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Abstract
Its carbon sink potential as well as soil fertility benefits make organic carbon a soil variable for which
reliable quantification methods are sought. This thesis work aims at investigating the possibility of
adapting a large soil spectral library to build models for SOC predictions with remotely sensed,
multispectral data. For this purpose, the continental-scale LUCAS topsoil database was spectrally
resampled to simulate the reflectance measured by the Sentinel-2 satellite. Multivariate partial
least squares regression models were created based on the spectrally resampled LUCAS database (i)
for all mineral cropland soil samples and (ii) for a regional subset of the mineral cropland samples
relative to location of the validation samples in southern Sweden. The global model was poor (RPD
= 1.09) in relation to a comparable model produced with the original spectral information. This
outcome was related to the insufficient spectral information of Sentinel-2 type data to account for the
variability of soil chromophores within this large dataset. Despite the reduced extent and a sample
size (n = 70) that is comparable to moderately successful SOC modelling attempts, the regional
model yielded only a slight performance improvement (RPD = 1.12). Reasons for this outcome
could be the spatially dispersed sampling strategy used to collect the LUCAS database or the high
sand content of the samples. Both models failed to produce reasonable predictions of the validation
dataset. The investigation of the difference between spectrally resampled LUCAS reflectance and
remotely sensed Sentinel-2 reflectance revealed that the data of these two measurement methods
are not readily compatible.
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1 Introduction
Soils are composed of a multitude of mineral and organic constituents. The fraction of soil consisting
of organic materials at various stages of decomposistion is termed soil organic matter (SOM) (Ben-
Dor et al., 1997). While its amount and quality has a strong influence on soil properties, the fraction
of SOM that is organic carbon (SOC) is increasingly recognized by scientists and policy makers
alike for it’s significant carbon offset potential (Lal, 2004; Van-Camp et al., 2004). These aspects
have led to interdisciplinary attempts to understand and quantify SOC stocks and fluxes within
disciplines ranging from global atmospheric modelling to field-scale precision agriculture.
A large share of Earth’s land surface has been adapted to meet the production needs of mankind
(IPCC, 2007). It has been established that up to 60% of SOC in temperate and 75% in tropical
climates is lost due to this conversion process (Lal, 2004). These SOC fluxes are determined by the
sequestration gains derived from the humification of organic material and losses due to heterotrphic
respiration, erosion and leaching (Lal, 2004). While erosion of SOC from agricultural soils has been
suggested to act as a slight carbon sink at 0.12 Pg C yr−1 (Oost et al., 2007), the remainder of the
lost carbon is ultimately released into the atmosphere.

The managed soils of croplands have SOC pools that are particularly volatile and change
according to management practices (Conant et al., 2011; Lal, 2004). In many cases, the natural
SOC has been depleted due to long-term agricultural activity, so that there is a great theoretical
potential to restore carbon in soils (Nocita et al., 2014). Lal (2004) has estimated that between 50
and 66% of the total cumulative carbon emissions from soils could be offset by the sink capacity of
the current agricultural and degraded soils.

The importance of SOC for the global carbon cycle has been mirrored by increasing body of
research conducted (Smith et al., 2018), as well as the political attention this topic has attracted
in recent decades (Nocita et al., 2014; Van-Camp et al., 2004). In their fourth assessment report,
the Intergovernmental Panel on Climate Change (IPCC) listed enhanced SOC sequestration in
agricultural ecosystems as a pathway to restore a significant amount of terrestrial carbon that has
been emitted to the atmosphere due to land conversions and exploitative land use practices (IPCC,
2007). Likewise, the Soil Thematic Strategy that has been adopted the European Commission
highlights the potential of appropriate management practices to stabilize and even increase the
amount of carbon sequestered in soil (Van-Camp et al., 2004).

Despite the significance of SOC for the carbon cycle, the most prominent subtopic in research
remains the relationship between SOC and of soil quality (Smith et al., 2018). SOC improves the soil
physical, chemical and biological properties, making it a prime indicator for soil quality (Ben-Dor
et al., 1997; Karlen et al., 1997). It has been found that SOC improves the soil structure and its
water and nutrient retention is orders of magnitudes higher than that of mineral soil constituents
(Spaccini and Piccolo, 2013). SOC also increases the aggregate stability of the soil and prohibits
surface crusting, which facilitates infiltration and decreases the risk of erosion from surface runoff.
Soil organisms feed on organic matter, so that a maintained SOC stock will lead to abundant soil
life.

The decomposition of soil organic matter caused by soil organisms is accompanied by the
mineralization of plant available nutrients, which is of interest for soil amendment calculations
(Stenberg et al., 2005). In recent decades, the development of precision agriculture technology has
aimed to improve the efficiency of nitrogen fertilizer usage by calculating variable application rates
(Stenberg et al., 2010). This is primarily accomplished by analyzing the reflectance of established
crops. To improve the amendment strategy, an understanding of the amount of nitrogen that will
become plant available from SOM mineralization is needed. This requires a solid and reproducible
method to quantify SOC.

The causes of ongoing depletion of SOC stocks in many agricultural soils are the prominent
management practices of modern agriculture (Wesemael et al., 2010). Tillage and bare fallow
periods encourage decomposition of remaining SOC, allow for leaching, aeolian and water erosion
of SOC (Oost et al., 2007; Rochette and Angers, 1999).

A wide array of conservative management practices have been suggested to mitigate further
carbon release and increase the carbon sequestration of SOC depleted soils (Lal, 2004; Tola et al.,
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2019). These include conservation or zero-tillage, cover crops, perennial crops, conservation buffers
and improved rotations (Conant et al., 2011; Spaccini and Piccolo, 2013).

While the significance of SOC for ecosystem productivity and the global carbon cycle is well
documented, difficulties persist in the effective and spatially contiguous quantification of SOC.
Many of the soil maps available today have a low spatial resolution and are based on outdated
methods (Stevens et al., 2013). Standard soil tests are a robust and simple method to obtain a
precise point measurement of SOC, but the high costs connected to timely data collection and
laboratory analysis limit their applicability on larger scales (Castaldi et al., 2019; Ward et al.,
2019). In addition, SOC varies spatially and temporally as a function of underlying environmental,
climatic and management related variables (Conant et al., 2011; Wesemael et al., 2010). The high
spatial heterogeneity of these variables complicate a precise interpolation of SOC point data using
geostatistical methods (Conant et al., 2011).

