Studying magmatic systems through chemical analyses on clinopyroxene — a look into the history of the Teno ankaramites, Tenerife

Vendela Haag Dissertations in Geology at Lund University, Master's thesis, no 595 (45 hp/ECTS credits)

Department of Geology Lund University 2020

Studying magmatic systems through chemical analyses on clinopyroxene — a look into the history of the Teno ankaramites, Tenerife

Master's thesis Vendela Haag

Department of Geology Lund University 2020

Contents

1 Introduction	9
2 Background	9
2.1 The Canary archipelago	9
2.1.1. Growth stages	10
2.1.2 Mass wasting events	10
2.1.3 Tenerife	10
2.1.4 Ankaramites and the Teno massif	11
2.2 Trace elements and elemental distribution	12
2.2.1 Trace element distribution	12
2.2.2 Trace element ratios and fractionation	13
2.3 Clinopyroxene as a recorder of magmatic processes	13
2.3.1 Major and minor elements in clinopyroxene	13
2.3.2 Trace elements in clinopyroxene—variation in partition coefficients	14
2.3.3 Literature values for partition coefficients (D) for clinopyroxene	14
2.3.4 Zoning types	14
2.3.5 Implications and previous studies regarding zoning	16
2.3.6 Magma recharge and mixing	17
3 Methods	18
3.1 Scanning electron microscope (SEM)	18
3.1.1 SEM: Sample preparation	18
3.2 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)	18
3.2.1 LA-ICP-MS: Sample preparation	18
3.2.2 Evaluating LA-ICP-MS results	18
3.2.3 Chosen partition coefficients for evaluation	19
4 Results	19
4.1 Optical observations	19
4.2 Scanning electron microscopy (SEM-EDS)	21
4.2.1 Sector zoned crystals: A1a and A2b	22
4.2.2 Concentrically zoned crystals: A1b and A2a	22
4.2.3 Rims	22
4.2.4 Comparison of chemical compositions and substitution relationships	29
4.2.5 Inclusions and matrix crystals	30
4.3 Electron backscatter diffraction analyses (EBSD)	30
4.4 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)	30
4.4.1 Sector zoned crystals: A1a and A2b	30
4.4.1.1 Relative partition coefficients between sectors	31
4.4.2 Concentrically zoned crystals: A1b and A2a	32
4.4.3 Rims	34
4.4.4 Liquid composition: Ratios and trends	34
4.4.5 Cr spikes	35
4.4.5.1 Sector zoned crystals: A1a and A2b	35
4.4.5.2 Concentrically zoned crystals: A1b and A2a	37
4.4.5.3 Cr spikes and liquid composition	37
4.4.5.4 Cr spikes and other elements	37
5 Discussion	
5.1 General chemistry and substitution relationships	39
5.2 The chemical and crystallographic nature of the sector zoning	39
5.2.1 Differences in partition coefficients between sectors	41
5.3 Character of the concentric zoning and clues to the growth history	41
5.3.1 Origin of the A1b core	42
5.4 Chemical imprints from eruption and mass wasting events	43
5.5 Link between Cr spikes, magma recharge and the eruption event	44

Cover Picture: Three sector zoned clinopyroxene crystals in a matrix of plagioclase needles and flow texture. Photo: Vendela Haag.

Contents, continuation

5.6 Plagioclase compositions inferring a Na-Ca substitution trend	46
5.7 Notes on growth rates	46
5.8 Chemical trends and melt evolution	46
5.9 Interpretations regarding magmatic history and open system processes	47
5.9.1 Origin and growth histories of the clinopyroxene crystals	47
5.9.2 Eruption event and rim formation	48
6 Conclusions	
6.1 Recommended future research	50
7 Acknowledgments	
8 References	
Appendix A	
Appendix B	
Appendix C	
Appendix D	60
Appendix E	
Appendix F	

Studying magmatic systems through chemical analyses on clinopyroxene — a look into the history of the Teno ankramites, Tenerife

VENDELA HAAG

Haag, V., 2020: Studying magmatic systems through chemical analyses on clinopyroxene — a look into the history of the Teno ankaramites, Tenerife. *Dissertations in Geology at Lund University*, No. 595, 96 pp. 45 hp (45 ECTS credits).

Abstract: Clinopyroxenes have the ability to crystallize over and respond to a large range of temperatures, pressures and chemical compositions, and thus, they are ideal for studies regarding the history of magmatic systems. In this thesis, the chemistry and zoning of four clinopyroxene crystals from an ankaramite sample from the Teno massif, Tenerife, were analysed. The ankaramites in Teno massif were, according to previous studies, erupted following mass wasting events, and at least two mass wasting events have occurred in the history of the massif. The aim of the thesis was to link the chemistry and crystal features to possible processes affecting the magmatic system during their growth, to evaluate possible open system processes and eruption triggers related to the mass wasting events, and to gain an understanding for how clinopyroxenes can be used to study magmatic systems. The crystals were analysed using optical microscopy, scanning electron microscopy (SEM), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

The results show that the four clinopyroxene crystals can be divided into two groups: sector zoned crystals displaying different compositions in different faces of the crystal, and concentrically zoned crystals. The widely different crystal features, with the concentrically zoned crystals being inferred to have experienced a longer and more complex growth history, indicate that they belong to different generations or origins, indicating that magma mixing occurred in the system. On the other hand, the rims of all four crystals share enough similarities to be interpreted to have grown simultaneously, reflecting the eruption event. Furthermore, a band of deviant chemical composition is present inside the rim of all crystals, perhaps related to the mass wasting event and eruption trigger. Open system processes are inferred by Cr spikes in all four crystals, interpreted to represent events of recharge of primitive magma. These Cr spikes are located in the rims of the sector zoned crystals and in the interior of the concentrically zoned crystals. If the mass wasting event is to be considered the eruption trigger, the location of the Cr spikes close to the rim in the sector zoned crystals points to the possibility that the magma recharge and the mass wasting event are related, most likely that the magma recharge destabilized the system and caused the mass wasting event to occur. However, further work needs to be done to confirm this hypothesis.

To acquire a better understanding for the magmatic history of these clinopyroxene crystals and the magmatic system in which they grew, more chemical analyses have to be made on a larger number of samples; preferably sampled systematically in order to know which ankaramite formation is being studied. Furthermore, geothermobarometry should be carried out in order to constrain the crystallization depth and temperature of the crystals and determine their respective origin.

Keywords: clinopyroxene, sector zoning, concentric zoning, mass wasting, magma recharge

Supervisor: Anders Scherstén

Subject: Bedrock geology

Vendela Haag, Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden. E-mail: vendela.haag@hotmail.com

Studie av magmatiska system genom kemiska analyser på klinopyroxen — en inblick i Tenoankaramiternas historia, Teneriffa

VENDELA HAAG

Haag, V., 2020: Studie av magmatiska system genom kemiska analyser på klinopyroxen — en inblick i Tenoankaramiternas historia, Teneriffa, Nr. 595, 96 sid. 45 hp.

Sammanfattning: Klinopyroxen har förmågan att kristallisera över ett stort intervall av temperatur, tryck och kemisk sammansättning; därför är de optimala för att studera historien för ett magmatiskt system. I den här uppsatsen analyserades fyra klinopyroxenkristaller i en ankaramit med fokus på kemi och zonering. Ankaramitprovet härstammar från Tenomassivet, Teneriffa, och bildades troligtvis i ett utbrott som skedde till följd av massrörelse. Syftet med uppsatsen var att koppla kemi och zonering till möjliga processer som kan ha påverkat det magmatiska systemet under klinopyroxenkristallernas kristallisation, att utvärdera eventuella processer relaterade till ett öppet system, utbrottstriggers och massrörelse, samt att få en förståelse för hur klinopyroxen kan användas för att studera magmatiska system. Kristallerna analyserades med optiskt mikroskop, svepelektronmikroskop (SEM) och laserablation-induktivt kopplad plasma-masspektrometri (LA-ICP-MS).

Resultaten visar att de fyra klinopyroxenkristallerna kan delas in i två grupper: sektorzonerade kristaller med olika kemisk sammansättning i olika facetter av kristallen, och koncentriskt zonerade kristaller. De olika zoneringstyperna, samt hypotesen att de koncentriskt zonerade kristallerna har genomgått en längre och mer komplex kristallisation, indikerar att de tillhör olika generationer eller olika ursprung. Detta, i sin tur, indikerar att magmamixing har förekommit i systemet. Kristallernas kanter, däremot, är så pass lika att de troligtvis kristalliserade samtidigt och representerar själva utbrottet. Vidare, ett band med avvikande kemisk sammansättning var identifierat innanför kanten i alla kristaller, möjligen relaterat till massrörelserna och utbrottstriggern. Cr-spikar observerades i alla fyra kristaller och indikerar ett öppet system, då dessa troligen representerar tillskott av ny primitiv magma i systemet. Crspikarna observerades nära kanterna i de sektorzonerade kristallerna och närmre mitten i de koncentriskt zonerade kristallerna. Om massrörelsen betraktas som utbrottstriggern kan Cr-spikarna nära kanterna i de sektorzonerade kristallerna indikera en koppling mellan massrörelsen och tillskottet av primitiv magma. I detta fall är det mest troligt att tillskottet av magma destabiliserade systemet och orsakade massrörelsen. Det krävs dock mer analyser för att bekräfta denna hypotes.

För att få en bättre förståelse för kristallisationshistorien för dessa klinopyroxenkristaller och det magmatiska system som de kristalliserade i behöver fler kemiska analyser genomföras på en större mängd prov; gärna systematiskt provtagna så att det är säkert vilken ankaramitformation som studeras. Vidare skulle geotermobarometri kunna användas för att avgöra kristallernas kristallisationsdjup- och temperatur och därmed avgöra deras respektive ursprung.

Nyckelord: klinopyroxen, sektorzonering, koncentrisk zonering, massrörelser, magmatillskott

Handledare: Anders Scherstén

Ämnesinriktning: Berggrundsgeologi

Vendela Haag, Geologiska institutionen, Lunds Universitet, Sölvegatan 12, 223 62 Lund, Sverige. E-post: vendela.haag@hotmail.com

1 Introduction

During the evolution of a magma body, large-scale events can be recorded as small-scale signatures in its chemistry. These signatures can subsequently be analysed and used to gain insight into the history of the system, and what factors controlled the magma body up until complete crystallization. Volcanic rocks can be the ideal target for these analyses due to the possible presence of phenocrysts that slowly grow and record events over an extended period of time. Additionally, when it comes to volcanology, these kinds of studies are particularly interesting because they involve the question of what triggered the eruption. For instance, previous studies have identified Cr spikes in the rims of clinopyroxene phenocrysts and linked them to events of magma recharge, which in turn can give information about the eruption trigger (Ubide et al., 2019). Clinopyroxene crystallise over a wide range of temperatures and pressures in magmatic systems (Putirka, 2008) and incorporates a number of indicative trace elements, which makes it a well suited mineral for constraining the history of the system.

The Teno massif on Tenerife, Canary Islands, has been affected by at least two major mass wasting events and subsequent ankaramite depositions. In this thesis, a sample from these ankaramites was used. The ankaramites are perceived to represent deep seated magmas in which crystals had time to grow, and is evidently characterized by large clinopyroxene phenocrysts suitable for this kind of study (Longpré et al., 2009)

The aim of this thesis is to analyse the zoning and chemistry of these clinopyroxene crystals and to gain insight into the processes affecting the system during their growth. Special interest is taken to potential signs of open system processes and possible eruption triggers, and the following questions will be addressed:

• What is the type of zoning in these crystals, and what can the nature of the zoning convey about the system?

• Did the two mass wasting events create any impact on the chemistry of the clinopyroxene crystals?

• Are there signs of open system processes, specifically Cr spikes, and can they be related to the eruption trigger?

The questions will be addressed by analysing the clinopyroxene crystals using optical microscopy, scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry.

2 Background

2.1 The Canary archipelago

Located 100 km from the western coast of Africa (fig 1), the Canary Islands archipelago consists of 7 major volcanic islands: Lanzarote, Fuerteventura, Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro, with Fuerteventura being the oldest and La Palma and El Hierro the youngest. The islands, stretching from east to west over approximately 500 km, make up an archipelago that formed over ca 60 million years (Carracedo & Troll, 2016).

A number of models have been proposed to explain the extensive volcanism resulting in the formation of this archipelago, including lithospheric fractures propagating from the Atlas fault (Anguita & Hernán, 1975, 2000), the "uplifted block hypothesis" (Araña & Ortiz, 1991) and the mantle-plume model. Additionally, Anguita & Hernán (2000) proposed a so called unifying model, taking into account all these three models. They suggested that the thermal anomaly is produced by a residue of an old plume, and that fractures formed due to extensional processes related to the Atlas Mountains brought magma up to the surface. However, the fractures have never been located (Carracedo & Troll, 2016); hence, the most favoured model is the mantle-plume model (Montelli, 2003; Wilson, 1963). The mantle-plume model suggests the presence of a thermal mantle anomaly, i.e. a hot spot, caused by a mantle plume bringing hot material from great depths. The thermal anomaly gives rise to localized volcanic activity and the creation of a volcanic island. As the tectonic plate moves over the hot spot region, the island is eventually cut off from the volcanism and a new island starts to form. However, in the case of the Canary Islands the older islands can still be volcanically active due to edge-driven mantle convection (King, 2007), moving hot plume material to the east and the northeast, reaching the older part of the Canary Islands.

Over time, as the tectonic plate continues to move in relation to the hot spot, several islands are formed in a line, creating an archipelago of differently aged islands. The Canary Islands, similar to the Hawaiian Islands, present meaningful opportunities to study the different stages of the formation of these islands. However, while the oldest Hawaiian island studied is only 5.1 million years old, Fuerteventura was formed more than 20 million years ago. This striking age difference is related to the subsidence rates for the islands. When an island cools its density increases which, in tandem with the fact that the island moves away from the hot spot swell, causes the island to sink

Imagery ©2020 NASA, TerraMetrics, Map data ©2020

Fig 1: The Canary Islands are located to the west of Africa, and consist of 7 major volcanic islands. Fuerteventura is the oldest island and La Palma and El Hierro (south of La Palma) are the youngest. Tenerife is located in the middle of this archipelago.

and eventually subside below sea level. This appears to happen at a faster rate in the Hawaiian archipelago than in the Canarian archipelago due to a number of factors. The oceanic crust beneath the Canary Islands is older than that below the Hawaiian Islands (>170 Ma vs. 95 Ma), and is therefore more rigid and thicker than the Hawaiian crust due to lower temperature and deposition of sediment from the African coast. It is also possible that the continental margin of Africa acts as a buoyancy anchor due to the lower density of the continental crust (Carracedo & Troll, 2016). Because of these reasons, the islands of the Canarian archipelago stays emerged for a longer period of time than the Hawaiian Islands, and are subjected to above sea level erosion for a longer time. The magma is also further differentiated due to longer lasting active volcanism, resulting in an abundance of more evolved magmas, e.g. phonolites, (e.g. Carracedo & Troll, 2016; Schmincke, 1969; Wiesmaier et al., 2012).

2.1.1 Growth stages

Due to the low subsidence and large age variation between the islands of the Canarian archipelago the different stages of island formation can be studied. Ocean islands have been suggested to experience certain stages during their growth, and the Hawaiian Islands are a closely studied example of this. Clauge & Dalrymple (1987) presented four stages of ocean island growth in the Hawaiian archipelago, starting with a pre-shield stage characterized by submarine alkali volcanism, followed by the shield stage. In this stage, tholeiitic magmas are erupted and the products of this stage may constitute over 95% of the total volume of the volcano. The tholeiitic lavas are capped by more differentiated lavas and alkali basalt compositions in the alkali postshield stage, after which there is a period of erosion. Finally, the island enters the alkali rejuvenation stage (Clauge & Dalrymple, 1987).

The growth stages of the Canary Islands have been classified in a similar way; however, it is constricted to a shield stage and a post-erosive rejuvenation stage. The shield stage is the current stage of La Palma and El Hierro. It is usually characterized by high submarine volcanic activity, forming basaltic lava that builds up the island. As for the Hawaiian archipelago, the material formed during this stage represents the bulk of the island and can be formed in only a few million years. Within the shield stage, the seamount stage represents the time before the island reaches the sea surface. The seamount stage, however, is mostly inaccessible and can only be studied where it crops out due to deep erosion at Fuerteventura and La Palma. Volcanic shields tend to have a low and widespread morphology due to the low viscosity of the basaltic lava, resulting in the lava spreading laterally rather than vertically. Shield volcanoes are therefore exceptions to the typical single volcanic cone morphology, and may be made of several eruptive centres and vents (Carracedo & Troll, 2016).

As the shield stage is coming to an end, the island enters a period of volcanic inactivity lasting for a few million years. After this period of inactivity, the island enters the several million year long *post-erosive rejuvenation stage*. This is a period of lower volcanic

activity, generally with magmas that are more evolved or alkaline. This period may therefore be characterized by explosive eruptions due to the higher viscosity of the evolved magmas, also resulting in stratovolcanoes with higher volcanic edifices, such as Tenerife's Mount Teide.

At a late stage of the island's evolution, mass wasting, combined with erosion, works against the volcanism to reduce the size of the island, eventually eroding away topographical variations. An example of this is Fuerteventura, which today displays a much flatter topography than for example Tenerife (Carracedo & Troll, 2016).

2.1.2 Mass wasting events

An important process in the Canary Islands is that of mass wasting. Around 11 giant landslides have been identified throughout the islands' history, not counting those whose traces might have been erased or buried by other geological processes. There are several hypotheses as to why these giant landslides occur, and although they seem to be more frequent during periods of high eruption rates, as it leads to oversteepened slopes, it is also important to consider the effect of hydrothermal alteration and erosion. It has also been proposed that extensional forces due to dyke injection could be a reason for landslides, as well as magma injections causing destabilization of the edifice (Carracedo & Troll, 2016).

As will be discussed further in section 2.1.4, the giant landslides may also have an important impact on the nature of the volcanism and the volcanic products, as they may contribute to forming new pathways for the magma by affecting the local stress fields (Longpré et al., 2008).

2.1.3 Tenerife

As well as being the most populated island of the Canary archipelago, Tenerife is also the largest and the highest in altitude. Three rift zones stretch to the south, northeast and northwest, giving the island the shape of a tetrahedron (fig 2). The highest point of the island, the summit of the stratovolcano Teide rising more than 3700 m above sea level, is a popular tourist attraction. If measuring from the ocean floor, the structure reaches a staggering 7000 m in height, putting it on the list of one of the highest volcanic structures on Earth. According to Guillou et al. (2004), the formation of Tenerife started 11.9 million years ago, which is earlier than the estimate of 11.29 million years previously presented by Thirlwall et al. (2000). The island was proposed by Carracedo et al. (1998) to currently be in the shield stage. However, this has been contested by several sources stating that Tenerife has gone through erosional phases which by definition would mean that the island is no longer in the shield stage (Leonhardt & Soffel, 2006; Ancochea et al., 1990; Thirlwall et al., 2000; Guillou et al., 2004). It is more likely that the island is in the rejuvenation stage, since Teide is interpreted to be at the peak of its growth. Also, as is further supported by the location of Tenerife in the middle of the archipelago, Tenerife can be regarded as an island in an intermediate evolutionary stage in comparison to the other islands (Carracedo & Troll, 2016).

As current research suggests, Tenerife was formed during the shield stage by three separate island volcanoes (Anchochea et al., 1990) that later merged into one edifice: the Anaga massif (formed approx. 4.9 - 3.9 Ma), the Teno massif (formed approx. 6.4 - 5.1 Ma) and the Roque del Conde massif (formed approx. 11.9 - 8.9 Ma) (Guillou et al., 2004). It is believed that the Roque del Conde massif represents the main central shield, flanked by the Teno massif and the Anaga massif (Guillou et al., 2004; Carracedo et al., 2011). Additionally, the three shields might have had different mantle sources, as indicated by Thirlwall et al. (2000). The shield stage ended with a period of seized volcanic activity before the onset of the rejuvenation stage (Longpré et al., 2009) at ca 3.6 Ma, with the Las Cañadas volcanism playing a considerable role. In contrast to the shield volcanoes, this volcano displayed felsic and explosive eruptions-likely due to the long residence time of the magma-the products of which can be seen in the south and southeast parts of the island as thick pumice and ignimbrite layers. The volcano erupted in cycles, each cycle ending with a caldera collapse (Carracedo & Troll, 2016).

2.1.4 Ankaramites and the Teno massif

The ankaramite sample analysed in this project belongs to the Teno massif. The massif is located in the NW part of Tenerife and is characterized by a varying topography with steep ridges and valleys. It was built during eruptive phases interrupted by two events of mass wasting on the northern flank, likely taking place in a time span of approximately 250 000 years (Longpré et al., 2009). The age of the massif has been discussed by several authors (e.g. Ancochea et al., 1990), but the results of Thirlwall et al. (2000) and Guillou et al. (2004) have been interpreted to infer that the bulk of the massif was formed between 6.4 and 6.0 Ma (Leonhardt & Soffel, 2006). This is similar to the estimation of Longpré et al. (2009), which points to

Imagery ©2020 TerraMetrics, Map data ©2020

Fig 2: Three rift zones to the south, northeast and northwest give Tenerife the shape of a tetrahedron. The Teno massif is located in the north-western part of Tenerife (red circle).

6.3 Ma as the start of the formation of the Teno massif. This estimation is also supported by the results of Leonhardt & Soffel (2006) which, based on magnetostratigraphic methods, indicates that the volcanic activity in the Teno massif lasted from 6.3 to 5.1 Ma.

Longpré et al. (2009) states that from 6.3 to 6.1 Ma, phreatomagmatic eruptions were alternated with effusive eruptions of basaltic composition, building the volcano edifice. Continuous supply of magma from the upper mantle, as well as the effect of volcano load, may have led to the formation of shallow magma reservoirs in the volcano's edifice. In those reservoirs, evolved magmas were produced. Eventually, the northern flank of the volcano failed at ca. 6.1 Ma. The shallow magma reservoirs were depressurized, and what followed were explosive eruptions at the landslide headwall which to a large part drained the shallow reservoirs. The depressurization also influenced the deep plumbing system of the volcano, resulting in rapid filling of the collapse embayment by dense and less evolved magmas, initially ankaramites. As the volcano regrew, however, these dense magmas were not able to erupt as easily, and lower-density plagioclase-phyric lavas were produced instead. The process was repeated as the northern flank of the volcano became unstable once again, creating a second landslide and another period of explosive eruptions and ankaramite production, later transitioning to crystal-poor basanite lava production. There is, however, no indication of shallow magma reservoirs at this stage. At this time, mean melt fractions started to decrease which could be a sign of a decrease in hot spot influence (Longpré et al., 2009).

The chemistry of the Teno massif is characterized by relatively low amounts of SiO2; and alkali basalts, subalkali basalts, basanites and picrites occur in the region. The major stratigraphic units identified are the Masca Formation (MF), the Carrizales Formation (CF), the El Palmar Formation (EPF) and the Los Gigantes Formation (LGF). Leonhardt & Soffel (2006) suggest that the oldest formation, MF, was formed between 6.27 and 6.14 Ma which is slightly different to the results of Thirlwall et al. (2000) and Guillou et al. (2004) which points to 6.42-6.02 Ma and 6.11-5.99 Ma respectively. However, in this case it is important to notice that while Leonhardt & Soffel (2006) based their results solely on magnetostratigraphic methods, Thirlwall et al. (2000) and Guillou et al. (2004) utilized Ar/Ar and K/Ar methods as well. Leonhardt & Soffel (2006) further suggests that CF and EPF chiefly were formed between 6.14 and 5.89 Ma, and that LGF, the youngest formation, was formed around 5.31 +/-0.2 Ma (Leonhardt & Soffel, 2006: Thirlwall et al., 2000; Guillou et al., 2004). The upper borders of both MF and CF are defined by unconformities formed by the two landslides described above; hence these landslides have been given the names Masca Collapse (MC) and Carrizales Collapse (CC) (Longpré et al., 2009). Both MC and CC were formed in the same polarity interval as CF and EPF, i.e. between 6.13 and 5.89 Ma (Leonhardt & Soffel, 2006). Additionally, Longpré et al. (2009) stated that the first landslide, MC, occurred at approx. 6.1 Ma, and agreed that both landslides occurred between 6.1 and 5.9 Ma. The proposed ages presented here states that all formations

formed within a short time period.

As can be deduced from the evolution of the massif, the ankaramites were predominantly deposited directly after the mass wasting events, suggesting a connection between mass wasting and the deposition of ankaramite magmas (Longpré et al., 2009). Longpré et al. (2009) has interpreted these ankaramites to represent deep magma in which crystals have had time to grow and accumulate, and from which crystal-poor magma has been removed. Therefore, it can be inferred that ankaramite magma formed continuously during the evolution of the Teno Massif. They propose that the connection between ankaramites and mass wasting is related to the load change of the volcano. Just as volcanic load increase hinders the eruption of high-density magmas, load decrease enables these high -density, likely more primitive, stagnant magmas to erupt. Furthermore, estimated high H_2O (0.8 - 2.1 wt%) and CO_2 (1.5 - 4.3 wt%) concentrations in the ankaramite magmas may have resulted in further remobilization and rapid ascent due to gas exsolution (Longpré et al., 2009).

2.2 Trace elements and elemental distribution

The use of elements, ions and ion ratios are important tools for geochemical investigations. It can be used to deduce the surrounding factors affecting a crystal during growth, and consequently receive an understanding for the history of the magmatic system. Important foundations for geochemical investigations are Goldschmidt's rules (Goldschmidt, 1937). These rules describe the distribution of elements exclusively based on ion radius and charge. The rules say that ions with smaller ion radii are more readily incorporated into solids over liquid compared to ions with bigger ion radii. It follows that Mg would be incorporated in the solid phase earlier in the crystallization sequence than Fe, as Mg is the smaller ion. Additionally, ions with higher charge (valence) are preferably incorporated into the solid over the liquid compared to ions with lower charge. Because of this, ions with high valence, for example Ti⁺⁴, are almost always readily incorporated into the solid phase. Finally, two ions with the same radius and charge should enter the solid phase in ratios proportional to their concentration in the liquid (Goldschmidt, 1937; Winter, 2014).

The term trace element is used when referring to an element that is present in concentrations of less than 0.1 wt%, and the trace elements can be grouped and classified in different ways. The terms compatible, incompatible, high field strength elements (HFSE) and large ion lithophile elements (LILE) are based on how the elements behave in magmatic systems. Elements that are compatible preferably enter the solid phase, while incompatible elements behave the opposite, i.e. they preferably enter the liquid phase. These classifications are often used when discussing partition coefficients, which are discussed further in section 2.2.1. Furthermore, HFSE refers to cations that are highly charged relative to their ionic radius, having an ionic potential >2.0, while LILE refers to cations that have low charge relative to their ionic radius (ionic potential <2.0). HFSE includes for example the rare earth elements (REE), Hf, Nb, Ce and Ti; LILE includes for example Rb, Cs, Ba, Sr and K (Winter, 2014; Rollinson, 1993) (see appendix A for index of element abbreviations and appendix A fig 1 for periodic table)

The terms rare earth elements (REE) and transition metals are used when basing the classification on the periodic table. The REE (also called lanthanides) comprises the elements with atomic numbers between 57 and 71: La, Ce, Pe, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. These are further divided into light rare earth elements (LREE) and heavy rare earth elements (HREE). Although the exact definition of LREE and HREE can be ambiguous, HREE included Er, Tm, Yb and Lu in a study by Baudouin et al. (2020). Apart from a few exceptions due to environmental factors, REEs have in common that they have a valence of +3. They also display what is called the lanthanide contraction, meaning the REEs with higher atomic numbers have smaller ionic radii than those with lower atomic numbers. Because of this, the HREEs tend to be, as inferred by Goldschmidt's rules, more compatible than the LREE. However different minerals show different sensitivities for this variation, therefore leading to different degrees of fractionation within the REE series (Winter, 2014).

The term transition metals refer to elements with atomic numbers 21-30: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. Worthy of note is that this range may also include two major elements, namely Mn and Fe (Winter, 2014; Rollinson, 1993). Lastly, elements with atomic numbers 37-41 (Rb, Sr, Y, Zr, Nb), as well as Cs, Ba, Hf, Ta, Pb, Th and U, are useful in geochemical investigations, although they do not belong to any particular groups (Winter, 2014).

2.2.1 Trace element distribution

As mentioned above, the distribution of ions can be deduced using their respective ion radius and charge. For trace elements another measurement has been developed, namely the partition coefficient. Partition coefficients (D), or distribution coefficients, are specific for elements and minerals and are calculated by dividing the concentration of an element in the solid phase with the concentration of the same element in the liquid phase. This is shown in equation (1) where x stands for the element in question, C for the concentration, s for the solid phase and *liq* for the liquid phase:

$$D_s^x = \frac{c_s^x}{c_{liq}^x} (1)$$

Estimation of partition coefficients can be done by measuring the concentration of the element in a crystal and in the glass surrounding it, or by doping synthetic or natural materials with the element. The calculation yields a number that describes whether the element is compatible or incompatible with regards to the mineral in question. Values >1 indicate that the element is compatible, while values <1 indicate that the element is incompatible (Rollinson, 1993). However, partition coefficients are heavily dependent on physical factors and can therefore vary greatly. The most important factor is the melt composition, leading to the conclusion that partition coefficients can be different for instance depending on if the system is basaltic or silicic. Temperature and pressure are also factors that can affect partition coefficients. Crystal chemistry is also an important factor, as well as water content of melt and oxygen activity (Rollinson, 1993). The environmental impacts on the distribution of elements are more extensively discussed in section 2.3.

2.2.2 Trace element ratios and fractionation

Due to the fact that partition coefficients are unique for certain elements and minerals, concentrations and ratios can be used to infer influence of different minerals. Because of the accommodation of Eu and Sr into plagioclase, ratios involving these elements, e.g. Eu/Sm, Ba/Sr and Sr/Nd, can imply plagioclase fractionation. The La/Yb ratio can give information on garnet crystallization, since garnet has a larger uptake of HREE than LREE; similarly, Ni can indicate olivine fractionation. Furthermore, Sc can yield insight into the occurrence of pyroxene fractionation and Y is affected by amphibole and garnet. Additionally, elements and ratios can give information on the origin of the magma, with high concentrations of Zr and Hf indicating either evolution of the melt or an enriched source (Winter, 2014).

2.3 Clinopyroxene as a recorder of magmatic processes

The diopside clinopyroxene end members (MgCaSi₂O₆) and hedenbergite (CaFeSi₂O₆) are mainly distinguished using the Mg# (Mg/(Mg+Fe)) (fig 3). Furthermore, the classification of augite additionally depends on the calcium content. The clinopyroxenes display a monoclinic crystal form, which for diopside consists of tetrahedral (Si^{4+}) and octahedral (Mg^{2+}) chains together with Ca^{2+} in 8-coordinated sites. The three types of pyroxenes are part of a solid solution series involving substitution of Mg^{2+} , Fe^{2+} and Ca^{2+} . Augite is characterized by Na⁺ substitution in the 8coordinated sites, resulting in a less calcic clinopyroxene, while hedenbergite is characterized by Fe²⁺ substitution in the octahedral sites, resulting in a lower Mg#. Al³⁺ can substitute into the octahedral and the tetrahedral sites as well, a process which requires coupled substitution because of the charge difference between Al³⁺ and Mg²⁺ and Si⁴⁺ (Klein & Philpotts, 2013). Additionally, REEs can be incorporated into both the 6- and 8-coordinated sites (Baudouin et al. 2020), with HREE being preferentially incorporated in the former and lighter REE in the latter.

As the environment changes during the growth of a clinopyroxene crystal, it is reasonable to believe that these changes are recorded in the mineral's chemistry. Because clinopyroxenes crystallize over a large variety of pressures and water contents and respond to changes in those factors, as well as in temperature and magma composition, they are good recorders of environmental changes during their growth. This is further indicated by the slow rate of diffusion taking place in the crystals, keeping the past records by hindering reequilibration (e.g. Arimenti et al., 2007; Ubide et al., 2019; Putirka, 2008; Perinelli, 2016). Finally, Ubide et al. (2019) argues that crystallization kinetics has a pronounced influence on clinopyroxene.

Fig 3: Classification diagram for pyroxenes. Figure by Angrense, modified by Nneonneo. Retrieved 28-05-2020 from https://commons.wikimedia.org/wiki/File:Pyrox_names.svg and used under GNU Free Documentation License version 1.2: https://commons.wikimedia.org/wiki/

Commons:GNU_Free_Documentation_License,_version_1.2

2.3.1.Major and minor elements in clinopyroxene

As is inferred by previous studies (e.g. Kushiro, 1960; Verhoogen, 1962), changes in the major elements of clinopyroxenes, i.e. substitution, can be attributed to changes in the environment in which they grow. The three principle factors that are considered are chemical composition, temperature and - despite perhaps being negligible - pressure of the magma in which the clinopyroxene crystals are formed (Kushiro, 1960).

Regarding the chemical composition, Kushiro (1960) argues that the amount of SiO_2 present in the magma might affect the amount of Al and Ti in the clinopyroxene crystal. As mentioned, Si is allocated into the tetrahedral sites in which Al can substitute. Magmas oversaturated in SiO₂ (tholeiitic magmas) would therefore fill the tetrahedral sites, resulting in a lower total amount of Al, with Al only allocated in the octahedral sites. Alkali magmas, on the other hand, contain less SiO₂ and would therefore leave room for more Al in tetrahedral sites, and result in a higher total amount of Al. It follows that a magma body with lower amount of SiO2 result in clinopyroxenes with higher Al/Si ratio. Following this, the substitution of Al into the tetrahedral sites requires a coupled substitution into the octahedral sites to account for the charge difference between Al³⁺ vs Si⁴⁺. In alkali magmas, as they are often rich in TiO₂, this coupled substitution may involve Ti ions. This is also inferred by Verhoogen (1962), stating that Ti is favoured by Al being allocated in the tetrahedral sites, and therefore by low SiO₂ concentrations in the magma. As a result, clinopyroxenes in alkali magmas are often Ti-rich due to low concentration of SiO₂ in combination with high concentration of TiO_2 in the magma (Kushiro, 1960). Kushiro (1960) also mentions that the possibility of TiO_2 concentration being the controlling factor by resulting in high Ti content in clinopyroxene, leading to high Al content as well, cannot be ruled out.

Another possible reason for chemical variations is the temperature of the magma. According to Kushiro (1960), higher temperature leads to the clinopyroxenes being able to contain more Al in the tetrahedral sites than those that were formed at lower temperature. Higher temperatures would therefore result in higher amounts of Al in the tetrahedral sites, leading to a lower amount of Si. This temperature effect also applies to Ti, as described by Verhoogen (1962). They argue that since the incorporation of Ti is not favourable with aspect to energy it requires entropy and therefore high temperatures.

2.3.2 Trace elements in clinopyroxene - variation in partition coefficients

Partition coefficients (D) for trace elements in pyroxenes mainly seem to depend on temperature, pressure, pyroxene composition and crystal features, and liquid composition (Green, 1994). For example, studies show that D-values for some REE elements increase with decreasing temperature and decreasing pressure in basaltic compositions (Green, 1994; Dunn, 1987; Adam & Green, 1994). However, compositional effects may be the most important factor, overwhelming the effect of temperature and pressure (Hack et al., 1994). Green (1994) found that despite creating a similar pattern, partition coefficients for individual elements in calcic pyroxenes generally display higher values than those in low-calcic pyroxenes, as well as a larger variation which can be expected due to the higher number of possible melt compositions and the complex interactions that follows a higher Ca concentration. Additionally, heavy REEs seem to behave with higher compatibility in high-Ca pyroxene than light REEs. These examples illustrate the dependency of D-values on Ca concentration (Green 1994; Hack et al., 1994; Van Orman et al., 2001). Partition coefficients also seem to be dependent on Al and Ti concentrations, as the amount of Al in the tetrahedral sites seem to affect the D-values for REEs, HFS elements, Cr and V (Green, 1994; Skulski et al., 1994).

D-values are also affected by crystal features such as sector zoning, resulting in preferential accommodation of some elements in certain sectors. This will be discussed further in section 2.3.5.

The effects of liquid composition can be applied on silicic versus basaltic compositions, as silicic liquids usually result in higher D-values (Green, 1994). This may also be applicable on tholeiitic and alkali basalts, as HFSE partition coefficients were observed to be 2-3 times higher in alkali basalts, according to Forsythe et al. (1991).

2.3.3 Literature values for partition coefficients (D) for clinopyroxene

Keeping the information above in mind, it is possible to estimate the partition coefficients for different elements between two phases. In this case, the partition coefficient between clinopyroxene and melt is of interest. Table 1 shows a compilation of partition coefficients presented in six different publications. Hart & Dunn (1993) and Villament et al. (1981) used alkali basalt, Foley (1996) alkaline lamprophyre, Bougault & Hekinian (1974) and Matsui et al. (1977) basalt and Hauri et al. (1994) high-alumina basalt for their investigations of the clinopyroxene partition coefficients. As is evident in this table, the estimated partition coefficients are highly variable, which to some extent might depend on the analytical techniques used, but also on the factors discussed above. However, it is possible to see the general trend for each element. As mentioned in section 2.2.1, HREE tend to be more compatible than LREE due to the difference in ionic radii as a result of the lanthanide contraction. This is evident in Table 1 since the heavier REE, for example Lu, have higher partition coefficients than the lighter REE. Considering that the partition coefficients are <1, however, all REEs are more or less incompatible.

The transition metals seem to overall have partition coefficients >1, inferring that they are compatible and preferably incorporated into the clinopyroxene over the melt. Most striking is the value of 13 for Cr by Bougault & Hekinian (1974), indicating that Cr is highly compatible in clinopyroxene. Even though the other studies have not estimated a value that high, all of the estimated partition coefficients are high with the exception of Hauri et al. (1994) which estimated a Dvalue of mere 1.66. Hence it is noticeable that - within the scope of these six studies - Cr is the most compatible element in clinopyroxenes of all transition metals, and in fact of all elements present in this table. Ni is not far behind, with D-values of 2.5 and 4.4 (Villemant et al., 1981; Bougault & Hekinian, 1974).

Another noticeable element is Ba, which in four out of the six studies has a very low partition coefficient and therefore seems to be highly incompatible in clinopyroxenes (e.g. Matsui et al., 1977). Nb as well has very low partition coefficients, together with Rb (e.g. Foley, 1996). The other elements - Sr, Y, Zr, Hf, Ta, Th and U - are all incompatible with generally lower partition coefficients than the REE.

Finally, Bougault & Hekinian (1974), Matsui et al. (1977) and Villemant et al. (1981) presented a few D-values for major and minor elements Si, Al, Fe, Mg, Ca and Na. Generally, these are not particularly incompatible, and Mg and Ca are compatible with Dvalues of 5.4 and 3.4 respectively (Villemant et al., 1981).

2.3.4 Zoning types

Clinopyroxenes and other minerals part of a solid solution series regularly display different kinds of compositional zoning as a response to environmental changes during crystal growth. Zoning can be *normal*, i.e. composition changes from high temperature compositions in the core to low temperature compositions in the rim due to cooldown, or *reverse*, meaning the opposite: composition changes from low temperature to high temperature compositions as a response to magma temperature changes, magma mixing and magma influx (Klein & Philpotts, 2013). *Patchy* zoning describes zoning that is irregular throughout the crystal. It may form by crystallization of melt of another composition in cavities of an existing mineral, and can also be a sign of open system processes (Streck, 2008).

Oscillatory zoning can occur as fine and coarse banding (Downes, 1974) and may be caused by diffu-

Table 1: Estimated partition coefficients for selected trace elements and major/minor elements. The partition coefficients are estimated for clinopyroxene in *basalt* (Bougault & Hekinian, 1974; Matsui et al., 1977); *alkali basalt* (Villemant et al., 1981; Hart & Dunn, 1993); *high-alumina basalt* (Hauri et al., 1994) and *alkaline lamprophyre* (Foley, 1996). See appendix A for index of element abbreviations.

Element	Bougault & Hekinian (1974)	Matsui et al. (1977)	Villemant et al (1981)	Hart & Dunn, 1993)	Hauri et al. (1994)	Foley (1996)
La		0.084	0.12	0.0536	0.0515	0.0435
Ce		0.166		0.0858	0.108	0.0843
Nd		0.382		0.1873	0.277	0.173
Sm		0.736		0.291	0.462	0.283
Eu		0.753	0.63		0.458	0.312
Gd		0.82				0.335
Tb		0.97	0.73			0.364
Dy				0.442	0.711	0.363
Er				0.387	0.66	0.351
Tm		1.09				0.297
Yb		1.01		0.430	0.633	0.313
Lu		0.95		0.433	0.623	0.265
	•					
Sc		2.92	3	1.31	0.808	
Ti	0.2	0.786	1.07	0.384	0.451	
V	0.74			3.1	1.81	
Cr	13	4.22	5.3	3.8	1.66	
Со	1.32	1.12	1.02			
Ni	4.4		2.5			
	7					
Rb			0.04			0.0047
Sr		0.109	0.16	0.1283	0.157	0.0963
Y				0.467		0.438
Zr			0.27	0.1234	0.195	0.121
Nb				0.0077	0.0081	0.0027
Ba	-	0.0035	0.04	0.00068	0.0058	0.00061
Hf			0.48	0.256	0.223	
Та	-		0.06			
Th		0.013	0.04		0.014	0.0056
U		0.017	0.05		0.0127	
Si		0.926	0.91			
Al		0.55	0.48			
Fe(tot)	0.86		0.99			
Mg			5.4			
Ca			3.4			
Na			0.17			

sion processes and kinetic controls or by convecting magma, or similar dynamic processes, resulting in temperature variations. By making a distinction between fine banding (~1-10 µm) and coarser banding, it might be possible to discern the origin of the zoning as the former may be the result of kinetic processes, while the latter may be the product of magmatic processes (Klein & Philpotts, 2013; Streck, 2008; Ginibre et al., 2002). Streck (2008) restricted the definition of oscillatory zoning to the fine banding caused by kinetic processes, highlighting the different origin of the two types. This definition will be taken into consideration here, and the distinction between oscillatory zoning and growth bands will to some extent be made with regards to band width, with a general distinction between the two at 10 μ m.

Finally, sector zoning is characterized by different compositions in different faces of the crystal, which in thin section corresponds to different sectors (fig 4). The sectors typically observed in crystals displaying hourglass zoning are {-111} (basal sector or hourglass sector) and {100}, {110} and {010} (prism sectors) (e.g. Leung, 1974; Ubide et al., 2019). Hollister & Gancarz (1971) proposed four factors affecting the nature of the sector zoning: rate of material addition to crystal, composition and size of said material, equilibrium rate of new material with matrix, and reequilibration rate by ion exchange. Additionally, they argue that sector zoning can indicate a high growth rate during the crystallization, as it exceeds the diffusion rate (Hollister & Gancarz, 1971). Furthermore, Skulski et al. (1994) claimed that sector zoning in augites is caused by differences in kinetic growth processes, and Downes (1974) stated that the main influencing factors are the composition of the melt, the structure of the crystal and the site occupancy, and the different growth rates of the crystal faces.

2.3.5 Implications and previous studies regarding zoning

Regarding oscillatory zoning, Downes (1974) carried out a study on oscillatory zoning combined with sector zoning in calcic augites, in which they found two types of lamellar bands - coarse banding with varying thickness, commonly approx. 250 μ m, and fine, regular banding approx. 20 μ m thick - that lay parallel to the face of the sector in question. They suggested that the bands were formed due to a primary growth processes, simultaneous with crystallization. When examining the fine banding, they found no normal core-to-rim zoning, and no clear oscillations for Fe, Mg and Ca. However, Al and Ti oscillated between 1.0-1.5 wt% and 0.2 -0.4 wt% respectively, and there was a drop of Al and Ti within each band.

Experiments by Skulski et al. (1994) demonstrated that sector zoned augite in basalts of alkaline composition showed an enrichment of Al and Ti, as well as Ca, Cr, HFSE and REE in the {100} sector compared to the {010} sector (at 1250 °C and 1 GPa). They further observed reverse zoning of incompatible elements in the {100} sector, as well as normal zoning in the {010} sector. These observations are supported by the results from an experimental study by Hack et al. (1994), where they observed that especially alkaline

Fig 4: Crystallographic principles of sector zoning. a) The sectors in relation to an augite crystal and b) an illustration of how cutting effects affect the appearance of the sector zoning in thin section. As is evident from the figure, the typical hourglass zoning (bA) is only achieved if the crystal is cut along the c-axis in the centre of the crystal. A cut parallel to the c-axis but not in the centre will cause the hourglass sectors to drift away from each other (bB-C). Figure reused with permission from Ubide et al. (2019), who in turn modified from Leung (1974) (see reference list for complete acknowledgement).

compositions were host to sector zoned clinopyroxenes, and that Al, Ti and REE showed the largest variation between the sectors. Finally, Ubide et al. (2019) also concludes that HFSE and REE elements are strongly influenced by kinetic effects, and therefore also show pronounced sector zoning.

In a study carried out by Leung (1974), sector zoned titanaugites were found to show compositional

differences, i.e. zoning, in both the core-to-rim direction and in sectors. In the core-to-rim direction, an increase of Si and a decrease of Al of up to 5 wt% oxide were observed, as well as an enrichment of Fe and a depletion of Mg. The Fe and Mg changes would indicate a higher to lower temperature crystallization, as the high temperature phase - the Mg phase - is depleted. They did, however, observe a few crystals which exhibited a slight increase of Mg towards the rim, occurring along with a sudden Al decrease. Ca remained relatively constant throughout the crystal, and Ti decreased slightly towards the rim (0.5-1 wt% oxide), however it behaved very varied (Leung, 1974). When studying the chemistry of sector zoning, Leung (1974) further found that sector {-111} (basal sector) was enriched in Si and Mg, and sectors {100}, {110} and {010} (prism sectors) were enriched in Al, Ti and Fe (as inferred by fig 4). Sector {010} also showed a slight depletion of Al and Ti compared to {100} and {110}, concordant with Hollister & Gancarz (1971) who suggested that the degree of enrichment of Al, Ti and Fe are as follows: $\{100\} > \{110\} > \{010\} > \{-111\}$. Ubide et al. (2019) found similar results, concluding that the hourglass sectors and the prism sectors showed chemical variations due to a charge-balancing coupled substitution: $[Si^{4+} + Mg^{2+} + Fe^{2+}] \rightarrow [Al^{3+} + Fe^{2+}]$ $Ti^{4+} + Fe^{3+}$]. The prism sectors thus displayed higher concentrations of Al and Ti, and the basal sectors displayed higher concentrations of Si and Mg.

Leung (1974) further assessed growth rates when studying the sector zoning in titanaugites. They suggested that the observed growth layers - a term used in that study to describe layering parallel to the bases of growth pyramids, likely similar to the banding mentioned in Downes (1974) - may form as a result of cyclic convections during growth. These cyclic convections might in turn be caused by heat of fusion accumulated at the solid-liquid interface as elements are incorporated in the crystal. Following this, they propose that the rate with which heat is emitted from the crystal face determines the growth rate, even though the growth rate is sensitive to rate of diffusion and degree of supercooling as well. In pyroxenes, they suggest that the {-111} face is a fast growing face in hourglass-structured pyroxenes, followed by {100}, $\{110\}$ and $\{010\}$. They also suggest that the absence of {001} faces in their samples indicate that it is the fastest growing face, essentially growing so fast that it eliminates itself, and would therefore likely not be present in pyroxenes formed with high growth rate.

Finally, in a study by Longpré et al. (2008), clinopyroxenes from the El Palmar Formation in the Teno massif was examined with special interest in zoning, (dis)equilibrium and thermobarometry. They observed 20-40 μ m Fe-Mg zoning in the rims that was in disequilibrium with the melt and that was determined to be the result of growth processes, in contrast to diffusion processes. This was inferred by the fact that elements of different diffusion coefficients displayed zoning of similar width, as did olivine which would have a higher diffusion rate than clinopyroxene in those conditions (Longpré et al., 2008; Freer, 1981). Taking after a study by Klügel et al., (2000) discussing the same type of zoning in olivine, they further indicated that the zoning might have been created at high growth rates, and that the rims likely formed on a short time-scale of up to a few days (Longpré et al., 2008; Klügel et al., 2000). Additionally, they suggested that the high growth rate of the rims were a result of undercooling due to water enrichment during magma ascent in combination with decompressional crystallization and degassing (Longpré et al., 2008).

