�c

Light System". This approach was first implemented by the Basel Committee on Banking

Supervision in 1996 in order to evaluate VaR estimates. Costanzino and Curran (2018)

argue that this approach can also be used to evaluate ES estimates. The approach consists
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of a confidence interval marked with critical values. A model is given a green, yellow or

red light depending on how accurate its ES estimate is (Costanzino & Curran, 2018).

A green light, indicating that the model is "accurate", is given when the test statistic

of the ES estimate is below the 95th quantile (Costanzino & Curran, 2018). A yellow

light, indicating that the model underestimates ES, is given when the test statistic falls

between the 95th and 99th quantile (Costanzino & Curran, 2018). A red light, indicating

a gross underestimation of the ES estimate, is given when the test statistic lays above the

99th quantile (Costanzino & Curran, 2018). To implement this approach in accordance

with Acerbi and Szekely (2014) the 95th and 99th quantiles are equal to -0.7 and -1.8

respectively.

The evaluation of each of the eleven approaches can thus be interpreted as two di�erent

tests, based on the underlying objective of the forecasting approach. The objective of the

financial institution can be expressed as optimizing the amount of reserve capital in order

to have enough capital in the books to weather through financially turbulent years while at

the same time minimizing an ine�cient use of capital by having too high capital reserves.

However, from the perspective of regulators such as the Basel Committee on Banking

Supervision, overestimation of ES is of little concern. Therefore, if the objective is simply

to apply estimation approaches that do not underestimate risk, the Basel type "Tra�c

Light System" o�ers an indication as to which model best captures risk.
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5 Results and Analysis

Table 1: The percentage of over- and underestimations for each of the eleven approaches (1962-2019)

Approach Underestimations (%) Overestimations (%) Correct estimation (%)

BHS 32.8 10.3 56.9

AWHS 10.3 22.4 67.2

VWHS 10.3 0.0 89.7

N-dist 39.7 31.0 29.3

t-dist 31.0 34.5 34.5

N-dist-EWMA 36.2 0.0 63.8

t-dist-EWMA 20.7 0.0 79.3

POT (› ”= 0) 44.8 24.1 31.0

POT (› = 0) 44.8 24.1 31.0

Conditional POT (› ”= 0) 1.7 31.0 67.2

Conditional POT (› = 0) 3.4 27.6 69.0

5.1 Backtest of Non-Parametric Approaches

Figure 1: The percentage of correct ES estimations for the non-parametric approaches: Basic Historical
Simulation, Age-Weighted Historical Simulation and Volatility-Weighted Historical Simulation for the
years 1962-2019

Examining the 58 investigated years (1962-2019) the BHS results in a total of 19 under-

estimations of ES. The most severe underestimations occurred, perhaps unsurprisingly,

during the years 1973, 1987 and 2008. As the oil embargo of 1973, the stock market

crash of 1987 and the recession of 2008 triggered a sharp rise in volatility, the BHS model

failed to account for this sudden rise in volatility. Even though the BHS model only takes

into account the latest year’s loss observations it nevertheless evidently fails in adapting

quickly enough to prevailing market conditions.
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On the other end of the spectrum is the desire not to overestimate ES. Investigating

the six years when overestimation of ES occurred, further evidence for the inability of BHS

to adapt to current market is presented. Three out of the six overestimations occurred in

the years following economic crises (1975, 1988 and 2009). The data thus suggests that

the practical implications for a financial institution implementing BHS is that too much

capital is kept in the books during the years following a financial crisis.

Additionally, while an examination of whether or not a model under- or overestimates

ES during a particular year is necessary, the degree to which it underestimates (over-

estimates) ES given that underestimation (overestimation) has occurred is also worth

examining. An examination of Table 2 (B Appendix) suggests that while BHS underes-

timates ES in 32.8% of the investigated years, it also severely underestimates ES in the

three most turbulent years (1973, 1987 and 2008). The results form the Tra�c Light

System, presented in Table 3 of the B Appendix, display that the BHS results in twelve

and seven yellow and red lights respectively. In other words, BHS severely underestimates

risk in seven out of the 58 investigated years. Thus from the perspective of regulatory

authorities, the data suggests that BHS is not a preferable approach to evaluating risk.

BHS is quite intuitive and relatively straightforward to implement, but due to the fact

that it places the same weight on all loss observations that took place in the most recent

year, it is slow to react to current market conditions. Thus, the findings suggest that

using BHS will likely lead to too little capital being put aside during turbulent years, and

too much capital in the books during recovery periods.