To obtain SOC estimates at an appropriate spatial resolution while being cost-effective and
practical, different methods are required (Stevens et al., 2013). Starting in the 1970s, the use of dif-
fuse reflectance spectroscopy (DRS) in the visible to shortwave infrared part of the electro-magnetic
spectrum (400-2500 nm) has been developed to infer information from soil (Nocita et al., 2014;
Steinberg et al., 2016). This indirect method takes advantage of empirically established relationships
between soil constituents and their reflectance (Steinberg et al., 2016). While DRS is nowadays
commonly used in laboratories to quantify SOC in soil samples, the increasing sophistication of
sensor technology has even made it possible to obtain data at a sufficient spectral and spatial
resolution from remote sensing platforms (Ben Dor et al., 2015). The monitoring of SOC in annual
agro-ecosystems is a prime application for remote sensing, as exposed bare soil areas are commonly
present after harvest. Precise agricultural topsoil SOC quantifications have been performed using
hyperspectral data from an airborne sensors (Steinberg et al., 2016), and there have also been
promising attempts using multispectral data collected by the ESA Sentinel-2 satellites (Castaldi
et al., 2019; Gholizadeh et al., 2018).

To obtain SOC estimates from remotely sensed reflectance data, a soil spectral library (SSL) is
required (Nocita et al., 2014). A SSL consists of soil spectral information paired with soil physical or
chemical properties (Ben Dor et al., 2015). The correlation between reflectance and soil properties
such as SOC is then commonly established with multivariate statistics such as PLSR (Castaldi
et al., 2019; Stenberg et al., 2010). An appropriate library requires the collection and standardized
analysis of a representative amount of soil samples to account for the spatial variability of soil
properties for the whole study area (Guerrero et al., 2016; Nocita et al., 2014; Stevens et al., 2013).
With a lack of standardized methods to collect and analyze soil samples, many of the small SSLs
around today have a limited applicability (Ben Dor et al., 2015). The surging political and scientific
interest in large scale, harmonized soil databases, however, has led to recent efforts to construct
country and even continental scale SSLs (Ben Dor et al., 2015; Tóth et al., 2013b). One of the
largest consistent soil databases to date has been compiled under the Land Use and Coverage Area
frame Survey (LUCAS) program in 2009. The resulting LUCAS topsoil database comprises 19,967
European soil samples (Orgiazzi et al., 2018).

The increasing availability and quality of remotely sensed data and SSLs makes SOC quantifica-
tions on larger scales feasible (Castaldi et al., 2019). This provides new opportunities to investigate
the effectiveness of policies and land management as well as allowing farmers to consider in-field
SOC variability in the calculation of agricultural amendments (Stenberg et al., 2005; Wesemael
et al., 2010). It has been shown that the spectral information in the LUCAS topsoil database allows
for the development of SOC predictive models (Nocita et al., 2014; Steinberg et al., 2016; Stevens
et al., 2013). Other researchers have successfully used multispectral Sentinel-2 data and in situ soil
sampling for SOC predictions in croplands (Bhunia et al., 2019; Castaldi et al., 2019; Gholizadeh
et al., 2018).
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1.1 Aim
The aim of this thesis is to scrutinize the possibility of developing a model for SOC quantification
from Sentinel-2 data using the LUCAS topsoil database as the SSL. As both of the LUCAS database
and Sentinel-2 data are open access and no field sampling is required for the described method, a
successful model would make SOC quantifications more accessible and avoid the effort and costs
involved in field sampling.
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2 Background

2.1 Reflectance of soil organic matter
The soil constituents that interact with electromagentic radiation are called chromophores (Stenberg
et al., 2010). SOM is not a single substance, but an array of materials which are divided into fibric,
hemic and sapric materials based on their stage of decomposition (Ben-Dor et al., 1997). The
decomposition stage is known to have a profound impact on reflectance, with fibric components
resembling the reflectance of senescent leaves, while hemic and sapric substances absorb more
radiation (Baumgardner et al., 1986). Prior to diffuse reflectance spectrosopy measurements for
the LUCAS topsoil database, larger fibric components such as plant roots were removed from soil
samples (Tóth et al., 2013b).

There is generally an inverse correlation between soil reflectance and the amount of SOM in soil.
Absorption features related to SOM have been identified for many wavelengths of the Visible-NIR
spectral range, with Stenberg et al. (2010) citing the importance of bands around 1100, 1600, 1700
to 1800, 2000, and 2200 to 2400 nm. Other research also highlights the activity of SOM in the
visible range (Baumgardner et al., 1986; Ben-Dor et al., 1997).

It has been found that organic matter does not play a significant role in soil reflectance if it
makes up less than 2 % (≈12 g C kg−1, Baumgardner et al., 1986). Other chromophores, whose
absorbance features are then dominant, include mineral components such as clay minerals, iron
oxides, carbonates or quartz (Ben-Dor et al., 1997). Due to these multiple soil covariates, the
reflectance of soil is highly variable and spatially dependent. Therefore, the geographical scale and
sampling density determine the soil reflectance variability within a soil spectral library and thus
the possible accuracy of soil property predictions that can be achieved (Stenberg et al., 2010).

2.2 Soil organic carbon in Europe
Topsoil SOC concentrations fluctuate as a function of many interrelated environmental and anthro-
pogenic drivers such as temperature, precipitation, vegetation type, land use and management. The
resulting high SOC variability in the EU has been visualized by mapping the SOC of the 19,672
LUCAS soil samples (Fig. 1). Low SOC contents have been recorded for most of the Mediterranean,
where the mean SOC of cropland soils is lower than for any other climatic regions in Europe at 12
to 16 g kg−1 (Tóth et al., 2013b). The most organic soils are found across peatlands in Ireland,
the UK, Sweden and Finland, which make up about 50 % of the total SOC in the EU (Jones
et al., 2005). A general south-east to north-west trend in European SOC has been noted by several
continent scale studies (Tóth et al., 2013a).