2.3.6 Magma recharge and mixing

Open system processes may have a large impact on magmatic systems, and determining the role of these processes is therefore an important key to understand the evolution of a system. Streck (2008) has presented a comprehensive guide regarding zoning and crystal textures that might serve as evidence for open system processes, i.e. contamination and magma mixing/ recharge. The presence of reverse zoning, step zoning (zoning that occurs in steps, in contrast to progressive zoning that occurs gradually), growth bands and patchy zoning, as well as resorption textures, are signs that may point towards open system processes. However, important to note is that patchy zoning may arise from re-equilibration processes as well (Streck, 2008). Reverse zoning indicates a crystallization that does not follow the liquid line of descent for that particular mineral, i.e. it is not only affected by cooldown and the related fractionation. Additionally, as mentioned in section 2.3.4, growth bands can be an indicator of open system processes if formed as a primary growth feature, as suggested by Downes (1974). Furthermore, abrupt changes in temperature and chemistry caused by mixing with newly arrived hot magma can result in disturbed sector angles, irregular dissolution surfaces and intervals of more primitive magma composition (Ubide et al., 2019; Streck, 2008; Ubide & Kamber, 2018). Finally, rounded grains and spongy texture are examples of resorption textures that might indicate open system processes (Streck, 2008).

An interesting aspect of open system processes is that of magma recharge, also commonly referred to as mafic replenishment, and its possible connection to eruption triggering. However, the role of magma recharge as an eruption trigger has not yet been fully understood, and few studies have been carried out. Ubide & Kamber (2018) showed that traces of magma recharge and magma mixing can be seen in clinopyroxene phenocrysts from Mt. Etna, by analysing variations in Cr concentration preserved in the clinopyroxene due to high compatibility and relatively slow diffusion. They noted that the clinopyroxene crystals displayed distinctive Cr zoning and that the Cr-rich zones were rich in other compatible elements as well, reflecting the arrival of new primitive magma. The Cr-rich zones were interpreted to have crystallized shortly before the eruption, as they occurred close to the clinopyroxene rims, creating a possible connection between arrival of primitive magma and the eruption. The crystallization of the Cr-rich zones depleted the system of Cr, causing the crystal's outermost rim, outside of the Cr-rich zones, to be characterized by low Cr concentrations as well as an increase in Al and Ti and a decrease in Mg and Si. These rims likely represent final decompression and surface crystallization (Ubide & Kamber, 2018). This topic was discussed in Ubide et al. (2019) as well, however with focus on sector zoned phenocrysts. In this study they found Cr enriched and HFSE and REE depleted zones in a sector zoned mantle overgrowing a Na-rich resorbed core. They argued that the depletion of HFSE and REE in these zones is a charge balancing mechanism compensating the increased incorporation of Al in the tetrahedral sites. They also found that the transition metals Cr³⁺, Sc³ and Ni2+ experience little to no sector zoning, and therefore little response to kinetic processes, and that these elements therefore are reliable when evaluating open system processes to constrain magmatic histories (note, however, that this observation contradicts that of Skulski et al. (1994) who found that Cr was enriched in certain sectors, see section 2.3.5). Finally, similar to Ubide & Kamber (2018), this study also observed rims enriched in Al and Ti (Ubide et al., 2019).

3 Methods

A variety of analytical techniques were used in this thesis in order to carry out qualitative and quantitative analyses for both major and minor elements and trace elements, including scanning electron microscope (SEM) analyses for major and minor elements and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses for trace elements. An explanation for the workings of these instruments and analytical techniques are to be found in appendix B.

Two thin sections. ASTE17.03A1 and ASTE17.3A2, derived from the same ankaramite sample from the Teno massif, Tenerife, were viewed using optical microscope Olympus BX53. They were observed to exhibit a porphyritic texture consisting of large clinopyroxene crystals, and to a lesser extent large olivine and plagioclase crystals, surrounded by a matrix containing prismatic plagioclase needles and small-scale pyroxene and olivine crystals. The crystals are varying in size and shape, with some displaying euhedral crystal shape while others rather display subhedral to anhedral crystal shapes. Opaque minerals were also found in matrix and in the interior of crystals. Flow texture was observed throughout the thin sections. Four clinopyroxene crystals, two from each thin section, were elected for further analyses based on crystal quality and equilibrium, as well as size and presence of zoning: Ala and Alb from the Al thin section and A2a and A2b from the A2 thin section.

3.1 Scanning electron microscopy (SEM)

The clinopyroxene crystals presented were studied with scanning electron microscope Tescan Mira 3, using BSE, SEM-EDS and EBSD analyses. Special interest was taken to the chemical variations observed from the core of the clinopyroxene to the rim, paying extra attention to the chemical changes that characterizes the zoning. BSE was used for imaging, to acquire a first impression of the present phases and to view zoning in terms of compositional differences. The majority of the analyses consisted of SEM-EDS measurements, specifically point analyses (spectrums), lines and compositional maps. The instrument was calibrated using cobalt (Co), and the analyses were mainly performed with HV = 15 kV, BI = 15.00 and WD = 15 mm.

EBSD analyses were carried out for crystal A1a to determine the crystallographic axes of the crystal in order to relate its orientation in the thin section to the zoning. The analyses were performed in low vacuum and was therefore carried out without carbon coating of the sample. LVSTD (Low Vacuum Secondary Tescan Detector) were used with the following settings: 40 Pa Uni-Vac, HV = 20 kV, tilt correction = 700 and dynamic focus = 700.

Both EDS and EBSD analyses were carried out and evaluated using software Aztec 3.3.

3.1.1 SEM: Sample preparation

For BSE imaging and SEM-EDS analyses the thin sections were coated with carbon to avoid issues with charging of the sample. Additionally, bits of carbon tape were used between the sample and the sample holder to further diminish charging effects.

For the EBSD analyses, the already carboncoated thin section was polished using diamond paste and colloidal silica. The thin section was thereafter washed carefully with water and dish soap and put in ultrasonic bath (Branson 200 Ultrasonic Cleaner) and a stub was attached to the thin section with double coated carbon tape and silver paint.

3.2 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP -MS)

LA-ICP-MS was performed to analyse trace element concentrations and variations. The analyses were carried out using a Bruker Aurora Elite ICP-MS equipped with a 193 nm Cetac Analyte G2 excimer laser in helium atmosphere. The standards used were NIST610 as a primary standard and NIST612, BCR2G and BIR1G as secondary standards, and finally Ca as internal standard with a concentration of 15.66 wt%. Nineteen lines with spot size 13x85 µm and nineteen spot analyses with spot size 30x85 µm (fig 5) were taken, distributed in all four crystals. The elements analysed were Si and Na, the REEs La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er and Yb; the transition elements Cr, Ni, Co, Ti, V and Sc; and finally Zr, Sr, Y, Hf, Ba and Nb. Special interest was taken to the chemical variations in the zoning and the rims, and the lines were drawn perpendicular to the concentric zoning to gain accurate information of the chemical variations. The results were processed using Igor Pro 6.37 and Iolite v.3.

3.2.1 LA-ICP-MS: Sample preparation

For the LA-ICP-MS analyses the carbon coat was removed using DiaPro Nap ¹/₄ diamond paste, after which the thin sections were washed with water and finally put in ultrasonic bath and cleaned with ethanol.

3.2.2 Evaluating LA-ICP-MS results

Part of the evaluation of the LA-ICP-MS results involved calculating the liquid composition at the time of crystallization of the analysed pyroxene. This was carried out using the mathematical relationship for partition coefficients, as described in section 2.2.1.1:

Fig 5: Schematic sketch of the four clinopyroxene crystals and the location of the lines and spots analysed with LA-ICP -MS. Main features have been added to the sketches in order to acquire a better apprehension for the locations in relation to the features.

$$D_{cpx}^{x} = \frac{C_{cpx}^{x}}{C_{liq}^{x}} (2)$$

where *D* stands for the partition coefficient of the element *x* in clinopyroxene and *C* for the concentration of element *x* in the clinopyroxene and the liquid respectively. The equation was rewritten to solve C^{x}_{lia} .

$$C_{liq}^{x} = \frac{C_{cpx}^{x}}{D_{cpx}^{x}}(3)$$

Additionally, relative partition coefficients were estimated between the sectors of the sector zoning in A1a by using the composition of two sectors, here referred to as sector A and B. For the sake of the calculation, this was done by assuming that the chosen partition coefficients (see section 3.2.3) are true for sector A, and the liquid composition was therefore calculated for that sector. As follows, the calculated liquid composition would be assumed to represent the true liquid composition at the time of crystallization. Thereafter, equation (2) was used to determine the partition coefficients based on the liquid composition of sector A and the clinopyroxene composition of sector B, thus acquiring partition coefficients for sector B as illustrated by equation (4) below.

$$D_{cpx,B}^{x} = \frac{C_{cpx,B}^{x}}{C_{liq,A}^{x}} (4)$$

Calculations for relative partition coefficients were made with the assumptions that the liquid composition did not change over time as the sector zoned crystal was formed and that the sector zoning was solely kinetically controlled.

3.2.3 Chosen partition coefficients for evaluation

To determine reliable partition coefficients, values from the literature (see table 1) were chosen, primarily from Villemant et al. (1981) and Hart & Dunn (1993), but also Foley (1996). These partition coefficients were then plotted against ion radii for 6- and 8coordinated (M1 and M2) ions in an Onuma diagram (fig 6). This diagram is based on the *lattice strain* model (e.g. Blundy & Wood, 2003), describing the dependency of partition coefficients on ion charge, ion radius, site radius and that site's elastic response, suggesting that the ion that can be incorporated into the lattice with low strain will have a higher partition coefficient than an ion incorporation resulting in higher strain. As can be deducted from fig 6, the lattice strain model allows for prediction of partition coefficients solely based on charge and ion radius (Blundy & Wood, 2003).

The curves in fig 6 represents the lattice strain model, and are drawn based on a similar diagram by Purton et al. (1997). The partition coefficients were evaluated based on how well they fit the curves in the diagram, and this was used to estimate new or verify existing partition coefficients. Some elements were however left uncorrected due to the uncertainty of the typical accommodation site of the element in clinopyroxene, in which case it was considered more appropriate to verify the partition coefficient using the literature. Finally, the partition coefficient for Pr was solely estimated using the diagram, taking into account the partition coefficients for Ce and Nd. The resulting partition coefficients are presented in table 2.

4 Results

4.1 Optical observations

The four chosen clinopyroxene crystals have in common that they are euhedral with some fracturing and are containing plagioclase and opaque inclusions that are concentrated mainly along the rims. The crystals also display zoning. However, the type and extent of this zoning is not the same for all crystals. Based on the kind of zoning, the crystals have been sorted into two groups: the A1a and A2b crystals and the A1b and A2a crystals (fig 7).

The A1a crystal measures 1.75 mm at the long-

Fig 6: The partition coefficients to use when evaluating the LA-ICP-MS results were chosen with consideration to the Onuma diagram. The partition coefficients are acquired from Villemant et al. (1981), Hart & Dunn (1993) and Foley (1996) and are plotted against ion radii for 6-coordinated (M1) and 8-coordinated sites (M2). The lines were drawn based on a similar diagram by Purton et al. (1997), representing the *lattice strain model* (e.g. Blundy & Wood, 2003). The solid line strives to connect elements with 3+ charge and the dotted line elements with 2+ charge.

Element	La	Ce	Pr	Nd	Sm	Eu	Gd	Dy	Er	Yb	Hf
D-value	0.054	0.0858	0.137	0.187	0.29	0.63	0.335	0.442	0.387	0.43	0.256
Element	Sc	Ti	V	Cr	Со	Ni	Sr	Y	Zr	Nb	Ba
D-value	1.31	0.384	3.1	3.8	1.02	2.5	0.1283	0.467	0.1234	0.0077	0.00068

Table 2: The final partition coefficients chosen with consideration to the Onuma diagram and used for evaluation of the LA-ICP-MS results.

est axis and exhibits sector zoning with two clearly visible sectors and high interference colours; orange in one sector and pink in the other. One of the sectors can be seen to vaguely be divided into five very similar subsectors (fig 8). Additionally, the crystal has a slightly darker interval approaching the rim. A twinning plane runs through the crystal and the two twins mirror each other and have different extinction angles. The crystal is free from inclusions except for a small plagioclase crystal in the interior of the pyroxene. The A2b crystal measures 1.6 mm and also seems to display two twins with different extinction angles and sector zoning, although the twinning plane is slightly uneven and the sectors are somewhat irregular and presented differently. Additionally, as is evident in fig 7 the A2b is different from A1a in that it has lower interference colours; brown and grey. It also contains

more inclusions, namely a large plagioclase crystal and a large opaque crystal in the rim, as well as a smaller pyroxene. Lastly, A2b seem to display a similar interval in the outer parts of the crystal as A1a; however, A2b displays clear concentric zoning in this interval.

The A1b crystal measures 1.6 mm and displays lower interference colours than A1a - displaying dark and light beige colours - and contains numerous inclusions, specifically a large plagioclase crystal and several opaques. The small inclusions are mostly concentrated near the centre of the crystal, right next to a darker brown area with an irregular shape that seems to represent the core of the crystal. The rest of the crystal is characterized by concentric zoning parallel to the rims with varying width, and seemingly different widths in different parts of the crystal. The zoning is especially pronounced approaching the outer parts of the crystal, as the zoning in the inner parts is poorly pronounced. The A2a crystal measures 1.7 mm and is similar to A1b in that it has low interference colours, also dark and light beige, and varying concentric zoning that is parallel to the rims and is less pronounced in the interior of the crystal than closer to the rim. However, the A2a crystal does not exhibit any signs of a darker core. Rather, the central part of the crystal – where the zoning looks patchy and irregular rather than concentric – is host to numerous small inclusions. Furthermore, one part of the crystal seem to be overprinted and lack zoning. Finally, a larger plagioclase inclusion is present in the rim of the crystal.

4.2 Scanning electron microscopy (SEM-EDS)

The scanning electron microscope analyses revealed that all four of the clinopyroxene crystals are of diopside composition (using the classification by Morimoto (1988)), i.e. the Mg end-member of the clinopyroxene series. The crystals are relatively homogenous when it comes to Na and Ca; presenting only small changes that seem to be random without following any specific trend. Therefore, the elements of interest in these analyses were Mg, Si, Al, and Ti, and to some extent Fe, and their variations in relation to the zoning of the crystals. For representative data from SEM-EDS spectrums the reader is referred to appendix D.

Fig 7: The four clinopyroxene crystals chosen for the chemical analyses viewed under crossed polars in optical microscope. The longest axes measures 1.75 mm in A1a, 1.6 mm in A2b, 1.6 mm in A1b and 1.7 mm in A2a. Note the difference in zoning between A1a/A2b and A1b/A2a, and the twinning plane running through A1a and A2b.

Fig 8: Figure illustrating the subsectors observed in A1a observed under crossed polars in optical microscope. To the left, two pictures of A1a under crossed polars are combined to produce a picture where both twins are extinguished in order to acquire a better view of the subsectors. To the right, these subsectors are marked with red lines.

4.2.1 Sector zoned crystals: A1a and A2b

Starting off with the sector zoned crystals A1a and A2b, the sector zoning is clearly visible when using the backscatter electron (BSE) detector (fig 9). One sector displays a darker contrast than the other, and it is this sector that according to EDS analyses displays high Mg and Si concentrations relative to the lighter sector, which in turn has lower concentrations of these elements and higher concentrations of Al and Ti. The same pattern is seen in both sector zoned crystals, the two of them having virtually the same chemical compositions. In general, the Mg+Si sectors have a Mg# of \sim 75-79 and the Al+Ti sectors an Mg# of \sim 73-76, i.e. the Al+Ti sectors are generally characterized by lower Mg#. However, both sectors have Al/Ti ratios of \sim 3.0-4.5.

Going from the Mg+Si sector to the Al+Ti sector, Mg and Si decrease by around 8-14 wt% and 4-8 wt%, while the Al and Ti increase is very varied, ranging from approx. 50-80 wt% for Al and 20-80 wt% for Ti. Fe concentration does change when going from one sector to the other; however, the changes are small and without any certain pattern, as Fe can both increase and decrease between the Mg+Si to the Al+Ti sector.

In addition to these two sectors, the Al+Ti sector of A1a seem to be further divided into five subsectors. All of these subsectors have similar compositions; however, they display slightly different contrasts in BSE (fig 9).

Apart from the sector zoning, both crystals are relatively homogenous in the core-to-rim direction. However, A2b also display irregular compositional variations slightly resembling that of patchy zoning. This compositional variation is clearly evident in EDS maps (see appendix C, figure 1). The "dark spots" of this irregular zoning has the same chemical composition as the Mg+Si sectors. Additionally, the concentric zoning in the outer parts of A2b is slightly visible in Al, Ti, Mg and Si, with Mg and Si behaving oppositely to Al and Ti. However, these chemical changes cannot be confirmed with the results here. The corresponding interval in A1a displays a slightly darker contrast in BSE than the rest of the Al+Ti sector, but does not exhibit concentric zoning.

4.2.2 Concentrically zoned crystals: A1b and A2a

While crystals A1b and A2a do not exhibit sector zoning, they do display chemistries are similar to that of the sector zoning. As observed during optical microscopy, the bands have a very varying width (fig 9). In A1b, the width of zoning is different in different parts of the crystal. In the part of the crystal where the bands are the widest and the zoning is most distinguishable, the band widths range from approximately 10 µm to 70 µm, with some bands reaching up to 95 µm and 120 µm. Band widths in A2a also show great variation, however they do not reach the same thicknesses. Rather, the band width varies between approximately 10 µm to 80 µm, the most defined wide bands situated at the border between the irregular centre and the concentric zoning. Finally, the zoning varies between sharp and gradual compositional variations. (fig 10-11).

In both crystals, the zoning is chiefly observed

in Al and Ti; hence, Al is the most useful element when aiming to identify the zoning. The zoning is also visible in Mg and Si which behave oppositely to Al. The zoning is to some extent visible in Fe, however only in some instances where it can be seen to vaguely follow Al. Ca and Na show no relation to the zoning. What are common for all elements, however, are small internal variations on the scale of 5-15 μ m, seen chemically and to some extent optically as well.

Due to the different elemental concentrations giving rise to the zoning, both crystals have varying chemistries. In A2a, two separate types of chemical compositions related to the zoning have been recognized. These are of similar chemical compositions to the Al+Ti and Mg+Si sectors in the sector zoned examples; however, both compositions have higher concentrations of Al and Ti compared to the Mg+Si sector in the sector zoned crystals. In the concentric zoning of A2a, one composition has a Mg# of ~77-79, while the other has a Mg# of ~74-77, and both have Al/Ti ratios of approximately 3.5-4.5. Alb does not exhibit two distinct chemical compositions. Rather, with Mg# of \sim 75.5-78, the different compositions of this zoning are more varied and less distinct from one another. The Al/Ti ratio, however, is the same as in A2a: ~3.5-4.5. For both crystals, the differences between the chemical compositions are generally smaller compared to the sector zoning. Similar to the sector zoning, however, Fe variations are irregular.

As mentioned in section 4.1, A1b and A2a are similar in that the concentric zoning is less pronounced in the centre of the crystal, and furthermore, in A2a the widest bands are generally located close to the centre. A2a is also overprinted in a certain part of the crystal, and this part is revealed to have a lighter BSE contrast. Finally, A1b is different from A2a in that it also possesses an irregularly shaped core with a different chemical composition than the rest of the crystal. In fact, with an Mg# of ~83 it is the highest Mg# observed in these clinopyroxene samples. Furthermore, the core also has the lowest measured Ti concentration, with an Al/Ti ratio of ~5.75.

4.2.3 Rims

Even though the four clinopyroxene crystals display different zoning and chemistry, they all have in common the chemical changes occurring at the rim. Using BSE imaging, a narrow light band close to the outer rim was observed in all four crystals. The edges of the rims are uneven and rather jagged, resulting in varying widths from the light band to the edge (fig 12). From the analysed sites however, the rims have been measured and estimated to be around 5-33 μ m for A1a, 5-37 μ m for A1b, around 15 μ m for A2a and around 8-18 μ m for A2b.

As shown by figure 13, the nature of this light band varies between different sites. Some sites were observed to exhibit two closely adjacent light bands and/or one wide band, some sites exhibit a single band and a few display what can be referred to as a "double rim" (fig 13). The frequency of two light bands seems to be higher in the concentrically zoned crystals, while the single bands tend to be present only in the sector

Fig 9: BSE images of sector zoned crystals A1a (upper left), A2b (upper right), A1b (lower left) and A2a (lower right). *Upper left:* The dark (Mg+Si rich) and light (Al+Ti rich) sectors are clearly visible in this crystal, as is the darker interval close to the rim and the subsectors. The subsectors are marked as (1), (2) and (3), with (1) being the lightest and (3) the darkest in contrast. The black inclusion in the Mg+Si sector is determined to be a plagio-clase. *Upper right:* The dark and light sectors are clearly visible here as well, and in contrast to A1a, A2b displays two dark sectors. Also note the irregular zoning in the bottom part of the crystal, as well as the small dark area next in the upper left corner of A2b adjacent to the black plagioclase inclusion, which is part of the small pyroxene inclusion. The crystal also displays numerous opaque inclusions. *Lower left:* The concentric zoning can be observed as bands of alternating contrast, with wider bands in the left part of the crystal than in the right. The centre displays irregular zoning as well as a dark core. Furthermore, a large plagioclase inclusion can be seen close to the left rim, as well as opaque inclusions closer to the centre. *Lower right:* Similarly to A1b the bands here can be distinguished by contrast in BSE, however A2a is more symmetric. It also displays an irregular centre, but lacks a core. Also note the left part of the crystal that to some extent lacks zoning, as well as the plagio-clase inclusion at the top of the crystal. The pictures are edited to display a higher contrast in order to more easily observe the zoning.

Fig 10: Chemistry of the concentric zoning in A1b, displaying variations in Al, Ti, Mg and Si plotted in CPS (counts per second). The line starts in the interior of the crystal (left part of diagram) and ends at the rim (right part of diagram), and the location of the line is shown in the upper pictures (red and white line respectively). The left is the A1b crystal under crossed polars in optical microscope, while the right is a BSE image. As can be seen in the diagrams Al shows clear variations between the zoning bands, displaying higher concentrations in the light bands under crossed polars. Ti follows the same pattern as Al, however not as pronounced. Furthermore, Mg and Si behave oppositely to Al. The lines are based on SEM-EDS line data presented in appendix E, table 1.

Fig 11: Chemistry of the concentric zoning in A2a, displaying variations in Al, Ti, Mg and Si and plotted in CPS (counts per second). The line starts in the rim (left part of diagram) and ends in the interior of the crystal (right part of diagram), and the location of the line is shown in the upper pictures (red and white line respectively). The left is the A2a crystal under crossed polars in optical microscope, while the right is a BSE image. Similar to in fig 10, Al shows clear variations between the zoning bands, displaying higher concentrations in the light bands under crossed polars. Ti follows the same pattern as Al, however not as pronounced. Furthermore, Mg and Si behave oppositely to Al. Note the generally higher Si concentrations towards the rim, correspondingly seen as a similar increase in Si and decreases in Al and Ti. Spikes in the graph due to fractures and impurities have not been taken into consideration when deciding the limiting values for the y-axis, in order to increase visibility of variations related to the zoning. The lines are based on SEM-EDS line data presented in appendix E, table 2.

Fig 12: BSE image of the rim of A1b. Observe the jagged appearance of the rim, the light band, and how the rim inclusions seem to have started to crystallize simultaneous with the band. Two light bands in this crystal can be observed inside of the red circle. The picture is edited to acquire a higher contrast in order to more easily distinguish the compositional differences.

zoned crystals. Furthermore, the "double rims" were only observed in one face of the concentrically zoned crystal A1b.

The EDS-analyses show that the light band marks the start of extensive chemical changes (fig 14-15). Generally, the light band represents a chemical composition with higher Ti and/or Fe concentrations, after which a significant Al drop occur that lasts throughout the rim. In addition, in most sites of the concentrically zoned examples, an Al increase occurs before or during the sharp Al decrease. It is clear that the sites which exhibit single light bands display less complex chemical variations-characterized simply by a decrease in Al -- than the sites which exhibit two light bands or "double rims" and is characterized by Al fluctuations, as shown in fig 14-15. Thus, the detailed variations are somewhat different between different sites. In fact, Al seems to behave differently at the band depending on the composition at that site. In the Mg+Si sectors, the Al drop seems to occur at the light band and continue throughout the rim. In contrast, in the Al+Ti sectors Al seem to stay the same or even experience a slight increase at the light band (not necessarily related to the Al increase observed in the concentrically zoned crystals), and the Al drop does not occur until outside of the light band. Additionally, some sites experiences a decrease of Mg and Si at the

Fig 13: Different examples (BSE images) of the light band at the rims of the crystals. The upper row are examples from the sector zoned crystals (A1a and A2b), while the lower row are examples from the concentrically zoned crystals (A1b and A2a). While the appearance of the light band varies between different sites, some differences have been observed between the sector zoned and the concentrically zoned crystals. Comparing upper left corner (A1a) with lower left corner (A1b) illustrates this difference well, as A1a displays a single band while A1b rather displays a longer interval which is what in this thesis is referred to as a "double rim". The same is seen in the lower middle example (A1b). Furthermore, site with two light bands seem to be more common in the concentrically zoned crystals; however the distinction between a single light band and two light bands is not unequivocal, and the light bands in upper middle and right corner (A1a and A2b) and the lower right corner (A2a) are difficult to evaluate. The lines marked on the images are presented in fig 14-15; however, upper middle line (A1a line 7) is omitted due to unreliable analyses.

A2b Line 4

Fig 14: Graphs for the rims in the sector zoned crystals in fig 13 plotted in CPS (counts per second). In both graphs the rim is located to the right of the diagram. Note the simplicity of the chemical variations in A1a line 13 compared to A2b line 4 and the concentrically zoned crystals in fig 15, only exhibiting a steady AI decrease. A2b line 4 is more complex as can be expected due to the BSE image (fig 13). Here, the elements fluctuate before the AI decrease, and there is an additional AI increase after the decrease (at approx. 15 μ m). Observe that Si is plotted at half concentration for illustrative purposes, and that Ti is plotted on the secondary axes to the right. The lines are based on SEM-EDS line data presented in appendix E, table 3-4.

Fig 15: Graphs for the rims in the concentrically zoned crystals in fig 13 plotted in CPS (counts per second). In the upper graph the rim is located to the right in the diagram, while in the middle and lower graph the rim is located in the left of the diagram. A1b line 7 (middle diagram) goes some distance into the matrix which explains the compositional variation between 0 and 4 μ m. Al, Mg, Si and Ti are plotted to illustrate the differences in behaviour between the elements. Note the increase in Al before the extensive Al decrease (at around 12 μ m for the upper, 13 μ m for the middle and 15 μ m for the lower diagram). Also note that while Ti behaves similarly to Al, Si and Mg behaves oppositely. Observe that Si is plotted at half concentration for illustrative purposes, and that Ti is plotted on the secondary axis to the right. The lines are based on SEM-EDS line data presented in appendix E, table 5-7.

light band if Al experiences an increase, and a constant or increasing concentration of Mg and Si at the light band if Al decreases, essentially meaning that Mg and Si behave oppositely to Al. Furthermore, Fe only has a larger spike than Ti at the light band in sites where the Al drop occurs at the light band, rather than after.

Generally, the rims have Al/Ti ratios of \sim 2.0-3.0, with one value reaching as low as 1.83. Furthermore, the dark rims have a Mg# of \sim 73-77 while the light rims have a Mg# of \sim 70-74.

4.2.4 Comparison of chemical compositions and substitution relationships

Taking the results above into account, the different chemical compositions can be plotted into groups. These groups make a distinction between the chemistry of the Mg+Si sector and the Al+Ti sector of the sector zoned crystals, the rim of both sectors, as well as isolating the two compositions of the concentric zoning in A2a. Note, however, that due to the more varied nature of the chemistry of A1b it is not possible to distinguish two separate chemistries for this crystal. As mentioned, the Al/Ti ratio is generally similar when comparing the Mg+Si and Al+Ti sectors, with values of around 3-4.5 for both sectors in sector zoned crystals and the concentrically zoned crystals. Howev-

er, the plotting of Al against Ti (fig 16) makes it possible to distinguish between these compositions. By doing this, it is clear that five different chemical compositions are discernible. These are the Al+Ti sectors and Mg+Si sectors, which clearly have different chemistries; the rims which seem to correspond to Aldepleted versions of the sectors; and the A1b core which has the lowest concentration of Ti. Furthermore, one of the two compositions of A2a falls within the same range as the Al+Ti sector, while the other is intermediate between the two sectors, and A1b has compositions ranging between the two. The plot also illustrates the relatively stable Al/Ti ratio, as the different compositions plot in a linear fashion despite varying Al and Ti concentrations. The distinction between these different chemical compositions is also apparent in when comparing for example (Al+Ti) against (Mg+Si) and Mg against Fe (see appendix C fig 2).

Fig 17 describe possible substitution relationships between different elements. A negative linear relationship is seen between Al and Si and between Ti and Mg. A negative correlation is also seen between Mg and Fe, and Fe+Mg for all measurements equals to a sum between 0.92 and 1.02. Additionally, positive correlations are discernible when plotting Ti against Fe and Mg against (Mg+Si).

Fig 16: Plot of Al against Ti (cations) reveal five distinct groupings of chemical compositions: the in BSE light Al+Ti sectors (red squares), dark Mg+Si sectors (dark blue diamonds), rims (upper and lower green triangles) and the A1b primitive core (orange circles). The light and dark sectors are represented by compositions collected from both phenocryst A1a and A2b, while the rims represent all four phenocrysts. A1b and A2a are plotted separately, using light blue stars and black crosses respectively, and represents the varying chemical composition of these concentrically zoned phenocrysts. Note the coincidence of the light sector, A1b and A2a at Ti = 0.08 and Ti = 0.09, and the linear fashion in which the different compositions are plotted.

Fig 17: Two examples of possible substitution relationships. The plots illustrate the relationships between Al and Si (left) and Ti and Mg (right). All concentrations are plotted in cations. Both plots display a negative linear trend. Additionally, in the Ti-Mg plot the residual core in A1b is compositionally isolated from the other chemical spectrums.

4.2.5 Inclusions and matrix crystals

As inferred in section 4.1, inclusions are common occurrences in these crystals. These inclusions are to be found both in the interior of the crystals and in their rims, especially numerous between the light band and the edge. The inclusions are mostly plagioclase and iron oxides. The plagioclase inclusions are fairly rich in Ca and poor in K, ranging from labradorite to bytownite composition. The plagioclase inclusions situated in the interior of the crystals has lower Ca concentration and are therefore of bytownite composition, while the plagioclase inclusions in the rim have higher Ca concentrations and can be classified as labradorites. Plagioclase crystals in the matrix are of similar composition, however spikes of K and Na in some crystals create compositions more in line with alkali feldspar. Additionally, nepheline has been observed in the matrix.

The iron oxides are chiefly represented by titanium magnetites and ilmenites. The iron oxides in the interior of the crystals are above all titanium magnetites; however, ilmenites in the crystals do occur as well.

4.3 Electron backscatter diffraction analyses (EBSD)

EBSD analyses were performed to determine the orientation of the mineral in the thin section by viewing so called Kikuchi patterns, created by backscatter electrons, and identifying the zone axes. The results of the EBSD analyses on crystal A1a are presented in fig 18. The results indicate that the crystal is oriented at an angle towards the c-axis. Additionally, the angle of the c-axis is slightly different between the two twins which is consistent with the fact that the two twins have different extinction angles (see additional maps in appendix C fig 3).

4.4 Laser ablation inductively coupled plasma mass spectrometry LA-ICP-MS

The trace element data received from the LA-ICP-MS analyses reveal that the transition metals V, Ni, Sc and

Co are among the trace elements with highest concentrations out of the elements analysed (Cr belongs to this group as well but will be discussed in detail in section 4.4.5). Along with the transition elements, the HFS element Zr and the LIL element Sr also display high concentrations relative to other elements. Furthermore, REEs with even atomic numbers generally have higher concentrations than similar REEs with odd atomic number, and lighter REEs generally have higher concentrations than heavier REEs. As follows, Ce and Nd generally have higher concentrations than La and Pr, and the heavy element Yb has the lowest concentration of all REEs. Finally, Y and Hf have intermediate concentrations while the highly incompatible Nb and Ba have very low concentrations. In fact, the concentration of Ba was measured to be below the detection limit (~ 0.8 ppm) in all of the spot analyses.

For complete data from the LA-ICP-MS spot analyses the reader is referred to appendix F.

4.4.1 Sector zoned crystals: A1a and A2b

As sector zoning is present in most of the analysed trace elements, the observations above are translatable to the zoning of A1a and A2b. In fact, the elements with higher concentrations are the ones which clearly display zoning (fig 19, table 3). As a result, sector zoning of REEs is predominantly visible in lighter REEs with even atomic numbers (Ce, Nd, Sm, Gd, Dy), less so in REEs with odd atomic numbers (La, Pr, Eu), and slightly visible or absent in the heavy REEs Er and Yb. All zoned REEs exhibit higher concentrations in the Al+Ti sectors than in the Mg+Si sectors. The transition metals behave similar to the REEs in that sector zoning is visible in V and slightly visible in Sc, both of them increasing in the Al+Ti-sectors. Zoning is however not visible in Cr, Ni or Co. Furthermore, zoning is also visible in Sr, Zr and Hf, and occasionally in Nb and Ba, all of which are also increasing in the Al+Tisectors

According to the spot analyses (table 3), the increase of the zoned trace elements in the Al+Ti sector ranges from a few ppm to over a hundred ppm, as is the case for e.g. V. The relative change typically lies

Fig 18: EBSD results for crystal A1a. The pole figures make clear that there is a slight difference in crystallographic orientation between the two twins, as is also evident by the difference in contrast in the left picture.

Fig 19: Sector zoning is visible in most elements. Here, Ti, Zr, Ce, Y and Dy (plotted in ppm) have been chosen to illustrate the zoning of line A1a-1. The green line (top) represents Ca (internal standard) plotted in CPS (counts per second). Where the Ca-line goes below 100 000 CPS can be regarded as the edge of the crystal. Note the border between the sectors at ca. 180 μ m and 820 μ m, and the lower concentrations of the elements between these borders, representing the Mg+Si sector. Also note that Cr spikes are present close to the rims (not included in this graph), thus perhaps affecting the concentrations of these elements in the Al+Ti sector at this site.

between 1 and 2 times the concentrations of the Mg+Si sector (see appendix C table 2 for data regarding the A2b crystal).

4.4.1.1 Relative partition coefficients between sectors

The relative partition coefficients calculated for the A1a Mg+Si sector is presented in appendix C table 2 as average and median partition coefficients calculated from A1a-1, and as partition coefficients calcu-

lated from A1a-spot-1 and A1a-spot-2. The results indicate that most elements are less compatible in this sector (fig 20). One clear exception of this is Yb, which displays higher partition coefficients in the Mg+Si sector. Another notable exception is Eu, which also displays slightly higher partition coefficients in this sector. Furthermore, the REEs Ce, Pr, Nd and Sm are estimated to have very similar partition coefficients in both sectors.

Table 3: The difference in trace element concentrations between the Al+Ti and the Mg+Si sector in Ala. The "visible change" column refers to the graphical estimation of the change. The concentrations are based on spot analyses of Ala-spot-2 (Al+Ti) and Ala-spot-1 (Mg+Si). The "difference" column to the right is colour coded, with green representing an increase and red a decrease, and refers to the difference between the sectors, as calculated with *Difference* = C(Al+Ti) - C(Mg+Si). Most trace elements are enriched in the Al+Ti sector relative to the Mg+Si sector with exception for Co and Ni. Cr was excluded from the graphical estimation due to the interference of Cr spikes, and Ba is below the detection limit (LOD) and can therefore not be evaluated.

A1a				
Element	Visible change (graph)	Al+Ti sector (ppm)	Mg+Si sector (ppm)	Difference (ppm)
La	Increase	9.12	5.12	4
Ce	Increase	30.7	19.4	11.3
Pr	Increase	5.46	3.4	2.06
Nd	Increase	28.7	18.31	10.39
Sm	Increase	8.42	5.23	3.19
Eu	Increase	2.72	1.71	1.01
Gd	Increase	9.28	5.68	3.6
Dy	Increase	6.87	4.21	2.66
Er	Increase	2.83	1.74	1.09
Yb	Increase	1.56	1.18	0.38
Cr	(omitted)	51.6	37.2	2.06
Ni		121.8	126	-4.2
Со		39.4	42	-2.6
Ti	Increase	14280	10240	4040
V	Increase	390	287	103
Sc	Increase	110.9	98.6	12.3
Zr	Increase	167.5	109.9	57.6
Sr	Increase	87.7	74.5	13.2
Y	Increase	27.3	17.55	9.75
Hf	Increase	6.91	4.97	1.94
Ba	Increase	Below LOD	Below LOD	
Nb		1.126	0.54	0.586

4.4.2 Concentrically zoned crystals: A1b and A2a Variations across the concentric zoning are seen in most trace elements (fig 21). Specifically, in A1b where the zoning is the widest, the LREE La, Ce, Pr and Nd display regular zoning on the scale of approx. 25-45 μ m, with peak concentrations of approx. 2-3 times the concentration at the base level. For other trace elements, however, zoning is less regular and therefore problematic to evaluate. There is also no clear connection between that and the zoning of Al.

What is easier to evaluate is the chemistry of the core in A1b (table 4). All REEs decrease relative to the surrounding clinopyroxene composition, with Er and Yb showing a slightly less clear decrease than the other elements. Out of the transition metals, Sc exhibits no change while V and Co both decreases in the core. So does Zr, Y, Hf and Sr, while Ba and Nb display no difference. In contrast to the other trace elements, both Ni and Cr show an increase in the core, reaching concentrations of approx. 240 ppm for Ni and 5400 ppm for Cr. This Cr concentration corresponds to 18 times the Cr concentration of the surrounding clinopyroxene composition and a liquid composition at the time of crystallization of ca. 1420 ppm (see appendix C fig 4)

Fig 20: The calculated partition coefficients for the Mg+Si sector. The dashed line represent the values used to represent the Al+Ti sector, and the red, green and purple lines represent the average values from the Ala- line, the median values from that line, and the values calculated from the spot analyses of Ala. As can be deduced from the graph, most elements are estimated to have lower relative partition coefficients in the Mg+Si sector than the Al+Ti sector. Notable exceptions are Yb, Eu and Ce, Pr, Nd and Sm.

Fig 21: Graph showing the fluctuations of LREEs La, Ce, Pr and Nd over the concentric zoning in A1b. All four elements are plotted with a moving average of 5, meaning that the average of 5 points is plotted as one (black lines) to facilitate viewing of the chemical variations. If viewed without colour: Lower dashed black line represents Pr, lower solid black line represents La, upper dashed black line represents Nd and the upper solid black line represents Ce. The dashed purple line represents the internal standard Ca plotted in CPS (counts per second) on the right y-axis. Ca >100 000 CPS represents the clinopyroxene crystal, while Ca <100 000 indicate matrix signals. As can be seen in the graph, all four LREEs variate throughout the line in a similar fashion on a scale of approx. 25-45 μ m.

4.4.3 Rims

Due to the changes of the major and minor elements in the rims it is reasonable to assume that the trace elements are affected as well. The results show an increase of incompatible elements (REEs, Sr, Nb, Hf, Y, Zr and Ba) in or outside of the rims, an increase that seems to be more pronounced in highly incompatible elements, for example Nb, than less incompatible elements. Additionally, Eu increases slightly less than other similar elements.

In contrast to the incompatible elements, ele-

ments with higher partition coefficients seem to behave differently. Sc and Cr both decrease in the rims, and Ni, Co and V all decreases, increases or stay constant depending on the site.

4.4.4 Liquid composition: Ratios and trends

Similar to the major elements described in section 4.2.1, the sector zoned crystals are relatively homogenous in the core-to-rim direction regarding trace elements. Same is suggested for the concentrically zoned

Table 4: The difference in trace element concentrations between the A1b core and the composition outside of the core. The "visible change" column refers to the graphical estimation of the change. The concentrations are based on spot analyses of A1b -spot-1 (core) and A1b-spot-2 (surrounding). The "difference" column to the right is colour coded, with green representing an increase and red a decrease, and refers to the difference in concentration as calculated with *Difference* = C(core) - C(outside of core). Most trace elements are depleted in the core relative to the rest of the clinopyroxene. The exceptions are Cr, Ni and Co. Ba is below the detection limit (LOD) and can therefore not be evaluated.

A1b core				
Element	Visible change	Core (ppm)	Outside of core (ppm)	Difference (ppm)
La	Decrease	2.12	4.62	-2.5
Ce	Decrease	8.49	18.06	-9.57
Pr	Decrease	1.566	3.13	-1.564
Nd	Decrease	7.87	16.56	-8.69
Sm	Decrease	2.4	5.08	-2.68
Eu	Decrease	0.905	1.86	-0.955
Gd	Decrease	2.56	4.84	-2.28
Dy	Decrease	1.88	3.53	-1.65
Er		0.69	1.31	-0.62
Yb		0.43	0.89	-0.46
Cr	Increase	5390	301	5089
Ni	Increase	240.3	139.9	100.4
Со		35.8	34.6	1.2
Ti	Decrease	7620	16300	-8680
V	Decrease	245.4	349	-103.6
Sc		81.6	84.9	-3.3
Zr	Decrease	33.8	100.6	-66.8
Sr	Decrease	74.8	94.4	-19.6
Y	Decrease	7.96	15.53	-7.57
Hf	Decrease	1.78	4.75	-2.97
Ba		Below LOD	Below LOD	
Nb		0.282	0.779	-0.497

crystals, as they do not display any clear core-to-rim trend apart from the concentric zoning. However, line A1a-1 displays some variation in REEs in the Al+Ti sector, with an increase followed by a decrease towards the rim (see appendix C fig 5). The same is seen in Zr, Hf and Y. This variation is not seen in any of the other clinopyroxene crystals.

Plotting of Sr/Nd and Eu/Sm ratios of the calculated liquid compositions (hereafter indicated with *(liq)*) show no common trend in the core-to-rim direction. In line A2a-1, Sr/Nd_(liq) decreases slightly towards the rim, while it shows a slight increase towards the rim in A1a-5. The La/Yb_(liq) ratio shows variation in the core-to-rim direction, especially prominent in the concentric zoning of A1b, however it does not display any general trend towards the rim.

4.4.5 Cr spikes

Of the nineteen lines that were analysed with LA-ICP-MS, sixteen displays some kind of Cr spike or increase (fig 22, table 5). One of the lines without Cr spike was taken in the concentrically zoned crystal A2a, and the remaining two were taken in the sector zoned crystal A2b.

4.4.5.1 Sector zoned crystals: A1a and A2b

In the sector zoned crystals, all of the observed spikes occur close to the rim. Ala displays large spikes in all analysed rims (lines A1a-1 - 5), with Cr concentrations increasing between 800 and 1400 ppm at the spike, resulting in spikes that have peak concentrations of 5 to 35 times the base level concentration. Two of the spikes (Ala-2 and Ala-5) show a rather protracted trend, while the other spikes are sharp. By correlating with the internal standard, the sharp spikes are estimated to be located between 25 µm and 40 µm from the edge of the crystal. For the more protracted spikes it is naturally more difficult to pinpoint an exact value, however the range seem to be 30-65 µm for A1a-2 and 65-265 µm for Ala-5. Finally, line Ala-1 exhibit a Cr spike seemingly located in the matrix that coincides with a Co spike.

A2b only displays spikes in two of the analysed rims of the crystal (A2b-2 and A2b-3), both located approx. 20 μ m from the edge of the crystal. Both spikes show a smaller increase than the spikes in A1a, i.e. 75 ppm and 90 ppm respectively. However, the general Cr concentrations of A2b is lower than that of A1a, meaning that the relative increase of the A2b spikes are 8.5 and 10 times the base level concentra-

Fig 22: Cellspace images of the Cr concentrations in the lines analysed with the LA-ICP-MS technique. Note the high Cr concentration of the A1b core (A1b-3), as well as the consistent location of the spikes in A1a. Also take note of how a Cr spike seems to be located outside of the clinopyroxene crystal in line A2b-1. A few lines were excluded when producing the cellspace images due to fault of software.

A1b-5 x* A2a-1 x A2a-2 x A2a-3 x** A2a-4 x A2a-5 x A2b-1 x******	A1b-5 x** A2a-1 x A2a-2 x A2a-3 x A2a-3 x** A2a-4 x A2a-5 x A2a-5 x A2a-1 x A2a-2 x**	A1b-5 x** A2a-1 x A2a-2 x A2a-3 x** A2a-3 x** A2a-4 x A2a-5 x	A1b-5 x** A2a-1 x A2a-2 x A2a-3 x** A2a-4 x**	A1b-5 x** A2a-1 x A2a-2 x A2a-3 x** A2a-4 x** A2a-5 x	A1b-5 x** A2a-1 x A2a-2 x A2a-3 x** A2a-3 x** A2a-4 x A2a-5 x	A1b-5 x** A2a-1 x A2a-2 x A2a-3 x A2a-3 x** A2a-4 x A2a-4 x	A1b-5 x** A2a-1 x A2a-2 x A2a-3 x** A2a-3 x** A2a-4 x** A2a-5 x	A1b-5 x* A2a-1 x A2a-2 x A2a-3 x A2a-3 x** A2a-4 x** A2a-5 x A2b-1 x******	A1b-5 x* A2a-1 x A2a-2 x A2a-3 x A2a-3 x** A2a-4 x** A2a-5 x A2b-1 x*****	A1b-5 x* A2a-1 x A2a-2 x A2a-3 x** A2a-4 x A2a-5 x A2b-1 x***** A2b-2 x*****
		× * × × * × ×	× * × × * × ×	× ** × × * × ×	× ** × * * × ×	× * × × * × ×	× * × × * × ×			× * × * × *
300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold 10-85, 75 ppm, 8.5-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold 10-85, 75 ppm, 8.5-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold 10-85, 75 ppm, 8.5-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold 10-85, 75 ppm, 8.5-fold	300-3300, 3000 ppm, 11-fold 250-600, 350 ppm, 2.4-fold 50-500, 450 ppm, 10-fold 50-600, 550 ppm, 12-fold 20-1000, 980 ppm, 50-fold 50-750, 700 ppm, 15-fold 10-85, 75 ppm, 8.5-fold
res Yes Yes Yes	res No Slight Yes No	res No Slight Yes Yes	Yes Yes	res No Yes Yes Yes	Yes Yes	res Yes Yes Yes	res Ves Yes Yes	Yes No Yes No	res Yes Yes Yes	res No Slight Yes No
 Gradual decrease after spike, tiny "spike" closer to rim. ***Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim. Gradual decrease towards rim. Increase outside of rim. ****Small spike just inside rim. Some other signs of spikes outside of rim too. Generally very low Cr-concentrations. 	 Gradual decrease after spike, tiny "spike" closer to rim. ***Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. Slight increase of Cr further out (20-200 ppm, 10-fold) gradual decrease of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim. Gradual decrease towards rim. Gradual decrease of rim. ****Small spike just inside rim. Some other signs of spikes outside of rim too. Generally very low Cr-concentrations. 	Gradual decrease after spike, tiny "spike" closer to rim. ***Finy "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim.	Gradual decrease after spike, tiny "spike" closer to rim. ***Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim.	Gradual decrease after spike, tiny "spike" closer to rim. ***Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim.	Gradual decrease after spike, tiny "spike" closer to rim. ***Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim.	Gradual decrease after spike, tiny "spike" closer to rim. ****Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim.	 Gradual decrease after spike, tiny "spike" closer to rim. ***Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim. Gradual decrease towards rim. Increase outside of rim. 	 Gradual decrease after spike, tiny "spike" closer to rim. ***Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease of Ni. Increase of Cr concentrations in interior (50-150 ppm, 3-fold), including a preceding spike". Gradual decrease as in the other lines. Slightly higher Cr concentrations in the other lines. Gradual decrease towards rim. Gradual decrease of rim. mcrease outside of rim. ****Small spike just inside rim. Some other signs of spikes outside of rim too. 	 Gradual decrease after spike, tiny "spike" closer to rim. ***Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim. Gradual decrease towards rim. Increase outside of rim. ****Small spike just inside rim. Some other signs of spikes outside of rim too. Generally very low Cr-concentrations. 	Gradual decrease after spike, tiny "spike" closer to rim. ***Tiny "spike" part of a gradual decrease. Followed by a gradual decrease. Small increase at rim. Slight increase of Ni. Gradual decrease of Cr towards rim. ****Long line. Big spike in middle of phenocryst accompanied by increase of Ni. Increase of Cr further out (20-200 ppm, 10-fold) gradual decrease, without a preceding spike, and small increase at rim. Slightly higher Cr concentrations in interior (50-150 ppm, 3-fold), including a tiny "spike". Gradual decrease as in the other lines. Gradual decrease towards rim. fncrease outside of rim. ****Small spike just inside rim. Some other signs of spikes outside of rim too. Generally very low Cr-concentrations.