Moving up in model complexity, and addressing the apparent shortcomings of BHS

is AWHS. As with the aforementioned BHS, AWHS also fails to accurately predict the

turbulent years of 1973, 1987 and 2008. The model does however display an improvement,

as the z-statistics from the Acerbi and Szekely test for the three years is closer to the

critical value of -0.70. Furthermore, as the dynamic properties of the AWHS augment the

apparent shortcomings of BHS, the overestimations in the years following 1973, 1987 and

2008 are not as dramatic as in the case of BHS. The results from the backtests suggest

that the dynamic properties of the AWHS improve the forecasting ability of the historical

simulation. As indicated in Table 1, augmenting the regular BHS by assigning di�erent

weights to observations based on their age, results in a decrease in underestimations by

22.5 percentage points. Furthermore, using AWHS results in correct estimations in 67.2
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of the years as opposed to 56.9% of years for the regular BHS. Further evidence for

the superiority of AWHS to BHS is provided by the results of the Tra�c Light System.

Although, AWHS results in six yellow lights, the red lights, or severe underestimations,

that the BHS result in are completely eliminated. Thus from the perspective of financial

regulators, the results suggest that AWHS is preferable to BHS.

The third non-parametric approach, VWHS, also attempts to augment the BHS by

taking volatility clustering into account. The rationale behind VWHS is that if volatility

is higher than average in the current holding period, the forecasts of VaR and ES should

be rescaled accordingly. The results indicate that carrying out VWHS yields accurate

forecasts of ES even for the turbulent years of 1973, 1987 and 2008, suggesting that the

dynamic properties of the VWHS more reliably take the empirical finding of volatility

clustering into account than do both BHS and AWHS. Carrying out VWHS results in

underestimations of ES in 10.30% of the years 1962-2019 and in zero overestimations of

ES. As in the case of AWHS, implementing VWHS also eliminates all red lights form the

Tra�c Light System.

A comparison of the accuracy of the three non-parametric approaches is summarized

in Figure 1. Both AWHS and VWHS attempt to augment the shortcomings of BHS by, in

the case of AWHS assign a greater weight to more recent observations, and in the case of

VWHS, by rescaling the ES forecasts upwards (downwards) based on if volatility is higher

(lower) than average in the current holding period. Figure 1 suggests that accounting for

volatility clustering through a VWHS produces more accurate forecasts of ES than does

the methodology implemented in the AWHS. An ocular inspection of Figure 3, Figure 4
and Figure 5 (A Appendix), suggests greater dynamic properties of VWHS compared to

both BHS and AWHS, further augmenting this conclusion.
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5.2 Backtest of Parametric Approaches

Figure 2: The percentage of correct ES estimations for the parametric approaches for the years 1962-2019

Examining the results from the backtests of the N-dist parametric approach, the draw-

backs of modelling the loss distribution based on a Normal distribution are evident. Using

the N-dist approach only results in correct ES estimations in 29.3% of the investigated

years. Furthermore, in the years when the model does underestimate ES, the z-statistics

from the Acerbi and Szekely test indicate that the degree to which the approach under-

estimates ES is quite severe in comparison to most of the other parametric approaches.

Examining the results from the Tra�c Light System (Table 3 of the B Appendix) shows

that following the N-dist approach results in twelve red lights, or severe underestimations.

Fama (1965) and Mandelbrot (1963) argue in their respective papers that financial data

is not typically characterized by a Normal distribution, but instead by a distribution with

leptokurtic properties. The results yielded from carrying out the backtests (presented in

Table 1, in unison with the evidence presented in Fama (1965) and Mandelbrot (1963)

suggest that basing an estimation approach on the assumption of a Normal distribution

does not produce accurate forecasts of ES and will likely lead to too low capital reserves.

Volatility can be estimated either simply by a rolling window of the standard de-

viations of previous losses or by an EWMA approach where the volatility is estimated

according to the prevailing unexpected losses and recent volatility in a GARCH process.

As in the case of the aforementioned VWHS, the N-dist-EWMA approach attempts to
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augment the shortcomings of the regular N-dist approach by accounting for volatility

clustering. The data suggests that estimating volatility through the EWMA approach as

opposed to a rolling window, improves the N-dist approach significantly. The number of

correct estimations is increased by 34.5% percentage points and the degree to which it

underestimates ES in the years that it does in fact underestimate is reduced considerably.