The study site of this thesis is located in southernmost Sweden. This area has been classified into
the sub-oceanic to sub-continental climate region together with most of Poland, eastern Germany,
parts of the Czech Republic and western Denmark (Tóth et al., 2013b). For this climate region,
the second lowest mean cropland SOC was measured at 15 g kg−1. The low SOC in the in the
agricultural land in Scania stand in stark contrast to the rest of Sweden with its many organic
forest and peat soils.
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Figure 1: The distribution of organic carbon in the EU based on the complete LUCAS topsoil
database. Every point on the map represents the organic carbon measurement of a LUCAS soil
sample. Samples were obtained from the top 15 cm of mineral soil in 2009 (Tóth et al., 2013b).
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3 Materials and Methods
3.1 Study area
An appropriate study area for the target analysis was chosen according to the geolocation of the
validation soil samples in Sweden’s southernmost province, Scania. Three municipalities - Lomma,
Burlöv and Staffanstorp municipality - have been selected as an initial area of interest (Fig. 2).
Despite their location between the two major cities Malmö and Lund, a majority of the land (about
126 km2) is used for agricultural purposes within these municipalities.

Approximately 50 % of the food that is currently produced in Sweden comes from Scania
(Dänhardt et al., 2013). The mild climate in combination with the fertile soils allow for the intensive
cultivation of annual crops such as wheat, barley, sugar beet and rape seed (Dänhardt et al., 2013).
Upon harvest in late summer, a large share of the fields are tilled and prepared for the next crop.
In that time period, the reflectance of the bare soil can be recorded by remote sensing platforms.
The Sentinel-2 satellite image depicting the study area in figure 2 was taken on the 25th of August
and exemplifies the large share of fields that do not display a vegetative cover at this time of year.

Figure 2: Location of the study area in Southern Sweden

3.2 Sentinel-2 imagery
The Copernicus Sentinel-2 mission consists of two satellites in the same sun-synchronous orbit,
which have been launched in 2015 and 2017. With a swath width of 290 km, the multispectral
sensors on board allow for a temporal resolution of 2-3 days in the mid-latitudes, while providing
a high spatial resolution across thirteen spectral bands (Table 1). While the higher resolution
bands are meant to provide information on surface features, band 1, 9 and 10 are primarily used
for atmospherically correction and cloud detection.
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The Copernicus Open Access Hub website1 was used to search for cloud-free Sentinel-2 imagery.
Additional criteria were the amount of precipitation occurring prior to sensing and the time interval
between sensing date and the field sampling done on the September 12th, 2019. A cloud-free
Sentinel-2 scene was found for the 25th of August, 2019. No precipitation was recorded in the study
area the week before sensing according to the Swedish Meteorological and Hydrological Institute
(SMHI)2. A second Sentinel-2 scene from the 29th of October was downloaded as a backup dataset.
The cloud cover of this scene was 0.23 % and only minimal rainfall (<3 mm) occurred three days
prior to sensing.

The Sentinel-2 datasets were obtained as Level-2A products, which provide atmospherically
corrected Bottom of Atmosphere reflectance data. Band 10, which is used for image correction, is
not included in these datasets.

Table 1: Summary of Sentinel-2A spectral bands

Band Name
Spatial
Resolution
(m)

Central
wavelength
(nm)

Band-
width
(nm)3

1 Coastal Aerosol 60 443 21
2 Blue 10 492 66
3 Green 10 560 36
4 Red 10 665 31
5 Vegetation Red Edge 5 20 704 15
6 Vegetation Red Edge 6 20 741 15
7 Vegetation Red Edge 7 20 783 20
8 Near-Infrared (NIR) 10 833 106
8a Narrow NIR 20 865 21

9 Water Vapor
Absorption Window 60 945 20

10 Shortwave Infrared -
Cirrus 60 1374 31

11 Shortwave Infrared 1
(SWIR 1) 20 1614 91

12 Shortwave Infrared 1
(SWIR 2) 20 2202 175

3 at Full Width Half Maximum (FWHM)

3.2.1 Image pre-processing

The downloaded Sentinel-2 scene was processed for modelling purposes using ArcMap (ESRI
2017. ArcGIS Desktop 10.5.1. Redlands, CA: Environmental Systems Research Institute) and the
Sentinel Application Platform (SNAP) tool. Information on administrative boundaries was included
in a vector terrain layer that was obtained from the Swedish Surveying and Cadastral Agency
("Lantmäteriet"). In addition to administrative districts, this vector layer provided information on
the spatial extent of agricultural land. A mask of the three municipalities that comprise the study
area and all agricultural land was created in ArcMap accordingly.
To maximize the spatial resolution for the analysis, all coarser bands were resampled to 10m in
SNAP using the nearest neighbor upsampling method. Of the agricultural land within the mask
area, only the areas with bare soil at the time of satellite data collection were of interest. Two
indices have been tested for the identification of bare soil pixels: the Bare Soil Index (BSI) and the
Normalized Vegetation Difference Index (NDVI). Both of these indices are normalized and thus
have a value range of -1 to 1. Greater BSI values indicate bare soil, as the reflectance of soil in the

1Retrieved from: https://scihub.copernicus.eu/dhus/#/home
2Retrieved from: https://www.smhi.se/data/meteorologi/kartor/dagliga/nederbord/2019/augusti
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visible red and short infrared bands is higher compared to vegetation (Bhunia et al., 2019; Eq. 1)

BSI = (Band11 + Band4) − (Band8 + Band2)
(Band11 + Band4) + (Band8 + Band2) (1)

The NDVI is commonly used to distinguish vegetation from non-vegetation and has found application
in other soil property estimation attempts using Sentinel-2 (Castaldi et al., 2019; Gomez et al.,
2019). A low NDVI hints at the absence of vegetation.