Table 5: The occurrence, nature and size of the Cr spikes that were recorded during the LA-ICP-MS analyses. While the spikes in the sector zoned crystals are located in the rim, the spikes in the concentrically zoned crystals are located in the interior of the crystal. These crystals also display a gradual decrease across the concentric zoning to-wards the rim.
tion respectively, similar to the spikes in A1a. Finally, the other two lines (A2b-1 and A2b-4) seem to record a slight increase of Cr in the rim, however a Cr spike does not occur until in the matrix just outside of the crystal. Furthermore, the Cr concentrations in these lines seem to increase slightly over the concentric zon-ing.

4.4.5.2 Concentrically zoned crystals: A1b and A2a

While the Cr spikes in the sector zoned crystals occur at the rim, the large spikes in the concentrically zoned crystals occur in the interior of the crystal. Judging from the placement on the lines, it seems that they occur in the concentric zoning, a small distance outside the border between the irregular centre and the concentrically zoned part of the crystals. In A2a it seems to coincide with a wavy growth band, while in A1b the location is less clear but seems to coincide with a wide zoning band. However, both crystals display elevated Cr concentrations in the concentric zoning, starting at the border and gradually decreasing outwards towards the rim, compared to the irregular centre (the A1b core is an exception of this, as discussed in section 4.4.2).

All lines in A1b display Cr increases of varying degree. The three large spikes in A1b-2, A1b-3 and A1b-4 increase with 1250 ppm, 1800 ppm and 3000 ppm respectively, i.e. the spikes have concentrations of 6, 10 and 11 times the base level concentration. In contrast, the lines A1b-1 and A1b-5 exhibit only small increases during a gradual decrease rather than a sharp spike (fig 23). In fact, A1b-1 exhibits two of these increases. The increases are approx. 450 ppm and 350 ppm, corresponding to 5.5 and 2.4 times the base level concentrations.

A2a display Cr spikes in all lines but one (A2a-4), however this line still exhibits slightly elevated Cr concentrations and the gradual decrease towards the rim that is recorded in the other lines. Additionally, line A2a-3 exhibits a spike at one part of the crystal but lacks a spike in the unzoned overprinted part of the crystal. However, here it displays a gradual decrease similar to the other lines. The four lines with Cr spikes display spikes with a similar trend, even though they have slightly different concentrations. They all increase 450-980 ppm, resulting in concentrations 10, 12, 15, and even 50 times the estimated base level concentrations.

Finally, some of the lines in both A1b and A2a (A1b-4 and A2a-1 - 4) show small Cr increases at the rim, however these increases are not similar to the spikes seen in the sector zoned crystals.

4.4.5.3 Cr spikes and liquid composition

Using the partition coefficient of Cr according to appendix B table 1, liquid compositions were calculated for chosen Cr spikes and plotted in figure 23-24. As is evident from these graphs, the relative concentration of Cr is higher in the clinopyroxene crystal than it would be in the surrounding liquid, as is suggested by the high partition coefficient of Cr in clinopyroxene. Furthermore, the calculated Cr concentration in the liquid not the same in all crystals. The spike in A1a-3 is calculated to represent a liquid Cr concentration of 250 ppm, the spike in A1b-3 a liquid Cr concentration of 400 ppm, the spike in A1b-4 a Cr concentration of 700 ppm in the liquid, and the spike in A2a-2 a Cr concentration of 100-150 ppm.

4.4.5.4 Cr spikes and other elements

In a few instances Ni experiences an increase during the Cr spike. This is recorded in A1a-2, A1b-4 and all A2a spikes. Furthermore, Cr spikes simultaneous with an increase of Sc and a slight decrease of LREEs was observed. Finally, as mentioned in section 4.4.5.1 one

Fig 23: The gradual Cr decrease recorded in line A1b.1. The red line (lower) represents the calculated liquid composition using D(Cr) = 3.8. The blue line (middle) represents the Cr concentration in the clinopyroxene crystal, and lastly the green line (top) is Ca (internal standard) plotted in CPS (counts per second) at the right axis. A value of Ca of <100 000 CPS is interpreted to suggest that the analysed phase at that point is not a clinopyroxene crystal, where the Ca-line goes below 100 000 CPS can be regarded as the edge of the crystal.

----Cr cpx (ppm) ----Cr liq (ppm) ----Ca Int.Std (CPS)

Fig 24: A selection of the Cr spikes recorded in line A1a-3, A1b-4 and A2a-2. The red line (lower) represents the calculated liquid composition using D(Cr) = 3.8. The blue line (middle) represents the Cr concentration in the clinopyroxene crystal, and lastly the green line (top) is Ca (internal standard) plotted in CPS (counts per second) at the right axis. A value of Ca of <100 000 CPS is interpreted to suggest that the analysed phase at that point is not a clinopyroxene crystal, thus where the Ca-line goes below 100 000 CPS can be regarded as the edge of the crystal. With this in mind, note the location of the spike in relation to the rim in A1a-3 compared to A1b-4 and A2a-2.

of the spikes in A1a-1 is accompanied by a Co spike. However, the behaviour of other elements during Cr spikes is irregular and therefore difficult to evaluate.

5 Discussion

Before discussing the results it must be noted that there are uncertainties in the results presented in this thesis. The interpretations have been made with respect to these uncertainties; nonetheless, they need to be highlighted. First of all, only one sample was used and only four clinopyroxene crystals were analysed. Additionally, as the thesis focused on clinopyroxene the matrix was scarcely analysed. Therefore, despite the likely scenario that the features seen in these crystals are to be seen in other crystals evolved in the same magma body as well, it should be noted that the result in this thesis is based on analyses of only a fraction of the magma body. Secondly, while the SEM results are based on numerous data points there is always a possibility that the results do not represent the whole truth. An example of this is the width of the rims which were estimated from only a few sites on each crystal, and should not be regarded as absolute and representative values. Furthermore, time restrictions left some aspects inadequately analysed simply due to unintentional oversight. Also, while SEM analyses offer the possibility of high resolution analyses, point analyses can be slightly imprecise when analysing undefined features, as was the case when analysing the light band in the rims. It is also important to remember that when comparing concentrations of elements with low concentrations, i.e. Ti and Fe, between different sites, small changes in absolute concentrations can yield large relative changes. Thus, chemical variations representing a large relative change might simply be within the error margin of the analysis.

Thirdly, the LA-ICP-MS analyses were performed on a limited number of lines and spots. While the data acquired can be considered representative, caution has to be taken when applying them to the bigger picture. Furthermore, it cannot be ruled out that due to the spot size, minor variations in the clinopyroxene crystals were not recorded. Finally, the increase of Cr concentration in the Cr spikes was estimated relative to the Cr base level concentration before and after the spike. These estimations are dubious since the base level concentration varied throughout the analysed lines and was assessed graphically using an approximate mean concentration. Therefore, these estimations should only be used to acquire a general apprehension for the size of the Cr spike and not as absolute values.

Finally, a comment has to be made on the validity of the hypotheses presented below. The results in this thesis, while supporting the hypotheses presented, are not completely unequivocal and more studies are needed to be able to constrain the history of these clinopyroxene crystals with certainty. Therefore, all hypotheses presented should be regarded with caution.

5.1 General chemistry and substitution relationships

This section will discuss the general chemistry and the substitution relationships of the sample. A negative

correlation was observed between Mg and Fe, and adding the calculated Mg ions and Fe ions yields sums of around 1, both observations indicating that Fe-Mg substitution occurs in the sample. Considering that the crystals were determined to be of magnesian endmember composition, i.e. diopsides, it is therefore likely that Fe substitutes for Mg in a number of the octahedral sites. Similarly, a negative linear relationship was observed between Ti and Mg, likely an indirect substitution due to the evolvement of Ti in coupled substitution (see section 5.2). A negative linear relationship was also seen between Al and Si, likely indicative of Al substitution in the tetrahedral sites of Si. Al can also substitute in the octahedral sites which can be regarded insignificant considering the sum of Fe and Mg of around 1; however, as will be discussed below, the zoning of Fe is irregular, and the element is only zoned in some instances. This suggests that while Fe-Mg substitution may occur when Fe is zoned, the instances where Fe is not zoned - despite zonation in Mg - might be instances where Al-Mg substitution occurs instead, i.e. Al is incorporated into the octahedral sites. Furthermore, Na likely substitutes for Ca in the 8-coordinated sites, however this substitution have not been related to the zoning and it seems constant throughout the crystals. Finally, the Al/Ti ratio is similar in different sites despite varying Al and Ti concentrations. This indicates that while the concentrations may change, no extensive internal fractionation between Al and Ti occurs in the sample.

The differences in concentration observed in the REEs can be attributed to two factors. The results showed lower concentrations of REEs with odd atomic numbers than REEs with even atomic numbers. This was an expected outcome as it is in line with Oddo-Harkins rule. However, it was also observed that the LREEs have higher concentrations than the HREEs. This possibly points to REE fractionation, in which the less incompatible HREEs are fractionated away while the more incompatible LREEs are enriched, suggesting the magma body in question has had time to experience fractionation and become more evolved (for continued discussion, see section 5.8). Finally, the very low concentrations of highly incompatible elements Nb and Ba and higher concentration of some compatible transition metals indicates that the system was relatively unevolved at the time of the crystallization and eruption. This is consistent with the ultramafic and silica undersaturated nature of the samples, inferred by e.g. the lack of quartz and the presence of nepheline, as well as the occupancy of Al in the tetrahedral sites (see section 2.3.1).

5.2 The chemical and crystallographic nature of the sector zoning

When analysing the sector zoned crystals A1a and A2b it is clear that the sectors are characterized by markedly different chemistries. In both optical microscopy and BSE imaging the sectors were distinguished simply by observing the difference in contrast which was opposite between planar light in optical microscopy and BSE, i.e. the light sectors in optical microscopy appeared dark in BSE. These dark sectors, rich in Mg and Si, are interpreted to represent the hourglass sec-

tors, also called basal sectors, while the light sectors are thought to represent the prism sectors. The Mg+Si sectors display higher Mg# than the Al+Ti sectors, meaning that the Mg/(Mg+Fe) ratio generally is higher in the Mg+Si sectors. Furthermore, Si and Mg seem to correlate with each other, as the Mg+Si sectors also have higher Si concentrations than the Al+Ti sectors. The Mg+Si sectors also have lower Al and Ti concentrations, probably responsible for the darker contrast in BSE imaging. However, despite the fact that the Mg+Si sectors have lower Al and Ti concentrations overall, the Al/Ti ratios are the same as in the Al+Ti sectors. As mentioned in section 5.1, this indicates that even though the Al and Ti concentrations are different between the sectors, there is no significant fractionation between Al and Ti. Rather, the compositional difference between the Al+Ti sectors and the Mg+Si sectors is governed by the coupled substitution [Mg + Si] \rightarrow [Al + Ti], as presented by Ubide et al. (2019), further indicated by the distinctly different chemical compositions when plotting elements from the different sides of the substitution reaction (see appendix B fig 2). The substitution is likely coupled due to Al incorporation in the tetrahedral and octahedral sites, as mentioned in section 2.3.1. Note however that the involvement of Fe in this substitution by Ubide et al. (2019) is omitted here since Fe was analysed as Fe^{2+} + Fe^{3+} , and therefore it is not possible to distinguish ferric and ferrous iron in the substitution.

As suggested by the trace element analyses, incompatible elements are enriched in the Al+Ti sectors relative to the Mg+Si sectors. However, V and Sc also show an increase in the Al+Ti sectors despite the fact that they in most studies presented in table 1 were reported to have a partition coefficient of >1, and therefore should be regarded as compatible. This is difficult to explain with the results in this thesis alone, however one explanation may be simply the varying nature of the partition coefficients as a response to surrounding factors. Since some studies concluded partition coefficients of <1 for both V and Sc, it can be suggested that the variation of the partition coefficients cause them to fluctuate around 1. This is in contrast to Cr, Ni and Co, all of which are not sector zoned and are more reliably proved to be compatible. Thus, Sc and V might in this specific context have partition coefficients of <1 and behave incompatible.

Due to the presence of subsectors in Ala, the Al+Ti sector is in this crystal interpreted to be made up of three prism sectors in each twin, which when mirrored results in the appearance of five subsectors. As mentioned in the results, these subsectors are chemically very similar; however, BSE imaging reveals differences in contrast. Using the information acquired about the Al+Ti and Mg+Si sectors, a lighter contrast is interpreted to indicate slightly higher Al and Ti concentration, as well as slightly lower Mg and Si concentration. With this reasoning in mind, it is probable that subsector (1) has slightly higher concentrations of Al and Ti than subsector (2) and (3), and that (3) has the lowest Al and Ti concentrations. Using the information given in Ubide et al. (2019), these subsectors can be identified as prism sectors $\{100\}, \{110\}$ and $\{010\}$ respectively. This is an interpretation that goes well in hand with previous research in which it was suggested that the concentrations of Al, Ti and Fe in the prism sectors are $\{100\}>\{110\}>\{010\}>\{-111\}$, the latter being the hourglass sector (Hollister & Gancarz, 1971).

It is worthy of note that neither A1a nor A2b exhibit the clear hourglass zoning commonly associated with sector zoning. However, hourglass zoned clinopyroxene crystals occur in the thin sections as well, and the appearance of the sector zoning is interpreted to simply be a product of how the crystal was cut when the thin section was made (see fig 4). An hourglass type zoning requires that the crystal is cut along the caxis completely viewing the hourglass sectors. Hence, any crystal cut at an angle towards the c-axis will not display complete hourglass zoning. This is likely the case with A1a whose Mg+Si sector likely represents sector viewed obliquely the hourglass (fig 25), consistent with the chemistries of the sectors presented in literature (e.g. Ubide et al., 2019). It is further supported by the EBSD results, confirming that the crystal is oriented at an angle towards the c-axis. In contrast, A2b exhibit zoning that is closer to the typical hourglass zoning despite not exhibiting a perfect display of the hourglass sectors. The fact that the hourglass sectors fail to meet in the centre indicates that while the crystal likely was cut along the c-axis, it was not cut right in the middle but rather slightly closer to one of the crystal's edges. However, the fact that a twinning plane runs through the crystal might change the perception of the sectors, and it might explain why a cut along the c-axis is not coherent with the apparent shape of the crystal when comparing with fig 4. Also important to note is the irregularity of the A2b sectors and twinning plane which are markedly different from the pristine sector and twinning plane seen in Ala, leading to the argument that A2b grew under slightly different circumstances than A1a. What caused these irregularities cannot be explained with the results in this thesis; however, it might be related to crystal kinetics during growth. For example, slightly lower growth rates would enable the influence of diffusion which would otherwise have been outgrown. The same reasoning can be applied to the irregular zoning. It can be concluded that while A2b grew similarly to A1b, it was affected by slightly different factors – for example growth rate - resulting in an imperfect sector zoning. Furthermore, if the irregular zoning is assumed to be classified as patchy zoning it can be used as an additional indicator of open system processes (see section 2.3.6) or disequilibrium crystallization. Open system processes further comes into play when considering that sector angles may be affected by mixing with a hot magma, as discussed in section 2.3.6. Thus, open system processes may also be responsible for the irregular nature of the sector zoning. However, this hypothesis leaves the question why A2b displays irregular sector zoning while A1a does not. Aside from these speculations, assuming that A2b grew under different circumstances than A1a would indicate that it might have grown at another stage in the crystallization or in a slightly different part of the system.

Finally, the optically different interval in both crystals approaching the rim might be attributed to magma chamber processes. In A2b, this interval is characterized by concentric zoning. This could either

Fig 25: A suggestion for how A1a was cut in the thin section in relation to the sector zoning, redrawn from Ubide et al. (2019). The proposed cutting surface is marked by red lines. Note the distinction between the dotted red lines and the dashed red lines, illustrating that the crystal is likely viewed from the crystal centre as suggested by the EBSD results. The right axis indicator (indicating the orientation of the axes in relation to the surface) is approximate and is drawn to illustrate that the c-axis is tilted away from the viewer (illustrated by the dotted line), and that the b-axis is oriented towards the viewer and inclined slightly upwards, 90° from the c-axis and the a-axis. Note also that the twinning plane observed in the thin section is excluded from this figure for simplicity, and that the crystal in reality would consist of two twins rather than a single crystal. Finally, the proposed cutting surface can be related to the BSE picture to the right as it displays the sectors in question.

indicate the onset of convection in the magma chamber, or simply kinetic processes related to a lower growth rate. However, since the sector zoning in the interval seems to be unaffected a lower growth rate is not the most likely explanation. As the corresponding interval in A1a displays a darker contrast in BSE, it is interpreted to have slightly lower Al and Ti and slightly higher Mg and Si concentrations than the Al+Ti sector. Following the discussion in section 2.3.1, the incorporation of Al in the tetrahedral sites might be positively correlated with temperature, meaning a higher temperature would result in lower Si concentration (Kushiro, 1960). Thus, a lower Al concentration and higher Si concentration would indicate a decrease in temperature. If assuming this is correct, it would be consistent with a lower growth rate possibly inferred by the concentric zoning in A2b. On the other hand, as will be discussed in section 5.5, the intervals might be related to the spikes of Cr recorded in the crystals. Indeed, the Cr concentrations seem to be slightly elevated in the concentric zoning of A2b, and the location of the spikes in the rims of A1a could be argued to be consistent with the interval of lower Al and Ti.

Note however, that the suggestions above are merely speculations and more analyses on the chemistry in these intervals are required to evaluate the cause with certainty.

5.2.1 Differences in partition coefficients between sectors

As mentioned in section 3.2.2, the calculations of the relative partition coefficients were made based on the assumptions that the liquid composition did not change over time, and that the sector zoning was solely kinetically controlled. These assumptions naturally result in

an extensive simplification of the system and the results should therefore not be interpreted too heavily. Rather, they are to be considered approximate relative partition coefficients illustrating the kinetic control of the sector zoning, and the liquid composition used in the calculation likely does not represent the true liquid composition, as this would more likely be an intermediate between the two sectors' corresponding liquid compositions. It can, however, be argued that that the hourglass sectors {-111} generally have lower partition coefficients for most trace elements than the prism sectors.

5.3 Character of the concentric zoning and clues to the growth history

As mentioned in the results, Al is the element that shows the most pronounced zoning. Similar to the sector zoning, the bands that appear light in BSE are the bands with a higher concentration of Al. Similarly, the overprinted part of A2a has a slightly higher concentration of Al than surrounding pyroxene. Al is accompanied by Ti, which might explain the lighter contrast in BSE imaging, and opposed by Mg and Si. This leads to the conclusion that the oscillatory zoning is governed by the same coupled substitution as the sector zoning, i.e. $[Mg + Si] \rightarrow [Al + Ti]$. Furthermore, Fe is observed to behave irregularly, and is not always distinctly zoned. In a few instances, however, it dis-plays a similar pattern as Al and Ti. As discussed above, a possible reason for this is Mg-Fe substitution. As the Al concentration is increasing, and coupled substitution invokes a decrease of Mg, Fe might become involved in the substitution and substitute for Mg. In other words, Fe behaves oppositely to Mg, rather than conformably with Al. Furthermore, the instances where Fe does not appear to be zoned might be characterized by Al-Mg substitution, meaning that Al enters not only the tetrahedral Si-site but the octahedral Mg-site as well.

Similar to the sector zoned crystals, the varying chemical compositions can to some extent be divided into groups. This leads to the observation that A2a has one composition very similar to the Al+Ti sectors of the sector zoning, and one composition intermediate of those and the Mg+Si sectors. Alb, however, has a more variating chemistry that constitutes a range between the Al+Ti and the Mg+Si sectors. The chemically diverse nature of the concentric zoning compared to the sector zoning can be explained simply with the fact that it is a different type of zoning, and while sector zoning is characterized by defined areas of two distinct compositions, concentric zoning exhibits less sharp boundaries. Rather, the composition fluctuates between ends of a spectrum, producing an unlimited number of compositions in between. Furthermore, the resolution of the concentric zoning can be low and therefore it might prove difficult to isolate certain compositions, which in combination with the challenge of identifying the different bands in SEM can lead to unintentional bias that might affect the results. Therefore, it is not unlikely that A2a in reality has the same extensive chemical variation as A1b, only that A2a was analysed with unintentional bias.

The width of the concentric zoning is very varied as well. This can likely to some extent be attributed to how the crystal was cut. In A1b, for example, it is evident that the bands on one side are wider than the bands on the other side of the centre, and similarly that part of the crystal also has a larger core-to-rim width. It is therefore possible that this crystal was cut oblique to the c-axis, and that the crystal would be closer to symmetric if viewed differently, for example along the c-axis. It is also important to consider different growth rates in different sectors of the crystal, and the possibility that it is the differing growth rates that yield one part with wider and one with narrower bands, both kinds of sectors represented in the A1b crystal. This would pose a more likely explanation for the askew location of the irregular centre. Therefore, taking conclusions from the absolute widths of the zoning bands is not suitable to this situation as the true width can only be roughly estimated using the known widths as limiting values. Nonetheless, it is still possible to evaluate the relative widths of bands that are positioned close to each other. Furthermore, A2a is more symmetric and likely cut with a lesser angle towards the caxis, possibly the reason why the band widths in this crystal display less variation than those of A1b. Hence, the band widths of A2a can be used to get an apprehension for the true band widths of A1b.

With this in mind, it is evident that the widths of the zoning bands are varied and alternates between thicker and thinner bands. Since the method of characterizing the bands as oscillatory bands and growth bands according to the distinction presented in Streck (2008) is dubious due to the cutting issues mentioned above, discrimination and evaluation of zoning origin can only be done speculative. However, if assuming that the character and width of the A2a zoning bands are close to the truth, it can be established – using the definition in Streck (2008) – that the concentric zoning consists of both growth bands and oscillatory zoning, since the crystals exhibit both narrow bands of $<10 \ \mu m$ as well as wider growth bands.

Since width of zoning cannot be used as a certain indicator for zoning origin, chemistry might give a better understanding. As mentioned above and discussed in section 2.3.1, the incorporation of Al into the tetrahedral sites might be temperature dependent, with higher temperatures leading to more Al in the tetrahedral site and, as follows, a lower concentration of Si. Considering that the zoning is characterized by intervals of higher Al and Ti and lower Mg and Si, this may indicate that the zoning was at least partly caused by a fluctuating temperature resulting from convection in the magma chamber; thus, the zoning would be considered a primary growth feature and not a result of kinetic processes. However, it is likely that kinetic processes affected the zoning as well. Because of this, the zoning will continue to be referred to as "concentric" zoning to highlight the possibility of several different affecting factors.

5.3.1 Origin of the A1b core

The irregularly shaped core in A1b is interpreted to be a partially resorbed early clinopyroxene phase. This interpretation is partly based on optical observations, and partly on chemical analyses. As for the optical observations, the comparison between A1b and A2a is important. While A1b possesses the irregular core, A2a does not; however, the two crystals have in common that the centre is irregular and not concentrically zoned. Furthermore, both of them are hosts to small inclusions that in A1a are concentrated along one of the resorbed surfaces of the core. This leads to the conclusion that these small inclusions formed upon resorption of the core. The fact that A2a, while lacking a core, possesses small inclusions throughout the entire centre of the crystal therefore indicates that these formed upon resorption of an A2a core, only that this core became completely resorbed while the A1b core only became partially resorbed. As follows, this would suggest that the entire irregular centres of the crystals are replacement material formed when the core was resorbed and replaced. Since the irregular centre of A2a is slightly smaller than that of A1b, it is possible that the resorption of the A2a core went to completion simply because the core was smaller from the beginning. This is however a subject of speculation since cutting effects can be behind the difference in centre width just as it likely affected the width of the concentric bands; and furthermore, considering that the three dimensional crystals are observed in a two dimensional medium, it cannot be ruled out that A2a was cut adjacent to the centre and in reality possesses a small core that simply was cut away from the sample.

As for the chemistry, the chemical analyses revealed that the core of A1b has the most primitive composition observed in terms of high Mg# and low Ti concentration, and further the trace element analyses showed that the core is rich in Cr and Ni which are two highly compatible elements that would fractionate away early in the evolution of the system. Additionally, the core has lower concentrations of incompatible elements, for example REEs, which are expected to increase in concentration as the system evolves. This infers that the core is the most primitive - and therefore likely earliest - phase present in the analysed clinopyroxene crystals. This is further supported by the fact that this early phase has been either partially or completely resorbed, and that by that point this early phase was no longer in equilibrium with its surroundings, suggesting that the system over time evolved away from this early phase towards the concentrations observed in the other parts of the crystals. However, it is important to note that it is not a given that the core represents an earlier phase of this magmatic system. It is also possible that it is a xenocryst that is not genetically related to the magma from which the concentrically zoned mantle was formed. A xenocrystic clinopyroxene entering a new magmatic system would likely be in disequilibrium with the surrounding magma and therefore become resorbed, similar to how an early primitive phase would. Whether the core was simply an early phase genetically related to the system or a xenocryst is not possible to determine from these results; however, taking into account the differences in chemical composition between the core and the mantle - and the amount of fractionation and time of system evolution that difference entails – the xenocryst hypothesis would seem to be a likely explanation.

5.4 Chemical imprints from eruption and mass wasting events

The rims have chemistries not seen in any other part of the crystals, most noteworthy a light band (in BSE) inside of the rim and a sharp Al decrease. The rims also have lower Mg# values than the sector zoning and concentric zoning, suggesting that unlike the zoning these chemical changes are not strictly governed by the $[Mg + Si] \rightarrow [Al + Ti]$ substitution, even though it cannot be ruled out that this substitution occurs to some extent to achieve charge balance. For example, the light contrast of the light band in BSE likely comes from a higher concentration of Ti and/or Fe, and whether it is Ti or Fe that exhibits the largest peak at the light band seem to be related to the behaviour of Al, as Fe only has the largest spike at sites where the Al drop occurs at the light band, rather than after. The behaviour of Al also seems to be related to the Mg and Si changes, since whether these elements increase or decrease at the light band seems to be related to where the Al decrease occurs. As inferred by the results it is likely that these variations are related to in what composition the rim lies, i.e. in which sector, since the Mg+Si sectors seem to experience the sharp Al decrease at the light band, whereas in Al+Ti sectors Al stay the same or exhibit a slight increase at the light band, only to sharply decrease outside of the band. As follows, it can be deducted that Fe only has a larger peak concentration than Ti at the light band in the Mg+Si sectors, and also that these same bands does not experience a decrease in Mg and Si. This is likely due to the fact that the sector in general has lower concentrations of Al and Ti and higher concentrations of Mg and Si, and thus disfavours Al and Ti - allowing Fe to take the place of Ti at the light band - and favours Mg and Si. It goes to show that the chemical composition of the pyroxene influences the way the

elements behave in response to environmental changes. However, there are variations to these results, for example in the behaviour of Mg and Si at the light band, and as follows they are not unequivocal and should not be interpreted too heavily. Furthermore, the light bands occur at small scales and are therefore problematic to analyse with high accuracy, and without including data from the surrounding.

The discussion above refers to the light band that occurs just before the Al poor rim. Some sites, chiefly in the concentrically zoned crystals, were observed to exhibit two light bands or even what is referred to as a "double rim", and hence it is the outermost band of these two that are analysed and discussed above. The presence of two light bands will be discussed further below, however a few comments have to be made regarding these. It is important to note that while the "double rims" are distinguishable, the distinction between two light bands and one light band is not always apparent. In some instances, the two light bands are clearly separated, while in others they are close together and therefore very similar to the single bands seen in the sector zoned crystals. Therefore, the observations regarding the nature of the light bands should be used with caution, and continued research is needed to confirm the frequency of two light bands and "double rims" in the concentrically zoned crystals compared to the sector zoned crystals.

The chemical changes in the rims are interpreted to be connected to the eruption event and the result of decompression and ascent, however this interpretation is not unequivocal if taking into account the results of Ubide & Kamber (2018) (see section 2.3.6). They observed outermost rims that had higher concentrations of Al and Ti and lower concentrations of Mg and Si, and suggested that these rims represent final decompression and surface crystallization. If assuming that Al increases in response to decompression, it would mean that the sharp Al decrease observed in the clinopyroxene crystals in this thesis would be the result of the opposite, i.e. higher pressure. This is not feasible, and likely the concentration of Al is governed by other processes going on during decompression and ascent. However, if assuming that the Al concentration increases upon decompression - in line with the interpretations by Ubide & Kamber (2018) - it can be related to the light band inside of the rim. The Al increase recorded at the light band in some sites, as well as the Al increase observed in the concentrically zoned crystals, would then be interpreted as results of lower pressure, and the light bands as recorded moments of pressure decreases. Finally, this suggests that a pressure decrease occurred just before the rim was formed, i.e. just before or at the start of decompression and ascent. Furthermore, the observations of two light bands and "double rims", and the fact that these two light bands were mainly-and "double rims" were exclusivelyobserved in the concentrically zoned crystals thus suggest that these crystals might have recorded two events of pressure decrease, with only one occurring just before the actual eruption. Important to note is that an Al increase at the light band is not a constant occurrence; however, the "double rims" in A1b seem to be characterized by an Al increase and is therefore more suited for this hypothesis than the sites with two light bands.

If assuming that the above is true, and that Al is negatively correlated with pressure, the Al drop outside of the light band must be explained by other processes. If the rim represents decompression and ascent it likely crystallized in a multiply saturated system. This is consistent with the observation that the rim is host to numerous small inclusions and that these inclusions start to appear at the light band, i.e. at the supposed pressure decrease. Since these inclusions mainly consist of plagioclase crystals and iron oxides, it is reasonable to believe that the plagioclase crystals being Al-bearing phases - along with plagioclase crystallizing in the matrix depleted the system of Al, resulting in a sharp Al decrease in the clinopyroxene rims. This is further supported by the trace element analyses, as Eu increases less at the rim than similar elements, suggesting a Eu depletion caused by the crystallization of plagioclase. Plagioclase fractionation is however not obvious when plotting the ratios Eu/Sm and Sr/Nd, which will be further discussed in section 5.8.

Simultaneous crystallization of the clinopyroxene rims and the matrix upon saturation of multiple phases might also explain the increasing concentrations of incompatible trace elements in the rims. Since incompatible elements during crystallization preferably stays in the liquid phase, while compatible elements enter the solid phase, the incompatible elements slowly become enriched in the system. During multiple saturation, many phases, and therefore a large part of the bulk volume, crystallizes simultaneously and the enrichment of incompatible elements is likely quicker than it is earlier on the liquid line of descent, resulting in the relatively steep increase of incompatible elements over a short distance in the clinopyroxene rims. It also explains why highly incompatible elements like Nb increase more than other less incompatible elements, and why the concentration of compatible elements tend to not increase in the rim. Finally, the irregularity of V might be caused by a fluctuating partition coefficient that according to previous research (see section 2.3.3) lies around 1, or by the presence or lack of V-enriched phases in the rim or matrix affecting the results.

5.5 Link between Cr spikes, magma recharge and the eruption event

The sudden spikes of Cr create an interesting dimension to the evolution of the clinopyroxene crystals. Similar to previous research (see section 2.3.6), the spikes are interpreted to be caused by injections of primitive magma into the magma chamber, i.e. magma recharge. The reasoning behind this is that Cr is a compatible element that is fractionated away early in the evolution of a system, as argued in section 5.3.1 when discussing the A1b core. Furthermore, Cr is also highly compatible in clinopyroxene which suggests that the presence of Cr in the system would result in a proportional presence of Cr in the clinopyroxene. Therefore, very low base level concentrations of Cr interrupted by spikes with high concentrations indicate that new Cr has been added to the system. The simplest explanation for this Cr addition is the injection of new primitive magma into the system, as this magma has yet to be fractionated and depleted of compatible

elements. The calculated liquid composition of Cr in the system presented in section 4.4.5.3 give insight into the bulk concentration of Cr at the time of the magma recharge; however, these calculations do not consider varying partition coefficients, which might explain the difference of the calculated Cr concentration in the melt between spikes in the concentrically zoned crystals, despite them likely recording the same event. The melt concentrations can thus only serve to illustrate the addition of Cr to the system.

Because of the high partition coefficient for Cr in clinopyroxene, the crystals would in theory be one of the primary candidates for uptake of this newly added Cr, resulting in a spike. The fact that a few of the Cr spikes are accompanied by an increase in Ni, which also is a compatible element that fractionates away from the system early in the evolution, further supports this interpretation.

The large Cr spikes in the concentrically zoned crystals A1b and A2a are located in the interior of the crystal, more specifically outside the border between the irregular centre, i.e. the replacement of the resorbed core, and the concentric zoning, with elevated concentrations already at the start of the concentric zoning compared with the irregular centre. The lines lacking spikes are partly explained by the position of the line, with A2a-4 probably starting outside of the spike. Furthermore, the lack of spike in one section of A2a can be explained either by post-recharge overprinting or by crystallographic differences in Cr uptake.

The common location and the similarities of the spikes in the concentrically zoned crystals in terms of size - with concentrations of 10-15 times the base level concentration, with two outliers of 6 and 50 times the base level concentration - indicate that the spikes were caused by the same event of magma recharge. Furthermore, the two crystals have in common that the Cr concentration after the spike gradually decreases throughout the concentric zoning. There are two possible explanations for this. Either, the magma recharge causing the spike was sufficiently large that it took a certain amount of time before it disappeared from the system. This is consistent with the fact that the concentration in the crystals becomes lower further out from the spike, similar to how the bulk concentration of the system would become lower over time as the Cr is incorporated into solid phases. Or, the magma recharge was initiated with a relatively large injection causing the spike, after which there was a continuous inflow or pulses of primitive magma into the magma chamber, diminishing over time. In both cases, the spike would have had to be preceded by a slightly smaller influx causing the elevated concentrations inside of the spike. Which one of these hypotheses that is correct cannot be determined from the results in this thesis. However, what is certain is that elevated concentrations of Cr were present in the magma chamber throughout the crystallization of the concentric zoning, and that these concentrations were not present during the crystallization of the irregular centre. The fact that the elevated Cr concentrations seem to coincide with the concentric zoning begs the question if and how the two are related. If the zoning is to be classified as a primary growth feature caused by temperature changes

following convection in the magma chamber, this convection is likely what is causing the oscillatory behaviour of Cr during the gradual decrease. As discussed in section 2.3.3 the partition coefficient for Cr might be dependent partly on the amount of Al in the tetrahedral sites; furthermore, Al and Cr seemed, according to the results of Skulski et al. (1994), to be enriched in the same sectors, suggesting a positive correlation between Cr and the amount of Al allocated in the tetrahedral sites. As follows, high temperature intervals of the zoning – where the amount of Al in the tetrahedral sites is higher and the concentration of Si therefore is lower - would feature a higher concentration of Cr. The positive correlation between Cr and temperature can further be supported by the fact that the large Cr spike in A2a occurs in a slightly irregular and wavy band, possibly indicating dissolution caused by the high temperature of the magma recharge (see section 2.3.6). Thus, while the large spikes are interpreted to represent the actual magma recharge event, the smaller increases along the gradual decrease, which are clearly observable in A1b-1, are interpreted to represent merely an interval of higher temperatures due to convection or - if assuming that the large injection was followed by numerous smaller injections, as described above – smaller secondary injections.

In contrast to the concentrically zoned crystals, the Cr spikes in the sector zoned crystals occur in close proximity to the rims. This is especially evident in A1a which was observed to have Cr spikes in all analysed rims (fig 26), while A2b only have Cr spikes in two of the lines. The other two lines inferred that a Cr spike occurs in the matrix close to the crystal. This is a peculiar observation since it lacks coherence with the other results. In theory, while plagioclase is unlikely to experience a large uptake of Cr, iron oxides might be responsible for the uptake. If the iron oxides incorporated a high amount of Cr it would be responsible for the Cr spike seen in the matrix. This reasoning can be applied on A1a as well, since an additional spike was observed in the matrix outside of the rim that coincided with a spike in Co (line A1b-1). Since Co does not correlate with Cr in other spikes, this could indicate Cr uptake by another phase. However, it does not explain why no Cr spike was observed in the rim of A2b despite it being observed in two other rims of the crystal. There are however possible explanations. The Cr spikes that were observed in A2b are smaller and less pronounced than those in A1a, which goes along with the fact that A2b generally contain lower concentrations of Cr. This indicates a difference in partition coefficient leading to a lesser uptake of Cr for A2b, supported by the fact that the relative increases of the spikes are proportional to the base level concentrations and similar to the spikes in A1a. Furthermore, the Cr spikes observed in A2b seem to be located in the Al+Ti sector-as is the case with A1a as well since only Al+Ti sector rims were analysed-while the lines which do not display Cr spikes in the rims are located in the Mg+Si sectors. This observation is however not definite, since one of the lines in the Al+Ti sector encounters the Mg+Si sector type compositions produced by the irregular zoning. However, if assuming that the compositional differences of the irregular zoning are governed by other processes than the sector

Fig 26: Cellspace image of the Cr spikes in A1a, all located in close proximity to the rim. A1a-5 was excluded when producing the cellspace images due to fault of software.

zoning, the different kinetic properties of the sectors might be the determining factor for the Cr uptake. In other words, varying partition coefficients or other kinetic processes may result in little uptake of the Cr in the Mg+Si sectors and affect the presence of Cr spikes. Important to note, also, is that even in the lines lacking Cr spike in the crystal the Cr concentration reaches slightly higher values in the concentric zoning near the rim than in the rest of the crystal, as discussed in section 5.2, indicating some extent of Cr uptake.

Of course, the incoherence regarding the presence and location of the spikes may also be attributed to faulty analyses resulting in a misplacement of the spike or signal misinterpretation.

While the results of A2b are ambiguous, the spikes in A1a are consistent in all analysed rims. The proximity of the spikes to the rim suggests that the magma recharge occurred closely before the eruptive event, begging the question if the eruption might be connected to the magma recharge as suggested in Ubide & Kamber (2018). The location of the Cr spike in relation to the chemical changes in the rim certainly points to that being true, however it cannot be argued to be true without eliminating a few uncertainties. Firstly, as with the spikes in A2b, some caution needs to be taken when evaluating the exact location of the spike. In this case, it boils down to the location of the Cr spike in relation to the light band and the Al poor rim. Since trace elements and major and minor elements were analysed using different analytical techniques, clear correlation between the results is lacking. When analysing the results of the LA-ICP-MS analyses it is possible to see where the edge of the clinopyroxene is located in the graph, however it is more problematic to find the exact location of the Al poor rim and, especially, the light band. Therefore, using the results presented, it is not possible to locate these features with absolute certainty. Speculations can however be made, from which the most likely explanations can be drawn. The spikes in A1a were estimated to be located between 25 µm and 40 µm from the edge. Considering that the rims for that crystal were measured to be 5-33 μ m wide, and despite the fact that the width of the rims varied to a large degree, the most likely case is that the Cr spike occurred shortly before the light band formed and the rim started to grow. The presence of an unusually thick rim of >40 μ m, in which case the Cr spike would have occurred after the rim started to grow, of course cannot be ruled out, however it is not regarded as the most likely scenario considering the measurements taken.

Finally, if regarding the interval with lower Al and Ti concentrations discussed in section 5.2 as a result of the Cr spikes, the location of the spikes must be adjusted to fit that interval. A correlation like this is however not deemed to be likely due to (1) the immediate lack of coherence between the interval and the location of the spikes according to fig 26 and (2) the previous hypothesis that Cr is positively correlated with Al.

Due to the locations of the Cr spikes, the magma recharge event recorded in the sector zoned crystals is interpreted to be separate to the event recorded in the concentrically zoned crystals. However, what is relevant in the discussion above is the absence of Cr spikes in the rims of the concentrically zoned crystals. While a slight Cr increase is seen in some of the analysed lines, Cr spikes similar to the ones observed in the sector zoned crystals were not observed in A1b or A2a. If assuming that the rims formed during decompression and ascent, the rims of the concentrically zoned crystals would have formed simultaneous with the rims of the sector zoned crystals, thus recording the same events and processes. This incoherence can be explained similarly to the lack of spikes in some parts of A2b, i.e. by kinetic processes and varying partition coefficients. This would be consistent with the fact that small Cr increases are seen in the rim of some lines of the concentrically zoned crystals, essentially meaning that these crystals did in fact record the magma recharge event, only with a minor Cr uptake. However, if the lack of Cr spikes cannot be attributed to kinetic processes, other factors have to be considered, including growth rate and location in the magma chamber, and these will be discussed further in section 5.9.

5.6 Plagioclase compositions inferring a Na-Ca substitution trend

While plagioclase crystals in the interior of the clinopyroxene crystals are of bytownite composition, the plagioclase crystals in the rims are of labradorite composition. This suggests that plagioclase crystals that formed later in time have higher Ca concentration and lower Na concentration than the ones formed early during crystallization. This might be explained by an overall decrease in temperature and/or pressure; however, it cannot be determined from these results only. Furthermore, this progressive Na to Ca trend is not observed in the clinopyroxene crystals in which Na and Ca seemingly remains constant. Possible explanations for this are diffusion mechanisms that over time counteracts the what would be core-to-rim zoning, or that other kinetic processes limits Na-Ca substitution in the crystals. Considering that the crystals exhibit zoning, despite it not being related to Na and Ca, diffusion is not a likely explanation as it likely would counteract the zoning of other elements as well. Nonetheless, it cannot be ruled out since different elements have different diffusion coefficients, and all elements would therefore not necessarily be affected the same way.

5.7 Notes on growth rates

As discussed in section 2.3.4, the presence of sector zoning can give information about the growth rates of the clinopyroxene crystals. It is reasonable to believe that the A1a and A2b crystals grew with a relatively high growth rate, outgrowing the diffusion. This is consistent with the relatively wide nature of the concentric zoning present in the outer parts of A2b, and the lack of other core-to-rim zoning.

The concentrically zoned crystals, on the other hand, might not have grown as fast. Assuming that the growth bands are primary growth features as discussed in section 5.3, a wider band should be indicative of higher growth rate since more material crystallized in that particular compositional interval. Thus, in the case for A2a, the growth bands closely outside of the irregular centre can be regarded intervals of high growth rate. In contrast, narrower bands can be interpreted to have grown under an interval of low growth rates (as long as they are still regarded as primary growth features), suggesting that the growth rate might have fluctuated. Furthermore, as discussed in sections 2.3.5 and 5.3, it is important to consider different growth rates in different sectors of the crystal, and the possibility that the differing growth rates can yield different band widths throughout the crystal. Using this reasoning, it is possible that the wider bands in A1b are located in a sector of the crystal with higher growth rate than the narrower bands.

5.8 Chemical trends and melt evolution

Due to the lack of general trends in the core-to-rim direction in the clinopyroxene crystals, no extensive melt fractionation by another phase is inferred to have occurred during their growth. While a variation was seen in REEs, Zr, Hf and Y in line A1a-5 (see appendix C fig 5), no other line records this variation and it can therefore not be used as an indicator for varying concentrations of these elements in the melt. Rather, it is possible that the variation is a result of crystal kinetics related to the subsectors.

A decrease of the Sr/Nd_(liq) ratio would suggest plagioclase fractionation since Sr is commonly incorporated into plagioclase (see section 2.2.2); similarly the same process would result in an increase of the Ba/ $Sr_{(liq)}$ ratio and a decrease of the Eu/Sm_(liq) ratio. The lack of trend in these ratios indicate that the majority of plagioclase crystals did not form as the crystallization of the clinopyroxene crystals was undergoing, but rather late in the crystallization sequence. The exception to this is line A2a-1 which experiences a slight \hat{Sr} / Nd_(liq) decrease towards the rim, suggesting either Sr (liq) depletion, Nd(liq) enrichment or a combination of the two. However, considering the uniqueness of this observation it cannot be used as an indicator of plagioclase fractionation. Furthermore, the constant nature of the Eu/Sm_(liq) ratio provide additional indication of the lack of plagioclase fractionation.

Regarding the REEs, the higher concentration of LREEs in relation to HREEs indicates REE frac-

tionation. However, the lack of a general trend of the $La/Yb_{(liq)}$ ratio in the clinopyroxene crystals suggests that this fractionation did not occur to a large extent during the growth of these crystals. Rather, the differences in concentration might indicate fractionation at an earlier stage or might reflect the chemistry and degree of melting of the source. However, the increase of incompatible elements in the clinopyroxene rims point to enrichment of these elements in the melt late in the crystallization sequence; however, the trace element composition of the rims is difficult to evaluate due to analysis resolution and matrix interference.

In conclusion, while the melt likely was somewhat fractionated by the growth of the clinopyroxene crystals (affecting compatible elements such as Sc and Cr), fractionation by another phase is not recorded in the analysed crystals. This suggests that the crystals grew early in the crystallization sequence and likely did not grow simultaneously with other phases to any large extent, consistent with their phenocrystic appearance (see section 5.9.1 for discussion regarding the use of the term "phenocryst") and the porphyritic nature of the sample. The rims are however exceptions to this, since the multiple saturation of the system likely resulted in more extensive fractionation by several phases. Also, despite the probable occurrence of fractionation during the evolution of the magma, the ultramafic and silica undersaturated nature of the samples indicate, as mentioned in section 5.1, that the system was likely relatively unevolved at the time of the eruption. However, if comparing with the composition of the Alb core, it is clear that the Alb core has a higher concentration of Ni, for example. If considering the core as genetically related to the melt from which the concentrically zoned mantle was formed (see discussion in section 5.9.1), it could indicate Ni depletion caused by early olivine fractionation. Thus, fractionation and evolution of the system before the crystallization of the analysed clinopyroxene crystals cannot be disregarded.

5.9 Interpretations regarding magmatic history and open system processes 5.9.1 Origin and growth histories of the clinopyroxene crystals

Considering the difference between the concentrically zoned and the sector zoned crystals regarding type of zoning, rims, general chemistry and other features such as the resorbed core of A1b, the crystals are interpreted to belong to two different generations or two different origins, inferring that magma mixing occurred in the system. This claim is supported by the following observations: (1) Despite the proximity of the four crystals to each other in the sample they display widely different crystallographic features. It is not feasible to argue that crystals formed simultaneously and under the same temperature, pressure and in the same liquid composition, would respond in two completely different manners, with one crystal producing sector zoning and another producing concentric zoning. Therefore, it can be argued that A1a and A2b were formed under one set of circumstances, while Alb and A2a were formed under another. (2) While the rims are similar in all crystals, the variations re-

garding the light band inside of the rims, for example the "double rims" in A1b and the seemingly higher frequency of two light bands in the concentrically zoned crystals, cannot be disregarded. While it can be argued that these differences are too small and too inconsistent to alone indicate differences in generation or origin, they may act as further verification of other observations. (3) While the chemistry of the concentrically zoned crystals is similar to that of the sector zoned crystals in that they seem to be governed by the same coupled substitution, the fact that the concentrically zoned crystals display a varied chemical composition, while the sector zoned crystals rather display two separate chemical compositions, further highlights the differing processes affecting the crystals. (4) The presence of the partially resorbed core in A1b indicates a complex growth history for the concentrically zoned crystals, one that is not indicated in the sector zoned crystals due to the homogenous nature of the sectors in the core-to-rim direction.