While the N-dist-EWMA does produce 21 yellow lights, indicating that the model has

a tendency to slightly underestimate risk, the presence of red lights is completely elimi-

nated, suggesting that from a financial regulator’s perspective, implementing an EWMA

model to the regular N-dist approach is prudent.

With the aforementioned leptokurtic properties of financial data outlined by Fama

(1965) and Mandelbrot (1963), arises the need to take "heavy tails" into account. Exam-

ining the results from the t-dist approach, where the assumptions regarding the underlying

loss distribution are based on the loss distribution following a t-distribution, it is evident

that the forecasts of ES are more accurate when accounting for Fama’s and Mandel-

brot’s observations. Compared to the 29.3% correct estimations produced by the N-dist

approach, the t-dist approach yields a total of 34.5% correct estimations for the years

1962-2019. Furthermore, the underestimations are not as severe for the t-dist approach

as compared to the approach based on the assumption of a Normal distribution. Never-

theless, the t-dist approach results in underestimation in 31.0% of the investigated years

and in 34.5% overestimations. The results thus suggest that basing capital requirements

on the assumption of a t-distributed loss distribution is not ideal.

In an attempt to address the failure of the regular t-dist approach to produce accu-

rate forecasts of ES, instead of estimating volatility by a rolling window of the standard

deviations of previous losses, an EWMA approach where the volatility is estimated ac-

cording to the prevailing unexpected losses and recent volatility in a GARCH process

is implemented. Examining the results from the t-dist-EWMA approach suggests that

applying the EWMA model as opposed to the rolling window approach, drastically im-

proves the performance of the estimation approach. The t-dist-EWMA approach results

in correct estimations in 79.3% of the examined year, indicating that out of the four

parametric approaches investigated, modelling the loss observations on the assumption

of a t-distribution and implementing an EWMA approach, produces the most accurate

forecasts of ES. Furthermore, as with the implementation of the EWMA volatility to
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the N-dist approach, using EWMA volatility instead of a rolling window for the t-dist

approach, results in zero overestimations of ES. Thus, as the number of overestimations

is minimized and the underestimations are less severe compared to the underestimations

produced by the N-dist, N-dist-EWMA and t-dist approaches, the data suggests that mod-

elling the loss distribution according to the the t-dist-EWMA approach, is the preferred

method for determining the capital requirements of a firm.

5.3 Backtest of Extreme Value Theory Approaches

Figure 3: The percentage of correct ES estimations for the Extreme Value Theory approaches for the
years 1962-2019

As with the non-parametric approaches, the EVT approaches can be divided into "un-

dynamic" and "dynamic" models, with he first implementing the regular POT approach

and the latter attempting to account for volatility clustering by incorporating an EWMA

model to the regular POT approach. Typically, POT is used to forecasts VaR and ES

at high confidence levels with "extreme" events taking place with very low frequency. In

this context it is not self-evident that making the model more dynamic and responsive to

prevailing market conditions is a meaningful exercise.

The POT approach results in 44.8% and 24.1% under- and overestimations respectively

for the years 1962 to 2019. In other words, the POT approach only results in correct

estimations for 31.0% of the investigated years. Furthermore, for the very turbulent years
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of 1973, 1987 and 2008 the underestimations of ES are quite severe compared to most of

the other parametric and non-parametric approaches.

Incorporating an EWMA approach to the regular POT approach, The conditional

POT approach takes current market conditions into account to a higher degree. The data

suggests that the accuracy of the ES forecasts is improved drastically by implementing

this approach. The conditional POT (› ”= 0) and conditional POT (› = 0) result in 1.7%

and 3.4% underestimations of ES respectively. Although the number of overestimations

is slightly higher for the conditional POT than for the unconditional POT, the number

of correct estimations is more than doubled. Additionally, the conditional POT performs

quite well for the years 1973, 1987 and 2008, with the conditional POT being the only

model together with VWHS to accurately forecast ES for the year 2008. The data thus

suggests that there seems to be some merit to making the model more responsive to

prevailing market conditions. Examining the results from the Tra�c Light System, it is

evident that the conditional POT produces the highest number of green lights out of all

the models. Thus, from a regulator’s standpoint, the data suggests that implementing

the conditional POT approach is favourable.
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6 Conclusion

Previous research on the the forecasting ability of various ES estimation approaches has

largely been carried out from the perspective of financial regulators. That is, research has

largely focused on finding a model that does not underestimate market risk. Although

finding a model that does not underestimate market risk is undeniably important, both

for the financial regulator attempting to ensure the stability of the financial system, and

for the financial institution attempting to mitigate the consequences of turbulent market

conditions, overestimation of market risk arguably also has certain drawbacks. Thus,

when evaluating and drawing conclusions about the forecasting ability of the various ES

estimation approaches, the relative importance of overestimation and underestimation has

to be considered.