NDV I = Band8 − Band4

Band8 + Band4
(2)

By visually inspecting the results, appropriate thresholds for bare soil identification were tested.
With regard to the validation samples (see section 3.3), a NDVI < 0.26 threshold was ultimately
chosen and the mask polygons updated accordingly.

For the modelling of SOC, three bare soil fields within the study area were selected (Fig. 3).
The reflectance for each pixel within these fields was extracted using SNAP.

Figure 3: Validation sample location and selected bare soil fields.

3.3 Validation soil samples
A campus of the Swedish University of Agricultural Sciences (SLU) is located within the study area.
On experimental fields of the University near Åkarp soil sampling has been conducted by Farid Jan
and Elin Lund on the 12th of September, 2019 (Fig. 3). A total of 44 samples were collected and
pH, macro nutrients and SOC measured for three depth intervals (0-20 cm, 20-60 cm, 60-90 cm).

As the vegetative cover of the fields was very heterogeneous at the time of Sentinel-2 data
collection, most of the pixels that the soil sampling points were located in did not fall within the in
the initial BSI and NDVI range. Through visual inspection of different band combinations, the
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most convincing result could be produced by increasing the NDVI threshold to 0.26, which was then
used for all pixel extractions in SNAP. Eight soil sampling points were located within Sentinel-2
pixels that fell below this threshold. An identity mask was created accordingly, the pixel reflectance
data were extracted and then paired with the topsoil SOC sampling measurement (0-20 cm).

3.4 LUCAS topsoil database
The Land Use and Coverage Area frame Survey (LUCAS) was established by the Statistical Office
of the European Union (EUROSTAT) in 2001 to create a pan-European database on landscape
parameters that are relevant for agricultural and environmental policy development and evaluation
(Tóth et al., 2013b). Since 2006, this survey has been periodically performed every third year for
2x2 km grid cells of all EU member states (Orgiazzi et al., 2018). The land cover is classified using
satellite and airborne imagery.

In 2009, an extension to the periodic LUCAS was granted to produce a consistent, coherent and
harmonized topsoil database for the EU (Tóth et al., 2013b). In this soil sampling campaign about
20,000 soil samples were collected using a multi-stage stratified random sampling approach that
aimed at representing the proportion of different land use types in the EU (Tóth et al., 2013a). For
each sampling point five topsoil samples (0-20 cm) were taken and combined to a composite sample.
All of these samples were then analyzed for physical, chemical and reflectance properties using a
standardized procedure in the same laboratory (Orgiazzi et al., 2018).

After air drying, crushing and sieving of each sample, the Visible-NIR absorbance from 400-2500
nm was recorded using the FOSS XDS Rapid Content Analyzer (FOSS NIRSystems Inc., Denmark)
(Nocita et al., 2014). A total of 4200 absorbance bands were recorded at a 0.5 nm measurement
interval. SOC was assessed by subtracting the carbonate content from total carbon, which was
measured in a VarioMax CN Analyzer (Elementar Analysis, Germany) (Nocita et al., 2014).

The LUCAS topsoil database is available to researchers, public administrations and private
companies for non-commercial purposes through the European Soil Data Centre (ESDAC) website4.

3.4.1 Resampling of LUCAS

As the soil sample surface structure causes non-linear light scattering, not all radiation that does
not return to the sensor is absorbed (Stenberg et al., 2010). Therefore, the measured absorbance
(A) for each band and sample was transformed into reflectance (R) according to equation 3 (Nocita
et al., 2014).

R = 1
10A

(3)

To use the hyperspectral LUCAS SSL for the prediction of SOC with Sentinel-2 multispectral
reflectance, the 4200 LUCAS bands had to be resampled to simulate reflectance recorded by the
MultiSpectral Instrument (MSI) of Sentinel-2. First, half of the LUCAS bands were removed,
leaving one band for every nm of the recorded spectrum. While the (MSI) on board of Sentinel-2
measures reflectance within the given bandwidths, it is not equally sensitive for all wavelengths. The
bandwidths provided in Table 1 represent the Full Width Half Maximum (FWHM) of every band,
representing the spectral distance between the two wavelengths for which half of the amplitude of
the maximum reflectance wavelength is recorded. To obtain information on the amplitudes recorded
by MSI at 1 nm resolution, the spectral library of ENVI (L3Harris Geospatial 2015. ENVI 5.3.
Broomfield, CO) was assessed. The reflectance amplitudes for each band were visualized in ENVI
(Fig. 11, see Appendix). A text file containing the required information was downloaded and used
to resample the LUCAS SSL in MATLAB (The MathWorks Inc. 2020. MATLAB R2020a. Natick,
MA). The resampled LUCAS data was provided by the industry supervisor for this thesis, Dr.
Qiang Wang.

4Retrieved from: https://esdac.jrc.ec.europa.eu/
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3.5 Soil organic carbon preditive models

Figure 4: Overview of the general workflow

The LUCAS database is comprised of soil samples that are representative of the land use and land
cover types in the European Union. As the target analysis concerns only agricultural land, an effort
was made to obtain meaningful LUCAS subsets for statistical modelling.

Information on land use at each sample location is included in the LUCAS database. In addition,
the samples have been classified as mineral or organic soil depending on their SOC content. In
accordance to the soils present in our study area, all LUCAS samples that were classified as mineral
and taken on cropland were extracted as first subset (n = 8332, Table 2).

From this, a regional subset of LUCAS cropland samples was obtained with respect to the
geographical location of the study area. One column within the LUCAS database concerns the
European NUTS2 regions, which are subdivisions of countries for statistical purposes (Panagos
et al., 2013). The geographical subset was attained by selecting the LUCAS samples that fell within
three NUTS2 regions adjacent to the study area that encompass southern Sweden and the Danish
island Zealand.