The most important observations acting as evidence for two different generations or origins are (1) and (4), collectively suggesting that the concentrically zoned crystals experienced a longer and more complex growth history, under other environmental factors, than the sector zoned crystals. Furthermore, the complicated growth history indicates a relatively long residence time. Taking the results and discussions presented in this thesis into account, a possible growth history for these crystals can be pieced together (fig 27). This history can broadly be divided into three stages: Resorption and recrystallization of the primitive core, crystallization of the concentrically zoned mantle and magmatic recharge event, and lastly the crystallization of the rim. Starting with the partially resorbed core, this core likely represents the oldest part of the crystal, and was once formed in a primitive and unevolved magmatic system in which that primitive composition was in equilibrium with the liquid. This was likely either in an early stage of the magmatic system in which it is found today, meaning it would be regarded as an antecryst, or in another magmatic system from which it was moved to the magmatic system in which it is found, meaning that it would be regarded as a xenocryst. In any case, the phase was at some point in time in disequilibrium with the surrounding liquid, resulting in resorption and replacement of the phase as a response to changes such as temperature, pressure and liquid composition. This resulted in the irregular centre of the concentrically zoned crystals as well as the formation of the small inclusions therein. For A1b, the resorption of the primitive phase was never completed, thus resulting in the partially resorbed core observed in the crystal. At a certain point in time, the environment affecting the crystals changed, marked by the onset of the concentric zoning. Discussed in section 5.3, the cause for the concentric zoning cannot be determined for certain from the results in this thesis; however, it is likely that a convective magma chamber is at least partly the reason for the concentric zoning, resulting in bands with chemistries representing different temperatures and, perhaps, pressures. Shortly after the onset of the concentric zoning, a magma recharge of hot primitive magma with high concentrations of Cr resulted in the Cr spike, as well as the wavy nature of the Cr-rich growth band in A2a. After this recharge event, the crystals continued to grow and produce concentric zoning. The system was successively depleted of Cr, and thus the Cr concentration of the concentrically zoned crystals decreases in the core-to-rim direction. As mentioned before, it is possible that smaller secondary recharges occurred at this time. The crystallization continued until the formation of the rim, likely a response to decompression related to the eruption.

In contrast, the sector zoned crystals seem to have had a rather straightforward growth history, with their chemistry only affected by the possible magma chamber convection towards the end of the crystallization resulting in the concentric zoning of A2b, and the magma recharge creating the Cr spikes in the rims. This leads to the conclusion that the concentrically zoned crystals likely started to form earlier than the sector zoned crystals. Furthermore, if assuming that the sector zoned crystals are relatively young, they can be interpreted to be formed in, and genetically related, to the melt in which they are found, i.e. they are interpreted as phenocrysts. If assuming that this is true, it is not feasible to believe that the concentrically zoned crystals share the same relation to the melt. This as well is a reason behind the claim that these crystals formed earlier in the evolution, i.e. represents an older generation of clinopyroxenes, or in another level of the magmatic system. In both cases they would likely be referred to as antecrysts, indicating that they are genetically related to, but not formed form, the melt in question. Additionally, as with the primitive core, it is also possible that they are xenocrysts originating from another magmatic system and without any genetic relation to the melt and the sector zoned phenocrysts. Whether they are to be called antecrysts or xenocrysts, the lack of disequilibrium textures in the concentric mantles and the rims suggest that they did not reside in a liquid with which they were in disequilibrium for an extended amount of time. Rather, they are interpreted to have been mixed with the melt close to the eruption event.

5.9.2 Eruption event and rim formation

Assuming that the concentrically zoned crystals and the sector zoned phenocrysts have different origins, genetically related or not, they were erupted at the same eruption event and therefore it is reasonable to believe that the rims of all crystals formed simultaneously, as supported by the similarity of the rim chemistries. This further constrains the timing of the magma mixing inferred above to have occurred before the rim formation. Similarly, all crystals display the light band which might be related to a pressure decrease. Considering the Teno massif was subject to at least two mass wasting events-The Masca Collapse and the Carrizales Collapse-both preceding eruption of ankaramite magmas (Longpré et al., 2009), it can be argued that the mass wasting acted as the trigger for the eruption. A load decrease as extensive as that from a mass wasting event would affect the underlying magmatic system by lowering the pressure exerted on it, which might explain the light band. In other words, the light band might have formed as a result of the pressure decrease caused by the mass wasting event, which might have triggered the eruption and subsequently

Fig 27: Simplified sketch of a possible growth history for the concentrically zoned crystals, specifically using crystal A1b as an example. A primitive Cr-rich phase (dark grey) in disequilibrium results in resorption and replacement of clinopyroxene with a new chemical composition (white). Concentric zoning starts to form, likely at least partly due to convection, and magma recharge occurs (dark grey band). The crystal continues to grow, successively depleting the system of Cr (lighter shades of grey), until eruption induced decompression and ascent and rim formation.

resulted in rim formation. If this is true, the "double rims" in A1b and the inferred higher frequency of two light bands in both concentrically zoned crystals could possibly indicate that these crystals have experienced two mass wasting events. Due to the dense nature of the deep ankaramite magmas, it is only natural to assume that as an eruption occurs, the magma chamber is not necessarily completely emptied. Relating this to the fact that the Teno massif experienced two mass wasting events, it is possible that the concentrically zoned crystals formed before the Masca Collapse but never left the magma chamber. Thus, they genetically belong to the older ankaramite formation. These crystals stayed in the magmatic system during the formation of the sector zoned phenocrysts, and both generations experienced the Carrizales Collapse and the same eruption event. Thus, the analysed sample would belong to the younger ankaramite formation. It is however important to note that this model is highly speculative and should not be taken to be the absolute truth. Another possible explanation is that the light band formed simply due to the eruption event, and the reason that the interval is different from the rest of the rim is that it lacks the compositional effects of the multiple saturation due to it being slightly delayed relative to the onset of the decompression and ascent. In this case, it is not possible to determine if the concentrically zoned crystals indeed belong to another generation or if they simply originate from another part of the magmatic system and formed around the same time as the sector zoned phenocrysts. However, since rim inclusions start to occur at the light band this is not considered likely, since it indicates that the system was multiply saturated already at the formation of the light band.

Finally, an additional discussion is needed for the magma recharge events recorded in the sector zoned phenocrysts. The location of the Cr spikes close before the formation of the light band and the Al-poor rim would suggest that the magma recharge and the onset of decompression and ascent, and therefore the mass wasting events, might be related. This creates three different possibilities: First of all, it cannot be ruled out that the position of the Cr spike in relation to the rim is a random occurrence and in fact not related, despite that this possibility can be regarded as implausible when taking into account previous research (e.g. Ubide & Kamber, 2018). Secondly, the process that caused the onset of the formation of the rims – in this case possibly interpreted to be the mass wasting event - may also have triggered the magma recharge event; and thirdly, the magma recharge event itself may have triggered the mass wasting event by destabilizing the system (see section 2.1.2). Which one of these alternatives that is true is however not possible to determine from these results; however, it can be argued that if considered possible that the mass wasting event caused the magma recharge, the Cr spikes in A1a are located too far from the edge of the phenocryst for it to be feasible, since it is interpreted that the mass wasting event caused the formation of the rim. Therefore, it would be considered more likely that the magma recharge triggered the mass wasting event. Although, relating the magma recharge to the eruption trigger is problematic due to the lack of Cr spikes in the rims of

the concentrically zoned crystals. However, this can be explained if assuming that these crystals were located in a different part or level of the magmatic system than the sector zoned phenocrysts. If the magma recharge occurred close to the location of the sector zoned phenocrysts, it is only natural that these would incorporate more Cr into their structure than crystals located in another part of the magmatic system. This is further supported by the fact that small increases in Cr concentration were seen in some rims of the concentrically zoned crystals. The question of location in relation to magma recharge boils down to the amount and rate of convection in the magma chamber, and whether this convection reaches beyond the level in which the recharge occurs. Also, it involves the question of when the previously mentioned magma mixing occurred that brought the two types of clinopyroxene crystals together. If assuming that the concentrically zoned crystals did not record the magma recharge due to being located in a different part of the magma chamber, the timing of the magma mixing can be constrained to have occurred after the magma recharge and before the actual eruption.

In conclusion, it is possible to relate the magma recharge to the eruption as done in Ubide & Kamber (2018); however, the discussion above is to a large extent speculations and more studies are required to confirm a connection.

6 Conclusions

While the results in this thesis cannot sufficiently support any interpretation regarding eruption or clinopyroxene growth history with confidence, the following can be regarded as certain: (1) the sector zoning consists of Al+Ti sectors (prism sesctors) and Mg+Si sectors (hourglass sectors), controlled by the coupled substitution $[Mg+Si] \rightarrow [Al+Ti]$. Furthermore, trace elements generally have lower partition coefficients in the hourglass sectors. (2) The concentrically zoned crystals have experienced longer and more complicated growth histories than the sector zoned crystals, with stages of resorption and magma chamber convection. (3) The rims of all crystals likely grew simultaneously in the same eruption event, as suggested by the similarity of the chemical compositions. (4) Signs of at least two magma recharge events are recorded in the crystals in the form of Cr spikes, reflecting the addition of new Cr-rich primitive magma.

As for the interpretations, the four clinopyroxene crystals analysed in this thesis display widely different features, dividing them into two groups: sector zoned crystals and concentrically zoned crystals. The differences in zoning and, to a certain extent, chemistry, has led to the interpretation that the two groups either belong to two generations of clinopyroxene or have two different origins, since it is apparent that they were affected by different processes during growth. The primitive nature of the residual core of concentrically zoned A1b further supports this interpretation, indicating that the concentrically zoned crystals experienced longer and more complicated growth histories than the sector zoned crystals. While the sector zoned crystals are interpreted to have grown during a short time frame at a high growth rate, favouring the formation of sector zoning, the concentrically zoned crystals likely grew in multiple stages of resorption and crystallisation in a convecting magma chamber. Thus, the sector zoned crystals are interpreted as phenocrysts, while the concentrically zoned crystals rather should be regarded as antecrysts or xenocrysts, highlighting that they either formed earlier in time, crystallized in another part of the magmatic system or originate from an entirely different magmatic system. This in turn points to instances of magma mixing in the system.

While the clinopyroxene crystals are contrasting in terms of zoning and suggested growth histories, the rims are similar in all four crystals, leading to the assumption that the rims formed simultaneously and that the magma mixing occurred before the rim formation. The Al-poor nature of the rim is interpreted to be caused by multiple saturation of the system as a response to decompression and ascent, resulting in plagioclase crystallization and Al depletion. If the Alpoor rim is to be interpreted as the decompression and ascent related to the eruption event, the light band inside of the rim can possibly be related to the eruption trigger. If this light band can indeed be interpreted to represent an instance of pressure decrease - as suggested by the contrasting chemistry to the rim and the occasional Al increase at the light band - it can be argued to be a recorder of the mass wasting event and the load decrease that followed. Furthermore, if continued research supports the observations that the concentrically zoned crystals tend to exhibit a higher frequency of sites with two light bands than the sector zoned phenocrysts, it would suggest that two instances of pressure decrease might have been recorded in the concentrically zoned crystals. As the Teno massif experienced at least two major mass wasting events, these pressure decreases could correspond to these two events, if the concentrically zoned crystals are regarded as part of an older ankaramite magma. However, this hypothesis cannot be proved with the results in this thesis, and the true cause for the light band is a subject of speculation.

The Cr spikes recorded during the LA-ICP-MS analyses are interpreted to represent events of magma recharge, i.e injection of primitive magma into the magma chamber, due to the high compatibility of Cr in clinopyroxene. Using the results in this thesis it can be argued that at least two different magma recharge events occurred during the crystallization of these clinopyroxene crystals, with one event recorded in the rims of the sector zoned phenocrysts and another in the interior of the concentrically zoned crystals. The fact that the two groups of crystals do not seem to have recorded the same magma recharge events further supports the interpretation that they belong to different generations or have different origins, and also further constrains the timing of the magma mixing to have occurred after the Cr spike and before the rim formation.

According to previous research, the two mass wasting events and subsequent load decrease resulted in the eruption of the deep and dense ankaramite magmas. If the mass wasting event is to be regarded as the eruption trigger, the location of the Cr spikes in the rims of the sector zoned phenocrysts would pose the question if the two are related. If any, the most likely relation between the two is argued to be that the magma recharge event destabilized the system and therefore triggered the mass wasting event, which in turn triggered the eruption. However, it is important to note that this hypothesis cannot be fully supported solely based on the results in this thesis.

6.1 Recommended future research

The limitations regarding interpretations in this thesis can partly be attributed to the fact that only one sample was used, from which only four clinopyroxene crystals were analysed. This limitation was necessary due to time restrictions; however, a study focusing on a larger number of crystals would yield more reliable results. This is especially true for more inconsistent features, for example the light band inside of the rims. Additionally, a bigger study focusing on several samples would benefit from a more systematic sampling, specifically making sure to sample more than one ankaramite formation and compare the results between the formations.

There is also need for continued chemical analyses in order to validate the results presented here. For example, more LA-ICP-MS analyses are required to determine the actual location of the Cr spikes in A2b that appear to be located in the matrix. Furthermore, time restrictions inhibited additional EBSD analyses. Carrying out EBSD analyses on all crystals would be beneficial in order to constrain the orientation of the crystal and how it affects the appearance of the zoning.

In order to with more certainty constrain the eruption trigger, eruption history and clinopyroxene growth history it is suggested to perform geothermobarometry. Using this method would give insight into the crystallisation depth and temperature of the crystals, and could further be used to evaluate whether the crystals were formed in different locations of the magmatic system or simply belong to different generations or entirely different magmatic systems.

7 Acknowledgments

A big thank you to my supervisor Anders Scherstén for help and support during the course of this project. I also want to thank Paula Lindgren and Anders Plan for help with analyses and interpretations regarding the EBSD analyses, and Tomas Naeraa for the much needed help with LA-ICP-MS analyses and processing. Finally, I want to thank Ulf Söderlund for reading through the thesis and answering my questions.

8 References

- Adam, J. & Green, T. H., 1994: The effects of pressure and temperature on the partitioning of Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts. *Chemical Geology 117*, 219-233.
- Ancochea, E., Fuster, J. M., Ibarrola, E., Cendrero, A., Coello, J., Hernan, F., Cantagrel, J. M. & Jamond, C., 1990: Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. *Journal of Volcanology and Geothermal Research* 44, 234-249.
- Anguita, F. & Hernán, F., 1975: A propagating fracture model versus a hot spot origin for the

Canary islands. *Earth and Planetary Science Letters* 27, 11-19.

- Anguita, F. & Hernán, F., 2000: The Canary Islands origin: a unifying model. *Journal of Volcan*ology and Geothermal Research 103, 1-26.
- Araña, V. & Ortiz, R., 1991: The Canary Islands: Tectonics, Magmatism and Geodynamic Framework. In: A. B. Kampunzu & L. R. T (eds.) Magmatism in Extensional Structural Settings. Berlin, Heidelberg, Springer. 209-249 pp.
- Arimenti, P., Tonarini, S., Innocenti, F. & D'orazio, M., 2007: Mount Etna pyroxene as tracer of petrogenetic processes and dynamics of the feeding system. *In:* L. Beccaluva, G. Bianchini & M. Wilson (eds.) *Cenozoic Volcanism in the Mediterranean Area.* Geological Society of America Special Paper 418. 265-276 pp.
- Baudouin, C., France, L., Boulanger, M., Dalou, C. & Devidal, J.-L., 2020: Trace element partitioning between clinopyroxene and alkaline magmas: parametrization and role of M1 site on HREE enrichment in clinopyroxenes. *Contrib Mineral Petrol 175*.
- Blundy, J. & Wood, B., 2003: Partitioning of trace elements between crystals and melts. *Earth* and Planetary Science Letters 210, 383-397.
- Bougault, H. & Hekinian, R., 1974: Rift valley in the Atlantic Ocean near 36 ° 50'N: Petrology and geochemistry of basaltic rocks. *Earth and Planetary Science Letters 24*, 249-261.
- Carracedo, J. C., Day, S., Guillou, H., Rodríguez-Badiola, E., Canas, J. A. & Pérez-Torrado, F. J., 1998: Hotspot volcanism close to a passive continental margin: the Canary Islands. *Geol. Mag.* 135, 591-604.
- Carracedo, J. C., Guillou, H., Nomade, S., Rodríguez-Badiola, E., Pérez-Torrado, F. J., Rodríguez-González, A., Paris, R., Troll, V. R., Wiesmaier, S., Delcamp, A. & Fernández-Turiel, J. L., 2011: Evolution of ocean-island rifts: The northeast rift zone of Tenerife, Canary Islands. GSA Bulletin 123, 562-584.
- Carracedo, J. C. & Troll, V. R., 2016: The Geology of the Canary Islands. Elsevier. 636 pp.
- Clauge, D. A. & Dalrymple, G. B., 1987: The Hawaiian-Emperor volcanic chain. Part 1. Geologic evolution. US Geol Sur Prof Pap 1350, 5-54.
- Downes, M. J., 1974: Sector and Oscillatory Zoning in Calcic Augites from M. Etna, Sicily. Contrib. Mineral. Petrol. 47, 187-196.
- Dunn, T., 1987: Partitioning of Hf, Lu, Ti, and Mn between olivine, clinopyroxene and basaltic liquid. Contrib Mineral Petrol 96, 476-484.
- Durrant, S. F., 1999: Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. J. Anal. At. Spectrom. 14, 1385-1403.
- Foley, S. F., Jackson, S. E., Fryer, B. J., Greenough, J. D. & Jenner, G. A., 1996: Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. *Geochimica et Cosmochimica Acta 60*, 629-638.

- Forsythe, L. M., Nielsen, R. L. & Fisk, M. R., 1991: New experimentally determined clinopyroxene-melt high field strength element partition coefficients. *Eos (Trans. Am. Geophys. Union)* 72, 548.
- Freer, R., 1981: Diffusion in Silicate Minerals and Glasses: A Data Digest and Guide to the Literature. *Contrib Mineral Petrol* 76, 440-454.
- Ginibre, C., Kronz, A. & Wörner, G., 2002: Highresolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. *Contrib Mineral Petrol 142*, 436-448.
- Goldschmidt, V. M., 1937: The Principles of Distribution of Chemical Elements in Minerals and Rocks. *Chem. Soc.*, 655-672.
- Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W. M., Scott, J. H. J. & Joy, D. C., 2018: Scanning Electron Microscopy and X-Ray Microanalysis. Springer. 550 pp.
- Green, T. H., 1994: Experimental studies of traceelement partitioning applicable to igneous petrogenesis m Sedona 16 years later. *Chemical Geology 117*, 1-36.
- Guillou, H., Carracedo, J. C., Paris, R. & Pérèz-Torrado, F. J., 2004: Implications for the early shield-stage evolution of Tenerife from K/ Ar ages and magnetic stratigraphy. *Earth and Planetary Science Letters* 222, 599-614.
- Hack, P. J., Nielsen, R. L. & Johnston, A. D., 1994: Experimentally determined rare-earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20 kbar. *Chemical Geology 117*, 89-105.
- Hart, S. R. & Dunn, T., 1993: Experimental cpx/melt partitioning of 24 trace elements. *Contrib Mineral Petrol 113*, 1-8.
- Hauri, E. H., Wagner, T. P. & Grove, T. L., 1994: Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. *Chemical Geology 117*, 149-166.
- Hollister, L. S. & Gancarz, A. J., 1971: Compositional sector-zoning in clinopyroxene from the Narce area, Italy. *The American Mineralogist 56*, 959-979.
- Honjo, S. & Berggren, W. A., 1967: Scanning Electron Microscope Studies of Planktonic Foraminifera. *Micropaleontology* 13, 393-406.
- King, S. D., 2007: Hotspots and edge-driven convection. *Geology 35*, 223-226.
- Klein, C. & Philpotts, A., 2013: Earth Materials: Introduction to Mineralogy and Petrology. Cambridge University Press, Cambridge. 536 pp.
- Klügel, A., Hoernle, K. A., Schmincke, H.-U. & White, J. D. L., 2000: The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption. *Journal of Geophysical Research 105*, 5997-6016.

- Kosler, J., 2007: Laser ablation ICP-MS a new dating tool in Earth science. Proceedings of the Geologists' Association 118, 19-24.
- Kushiro, I., 1960: Si-Al relation in clinopyroxenes from igneous rocks. *American Journal of Science 258*, 548-554.
- Leonhardt, R. & Soffel, H. C., 2006: The growth, collapse and quiescence of Teno volcano, Tenerife: new constraints from paleomagnetic data. *Int J Earth Sci 95*, 1053-1064.
- Leung, I. S., 1974: Sector-Zoned Titanaugites: Morphology, Crystal Chemistry, and Growth. *American Mineralogist 59*, 127-138.
- Longpré, M.-A., Troll, V. R. & Hansteen, T. H., 2008: Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain). *Journal of Geophysical Research 113*.
- Longpré, M.-A., Troll, V. R., Walter, T. R. & Hansteen, T. H., 2009: Volcanic and geochemical evolution of the Teno massif, Tenerife, Canary Islands: Some repercussions of giant landslides on ocean island magmatism. *Geochem. Geophys. Geosyst. 10.*
- Matsui, Y., Onuma, N., Nagasawa, H., Higuchi, H. & Banno, S., 1977: Crystal structure control in trace element partition between crystal and magma. Bulletin de la Société française de Minéralogie et de Cristallographie 100, 315-324.
- Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R. & Hung, S.-H., 2003: Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle. *Science* 303, 338-343.
- Morimoto, N., 1988: Nomenclature of Pyroxenes. Mineralogy and Petrology 39, 55-76.
- Perinelli, C., Mollo, S., Gaeta, M., De Cristofaro, S.P., Palladino, D.M., Arimenti, P., Scarlato, P. & Putirka, K. D., 2016: An improved clinopyroxene-hygrometer for etnean magmas and implications for eruption triggering mechanisms. *American Mineralogist 101*, 2774-2777.
- Prior, D. J., Boyle, A. P., Brenker, F., Cheadle, M. C., Day, A., Lopez, G., Peruzzo, L., Potts, G. J., Reddy, S., Spiess, R., Timms, N. E., Trimby, P., Wheeler, J. & Zetterström, L., 1999: The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. *American Mineralogist* 84, 1741-1759.
- Purton, J. A., Allan, N. L. & Blundy, J. D., 1997: Calculated solution energies of heterovalent cations in forsterite and diopside: Implications for trace element partitioning. *Geochimica et Cosmochimica Acta 61*, 3927-3936.
- Putirka, K. D., 2008: Thermometers and Barometers for Volcanic Systems. *In:* K. D. Putirka & F. J. Tepley III (eds.) *Minerals, Inclusions and Volcanic Processes.* Reviews in Mineralogy & Geochemistry 69. 61-120 pp.
- Rollinson, H., 1993: Using geochemical data: evaluation, presentation, interpretation. Longman Singapore Publishers, Harlow, England. 352 pp.

- Schmincke, H. U., 1969: Ignimbrite Sequence on Gran Canaria. *Bull Volcanol 33*, 1199-1219.
- Skulski, T., Minarik, W. & Watson, E. B., 1994: Highpressure experimental trace-element partitioning between clinopyroxene and basaltic melts. *Chemical Geology 117*, 127-147.
- Streck, M. J., 2008: Mineral Textures and Zoning as Evidence for Open System Processes. *Re*views in Mineralogy & Geochemistry 69, 595 -622.
- Thirlwall, M. F., Singer, B. S. & Marriner, G. F., 2000: 39Ar±40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. *Journal of Volcanology and Geothermal Research 103*, 247-297.
- Ubide, T. & Kamber, B. S., 2018: Volcanic crystals as time capsules of eruption history. *Nature Communications 9*, 1-12.
- Ubide, T., Mollo, S., Zhao, J., Nazzari, M. & Scarlato, P., 2019: Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates. *Geochimica et Cosmochimica Acta 251*, 265-283.
- Van Orman, J. A., Grove, T. L. & Shimizu, N., 2001: Rare earth element diffusion in diopside: infuence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. *Contrib Mineral Petrol 141*, 687-703.
- Verhoogen, J., 1962: Distribution of titanium between silicates and oxides in igneous rocks. American Journal of Science 260, 211-220.
- Wiesmaier, S., Troll, V. R., Carracedo, J. C., Ellam, R. M., Bindeman, I. & Wolff, J. A., 2012: Bimodality of Lavas in the Teide-Pico Viejo Succession in Tenerife - the Role of Crustal Melting in the Origin of Recent Phonolites. *Journal of Petrology 53*, 2465-2495.
- Villemant, B., Jaffrezic, H., Joron, J. L. & Treuil, M., 1981: Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaine des Puys (Massif Central, France). Geochimica et Cosmochimica Acta 45, 1997-2016.
- Wilson, J. T., 1963: A Possible Origin of the Hawaiian Islands. Canadian Journal of Physics 41, 863 -870.
- Winter, J. D., 2014: An Introduction to Igneous and Metamorphic Petrology. Prentice-Hall Inc. 739 pp.

Fig 4: Reprinted from Geochimica et Cosmochimica Acta, Vol. 251, Ubide, T., Mollo, S., Zhao, J-x., Nazzari, M., Scarlato, P., 265-283, 2019, with permission from Elsevier; as modified from American Mineralogist, vol. 59, Leung, I.S., 127-138, 1974, with permission from Mineralogical Society of America.

Appendix A - Index of element abbreviations and periodic table

Element abbreviations and atomic numbers for elements presented in table 1.

Major and minor elements

Abbreviation	Name	Atomic number
Na	Sodium	11
Mg	Magnesium	12
Al	Aluminium	13
Si	Silicon	14
Ca	Calcium	20
Ti	Titanium	22
Fe	Iron	26

Trace elements

Rare earth elements (REE)

Name	Atomic number
Lanthanum	57
Cerium	58
Praseodymium	59
Neodymium	60
Promethium	61
Samarium	62
Europium	63
Gadolinium	64
Terbium	65
Dysprosium	66
Holmium	67
Erbium	68
Thulium	69
Ytterbium	70
Lutetium	71
	Name Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium

Transition metals

Abbreviat	ion Name	Atomic number
Sc	Scandium	21
V	Vanadium	23
Cr	Chromium	24
Со	Cobalt	27
Ni	Nickel	28

Other elements

Abbreviation	Name	Atomic number
Rb	Rubidium	37
Sr	Strontium	38
Y	Yttrium	39
Zr	Zirconium	40
Nb	Niobium	41
Ba	Barium	56
Hf	Hafnium	72
Та	Tantalum	73
Th	Thorium	90
U	Uranium	92

Actinides	Lanthanides	7 87 88 Fr Ra	6 55 56 Cs Ba	5 37 38 Rb Sr	4 19 20 K Ca	3 11 12 Na Mg	2 3 4 Li Be		Group→1 2 ↓Period
Ac 89	57 La			×ω	21 Sc				ω
90 Th	Ce 58	104 Rf	72 Hf	40 Zr	22 Ti				4
91 Pa	59 Pr	105 Db	73 Ta	41 Nb	<23				ഗ
∪292	Nd 0	106 Sg	74 V	42 Mo	24 Cr				0
dN 86N	61 Pm	107 Bh	75 Re	43 ₽	25 Mn				7
94 Pu	62 Sm	108 Hs	76 0s	44 Ru	26 Fe				ω
95 Am	Е ц б а	109 Mt	77 Ir	45 Rh	27 Co				9
96 Cm	64 Gd	110 Ds	78 Pt	46 Pd	N128				10
97 Bk	Б2 Тр	111 Rg	79 Au	47 Ag	29 Cu				11
98 0	66 Dy	112 Cn	80 Hg	48 Cd	30 Zn				12
99 Es	67 Ho	113 Nh	81 1	49 In	31 Ga	13 Al	യഗ		13
100 Fm	Er 68	114 FI	82 Pb	50 Sn	32 Ge	14 Si	റെ		14
101 Md	69 Tm	115 Ms	B-83	51 Sb	As Ba	15 P	Z		15
102 No	70 Yb	116 Lv	84 Po	52 Te	з4 Se	16 S	$\bigcirc \infty$		16
103 Lr	71 Lu	117 Ts	At 85	- 53	Βu	17 Cl	тΘ		17
		118 Og	86 Rn	54 Xe	Kr 36	18 Ar	10 Ne	2 He	18

Fig 1: Periodic table. Figure by Cepheus, retrieved 27-05-2020 from https://commons.wikimedia.org/wiki/File:Periodic_table.svg

Appendix B – Analytical techniques

Below follows an explanation for the theory behind scanning electron microscopy (SEM) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

Scanning electron microscope (SEM)

When using a scanning electron microscope a beam of electrons strikes the sample, causing secondary electrons and backscatter electrons to be emitted. When analysing a sample using secondary electrons (SE), the instrument detects the electrons that are freed due to the discharge of the sample surface caused by the electron beam. When using backscatter electrons (BSE) for analysing, the instrument detects the electrons from the electron beam as they have been reflected on the sample surface (Honjo & Berggren, 1967). SE analyses provide information on the topography of the sample, while BSE analyses give information about the chemical composition using differences in contrast. A brighter contrast indicates presence and/or higher concentration of heavier elements, while a darker contrast indicates that the medium consists of lighter elements.

Energy dispersive spectrometry (EDS) is used to qualitatively and quantitatively analyse the chemical composition of the sample volume that is analysed. As the electron beam strikes the sample and electrons are emitted, x-ray photons are emitted as well. These photons can be divided into two types: the characteristic x-rays which are specific for certain elements, and the continuum x-rays which create a background to the characteristic x-ways. This method yields an x-ray spectrum which can be measured and the present elements and their concentration can be determined (Goldstein et al., 2018). The abbreviation SEM-EDS indicates that the EDS analyses were performed using a scanning electron microscope.

Electron backscatter diffraction (EBSD) is used when analysing the crystallographic orientations of minerals. As the electron beam strikes the sample, the electrons are diffracted and scattered at different angles depending on how close they pass to an atomic nucleus; the closer they pass, the larger the angle with which they scatter. Due to the relatively wide nature of the electron beam, this interaction will result in electrons being scattered in all trajectories possible. The electrons that are scattered, i.e. BSE, form a band pattern (Kikuchi pattern) that can be viewed on a phosphor screen, thus making it possible to identify zone axes (Prior et al., 1999).

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

Mass spectrometry utilizes the mass difference between atoms, using an electromagnet that sort the atoms according to mass as they are fired along a curved tube and deflected. The lighter ions are deflected less than the heavier ions, and as a result a mass spectrum is created. ICP-MS is commonly used for trace element and isotope analyses due to its good precision and accuracy and low detection limits (Rollinson, 1993). Furthermore, the use of laser ablation requires less sample preparation and allows for *in* situ analyses. The laser beam is deflected at a mirror before it interacts with the sample in the ablation cell. An aerosol of particles is created that is transported to the ICP, in which the aerosol is heated and transformed into ions and atoms. Thereafter, the mass analyzer detects the amount of these ions and atoms (fig 1) (Durrant, 1999; Kosler, 2007). Different kinds of lasers can be used, for example ruby laser and Nd:YAG laser, but the laser used in this thesis is an excimer laser. This laser utilizes the creation of excimers, which are dimers that exist in an excited state due to a minimum of the potential energy curve, despite the species being repulsive, and therefore only monomer, in the ground state. Lasing can then be carried out between the higher energy levels of the excimer and the lower energy levels of the ground state monomer (Durrant, 1999).

Fig 1: Schematic sketch of the LA-ICP-MS analytical technique. The laser interacts with the sample in the ablation cell, and the aerosol that is created is transported to the inductively coupled plasma (ICP), after which the ions and atoms are detected by the mass analyzer (MS). Finally, the results are analysed using software.

Appendix C – Additional figures and tables

Appendix B is devoted to figures that were not able to be included in the main text, and thus serve as additional information and data.

Fig 1: EDS-maps for Al, Ti, Si and Mg illustrating the sector zoning and the irregular zoning of these elements in the A2b crystal.

Fig 2: The different chemical compositions present in the four clinopyroxene crystals can be dinstinguished by plotting (Al+Ti) against (Mg+Si) (upper) and Fe against Mg (lower). Both are plotted in cations. Note the unique composition of the A1b core in the Fe-Mg plot.

Fig 3: EDS-maps for Al, Ti, Si and Mg illustrating the sector zoning of these elements in the A2b crystal.

Table 1: The difference in trace element concentrations between the Al+Ti and the Mg+Si sector in A2b. The "visible change" column refers to the graphical estimation of the change. The concentrations are based on spot analyses of A2b-spot-4 (Al+Ti) and A2b-spot-5. The "difference" column to the right is colour coded, with green representing an increase and red a decrease, and refers to the difference in concentration between the sectors as calculated with *Difference* = C(Al+Ti) - C (*Mg+Si*). As for A1a, most trace elements are enriched in the Al+Ti sector relative to the Mg+Si sector. The exception here is Co which decreases slightly. Cr, Ni and Ba are all below detection limits (LOD) and can therefore not be evaluated.

A2b				
Element	Visible change (graph)	Al+Ti sector (ppm)	Mg+Si sector (ppm)	Difference (ppm)
La	Increase	13.05	6.81	6.24
Ce	Increase	46.8	25.23	21.57
Pr	Increase	8.07	4.71	3.36
Nd	Increase	42	25.1	16.9
Sm	Increase	12.16	7.17	4.99
Eu	Increase	3.77	2.26	1.51
Gd	Increase	11.89	7.41	4.48
Dy	Increase	8.7	5.42	3.28
Er		3.67	2.18	1.49
Yb		2.35	1.31	1.04
Cr		Below LOD	Below LOD	
Ni		Below LOD	Below LOD	
Со		33.6	34.5	-0.9
Ti	Increase	17060	11150	5910
V	Increase	457	326	131
Sc	Increase	60.7	50.6	10.1
Zr	Increase	222	121.2	100.8
Sr	Increase	115.9	91.8	24.1
Y	Increase	36.2	22.6	13.6
Hf	Increase	8.78	4.91	3.87
Ba		Below LOD	Below LOD	
Nb	Increase	1.627	0.666	0.961

Element	Line A1a-1 (average)	Line A1a-1 (median)	A1a spots
Sc	1.068	0.999	1.165
Ti	0.216	0.205	0.275
V	2.394	2.176	2.281
Cr	1.176	0.925	2.740
Со	1.267	1.136	1.087
Ni	2.500	1.890	1.055
Sr	0.118	0.108	0.109
Y	0.347	0.316	0.300
Zr	0.075	0.068	0.081
Nb	0.00357	0.00275	0.00369
Ba	0.00139	0.00022	Below LOD
La	0.037	0.034	0.030
Ce	0.064	0.057	0.054
Pr	0.095	0.087	0.085
Nd	0.143	0.132	0.119
Sm	0.259	0.215	0.181
Eu	0.502	0.394	0.396
Gd	0.385	0.223	0.205
Dy	0.337	0.276	0.271
Er	0.356	0.256	0.238
Yb	0.975	0.267	0.325
Hf	0.180	0.157	0.184

Table 2: Calculated relative partition coefficients for the Mg+Si sector used in fig 20, using the Al+Ti sector as standard. The partition coefficients illustrate possible differences in element preference between the sectors, and were calculated with the assumptions that the sector zoning is solely controlled by kinetic processes and that no extensive melt evolution and fractionation occurred during their growth.

Fig 4: Graph of the Cr concentration along the A1b-3 line. The red line (lower) represents the calculated liquid composition using D(Cr) = 3.8. The blue line (middle) represents the Cr concentration in the clinopyroxene crystal, and lastly the green line (top) is Ca (internal standard) plotted in CPS (counts per second) at the right axis. Note the high Cr concentrations between approximately 40 and 320 µm, as well as the Cr spike at ~470 µm. Also observe the lower concentration of Cr in the liquid phase compared to the clinopyroxene crystal.

Fig 5: The REEs, Zr, Y and Hf display variation in the Al+Ti sector in line A1a-5. In this graph, the calculated liquid concentrations of a selected number of elements are plotted. In descending order: Zr (blue), Ce (orange), La (purple), Y (green) and Hf (red). All elements are plotted with a moving average of 5. The border between the Mg+Si and Al+Ti sectors is crossed at approx. 200 µm, and the edge of the crystal occurs at approx. 1190 µm. In between these borders, there is a clear decrease of the plotted elements towards the rim.

Appendix D - Results from SEM-EDS analyses

Representative values from SEM-EDS analyses. Cations based on 6 O.

Oxide-%

Analyzed object	Crystal	Al_2O_3	TiO ₂	MgO	SiO ₂	FeOtot	CaO	Na ₂ O	Cr_2O_3	Total
Mg+Si sector	Ala	4.47	2.05	14.21	48.33	7.05	22.38	0.35		98.83
Mg+Si sector	Ala	5.01	1.8	13.95	48.43	7.55	21.71	0.47		98.92
Mg+Si sector	Ala	4.94	2.22	13.64	48.48	7.13	22.01	0.38		98.8
Mg+Si sector	A2b	3.92	1.75	13.68	48.36	7.46	21.48	0.39		97.03
Mg+Si sector	A2b	4.4	1.93	13.65	47.48	7.1	21.12	0		95.69
Mg+Si sector	A2b	4.16	1.89	13.31	47.23	6.73	21.17	0.36		94.83
Al+Ti sector	Ala	7.84	3.14	11.76	44.82	8.06	22.13	0.53		98.28
Al+Ti sector	Ala	7.85	2.76	12.45	44.95	8.1	21.91	0.49		98.5
Al+Ti sector	Ala	7.06	2.66	12.02	43.93	7.35	21.46	0.51		94.99
Al+Ti sector	A2b	6.7	3.15	12.01	46.26	7.63	21.77	0.53		98.06
Al+Ti sector	A2b	6.92	3.08	12.24	45.03	7.99	21.6	0.5		97.36
Al+Ti sector	A2b	7.52	3.47	12.24	46.11	7.9	22.26	0.64		100.14
Al+Ti sector	A2b	7.75	3.6	12.22	46.8	7.55	21.81	0.6		100.33
Rim	Ala	6.44	3.66	11.94	46.03	9.01	21.81	0.6		99.48
Rim	Ala	5.74	3.41	12.19	46.98	8.03	22.09	0.7		99.14
Rim	Ala	3.05	1.97	13.55	50.28	7.94	21.74	0.56		99.2
Rim	A2b	3.85	2.5	13.84	49.55	7.47	21.58	0.43		99.22
Rim	A2b	2.5	2	13.03	50.35	8.54	21.99	0.57		98.98
Rim	A2b	6.05	3.46	12.46	46.88	7.87	21.81	0.5		99.02
Rim	A2b	5.51	3.29	12.31	47.18	8.52	21.88	0.65		99.35
Rim	A2a	5.88	3.7	11.91	46.63	8.8	21.82	0.63		99.37
Rim	Alb	5.6	3.43	12.13	46.36	8.17	21.55	0.58		97.82
Concentric zoning	A2a	7.23	2.72	12.44	45.66	7.73	22.13	0.49		98.39
Concentric zoning	A2a	7.58	3.11	12.57	46.1	7.44	22.67	0.44		99.9
Concentric zoning	A2a	5.47	2.13	13.47	47.24	7.05	22	0.51		98.13
Concentric zoning	A2a	5.71	2.39	13.98	48.72	7.04	22.59	0.42		100.85
Concentric zoning	A2a	6.34	2.48	13.54	47.35	7.03	22.24	0.46		99.45
Concentric zoning	A2a	5.62	2.19	12.74	46.32	7.37	21.66	0.54		96.44
Concentric zoning	A2a	6.55	2.64	12.36	44.28	6.81	21.46	0.46		94.55
Concentric zoning	A2a	7.18	2.85	12.11	44.21	7.16	21.51	0.53		95.56
Concentric zoning	A1b	6.85	2.85	13.13	46.78	7.19	22.3	0.45		99.56
Concentric zoning	A1b	6.06	2.54	13.41	47.07	6.98	22.29	0.46		98.8
Concentric zoning	A1b	8.13	3.11	12.59	45.38	7.22	22.35	0.46		99.24
Concentric zoning	A1b	6.5	2.85	13.22	46.85	7.1	22.46	0.48		99.46
Concentric zoning	A1b	7.22	2.96	12.66	45.05	6.91	22.1	0.45		97.35
Concentric zoning	Alb	6.23	2.64	13.07	46.29	7.02	22.04	0.46		97.73
Concentric zoning	A1b	7.51	3.17	12.53	44.92	7.22	21.88	0.5		97.72
Core	A1b	5.07	1.42	14.55	49.01	5.24	22.13	0.45	1.2	99.07
Core	Alb	5.33	1.54	14.77	49.37	5.37	22	0.49	1.24	100.11

Cations

Analysed object	Crystal	Al	Ti	Mg	Si	Fe	Ca	Na	Cr	Total
Mg+Si sector	Ala	0.2	0.06	0.8	1.82	0.22	0.9	0.03		4.03
Mg+Si sector	Ala	0.22	0.05	0.78	1.82	0.24	0.88	0.03		4.03
Mg+Si sector	Ala	0.22	0.06	0.77	1.83	0.22	0.89	0.03		4.02
Mg+Si sector	A2b	0.18	0.05	0.78	1.86	0.24	0.88	0.03		4.02
Mg+Si sector	A2b	0.2	0.06	0.79	1.84	0.23	0.88	0		4.00
Mg+Si sector	A2b	0.19	0.06	0.78	1.85	0.22	0.89	0.03		4.01
Al+Ti sector	Ala	0.35	0.09	0.67	1.72	0.26	0.91	0.04		4.04
Al+Ti sector	Ala	0.35	0.08	0.71	1.72	0.26	0.9	0.04		4.05
Al+Ti sector	Ala	0.33	0.08	0.71	1.74	0.24	0.91	0.04		4.04
Al+Ti sector	A2b	0.3	0.09	0.68	1.77	0.24	0.89	0.04		4.01
Al+Ti sector	A2b	0.31	0.09	0.7	1.74	0.26	0.89	0.04		4.03
Al+Ti sector	A2b	0.33	0.1	0.68	1.73	0.25	0.89	0.05		4.03
Al+Ti sector	A2b	0.34	0.1	0.68	1.74	0.24	0.87	0.04		4.01
Rim	Ala	0.29	0.1	0.67	1.75	0.29	0.89	0.1		4.03
Rim	Ala	0.26	0.1	0.69	1.78	0.25	0.9	0.05		4.02
Rim	Ala	0.13	0.06	0.76	1.89	0.25	0.87	0.04		4.00
Rim	A2b	0.17	0.07	0.77	1.86	0.23	0.87	0.03		4.00
Rim	A2b	0.11	0.06	0.73	1.9	0.27	0.89	0.04		4.01
Rim	A2b	0.27	0.1	0.7	1.77	0.25	0.88	0.04		4.01
Rim	A2b	0.25	0.09	0.69	1.78	0.27	0.89	0.05		4.02
Rim	A2a	0.26	0.11	0.67	1.77	0.28	0.89	0.05		4.02
Rim	A1b	0.25	0.1	0.69	1.78	0.26	0.89	0.04		4.02
Concentric zoning	A2a	0.32	0.08	0.71	1.74	0.25	0.9	0.04		4.04
Concentric zoning	A2a	0.34	0.09	0.7	1.73	0.23	0.91	0.03		4.03
Concentric zoning	A2a	0.26	0.06	0.76	1.8	0.22	0.9	0.04		4.03
Concentric zoning	A2a	0.25	0.07	0.77	1.8	0.22	0.89	0.03		4.03
Concentric zoning	A2a	0.28	0.07	0.76	1.78	0.22	0.89	0.03		4.03
Concentric zoning	A2a	0.26	0.06	0.74	1.8	0.24	0.9	0.04		4.03
Concentric zoning	A2a	0.31	0.08	0.73	1.75	0.23	0.91	0.04		4.03
Concentric zoning	A2a	0.33	0.08	0.71	1.73	0.23	0.9	0.04		4.04
Concentric zoning	A1b	0.3	0.08	0.73	1.76	0.23	0.9	0.03		4.03
Concentric zoning	Alb	0.27	0.07	0.76	1.78	0.22	0.9	0.03		4.03
Concentric zoning	A1b	0.36	0.09	0.71	1.71	0.23	0.9	0.03		4.04
Concentric zoning	A1b	0.29	0.08	0.74	1.76	0.22	0.9	0.03		4.03
Concentric zoning	A1b	0.33	0.09	0.73	1.73	0.22	0.91	0.03		4.04
Concentric zoning	A1b	0.28	0.08	0.74	1.77	0.22	0.9	0.03		4.03
Concentric zoning	A1b	0.34	0.09	0.72	1.72	0.23	0.9	0.04		4.04
Core	A1b	0.22	0.04	0.81	1.83	0.16	0.88	0.03	0.04	4.02
Core	Alb	0.23	0.04	0.81	1.82	0.17	0.87	0.04	0.04	4.02

Appendix E – SEM-EDS line data

Tables 1-7 list the concentrations of Mg, Al, Si and Ti as plotted in figures 10-11 and 14-15. The concentrations are stated in counts per second (CPS).