As for the non-parametric approaches, the data suggests that while the forecasting

ability is improved when moving from BHS to AWHS, VWHS has a superior ability in

producing accurate ES estimates. The data suggests that this is the case both when only

the ability of the models not to underestimate market risk is considered as well as when

the idea of finding a model that neither underestimates nor overestimates is introduced.

As for the parametric approaches, the results augment the conclusions drawn by previ-

ous research about the drawbacks of modelling financial data according to probability

distributions such as the Normal distribution or Student’s t-distribution. Even when at-

tempting to account for the empirical finding of volatility clustering by introducing an

EWMA model to the aforementioned N-dist and t-dist approaches, the data suggests that

VWHS still yields more accurate forecasts.

Addressing the accuracy of the EVT approaches, the results suggest that the fore-

casting ability of the regular POT approach is unsatisfactory form both an over- and

underestimation perspective, displaying both severe underestimations for many of the in-

vestigated years as well as a tendency of the model to overestimate market risk in years

following turbulent times. However, augmenting the model by introducing an EWMA

to the regular POT, the conditional POT shows a greater ability to produce accurate

forecasts. Although the model overestimates risk in many of the years, with less than 5%

underestimations, the conditional POT is from the perspective of regulators, the most

suitable model for estimating ES.

In conclusion, if one is simply concerned with implementing a model that does not
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underestimate market risk, the data suggests that the conditional POT approach is the

preferred model. That is, if the sole concern is to prepare for and to mitigate the e�ects

of financial havoc, conditional POT is arguably the most viable option. However, if a

more holistic view is taken, where both over- and underestimation is taken into account,

the data suggests that VWHS is more adequate in forecasting ES.
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7 Further Research

As the results provided in this paper suggest that above average volatility in the current

holding period is likely to be proceeded by above average volatility in the next holding

period, and that the non-parametric VWHS approach has the greatest ability out of the

investigated models to capture this phenomenon, further research focusing on di�erent

VWHS approaches would be of great interest. The VWHS approach investigated in this

paper is restricted to the implementation of an EWMA model. This is of course by no

means the only approach for accounting for volatility clustering. Thus, incorporating

other ways of accounting for time-varying volatility such as other GARCH models would

be of great interest.

When carrying out the respective estimation approaches, the sample data in this paper

is restricted to the daily returns of the S&P500 index. Although, the daily returns of the

S&P500 should o�er evidence as to the accuracy of the respective models, limiting the

sample data to the returns of an equity index may not o�er results that are representative

of other asset classes. Therefore, testing the forecasting ability of the various models

on a series of hypothetical trading books, comprised of various asset classes and aimed

at replicating the actual trading book of a financial institution, would provide further

empirical evidence as to which model most accurately reflects the market risk of a financial

institutions portfolio.

The results from the parametric approaches that assume a Normal distribution or

Student’s t-distribution do not, as the data suggests, provide accurate forecasts. The

results do however suggest that accounting for the excess kurtosis typically exhibited by

financial data does improve the accuracy of the model. Hence, modelling the underlying

loss distribution on a probability distribution with greater leptokurtic properties may be

of interest.

Lastly, when carrying out the non-parametric approaches, the sample size is restricted

to the previous years losses, when carrying out the VWHS the decay rate (⁄) is limited

to the value 0.94 and when carrying out the EVT approaches, the 95th quantile of the

previous five years losses is used as a threshold value. For the purpose of future research,

it would be of interest to focus on one approach, and attempt to optimize the forecasting

ability of that particular model by investigating the e�ect of changing the underlying