Predictions of soil properties based on soil reflectance measurements are commonly achieved by
creating multivariate statistical models (Ward et al., 2019). The numerous bands resulting from
diffuse reflectance spectroscopy are often highly collinear and noisy (Nocita et al., 2014). Partial
Least Squares Regression (PLSR) is a multivariate regression analysis that has been developed to
deal with the multiple, correlated and noisy predictor variables in chemometrics (Wold et al., 2001)
and has become the preferred statistical method within Visible-NIR spectroscopy studies (Stenberg
et al., 2010). This regression approach has recently also been employed to explain and model SOC
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based on multispectral Sentinel-2 reflectance (Castaldi et al., 2019).
In contrast to the related Principal Component Analysis, PLSR takes into account both the

predictor variables X and response variable Y in the model development process (Stenberg et al.,
2010). The PLSR algorithm produces a set of new X variables, also called latent variables (LV),
with the aim of maximizing the covariance between the predictor and response variables (De Jong,
1993). From the LV, the predictor variable is approximated, resulting in weights for each predictor
and response variable.

Several LV are produced iteratively, i.e. after the first set of LV has been calculated, the X
matrix of the model calibration dataset is deflated by subtracting the predicted X matrix (Wold
et al., 2001). Every PLSR iteration is referred to as a component. The final linear model consists
of regression coefficients that are dependent on the amount of components (Eq. 4).

bk =
A∑

a=1
ca ∗ wka (4)

where c are the PLSR Y-weight and w the PLSR X-weight for each component a and X variable
k (Wold et al., 2001). The resulting linear regression coefficients bk can then be used to derive Y
predictions (Ŷ ) based on the predictor variable observations (Eq. 5).

Ŷ = Xk ∗ bk (5)

The created LUCAS subsets were used to build predictive PLSR models with the reflectance
of the 12 simulated Sentinel-2 bands as predictor variables X and the measured SOC as response
variable Y. While an increasing number of components generally improves the fit of the model
for the input data, it grows prone to overfitting for new data (Wold et al., 2001). Therefore it
is necessary to select an appropriate set of components, which is achieved with cross validation
(Nocita et al., 2014). This method splits the input dataset randomly into training and validation
data, builds a PLS model for the training data and predicts Y of the validation data. The number
of components was chosen according to the lowest averaged Root Mean Square Error (RSMEcv)
resulting from 10 cross validation iterations (Castaldi et al., 2019).

For both models the SOC values of the input datasets were predicted using the chosen set of
components and compared to the measured SOC. To evaluate the fit, the Root Mean Squared
Error of Prediction (RMSEp; Eq. 6) and the Ratio of Performance to Deviation (RPD; Eq. 7) were
calculated.

RMSEp =
√∑n

i=1(y − ypred)2

n
(6)

RPD = stdY

RMSEp
(7)

The RMSEp reflects on the mean predicted residual, where y are the measured SOC values, ypred

the predicted SOC and n the number of samples. For an improved fit comparison between different
datasets, the RPD takes into account the underlying standard deviation of the measured SOC
values (stdY ) (Castaldi et al., 2019). While a RPD below one stands for a very poor model, 1 <
RPD < 1.4 represents a poor model, 1.4 < RPD < 1.8 an ok model and everyting above 1.8 a good
to very good model (Gholizadeh et al., 2018).

3.6 Model validation
To test the applicability of the model for Sentinel-2 data, the SOC of the SLU validation soil
samples was predicted using the paired reflectance observation of the satellite. The outcome was
evaluated by calculating SOC statistics and RMSEp.
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4 Results
4.1 LUCAS resampling

Figure 5: Mean reflectance of LUCAS soil organic carbon classes following figure 3 by Nocita
et al. (2014). The center of each of the twelve simulated Sentinel-2 band is represented by a marker
(table 1). The plot is based on the reflectance of all of the nearly 20,000 soil samples in the LUCAS
topsoil database.

With the resampling of the LUCAS SSL to simulate Sentinel-2 reflectance, plenty of initial detail
and thus spectral information has been excluded or agglomerated. Nocita et al. (2014) gauged
the capability of predicting SOC using the hyperspectral LUCAS SSL and visualized the spectral
response to SOC content by plotting the mean reflectance of different SOC classes across the
measured spectral range. This figure has been recreated for the complete, spectrally resampled
SSL (Fig. 5). The inverse correlation between SOC and reflectance becomes apparent here, as the
reflectance decreases consistently with increasing SOC for most of the defined classes (Baumgardner
et al., 1986). Only for the highest SOC class, which represents organic peat and forest soils, a greater
mean reflectance can be observed for simulated NIR and SWIR bands (800-2200 nm; Table 1).
Nocita et al. (2014) found that differences between the lower SOC classes was most evident, which is
also the case for the spectrally resampled LUCAS database in figure 5. All of the mineral cropland
soil samples in the regional LUCAS subset and the majority of the Eu-wide LUCAS cropland
samples used in the analysis fall within 1-40 g C kg−1, or the first two SOC classes (Table 2). The
difference in mean reflectance between these two classes increases from 400-600 nm and is then
nearly constant at about 0.03 for the remaining spectral interval.
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4.2 Soil datasets

Table 2: Dataset overview and soil organic carbon statistical summary for the two LUCAS
calibration datasets and the validation samples collected by SLU.

SOC g kg−1

Dataset Extent n min mean max std
LUCAS cropland EU-25 states 8332 2.0 17.1 160.3 10.87
LUCAS regional Skåne, Sjaelland 70 7.7 17.0 37.0 5.32

Validation samples 2 fields in Skåne,
∼13 ha

8 12.6 16.4 18.5 1.9

An overview of the LUCAS subsets and the SLU validation soil samples is provided in table 2.
A total of 8332 LUCAS samples were taken on croplands from mineral soils across the EU-25
member states. The climate systems within the EU range from boreal to mediterranean and oceanic
to continental, with an accordingly large array of natural ecosystems (Tóth et al., 2013b). The
associated range of pedogenic processes in addition to the natural variability of parent materials
have led to the many, spatial heterogeneous soil types found in the EU. The regional LUCAS subset
consists of 70 samples and does not only have a minor geographic extent, but also less variation in
soil types. While both datasets have the same mean SOC, the range and standard deviation of the
complete LUCAS cropland dataset is greater.