Table 1: A1b, fig 10

vistance	М	4.1	C :	7111
(µm)	Nig	Al	51	11
0.11	2873.58	1382.474	7839.225	295.9641
0.57	2847.924	1464.695	7636.265	288.2245
1.02	2819.159	1476.328	7272.592	336.876
1.48	2702.284	1322.451	7536.225	309.6052
1.93	2741 381	1344 071	7948 311	324 8544
2 39	2741.301	1355 707	7658 889	253 0408
2.57	2737.332	1262.065	7050.007	216 2002
2.84	2/12.31/	1202.905	7762.215	310.2903
3.30	2659.694	1322.221	/866.0/5	349.9933
3.75	2745.206	1459.281	7820.064	293.4883
4.20	2887.997	1347.68	7755.131	344.8617
4.66	2982.167	1183.28	7718.496	381.9244
5.11	2941.075	1332.474	7674.438	310.2498
5.57	3010 707	1400.251	7849 72	317 9164
6.02	2734 204	1409 816	7944 111	280.0521
6.48	2706 55	1372.49	8236 522	321 2169
6 02	2683 612	1386 605	7675 262	330 1240
0.93	2003.012	1/16 526	7640 452	200 0012
1.39	2044.842	1410.330	7040.433	209.0013
/.84	20/3.222	1249.07	/805.216	308.6896
8.30	2896.289	1479.825	/806.569	363.4295
8.75	2940.517	1320.956	7920.624	324.9933
9.21	2818.404	1392.916	7913.799	308.7624
9.66	3031.013	1413.159	7809.135	271.3491
10.11	2817.786	1408.204	7910.391	286.3522
10.57	2930.398	1433.394	8026.796	275.3122
11.02	2817.676	1362.16	7694.721	325.1321
11.48	2906.8	1390.421	7826.518	313.4295
11.93	2710.15	1309.93	7854.934	285,2498
12.39	2724.896	1411.584	8149.287	314.5316
12 84	2935 442	1285 93	8042.822	300 7039
12.04	2855 225	1194 385	7922 222	332 455
12.50	2655.255	1355 044	7610 027	220 1202
13.73	2013.913	1000.244	7050 155	205 2020
14.21	2144.333	1212.33	/ 030.133	293.3929
14.66	2809.301	1362.699	8039.769	319.0853
15.11	2698.126	1332.321	8005.504	341.9347
15.57	2875.346	1429.402	7727.742	395.8434
16.02	2869.25	1350.718	7899.897	289.2129
16.48	2695.707	1269.917	8306.212	273.6199
16.93	2633.481	1293.381	8016.101	302.6491
17.39	2865.815	1348.105	7595.663	325.77
17.84	2778 925	1279 749	8050 672	374.6016
18 30	2839 704	1351 831	7889 872	306 6056
18.50	2039.704	1385 215	7862 101	315 5962
10.73	2700./4/	1202.313	7002.101	212.2002
19.21	2093.929	13/1.303	1171.21	203.3093
19.66	2705.53	1391.382	8041.981	270.6451
20.12	2780.85	1413.08	7692.125	306.0819
20.57	2653.894	1419.034	7819.229	379.0223
21.02	2791.41	1440.038	7962.135	368.0238
21.48	2801.702	1444.183	7782.683	322.5175
21.93	2800.087	1409.929	8057.17	305.5827
22.39	2891.083	1627.828	7735.625	301.4078
22.84	2839.579	1521.218	7954.812	281.6123
23.30	2633.61	1520.915	7622.261	347.1985
23.75	2754 318	1588 191	7778 867	319.0189
24.75	2909 04	1521 799	7885 9	384 7192
27.21	2671 070	1512 022	7680 757	330 0521
24.00	20/1.9/9	1312.922	7000.757	252 5646
25.12	2895.006	1489.88/	/3/4.514	353.5646
25.57	2888.191	1389.771	/823.838	344.7297
26.02	2774.531	1366.537	7837.781	326.8725
26.48	2632.884	1373.753	7798.806	331.2866
26.93	2729.412	1383.009	7549.323	321.4218
27.39	2709.524	1334.892	7523.945	316.6818
27.84	2742.355	1636.04	7706.008	282.2088
28 30	2749 929	1421 878	7828 152	367 7776
20.50	2747.729	1610 506	7607 627	340 4474
20.73	2102.230	1525 051	7027.027	212 50
29.21	2044.084	1353.851	1030.291	512.58
29.66	2/19.093	14/4.597	/864.59	367.0737
30.12	2670.406	1535.392	7347.216	344.5428

61.94	2982.234	1349.715	7803.931	281.5391	96.4	9 2828.29	5 1546.796	7713.315	272.9821
62.39	2776.66	1361.203	7635.301	304.0229	96.9	4 2690.06	8 1573.102	7658.639	358.9424
62.85	2986 162	135/ /81	7963 521	296 422	97.3	0 278/ 81	1 1560 625	7857 889	388 8873
02.05	2980.102	1334.401	7903.321	290.422	97.3	5 2/04.01	+ 1500.025	7637.889	214.0007
63.30	3040.087	1214.808	7778.663	301.0955	97.8	5 2689.64	2 1620.263	/64/.11/	314.9896
63.76	2886.155	1316.962	7938.064	305.9016	98.3	0 2746.25	8 1583.74	7665.058	335.5687
64 21	2862 778	1227 945	78/18 712	309 2609	98 7	6 27/9 2/	1635.03	7613 629	327 7152
64.66	2002.770	1227.945	7040.712	220.022	90.7	1 2(79.00)	7 1640 202	7013.027	411.0007
64.66	2720.702	1409.204	/99/.312	329.023	99.2	1 26/8.00	/ 1642.383	/933.836	411.0927
65.12	3000.414	1350.872	7687.673	290.6933	99.6	7 2931.11	9 1469.994	7720.625	378.4919
65 57	2656 872	1359 818	7968 203	247 4511	100.1	2 2629.87	2 1682 855	7687 918	316 821
66.02	2020.012	1210 202	7540 701	202 5640	100.1	0 0740 77	E 1002.000	7607.910	245 (452)
66.03	2833.617	1318.383	/549./01	303.5649	100.5	8 2/42.77	5 1351./53	/629.262	345.6452
66.48	2876.958	1383.891	7838.677	282.7073	101.0	3 2580.36	8 1533.319	7878.445	335.2498
66 94	2858 937	1417 69	8078 103	309 3337	101.4	9 2703 46	5 1540 803	7600 028	310 6415
(7.20	2000.200	1005.07	0070.105	075 4517	101.1	2705.10	1510.005	7502.207	224.0014
67.39	2804.609	1295.07	8056.55	2/5.451/	101.9	4 2865.02	9 1591.385	/583.30/	334.0814
67.85	3101.565	1393.996	7989.875	249.5355	102.4	0 2677.97	6 1514.769	7792.48	346.4218
68 30	2825 218	1407 896	8041 573	289 9166	102.8	5 2760.28	3 1520.912	7420 97	326 9385
CO 7C	2025.210	1221.005	7921.922	207.7110	102.0	2700.20	5 1520.912	7005 500	222.9249
08.70	2847.179	1231.095	/831.823	307.7112	105.5	0 2099.27	5 1591.149	/885.508	323.8248
69.21	2892.783	1449.104	7919.599	318.5609	103.7	6 2574.83	6 1493.953	7552.304	367.5727
69.66	2824 897	1310.319	7690 438	328,1069	104.2	1 2691.54	2 1562.501	7542.396	331.8173
70.12	2005 560	1425 742	0120 665	200 7704	104.6	7 2595.96	0 1511 501	7715 446	209 2016
70.12	2893.308	1455.742	8138.003	500.7704	104.0	/ 2363.60	5 1511.561	//13.440	508.5040
70.57	2801.632	1397.607	8125.848	360.8474	105.1	2 2558.11	5 1489.807	7742.99	391.0854
71.03	2912.735	1330.402	8272.568	292.4656	105.5	8 2782.14	1 1691.341	7505.773	365.5134
71 49	2584 505	1452 004	7876.04	207 7002	106.0	2 2684.62	5 1520 402	7204 064	246 6021
/1.40	2384.393	1432.904	/8/0.04	321.1003	100.0	5 2064.02.	5 1520.492	/394.904	540.0021
71.94	2948.022	1352.979	7723.548	316.6095	106.4	9 2617.68	3 1589.536	7322.851	353.8836
72.39	2915.29	1436.08	7852.62	291.4764	106.9	4 2734.10	5 1601.903	7896.301	375.3122
72.85	2800 218	1464 466	8207 135	251 5535	107.4	0 2731 51	5 156/ 155	7558 873	372 0003
72.05	2000.210	1404.400	8207.133	201.0000	107.4	2/31.31	1104.155	7558.875	572.9095
73.30	2721.153	1333.859	7608.537	306.2202	107.8	5 2656.08	3 1404.862	7663.16	316.543
73.76	2843.574	1403.593	7962.964	294.4772	108.3	0 2790.94	9 1531.552	7673.215	368.3084
74 21	2750 218	137/ 719	7852 165	385 7745	108 7	6 2832 78	1 1529/139	7873 281	300 6035
74.21	2730.210	1517.050	7001.041	200.1040	100.7	1 2652.76	-1327.437	7675.201	202.00.12
/4.6/	2742.325	1517.958	/901.841	328.4986	109.2	1 26/8.04	3 1451.904	/60/.143	323.2943
75.12	2814.378	1513.657	7789.19	319.4106	109.6	7 2537.58	2 1605.128	7640.302	365.6935
75 57	2863 002	1350 331	7803 145	270 5061	110.1	2 2758 31	2 1496 722	7671 046	376 9385
75.57	2605.002	1350.551	7005.145	270.5001	110.1	2 2750.51	1 1 4 7 0.722	7071.040	370.7505
/6.03	2653.497	14/0./62	/93/.342	342.7777	110.5	8 25/9.6/	4 1627.171	/53/.6/8	323.7587
76.48	2678.427	1558.737	8061.327	388.4294	111.0	3 2985.36	8 1583.203	7790.742	342.4587
76 94	2669 424	1429 825	7475 796	339.0673	111.4	9 2596 7	8 1586 967	7563 875	299 9205
77.20	2005.121	1(02.512	7(00.095	240.0557	111.0	A 2001.04	5 1500.907	7960.524	201 7205
11.39	2800.720	1002.515	/009.985	340.0557	111.9	4 2001.04	5 1598.250	/800.524	294.7295
77.85	2822.078	1582.199	8028.713	359.473	112.4	0 2730.00	3 1568.726	7854.028	344.3378
78.30	2652.413	1465.154	7666.982	368,1694	112.8	5 2627.96	8 1593.033	7519.913	283 6235
79.76	2661 165	1522 702	7710 604	201 5422	112.0	1 2620.96	2 1656 202	7785 107	271 4991
78.70	2001.105	1555.705	7710.094	391.3432	115.5	1 2009.00	5 1030.203	7765.197	3/1.4001
79.21	2800.911	1551.175	7713.479	354.2026	113.7	6 2743.17	5 1518.878	7662.289	353.9565
79.67	2893.401	1592.527	7868.631	373.0413	114.2	1 2719.41	6 1675.097	7570.554	340.7664
80.12	2720.27	1502.058	7705 597	225 7020	114.6	7 2520.15	1 1/79 172	7607 706	202 0000
80.12	2139.21	1302.038	7705.587	323.7039	114.0	/ 2520.15	1 14/0.1/3	7007.700	392.0009
80.58	2774.598	1464.346	7825.972	286.4843	115.1	2 2708.67	5 1566.071	7768.302	352.3235
81.03	2680.625	1463.387	7653.853	262,9057	115.5	8 2581.57	9 1570.106	7737.774	330.895
81 / 8	2823 116	1/88 260	7706 500	350 4662	116.0	3 2615 22	1614.81	7813.062	404 2025
01.40	2823.440	1400.209	7700.309	339.4002	110.0	5 2015.22	9 1014.01	7815.002	404.2023
81.94	2806.878	1527.637	7684.669	410.3824	116.4	9 2851.13	1 1613.31	7865.647	321.283
82.39	2721.689	1609.355	8018.48	269.6565	116.9	4 2567.71	7 1590.036	7843.551	356,7445
82 85	2700 280	1/83 020	7813 633	200 0775	117 4	0 2504.84	1 1/65 5	7870 526	274 6016
02.05	2790.209	1403.929	7813.033	299.0773	117.4	2394.84	+ 1405.5	7679.520	274.0010
83.30	2608.124	1549.481	7849.258	358.6898	117.8	5 2669.45	4 1541.495	7604.243	366.158
83.76	2742.332	1497.603	7614.47	370.1144	118.3	1 2818.63	5 1516.304	7370.579	389.0265
8/ 21	2794 415	1//0 085	7771 465	330 1912	1187	6 2851.36	3 1/157 17	7769 /38	333 6235
04.67	2779.0(1	1560.765	7771.405	220.5024	110.7	1 2570.70	1 1504.51	7/07.450	216 6150
84.67	2778.961	1568.765	/859.534	338.5024	119.2	1 25/8./2	1 1584.51	/612.069	316.6159
85.12	2841.304	1679.018	7707.876	412.5865	119.6	7 2698.03	1 1624.521	7624.489	353.8107
85.58	2800.318	1557.166	7702.958	295,9641	120.1	2 2605.17	5 1585.275	7492.401	366 7225
96.02	2759 292	1600 675	7456 50	422 802	12015	0 2652 52	5 1716 700	7590.021	220 1511
00.05	2130.302	1000.075	7430.32	+33.803	120.5	0 2000.00	5 1/10./28	1507.951	330.1311
86.48	2612.867	1451.214	7385.306	360.6349	121.0	3 2532.	7 1685.929	7563.105	389.6708
86.94	2651.693	1480.668	7830.814	335.6414	121.4	9 2905.89	2 1525.91	7684.61	391.543
87 30	2596 331	1702 518	7659 687	333 3047	121 0	4 2783.06	4 1657 125	7677 788	367 3026
07.57	2070.001	1521 425	7032.007	261 4100	121.9	- <u>2</u> /03.90	T 1007.120	7021.100	210 (272
87.85	2884.032	1531.435	1929.845	301.4182	122.4	0 2857.99	5 1500.672	//63.349	518.6273
88.30	2648.257	1642.92	7901.213	347.1324	122.8	5 2835.80	7 1711.543	7583.869	300.7039
88 76	2777 12	1530 519	7656 276	327 7881	123.3	1 2797 59	9 1448 179	7679 284	316 543
00.70	2///.12	1550.517	7050.270	327.7001	125.5	1 2771.37	1000 507	7077.204	261 2452
89.21	2661.397	1659.319	/854.803	385./0//	123.7	6 2661.46	3 1322.797	/638.635	361.3453
89.67	2693.833	1656.361	7990.106	377.3302	124.2	2 2851.55	8 1393.334	7958.011	335.6349
90.12	2886 295	1408 245	7673 586	366 2905	124.6	7 2737 50	7 1376.634	7648 871	296 6679
00.50	2601.004	1606 246	7824 002	400 4001	127.0	1 2757.50	2 1425.044	7042 554	220.7005
90.58	2081.084	1006.246	/824.003	409.4001	125.1	2 Z115.97	5 1435.046	1942.554	329.1995
91.03	2789.996	1565.613	7969.529	338.3633	125.5	8 2765.78	2 1402.521	7842.911	286.949
91.49	2608 28	1588.657	7736.572	312.122	126.0	3 2882.00	6 1281 592	7881.971	248.228
01.04	2741 22	1517 410	8350 506	336 9022	120.0	0 2000 02	1 1440.652	7732 061	332 0624
71.94	2/41.22	1317.419	0330.390	550.6052	120.4	2008.03	1440.000	1132.901	332.0034
92.39	2722.802	1448.255	7784.27	360.8403	126.9	4 2739.01	8 1292.652	7785.703	220.121
92.85	2846.421	1552.213	7679.848	352.649	127.4	0 2804 15	4 1404 553	7895.135	289.6708
02 20	2825 502	1400 570	7020 672	320 7005	107.0	5 2001120	1 1/10/25	7697 766	200 0402
23.30	2033.302	1420.379	1727.013	547.1993	127.8	2041.004	+ 1410.433	7002.700	270.0403
93.76	25/3.618	1431.246	7718.28	377.7881	128.3	1 2707.3	/ 1393.147	/950.046	281.8175
94.21	2661.065	1500.214	7762.274	339.9896	128.7	6 2777.65	4 1421.223	8011.677	378.6311
94 67	2660 508	1562 340	7633 50	328 6300	120.7	2 2814 10	9 1501 444	78/15 507	333 2219
24.07	2000.308	1302.349	1055.59	526.0509	129.2	2 2014.10	1 1200 11444	7043.377	205.4210
95.12	2714.939	1494.761	7758.9	375.4511	129.6	/ 2761.98	1 1398.448	7828.107	387.4662
95.58	2849.963	1456.052	7675.969	379.5942	130.1	2 2614.73	3 1514.269	7857.504	279.7993
96.03	2781 348	1643 265	7900 112	43/ 1/75	120.5	8 2661 42	8 1/30 172	8042 174	340 0272
20.05	2101.340	10+3.203	1700.112	-5-14/5	150.5	5 2001.42	5 1450.172	0042.174	577.7412

131.03	2863.355	1328.712	7860.456	324.6083	165.58	2815.384	1405.864	7665.204	280.6486
121.40	2700 877	1205 506	7027 592	245 1972	166.04	2077 50	1416 115	0014 005	250 0420
151.49	2790.877	1385.500	1951.365	243.1875	100.04	2011.30	1410.115	6214.223	550.6426
131.94	2851.794	1278.484	7902.287	284.4002	166.49	2773.906	1377.405	7929.444	373.048
132 40	2776.012	1304 288	8029 358	303 8836	166.95	2989.012	1471 605	7963 847	302 5764
132.40	2770.012	1261.000	0027.550	303.0030	100.75	2707.012	14/1.005	7703.047	302.3704
132.85	2862.959	1361.082	8029.129	3/1.421/	167.40	2795.659	1405.398	8041.917	300.385
133.31	2900.976	1333.087	7575.625	293.9461	167.86	2754.044	1378.555	7813.17	366.4771
122.76	2965.946	1460 59	9160 249	272 9246	160.00	2041 709	1265 402	7805.004	201 0229
133.70	2805.840	1400.58	8100.348	273.8240	108.31	2941.708	1305.425	/895.994	301.0228
134.22	2864.293	1428.593	8046.706	285.7074	168.76	2916.671	1395.302	8144.055	300.4512
124 67	2712 022	1266 11	7701 725	200 1070	160.22	2548.045	1520.209	7927 200	205 7076
134.07	2715.055	1500.11	//64./55	500.1079	109.22	2348.943	1329.208	1651.299	265.7070
135.13	2939.044	1433.392	7825.549	296.2832	169.67	2834.263	1289.08	7942.486	346.8797
125 59	2726 171	1202 022	7729 991	277 7151	170.12	2781 254	1247 925	7000 472	225 7077
155.56	2720.171	1392.035	//30.001	277.7151	170.15	2761.554	1347.635	1909.472	335.1011
136.03	2768.667	1568.491	7766.538	319.657	170.58	2810.041	1413.852	8031.316	312.5136
136/19	2801 528	1573 757	7965 351	274 0779	171.04	27/18 808	1/183 855	7803 1	373 1551
130.47	2001.520	1373.737	7705.551	274.0777	171.04	2740.000	1405.055	7075.1	373.1331
136.94	26/4.203	1481.897	/836./4/	333.2976	171.49	2657.327	1466.922	7928.382	325.3785
137 40	2786 094	1587 387	8023 24	329 7988	171 95	2820 667	1449 335	8050 727	379 7995
127.05	2002.000	1547.102	0140 464	072.4206	172.40	2020.007	1040 102	7020.027	200.0505
137.85	2882.228	1547.103	8148.464	2/3.4396	172.40	27/1.75	1240.193	1832.921	289.8505
138.31	2756.014	1576.131	8052.076	305.9016	172.86	2707.27	1424.063	7742.685	320.1144
120 76	2656 967	1267.059	7040 701	222.0001	172 21	2770 220	1471 220	8057 210	270 0175
136.70	2030.807	1507.958	/949./91	525.0901	1/5.51	2110.330	14/1.559	8037.319	2/0.01/3
139.22	2742.425	1559.815	7747.959	330.8947	173.76	2702.618	1305.942	8073.078	289.2791
120 67	2071.057	1160 706	7000 577	210 7056	174 22	2015 142	1251 170	7752 690	221 2066
139.07	29/1.03/	1408.720	1909.311	519.7950	1/4.22	2643.142	1554.478	1132.089	551.2800
140.13	2808.603	1462.387	7685.683	295.3673	174.67	2921.156	1201.827	8126.631	334.7191
140.58	2800 833	1308 715	7646 755	207 8364	175 13	2802	1315 81	7020 564	301 0385
140.56	2099.033	1396.713	7040.755	297.8304	175.15	2092	1515.01	7920.304	501.9585
141.03	2568.471	1533.202	7624.72	374.3966	175.58	2867.555	1324.333	8055.571	269.4106
1/1/0	2667 264	1/22 568	7801 589	331 4255	176.04	2023 3/17	1296 608	7822 044	200.0115
141.47	2007.204	1422.300	7001.507	331.4233	170.04	2723.347	1270.000	7022.044	277.0115
141.94	2775.225	1455.896	7824.456	339.5251	176.49	28/1.417	13/3.412	7969.179	262.6528
142 40	2771 226	1511 501	7553 891	350 4511	176 95	2801 076	1363 197	8041 108	297 982
1 42.10	2702.201	1470 440	7005.071	204.0605	177.40	2001.070	1205.552	70 (0, 400	226 49 42
142.85	2792.391	14/0.449	1925.878	294.8685	177.40	2810.766	1305.553	/869.489	336.4843
143 31	2756 977	1415 616	7609 798	309 4002	177 86	2803 465	1274 603	8214 905	339 7368
1 42 76	27201271	1 420 207	7070 72	200.5572	170.21	2002.002	1450.126	0006 607	200 1427
145.70	2/41.2/1	1430.287	1812.13	308.3373	1/8.31	2857.057	1452.130	8020.007	299.1437
144.22	2883.513	1631.051	7778.245	345.8912	178.77	2735.441	1409.012	8219.02	262.2678
144 67	2725 254	1568 007	7970 029	242 8505	170.22	2000 200	1227.060	8020.82	284 5202
144.07	2723.234	1306.997	1019.020	542.6505	179.22	2000.200	1557.909	8020.82	204.3392
145.13	2758.838	1541.037	7869.394	333.3046	179.67	2854.643	1317.845	8015.407	308.6168
1/15 58	2730.098	1612 923	7623 868	301 5/131	180 13	27/0.65	1/05 555	76/3 71/	289 5319
145.50	2730.070	1012.725	7023.000	571.5451	100.15	2740.05	1405.555	/0+3./1+	207.5517
146.04	2720.566	1479.476	7598.383	326.155	180.58	2882.094	1283.396	8226.672	379.2754
146 49	2814 599	1435 587	7928 104	355 6488	181.04	2953 269	1373 949	8082 464	279 0885
146.47	2014.377	1433.307	7720.104	202.0400	101.04	2933.209	1100 (12	0002.404	219.0005
146.94	2626.298	1611.351	/689./35	382.0634	181.49	2923.223	1189.613	8077.8	318.5611
147.40	2922.104	1470.182	8177.737	333,3046	181.95	2801.077	1267 727	8093 803	331,9973
1 47 95	2706 240	1442 410	8022.220	211 4192	102.40	2001.017	1201 (42	7007 (25	225 0(04
147.83	2700.549	1445.419	6025.529	511.4162	162.40	2855.005	1594.042	/90/.055	555.9004
148.31	2719.813	1542.457	7714.231	331.9309	182.86	3076.37	1372.798	8106.116	291.6819
149.76	2664 045	1207 014	7602 052	240.0022	192 21	2060 841	1205 972	7999 124	257 2922
140.70	2004.045	1397.914	1005.952	349.9933	165.51	2900.041	1295.075	/000.124	557.5625
149.22	2747.829	1429.324	7761.036	322.1987	183.77	2766.546	1298.951	8045.223	333.7624
1/19/67	281/ 1/8	1502 904	8100.072	306 6783	18/1 22	2721 123	1368 651	7836 006	250 3122
149.07	2014.140	1502.904	8100.072	500.0785	104.22	2721.123	1506.051	7830.990	250.5122
150.13	2762.513	1405.172	8054.277	349.9934	184.67	2854.714	1385.277	8199.554	343.3014
150 58	2955 794	1376 907	7652 238	373 7588	185 13	2736 886	1262 276	7719 708	277 0045
151.04	2/00.1/1	1400.007	7032.230	244.0755	105.15	2010.000	1262.270	7712.700	277.0015
151.04	2654.814	1490.807	7/13.654	344.9755	185.58	2810.971	1263.159	7943.428	326.7268
151 49	2754 059	1490 728	8009 913	363 9536	186.04	2743 078	1327 405	7858 786	269 4106
151.47	2754.057	1405.001	7512,002	226.076	100.04	2143.070	1 405 704	0107.207	205.4100
151.94	2706.932	1405.291	/512.983	336.8/6	186.49	2888.266	1495.724	8127.307	305.0521
152.40	2807.69	1665.994	7731.284	385.3888	186.95	2903.601	1263.621	7724.15	281.4256
152.95	2005 21	1625 500	7540.450	221 2205	197 40	2752 662	1244 007	7604 021	224 1475
152.65	2005.51	1025.599	7549.459	551.2205	167.40	2755.005	1344.227	/094.021	554.1475
153.31	2741.051	1502.285	7700.303	389.7302	187.86	2825.938	1269.149	7966.725	336.7371
153 76	2857 365	1517 184	7675 764	357 455	188 31	281/1 96/	1215 269	7863 938	208 7521
155.70	2657.505	1317.104	7075.704	337.433	100.51	2014.904	1213.209	7805.958	290.7521
154.22	2587.637	1418.188	7920.756	362.58	188.77	2860.02	1201.405	7952.438	309.1542
154.67	2825.676	1545 493	7608.081	381.5394	189.22	2840 854	1347.338	7859.472	323 3671
155 12	2770 522	1201 112	7052 101	220 0011	190.69	2021 477	1261.00	7907 420	200 50/2
135.13	2119.323	1391.113	1933.191	339.0011	109.08	2021.4//	1301.89	1091.439	298.3062
155.58	2755.134	1481.861	7663.863	299.9205	190.13	2886.295	1331.516	7620.222	244.8685
156.04	2705 005	1513 399	8108 504	331 0073	190 58	2816 167	1486 888	7833 060	301 2005
150.04	2705.005	1010.000	5170.394	331.3773	10.50	2010.407	1400.000	7055.009	571.2905
156.49	2768.417	1355.473	7662.714	265.7664	191.04	2717.327	1280.94	7968.118	324.3301
156 95	2924 584	1498 753	7972 377	349 9933	191 49	2844 588	1229.059	8288 812	318 3085
150.75	2724.504	1470.755	7772.377	347.7755	191.49	2044.500	1229.000	0200.012	210.5005
157.40	2805.368	1367.573	7822.803	307.3162	191.95	2828.263	1428.787	7785.703	365.7663
157.85	2764 928	1372.833	8046 722	309.9309	192.40	2896.946	1374.371	7794 326	361.5507
150.21	2027 (7	1452.420	7 (00 721	202.0026	102.00	20/01/10	1260.052	77(2,107	202 2065
158.31	2837.67	1453.439	/698./21	303.8836	192.86	2866.934	1360.853	//63.12/	302.3965
158.76	2982.489	1422.718	7840.315	338.96	193.31	2774.57	1434.857	7897.552	357.913
150.22	2745 220	1402 077	7820 607	284 5201	102 77	2082 226	1371 140	7812 200	321 400
139.22	2143.239	1403.977	1029.091	204.3391	173.//	2702.320	13/1.149	1043.308	551.492
159.67	2841.434	1373.641	7960.331	323.686	194.22	2819.392	1313.275	8336.378	406.3595
160.13	28/18 751	1421 068	7980 070	315 4405	194 68	2700 025	1443 027	8151 146	311 /192
100.13	2040./31	1421.000	1707.717	515.4405	174.00	2700.023	1443.03/	0131.140	511.4162
160.58	2854.486	1311.389	7913.819	317.7117	195.13	2825.417	1418.916	8070.106	344.6566
161.04	2801 046	1339.002	7792 200	318 3079	195 58	2688 953	1362 468	7614 919	319 3378
1 61 10	2001.040	10002	0042 442	200.0017	105.00	2000.755	1400.010	7017.717	201 22 12
161.49	2921.838	1228.48	8043.448	299.8546	196.04	2929.45	1409.969	7771.957	291.2242
161.95	2659 267	1313 92	8297 436	349 9204	196 49	2847 273	1370 264	8056 112	283 6896
1 (2, 40	2057.207	1000000	00000000	004 5200	106.77	2017.275	1406 444	7042 177	255.0070
162.40	2864.964	1266.037	8233.923	284.5389	196.95	2852.254	1426.444	/942.17/	355.9678
162.85	2865.719	1286.392	8016.296	314.5979	197.40	2889.366	1492.535	7570.976	360,1108
162.00	2070 501	1206.06	0001 000	222 7500	107.04	2027.020	1251 470	0177 700	226.0002
103.31	28/9.581	1306.86	8021.283	323./388	197.80	2931.839	1331.478	81//./89	230.0993
163.76	2881.45	1293.611	8167.201	273.433	198.31	2755.101	1364.122	7697.634	327.8542
164 22	3033 24	1381 202	8080 224	285 2150	102 77	2607 271	1508 124	7620 205	307 504
104.22	5055.54	1301.283	0000.234	203.3138	170.//	2091.211	1508.124	1029.293	507.594
164.67	2799.466	1381.896	8230.611	346.4218	199.22	2940.911	1333.704	7575.926	337.3339
165 13	2785 042	1300 702	8010 045	264 2780	100 68	2080 54	1428 559	7727 017	362 261
102.12	2103.043	1377.174	0017.04J	204.2/07	177.00	2907.J4	1720.330	1141.011	504.201

200.13	2706.152	1455.132	7855.462	320.1807	234.68	2729.088	1233.089	8095.658	301.3426
200.50	2820 702	1200 121	7000 595	215 2257	225.12	2071 616	1206 201	0192 100	250.0912
200.39	2820.702	1300.424	/909.383	515.2557	255.15	29/1.010	1560.591	8185.109	239.0812
201.04	2872.465	1367.88	8392.448	341.2242	235.59	2832.715	1265.844	7800.409	309.5386
201 49	2727 154	1471 608	7954 759	400 6311	236.04	2942 482	1392 382	8042 445	321 4215
201.47	2127.134	14/7.566	0105.020	212 10 10	230.04	2072.205	1070.007	0114 474	272 220
201.95	3124.171	1447.566	8185.039	312.1949	236.50	2872.395	12/8.89/	8114.474	273.229
202.40	2780.561	1363.848	7751.312	320.9641	236.95	2934.481	1227.018	8171.562	356.7435
202.86	2007 561	1464 007	7706 516	200 6520	227 41	2700 142	1227 72	7996 026	210 9999
202.80	5007.501	1404.997	//90.310	509.0529	257.41	2700.142	1557.75	/880.950	510.0000
203.31	2737.024	1542.647	7656.987	295.1873	237.86	2575.182	1275.019	7690.173	317.0658
203 77	2778 236	1464 618	7773 01	207 6565	238 32	2850 605	1350 547	7785 507	314 5070
203.77	2118.230	1404.010	1115.01	297.0505	238.32	2850.005	1559.547	1185.501	514.5979
204.22	2738.56	1382.206	7681.107	304.528	238.77	2648.197	1366.496	7562.145	315.1276
204 68	2814.08	1337 307	7602 721	300 0300	239.22	2060 000	1383 0/6	7827 011	279 6603
204.00	2014.00	1251.507	002.721	309.9509	237.22	2)0).)))	1001.040	/02/.011	217.0003
205.13	2683.35	1354.709	8065.62	289.4589	239.68	2914.766	1324.791	8041.88	314.91/4
205.59	2785.313	1475.979	7964.823	334.0152	240.13	2943.433	1344.915	7994,998	279.7329
206.04	2821 042	1402 172	7080 206	241 2004	240.50	2010.7	1100 177	7805 672	280 1001
200.04	2021.942	1403.175	1960.390	341.2904	240.39	2910.7	1199.177	7805.072	260.1901
206.49	2655.039	1419.49	7784.471	329.7332	241.04	2778.728	1360.046	8414.191	255.7639
206.95	2793 444	1463 963	8003 361	316 9348	241 50	2895 433	1348 214	8554 324	294 4758
200.95	2773.444	1242.401	0005.501	310.7540	241.50	2075.455	1040.214	0147.662	225.2047
207.40	2937.575	1342.421	1135.291	272.704	241.95	2862.658	1367.262	8147.663	325.3847
207.86	2665.431	1445.531	7810.861	339.1401	242.41	2945.822	1272.022	8134.169	316.7977
200 21	2000 102	1410 406	7020 665	210 6414	242.96	2002 721	1277 122	7072 600	200 6220
208.51	2009.102	1419.490	1929.003	510.0414	242.80	2002.721	15/7.152	1912.000	506.0256
208.77	2754.125	1497.645	7741.441	329.6672	243.32	2840.095	1478.9	7925.649	277.1925
209.22	2774 921	1464 269	7951 829	334 858	243 77	2973 314	1348.02	7949 137	328 6295
200.22	2774.921	1404.207	7951.029	242.070	243.77	2010.102	1070.446	0065 106	220.0275
209.68	2772.659	1494.455	/955.304	342.0736	244.23	2942.183	12/8.446	8065.106	333.1665
210.13	2689.599	1396.146	8141.194	338.1102	244.68	2999.907	1370.677	7929.413	308.9432
210.50	2024 200	1106 151	7061 21	205 1216	245 12	2020 020	1444.001	0107 001	262 1009
210.39	2934.399	1460.154	/001.51	293.1210	245.15	2039.029	1444.991	8107.891	505.1098
211.04	2814.67	1424.6	7750.419	327.0768	245.59	2844.51	1388.693	8110.739	329.9145
211 50	2858 413	1420 147	7753 893	336 0265	246.04	2717 419	1323 868	8071 199	279 7329
211.50	2030.413	1420.147	7755.075	330.0203	240.04	2/1/.41)	1325.000	00/1.1//	219.1529
211.95	2842.093	1496.063	7967.113	325.3122	246.50	2862.335	1345.797	8156.05	312.6525
212.40	2919.079	1424.716	7959.977	390.6938	246.95	2738,938	1385.698	8106.584	275 7042
212.10	2600 200	1411 200	7705.001	211 4942	247.41	2711 127	1254 621	7000 000	207 2222
212.80	2098.200	1411.300	//95.991	511.4642	247.41	2/11.12/	1234.031	/960.669	201.3332
213.31	2760.801	1444.187	7727.726	392.5313	247.86	2974.989	1205.401	7967.464	330.1904
213 77	2811 941	1549 717	7911 988	337 6527	248 32	2729 408	1372 452	7948 56	354 5949
213.77	2011.941	1349.717	7711.700	357.0527	240.52	2727.400	1372.432	7940.50	334.3747
214.22	2772.431	1439.883	/966.356	2/8.6306	248.77	2856.351	1339.84	1125.195	331.9977
214.68	2728.085	1479.939	7601.053	320.8253	249.23	2871.08	1348.183	8329.394	284.9304
215 12	2777 804	1512 579	7820 102	274 0205	240.68	2040 021	1216 116	7015 100	200 1527
215.15	2777.004	1312.378	7829.102	374.9203	249.00	3049.031	1340.440	/015.100	309.1337
215.59	2742.553	1434.316	7699.867	309.7193	250.13	2719.979	1316.383	7995.203	337.7179
216.04	2855 489	1505 013	7885 673	331 0401	250 59	2868 195	1414 418	8119 658	299 3903
216.01	2000.109	1204.647	7605.075	070.5645	250.57	2000.175	1200 705	7070 705	2/9.3903
216.50	2/42./48	1394.647	/631.45/	278.5645	251.04	2802.641	1380.785	/9/0./85	368.1039
216.95	2809.656	1444.645	7702.958	326.0231	251.50	2796.024	1289.233	7764.325	297.9749
217.40	2025 645	1387 002	7830 17	322 4517	251.05	2047.012	1/01 803	7784 446	313 6268
217.40	2923.043	1387.002	7639.47	322.4317	251.95	2947.012	1491.005	//84.440	343.0208
217.86	2795.022	1495.527	7578.69	322.1984	252.41	2743.204	1420.756	7/60.08	273.6862
218.31	2942.317	1402.787	7771.183	286.8032	252.86	2723 352	1408.392	7938.31	301,9383
210.21	2751 926	1474.22	7904 612	246 240	252.00	2721 806	1401.004	8022 604	202 1724
218.//	2751.820	14/4.55	/894.015	540.549	255.52	2721.800	1401.094	8022.004	303.1724
219.22	2863.457	1566.762	7721.752	405.2568	253.77	2861.852	1399.711	8316.514	286.9846
219.68	2882 594	1/27 098	701/ 653	326 0957	25/ 23	27/37	1402 405	8211 747	306 221
217.00	2002.374	1427.070	7714.055	320.0757	254.25	2743.7	1402.405	0211.747	300.221
220.13	28/0.3/8	1536.811	7923.198	333.6168	254.68	2788.055	1325.367	7962.413	337.3332
220.59	2839.965	1747.448	8086.88	358.6235	255.14	2774.07	1317.648	8066 421	289.344
221.04	2010 212	1506 194	7714 506	264 212	255 50	2802 500	1274 522	7722 249	202 5642
221.04	2010.212	1390.164	//14.390	504.215	255.59	2692.309	12/4.322	1122.340	303.3043
221.50	3047.343	1427.673	8151.773	319.6568	256.04	2947.065	1418.105	7956.136	281.9977
221.95	2734 664	1429 825	7748 727	317 3926	256 50	2810 269	1370 792	8076 001	322 7278
221.95	2011.001	1 120.000	77 10.727	246.2550	250.50	2745.916	1492.107	0100.001	404 4070
222.41	2844.745	1430.206	/962.816	346.3338	256.95	2745.816	1482.197	8128.733	404.4062
222.86	2738.692	1475.06	7671.409	346.4149	257.41	2794.746	1442.068	7854.262	260.6418
222 31	2051 306	1306 / 16	7826 155	335 0606	257.86	2601 634	1201 152	7670 286	208 6862
223.31	2931.390	1590.410	7820.155	333.9000	257.80	2091.034	1291.132	7079.280	298.0802
223.11	2803.227	1517.074	/931.563	307.4551	238.32	2633.7	14/3.022	/899.696	304.4062
224.22	2887.507	1397.525	7976.134	299.9204	258.77	2710.864	1274.827	7932.49	276.1614
224 68	2633 336	1561 840	7807 862	327 0106	259.23	2830 083	1420 759	8310 350	253 0562
22+.00	2033.330	1501.049	1001.005	321.7190	257.23	2030.903	1720.730	0510.559	255.9502
225.13	2626.433	1547.83	/5/6.271	295.2532	259.68	2932.749	1282.318	/8/3.857	267.458
225.59	2679.544	1315.153	7934.75	278.426	260.14	2842.252	1203.552	7772.124	297,5901
226.04	2751 775	1444 717	7672 957	307 0125	260 50	27/0 911	1476.007	81/1/200	327 155
220.04	2134.113	1444./1/	1022.631	307.9123	200.39	2140.011	14/0.09/	0144.389	352.455
226.50	2701.986	1473.599	7756.779	324.993	261.04	2861.396	1242.802	8030.045	303.8836
226.95	2892 489	1513 191	7863 955	324 078	261 50	2732 236	1261 852	7742 483	300 3777
220.95	2592.105	1516.072	0071 1 65	0.00.0107	201.00	2010.200	1470.660	7712.105	200.2777
227.41	2596.186	1516.073	80/1.165	269.0187	261.95	2819.222	14/9.668	/884.439	332.1357
227.86	2752.968	1451.517	7918.267	313.0445	262.41	2734.847	1245.989	8025.152	304.5223
228 21	2850 79	1472 256	7678 66	303 3606	262.86	2806 172	1310.90	8185 027	280 1240
220.31	2037.10	1+/2.230	10/0.00	303.3000	202.00	2000.473	1310.09	0103.921	200.1249
228.77	2775.345	1421.911	7823.745	307.6588	263.32	3018.568	1371.567	7775.69	263.7486
229.22	2625.582	1541.799	7547.052	313.9596	263.77	2802.922	1196.103	8128.146	346.4869
220.00	2722.201	1404 122	7094 700	201 0075	264.02	2000.920	1010.070	7046 011	245 7751
229.08	2722.201	1404.133	/984./09	381.99/5	204.23	2900.839	1212.272	/846.811	343.7756
230.13	2837.933	1428.631	8171.84	372.9094	264.68	2812.443	1339.961	8028.816	355.9016
230 50	2650 122	1541 010	8078 086	382 5034	265 14	2916 143	1361 354	8133 345	319 502
230.39	2030.122	1.0+1.717	0070.000	212.2734	203.14	2210.143	1001.004	0133.343	319.392
231.04	2922.392	1413.653	7929.18	313.0445	265.59	2845.445	1346.259	7897.813	298.3668
231.50	2837 404	1447 526	8089 632	390 6938	266.05	2879 545	1308 587	7989.211	361 1645
221.05	2747 202	1269 111	7072 212	264 0000	266 50	2004 505	1212 042	8104.01	271 0222
251.95	2141.202	1306.111	1912.313	304.9898	200.50	2994.303	1512.902	0100.91	5/1.9222
232.41	2943.957	1449.484	8176.082	325.2466	266.95	2943.989	1339.497	8114.183	370.826
232.86	2847 761	1366 265	8117 224	277 715	267 41	2955 718	1354 208	8025 717	264 2131
232.00	2077.701	1007 702	70/7 011	211.113	207.41	2755.710	1266.212	0020.717	207.2131
233.32	2925.222	1227.792	/96/.841	252.5112	267.86	2849.989	1366.342	8010.244	305.9016
233.77	2880.122	1326.328	8217.342	337.58	268.32	2826.128	1327.364	7899.166	248.8242
23/ 22	2753 020	12/0.010	7881 557	3/17 5001	268 77	2702 751	1368 210	8126 902	287 51 15
234.22	2133.039	1240.919	/001.33/	347.3901	200.77	2192.131	1308.219	0120.893	201.3145

269.23	2912.634	1374.562	8052.222	333.6237	30	03.78	2802.814	1436.618	7801.221	394.0754
2 (0, (0)	2000.201	1210.10	0051 050	220 42 62		04.00	2012 702	1515 405	7550 6	010.0640
269.68	2988.294	1348.49	8051.258	338.4363		04.23	2913.783	1517.495	/558.6	313.3643
270 14	2757 493	1351 792	8295 902	377 2575	3(04 68	2897 428	1511 073	7924 329	276 4164
270.11	2101.199	1551.772	02/0./02	377.2373	5	01.00	2077.120	1011.075	7721.327	270.1101
270.59	2904.183	1249.754	7995.421	357.7742		05.14	2674.677	1497.415	7855.803	299.5355
271.05	2821 552	1386 122	7610 225	382 4551	3(05 59	2600 3/10	1476 554	7988 896	321 /209
271.05	2021.332	1500.122	7010.225	502.4551	50	05.57	2070.547	1470.554	7700.070	521.4207
271.50	2720.896	1323.182	8078.764	350.3122		06.05	2684.987	1487.731	7552.292	297.9097
271.05	2822 226	1252 045	7951 611	228 0562	20	06 50	2712 782	1401 142	7041 846	266 2227
271.95	2652.520	1232.943	/001.011	526.9505	50	00.50	2745.765	1491.143	/941.040	300.2237
272.41	2767.555	1427.668	8069.881	324.6736	30	06.96	2760.958	1485.461	7704.874	317.7772
272.04	2760.652	1202 105	7000.010	200 1004	24	07.41	20044 442	1000.401	7965 592	200.0759
272.86	2769.652	1392.105	/889.019	280.1904	30	07.41	2944.442	1288.491	/865.523	329.2758
273 32	2803 265	1395 72	7794 548	287 2606	3(07 87	2818.09	1497 792	7898 749	329 6603
273.32	2003.203	1000.12	1121.010	207.2000	5	01.01	2010.07	1177.772	7070.717	527.0005
273.77	2793.404	1206.167	8344.621	270.2527		08.32	2826.594	1539.999	7661.718	311.6854
274 23	3006 207	1263 426	8030 833	322 5901	3(08 78	2689 /05	1/70 301	7731 601	383 159/
274.23	5000.207	1203.420	0057.055	522.5701	50	00.70	2007.405	1477.571	7751.071	505.1574
274.68	2948.476	1308.778	7913.379	334.4659		09.23	2978.026	1481.394	7809.825	318.6989
275 14	2760 414	1313 424	8077 054	376 1615	3(00 60	2007 131	1517 017	8017 576	328 1265
275.14	2700.414	1515.424	8077.054	570.1015	50	09.09	2907.131	1317.917	8017.570	526.4205
275.59	2773.706	1440.037	7702.98	365.8975	3	10.14	2930.907	1551.371	7747.837	335.2423
276.05	2707 462	1202 441	9212 169	220 5721	2	10.50	2768 068	1647 202	8122 007	252 564
270.05	2191.402	1505.441	0212.100	520.5721	3	10.59	2708.008	1047.292	0122.907	555.504
276.50	2820.721	1379.476	7915.323	375.7041	3	11.05	2679.14	1532.009	7771.688	316.6808
276.06	2826 127	1271 757	7771 729	257 5277	2	11 50	2817 856	1575 228	7847 521	255 0666
270.90	2020.427	12/1./3/	///1./30	251.5211	3	11.50	2047.030	1575.526	/04/.321	555.9000
277.41	2782.977	1595.028	8130.428	373.6862	3	11.96	2500.406	1632.93	7940.798	358.0421
277.06	2774 262	1402 (54	77(2 120	200 4472	2	10.41	2051 755	1646 255	90(0.217	240 7500
277.80	2774.303	1402.004	//03.139	290.4473	3.	12.41	2851.755	1040.233	8009.217	348./388
278.32	2911.3	1321.641	8053.596	298.2286	3	12.87	2967.16	1577.281	7907.058	332.4551
070 77	2005 000	1406 100	0000 700	240 1120	2	12.20	0750.077	15(1.024	0161 450	210 1042
278.77	2805.889	1406.128	8089.729	348.1132	3.	13.32	2152.811	1561.034	8161.452	318.1043
279.23	2891.029	1487.194	7997.982	319,9114	3	13.78	2652.187	1475.94	7781.607	326,9381
070.00	2072 700	1400 117	7000 146	054 5050		14.00	2702 506	1550 540	7020.070	225 6410
279.68	2872.799	1438.117	/822.146	354.7258	3.	14.23	2783.506	1553.548	1929.878	335.6418
280 14	2810 461	1354 748	7780 298	301 4083	3	14 69	2807.063	1406 809	7663 215	353 172
200.11	2010.101	1001.010	7700.290	244.4600		11.05	2007.005	1100.007	7005.215	000.172
280.59	2700.511	1404.362	/954.725	344.4689	3	15.14	2689.372	1467.453	7700.222	363.1095
281.05	2767 123	1510 18/	7638 682	357 9124	3	15 59	2581 5/13	1/28 976	8106 027	207 1070
201.05	2707.425	1517.104	7050.002	557.7124	5.	15.57	2501.545	1420.770	0100.027	271.1717
281.50	2824.401	1419.493	7759.052	270.6447	3	16.05	2839.146	1597.56	8126.399	328.8836
281.06	2706 683	1521 / 86	8072 806	340 6008	3	16 50	2785 801	1554 770	7737 502	318 23/6
201.90	2790.005	1521.400	8072.890	549.0008	3	10.50	2785.801	1554.779	1131.392	516.2540
282.41	2743.194	1499.21	7972.083	289.0753	3	16.96	2802.804	1494.568	7730.324	339.2784
202.06	2656 176	1486 570	7060 288	281 0077	2	17 41	2780 220	1291 769	7022 022	220 5070
202.00	2030.170	1400.379	/900.300	301.9977	3	17.41	2780.329	1304.700	1923.023	339.3919
283.32	2662.111	1465.61	7803.83	313.0445	3	17.87	2590.544	1513.804	8094.47	331.2211
702 77	2024 262	1404 067	7022 122	261 0606	2	10.22	2700 405	1510 260	7956 701	202 2042
203.77	2924.302	1494.007	1955.122	301.8080	3	16.52	2709.495	1319.309	/830./01	363.3043
284.23	2854.178	1490.151	7920.053	352.3956	3	18.78	2852.283	1476.134	7763.17	378.4916
204.60	2002 (10	1204 502	7001.077	265 5126	2	10.02	20(0 (72	1 (20, 00)	0014 400	220 1176
284.68	2882.618	1384.582	/991.8//	365.5126	3.	19.23	2869.673	1620.096	8014.409	330.11/6
285.14	2842 193	1523 598	7967.956	329.0216	3	19.69	2757.824	1676.016	7484 338	322,4523
205.50	201211/0	1407.177	0011.106	206 7006		20.14	2006.546	1520.570	7 10 11000	250.00.41
285.59	2740.742	1497.177	8044.406	396./336	3.	20.14	2886.546	1538.578	/6/8./8/	358.0941
286.05	2712.667	1439.882	8060.716	305.7637	30	20.60	2793.862	1499 329	7495.402	311.9851
206 50	2010 241	1525 200	7772 110	202 047	2	21.05	2026 450	1576 200	7077 200	220 0175
286.50	2818.341	1525.289	///2.119	282.847	3.	21.05	2826.459	15/6.289	/9//.269	339.91/5
286.96	2754.25	1384.849	7920.052	323.9404	33	21.50	2714.49	1506.933	7614.772	340.258
207.41	2796 029	1496 200	7511 741	201 07(0	20	21.00	2055 750	1444 225	2002.00	207.0602
287.41	2786.028	1486.309	/511./41	321.2762	3.	21.96	2955.756	1444.335	8093.66	397.0603
287.87	2769.91	1330.207	7728 209	396.0294	30	22.41	2953 432	1600.586	7857.36	356 2211
200.00	2006 707	1401 702	7201209	212 1052		22.07	2002 721	1556.061	70627180	074 460
288.32	2906.737	1401.702	//44./8	312.1952		22.87	2893.731	1556.361	/863.354	374.463
288 77	2695 803	1386 112	7881 686	274 2813	31	23 32	2781 117	1641 186	7843 521	359 3281
200.77	2075.005	1000.112	7001.000	271.2013	5.	20.02	2/01.11/	1011.100	7015.521	007.0201
289.23	2838.086	1450.1	//39./43	335.1772		23.78	2877.498	1311.929	//46.013	291.681
289.68	25/10 018	1386 5/11	7771 875	37/ 2811	31	2/ 23	278/ 9/7	1/100 11	7640 585	373 3667
207.00	2349.910	1300.341	7771.075	374.2011	51	24.25	2/04.947	1490.11	7040.505	100.0007
290.14	2862.075	1432.201	7981.558	299.1434	3.	24.69	2868.112	1660.274	7874.44	400.3773
200 50	2700 265	1/107 025	7720 122	317 8/25	31	25.14	2880 7/19	1/107 828	7831 322	323 5045
290.59	2777.205	1477.023	7727.122	200.00423	51	25.14	2000.747	1477.020	7051.522	323.3043
291.05	2801.396	1506.24	8016.207	308.3043	3.	25.60	2788.785	14/0.492	//16./62	340.0552
291 50	2851 203	1462 803	7828 155	376 873	31	26.05	2663 818	1405 777	7842 69	406 9978
201.00	2001.200	1402.005	7020.155	370.075	51	20.05	2005.010	1403.777	7042.07	400.7770
291.96	2809.061	1393.912	8198.826	333.3043		26.50	2997.366	15/1.595	/885.896	315.5124
292 41	2728 858	1468 262	7708 857	320 6445	31	26.96	2806 176	1377 937	7924 119	372 5175
202.07	2020.000	1405.061	7700.007	011.1640		20.70	2000.170	1400 6	0007.002	207.5020
292.87	2866.879	1485.961	//98.139	311.1642	3.	27.41	2953.524	1498.6	8087.092	307.5929
293 32	2875 445	1578.63	7918 435	331 2138	31	27 87	2840.045	1436 422	7731 73	272 9748
202.77	0706 770	1406 507	7000 412	262.0010		20.22	2000.001	1407 625	0026 100	200 5051
293.11	2186.113	1496.597	/980.413	303.8212	32	28.52	2086.024	1497.635	8036.199	329.5951
294.23	2894.943	1388.921	7740.111	344.9254	31	28.78	2873.817	1532.548	7743.345	309.3352
204.60	0700.07	1554 42	0042 011	220.270	2	20.02	2025 140	16021010	7722 540	207.5029
294.68	2782.37	1554.43	8043.911	330.372	3.	29.23	3035.148	1637.65	//33.549	307.5928
295.14	2800.274	1512.116	7691.916	382.9122	32	29.69	2838.122	1422.793	7739.324	361.8683
205.50	2000(211)	1420.070	70/2064	201 7461		20.14	2620.102	1 450 575	0115 76	200.7614
295.59	2806.12	1439.879	/842.964	391./461	5.	30.14	26/8.103	1459.575	8115.76	308.7614
296.05	2794 123	1428 286	7759.312	324 8551	31	30.60	2776 494	1679.311	8101.386	324.281
206.50	0711020	1504.000	0007 70 1	221.0001	5.	21.05	2	140 < 127	7002 107	204.0555
296.50	2744.933	1524.292	8027.736	335.7719	33	51.05	2665.845	1496.137	/983.187	284.8577
296.96	2723 125	1639 803	7915 349	347 9746	31	31.51	2872 719	1519 219	8112 728	303 172
207.11	0704 440	1401 5 - 2	7720 10.577	405 0100	5.	21.07	0,00,00	1017.217	7012.720	200.20172
297.41	2704.448	1491./63	//38.406	425.3122	3.	51.96	2698.02	1635.342	/913.075	388.2916
297 87	2766 108	1450 443	7618 939	309 8577	31	32.41	3024 097	1511 308	8004 882	295 1873
200.00	2700.100	1502 500	7010.737	051 1 -1 -	5.	22.71	0/77 002	1404 721	7750 472	275.1075
298.32	2777.342	1502.589	7917.513	251.1614	33	52.87	2677.893	1494.721	7758.473	326.3432
298 78	2589 711	1503 364	8293 300	336 0265	21	33 32	2856 833	1570 677	7963 183	337 58
200.70	2507.744	1505.504	0050.579	200.5205	5.	22.24	2000.000	1510.077	7703.103	237.30
299.23	2772.59	1505.547	8078.173	299.5355	33	33.78	2795.855	1543.829	7569.831	340.382
200 68	2806 282	1516 721	7880 155	272 72	21	34 22	2929 617	166/ 056	7921 555	300 72
299.00	2000.303	1510.721	1009.100	512.12	5.	54.23	2727.01/	1004.900	1741.333	509.12
300.14	2849.167	1383.62	8056.487	286.7382	3.	34.69	2838.752	1520.905	7958.362	340.5776
300 50	2020 200	1200 522	7777 201	303 1265	2	35 14	2070 106	1502 052	8112 225	316 8796
500.39	2930.299	1299.322	1121.201	505.4205	5.	55.14	2719.100	1373.933	0113.233	340.0700
301.05	2583.796	1439.458	8038.987	385.5694	33	35.60	2857.125	1528.549	7854.946	325.5664
301 50	2040 422	1307 674	7024 472	352 7149	2	36.05	2017 059	1534 507	7701 62	324 0027
501.50	2747.422	1371.0/4	1724.413	352./148	5.	50.05	2741.038	1554.507	1191.03	324.9921
301.96	2794.94	1445.109	8141.384	318.6264	33	36.51	2844.812	1587.964	8124.746	377.1198
302 /1	2816 607	1516 377	7875 186	32/ 0251	21	36.06	2856 155	1422 752	8024 031	317 1385
302.41	2010.09/	1510.577	10/3.100	524.9031	5.	50.90	2000.400	1422.132	0024.031	517.1303
302.87	2912.504	1454.24	7846.753	332.8472	33	37.41	2712.154	1501.825	7636.834	299.3976
303 22	2752 612	1363 616	8085 06	324 02	2	37 87	2776 720	1/63 5/1	7751 007	376 8004
	2133.042	1505.040	0000.00	324.92	5.	21.01	2110.127	1703.341	1131.007	520.0004