parameters.
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A Appendix

Figure 4: Expected Shortfall estimates and loss observations from the Basic Historical Simulation 1962-2019 (Note: Positive values indicate a loss and negative
values indicate a gain)
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Figure 5: Expected Shortfall estimates and loss observations from the Age-Weighted Historical Simulation 1962-2019 (Note: Positive values indicate a loss
and negative values indicate a gain)
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Figure 6: Expected Shortfall estimates and loss observations from the Volatility-Weighted Historical Simulation 1962-2019 (Note: Positive values indicate
a loss and negative values indicate a gain)
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Figure 7: Expected Shortfall estimates and loss observations from the N-dist estimation 1962-2019 (Note: Positive values indicate a loss and negative values
indicate a gain)
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Figure 8: Expected Shortfall estimates and loss observations from the N-dist-EWMA estimation 1962-2019 (Note: Positive values indicate a loss and negative
values indicate a gain)
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Figure 9: Expected Shortfall estimates and loss observations from the t-dist estimation 1962-2019 (Note: Positive values indicate a loss and negative values
indicate a gain)
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Figure 10: Expected Shortfall estimates and loss observations from the t-dist-EWMA estimation 1962-2019 (Note: Positive values indicate a loss and negative
values indicate a gain)
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Figure 11: Expected Shortfall estimates and loss observations from the POT (› = 0) estimation 1962-2019 (Note: Positive values indicate a loss and negative
values indicate a gain)
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Figure 12: Expected Shortfall estimates and loss observations from the POT (› ”= 0) estimation 1962-2019 (Note: Positive values indicate a loss and negative
values indicate a gain)
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Figure 13: Expected Shortfall estimates and loss observations from the Conditional POT (› = 0) estimation 1962-2019 (Note: Positive values indicate a loss
and negative values indicate a gain)
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Figure 14: Expected Shortfall estimates and loss observations from the Conditional POT (› ”= 0) estimation 1962-2019 (Note: Positive values indicate a loss
and negative values indicate a gain)
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B Appendix

Table 2: The z-statistics for the eleven estimation approaches from 1962 to 2019 with green (-0.70
< Z < 0.59) indicating a correct estimation, yellow (0.59 < Z) overestimation and red (Z < -0.70)
underestimation