The SLU validation dataset is crucial for assessing the model’s applicability to reflectance
measurements by the Sentinel-2 MSI. This small dataset (n = 8) has a minor geographic ex-
tent compared to the calibration datasets (Table 2). The SOC range of this validation dataset
is just 5.9 g C kg−1, but the mean of 16.4 g C kg−1 is similar to the mean of the two LUCAS datasets.

Figure 6 shows the mean reflectance of the datasets used in this thesis, which markers indicating
the center of each Sentinel-2 band. The first two lines represent the LUCAS datasets, whose
reflectance is derived from spectrally resampled laboratory measurements. The reflectance of the
validation samples are the paired Sentinel-2 measurements from the satellite image taken on August
25th. Due to the small sample size of the validation dataset (n = 8), the mean reflectance of two of
the selected fields were added (Fig. 3). Field A consists of 11,111 Sentinel-2 pixels and Field B of
9,837 pixels. All datasets with actual Sentinel-2 measurements show a lower mean reflectance than
the resampled LUCAS subsets. If compared to figure 5, the Sentinel-2 mean reflectance graphs
resemble the mean reflectance of higher SOC classes. This is the case despite the validation samples
having a slighly lower SOC mean than the two LUCAS calibration datasets (Table 2).
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Figure 6: Mean reflectance of datasets used in this thesis. The first two datasets consist of
spectrally resampled LUCAS data and the latter three stem from the Sentinel-2 scene taken on the
25th of August.

4.3 Partial least squares regression models
The PLS model computed for the combined LUCAS cropland samples could not explain more than
18.5% of the SOC variance within the dataset (R2 = 0.185; Fig. 7). For the regional subset, the
maximum coefficient of determination (R2) using all of the possible 12 components was 0.388.

The appropriate number of components was chosen according to the lowest RMSEcv. For the
LUCAS cropland model, the lowest RMSEcv was given by 12 components (Fig. 12, see Appendix).
As the fit of the model improved less than 0.1 g C kg−1 for more then four components (RMSEcv =
9.98 g kg−1), a total of four components were ultimately chosen to decrease the risk of overfitting.

Due to the small calibration sample size (n = 70) of the regional subset, this model is prone to
overfitting using many components (Wold et al., 2001). While the RMSEcv of the regional subset
was more variable for different amount of components, the lowest RMSEcv of 5.12 g C kg−1 was
given for 3 components (Fig. 13, see Appendix).
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Figure 7: Cumulative explained variance for the components of both PLSR models.

Based on the chosen components, PLS regression coefficients were computed, which provide a
linear model for the reflectance of 12 Sentinel-2 type bands to approximate soil organic carbon.
These coefficients and the intercept of each linear model are given in table 3.

Table 3: PLS regression coefficients for the pan-European LUCAS cropland and the LUCAS
regional model calibration dataset. The LUCAS cropland coefficients are the result of four PLS
components and the LUCAS regional coefficients are based on three components.

PLS regression coefficients
LUCAS cropland LUCAS regional

Intercept 26.32 30.24
Band 1 66.44 -35.96
Band 2 44.87 -54.05
Band 3 -41.63 -66.64
Band 4 -114.17 -76.09
Band 5 -74.11 -43.42
Band 6 -39.74 -8.71
Band 7 -2.63 31.16
Band 8 44.13 56.93
Band 8a 71.89 69.29
Band 9 92.89 80.39
Band 11 -12.02 78.92
Band 12 -45.57 -162.82
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SOC predictions for the calibration datasets were derived from a linear combination of sample
reflectance and the regression coefficients. The prediction of the LUCAS cropland dataset resulted
in a high RMSEp of 9.97 g kg−1(Fig. 8). While the mean of the predicted and observed SOC are
equal, the standard deviation of the predictions is less than 40 % (Table 2, 4). The R2 of 0.16 and
an RPD of 1.09 indicate that this model is has poor predictive capabilities and does not reliably
distinguish the reflectance alterations caused by different SOC contents of the soil.

Table 4: Statistical summary of the soil organic carbon predictions of the two calibration datasets
with the produced linear model.

Predicted SOC g kg−1

Dataset n min mean max std
LUCAS cropland 8332 -3.3 17.1 34.5 4.3
LUCAS regional 70 11.3 17.0 22.5 2.4

Figure 8: SOC prediction for LUCAS cropland subset based on a PLSR model with 4 components.

The SOC prediction of regional LUCAS calibration dataset resulted in a R2 of 0.26 (Fig. 9).
The RPD of 1.12 indicates that this model also has poor predictive power.
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Figure 9: SOC prediction for LUCAS regional subset based on a PLSR model with 3 components.

4.4 Forward modelling
Both models were used to predict the SOC of the validation samples (n = 8) by a linear combination
with the paired Sentinel-2 reflectance for each validation soil sample. The mean predicted SOC was
33.1 g kg−1 for the LUCAS cropland coefficients and 42.3 g kg−1 for the regional model coefficients
(Fig. 10). These mean SOC values are twice and two and a half times higher than the measured
values, respectively (Table 2).

Validation sample three, with a measured SOC of 15.1 g kg−1, is a positive outlier for both
predictive models, with a predicted 42.1 g C kg−1 for the cropland and 53.9 g C kg−1 for the
regional model (Fig. 10). A comparison of the paired Sentinel-2 reflectance between all validation
samples revealed that the reflectance for sample three is higher for four bands between 740 and 950
nm (Fig. 14, see Appendix). These reflectance properties lead to this sample being a prediction
outlier.
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Figure 10: Predicted versus observed SOC of the validation soil samples. A set of predictions was
computed for each of the PLSR linear models.
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5 Discussion
5.1 Soil organic carbon prediction in research
The interest in large-scale, low-cost SOC quantification is reflected in the ever increasing body of
research on the topic (Smith et al., 2018). Numerous SOC prediction papers have been published
using spectral data derived from laboratory spectroscopy as well as hyperspectral and multispectral
remote sensing platforms (Castaldi et al., 2019; Gholizadeh et al., 2018). Laboratory spectroscopy
provides a high spectral resolution and consistent and controllable sampling conditions, which has
allowed for good predictive models (R2 > 0.8) using multivariate statistics (Stenberg et al., 2010).
The multispectral data provided by the Sentinel-2 mission represents the lower end of the spectral
and spatial resolution range that have been used for SOC predictions, but the high revisiting time
and open access of the data make it attractive for modelling purposes (Castaldi et al., 2019).