338.32	2809.686	1492.646	7874.79	312.6525
338.78	2839.107	1418.953	8034.813	368.4888
339.23	2850.412	1487.193	7917.13	332.4551
339.69	2873.931	1435.927	7957.598	324.1361
340.14	2764.179	1525.517	7645.012	311.2809
340.60	2700.944	1461.612	7919.362	2/7./149
341.03	2007.12	1540.805	7091.910	304.0730
341.96	2707 327	1725 782	7907 772	383 2318
342.42	2630,806	1473.292	7441.117	300.842
342.87	2836.386	1487.659	7640.449	300.3122
343.32	2802.441	1549.135	8109.858	297.9748
343.78	2671.844	1597.216	8207.087	381.1485
344.23	2699.073	1457.396	8302.877	257.1357
344.69	2918	1610.044	7544.732	339.0244
345.14	2736.258	1528.667	8045.747	291.7974
345.60	2642.429	1461.159	/908.115	344.6574
340.03	2090.040	1388 385	7656 374	3/0 0131
346.96	2627.018	1640 381	7926 807	372 1327
347.42	2691.044	1500.593	7989.214	284.4077
347.87	2842.321	1557.043	7918.885	340.7666
348.32	2664.895	1572.789	7829.457	302.7875
348.78	3014.833	1455.856	7770.214	327.069
349.23	2840.752	1585.116	7882.705	294.8679
349.69	2829.661	1386.232	7826.654	289.9245
350.14	2940.151	1360.197	7844.653	309.6764
350.60	27/6.818	1645.714	7745.921	378.949
351.05	2831.079	1623.139	7989.534	350.3122
351.01	2730.201	1455.555	7801.398	242.712
352.42	2725.8	1496 988	7906.97	338 4365
352.87	2907.062	1544.414	7964.556	393.692
353.33	2760.703	1674.054	7812.904	257.5929
353.78	2964.327	1535.503	8106.044	296.1019
354.23	2938.647	1531.202	8114.565	347.1255
354.69	2969.976	1557.198	7981.178	297.59
355.14	2854.277	1579.974	8030.315	300.4431
355.60	2654.008	1436.118	7914.325	314.5979
356.05	2800.088	1586.307	7933.102	364.5325
356.06	2008./33	1585.12	7703 354	330.0057
357.42	2055.052	1398.098	7864 882	308 3699
357.87	2943.568	1556.971	8134.283	369.7299
358.33	2915.851	1587.309	8198.558	328.2881
358.78	2784.376	1383.618	7769.122	306.5403
359.23	2927.084	1404.556	7863.452	367.85
359.69	2864.173	1484.162	8159.989	311.8032
360.14	2920.391	1445.105	8023.067	357.7744
360.60	2956.052	1476.591	7826.691	336.23
361.05	2000.5	1576.108	7010 759	392.182
361.96	2772 074	1320.823	7922 331	355 9671
362.42	2807.033	1350.634	8117.144	296 7408
362.87	2898.299	1417.724	7922.598	302.8529
363.33	2998.867	1382.588	7909.209	354.4064
363.78	2769.97	1413.496	8027.034	334.4731
364.24	2998.177	1364.922	7919.887	386.9412
364.69	2884.308	1529.281	8053.904	308.3698
365.14	2808.084	1488.577	7738.623	343.1694
365.60	2/85.343	1394.106	7974.344	313.1099
366.51	2629.211	1462.022	7900.833	353 4017
366.96	3072 044	1352 904	8094 796	267 0733
367.42	2912.24	1375.443	7923.319	321.8134
367.87	2925.455	1329.323	7999.276	297.9749
368.33	2769.222	1325.598	8161.639	305.5097
368.78	2900.643	1370.144	8186.473	303.8837
369.24	2815.579	1254.517	8025.763	313.5019
369.69	2937.829	1367.649	7992.673	282.3168
3/0.15	3012.89	1515.234	8125.475	363.0445
371.00	2930./1	13/3.39/ 1337 501	8120 8120 527	219.133 306.2864
371.03	2938 285	1301 364	8199 820	329 5222
371.96	2882.849	1255.82	8044.139	287.5144
372.42	2735.473	1340.154	8151.583	293.5612

372.87	2926.948	1364.998	7714.748	319.9992
373.33	2795.825	1360.088	8268.883	315.4473
373.78	2806.432	1312.005	8076.77	304.733
374.24	2931.014	1358.278	8186.034	254.0218
374.69	3037.697	1387.462	8128.885	284.5386
375.15	2959.225	1274.177	8373.928	276.8657
375.60	2834.685	1335.586	8275.01	268.6269
376.05	2901.1	1286.235	8060.041	284.9306
376.51	2981.056	1402.977	7854.187	263.1101
376.96	2839.206	1369.493	7938.741	310.2498
377.42	2862.859	1225.907	8031.827	262.1951
377.87	2965.091	1367.688	7853.204	350.6314
378.33	2848.382	1342.417	8142.644	334.3347
378.78	2789.872	1446.68	7952.529	320.8257
379.24	2907.223	1369.185	7807.452	280.3714
379.69	2944.222	1189.882	7982.168	305.1904
380.15	2822.599	1416.497	8061.633	251.9383
380.60	2761.975	1257.051	8037.463	269.861
381.06	2778.618	1400.214	8116.712	366.9352
381.51	2737.634	1209.393	7794.315	321.2834
381.96	2544.165	1313.426	7914.573	279.1374
382.42	2541.471	1289.041	6916.046	289.5324
382.87	2234.239	1260.319	5994.724	159.2193
383.33	2229.874	1563.769	6938.207	237.9718
383.78	2149.674	2013.648	7489.783	183.7618
384.24	1904.952	2429.885	7396.559	208.943
384.69	1551.679	2836.602	7334.371	228.8836

Table 2: A2a, fig 11

Distance	M	4.1	G *	T .	66.68	2665.371	1294.405	7416.516	307.8232
(um)	Mg	Al	Si	Ti	67.58	2683 301	1339.965	7346.93	308 7033
0.30	1683 630	856 3844	5067.057	788 1456	68.47	2582 209	1375 557	7324 273	289 2859
1.20	2420 682	1026 172	7272 287	215 6762	60.37	2641 513	13/3.146	7385 801	286 7552
1.29	2459.085	1030.173	7525.362	313.0703	70.26	2041.313	1343.140	7363.691	200.7332
2.18	2467.317	1011.154	/526.462	281.3181	70.20	2032.085	1255.554	7547.998	282.1555
3.08	2592.368	1005.612	7528.127	300.6454	71.16	2695.897	1180.841	7225.351	274.4899
3.98	2573.057	1003.575	7664.24	291.722	72.06	2661.493	1203.139	7532.491	274.7762
4.87	2708.89	954.4943	7752.926	259.6344	72.95	2623.445	1256.018	7468.008	261.1599
5.77	2680.529	821.063	7800.706	273.4099	73.85	2620.49	1176.187	7446.107	262.8403
6.66	2702.702	889.5984	7752.654	254.1721	74.74	2622.907	1244.608	7311.779	262.7643
7.56	2530 746	1003 241	7448 856	353 4269	75.64	2616 151	1287 643	7285 449	301 6918
9.45	2390.740	1005.241	7258 120	246 1599	76.53	2588 774	1309.82	7203.447	322 889
0.45	2509.701	1076.90	7336.129	226 4754	70.55	2502.14	1205.576	7260 454	204 7202
9.35	2502.936	1136.792	/36/.962	336.4754	77.43	2595.448	1285.570	7200.454	284.7382
10.25	2481.836	1340.081	7200.593	353.0964	/8.33	26/2.269	1256.47	/181.161	306.0728
11.14	2555.75	1340.553	7242.176	315.5316	79.22	2693.145	1227.887	7565.694	283.1577
12.04	2642.821	1306.867	7297.47	321.2736	80.12	2694.385	1124.905	7405.542	252.5307
12.93	2558.214	1249.973	7206.888	300.0759	81.01	2783.406	1151.388	7571.904	266.4355
13.83	2671.68	1262.192	7367.138	297.8891	81.91	2748.512	1172.952	7351.604	249.5227
14 72	2538 845	1324 246	7219 768	282 9028	82.81	2757.948	1143,903	7366 303	266 9129
15.62	2742.052	1272 848	7274.0	202.5020	83.70	2730.261	1117.02	7436 287	270 1736
15.02	2742.032	12/2.040	7290 921	292.3920	83.70	2730.201	1097 600	7430.267	270.1730
16.52	2039.895	1340.849	/389.821	290.1417	84.00	2495.789	1087.009	7019.203	205.857
17.41	2669.348	1277.848	7374.052	308.7993	85.49	2467.249	1138.735	/086./3/	288.3063
18.31	2627.103	1295.648	7486.667	298.599	86.39	2579.476	1123.786	7081.355	267.2915
19.20	2658.51	1268.559	7436.368	286.3393	87.28	2745.526	1195.635	7530.568	250.915
20.10	2662.057	1333.677	7504.479	270.0627	88.18	2664.755	1207.432	7455.43	284.7586
21.00	2725.215	1254.408	7495.965	268.6023	89.08	2893.274	1230.231	7702.522	255.6533
21.89	2662 913	1289 588	7421 898	266 5319	89.97	2704 892	1203 613	7608 244	295 8539
21.09	2672.44	1260.802	7425.202	270 524	00.87	2603 307	1203.015	7408 305	255 2487
22.19	2072.44	1200.803	7465.592	270.334	90.87	2655 501	1221.470	7406.595	250.1601
23.08	2527.891	1208.181	7389.820	270.218	91.70	2033.301	1327.003	7490.08	259.1091
24.58	2565.622	12/8./11	/348.454	238.8903	92.66	2449.181	1467.356	7265.224	250.1702
25.47	2689.967	1269.472	7538.688	273.6895	93.55	2269.269	1490.965	7134.286	232.0989
26.37	2626.765	1351.284	7419.819	291.8775	94.45	2589.16	1332.427	7147.323	274.7802
27.27	2609.035	1295.076	7353.302	278.3922	95.35	2630.129	1247.416	7352.599	238.5998
28.16	2668.797	1252.798	7521.304	282.9638	96.24	2546.968	1271.476	7579.445	281.5184
29.06	2615 573	1263 091	7385 975	276 0704	97.14	2597.449	1242.014	7220 373	270 7836
29.00	2717 446	1234 163	7384 241	259 5685	98.03	2598 786	1215 132	7569 774	287 2859
20.95	2760 110	1269.004	7250 549	297.3003	08.03	2710 212	1180.010	7662 77	267.2037
50.85	2700.119	1208.994	7550.548	267.5501	90.93	2/19.515	1107.919	7002.77	203.11
31.74	2648.474	1259.961	/24/.588	262.0195	99.83	2045.141	1197.831	7265.416	255.4514
32.64	2663.767	1246.033	7491.112	279.3276	100.72	2685.155	1230.35	7466.163	260.7938
33.54	2551.379	1244.757	7378.057	269.7428	101.62	2732.974	1205.622	7499.547	279.4072
34.43	2565.302	1238.721	7337.412	258.8344	102.51	2733.957	1131.092	7450.284	244.4141
35.33	2693.124	1276.792	7323.045	302.3608	103.41	2688.583	1220.542	7744.396	241.8573
36.22	2707 764	1279 143	7271.068	282 2742	104.30	2779.939	1155.023	7447.559	236.7847
37.12	2690 972	1224 511	7392.059	279 1021	105.20	2660 716	1221 782	7623.7	276 8709
28.02	2691 255	1224.511	7326 545	208 110	105.20	2600.710	1133 000	7614 53	235 3742
58.02	2081.333	1209.712	7320.343	308.119	100.10	2099.379	1133.909	7014.55	235.5742
38.91	2551.305	1351.149	/335.09	312.561	106.99	26/5.853	1142.257	/408./8/	272.7451
39.81	2514.326	1307.722	7346.01	283.9139	107.89	2762.548	1180.908	7588.629	244.6136
40.70	2681.523	1307.975	7401.688	278.0466	108.78	2553.768	1138.342	7478.792	315.9957
41.60	2540.946	1336.016	7250.799	307.4184	109.68	2580.943	1218.997	7357.685	274.8211
42.49	2603.799	1284.423	7399.454	303.1963	110.58	2491.867	1237.165	7374.934	296.9945
43.39	2630.671	1312,869	7287 755	284 1487	111.47	2530.854	1226.173	7267.243	297.4434
44 29	2568 281	1317 709	7227 321	310 8346	112 37	2640 226	1196 555	7197 064	274 6043
45.19	2500.201	1201 712	7200.856	205 472	112.37	2606 619	1272 539	7332 921	265 8779
45.18	2580.02	1291.715	7299.830	303.472	113.20	2000.019	1109.922	7552.921	205.8779
46.08	2575.59	1351.009	/180.475	328.0714	114.10	2002.525	1198.822	7317.446	204.0039
46.97	2635.947	1377.032	7290.436	301.026	115.05	2638.766	1184.401	/419./31	252.4514
47.87	2572.401	1353.81	7376.938	288.9901	115.95	2626.544	1268.597	7319.503	276.4222
48.77	2545.693	1271.531	7372.226	246.9741	116.85	2634.796	1275.154	7308.774	282.2338
49.66	2684.584	1304.87	7356.053	252.7064	117.74	2593.846	1317.947	7568.595	292.3822
50.56	2697.106	1212.987	7405.73	269.1033	118.64	2631.955	1266.222	7229.271	252.8503
51.45	2663 779	1266 641	7412,823	272,9094	119.53	2657.463	1221.19	7281.286	278.8765
52 35	2681 786	1200.011	7381 647	273 6895	120.43	2690 148	1294 494	7392 607	302 1376
52.33	2682.067	1292.402	7245 600	273.0075	120.43	2553 404	1294.494	7404 485	302.1570
55.24	2082.007	1202.709	7343.009	274.9797	121.52	2555.404	1201.935	7404.405	296 1906
54.14	2665.379	1201.28	/4/8.29	272.5194	122.22	2580.085	1340.590	7240.084	280.1800
55.04	2619.001	1208.194	7335.517	286.4502	123.12	2488.472	1336.081	7253.925	305.9525
55.93	2666.868	1263.091	7568.856	275.49	124.01	2487.891	1326.359	7332.23	295.4083
56.83	2580.283	1222.011	7389.826	265.8776	124.91	2552.883	1306.841	7259.64	301.1496
57.72	2654.285	1281.306	7304.478	279.7213	125.80	2701.748	1225.377	7423.227	264.2654
58 62	2640 45	1337 598	7382 574	284 524	126.70	2697.763	1220.223	7566.207	280.7942
50.02	2614 58	1282.00	7451 802	302 1907	127.60	2759 407	1163 75	7499 262	270 7631
60 41	2576 201	1251 942	7380 005	2/6 0524	1227.00	2628 012	1185 015	737/ 366	286 6762
21 21	2270.301	1201.042	7120 101	240.0334	120.49	2020.712	11/02/015	7167 621	200.0203
01.31	2023.980	1240.752	/438.104	2/8.9581	129.39	2023.823	1146.08	7402.034	273.0148
62.20	2584.505	1240.343	/503.162	291.432	130.28	2753.255	1186.947	/533.326	2/9.6624
63.10	2659.141	1199.096	7406.446	279.6622	131.18	2746.325	1130.21	7540.648	281.4833
63.99	2726.607	1252.289	7598.063	279.9727	132.07	2626.403	1147.59	7552.253	272.9857
64.89	2639.628	1270.562	7324.814	295.7188	132.97	2688.811	1283.731	7267.008	320.162
65 79	2669 196	1284 196	7235 747	280 5219	133.87	2612 356	1216 088	7280 106	272 8743

134.76	2686.964	1216.037	7514.035	306.8322	202.84	2521.877	1218.144	7184.525	282.1575
135.66	2653.009	1355.958	7253.006	255.0875	203.74	2477.072	1284.069	7190.587	274.7595
136.55	2550.441	1334.208	7295.057	304.8412	204.63	2536.563	1282.103	7255.736	302.3811
137.45	2518.494	1269.273	7056.393	300.7361	205.53	2510.914	1320.997	7152.657	299.9214
138.34	2579.973	1259.716	7240.161	276.7154	206.43	2536.191	1306.495	7196.211	295.1948
139.24	2580.464	1296.549	7292.021	311.0812	207.32	2595.178	1236.037	7305.113	278.8619
140.14	2704.474	1240.134	7323.691	307.1782	208.22	2490.858	1263.112	7202.438	298.901
141.03	2626.319	1255,425	7354,707	274.4135	209.11	2578.712	1456.475	7290.886	282.9001
141.93	2412.74	1261.862	7297.37	273.6542	210.01	2548.12	1308.824	7193.027	313.1741
142.82	2513.863	1248.88	7312 592	292.6434	210.90	2580 437	1370 958	7206.609	295 9268
143.72	2632 444	1216 859	7282 278	275 7801	211.90	2440 494	1323 703	7169 333	307 4334
144.62	2032.444	1210.055	7447.066	260 1826	211.00	2543 148	1367 053	7244 750	314 0000
145.51	2608 070	1114.02	7410 500	207.1020	212.70	2402 845	1220 255	7150.020	200 7255
145.51	2672 044	1164 201	7410.399	270.4231	213.39	2495.045	1329.555	7139.929	244 7717
140.41	2073.044	1002.151	7410.112	254.2921	214.49	2559 750	1449 252	7233.143	220 1972
147.50	2008.548	1092.131	7233.242	202.5507	215.50	2556.759	1446.552	7150 990	201.16/2
148.20	2720.859	1105.009	/034.948	285.9405	210.28	2542.558	1307.293	/159.889	301.1699
149.09	2654.114	1121.686	/692.1/8	233.1136	217.18	2419.002	13/8.965	/095.156	314./8//
149.99	26/8.028	11/5.00/	/48/.56	281.6328	218.07	2559.435	13/6.611	/026.959	322.1505
150.89	2607	1185.279	7496.349	256.4214	218.97	2492.117	1312.303	7132.546	324.1207
151.78	2684.466	1215.639	7424.146	231.6887	219.86	2428.189	1340.895	6915.801	306.0292
152.68	2622.415	1173.282	7423.506	273.4902	220.76	2411.735	1355.474	6983.285	292.9713
153.57	2655.901	1205.14	7398.839	290.0367	221.65	2419.736	1284.154	6746.839	350.4959
154.47	2585.276	1156.173	7299.705	292.5608	222.55	2129.931	1144.224	5781.666	256.3217
155.37	2627.17	1136.562	7274.93	281.3984	223.45	2030.481	1167.559	5514.452	247.7748
156.26	2625.431	1252.524	7246.257	294.4147	224.34	2242.624	1225.336	6439.25	290.0284
157.16	2596.06	1190.79	7212.915	313.2571	225.24	2322.266	1214.244	6548.347	302.1115
158.05	2598.313	1200.943	7293.463	274.0296	226.13	2385.162	1229.228	6954.112	272.81
158.95	2671.434	1154.441	7378.989	253,7975	227.03	2464.613	1230.305	7314.239	329.9757
159.84	2607.54	1183,846	7366 673	289 4996	227.92	2435,358	1194 441	6920.141	253 5716
160 74	2525 095	1188 231	7491 325	276 9061	228.82	2378 633	1199 309	6758.13	259 0345
161.64	2658 664	1196 257	7450 731	309 9698	220.02	2364 97	1290.648	6930 219	284 0345
162.53	2707 543	1200.685	7335 201	262 4152	220.61	2547 476	1427 786	7153 /28	317 9776
163.43	2707.343	1166 609	7382.864	202.4152	230.01	2573.81	1365 / 89	7160.087	313 365
164 22	2584.007	1240.476	7480.28	242.5815	231.51	2323.61	1422 780	7016 258	270 1822
165.00	2364.097	1240.470	7400.30	274.0223	232.40	2470.101	1422.769	7010.238	270.1623
105.22	2/12.29/	11/8.//1	7398.88	255.9755	255.50	2482.515	1402.231	7032.079	345.0039
100.11	2074.113	1256.999	7305.024	205.4705	234.20	2515.276	1527.109	7005.019	325.4108
167.01	25/1.635	1185.285	7344.439	257.5536	235.09	2477.192	1467.957	/068.582	329.01/5
167.91	2674.631	1160.994	7360.468	272.8744	235.99	2412.177	14/2.605	7099.006	333.9349
168.80	2631.204	1216.222	/189.488	315.576	236.88	2600.414	1407.435	/125./4	305.797
169.70	2664.275	1182.371	7224.175	239.6613	237.78	2547.708	1489.998	7254.633	313.5413
170.59	2674.155	1227.886	7254.616	271.7422	238.67	2519.273	1408.844	7095.382	308.6092
171.49	2610.891	1156.223	7222.167	297.1648	239.57	2392.152	1421.292	7099.448	308.3893
172.39	2579.343	1291.346	7327.437	303.4075	240.47	2585.294	1431.378	7134.731	314.5967
173.28	2521.903	1280.773	7368.512	263.9311	241.36	2476.817	1439.141	7121.838	315.966
174.18	2637.213	1146.442	7312.623	290.0778	242.26	2522.617	1416.186	7087.21	307.2806
175.07	2606.73	1262.283	7334.461	260.3536	243.15	2539.984	1448.145	7095.541	321.2148
175.97	2681.498	1240.739	7389.725	264.2978	244.05	2519.178	1436.446	6997.563	301.4869
176.86	2599.083	1216.467	7411.676	267.5816	244.94	2498.178	1435.903	7235.351	315.2127
177.76	2678.077	1223.39	7435.992	286.5269	245.84	2574.448	1398.608	7031.229	281.6534
178.66	2602.61	1273.637	7318.027	308.0139	246.74	2534.492	1390.125	7132.657	314.7961
179.55	2615.634	1184.972	7349.125	304.196	247.63	2515.987	1367.934	6964.76	316.1127
180.45	2614.797	1246.885	7383.727	278.9822	248.53	2536.513	1523.086	7076.452	316.488
181.34	2641.718	1270.365	7354.66	273.5572	249.42	2421.312	1410.535	7160.445	286.0165
182.24	2561.314	1259.723	7172.8	282.612	250.32	2473.837	1389.369	7185.016	363.5265
183.13	2563 054	1309.841	7318 612	273 5546	251.22	2344 982	1409.934	7051 853	294 4377
184.03	2593 626	1325.583	7366 785	313 4063	252.11	2558.536	1415.558	6920.257	272.499
184.93	2615.255	1268,969	7240 032	305 5626	253.01	2598 5	1392.213	7112.152	301.8211
185.82	2455.81	1306.5	7402 993	283 3687	253.01	2601 219	1434 713	7060.09	295 0946
186.72	2627 191	1242 477	7325.91	276 1142	254.80	2551.465	1507 589	7219 953	309.0783
187.61	2583 805	1231 407	7170.82	302 / 395	255.69	2533 355	1422 488	7220.869	302.0783
188 51	2582 544	1251.407	7312 585	272 3496	255.09	2550.555	1440.662	7085 182	286 3361
180.01	2582.544	1205.8	7386 687	272.3490	250.59	2320.323	1469.002	7085.182	200.5501
109.41	2550.001	1279.925	7380.087	209.5555	257.49	2461.651	1518 052	6025 407	224 701
101.20	2530.001	1232.203	7242.397	259 9221	250.50	2430.469	1440 214	6902 52	224.701
191.20	2300.009	1310.094	1310.431	200.0201	239.28	2444.303	1449.214	0093.33	324.373
192.09	2003.224	1236.982	1330.1	233.3103	200.17	2304.409	1421.330	1041.479	200 (219
192.99	2333.03	1193.332	1303.312	201.4333	201.07	2352.000	13/4.333	7122.079	274.2502
195.88	2034.865	1196./34	/4/2.86/	207.5998	261.96	2405.791	1412.13	/122.068	214.2582
194.78	2610.273	1253.501	/396.553	300.4339	262.86	2516.827	1422.596	6927.604	306.5068
195.68	2648.677	1207.177	/157.542	329.9382	263.76	2498.378	1412.562	6981.275	304.9583
196.57	2593.104	1287.41	7366.896	308.7234	264.65	2484.164	1476.293	6926.328	280.5886
197.47	2538.876	1295.073	7277.11	268.5521	265.55	2691.28	1408.723	7107.328	325.2111
198.36	2551.902	1292.522	7436.481	301.7712	266.44	2508.319	1368.679	7128.564	305.2723
199.26	2553.255	1233.384	7387.659	282.2195	267.34	2602.915	1405.491	7069.588	304.1316
200.15	2502.474	1314.071	7290.961	286.9984	268.24	2478.476	1288.641	6944.922	306.7121
201.05	2572.812	1285.338	7292.885	295.9185	269.13	2575.726	1308.823	7190.096	283.4479
201.95	2528.836	1313.146	7212.464	283.5035	270.03	2604.597	1334.143	7177.524	276.126

270.92	2535.806	1396.19	7161.212	301.7916	339.00	2524.504	1454.813	7071.292	281.753
271.82	2512.3	1377 703	7181 468	295 2938	339.90	2183 309	1288 602	7370 396	274 9555
271.02	2570 135	1305 728	7050 256	318 6725	340.80	1083 644	1682 660	6057 574	164 3114
272.71	2579.135	1275 450	7030.230	270.59(2)	241.00	007 176	2261.009	5912 274	104.5114
2/3.61	2606.422	13/5.459	7180.942	279.5862	341.69	88/.1/0	2201.998	5815.574	187.5203
274.51	2511.505	1357.582	/349.602	304.8765	342.59	1362.52	1413.558	4843.377	923.6559
275.40	2572.887	1347.544	7393.325	281.2428	343.48	2230.391	1307.112	6590.488	486.01
276.30	2573.378	1367.668	7233.315	279.6418	344.38	2397.852	1453.371	7183.635	286.519
277.19	2639.787	1251.487	7288.088	302.1816	345.27	2381.075	1409.16	7166.97	295.6431
278.09	2540.772	1192.356	7396.634	284.4037	346.17	2413.558	1366.793	6979.083	315,1766
278.99	2/90 132	1312 286	7155 21	278 9526	347.07	2514 329	1/15 913	7060 894	290 452
270.99	2490.132	1312.280	7155.21	278.9520	247.07	2502 200	1413.313	7000.894	290.432
279.88	2613.813	1269.773	/20/.014	296.728	347.96	2503.209	1469.383	7072.202	320.0236
280.78	2523.177	1290.687	6917.092	311.7847	348.86	2466.076	1510.387	7129.802	303.5568
281.67	2499.534	1355.178	7005.417	332.6123	349.75	2421.164	1417.123	6960.629	332.9785
282.57	2515.429	1356.284	7267.029	298.8858	350.65	2435.091	1436.01	6943.566	300.7411
283.46	2555.722	1313.264	7101.95	310.0137	351.54	2424.937	1497.726	7097.165	308.6237
284 36	2651 382	1309 513	7190 979	281 2191	352 44	2443 564	1372.8	7153 043	277 9221
204.50	2527 120	1270 522	7120 102	201.2171	252.44	2445.504	1299 574	7048 820	212 926
205.20	2337.129	1370.333	7130.103	200.0152	355.54	2417.033	1502.101	/040.029	312.030
286.15	2492.552	1367.691	/132.80/	300.8153	354.23	2396.907	1503.101	6937.992	293.0922
287.05	2507.339	1329.48	7233.371	319.5931	355.13	2424.969	1339.467	6979.247	295.8983
287.94	2575.943	1309.492	7225.791	278.0704	356.02	2376.162	1411.548	7136.39	288.4206
288.84	2542.583	1325.759	7317.396	302.6066	356.92	2382.039	1403.685	6963.534	282.768
289 73	2513 272	1246 74	7153 083	258 0545	357.82	2536 211	1297 142	7104 19	317 1122
200.63	2622 220	1276 527	7204.016	202 0022	259 71	2412 102	1506 752	7121 771	280 8061
290.03	2033.329	12/0.337	7204.010	293.9923	350.71	2412.103	1300.732	7131.771	269.6901
291.53	2606.7	1264.218	7264.542	296.6396	359.61	2458.343	1418.195	7084.245	279.692
292.42	2564.846	1251.542	7298.899	296.9297	360.50	2354.061	1409.361	7121.934	324.0244
293.32	2531.555	1232.803	7295.03	290.9626	361.40	2482.814	1381.215	7209.971	303.5673
294.21	2509.855	1252.521	7169.493	291.0772	362.29	2517.31	1332.436	7213.838	279.3475
295.11	2491 532	1366.761	7051.594	319,7076	363.19	2433.638	1361.868	7177.851	323.0147
296.01	2410.254	1513 283	7068 809	309 25/2	364.09	2564 617	1301.125	7207 808	287 0399
290.01	2410.234	1313.265	7000.009	220 1272	264.09	2504.017	1272.240	7207.808	207.0399
296.90	2455.354	1463.659	/039./35	329.13/3	364.98	2510.23	1272.249	/104./29	282.5331
297.80	2452.957	1460.612	6989.158	330.3074	365.88	2419.271	1337.618	7168.196	308.3483
298.69	2407.487	1395.219	7043.011	327.5919	366.77	2537.947	1315.826	7142.159	294.5334
299.59	2381.959	1437.133	7013.834	337.5262	367.67	2543.682	1205.598	7047.926	278.8968
300.48	2437 192	1597.367	6890.723	335,7144	368.56	2615 559	1201.64	7226.65	262,0995
301.38	2474 804	1517.7	7026 326	3/8 789/	369.46	2610.078	1220.096	7350 517	213 4206
202.28	2474.004	1500 112	7048.01	247 0702	270.26	2010.078	1152.1	7330.317	215.4200
502.28	2420.317	1500.112	7048.91	547.9702	370.30	2318.800	1132.1	7259.500	223.0437
303.17	2325.159	1593.048	7054.613	309.3485	371.25	2535.85	1209.109	7243.503	276.5605
304.07	2436.906	1475.093	7115.328	329.8269	372.15	2614.011	1243.894	7151.406	284.1487
304.96	2413.271	1519.49	7042.914	337.681	373.04	2632.062	1137.843	7356.522	245.0182
305.86	2438.745	1436.712	6945.298	356.1428	373.94	2520.489	1230.372	7193.485	262.8053
306 75	2354 235	1528 687	7057 351	315 3414	374 84	2647 835	1163 054	7367 961	288 5407
307.65	2470.978	1/67 18	6938 935	311 8901	375 73	2604 124	1135 325	7356 982	259 4442
209.55	2470.978	1407.10	0930.935	206 2522	276.62	2004.124	1120.51	7550.982	239.4442
308.55	23/5.095	1440.991	6995.46	306.2522	3/0.03	2580.577	1129.51	/511.4/1	272.0739
309.44	2410.025	15/8.542	/090.156	335.7941	377.52	2666.82	1098.335	/291.455	248.2198
310.34	2442.708	1431.973	7030.32	303.2166	378.42	2512.973	1081.128	7497.102	247.7191
311.23	2548.02	1515.221	7072.928	335.404	379.31	2744.803	1136.695	7436.527	235.3189
312.13	2437.739	1484.558	6937.143	353.0411	380.21	2615.2	1073.735	7539.416	277.3959
313.03	2446 331	1473 546	6983 688	330 6624	381.11	2691.3	1075.61	7175.079	290 4008
212.02	2516 565	1468.07	7119 966	221 6929	282.00	2522 408	1074 465	7261 107	290.4000
313.92	2310.303	1406.97	7110.000	331.0626	382.00	2525.408	1074.405	7501.197	260.2073
314.82	2421.745	1441.441	/008.54/	291.2564	382.90	2620.286	1053.247	/541.542	265.7665
315.71	2350.817	1466.825	7060.291	318.2881	383.79	2677.548	1087.216	7463.54	245.573
316.61	2385.58	1474.347	7085.955	315.3414	384.69	2694.198	1146.371	7357.971	216.8814
317.50	2376.108	1476.913	7013.318	339.0862	385.59	2744.488	1105.163	7390.022	235.0247
318.40	2487.713	1480.74	6861.632	284.7144	386.48	2617.99	1130.021	7368.121	238.125
319.30	2416 691	1442 716	6858 542	333 0376	387 38	2628 319	1085 547	7539 587	266 5872
320.19	2575 276	1587 718	7037 298	352 686	388.27	2662 541	1025 / 19	7265 35	280 252
321.00	2575.270	15/0 /20	6071 105	202.000	200.17	2662.571	1025 702	7210 610	200.252
321.09	2444.2	1549.400	0921.165	292.4229	200.06	2003.338	1055.762	7342.013	270.2930
321.98	2460.768	1547.112	/021.302	322.9298	390.06	2608.765	997.2624	/480.55/	250.8356
322.88	2305.156	1553.001	6992.957	333.058	390.96	2749.806	1073.577	7480.197	251.6158
323.78	2375.165	1497.585	6905.83	293.0273	391.86	2733.393	1078.983	7340.816	256.1077
324.67	2397.717	1489.395	6932.304	344.4933	392.75	2597.457	1040.463	7540.823	264.7312
325.57	2357.485	1460.538	6906.152	312.1157	393.65	2666.947	1057.588	7390.223	263.3654
326.46	2448 501	1491 696	7029 665	316 1566	394 54	2738 228	1040 585	7415 315	278 6715
377 24	2447 002	1562 002	6865 622	27/ 72/0	205 44	2622 102	1020 40	7277 110	210.0113
220.20	2447.002	1470 202	7152.005	264.0012	373.44	2033.103	1020.09	7511.119	242.3373
320.23	2392.132	14/2.322	/152.085	304.9013	390.33	2733.000	1028.203	7344.539	201.84
329.15	23/6.749	1395.495	6927.311	310.7698	397.23	2/38.619	1013.364	/494.847	237.7202
330.05	2404.978	1459.68	6932.041	332.494	398.13	2698.507	1061.537	7415.243	288.2654
330.94	2267.677	1432.172	6948.259	303.2719	399.02	2701.643	985.6638	7455.976	245.1978
331.84	2323.817	1462.869	6971 42	330.7623	399.92	2666.609	1013.297	7286.449	244,2975
332 73	2434 988	1514 28	7004 436	309 1487	400.81	2651 232	1062 75	7607 121	256 198
333.62	2/08 772	1//2 021	6850.05	351 1252	401 71	2506.864	1120.24	7/17 /00	230.170
221 52	2400.772	1200.205	7011 (72	210 5220	402.61	2570.004	1120.34	7265 742	237.0211
334.32	2400.793	1300.205	/011.0/3	318.3228	402.61	2003.00/	908.2141	1303.142	2/1.4/42
335.42	2464.243	1421.721	/166.605	328.1573	403.50	2684.523	1033.133	/445.577	243.868
336.32	2402.781	1486.436	6997.312	304.2316	404.40	2734.973	1121.694	7317.563	249.9352
337.21	2395.996	1418.661	6988.932	301.3957	405.29	2667.813	1034.582	7375.86	270.4486
338.11	2399.422	1445.375	7057.587	301.3296	406.19	2678.224	1079.62	7220.986	255.3871

407.08	2596.75	1115.038	7380.328	294.2625
407.98	2587.171	1146.807	7317.918	284.4187
408.88	2582.268	1082.216	7477.83	290.8419
409.77	2630.384	1155.631	7439.865	245.1935
410.67	2430.052	1146.623	7181.276	260.0289
411 56	2537 366	1180 476	7341 797	294 5177
412.46	2573 559	1216 355	7297 218	250 5454
413 35	2594 135	1182 736	7175 254	285 9598
414 25	2576.46	1224 751	7254 054	303 4016
415.15	2576.40	1184 093	7234.034	280 8727
416.04	2530.745	1264.015	7276 511	200.0727
416.04	2015.259	1266 812	7122 0.311	298.0093
410.94	2555.02	1200.812	7122.939	270 8622
417.05	2569.007	1255.195	7210.379	270.8033
410.75	2505.205	1200.000	0937.498	269.2100
419.63	2517.181	1300.098	/111.066	286.5498
420.52	2645.177	1258.326	/15/.115	298.2443
421.42	2463.902	1328.063	7004.522	230.9778
422.31	2486.162	1329.998	/046.60/	312.1703
423.21	2424.803	1458.281	6847.057	303.0062
424.10	2380.492	1464.881	6692.908	338.6406
425.00	2324.382	1512.351	6744.062	320.5037
425.90	2271.71	1588.059	6807.968	340.4114
426.79	2328.698	1652.672	6922.909	379.6719
427.69	2296.81	1585.715	6761.474	372.3842
428.58	2293.63	1569.898	6744.555	369.7534
429.48	2301.288	1541.11	6932.762	318.5025
430.38	2303.413	1522.691	6736.297	370.2383
431.27	2361.415	1514.446	6752.585	302.8062
432.17	2334.585	1472.604	6739.182	362.0198
433.06	2346.977	1573.252	6860.217	342.3672
433.96	2406.452	1477.925	6839.364	304.3116
434.85	2323.977	1443.292	6910.216	276.0458
435.75	2402.668	1414.87	6920.537	337.5703
436.65	2340.326	1483.702	6948.917	306.9631
437.54	2385.065	1504.134	7025 596	322,344
438.44	2488.98	1519.841	6877.265	347.1641
439 33	2381 886	1426 147	6910 559	319 0725
440.23	2472 825	1562 507	6944 938	303.0613
441 12	2438 993	1452 648	6800 741	319 1178
442 02	2291 079	1463 521	6928 852	298 1241
442.02	2251.075	1405.521	6085 177	322 4080
1/13 81	2460 837	1/18 989	6864 79	277 026
445.01	2400.857	1200 248	6804.094	277.020
444.71	2303.20	1377.240	6004.264	274.3702
445.00	2337.014	1407.071	6814 42	211 2526
440.50	2420.409	14/1.390	0014.43	344.3330
447.40	2434.422	1391./08	/0/2.809	319.00/9
448.29	2415.809	1391.409	0949.803	218.1812
449.19	2429.406	1367.715	6952.019	515.1155