1962 -1.91 -0.32 -0.94 -2.64 -1.56 -2.30 -1.07 -4.95 -4.95 -0.19 -0.23
1963 -0.18 0.09 -0.37 0.76 -0.42 0.79 -0.02 0.48 0.48 0.69 0.62
1964 0.14 0.80 -0.15 0.70 -0.44 0.73 -0.26 0.87 0.87 0.28 0.12
1965 -0.62 -0.20 0.19 -0.76 -1.31 -0.41 -0.89 -0.11 -0.11 0.08 0.15
1966 -1.26 -1.10 -0.11 -4.76 -1.63 -3.59 -1.25 -3.19 -3.19 -0.08 0.03
1967 0.54 0.50 0.28 0.24 -0.66 0.56 -0.48 0.06 0.06 0.82 0.82
1968 -0.10 0.29 0.18 -0.40 -0.76 -0.27 -0.48 -0.99 -0.99 0.47 0.52
1969 -1.13 -0.22 -0.37 -1.20 -0.98 -1.01 -0.68 -2.15 -2.15 0.61 0.65
1970 -0.82 -0.22 0.37 -1.97 0.08 -1.84 0.12 -3.13 -3.13 0.82 0.84
1971 -0.27 0.00 -1.00 1.00 -0.58 1.00 -0.20 -0.17 -0.17 0.19 0.16
1972 0.55 0.59 -0.06 0.86 -0.40 1.00 0.10 0.61 0.61 0.64 0.67
1973 -3.36 -1.33 0.00 -3.48 -0.45 -2.82 -0.19 -3.57 -3.62 0.60 0.49
1974 -0.88 -0.23 0.36 -2.60 0.37 -1.89 0.53 -3.61 -3.61 0.80 0.81
1975 0.84 0.75 -0.33 1.00 0.23 1.00 0.40 0.09 0.09 0.50 0.51
1976 0.40 0.74 -0.11 1.00 0.36 1.00 0.39 0.62 0.62 0.63 0.65
1977 -0.30 0.15 -0.63 0.52 -0.61 0.53 -0.59 0.75 0.75 -0.57 -0.53
1978 -1.26 -0.35 0.43 -0.97 0.18 0.40 0.16 0.40 0.40 0.29 0.30
1979 0.00 0.12 -0.13 -0.08 -0.33 0.13 -0.12 0.18 0.18 -0.09 -0.15
1980 -0.91 0.07 0.05 -1.47 -0.49 -1.33 -0.27 -2.09 -2.09 -0.16 -0.14
1981 0.65 0.15 -0.06 0.03 -0.76 0.21 -0.53 -1.95 -1.95 0.46 0.45
1982 -0.25 -0.30 -0.06 -0.05 -0.22 -0.01 -0.18 -1.07 -1.07 0.29 0.29
1983 0.45 0.85 -0.59 0.82 0.54 0.83 0.58 -0.82 -0.82 0.85 0.84
1984 0.35 -0.60 0.09 1.00 0.18 1.00 0.24 0.32 0.32 0.52 0.48
1985 -0.15 0.57 -0.56 0.86 0.36 0.87 0.40 1.00 1.00 0.48 0.50
1986 -2.15 -0.14 -0.96 -1.85 -0.75 -1.67 -0.64 -2.62 -2.62 -0.52 -0.48
1987 -2.21 -0.72 -0.64 -3.82 -1.26 -3.39 -0.93 -2.28 -2.28 -0.46 -0.71
1988 0.75 0.88 0.20 0.53 0.04 0.60 0.19 -0.95 -0.95 0.61 0.42
1989 -0.23 0.09 -0.73 0.73 -0.91 0.77 -0.60 0.01 0.01 0.08 0.04
1990 -0.48 -0.20 0.13 -1.58 -0.55 -0.70 -0.38 -0.99 -0.99 0.46 0.49
1991 0.25 0.03 -0.26 0.43 -0.14 0.49 -0.01 0.40 0.40 0.63 0.59
1992 0.39 0.74 -0.19 0.86 -0.11 1.00 0.21 0.90 0.90 0.69 0.68
1993 0.14 0.18 -0.35 0.58 -0.23 0.62 0.00 0.64 0.64 0.32 0.10
1994 -0.66 -0.20 -0.29 -1.19 -0.94 -1.05 -0.81 -0.53 -0.53 -0.12 -0.08
1995 0.32 0.25 0.13 0.47 0.10 0.51 0.17 0.59 0.59 0.54 0.62
1996 -1.02 -0.49 -0.27 -1.49 -0.96 -1.15 -0.79 -2.16 -2.16 -0.22 -0.28
1997 -1.21 -0.79 -0.18 -2.08 -0.82 -1.56 -0.66 -2.47 -2.47 0.08 0.09
1998 -0.75 0.14 -0.40 -1.53 -1.18 -0.82 -0.36 -2.86 -2.85 -0.02 0.10
1999 0.55 0.52 0.26 0.70 -0.04 0.74 0.45 -1.46 -1.46 1.00 1.00
2000 -0.49 -0.47 -0.28 -0.44 -0.98 -0.28 -0.52 -1.98 -1.86 0.30 0.41
2001 -0.28 0.30 -0.08 -0.23 -0.15 -0.04 -0.08 -1.16 -1.16 0.63 0.60
2002 -1.21 -0.34 0.14 -0.77 -0.29 -0.62 -0.06 -2.66 -2.66 0.69 0.64
2003 0.84 1.00 -0.24 0.71 0.24 0.85 0.29 0.25 0.25 1.00 1.00
2004 0.42 0.26 -0.35 1.00 -0.27 1.00 -0.06 1.00 1.00 0.13 0.03
2005 0.17 0.03 -0.11 0.55 -0.10 0.58 -0.02 1.00 1.00 0.52 0.49
2006 -0.33 0.16 -0.23 0.00 -0.27 0.16 -0.15 0.88 0.88 -0.06 -0.07
2007 -2.00 -0.69 -0.88 -3.50 -1.69 -3.31 -1.58 -0.50 0.19 -1.66 -1.26
2008 -3.15 -0.93 -0.15 -7.10 -1.54 -6.19 -1.09 -6.06 -6.27 -0.10 0.11
2009 1.00 0.77 0.50 0.08 -0.33 0.41 0.42 -1.29 -1.31 0.85 0.84
2010 -0.02 0.25 -0.39 1.00 -1.21 1.00 -0.84 -0.02 -0.02 0.26 0.31
2011 -1.48 -0.28 -0.36 -2.15 -1.48 -1.56 -1.09 -0.94 -0.94 0.02 -0.10
2012 0.84 0.66 -0.06 0.73 -0.51 0.88 -0.22 1.00 1.00 0.65 0.67
2013 0.33 0.64 -0.22 0.72 -0.69 0.87 -0.39 1.00 1.00 0.44 0.33
2014 -0.57 -0.32 -0.49 -0.75 -1.46 -0.64 -1.29 0.44 0.44 -0.29 -0.21
2015 -0.84 0.21 0.22 -1.74 -0.73 -1.20 -0.63 -0.66 -0.66 0.17 0.28
2016 0.23 0.54 -0.10 -0.28 -0.11 -0.18 -0.03 -0.25 -0.25 0.49 0.55
2017 0.21 0.62 -0.29 0.86 -0.35 0.87 0.00 0.60 0.60 0.28 0.24
2018 -1.91 -1.37 -0.75 -5.05 -1.56 -4.02 -1.16 -3.40 -3.40 -0.02 0.02
2019 0.39 0.61 0.24 0.02 -0.60 0.09 -0.35 -0.50 -0.51 0.36 0.46

t-dist-
EWMAVWHS POT (xi≠0) POT (xi=0)