5.1.1 Modelling soil organic carbon with the LUCAS

Both Ward et al. (2019) and Nocita et al. (2014) have established different methods to quantify
SOC with the LUCAS dataset using forms of PLSR. The reference model developed by Ward et al.
(2019) has been produced for all cropland samples of the LUCAS database (n = 8294), thus nearly
the same calibration dataset than for the LUCAS cropland model in this thesis (n = 8332). Ward
et al. (2019), however, included 3800 of the 4200 spectroscopy bands measured for each LUCAS
sample, compared to the 12 simulated Sentinel-2 bands in my model. In contrast to the poor
performance of the LUCAS cropland model presented above (R2 = 0.159, RMSEp = 9.97 g kg−1),
their model was proved to be more accurate (R2 = 0.59, RMSEp = 7.37 g kg−1). This shows that
the loss of spectral information through the resampling done in this thesis has a strong influence on
the performance of the PLSR model. A PLSR produces regression coefficients for every predictor
variable, which form a linear combination to approximate the response variables (Wold et al., 2001).
Thus, the amount of variation in a dataset that can possibly be accounted for by the PLSR model
decreases for less predictor variables or spectral bands, which is reflected by the different outcome
of my and Ward et al. (2019) analyses.

5.1.2 Modelling soil organic carbon with Sentinel-2

While the poor model performance for the entire LUCAS cropland dataset is not evidence enough
to conclude that the resampled SSL does not contain enough information to predict SOC with a
PLSR, there is certainly too much spectral variation within this large dataset for accurate modelling.
This might not be surprising considering the geographic extent of the soil samples, which leads
to a diversity of soil types in the dataset (Orgiazzi et al., 2018). Thus, the mineral and organic
chromophores determining the soil reflectance properties vary greatly within the large SSL.

Most attempts of SOC quantification with Sentinel-2 data have therefore been conducted on
a much smaller scale and with a different sampling strategy compared to the LUCAS database
(Castaldi et al., 2019; Gholizadeh et al., 2018). For that purpose, case specific SSLs are produced
in an analogous manner to our validation dataset: Georeferenced SOC soil samples are paired with
the reflectance for Sentinel-2 pixels that these samples are located in. The reduced geographical
extent decreases the amount of natural soil variability that has to be accounted for by the model.

As the LUCAS dataset has a low spatial sampling density relative to the extent of my analysis,
no LUCAS samples are located within the target study area. Instead, a regional SSL was built
based on land use and the geographical distance to the study area in southern Sweden. With n =
70 samples, this regional SSL is comparable in sample size to the SSLs created by Castaldi et al.
(2019), who also computed partial least squares regression models to approximate SOC. Castaldi
et al. (2019) created one SSL for a larger study area comparable in size to my analysis, located in
the Belgian loam belt. For the loam belt area, the SOC content was generally lower and less variant
(mean = 10.7, std = 2.8 g kg−1) than in the LUCAS regional SSL, but the the PLSR model yielded
an equally poor RPD of 1.1. For the remaining SSLs, RPDs between 1.0 and 2.6 were achieved.
Most notable differences between these SSLs and my dataset is the higher sampling density and the
different sampling strategy. Several samples are taken from each sampled field in the study area,
leading to a more spatially clustered sampling that accounts for in field variability. This stands in
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stark contrast to the dispersed LUCAS regional subset, where several kilometers lie in between
each sample.

Moderate to good modelling results (RPD = 1.6 - 1.92) were also obtained by Gholizadeh et al.
(2018), who created individual SSLs (n = 50) for four fields in the Czech Republic. This field
scale approach functions well despite the minimal standard deviation of 1.5 to 3.9 g C kg−1 of the
spectral libraries.

Both Castaldi et al. (2019) and Gholizadeh et al. (2018) compared their Sentinel-2 models to
models derived from hyperspectral airborne data. They found that the hyperspectral data generally
only led to a slight increase in model performance. This led them to conclude that the spectral
resolution of Sentinel-2 is good enough for SOC modelling, if the size of the study area and the
sampling strategy are appropriate. Too much variation in the dataset due to the large extent
and dispersed sampling thus remains a possible explanation for the poor outcome of the LUCAS
regional model.

5.1.3 Soil covariates and prediction accuracy

In addition to the geographical distribution of samples, there are prediction accuracy defining soil
covariates that have been assessed in relevant research. Soil reflectance is not only determined
by organic matter, but also mineral components and soil moisture (Baumgardner et al., 1986).
A frequently discussed soil covariate for SOC detection is the sand content of the sampled soil.
Stenberg et al. (2010) found that their multivariate model to predict SOC for Swedish agricultural
soils improved significantly when the sandiest soil samples were removed from the calibration
dataset. This was related to the quartz minerals in sand, which scatter light and thus obscure the
absorbtion features of soil chromophores (Stenberg et al., 2010). Castaldi et al. (2019) found that
of the 7 models created in their study, the one with the weakest performance (RPD = 1.0) occurred
on very sandy soil. This study site was on morainal soil in the Demmin region of eastern Germany.
The SOC range and standard deviation for sampled for that region is similar to the LUCAS regional
SSL, but the mean is 4.2 g kg−1 lower (Castaldi et al., 2019). Nocita et al. (2014) also detected
a slight increase in prediction accuracy upon considering the sand content as a covariate in their
analysis. Their model, however, concerned the LUCAS database at hyperspectral resolution.

The mean sand content of the LUCAS regional dataset is 58 %, which indicates that there are
predominantly as sandy soil types present. The exclusion of the sandiest samples (sand > 80 %) in
this dataset did not improve the model performance, but it remains unclear if the generally high
sand content has had an impact on the performance of the LUCAS regional model. This issue
should be further investigated by creating regional models for areas with a finer textures.