Table 3: Fig 14, A1a Line 13

Distance	М.,	41	C !	TT:					
(um)	Mg	Al	51	11	1.46	2827.166	1441.366	7935.955	370.6246
0.01	0700 1 (0	1514.001	7(01 570	240 7016	1 48	2544 784	1438 87	7790 289	296 9944
0.01	2798.162	1514.091	/621.5/9	340.7216	1.10	2011.701	1502 700	7796.459	210.0001
0.03	2782.476	1461.65	7758.638	285.2422	1.50	2906.67	1502.709	//86.458	319.8881
0.05	2802 102	1567 022	8074 283	326 6002	1.53	2727.824	1488.261	7586.983	346.7307
0.05	2002.102	1307.922	0074.203	520.0902	1.55	2780 867	1412 871	7540.1	305 441
0.07	2790.312	1577.429	7482.643	316.2959	1.55	2789.807	1412.071	7549.1	303.441
0.10	2714.18	1415.763	7755,355	311.0255	1.57	2607.386	1586.922	7569.28	310.8644
0.12	2625 246	1541.045	7526 904	207 5226	1.59	2907.897	1688.535	7457.398	274.7344
0.12	2055.240	1541.045	/330.804	297.3230	1.62	2012 616	1470 754	7551.050	220.0614
0.14	2762.931	1526.758	7738.014	305.7999	1.02	2812.010	14/9./34	/331.039	550.9014
0.16	2793 552	1524 868	7465 186	335 5531	1.64	2610.509	1491.084	7860.447	331.7545
0.10	2175.552	1324.000	7405.100	202.000	1.66	2461 209	1478 651	7772 337	415 6169
0.18	2834.979	1441.87	/928.646	292.989	1.00	2707.265	1502.057	7772.337	413.0107
0.21	2881.822	1457.426	7769.294	311.9802	1.68	2/8/.365	1583.257	/233.896	243.8861
0.22	2674 702	1505 54	7048 752	242 8202	1.70	2700.22	1453.419	7765.151	343.574
0.23	2074.703	1505.54	7940.732	343.6292	1 73	2735 142	1462 312	7767 388	265 3528
0.25	2982.934	1489.765	7641.892	278.2791	1.75	2735.442	1402.312	//0/.300	205.5528
0.27	2649.013	1485 645	7676 572	314 7764	1.75	2652.498	1474.97	7739.216	294.4152
0.27	2047.013	1403.043	7070.572	224.0522	1.77	2699.963	1550.87	7555.814	382.8124
0.30	2/07.973	1467.482	/4/4.299	324.9523	1.70	2520 510	1500.029	7000 107	264.0227
0.32	2578.139	1524.92	7611.114	310.1849	1.79	2339.319	1509.928	/000.10/	204.8237
0.34	2671 851	1488 369	7481 802	310 2985	1.82	2610.909	1410.754	7547.269	287.6598
0.54	2071.001	1500.264	7401.002	225 6004	1 84	2484 054	1718 363	7547 744	301 7948
0.36	2807.584	1509.364	/908.0/3	325.6884	1.04	2404.054	1/10.303	7347.744	274 5022
0.39	2832.796	1526.205	7731.904	287.291	1.86	26/0.64	1459.313	/266.05/	3/4.5833
0.41	2862 156	1267.002	7795 195	202 1647	1.88	2618.775	1522.866	7767.375	336.6105
0.41	2805.150	1307.092	1105.405	505.1047	1.01	2626 857	1442 805	7204 166	221 0075
0.43	2611.308	1454.982	7742.848	325.1136	1.91	2030.857	1445.805	7294.100	321.0975
0.45	2637 106	1520 314	7710.05	278 0602	1.93	2520.02	1531.364	7711.396	308.1808
0.15	2037.100	1520.511	7710.03	270.0002	195	2772 344	1599 256	7780.01	345 2562
0.48	2702.94	1541.595	//89.2/4	296.683	1.07	2772.511	1506 507	7626 240	202.0012
0.50	2928.575	1491.147	8095.552	393.8863	1.97	2790.015	1500.587	/030.249	292.0912
0.52	2701 382	1351 761	7668 845	289 2471	2.00	2871.63	1553.255	7748.499	342.147
0.52	2771.302	1551.701	7000.043	207.2471	2.02	2772 557	1358 035	7828 243	402 6438
0.54	2692.841	1557.146	7774.343	354.9595	2.02	2772.557	1556.055	7626.245	402.0450
0.56	2811.335	1485.712	7857.002	306.3863	2.04	2791.613	1537.972	7/09.684	281.8589
0.50	2794 19	1611 522	7600 000	240.0549	2.06	2553.319	1672.313	7978.507	291.4024
0.59	2/04.10	1011.352	/000.900	549.0548	2.08	2627 540	1420 756	7770 800	222 8042
0.61	2690.952	1349.427	7566.3	275.4248	2.08	2037.349	1430.750	1119.099	323.6942
0.63	2887 897	1497 146	7476 774	317 9321	2.11	2624.167	1530.921	7532.142	318.5173
0.05	2007.077	1407.070	7770.774	202.0000	2.13	2768 592	1671 697	7267 55	309 6552
0.65	2/33./16	1407.872	1129.322	292.9889	2.15	2700.572	12067	7207.005	242 5172
0.68	2884.494	1601.366	7987.124	279.5915	2.15	2772.078	1396./	/631.935	343.51/2
0.70	2851 262	1501 020	7010 300	315 1922	2.17	2842.461	1547.807	7779.041	310.1838
0.70	2031.202	1371.727	7717.577	313.1722	2 20	2717 213	1324 865	7602 373	298 5255
0.72	2938.605	1413.257	7625.12	338.3496	2.20	2717.215	1324.005	7002.373	200.5255
0.74	2813.346	1588.924	7701.622	283.1244	2.22	2685.77	1433.48	/855.9/8	308.7094
0.77	2728 55	1541 217	8126 504	225 7262	2.24	2505.937	1497.59	7384.888	305.6974
0.77	2736.55	1341.317	8120.304	323.7303	2.26	2676 413	1552 311	7545 043	337 7646
0.79	2794.66	1482.146	7586.188	365.617	2.20	2070.415	1552.511	7545.945	557.7040
0.81	2784 596	1335.426	7665 472	405 4888	2.29	2745.436	1542.916	7998.368	326.6906
0.02	2010 650	1451 151	7765 179	226.0107	2.31	2884.963	1554.637	7858.665	356.3859
0.85	2818.039	1451.151	//05.1/8	526.0107	2.22	20011502	1520.969	7707.200	255 0575
0.86	2694.491	1518.145	7326.539	270.7855	2.55	2815.0	1529.808	//9/.380	255.8575
0.88	2836 / 1	1511 868	7482 572	302 2196	2.35	2672.044	1572.53	7889.389	296.682
0.88	2030.41	1511.000	7462.572	302.2190	2 38	2545 246	1567 803	79/9 5/8	286 /1985
0.90	2736.513	1500.703	7870.399	236.3937	2.30	2040.240	1307.005	7747.540	200.4705
0.92	2731.5	1510.931	7967.226	361.6114	2.40	2899.973	1436.81	8019.102	309.6551
0.04	2816 082	1487.070	7678 067	291.019	2.42	2688.139	1585.804	7391.585	318.8858
0.94	2010.002	1407.979	7078.007	201.010	2.44	2875 600	1611 804	7825 007	206 2576
0.97	3018.236	1389.927	7838.184	304.9596	2.44	2875.099	1011.004	7825.097	290.2370
0.99	2751.678	1389.26	7881.459	293,357	2.46	2653.519	1582.251	7683.598	292.1463
1.01	2596 22	1510.002	7602 470	212 202	2.49	2653.624	1541.694	7559.088	333.2844
1.01	2380.23	1510.095	/602.4/9	515.295	2.51	2670 222	1474.960	7601 217	220 0721
1.03	2861.641	1537.921	7551.488	308.7581	2.51	2070.323	14/4.009	/091.31/	556.6751
1.06	2629 596	1580 979	7591 608	283 0766	2.53	2759.017	1417.868	7630.113	271.2575
1.00	2027.370	1402.151	7571.000	205.0700	2 55	2703 735	1502 531	7890 326	275 4243
1.08	2763.265	1493.151	/666.46/	347.1554	2.50	27021146	1520.207	7926.920	208 2112
1.10	2779.387	1587.925	7536.679	319.8314	2.38	2/5/.140	1529.507	/030.029	298.2112
1 1 2	2701 876	1//8//8	7767 847	311 0255	2.60	2761.65	1492.195	7930.56	303.5896
1.12	2701.070	1512.027	7707.047	204.2500	2.62	2604 696	1359 692	7725.2	326 6909
1.15	2733.708	1513.037	8049.015	294.3588	2.02	2004.070	1555.052	7725.2	320.0909
1.17	2769.941	1487.93	7804.907	282.6995	2.64	2/14.961	1/08.467	/563.138	526.4801
1 10	2644 511	1443 315	7648 602	307 7562	2.67	2673.776	1459.749	7751.968	355.9614
1.19	2044.311	1445.515	7046.002	307.7302	2.60	2626 862	1/22.8	7672.08	200 5511
1.21	2754.979	1460.318	7739.273	288.3496	2.09	2030.803	1432.0	1012.08	309.3311
1.24	2650.662	1357.984	7627.452	299.8955	2.71	2791.481	1506.701	8069.339	347.1057
1.20	2711.040	1511.002	7974.04	252 2805	2.73	2952.186	1614 476	7305.708	338.663
1.26	2/11.049	1311.092	/8/4.24	552.5805	2.75	2720 745	1526 505	7600 766	315 1274
1.28	2750.321	1437.929	7824.676	306.8588	2.70	2720.743	1550.585	/000./00	515.1574
1 30	2792 417	1430 151	7646 393	338 7177	2.78	2835.956	1568.471	7907.359	348.5255
1.50	2172.417	1750.131	7070.373	000 1070	2.80	2787 826	1492 815	7406 198	279 1177
1.32	2911.039	1568.696	7483.402	290.1359	2.00	2707.020	1500.010	7400.170	217.11//
1.35	2690.973	1594.813	7365.209	330.4888	2.82	2695.569	1508.918	/633.203	315.2471
1 27	2702 001	1456 020	7961 007	361 0020	2.84	2585.412	1732.694	7686.534	309.2365
1.57	2192.881	1430.039	/ 601.88/	304.8238	2.01	297 704	1530 510	7775 000	340 4220
1.39	2742	1427.366	7708.511	319.8315	2.87	2121.100	1559.519	1123.022	349.4229
1 / 1	2873 9/1	1493 035	7967 516	324 2623	2.89	2866.249	1553.309	7413.164	324.8961
1.41	2073.741	1515.000	7,01.310	201.01	2 01	2620 974	1402 533	7715 377	263 8764
1.44	2899.111	151/.814	/031.281	321.21	2.71	2520.274	1611.064	0022 54	203.0704
					2.93	2506.664	1011.864	8033.54	524.3191
					2.96	2956.209	1496.749	7639.882	305.4333
					2 08	2608 533	1496 968	7611 758	361 0255
					2.90	2000.333	1450 75	7011.730	202.202
					3.00	2758.291	1450.75	//58.045	382.283
					3.02	2656.736	1566.868	7416.704	350.8486
					3.05	2708 509	1442 535	7033 032	3/7 52/1
					5.05	2100.370	1407	7755.754	377.3241
					3.07	2683.243	1485.694	/855.045	256.3858
3.09	2916.375	1501.864	7942.224	313.5079	4.79	2627.745	1450.755	7762.12	316.987
--------------	----------------------	----------	----------	----------	------	-----------	----------	----------	-----------
3.11	2620.14	1478.032	7744.365	333.2293	4.81	2694.708	1471.091	7635.383	312.9798
3.14	2754.572	1647.582	7394.831	309.4957	4.83	2662.457	1473.027	7665.505	292.091
3.16	2686.712	1671.802	7734.392	287.4512	4.86	2853.316	1514.582	7779.494	294.8319
3.18	2704.604	1594.751	7704.472	333.6537	4.88	2598.424	1499.641	7464.103	324.7919
3.20	2643.267	1456.532	7663.54	263.4526	4.90	2607.175	1403.088	7657.84	315,1922
3.22	2768.08	1623.36	7702.973	333,1253	4.92	2848 517	1437.643	7641.668	321.6266
3 25	2810 861	1479 253	7809.434	299 792	4 95	2713 261	1457 979	7418 246	326 7462
3.25	2507.013	1522 754	7037 106	302 902	4.95	2556 100	1632.002	7932 506	286 2406
2 20	23772 406	1502.625	7622.606	222 8602	4.00	2720.021	1550.010	7706 420	200.2400
2.29	2773.400	1207.267	7023.000	244.0424	4.99	2729.031	1339.919	7922 (55	328.2207
3.31	2/88.1/1	1397.367	//62.21/	344.9424	5.01	2/58.554	1484.919	/832.655	292.46
3.34	2649.244	1514.579	////.//4	3/5.89/3	5.04	2623.889	1565.14	/866./09	350.4799
3.36	2787.767	1521.528	/99/ 998	304.1179	5.06	2620.792	1500.803	7753.067	325.8488
3.38	2660.956	1638.863	7942.832	369.8873	5.08	2816.777	1424.647	7668.39	278.2205
3.40	2670.279	1378.311	7928.801	315.0881	5.10	3083.164	1568.363	7693.272	328.006
3.43	2626.367	1495.476	7561.055	319.8318	5.12	2828.258	1513.083	8159.554	333.5984
3.45	2652.839	1462.03	7863.386	279.591	5.15	2845.045	1504.924	7683.314	337.9795
3.47	2714.935	1509.752	7715.132	363.8217	5.17	2678.877	1478.422	7533.924	317.5153
3.49	2775.173	1446.814	7722.987	309.2375	5.19	2897.913	1630.362	7715.788	350.8486
3.52	2606.401	1516.59	7691.535	338.2933	5.21	2701.475	1572.693	7344.928	351.6908
3.54	2684.531	1538.693	7661.983	310.8659	5.24	2692.427	1558.197	7701.66	367.6193
3.56	2816.067	1481.309	7773.282	312.2918	5.26	2782.855	1520.583	7510.278	304.6462
3.58	2805.116	1489.747	7885.657	331.2263	5.28	2788.743	1627.806	7649.159	305.8575
3.60	2583.198	1457.812	7473.557	325,7933	5.30	2752.588	1557.918	7718.539	260.6564
3.63	2832.316	1453 426	7554.884	348,1566	5.33	2779.634	1503 968	7750.034	387.8203
3.65	2960 272	1672 033	7806 881	286 0255	5 35	2676.876	1590.639	7942 031	301 2177
3.67	2794 208	1611 531	7546.654	359 1267	5.35	2705.066	1528 307	7532.003	3/19 2638
2.60	2602 612	1600 522	7941.029	297 7651	5.37	2650.066	1482.600	7965 292	204 0601
2 72	2092.013	1248 50	7041.030	247 8022	5.39	2030.000	1402.099	7580.602	245 2000
274	2576.907	1546.59	7707 201	222.0072	5.42	2713.473	1449.240	7922.215	243.2009
5.74 2.76	2070.556	1040.038	7910 599	322.9973	5.44	2021.014	1437.421	7052.215	290.7373
3.70	2738.943	1598.809	7819.588	313.7005	5.40	2780.294	1440.552	7736.429	290.313
3.78	26/4.0/6	1516.084	/806.545	272.1551	5.48	2886.543	1420.702	//05.939	241./219
3.81	2544.983	1548.191	//93.059	323.3662	5.50	2740.941	1526.304	7772.951	312.8203
3.83	2656.897	1502.973	7974.637	393.4614	5.53	2853.675	1488.08	7695.998	366.0896
3.85	2762.58	1575.862	7843	332.2832	5.55	2666.869	1682.527	7822.872	337.8203
3.87	2889.471	1430.586	7614.946	300.4796	5.57	2633.647	1493.701	7944.28	280.3844
3.90	2730.148	1524.368	7730.825	254.5911	5.59	2649.291	1502.141	7506.538	335.8662
3.92	2700.607	1483.755	7703.285	267.1468	5.62	2762.162	1569.476	7599.097	370.8885
3.94	2854.389	1468.649	7717.132	339.0309	5.64	2946.005	1397.54	7483.64	338.877
3.96	2772.266	1410.254	7518.105	307.4987	5.66	2804.464	1547.311	7694.542	295.3602
3.98	3031.65	1625.863	7627.009	346.4668	5.68	2775.78	1588.64	7789.177	336.3945
4.01	2590.974	1549.914	8055.279	277.2192	5.71	2810.006	1520.252	7607.042	308.6536
4.03	2738.284	1457.926	7685.669	337.0272	5.73	2606.801	1577.694	7805.439	335.1832
4.05	2676.104	1478.368	7754.555	395.7291	5.75	2637.036	1478.031	7735.991	377.5882
4.07	2768.203	1469.475	7619.214	270.7291	5.77	2654.601	1558.531	7341.649	332.332
4.10	2716.828	1506.704	7770.331	330.9614	5.80	2698.363	1577.359	7633.327	306.8588
4.12	2912.711	1636.09	7756.163	320.7291	5.82	2589.161	1511.415	7638.021	316.1447
4.14	2732.022	1515.754	7783 755	335.0799	5.84	2824 508	1448.027	7474 199	381,6998
4 16	2890.82	1506 531	7732 949	318 7258	5.86	2714 378	1526.636	7797 874	288 7666
4 19	2679.096	1486 142	7653 281	282 123	5.88	2522 415	1364 417	7356 976	302 3778
4.17	2610.28	1517 975	7607 55	312 8684	5.00	2661 31	1528 75	7899 834	300 3203
4.23	2010.20	1570.254	7407 720	340 5607	5.03	2652 758	1503 078	7000 077	305.9614
4.25	2702.036	1450 755	7003 042	318 4614	5.05	2052.750	1520 141	7710.010	310 0217
1.25	2702.030	1497.755	7677.038	317 1474	5.95	2906 102	1/38 501	7740 73	3/1 103/
4.20	2147.343 2727 120	1404.230	7726 045	31/.14/4	5.97	2706.102	1430.391	1147.13	371 2004
4.50	2/2/.120	1439.013	7750.945	312.4316	6.00	2790.904	1545.805	7945.2	3/1.2084
4.52	2310.797	1540.15	7716.070	320.4103	6.02	2796.20	1506.054	7643.5	308.3989
4.54	2193.19	1505.033	//10.9/9	280.2318	6.04	2827.288	1520.254	/031./14	330.4334
4.36	2686.888	1529.147	//2/.112	299.9517	6.06	2/32.407	1528.968	7748.802	265.2469
4.39	2730.985	1595.195	7470.368	290.0321	6.09	2887.156	1512.802	7624.819	327.0604
4.41	2873.069	1472.752	7677.165	302.588	6.11	2854.597	1580.581	7759.425	320.2563
4.43	2726.151	1485.756	8181.671	340.7209	6.13	2837.113	1516.752	8158.713	318.3577
4.45	2629.962	1540.588	7429.51	415.665	6.15	2643.776	1499.417	7860.928	301.267
4.48	2824.092	1582.698	7763.586	335.1281	6.18	2833.412	1443.255	7834.103	274.4229
4.50	2711.855	1343.867	7785.073	342.4598	6.20	2679.955	1545.411	7568.147	312.4506
4.52	2672.123	1621.53	7719.013	291.987	6.22	2734.243	1547.086	7979.251	303.0075
4.54	2726.877	1625.198	7801.712	334.6551	6.24	2868.393	1567.523	7659.41	315.1922
4.57	2763.959	1386.915	7645.716	261.3391	6.26	2716.866	1510.467	7565.172	352.8002
4.59	2988.57	1502.528	7693.13	312.3959	6.29	2713.753	1526.473	7632.636	243.6738
4.61	2885.427	1511.418	7312.662	242.1464	6.31	2782.67	1582.751	7918.204	366.6171
4.63	2672.26	1501.029	7226.103	304.118	6.33	2755.793	1418.356	7549.2	351.7452
4.66	2663.123	1592.139	7878.938	286.5539	6.35	2819.523	1496.802	7897.635	279.1171
4.68	2734.713	1523.866	7723.311	310.024	6.38	2712.258	1469.302	7933.349	338.8213
4.70	2669.721	1561.251	8045.266	297,1551	6.40	2470.896	1434.41	8483.043	382.7562
4.72	2835 675	1684.255	7743 335	262.9244	6.42	2679 543	1560.626	7339 186	323 0521
4.74	2942.168	1563 641	7930 501	347.6281	6.44	2936 814	1451.471	7328 904	316.0355
4.77	3030 316	1425 247	7816 489	299 5269	6.47	2744 911	1469 298	7582 126	288 6636
	5050.510	1123.271	/010.40/	277.5207	0.47	2, 17.711	1107.270	/202.120	200.0000

6.49	2808.656	1409.525	7328.581	315.6161	8.19	2706.34	1296.428	7752.387	267.0911
6.51	2643.798	1474.025	7820.628	358.6536	8.21	2709.405	1344.199	7823.447	304.487
6.53	2552 529	1773.914	7305.917	295 4681	8.23	2823 443	1313,533	7851.166	272.6281
6.56	2668.056	1502.850	7385 852	326 8480	8.25	2825.113	1284.002	7844 710	317.0011
6.50	2008.050	1555 204	7525.002	221.6271	0.25	2865.555	1264.092	2062 627	227 076
0.38	2807.100	1333.304	7323.993	321.0271	0.20	2692.972	1203.8/1	8005.027	357.870
6.60	2775.32	1387.579	7943.839	288.1902	8.30	2/90.6/8	1411.143	80/1.932	291.249
6.62	2759.808	1606.798	7802.366	329.6447	8.32	2851.102	1436.751	7850.168	310.8661
6.64	2732.609	1457.869	7757.144	326.1095	8.34	2788.865	1216.596	7909.715	322.3093
6.67	2609.831	1531.637	7688.553	278.1656	8.37	2635.196	1316.092	7942.762	303.5342
6.69	2829.503	1491.804	7748.247	307,7563	8.39	3034,389	1304.646	7902.759	273,9985
671	2651 689	1404 143	7201 78	323 1556	8.41	2648 856	1338 255	7621 719	251 3217
672	2051.007	1417 261	7504 812	242 0411	0.41	2040.000	1261 644	9147 662	202 0412
0.75	2743.377	1417.501	7304.812	342.0411	0.45	2890.001	1301.044	8147.005	295.9412
6.76	2827.355	1386.303	/355.926	296.6815	8.46	2904.293	1306.15	/6/2.34	350.3203
6.78	2705.421	1538.136	7805.111	389.8226	8.48	2785.813	1280.762	7901.716	309.655
6.80	2750.896	1675.082	7463.756	359.1269	8.50	2922.398	1274.04	7865.257	290.7203
6.82	2745.06	1466.351	7755.079	269.7284	8.52	2812.223	1262.478	7955.144	274.1089
6.85	2752.309	1337.096	7669.212	276.3214	8.55	2729 139	1323.249	8353.711	285 1832
6.87	2502 757	1388 813	7656.82	336 9229	8.57	2951 164	1362 419	7881 216	285 5524
6.80	2667 580	1460 581	7462 017	410.0780	8.50	2931.104	1401 021	2050.210	261 0255
0.89	2007.389	1400.381	7402.017	410.0789	0.59	2810.23	1401.921	8030.81	301.0233
6.91	2701.628	1395.805	/9/4.638	325.3203	8.61	2859.962	1347.37	8259.32	306.3306
6.94	2753.561	1389.697	7754.031	326.6364	8.63	2674.679	1315.422	7790.104	283.9677
6.96	2600.11	1341.698	7547.021	347.366	8.66	2852.387	1085.533	7575.436	333.1254
6.98	2720.308	1564.91	7933.207	349.6357	8.68	2736.14	1371.696	8169.685	271.0981
7.00	2655,386	1597.694	7772.424	256,5438	8.70	2793 544	1242.592	7499.113	296 5226
7.03	2632 404	1460 536	7637 152	255 3298	8 72	2924.4	1328.092	8217 592	361.45
7.05	2644 027	1400.550	7022 151	210 0218	9.75	2752 627	1166 640	7846 146	270 5256
7.05	2044.03/	14/3.030	1733.131	210.9210	0./3	2750 112	100.049	7020 44	217.3330
7.07	2030.757	1400.413	8197.482	310.1826	8.77	2759.115	1239.538	/929.00	258.7578
7.09	2635.068	1703.746	7797.153	282.9146	8.79	2780.814	1202.647	8143.657	331.6993
7.11	2818.708	1522.143	7750.262	321.627	8.81	2575.235	1238.036	8075.82	266.145
7.14	2912.671	1485.305	7939.529	316.1933	8.84	2810.243	1156.038	7881.949	344.8873
7.16	2636.688	1494.579	7564.149	269.6739	8.86	2716.297	1202.869	7823.485	277.2192
7.18	2640.502	1579.806	7427.15	323,9496	8.88	2767 104	1312.646	8115.273	267 2018
7 20	2532 521	1597 644	7596 596	355 1185	8.90	2858 475	1168 754	8117 776	344 7278
7.20	2707.042	1456 592	7566 414	204 0602	0.00	2650.475	1220.912	7977 276	265 2476
7.25	2707.042	1430.382	7300.414	304.9003	8.95	2003.232	1520.812	18/1.5/0	303.2470
7.25	2883.115	1500.92	/636.221	345.6257	8.95	2738.804	1192.254	8062.926	273.8945
7.27	2761.337	1550.472	7615.146	333.2842	8.97	2979.2	1159.754	7864.108	386.7637
7.29	2730.766	1440.633	7828.358	316.9869	8.99	2749.104	1334.973	7975.109	299.0538
7.32	2813.069	1503.087	7678.59	329.1176	9.01	2647.042	1260.252	7961.552	398.5255
7.34	2877.464	1454.028	7741.203	318,4614	9.04	2818.445	1170.537	7933.223	297.5241
7.36	2918 787	1661 134	7674 374	235 6561	9.06	2840 164	1153 923	7928 891	377 429
7 38	2753 674	1511 201	7870 483	358 1256	9.08	2899 181	1216 367	8042 606	373 0524
7.30	2793.074	1550.26	7586.042	225 6562	9.00	20777 250	1007 151	8000 607	411 4408
7.41	2782.370	1330.30	7380.043	355.0505	9.10	2747.239	1097.131	8090.007	411.4498
7.43	2662.984	1437.303	/850.823	303.5896	9.13	2850.155	11/1.695	//61.228	390.5613
7.45	2660.473	1494.698	7857.396	244.2549	9.15	2713.804	1102.203	7919.147	325.6895
7.47	2666.392	1445.696	7770.217	316.9319	9.17	2814.269	1035.868	8016.608	298.5807
7.49	2676.74	1549.2	7494.159	249.896	9.19	2953.412	1212.646	8071.227	293.99
7.52	2778.102	1413.032	7709.536	240.6653	9.22	2682.564	1067.369	8246.108	324.7362
7.54	2614 378	1595.03	7628.101	313.8217	9.24	2918.915	1212 591	7711.836	293,9899
7 56	2950 854	1413 421	7616 938	307 7563	9.26	2960 38	1025 703	8253 543	316 1451
7.50	2904 701	1417.00	7677 200	362 4526	0.20	2716 625	1005 148	8006 264	262 7649
7.50	2004.791	1417.09	7077.309	240.0520	9.20	2710.023	1003.146	8000.204	302.7046
7.01	2823.994	15/1.528	7627.325	249.0538	9.31	28/3.022	1013.099	8254.255	296.1536
7.63	2632.419	1350.252	/505.986	397.9972	9.33	2/36./15	1138.757	8341.896	318.3011
7.65	2739.919	1471.309	7618.454	322.7339	9.35	2577.95	1067.65	7883.218	301.322
7.67	2755.934	1530.585	7944.146	295.6253	9.37	2909.035	1116.929	8060.813	266.1938
7.70	2919.473	1390.035	7818.673	397.5241	9.39	2926.491	1136.482	8238.46	346.6265
7.72	2682.052	1421.365	7794.431	273.5255	9.42	2852.867	1117.203	7991.333	358.0687
7 74	2911 556	1524 36	7927 558	311 9229	9.44	2813 56	1067 148	8266 238	348 0527
776	2605 002	1477 / 17	7652 087	350 8/87	0.44	2752 022	1051 494	8227 167	302 0012
7.70	2000.002	1400.000	7032.987	242.0011	7. 1 0	2732.022	1014 705	7716.07	212 4525
7.79	2/8/.131	1490.088	7729.043	342.0911	9.48	2/19.24/	1014.705	//10.2/	313.4535
/.81	2833.879	1543.254	7925.408	300.3688	9.51	30/4.356	1203.983	8016.239	296.8907
7.83	2756.491	1410.479	7734.832	274.0541	9.53	2725.688	1010.707	7956.479	288.3492
7.85	2802.375	1422.921	7873.453	351.8504	9.55	2890.715	1012.375	8291.957	348.4212
7.87	2775.423	1489.977	7805.388	351.3218	9.57	2896.365	943.3195	8273.177	253.5896
7.90	2693.638	1418.479	7609.101	284.1266	9.60	2800.811	998.5396	7907.806	302.2194
7.92	2721 412	1337 483	7559 452	337.0826	9.62	2684 593	1093 981	7999 405	347 9968
7.94	2872 989	1403 255	7813 781	266 6182	9.64	3032.5	846 7618	8104 065	361 0814
7.06	2072.909	1/86 1/7	7057 275	287 7617	0.44	2875 860	063 1795	7860 115	220 0210
7.90	2140.133	1400.147	7041 202	241 4594	9.00	2013.009	203.4283	200 511	204 41 47
1.99	2853.225	1449.305	7941.392	341.4584	9.69	2/15.61/	9/4.0943	8392.511	294.4147
8.01	2903.084	1375.981	7922.945	339.135	9.71	2924.551	997.0387	8162.396	285.9213
8.03	2890.415	1473.978	7808.727	319.1991	9.73	2815.899	864.4306	8216.021	255.4327
8.05	2824.603	1310.254	7840.736	384.7108	9.75	2801.427	971.2631	7960.739	283.285
8.08	2920.928	1468.145	7907.84	293.5727	9.77	2965.664	1068.592	8370.346	242.4598
8.10	3102 653	1306 424	8008 835	307.3318	9.80	2612.892	899 8197	8451 238	277 6922
8 1 2	2914 519	1286 37	7881 0/	302 6365	0.87	2720 108	1143 128	8227 18	294 /1/7
8 1 <i>A</i>	2717.317	13/9 100	7066 207	302.0505	9.02	2120.100	0// 1/09	8456 742	2/7.714/
0.14	2113.3	1340.199	7000.287	200.5552	9.84	3040.220	744.1498	0430.742	240.0203
ð.1/	2851.223	1301.037	/928.014	309.0352	9.86	2/48.441	891.0543	8199.338	281./546

9.89	2902.236	906.5947	8428.294	316.7785	11.59	2735.322	855.5452	8355.754	277.9564
9.91	2780.071	967.5903	7964.037	283.8138	11.61	3043.939	945.6533	7982.898	346.314
9.93	2958.214	917.0389	8434.841	302.2193	11.63	2825.983	858.4275	8309.565	264.6635
9.95	2842.01	1053.148	8000.615	320.7291	11.65	3008.186	970.5353	8411.793	247.4681
9.98	2848.286	881.2651	8258.173	370.6249	11.67	2658.166	841.2082	8397.196	319.2547
10.00	2846.843	1028.148	8338.267	267.9884	11.70	2921.656	991.3721	8284.752	265.4567
10.02	2696.504	1039.586	8272.447	283.9672	11.72	2847.059	776.6525	8338.727	293.1486
10.04	3042,999	1002.483	8270.857	286.9783	11.74	2988.667	928.266	8051.512	282.7563
10.07	3033.986	946 2051	8667.129	242,8289	11.76	2994 599	897 428	8274 846	218 4615
10.09	2980 983	923 4279	8191 566	251 6907	11.79	2714 441	1012 433	8276 851	273 1086
10.07	2966.263	912 3192	8482 404	314 5597	11.75	2838 866	898 7625	8617 287	273.1000
10.11	2026 722	912.3192	8868 268	204.0626	11.01	2010 794	876 0921	8161 564	274.0950
10.15	2018.070	934.1492	8422.06	200 4242	11.03	2010.764	000 4270	8220.086	233.0309
10.15	2918.079	941.049	8422.00	242 0884	11.03	2007.200	999.4279	0329.900	205.2291
10.10	2654.405	074 2706	02/3.2/9	342.9664	11.00	2708.04	030.3933	03/4./30	255.4465
10.20	2897.26	974.3706	8419.451	282.8603	11.90	2895.203	8/5.6541	8300.67	284.6553
10.22	2833.32	893.6526	8230.347	276.8503	11.92	2/24.311	912.8218	8143.013	280.8571
10.24	28/3.968	8//.09/4	8565.793	268.9899	11.94	2939.486	926.927	8349.357	251.2657
10.27	2801.197	985.3749	8338.238	270.4158	11.97	2806.039	8/0.4342	8307.679	297.6845
10.29	2692.259	902.8695	8205.173	268.8859	11.99	2641.593	832.7108	8052.642	277.6921
10.31	2867.507	883.7056	8121.718	285.6566	12.01	2753.43	956.2122	8136.588	235.0237
10.33	2706.012	934.0394	8321.283	300.4244	12.03	2904.376	864.318	8606.788	368.3571
10.36	2846.346	986.8184	8286.021	257.3873	12.05	2679.855	899.9349	8380.127	312.9247
10.38	2710.197	902.5948	8351.693	293.4614	12.08	2765.255	895.422	8314.758	248.5255
10.40	2967.057	928.986	8316.13	235.497	12.10	2710.932	807.6525	8631.627	285.3352
10.42	2809.854	1009.092	8414.281	282.9159	12.12	2803.718	867.8726	8312.581	250.2637
10.45	2865.959	905.7667	8357.023	290.1921	12.14	2864.218	840.4301	8231.375	288.3496
10.47	2892.536	901.8713	7994.604	325.96	12.17	2910.898	840.7121	8425.085	296.2581
10.49	2889.144	976.3705	8516.012	224.527	12.19	2794.184	800.0985	8272.863	366.1462
10.51	2885.77	892.3732	8308.846	308.2292	12.21	2811.069	833.548	8054.683	245.7288
10.53	2722.322	991,9833	8247.939	254.6467	12.23	2727.981	892.5405	8671.987	230.4321
10.56	2802.559	997.371	8163.342	300.3203	12.26	2795.624	812.097	8465.533	331.1683
10.58	2865 448	884 6483	8229 182	268 8859	12.28	2879 345	789 9329	8764 174	253 2215
10.60	2806 199	889.8168	8203 843	283 2292	12.30	2793.039	826.7031	8462.076	207.8607
10.62	2865 833	958 5982	8030 082	244 8318	12.30	2740.059	761 707	8057 958	204 9596
10.65	2720.915	953 0891	8490 138	239 2948	12.32	2691 381	786 2636	8338.074	306 443
10.67	2716.936	935 6528	8531 996	3/6 8356	12.33	2021.001	991 5/15	8527 132	228 7508
10.60	2710.930	011 822	8522.068	268 0026	12.37	2505.005	803 7130	8373.03	223.7500
10.09	2970	874 5448	8558 523	208.0920	12.39	2090.018	808 6561	8446 187	250 3445
10.71	2077.033	788 5431	8317 771	306 8588	12.41	2868 748	017 7108	8146.055	237.5443
10.74	27733 507	033 1524	8464 306	250 6551	12.45	2808.748	846 0442	8486.66	242.932
10.70	2733.307	955.1524	8426 621	216 2044	12.40	2030.213	766 0441	8525 442	201.7013
10.78	2753 230	05/ 1/0	8188 011	333 7577	12.40	2939.209	006 3210	8336.002	252 5307
10.00	2025 265	072 0707	8482 501	284 6551	12.50	2050.05	707 1500	8450.658	260 4157
10.65	2025.202	0/3.0/ <i>2</i> / 900 7622	0403.391	264.0331	12.52	2000.337	797.1309 970.7092	04J0.0J0 9221.055	209.4137
10.65	2873.403	021 5081	0230.49	203.9612	12.55	2931.301	724 2684	8321.033	195.4177
10.87	2839.007	921.5981	8551.405	207.3319	12.57	2806.394	724.2084	8340.3	200.5025
10.89	2777.28	899.8158	8459.793	295.7292	12.59	2699.855	/59.9358	8567.735	237.0273
10.91	2/94.25/	944.8/68	8081.677	236.1295	12.61	2845.977	817.5443	8117.805	247.3161
10.94	2983.539	901.0956	8491.186	318.4614	12.64	2867.729	881.5404	8/12.42	241.0896
10.96	2900.7	962.1	8166.995	307.7563	12.66	2933.837	944.2638	8557.634	287.2913
10.98	2740.958	881.1561	8426.221	290.1922	12.68	2825.021	737.3788	8438.064	242.1477
11.00	2913.339	964.3154	8502.568	305.4884	12.70	2885.585	920.7041	8168.58	295.5678
11.03	2805.997	939.6527	8186.352	282.9711	12.73	2870.425	942.7641	8331.232	331.3862
11.05	2850.714	979.2081	8499.465	316.145	12.75	2851.011	844.2077	8344.427	254.0622
11.07	2999.568	874.5441	8810.078	292.9884	12.77	2707.576	929.7085	8497.253	276.0567
11.09	2793.652	1011.039	8482.23	265.032	12.79	2821.523	885.3186	8516.762	284.2873
11.12	2850.345	831.7075	8320.738	259.968	12.81	2927.314	869.046	8485.373	288.8792
11.14	2887.063	940.9265	8150.521	264.1906	12.84	2884.869	864.0955	8653.617	250.6313
11.16	2872.06	961.9288	7815.903	268.5173	12.86	2864.022	784.1537	8210.44	254.119
11.18	2853.723	976.0963	8159.909	277.6922	12.88	2736.875	760.825	8125.398	362.9249
11.21	2861.997	912.1519	8270.938	274.0543	12.90	3107.169	878.9341	8339.482	279.5916
11.23	2838.929	983.3134	8269.018	291.1938	12.93	2860.948	735.6547	8820.758	324.055
11.25	2924.94	946.2571	8346.354	293.3014	12.95	2816.388	815.4842	8565.918	297.2129
11.27	2766.701	935.3191	8429.75	330.8014	12.97	2936.018	808.8809	8624.543	311.3933
11.29	2965.711	853.2623	8002.052	273.8942	12.99	2974.038	832.4331	8196.645	285.1281
11.32	2742.726	867.0941	8235.717	278.5896	13.02	2896.997	921.6541	8705.007	239.6626
11.34	2636.157	988.7676	8479.721	284.1265	13.04	2949.805	852.5996	8382.502	223.1577
11.36	2707 472	1032.875	8264 623	258,3408	13.06	2750 806	780 3231	8611 311	252 5876
11.38	2679.033	1032.366	8369.861	279 5912	13.08	2929.919	861.7121	8484 083	256 3293
11 41	2805 938	882 9301	8572 069	233 9665	13.00	2847 684	755 6454	8399 191	274 5845
11 43	2803.250	838 7604	8602 684	316 6183	13.11	2669 757	842 9300	8481 003	264 7107
11.45	2810 153	949 6483	8198 233	317 0912	13.15	2871 048	743 4907	8206 086	254 2227
11 /7	2810.133	888 6511	8515.01	296 5706	13.13	2071.040	708 2202	8474 082	257.2257
11.47	2021.272	971 0052	8152 042	290.3700	13.17	2101.000	805 2602	8676 157	255.409
11.50	2706 271	971.0932	0133.043 7071.044	261 1501	13.19	2001.234	003.2093 777 7616	8651 502	203.8337
11.52	2790.271	222.2147 801 1521	810/ 062	201.4301	13.22	2002.203	838 0424	8261 657	220.1992
11.54	2102.442	074.1334	0174.703	200.3327	13.24	2931.122	000.0424	0304.032	237.0210
11.30	2020.213	940.9273	0312.323	214.4229	13.20	2949.973	009.3433	0411.012	251.0752

13.28	3009.181	821.4877	8327.479	260.4961
13.31	2737.517	806.8242	8255.038	257.3313
13.33	3034.415	718.1008	8929.422	250.8499
13.35	2884.449	860.6506	8336.603	259.1832
13 37	2797 378	772,824	8422,605	278 6467
13.40	2812 025	806 5465	8598 703	242 6783
13.40	2719 226	807 931	8538.074	265 1922
12.44	2006 724	700 00 42	8538.074	203.1922
12.44	3000.734	709.0043	05/9.299	200.2920
13.40	2822.524	/1/.9899	8567.949	212.4527
13.49	2917.825	849.1531	8/19.912	243.9912
13.51	2934.163	743.0477	8387.725	280.9614
13.53	2892.664	910.9336	8375.396	273.8932
13.55	2702.7	909.2076	8503.253	254.1193
13.57	2871.391	820.0467	8422.319	322.0511
13.60	2843.028	882.0448	8499.725	260.5532
13.62	2942.849	837.9954	8662.32	243.4614
13.64	2831.503	966.2109	8285.644	297.5808
13.66	2983.638	879.3757	8513.961	310.1281
13 69	2996 746	787 494	8422.09	228 532
13 71	2990.710	8/9 6636	8345.065	285 0233
13.71	2994.475	874 0363	8672 044	282.0186
12.75	2024.475	874.9303	8072.344	202.9100
12.70	2/80.34	032.0779	8408.303	297.3233
13.78	2094.307	825.2180	85/5.009	211.9229
13.80	2907.992	/23./696	8267.894	285.0233
13.82	3061.707	833.9972	8470.213	250.2155
13.84	3060.076	796.7177	8326.054	272.5233
13.87	2676.022	903.3285	8534.799	226.6322
13.89	2758.811	863.4272	8145.567	315.5596
13.91	3059.904	821.3777	8487.936	230.7989
13.93	2792.437	788.3746	8324.967	202.797
13.95	2756.033	792.2209	7857.917	283.344
13.98	2975.95	691.7716	8338.673	243,7238
14.00	2793.59	827.6544	8500.677	273 5834
1/1.00	2896 589	764 657	8420 718	297 4652
14.02	2070.307	726 5477	8629.17	227.4032
14.04	2///.0/	200 2222	0020.17	202.309
14.07	2919.821	800.8223	8821.331	312.455
14.09	2/55./36	/92.9957	8/52.199	287.8203
14.11	2915.764	770.3253	8297.941	229.6495
14.13	2746.54	822.0999	8871.533	304.7967
14.16	2715.278	851.4913	8167.953	304.9592
14.18	2661.196	842.6558	8412.938	277.2199
14.20	2892.47	847.9373	8738.461	263.8225
14.22	2945.599	779.7687	8494.271	267.4592
14.25	2732.078	916.0967	8368.011	280.017
14.27	2841.628	805.4336	8265.193	235.6581
14.29	2838.475	749.4348	8511.059	269,7262
14.31	2695.25	724.1523	8527,993	262,2901
14 34	2844 13	863 8253	8417 583	242 9312
1/ 36	2873 076	762 0402	8561 975	278 8986
1/ 38	2855 496	814 0347	8485.000	208 8167
14.30	2800 244	715 2060	8561 506	200.0107
14.40	2099.244	715.2009	8282 102	291.9200
14.42	2774.024	770.1322	0302.102	372.9932
14.45	2/53.5	828./1/2	8463.146	18/.5581
14.47	3003.68	802.4347	8289.878	278.2805
14.49	2600.929	850.4818	8420.864	256.0196
14.51	3009.027	893.5363	8288.881	254.0617
14.54	2869.985	714.7721	8539.027	279.1197
14.56	2982.824	755.0464	8306.984	260.0233
14.58	2835.236	735.6628	8475.614	222.686
14.60	2883.93	780.8213	8402.666	287.0857
14.63	2772.479	827.1045	8908.304	231.9168
14.65	2887.123	707.3708	8415,492	296.6837
14 67	2935 601	841 2692	8577 172	249 953
1/1.60	2833.674	827 8268	8290 228	215.555
14.09	2853.074	858 3807	8290.228	252.22
14.74	2052.034	817 6557	0302.070 8301 822	203.9304
14.74	2040.223	701 021	0374.003	232.0343
14.70	2002.928	/81.931	8008.892	285.9207
14./8	20/6.854	/20.9957	8321./09	355.4892
14.80	26/6.439	819.3785	8411.384	282.0635
14.83	2792.899	826.9962	8328.141	274.3179
14.85	2794.276	888.1548	8244.428	331.7538
14.87	2808.47	910.8322	8314.085	256.8588
14.89	2773.795	820.436	8308.221	191.6666
14.92	2740.183	750.8281	8348.477	268.3564
14.94	2888.56	854.7694	8411.096	304.6502

14.98	2743.385	886.9989	8341.291	288.881
15.01	2758.676	708.5551	8775.564	286.5558
15.03	2673.381	859.7057	8377.11	270.3612

Table 4: Fig 14, A2b Line 4

tance	м	tance 👡	
(um)	Mg	m) Mg	Al
0.03	2671.496	0.03 26	1071.905
0.09	2552.364	0.09 25	1134.211
0.15	2542.978	0.15 25	1105.778
0.21	2718.786	0.21 27	1136.598
0.28	2573 516	0.28 25	1182 248
0.20	2601 771	0.20 25	1150 804
0.34	2001.771	0.34 20	1159.004
0.40	2572.407	0.40 25	1109.014
0.46	2619.028	0.46 26	1055.556
0.53	2667.832	0.53 26	1205.469
0.59	2538.233	0.59 25	1185.252
0.65	2550.255	0.65 25	1120.058
0.65	2572.540	0.05 25	1120.038
0.71	2547.828	0.71 25	1180.664
0.78	2668.363	0.78 26	1154.113
0.84	2724 139	0.84 27	1170 456
0.04	2561.001	0.04 27	1122 220
0.90	2501.091	0.90 25	1132.329
0.96	2606.438	0.96 26	1135.673
1.03	2636.62	1.03 2	1064.934
1.09	2689 929	1.09 26	1176.196
1.05	2521 192	1.05 20	1150.1
1.15	2331.185	1.15 25	1139.1
1.21	2595.276	1.21 25	1143.882
1.28	2541.117	1.28 25	1135.237
1.34	2493 673	1.34 24	1114 828
1.01	2615 801	1.0 26	1201 125
1.40	2013.601	1.40 20	1201.165
1.46	2582.742	1.46 25	1169.006
1.53	2759.997	1.53 27.	1177.152
1.59	2733.98	1.59 2	1171.825
1.65	2501 220	1.65 25	1129 201
1.05	2301.239	1.05 25	1156.291
1.71	2/15.652	1.71 27	1222.033
1.78	2681.267	1.78 26	1196.815
1.84	2714.826	1.84 27	1137.759
1.90	2625 532	1.90 26	1270.09
1.00	2025.552	1.00 20	1270.07
1.90	2015.591	1.90 20	1224.33
2.03	2501.886	2.03 25	1152.967
2.09	2536.315	2.09 25	1197.669
2.15	2571 244	2 15 25	1189 335
2.15	2571.244	2.15 25	1100.300
2.21	25/8.75	2.21 2	1180.289
2.28	2646.52	2.28 2	1206.325
2.34	2583.21	2.34 2	1206.702
2.01	2641 167	2 40 26	11/1 83
2.40	2071.10/	2.40 20	1141.03
2.40	2032.404	2.40 20	1140.517
2.53	2593.98	2.53 2	1210.249
2.59	2542.842	2.59 25	1114.123
2.65	2483.26	2.65 2	1165.889
2.05	2444 271	2.05 2	1221 414
2.71	2444.371	2.71 24	1231.414
2.78	2651.757	2.78 26	1303.608
2.84	2529.051	2.84 25	1275.169
2.01	2554 600	2.01 25	1275.109
2.90	2334.079	2.90 23	1237.233
2.96	2/1/.37	2.96 2	1212.441
3.03	2537.951	3.03 25	1254.429
3.09	2598.236	3.09 2.5	1225.786
3 15	2550 368	3 15 25	1210 851
5.15	2557.500	2.01 25	1217.031
3.21	2584.923	5.21 25	1283.823
3.27	2516.941	3.27 25	1281.71
3.34	2469.696	3.34 24	1265.879
3.40	2580 605	3 40 25	1100 735
5.40	2380.093	5.40 25	1199.755
3.46	2592.508	3.46 25	1235.8
3.52	2518.302	3.52 25	1242.17
3 59	2585 274	3.59 25	1227 463
5.59	2505.274	5.59 25	1227.403
3.65	2520.524	3.65 25	1311.803
3.71	2627.705	3.71 26	1193.358
3.77	2479 495	3.77 24	1264 555
2.94	2521.056	2.04 25	1249.062
5.64	2521.950	5.64 25	1248.002
3.90	2551.963	3.90 25	1247.145
3.96	2587.237	3.96 25	1280.868
4 02	2469 913	4.02 24	1263 711
7.02	2-102.213	4.00 25	1203.711
4.09	2535.252	4.09 25	13/0.259
4.15	2515.169	4.15 25	1279.43
4.21	2411.386	4.21 24	1326 305
1 27	2612 227	1 27 24	1301 094
4.27	2045.22/	4.27 20	1501.084
4.34	2569.055	4.34 25	1234.335
4 40	2575 367	4.40 25	1220.052
A A Z	2515.501	1 16 25	1070 155
4.40	2382.085	4.40 25	12/2.155
4.52	2459.76	4.52 2	1311.322
1 59	2445 721	4.59 24	1269.03

9.40	2725.398	1135.053	7491.484	252.6388	14.14	2657.394	898.8626	7598.017	288.4261
9.46	2617.819	1180.34	7503 493	252 5041	14.20	2539 476	829 9854	7730 197	273 2668
9.52	2586.266	1079 402	7258 54	243 6229	14.20	2499 444	827 1048	7518 708	278 1316
0.59	2500.200	1160 669	7250.54	243.0227	14.27	2477.444	027.1040	7420 601	270.1510
9.30	2018.307	100.008	7201.023	247.9058	14.55	2003.702	072.2101	7439.001	254.5491
9.05	20/1.2/8	1080.852	7204.541	288.5802	14.39	2574.625	955.6562	/521.039	219.1552
9.71	2620.267	1282.537	7320.695	275.0134	14.45	2440.234	945.9626	7540.277	260.1547
9.77	2567.173	1247.72	7233.527	284.0293	14.52	2628.274	934.6727	7595.81	268.5866
9.83	2444.52	1208.516	7127.137	263.5248	14.58	2550.996	932.6121	7537.521	247.8307
9.90	2716.013	1179.605	7339.425	264.3923	14.64	2561.415	881.2434	7572.598	295.0196
9 96	2589 151	1226 797	7302 716	280 5545	14 70	2552 163	1016 187	7512 868	270 8376
10.02	2560.81	1218 261	7180 156	284 6504	14.77	2558.404	901 6716	73/0.8	318 2668
10.02	2506.049	1210.201	7402 57	250 8001	14.77	2550.404	072 7701	7552.005	270.0602
10.08	2590.048	1233.903	7405.57	239.8901	14.65	2502.559	9/3.//91	7335.093	270.9003
10.15	2572.386	1188.275	/29/.336	267.6274	14.89	2520.622	1006.054	/346.9/6	268.6297
10.21	2681.689	1161.789	7135.774	268.5431	14.95	2493.114	972.6987	7575.888	282.221
10.27	2613.01	1234.836	7147.398	329.269	15.02	2514.844	940.6281	7385.033	267.0981
10.33	2633.866	1242.448	7193.291	295.4996	15.08	2615.065	955.3594	7573.947	277.0062
10.39	2490.044	1233.166	7151.087	276.9997	15.14	2561.99	932.6143	7382.83	253.7892
10.46	2591.146	1256.292	7175.187	250.6594	15.20	2479.869	865,1924	7744.569	298.7282
10.52	2577 255	1279 818	7342.09	276 6983	15.27	2484 675	898 0333	7485 302	286 9818
10.52	2670 261	1272.010	7214 417	292 4515	15.27	2586 720	022 8116	7701 124	205.7716
10.56	2070.301	1225.10	7214.417	263.4313	15.55	2560.759	922.0110	7701.124	295.4740
10.64	2500.7	1325.376	7255.889	243.2008	15.39	2087.422	924.2715	7625.544	2/5.91/3
10.71	2606.218	12/9.113	/139./98	293.1684	15.45	2555.241	850.527	/689.103	313.8942
10.77	2599.436	1280.654	7321.041	325.3947	15.52	2641.982	933.0136	7481.129	221.4584
10.83	2475.145	1295.987	7304.451	268.9309	15.58	2711.579	861.549	7408.446	260.7757
10.89	2591.649	1229.41	7291.548	285.7392	15.64	2595.069	826.2605	7503.679	237.3195
10.96	2613.425	1282.857	7250.225	276.0775	15.70	2663.696	853.2128	7411.749	222.2576
11.02	2553 859	1276 394	7212 593	288 8511	15 77	2581 997	861 9742	7623 907	221 557
11.02	2529.053	1276.321	7164 613	260.5976	15.83	2712 364	772 0246	7624.958	250 5072
11.00	2529.053	1220.414	7104.013	200.3970	15.05	2712.304	779.54	7024.938	250.5972
11.14	2739.42	1205.78	7171.393	260.1939	15.69	2514.805	//8.34	7300.097	205.4524
11.21	2632.805	1143.377	7254.302	268.7095	15.95	2552.39	804.3868	7439.182	328.0885
11.27	2595.067	1178.044	7336.278	272.7874	16.02	2593.932	879.6821	7582.743	234.9334
11.33	2626.611	1111.06	7100.235	300.4314	16.08	2601.114	846.2505	7485.073	258.7028
11.39	2634.881	1183.034	7306.863	258.1252	16.14	2695.973	813.124	7491.667	260.8741
11.46	2582.025	1107.845	7140.27	279.3923	16.20	2637.371	782.9146	7680.813	285.3329
11.52	2606 677	1111 589	7366 393	293 0202	16.27	2562 72	831 7476	7473 286	293 0264
11.52	2815 31	1002 0/8	7382 794	320.696	16.33	2603.74	817 9122	7520.842	283 7093
11.50	2015.51	1102.540	7202 194	212 4915	16.33	2603.74	822 1052	7652 055	265.7675
11.04	2485.474	1192.021	7303.184	313.4815	10.39	2052.537	823.1955	/055.955	259.2505
11./1	2651.16	1015.952	/433.415	280.333	16.45	2552.509	8/1.6565	//0/.44/	294.5514
11.77	2646.163	1049.609	7396.675	297.7256	16.52	2526.347	868.7566	7684.993	284.3857
11.83	2665.73	976.1637	7287.87	284.5771	16.58	2516.309	887.7202	7450.5	265.6959
11.89	2677.816	1053.65	7243.15	326.5635	16.64	2661.264	895.8489	7573.635	300.8376
11.96	2586.977	987.9205	7596.976	302.584	16.70	2844.084	815.4351	7543.19	281.2736
12.02	2614 193	1022 828	7529 612	293 8079	16.77	2512 733	852 5032	7710 264	300 4747
12.02	2606 762	881 0449	7421 125	289.0725	16.83	26/1 992	874 4637	7791 53	288 2604
12.00	2600.702	084 0216	7201 222	202.0723	16.05	2615 967	000 2252	7660 272	260.2004
12.14	2078.327	984.9510	7291.233	525.5717	10.89	2013.807	900.2233	7000.572	200.389
12.21	2555.686	1009.71	/380.50/	292.461	16.95	2/18.804	882.1706	/604.8/1	256.937
12.27	2597.11	916.1362	7687.58	318.6921	17.02	2584.421	877.5128	7669.957	288.4022
12.33	2532.042	976.4871	7450.333	291.6429	17.08	2639.633	869.9811	7549.398	314.3128
12.39	2639.394	941.5846	7487.238	351.3424	17.14	2586.942	885.8421	7602.206	303.0456
12.46	2585.421	916.147	7367.816	307.2831	17.20	2656.985	865.8228	7487.589	255.6958
12.52	2540 324	938 0416	7475 212	268 2302	17.26	2639.67	852 1651	7648 432	263 5504
12.52	2584 605	000 8231	7661 232	300 1086	17.20	2625 601	808 4249	7487 107	205.5501
12.50	2712 505	992 8100	7600.067	267.0662	17.33	2504 475	805 1205	7467.107	229 9705
12.04	2713.303	002.0109	7000.007	207.9002	17.39	2594.475	893.1203	7404.173	238.8703
12./1	25/1.31	882.1999	/534.01/	307.2208	17.45	2518.886	892.4079	/660./92	264.5901
12.77	2577.346	793.2361	7277.121	282.8244	17.51	2593.737	808.4313	7546.066	264.5341
12.83	2708.278	842.5005	7478.825	278.9863	17.58	2677.709	860.6366	7459.897	307.3624
12.89	2428.035	870.8366	7586.307	335.6165	17.64	2740.829	882.2939	7574.798	294.9063
12.96	2557.667	855.0106	7647.355	281.7419	17.70	2727.146	857.3958	7705.266	278.1246
13.02	2603.543	868.8612	7557.154	278.3096	17.76	2547.098	868.5571	7604.313	247.8614
13.08	2665.604	842 1972	7557 471	245 5541	17.83	2687 318	924 692	7513 47	272 5408
13.00	2675.004	820 3806	7449 459	213.3311	17.89	2581.27	867 6116	7431 404	267 5771
12.14	2073.094	017 5005	7580.00	204.214	17.05	2578 260	010 2717	7431.404	207.5771
13.21	2597.221	017.0085	1307.99	211.0241	17.95	2310.309	717.3/1/	7405.242	233.9800
13.27	2519.579	917.8066	/563.528	300.9172	18.01	26/3.25/	8/1.2439	/4/0.369	248.4512
13.33	2553.248	837.7203	7564.257	283.3399	18.08	2610.086	820.5057	7592.11	244.9334
13.39	2694.534	822.1863	7632.871	287.264	18.14	2415.579	867.925	7517.958	310.1906
13.46	2600.321	813.1168	7652.198	271.7418	18.20	2578.19	823.2274	7440.507	299.398
13.52	2688.322	827.8977	7580.344	298.5246	18.26	2475.892	830.194	7664.555	261.5214
13.58	2675.513	829,5815	7589.801	291,2371	18.33	2661.504	885,9483	7525.125	288.7871
13.64	2674 992	805 4064	7633 308	242 /18	18 30	2483 53	1015 88	7592 267	271 0587
13 70	2507 205	808 1/6/	7577 621	272.710	10.57	2403.33	1007 521	7718 607	251 15507
12.70	2372.273	070.1404	7460 52	213.1130	10.40	2403.110	1007.321	7/10.007	234.4333
13.//	20/0.292	039.4830	1409.33	200.7945	18.51	2449.432	1000./34	7421.820	200.095
13.83	2583.178	902.4028	/5/1.892	232.5042	18.58	2291./1	1011.055	/592.367	222.5408
13.89	2648.911	824.1754	7730.034	266.1385	18.64	2450.623	1066.158	7573.221	229.6492
13.95	2612.035	898.9636	7641.937	266.2371	18.70	2206.44	1119.375	7456.745	266.9631
14.02	2597.164	867.1935	7513.339	257.4977	18.76	2148.767	1115.34	7412.255	253.8142
14.08	2533.42	861.0586	7596.043	270.8931					