Conditional 
POT (xi≠0)

Conditional 
POT (xi=0)AWHS N-dist

N-dist-
EWMA t-distBHS
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Table 3: The z-statistics and corresponding Basel type tra�c light color for the eleven estimation ap-
proaches from 1962 to 2019 with green (-0.70 < Z), yellow (-1.80 < Z < -0.70) and red (Z < -1.80)

1962 -1.91 -0.32 -0.94 -2.64 -1.56 -2.30 -1.07 -4.95 -4.95 -0.19 -0.23
1963 -0.18 0.09 -0.37 0.76 -0.42 0.79 -0.02 0.48 0.48 0.69 0.62
1964 0.14 0.80 -0.15 0.70 -0.44 0.73 -0.26 0.87 0.87 0.28 0.12
1965 -0.62 -0.20 0.19 -0.76 -1.31 -0.41 -0.89 -0.11 -0.11 0.08 0.15
1966 -1.26 -1.10 -0.11 -4.76 -1.63 -3.59 -1.25 -3.19 -3.19 -0.08 0.03
1967 0.54 0.50 0.28 0.24 -0.66 0.56 -0.48 0.06 0.06 0.82 0.82
1968 -0.10 0.29 0.18 -0.40 -0.76 -0.27 -0.48 -0.99 -0.99 0.47 0.52
1969 -1.13 -0.22 -0.37 -1.20 -0.98 -1.01 -0.68 -2.15 -2.15 0.61 0.65
1970 -0.82 -0.22 0.37 -1.97 0.08 -1.84 0.12 -3.13 -3.13 0.82 0.84
1971 -0.27 0.00 -1.00 1.00 -0.58 1.00 -0.20 -0.17 -0.17 0.19 0.16
1972 0.55 0.59 -0.06 0.86 -0.40 1.00 0.10 0.61 0.61 0.64 0.67
1973 -3.36 -1.33 0.00 -3.48 -0.45 -2.82 -0.19 -3.57 -3.62 0.60 0.49
1974 -0.88 -0.23 0.36 -2.60 0.37 -1.89 0.53 -3.61 -3.61 0.80 0.81
1975 0.84 0.75 -0.33 1.00 0.23 1.00 0.40 0.09 0.09 0.50 0.51
1976 0.40 0.74 -0.11 1.00 0.36 1.00 0.39 0.62 0.62 0.63 0.65
1977 -0.30 0.15 -0.63 0.52 -0.61 0.53 -0.59 0.75 0.75 -0.57 -0.53
1978 -1.26 -0.35 0.43 -0.97 0.18 0.40 0.16 0.40 0.40 0.29 0.30
1979 0.00 0.12 -0.13 -0.08 -0.33 0.13 -0.12 0.18 0.18 -0.09 -0.15
1980 -0.91 0.07 0.05 -1.47 -0.49 -1.33 -0.27 -2.09 -2.09 -0.16 -0.14
1981 0.65 0.15 -0.06 0.03 -0.76 0.21 -0.53 -1.95 -1.95 0.46 0.45
1982 -0.25 -0.30 -0.06 -0.05 -0.22 -0.01 -0.18 -1.07 -1.07 0.29 0.29
1983 0.45 0.85 -0.59 0.82 0.54 0.83 0.58 -0.82 -0.82 0.85 0.84
1984 0.35 -0.60 0.09 1.00 0.18 1.00 0.24 0.32 0.32 0.52 0.48
1985 -0.15 0.57 -0.56 0.86 0.36 0.87 0.40 1.00 1.00 0.48 0.50
1986 -2.15 -0.14 -0.96 -1.85 -0.75 -1.67 -0.64 -2.62 -2.62 -0.52 -0.48
1987 -2.21 -0.72 -0.64 -3.82 -1.26 -3.39 -0.93 -2.28 -2.28 -0.46 -0.71
1988 0.75 0.88 0.20 0.53 0.04 0.60 0.19 -0.95 -0.95 0.61 0.42
1989 -0.23 0.09 -0.73 0.73 -0.91 0.77 -0.60 0.01 0.01 0.08 0.04