5.1.4 Model refinement strategies

As shown in figure 5, there is a general reflectance difference between soil organic carbon classes
after resampling the LUCAS dataset. This poses the question if good predictive models could be
obtained from the resampled LUCAS dataset with an improved methodology.

One determining criterion for model performance is the selection of calibration samples (Stenberg
et al., 2010). A meaningful calibration dataset should be representative of the range of SOC and soil
properties while not including more variability than can be accounted for by the limited spectral
information of the 12 bands. Several adaptations to the calibration sample selection have been
found to improve the PLSR model accuracy for spectroscopy data.

Guerrero et al. (2016) investigated PLSR predictive SOC models created with SSLs varying in
sample size and scale. They applied so called ’spiking’ for all created models, which was achieved
by statistically selecting eight representative samples of the validation dataset and adding them
to the calibration dataset. The prediction accuracy of all spiked models (0.835 < R2 < 0.962)
increased compared to unspiked models (0.00 < R2 < 0.913). Spiked calibration datasets have
also been reviewed as a promising method in other relevant literature (Stenberg et al., 2010). The
process of spiking, however, has only been applied for laboratory spectroscopy data in the reviewed
literature for this thesis and not for multispectral datasets. To test the performance of spiked
models compared to unspiked models with Sentinel-2 data, a large enough validation sample dataset
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is required. This was not the case in this thesis (n = 8).
The physical distance to the target study area was considered for the selection of LUCAS regional
dataset by including samples from adjacent administrative districts. Another conceivable method
to produce appropriate calibration datasets are spectral distance algorithms, which was explored
by Nocita et al. (2014) for the LUCAS database. For their local PLSR approach, an individual
PLSR was performed for each validation sample based on calibration samples that were selected by
their spectral similarity with the validation sample in question. The best modelling results were
obtained when both the spectral and the geographic distance were considered for calibration sample
selection (Nocita et al., 2014). This approach is computationally intensive, as an individual model
is produced for every modelled unit. In contrast to the spiking method, however, no in situ SOC
measurements are necessary to build these models.

Neither spiking nor local PLSR could be attempted in this thesis, with the critical issue being
the profound spectral differences between simulated and remotely sensed data discussed in the next
section.

5.2 Combining laboratory and satellite measured reflectance
Both the EU-wide and the regional model overestimated the SOC of the validation samples by
a mean factor of 2 and 2.5 respectively (Fig. 10). Asides from the poor predictive power of the
derived models, a possible reason for the observed shift in the predicted values lays in the difference
between simulated and remotely sensed Sentinel-2 reflectance. As can be seen in figure 6, the mean
reflectance of the remotely sensed validation samples is lower compared to the reflectance of the
resampled or simulated Sentinel-2 reflectance of the two LUCAS calibration datasets, despite all
datasets having similar SOC means (Table 2). According to the inverse relationship between SOC
content and reflectance, the PLSR model resulting from the two LUCAS datasets lead to higher
SOC predictions when they are applied for the reflectance of the SLU validation dataset. That
this is the case despite the fact both models barely distinguish between high and low SOC of the
calibration dataset (R2=0.16 and R2=0.26) speaks for the stark difference between laboratory and
remotely sensed reflectance.

The lower reflectance of spaceborne sensors compared to laboratory measurements has also
been noted by Gholizadeh et al. (2018). Their samples for the laboratory measurements and the
Sentinel-2 reflectance measurements stemmed from the same fields, which increases the evidence of
the general difference of reflectance spectra using different measurement methodologies.

This finding puts the feasibility of the initial aim in question. Even if an improved model could
be derived from the resampled LUCAS database, this model would not be applicable for actual
Sentinel-2 data. An empirical transformation of the resampled LUCAS SSL would be needed to
approximate the reflectance that is actually recorded by the spaceborne sensor. A calibration
dataset to detect and mathematically relate the observed reflectance difference for each band is
thereby hardly conceivable, as a satellite cannot measure a laboratory soil sample and a satellite
pixel cannot be measured in the lab. In addition, none of the examined scientific articles concerning
soil property predictions with remotely sensed data makes use of a laboratory measured SSL.
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6 Conclusion
The objective of this thesis was to investigate the possibility of adapting a large soil spectral library
to build models for soil organic carbon predictions with multispectral Sentinel-2 data. Two models
were created based on (i) all cropland samples in the LUCAS topsoil database and (ii) a regional
subset of the LUCAS cropland samples. The prediction accuracy of the models was low with a
RPD of 1.09 and 1.12, respectively. The poor model performance was related to the variability
of soil reflectance in the calibration datasets, which is caused by their large spatial extent and
dispersed sampling strategy. Both models overestimated SOC when they were applied for Sentinel-2
reflectance. This outcome was investigated, revealing that the laboratory reflectance data and
remotely sensed Sentinel-2 reflectance are not readily compatible.

This leads to the conclusion that successful soil organic carbon predictions with Sentinel-2
data using the presented method are unlikely. Instead of combining reflectance data stemming
from inherently different measurements techniques, future efforts could focus on establishing a
comprehensive soil spectral library with Sentinel-2 data. Additionally, the calibration sample
selection needs to be optimized to produce models capable of predicting soil organic carbon with
a reasonable accuracy. Promising methods such as spiking and spectral distance algorithms have
been established for spectroscopy data. These calibration sample selection methods could be tested
for soil organic carbon modelling with Sentinel-2.
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7 Appendix

Figure 11: Sentinel-2 spectral band responses according to ENVI (v5.3). The spectral resampling
of the LUCAS database was based on this information.
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Figure 12: RMSEcv for the range of possible components of the LUCAS cropland PLSR.
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Figure 13: RMSEcv for the range of possible components of the LUCAS regional PLSR.
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Figure 14: Sentinel-2 paired reflectance for each validation soil sample collected by SLU. Sample
3 has some positively outlying bands in the visible to NIR section of the spectrum (740-950 nm).
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