1990 -0.48 -0.20 0.13 -1.58 -0.55 -0.70 -0.38 -0.99 -0.99 0.46 0.49
1991 0.25 0.03 -0.26 0.43 -0.14 0.49 -0.01 0.40 0.40 0.63 0.59
1992 0.39 0.74 -0.19 0.86 -0.11 1.00 0.21 0.90 0.90 0.69 0.68
1993 0.14 0.18 -0.35 0.58 -0.23 0.62 0.00 0.64 0.64 0.32 0.10
1994 -0.66 -0.20 -0.29 -1.19 -0.94 -1.05 -0.81 -0.53 -0.53 -0.12 -0.08
1995 0.32 0.25 0.13 0.47 0.10 0.51 0.17 0.59 0.59 0.54 0.62
1996 -1.02 -0.49 -0.27 -1.49 -0.96 -1.15 -0.79 -2.16 -2.16 -0.22 -0.28
1997 -1.21 -0.79 -0.18 -2.08 -0.82 -1.56 -0.66 -2.47 -2.47 0.08 0.09
1998 -0.75 0.14 -0.40 -1.53 -1.18 -0.82 -0.36 -2.86 -2.85 -0.02 0.10
1999 0.55 0.52 0.26 0.70 -0.04 0.74 0.45 -1.46 -1.46 1.00 1.00
2000 -0.49 -0.47 -0.28 -0.44 -0.98 -0.28 -0.52 -1.98 -1.86 0.30 0.41
2001 -0.28 0.30 -0.08 -0.23 -0.15 -0.04 -0.08 -1.16 -1.16 0.63 0.60
2002 -1.21 -0.34 0.14 -0.77 -0.29 -0.62 -0.06 -2.66 -2.66 0.69 0.64
2003 0.84 1.00 -0.24 0.71 0.24 0.85 0.29 0.25 0.25 1.00 1.00
2004 0.42 0.26 -0.35 1.00 -0.27 1.00 -0.06 1.00 1.00 0.13 0.03
2005 0.17 0.03 -0.11 0.55 -0.10 0.58 -0.02 1.00 1.00 0.52 0.49
2006 -0.33 0.16 -0.23 0.00 -0.27 0.16 -0.15 0.88 0.88 -0.06 -0.07
2007 -2.00 -0.69 -0.88 -3.50 -1.69 -3.31 -1.58 -0.50 0.19 -1.66 -1.26
2008 -3.15 -0.93 -0.15 -7.10 -1.54 -6.19 -1.09 -6.06 -6.27 -0.10 0.11
2009 1.00 0.77 0.50 0.08 -0.33 0.41 0.42 -1.29 -1.31 0.85 0.84
2010 -0.02 0.25 -0.39 1.00 -1.21 1.00 -0.84 -0.02 -0.02 0.26 0.31
2011 -1.48 -0.28 -0.36 -2.15 -1.48 -1.56 -1.09 -0.94 -0.94 0.02 -0.10
2012 0.84 0.66 -0.06 0.73 -0.51 0.88 -0.22 1.00 1.00 0.65 0.67
2013 0.33 0.64 -0.22 0.72 -0.69 0.87 -0.39 1.00 1.00 0.44 0.33
2014 -0.57 -0.32 -0.49 -0.75 -1.46 -0.64 -1.29 0.44 0.44 -0.29 -0.21
2015 -0.84 0.21 0.22 -1.74 -0.73 -1.20 -0.63 -0.66 -0.66 0.17 0.28
2016 0.23 0.54 -0.10 -0.28 -0.11 -0.18 -0.03 -0.25 -0.25 0.49 0.55
2017 0.21 0.62 -0.29 0.86 -0.35 0.87 0.00 0.60 0.60 0.28 0.24
2018 -1.91 -1.37 -0.75 -5.05 -1.56 -4.02 -1.16 -3.40 -3.40 -0.02 0.02
2019 0.39 0.61 0.24 0.02 -0.60 0.09 -0.35 -0.50 -0.51 0.36 0.46

t-dist-
EWMA POT (xi≠0) POT (xi=0)

Conditional 
POT (xi≠0)

Conditional 
POT (xi=0)BHS AWHS VWHS N-dist

N-dist-
EWMA t-dist
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