Table 5: Fig 15, Alb Line 10

Distance	Μσ	Al	Si	Ti	2.13	2798.356	1387.834	7518.209	308.9099
(µm)	1115	211	51		2.15	2667.577	1520.343	7487.643	317.9475
0.01	2792.008	1589.458	7701.62	380.7755	2.18	2628.097	1483.155	7650.888	356.7853
0.04	2580.862	1534.576	7761.24	379.6046	2.21	2616.956	1362.284	7640.746	336.8652
0.06	2611.858	1472.454	7485.239	385.0779	2.24	2791.347	1578.997	7585.846	355.5198
0.09	2821.909	1484.794	7570.669	315.5638	2.27	2608.192	1393.575	7802	384.5826
0.12	2841.607	1459.425	7692.438	290.8148	2.30	2656.108	1528.058	/685.18/	347.0519
0.15	2641.146	1645.03	7501.281	329.1045	2.33	2821.608	1396.355	7506 440	328.7457
0.18	2/00.2/0	1515.520	7665 448	353.548	2.33	2003.239	1419.789	7595 106	290.0291
0.21	2000.005	1300.092	7552 025	330.9357	2.30	2004.095	1400.007	7393.190	320.0686
0.24	2029.893	1270.34	7555.055	281 5346	2.41	2700 935	1426 145	7646 162	343 6567
0.20	2529 488	1479 641	7545 514	309 6275	2.44	2776.052	1415 686	7651 541	327 4802
0.22	2733 813	1542 028	7659 432	330 1692	2.50	2651.157	1505.886	7681.188	382.8003
0.32	2712.502	1430.763	7858.512	418,7065	2.53	2643.997	1472.505	7753.904	262.6274
0.38	2608.786	1449.445	7403.327	316.524	2.55	2643.496	1477.042	7726.63	333.6176
0.41	2646.452	1661.743	7771.177	278.6879	2.58	2592.624	1432.608	7199.832	285.8898
0.44	2660.522	1447.113	8019.81	355.4667	2.61	2923.391	1610.437	7765.901	314.1404
0.47	2648.617	1422.988	7587.324	359.1161	2.64	2714.36	1539.043	7715.628	297.6582
0.49	2701.713	1539.269	7525.451	359.6323	2.67	2618.877	1602.466	7713.497	346.2928
0.52	2753.199	1634.536	7756.784	346.9892	2.70	2805.073	1521.268	7731.954	272.7612
0.55	2761.864	1549.932	7104.301	360.3914	2.73	2676.524	1468.701	7566.802	356.7323
0.58	2709.583	1570.04	7588.995	359.5165	2.76	2703.289	1341.499	7743.291	299.5882
0.61	2691.444	1406.95	7636.419	296.8459	2.78	2687.189	1416.038	7447.408	282.1358
0.64	2763.422	1551.142	7611.537	360.0327	2.81	2662.731	1558.139	7928.11	319.5188
0.67	2707.464	1572.711	7583.968	356.6376	2.84	2631.326	1607.226	7741.491	321.037
0.69	2723.573	1517.058	7760.544	314.1405	2.87	2571.602	1366.28	7816.229	333.4066
0.72	2579.348	1420.29	7956.854	304.2492	2.90	2670.677	1565.821	7629.367	371.5903
0.75	2647.646	1544.807	7579.286	365.0524	2.93	2734.133	1453.575	7670.113	340.9146
0.78	2786.142	1547.823	7568.809	372.002	2.96	2643.797	1406.739	7586.583	303.7957
0.81	2598.026	1556.673	7603.229	297.9638	2.98	2851.5	1541.734	7450.98	291.9326
0.84	2919.086	1531.865	7668.534	308.0031	3.01	2694.01	1429.365	7303.813	336.3067
0.87	2561.267	1627.41	7601.156	362.3214	3.04	2533.32	1411.331	7601.532	351.7544
0.89	2614.125	1405.768	7521.405	351.3124	3.07	2611.422	1431.703	7490.218	328.9354
0.92	2842.584	1525.139	7/7/.105	342.8976	3.10	2790.102	1421.649	7684.989	305.8205
0.95	2605.188	1580.717	/699.65/	320.4882	3.13	2004.072	1360.209	7009.590	269.3129
0.98	2555.295	1452.085	7/71.938	321.3838	5.10	2730.517	1490.027	7622 526	400 0417
1.01	2399.284	1488.331	7825 705	280.8280	3.10	2399.414	1525.21	7832.051	333 4067
1.04	2403.290	1400.979	7552 404	201.0144	3.21	2702.037	1472 283	7521 937	291 8166
1.07	2745 198	1484 206	7678 639	336.0961	3.24	2651 735	1417 937	7729.038	290.6668
1.02	2839 459	1552 475	7322 596	392 5434	3.30	2659.876	1520.283	7606.359	325.3923
1.12	2538.104	1396.532	7616.318	319.3084	3.33	2835.418	1458.531	7657.933	341.7267
1.18	2770.055	1526.782	7611.884	369.3129	3.36	2675.796	1623.758	7767.447	303.1313
1.21	2626.538	1362.887	7346.341	308.605	3.38	2610.042	1558.072	7791.496	376.8737
1.24	2719.832	1518.006	7585.133	332.141	3.41	2789.618	1445.381	7450.923	333.7123
1.27	2564.16	1519.473	7471.628	341.5784	3.44	2425.319	1442.657	7441.455	315.7118
1.30	2614.512	1419.682	7602.506	405.3139	3.47	2697.528	1550.838	7559.036	337.6141
1.32	2660.256	1462.482	7705.156	295.9916	3.50	2526.624	1628.362	7683.548	337.5193
1.35	2605.019	1424.415	7786.601	393.1454	3.53	2742.403	1422.778	7504.931	348.3594
1.38	2709.253	1676.823	7279.62	309.174	3.56	2630.989	1462.467	7454.099	331.0232
1.41	2804.389	1465.862	7850.521	344.0573	3.59	2661.115	1444.279	7388.479	358.6624
1.44	2755.345	1461.982	7589.84	365.1055	3.61	2494.588	1615.558	7456.776	365.3163
1.47	2867.084	1646.16	7640.637	354.8558	3.64	2687.264	1577.267	7539.198	335.0729
1.50	2830.308	1653.428	7630.849	328.4292	3.67	2615.041	1671.067	7325.411	328.2392
1.52	2506.304	1517.972	7624.188	331.0233	3.70	2607.824	1485.503	7726.509	356.4268
1.55	2803.6	14/4.4/6	7780.311	393.3557	3.73	2/18.056	15/4.232	7669.348	383.2539
1.58	2/03.911	1598.182	7/19.353	421.7961	3.76	26/1.883	1/95./19	7596.609	302.2243
1.61	2694.561	1538.641	/54/.91	292.3331	3.79	2654.058	1015.584	7250.711	350.1841
1.64	2827.061	1/49.933	7/09.688	363.1335	3.81	2647.927	1589.188	7490.249	354.0433
1.07	2/08.391	1467.33	7602.022	298.3030	3.84	2575.099	1664 433	7349.772	390.977
1.70	2018.813	1459.899	7692.023	294.108	3.07	2521.994	1618 464	7404.393	378 23/3
1.72	2604.001	1415.552	7303 51	331 5301	3.93	2032.547	1717 024	7412.719	376 6099
1.75	2004.331	1537 37	7598 889	312 7794	3.96	2662 665	1630 188	7481 354	456 7324
1.70	2724 413	1366 437	7870 985	294 874	3,99	2532.395	1744.752	7397.946	362.5643
1.81	2632 433	1441.711	7334 664	293.8513	4.01	2586.594	1695.232	7351.742	425,6031
1.87	2677.652	1522.462	7923.437	365.9178	4.04	2520.161	1809.012	7395.247	340.461
1.90	2648.853	1476.904	7753.12	281.0809	4.07	2425.251	1756.259	7152.439	432.2889
1.93	2810.071	1451.657	7578.963	316.0173	4.10	2422.581	1933.453	7159.284	397.9009
1.95	2588.702	1454.193	7766.846	288.4843	4.13	2498.337	1598.546	7210.077	403.4901
1.98	2772.64	1544.304	7587.234	299.894	4.16	2426.282	1886.841	7485.23	405.6727
2.01	2649.959	1486.632	7641.911	326.0035	4.19	2554.69	1783.88	7181.274	387.0076
2.04	2857.601	1499.898	7715.908	363.5342	4.22	2342.863	1693.696	7296.067	403.4369
2.07	2726.274	1590.485	7613.438	328.0282	4.24	2303.23	1687.652	7117.968	387.2604
2.10	2839.727	1420.588	7441.409	270.4838	4.27	2404.685	1826.766	7182.427	472.3078

4.30	2540.424	1945.434	7205.013	371.0423	6.48	3 2362.513	1800.12	7190.375	387.4294
1 22	2452 284	1920 725	7522.065	404 240	6.51	2291 414	1050 411	7208 550	202 002
4.55	2432.364	1659.755	1352.905	404.249	0.51	2381.410	1930.411	1398.339	362.065
4.36	2457.213	1728.43	7208.996	374.4801	6.53	3 2337.61	1826.726	7470.605	403.0365
4 39	2452,403	1728 512	7283 862	380.5115	6.56	5 2479.613	1787.606	7062.417	407 7922
4.40	2452.405	1050.044	7205.002	405.000	0.50	2+77.012	1007.000	7002.417	252,4202
4.42	2250.013	1850.944	/116.508	425.962	6.55	2337.714	1882.662	6663.993	352.4302
4.44	2473.554	1908.118	7215.177	361.6988	6.62	2453.613	1768.728	7149.71	447.695
4 47	2425 082	2000 022	7207 572	112 02 17	6.65	2204562	1015 274	7147 650	169 1277
4.47	2423.082	2000.925	1201.515	415.6547	0.0.3	2264.303	1813.374	/14/.039	408.4577
4.50	2407.652	1979.945	7444.614	434.1656	6.68	3 2400.359	1923.711	7016.667	389.3382
1 52	2422 678	1912 276	6040 268	427 0120	671	2477 202	1052 204	7207 161	276 6620
4.55	2432.078	1015.570	0949.208	437.0129	0.71	2477.392	1955.204	/29/.101	370.0029
4.56	2504.223	1977.747	6975.19	413.0226	6.73	3 2318.677	/ 1985.807	7150.276	432.4997
4 50	2218 126	1725 007	7166 222	410 6022	676	2220.2	1901 692	7201 467	122 164
4.59	2346.420	1725.007	/100.322	410.0922	0.70	2339.3	1091.005	/201.40/	455.104
4.62	2537.353	1949.145	7130.683	426.2676	6.79	9 2634.787	1962.716	7039.898	435.1888
1.64	2508 403	1811 228	7280 282	414 0875	6.80	2/18 300	1884 286	7071 860	417 0822
4.04	2300.473	1011.220	7200.202	414.0075	0.02	2410.30	1004.200	7071.007	417.0022
4.67	2277.881	1886.514	7228.103	385.7421	6.85	2563.25	1843.631	/18/.392	475.9039
4 70	2657 742	1978 409	7410 136	382 5361	6.88	2255 78	1981 338	6967 558	385 6473
4.70	2057.742	1/10.407	7410.150	156 5000	0.00	2255.70	1075.000	0707.550	122 0 10
4.73	2456.513	1687.395	/154.1/9	456.7323	6.91	2462.625	18/5.908	/13/.31/	433.048
4.76	2232 507	1900.086	7110.956	415.5641	6.93	2432.676	1755.232	7062.223	424,9388
4.70	2404 162	1942 402	7115 054	452 (92	6.96	21021010	1047.955	(965.076	412 4212
4.79	2494.162	1845.495	/115.854	452.085	0.90	2307.188	1947.855	0805.070	412.4213
4.82	2582.929	1854.005	7256.292	394.2629	6.99	2401.539	1839.822	7300.523	355.6146
1.91	2227 008	1961 550	7174 024	126 8157	7.02	2270 220	1200 607	7111 522	440.0767
4.04	2327.008	1601.559	/1/4.934	420.8137	7.02	2370.325	1800.007	/111.525	449.0707
4.87	2440.888	1822.596	7272.599	446.3875	7.05	5 2363.638	8 1898.619	7041.654	365.7698
4 90	2342 174	1013 066	7300 522	369 6187	7.08	2 2/88 82/	1696 74	7056 767	320 5835
4.90	2542.174	1006.000	7377.322	106.0604	7.00	2400.024	1050.74	7030.107	125.1204
4.93	2542.286	1886.098	7172.908	426.9634	7.11	2431.222	1/55./05	7034.457	425.1284
4.96	2425.83	1851.9	7189.627	427.1744	7.13	2292.583	1908.003	7299.599	407.887
4.00	2202 496	1074 5 (2)	7105 (00	410.0025	7.10	2220.00	1906.000	(000 000	206.0960
4.99	2285.480	1974.302	/105.008	412.2035	/.16	2339.04	1890./32	0998.982	390.0809
5.02	2463.052	1837.656	7139.191	391.4043	7.19	2489.666	5 1834.494	7386.776	399.9887
5.05	2601 464	1005 244	7174 592	277 4210	7.00	2406.22/	1054 522	7112.061	260 1907
5.05	2001.404	1905.544	/1/4.382	577.4219	1.22	2 2490.554	1934.322	/115.001	500.1807
5.07	2535.559	1854.588	7101.448	531.4764	7.25	5 2357.639	1814.149	7213.844	442.2849
5 10	2252 8/0	1027 354	7016 820	362 8608	7.25	2 2384 308	1850.078	7134 663	468 105
5.10	2555.049	1921.334	7010.829	302.8098	7.20	2304.300	1039.970	/154.005	400.195
5.13	2449.607	1940.261	7087.047	379.2043	7.31	2438.63	1944.258	6921.468	393.0921
516	2389.097	2007 598	6799 215	434 7241	7 34	2405 546	1893 752	7416 195	330 1693
5.10	2307.077	2007.370	0777.215	407.7241	7.5-	2403.340	1075.752	7410.195	550.1075
5.19	2418.213	1867.975	6980.07	497.5635	7.36	o 2424.129	17/8.937	7450.507	458.9681
5.22	2562.616	1903.058	7149.343	400.9589	7.39	2376.91	1859.375	7087.091	399.0819
5.05	2204 202	1051 405	(799.004	440 7411	7.40	2642.200	1001 120	7022 (10	126 2529
5.25	2304.392	1951.405	6/88.694	449./411	7.42	2 2643.296	1891.139	/233.618	436.2538
5.27	2578.034	1784.114	6915.541	348.3174	7.45	5 2502.521	1987.691	7236.161	348.381
5 20	2628 242	1047 594	6048 026	420 5827	7 49	2568 229	1002.010	7240.010	402 1208
5.50	2038.242	1947.384	0946.930	420.3837	7.40	2308.230	1995.919	/349.019	402.1298
5.33	2404.572	1983.457	7119.068	396.9937	7.51	2571.468	8 1825.603	7056.119	441.0622
5 36	2378 259	1874 527	7076 394	380.0165	7.5/	2644 421	1801 601	7292 523	427 0268
5.50	2370.237	1074.527	7070.374	300.0103	7.5-	2044.421	1001.001	7272.525	427.0200
5.39	2368.739	1905.953	7212.021	412.2635	7.56	5 2447.605	1908.146	7228.74	446.5986
5 42	2369 917	1869 052	7226 333	352 3773	7 50	2521 577	1933 873	7273 157	362 4694
5.12	2001.001	1007.052	7101.004	204.5606	1.55	2021.077	1000.476	7275.157	417.0045
5.45	2294.084	1924.9	7181.284	384.5606	7.62	2329.059	1908.476	/166.566	417.8945
5.47	2323.976	1949.226	7019.454	454.2543	7.65	5 2281.992	1816.699	6928.15	410.7868
5 50	26281978	1007 171	7107 100	401.2649	7.00	2504.552	1000100	7000.22	421 9252
5.50	2047.472	1827.171	/12/.188	401.2048	/.00	2504.552	1809.100	/090.23	431.8352
5.53	2432.11	1840.086	7286.838	411.9462	7.71	2574.417	/ 1849.092	7338.915	384.5296
5 56	2408 741	1974 971	7040 261	442 2012	77	2426.025	1902.026	7240 705	201 5729
5.50	2490.741	10/4.0/1	7040.301	442.3912	7.7-	- 2420.95	1805.920	7349.705	391.3736
5.59	2425.894	1876.979	7033.476	408.6039	7.76	5 2453.056	5 1694.364	7184.743	386.7019
5 62	2335 671	1886 / 89	7104 092	137 0106	7 70	22/18/1/3	1750 446	7100 028	320 9/2/
5.02	2333.071	1000.407	7104.072	+37.7170	1.12	2240.44.	1750.440	7177.720	520.7424
5.65	2516.541	1758.387	7024.74	419.5188	7.82	2447.945	5 1717.747	7042.771	430.3275
5.68	2377.779	2011.071	7038.578	392,0908	7.85	5 2503.571	1922.479	7109.674	331.7406
5 70	22// 977	1022 427	7444.966	296.0121	7.00	2200.001	1010 000	(017.209	474 9075
5.70	2200.877	1922.437	/444.800	380.9131	7.88	2388.821	1910.909	6917.298	4/4.82/5
5.73	2472.243	1825.86	6978.689	398.7761	7.91	2368.418	8 1868.313	7316.721	433.7122
5 76	2262.067	1048 252	7296 191	127 0726	7.04	2505 572	1700 204	7040 242	122 2525
5.70	2302.907	1940.232	7200.101	437.9720	7.94	- 2303.372	1/33.234	7049.245	455.5555
5.79	2376.843	1768.117	7292.168	430.3585	7.97	2315.501	1758.349	6988.707	401.5599
5.82	2565.808	1795.312	7250.175	408.4564	7 90	2412.866	1903.048	7055.884	463.2701
5 05	2416 222	1000.040	7208 628	270 (577	0.00	1 1270 000	2150 112	6060.007	450.0526
5.85	2410.555	1909.049	1298.028	519.05//	8.02	2318.299	2159.112	0909.980	430.9336
5.88	2362.456	2074.491	7204.107	341.7797	8.05	5 2447.197	1864.541	7120.413	429.9583
5 90	2515 187	1942 511	7040 622	401 0186	\$ AG	2501 /24	2024 660	7015 091	386 012
5.90	25407	1002.257	CO 4 5 CO 7	270.071	8.00	2301.430	100125	7013.201	410 12 55
5.93	2503.362	1993.357	6946.805	378.9516	8.11	2437.06	1884.35	7427.014	418.1368
5 96	2322 587	1914 31	7144 69	375 9037	8 17	2397 504	1822 011	7293 860	443 3395
5.00	2516.607	1710.016	7101 (01	405.0001	0.1-	2377.500	1012.011	(070.774	462.5750
5.99	2516.607	1/19.016	/121.621	405.0081	8.17	2480.85	1913.432	68/0.//4	463.5758
6.02	2363.58	1883.961	7097.546	406.4318	8.19	2457.07	1952.031	7410.317	395.2748
6.05	2457 496	1051 200	7192.070	446 2020	0.02	2467.07	2007.021	7076 212	277 2742
0.05	2437.480	1951.509	/105.979	440.2929	0.22	2407.87	2087.921	12/0.515	577.2745
6.08	2436.551	1883.933	7141.229	440.1025	8.25	5 2456.692	1865.338	7315.149	418.8013
6 10	2327 010	1778 9/2	6877 727	305 6066	0.00	2 2206.03	1711 605	7086 915	305 1755
0.10	2327.019	1770.043	0011.131	393.0000	0.20		1011.005	7000.045	595.4755
6.13	2451.618	2023.972	6902.351	402.3719	8.31	2257.874	1846.927	7390.954	507.9084
616	2277 855	1925.852	7145 83	440 25	8 34	2546 631	1885 792	7176 043	375 3973
6.10	2200.104	1001 002	7047.005	404 55 40	0.54	. 2400.051	1012 102	(074.115	200 1277
6.19	2399.194	1901.803	1247.927	404.5548	8.37	2490.051	1813.493	6974.117	388.1255
6.22	2394.246	1902.365	7212.651	392.4911	8 30	2436.711	1764 197	7109.529	365.1055
6.22	2462.267	1015 205	(045 547	145 7044	0.02	2404 (0)	1004.252	7051.000	442 0440
0.25	2402.267	1915.205	0943.347	445./866	8.42	2404.684	1984.352	/251.008	445.2449
6.28	2397.09	1944.552	7126.169	422.1549	8.45	5 2581.312	1841.918	7189.71	409.2156
6 30	7261 67	1833 607	7250 629	121 2427	0 / 0	2 2442 777	1007 741	7775 520	308 0054
0.50	2504.02	1055.09/	1250.028	+21.3427	8.40	. 2442.///	1707.741	1215.558	596.0030
6.33	2311.517	1855.469	7139.082	461.0877	8.51	2474.53	1798.485	7522.671	391.5208
636	2386 802	1857 327	6959 632	339 3962	8 5/	2346 880	1881 811	7345 38	433 923
6.00	2355.502	1007.004	7106 500	400 17/2	0.54	. 2440.000	10161011	7100.0	402 0 472
6.39	2454.615	1867.694	/186.589	428.1763	8.57	2448.229	1916.131	/109.9	403.2472
6.42	2406.499	1944.286	7169.299	424.6431	8.59	2361.88	1807.268	7168.381	426.9107
6 15	2480 282	1826 400	7105 190	120 7210	0.07	2/7/ 2/	1775 610	6715 600	267 0005
0.45	2489.382	1820.409	/195.189	438./319	8.62	24/4.30	1//5.018	0/13.099	307.8895

8.65	2526.367	1903.609	7186.195	429.7043	10.83	2669.475	1551.79	7579.321	408.056
8.68	2437.997	1755.99	6931.745	359.3267	10.86	2617.364	1617.694	7488.037	310.2389
8 71	2512 867	1861 473	7112 811	387 6721	10.88	2606 49	1616 841	7561 671	365 4643
9.74	2/12.007	1820 522	7140.072	504 7077	10.00	2000.47	1677.84	7200.486	252 2260
0.74	2428.120	1829.333	7149.975	304.7977	10.91	2578.392	10//.04	7200.480	333.3309
8.77	2611.603	1860.871	7243.688	367.8364	10.94	25/9.216	1553.812	/1/0.616	293.4508
8.80	2454.844	1792.521	6863.389	347.4523	10.97	2421.594	1563.738	7456.716	315.2584
8.82	2408.409	1945.267	7463.917	392.5437	11.00	2524.328	1551.146	7512.36	371.3374
8.85	2556.096	1766.713	7249.592	403.1845	11.03	2484.722	1550.808	7571.988	298.3758
8 88	2414 954	1929 478	7315 722	129 50/19	11.06	2528 321	1586 183	7239 827	409 4797
0.00	2414.934	1729.470	7313.722	429.3049	11.00	2526.521	1270.505	7239.027	409.4797
8.91	2458.328	1793.123	/406.13	398.924	11.09	2616.144	13/0.595	/320.74	335.2305
8.94	2283.419	1794.59	7169.885	404.8604	11.11	2518.346	1562.202	7469.207	357.5443
8.97	2539.14	1749.844	7242.894	372.856	11.14	2427.074	1563.762	7696.098	334.8301
9.00	2312 981	1811 034	6889 397	384 2238	11 17	2518 005	1673 926	7247 12	323 979
0.02	2506 548	1825 788	7146 518	/18 253	11.20	2652 433	1505 778	7562 082	370 770
9.02	2500.548	1025.700	7140.318	410.233	11.20	2032.433	1511.04	7302.082	220.0275
9.05	2599.528	18/0.466	7205.304	442.4858	11.23	25/8.458	1511.04	/313.232	339.0375
9.08	2627.966	1846.382	7331.926	407.5495	11.26	2574.993	1614.256	7496.257	362.205
9.11	2527.598	1819.844	7256.593	414.5409	11.29	2631.752	1653.574	7344.841	302.9836
9.14	2625.384	1806.152	7256.458	362.8699	11.31	2567.69	1500.108	7314.588	341.2733
9.17	2269 371	1895 854	7203 083	/18 0519	11.3/	2/96 268	1595 888	7393 /1/	339 7551
0.20	2207.571	1020.002	(005.005	410.0517	11.07	2540.644	1575.000	7373.414	254 4010
9.20	2389.43	1920.093	0995.807	380.1950	11.37	2549.644	1544.8/1	/ 398.889	354.4019
9.22	2437.119	1864.515	7277.377	413.0226	11.40	2453.745	1689.077	7022.484	413.0225
9.25	2526.792	2072.515	7314.44	406.1679	11.43	2447.861	1497.563	7526.348	411.5988
9.28	2447.664	1695.692	7169.77	418.6856	11.46	2595.748	1739.685	7421.725	408.9626
9 31	2166 435	1839 891	7011 289	428 7876	11 49	2464 75	1614 975	7369 602	387 3663
0.34	2477 308	1681 575	6870 801	350 /216	11.12	2613 442	1703 844	7274 860	408 4564
9.54	2477.308	1001.575	7204.000	202 7966	11.51	2013.442	1705.844	7274.009	403.4304
9.37	2508.881	1696.226	/284.896	392.7866	11.54	2439.102	1662.436	/415.894	402.1299
9.40	2569.608	1633.65	7662.724	391.5739	11.57	2570.485	1664.338	7782.411	411.3038
9.42	2611.461	1616.355	7250.16	396.7302	11.60	2319.868	1605.027	7420.411	420.3832
9.45	2539.341	1773.495	7315.474	385,4365	11.63	2448.266	1583.13	7386.127	401.4653
9/18	2741 514	1760 398	7417 026	117 6837	11.66	2564 637	1654 218	7642 215	359 0211
0.51	2741.514	1645 797	7769 560	210.029	11.00	2207.037	1506.67	7211 567	215 4050
9.51	2353.524	1045.787	7208.302	510.028	11.09	2392.400	1390.07	/511.50/	515.4059
9.54	2375.776	1794.394	7571.055	356.4269	11.72	2566.034	1615.237	7532.011	445.6282
9.57	2451.8	1578.897	7363.162	368.5007	11.74	2681.245	1573.076	7422.137	400.1888
9.60	2632.755	1549.761	7404.282	398.1117	11.77	2513.346	1683.573	7514.746	370.7367
9.63	2512 102	1671 094	7452 783	390 3613	11.80	2443 153	1573 662	7240 974	354 7607
9.65	2385 762	1503 101	7274 301	376.0686	11.00	2470 464	1553 555	7610.001	344 2685
9.05	2365.702	1014 252	7274.301	247.0590	11.05	2470.404	1333.333	7019.091	262 1755
9.68	2401.181	1814.353	/229.152	347.9589	11.86	2512.62	1/2/.185	/464./56	363.1755
9.71	2553.217	1781.817	7277.925	376.1147	11.89	2494.301	1693.708	7276.679	336.7072
9.74	2441.37	1672.156	7427.883	351.1015	11.92	2696.55	1543.791	7395.221	379.2045
9.77	2575.757	1644.542	7321.475	400.1465	11.94	2524.393	1577.673	7264.287	440.1025
9.80	2500 32	1778 091	7591 905	385 1308	11 97	2485 319	1818 042	7236 371	337.002
0.83	2200.22	1628 221	7178 063	347 0580	12.00	2521.066	1603 723	7411 434	382 0586
9.05	2703.027	1028.221	7176.903	347.9369	12.00	2521.000	1003.723	7411.434	362.9360
9.85	2590.506	1758.545	7460.635	352.0185	12.03	2593.96	1582.905	7279.49	446.0927
9.88	2535.683	1792.413	7212.111	386.9964	12.06	2574.859	1650.463	7407.199	390.3613
9.91	2455.673	1720.628	7223.776	317.5887	12.09	2494.623	1640.186	7336.425	413.0225
9.94	2525.431	1775.616	7535 449	393,3561	12.12	2545.09	1768.226	7178.766	386.9546
9.97	2258.063	1816 956	7338 421	466 265	12 14	2488 133	1633 385	7327 563	335 4940
10.00	2408.005	1659 64	7255 109	262 692	12.14	2508 800	1600.267	7445 429	205 1165
10.00	2408.085	1038.04	7555.108	303.082	12.17	2508.899	1600.267	7443.438	393.1103
10.03	2494.18	1683.352	7441.012	375.0916	12.20	2524.601	1693.613	/038.90/	402.825
10.05	2456.525	1688.836	7378.545	378.2342	12.23	2637.307	1618.887	7120.877	370.4308
10.08	2524.553	1808.396	7350.806	438.468	12.26	2473.084	1675.094	7445.686	372.1494
10.11	2488 824	1698.666	7239.458	369.6603	12.29	2484.665	1535.379	7275.93	453.0195
10.14	2473 377	1830 688	7213 576	406 2209	12 32	2353 696	1629.45	7314 762	116 8406
10.17	2475.577	1670.550	7213.370	404.0125	12.32	2503.090	1611 255	7514.702	440.0400
10.17	2432.5	10/0.339	7204.203	+04.9133	12.34	2304.987	1011.233	7344.942	440.00/3
10.20	2402.314	1548.282	1342.209	395.9291	12.37	2302.161	1586.669	1262.689	423.8206
10.23	2432.879	1661.676	7363.925	394.2099	12.40	2319.631	1779.253	7422.122	417.9891
10.26	2622.75	1755.097	7037.529	480.206	12.43	2443.069	1568.611	7145.689	411.8102
10.28	2596.731	1561.378	7247.944	420.4888	12.46	2529.465	1798.092	6968.31	356.4263
10.31	2604 196	1596 185	7261 507	390 5091	12/10	2/39 05/	1705 632	7107 9/18	148 2644
10.31	23/7 012	1620 547	7511 15	350 0201	12.72	2737.034	1820 501	7099 051	400.0044
10.54	2547.040	1020.347	7311.13	338.9081	12.32	2342.802	1839.391	7088.834	400.9062
10.37	2506.417	1702.934	7380.043	387.4612	12.55	2414.386	1739.481	/308.689	475.0915
10.40	2550.159	1585.591	7199.717	386.4064	12.57	2516.097	1683.378	7193.168	439.8911
10.43	2545.536	1546.131	7721.731	414.8048	12.60	2433.819	1692.845	7277.822	441.5793
10.46	2518 781	1664.852	7511.619	401,1595	12.63	2538,515	1840 014	7447.7	385 7952
10.48	2549 872	1569 174	7240 30	432 2358	12.66	2560.84	1886 726	7304 300	429 50/19
10.40	2549 600	1390 340	7776 201	309 1701	12.00	2300.04	1810.04	7767 012	470 00/1
10.51	2348.009	1589.249	12/0.304	398.4/04	12.09	2512.459	1010.96	1202.913	470.8841
10.54	2558.071	1670.358	7576.328	455.8785	12.72	2251.193	1807.32	7063.384	431.9295
10.57	2618.414	1644.501	7440.581	360.1807	12.75	2483.373	1922.63	6972.063	399.2823
10.60	2476.401	1700.621	7462.578	338.9428	12.77	2274.029	1817.193	7086.064	473.8791
10.63	2598 347	1624 491	7465 422	417 3774	12.80	2393.08	1679 3	6941 831	550 9535
10.65	26/6 001	1567 690	7/85 520	110 1650	12.00	2275.00	1834 850	6718 /00	101 1515
10.00	20+0.771	1710 640	7200 021	201 0001	12.03	2250 102	1034.037	6110.477	571 001
10.68	2530.031	1/19.649	/389.031	381.9881	12.80	2550.192	19/7.903	0850.447	5/1.2314
10.71	2402.218	1568.27	7296.533	418.5899	12.89	2266.327	1692.13	7271.45	503.3425
10.74	2591.334	1492.892	7160.611	429.0515	12.92	2276.068	1771.444	7349.682	421.7961
10.77	2499.866	1600.891	7233.019	433.3119	12.95	2544.274	1698.243	7102.563	487.5963
10.80	2502 642	1614 012	7161 146	359 6742	12 97	2243 983	1693 093	7542 782	531 623/
10.00	2302.042	1017.012	/101.140	557.0742	. 4. 11		1075.075	1342.102	551.0234

13.00	2438.229	1688.376	6995.435	559.5156	15.18	2411.771	1366.212	7579.395	393.7567
13.03	2353.724	1765.049	7086.841	492.4271	15.21	2360.584	1376.467	7525.719	431.3289
13.06	2325.26	1763 842	7065 575	523 556	15.24	2536 691	1347 178	7578 075	417 5887
12.00	2222.20	1709.026	6051 797	159 2677	15.24	2330.071	1179 027	7624 800	452 6102
13.09	2517.025	1/08.920	0931.787	438.3077	15.20	2260.363	11/6.92/	7034.899	432.0192
13.12	2449.494	1827.06	7119.243	480.0166	15.29	2475.614	1468.01	7904.174	486.9546
13.15	2384.417	1724.238	6985.23	455.5198	15.32	2424.419	1290.784	7730.681	457.4498
13.17	2309.825	1758.872	6966.396	459.2096	15.35	2580.877	1365.625	7633.857	411.5872
13 20	2268 301	1721 629	7130 917	504 1017	15 38	2493 358	1214 182	7565 136	358 3034
12.20	2402 289	1721.025	7115 250	401.0676	15.50	2421 669	1442 084	7305.150	426 7627
15.25	2405.588	1710.305	/115.359	491.0676	15.41	2431.008	1442.084	7499.725	420.7027
13.26	2120.458	1754.284	6878.728	467.4772	15.44	2502	1323.826	7631.911	398.1644
13.29	2405.364	1756.488	6962.908	518.2007	15.46	2418.621	1388.056	7591.843	457.1855
13.32	2490 248	1568 759	7378.207	483,5063	15.49	2500 197	1383 115	7663 198	368 5537
12 25	2400 444	1704 764	6812 461	152 2492	15 52	2271 126	1277.010	7401 152	424 0221
12.20	2409.444	1/04./04	7226.002	433.3463	15.52	25/1.120	1277.019	7401.155	424.0321
13.38	2460.177	1646.811	/236.083	481.9351	15.55	2512.534	1229.383	//02./98	4/4./32/
13.40	2380.966	1593.618	7145.452	529.6106	15.58	2497.372	1415.881	7806.558	432.3828
13.43	2346.167	1647.74	7231.478	452.2188	15.61	2474.718	1444.712	7622.218	389.5493
13.46	2437 248	1685,123	7215.571	407 6028	15.64	2411.477	1377.563	7799.013	529 3574
13 /0	2496.02	1736 043	7268 808	178 0020	15.67	2491.005	1336 532	7453 571	501 2054
10.50	2490.02	1/50.945	7208.808	470.3929	15.07	2491.005	1330.332	7455.571	101.2934
13.52	2287.33	1659.42	/008.9/6	488.6729	15.69	2258.195	1316.286	1533.525	481.3234
13.55	2470.73	1556.84	7398.288	449.6239	15.72	2467.17	1175.746	7527.521	387.6193
13.58	2340.122	1508.803	7022.912	517.4415	15.75	2393.876	1251.847	7821.687	454.4019
13.60	2240 742	1545 146	7183 455	502 6247	15 78	2338 7/1	1455 529	7903 812	404 7022
12.00	2240.742	1495 (9	7105.455	494 (777)	15.70	2550.741	12(2.14	7/05.012	445 1740
15.05	2492.761	1485.08	/000.310	484.0772	15.81	2007.471	1303.14	/041.352	445.1749
13.66	2366.789	1542.126	7207.42	501.7069	15.84	2313.596	1238.412	7620.844	483.053
13.69	2415.322	1487.779	7481.56	413.6873	15.87	2517.571	1247.317	7611.947	384.7301
13.72	2334.763	1511.412	7471.082	429.7578	15.89	2418.929	1357.68	7595.228	371.2429
13 75	2520 158	1628 272	7317 655	397 6587	15.07	2376 720	1317 69/	7485 762	459 7272
12.70	2320.130	1626.272	7517.055	155 7(14	15.92	2370.727	1202 (0)4	7405.702	437.7272
13.78	2417.286	1616.009	/513.2	455./614	15.95	2485.979	1392.696	/646.029	384.2239
13.80	2494.774	1418.198	7419.2	462.6694	15.98	2405.96	1321.003	7534.586	457.2384
13.83	2510.113	1606.189	7605.014	427.2159	16.01	2268.066	1449.553	7401.839	428.7872
13.86	2517.627	1475 635	7474 585	415,2585	16.04	2363 985	1314 655	7773 186	362,6053
12.00	2421 576	1262 554	7622.024	441 5701	16.07	22003.700	1227 214	7776 562	421 5840
13.09	2421.370	1202.334	7023.924	441.5791	10.07	2202.740	1327.314	7770.503	421.3649
13.92	2469.268	1507.169	1332.813	461.65/2	16.09	2372.44	1345./61	/865.3	452.0715
13.95	2498.184	1600.916	7273.08	364.5355	16.12	2415.285	1335.654	7556.619	398.017
13.98	2462.191	1456.393	7508.007	484.1073	16.15	2409.304	1196.941	7683.798	418.1366
14.01	2388 031	1383 994	7360 913	409 5743	16.18	2326 281	1397 677	7539 633	409 4268
14.02	2500.051	1207.214	7500.715	456 4265	16.10	2320.201	1377.077	7557.055	407.4200
14.05	2555.550	1397.314	/009.451	450.4205	16.21	2301.576	1248.033	//10./58	447.8111
14.06	2475.936	1495.334	7540.246	474.3324	16.24	2410.362	1273.215	/806.666	402.9835
14.09	2400.659	1386.315	7375.596	451.5962	16.27	2360.848	1221.452	7396.361	365.7587
14.12	2265.147	1466.752	7567.089	426.4153	16.30	2245.696	1257.929	7716.617	476.5153
14 15	2483 192	1488 043	7550 333	420 7729	16.32	2248 907	1244 392	7870 591	374 3324
14.10	2272.005	1417.060	700.000	200 6671	16.52	2240.007	1220 127	7640.01	262 5072
14.10	2572.905	1417.009	/21/.915	390.0071	10.55	2345.290	1239.127	/048.81	303.3872
14.21	2331.005	1338.139	7526.972	409.4161	16.38	2183.938	1319.735	7421.309	316.1758
14.23	2483.787	1527.243	7569.815	406.6324	16.41	2230.552	1185.003	7697.642	417.0825
14.26	2284.025	1392.96	7495.41	416.3763	16.44	2386.717	1269.923	7814.703	443.5399
1/ 20	2558 025	1420 705	7361 127	122 7664	16.47	2177 106	1285 747	7466 107	410 3864
14.29	2556.025	1420.793	7301.127	422.7004	10.47	2177.100	1203.747	7400.197	410.3604
14.32	2691.884	1367.762	7402.992	436.2954	16.50	2238.987	1280.869	/608.102	357.5973
14.35	2430.74	1492.398	7213.231	486.4377	16.52	2270.966	1244.25	7914.762	388.9376
14.38	2488.152	1341.445	7443.127	472.1912	16.55	2326.603	1229.735	7661.489	417.23
14 41	2331 657	1459 565	7874 199	387 0606	16 58	2275 805	1371 431	7649 425	417 9475
14.42	2408 802	1506.084	7519 962	284 082	16.50	2275.005	1210.044	7792 16	422 1020
14.45	2490.093	1200.084	7318.802	304.903	10.01	2329.23	1310.044	7765.10	432.1939
14.46	2320.593	1298.441	1253.192	3/3.1199	16.64	2391.439	1226.539	/600.548	392.2384
14.49	2565.611	1518.228	7452.212	453.9485	16.67	2218.817	1260.585	7839.542	403.9539
14.52	2433.376	1386.902	7660.275	417.1354	16.70	2440.604	1271.129	7706.671	373.4258
14.55	2519.414	1275 637	7346.871	397.7112	16.72	2162 266	1220.478	7606 825	396 2345
14 58	2407 519	1367 009	7522 250	396 3707	16.75	2159 516	1079 795	7926 275	368 1/2
14.00	2407.517	1411 400	7522.257	100.5272	16.75	2157.510	1079.795	7/20.275	247.0641
14.01	24/9.396	1411.499	1431.911	428.7457	16./8	2210.74	1228.086	/015.699	347.8641
14.63	2432.186	1361.114	7554.764	394.6633	16.81	2364.683	1303.553	7763.736	405.6727
14.66	2555.918	1446.888	7806.339	461.2985	16.84	2166.272	1259.941	7781.701	376.3569
14.69	2519.186	1481.776	7711.242	407.8865	16.87	2298 119	1243.567	7901.041	371,5903
1/ 72	2670 145	1/50 570	7363 220	161 10005	16.07	2/27 02	1281.04	7603 604	313 6240
14.72	2070.143	1439.379	7303.339	404.////	10.90	2437.92	1201.04	7003.004	313.0342
14.75	2396.494	1368.516	/558./63	428.9984	16.92	2212.857	12/8.53/	/8/3.094	390.6348
14.78	2389.69	1373.635	7477.709	418.8013	16.95	2194.283	1270.229	7847.299	318.918
14.81	2443.571	1390.918	7584.326	357.091	16.98	2116.739	1329.802	7722.554	337.0437
14.84	2580.254	1300.237	7232.233	390.5089	17.01	2381.916	1295,935	7734.752	361.9101
14.86	2380 603	1409 891	7623 160	435 4/17	17.04	2182 3/1	1286 72	7988 008	373 4258
14.00	2210.005	1262 204	7623.107	452 4052	17.04	2102.341	1440 400	7750.070	210 (000
14.89	2510.956	1303.304	/032.491	455.4952	17.07	2150.552	1442.429	1152.589	510.6922
14.92	2478.819	1418.104	7520.551	423.3144	17.10	2229.851	1241.711	7770.014	331.8351
14.95	2422.777	1267.258	7857.635	421.3428	17.13	2227.232	1203.302	7762.417	344.363
14.98	2473 822	1348 237	7800 646	442,4329	17.15	2121 128	1467 641	7939 497	304 3425
15.01	2532 919	1402.97	7480 27	112.7523	17.13	1016 105	1/31 002	8078 07	320 1045
15.01	2332.618	1402.87	/400.3/	445.0804	17.18	1910.403	1451.085	00/0.9/	329.1045
15.04	2339.687	1448.814	7552.25	414.246	17.21	2147.467	1347.2	7610.16	359.3271
15.06	2478.863	1330.051	7456.313	399.6827	17.24	2136.156	1316.719	7680.782	307.9091
15.09	2313.831	1498.792	7633.528	396.8991	17.27	2020.374	1409.133	7691.617	296.8991
15 12	2432 100	1390 103	7588 208	413 5287	17 30	2052 777	1349 170	7927 78	331 2352
13.14	2732.107	10/2 100	7496.200	201 0226	17.30	2032.111	1520 145	70(1,202	205 0 005
15 15		1 7/15 1110	7400.072	371.9320	1/.33	2024.803	1520.145	/901.392	505.0605

17.35	1966.915	1384.719	7734.323	295.781
17.38	1997.425	1594.216	7807.138	320.7192
17.41	1911.728	1522.986	7837.108	227.2683
17.44	1921.194	1503.354	7800.885	283.106

Table 6: Fig 15, Alb Line 7

Distance			a.		3.19	1970.572	2094.384	8431.739	333.8777
(um)	Mg	Al	Si	Ti	3.23	2283 422	1975.224	8101.847	354 7423
0.01	982 5229	2210 745	7536 203	310 2258	3.28	2198 37	1818 208	8157 449	346 4295
0.01	905.0051	2210.743	7507.058	228.6	3 32	2286 485	1793 699	7986 21	332 9824
0.05	956 595	2557.005	7225 208	220.0	3.32	2200.403	1815 292	8/11 379	362 7258
0.10	740 9742	2307.07	7325.508	205 5022	3.50	2314 201	1753 535	8288 703	415 565
0.14	749.8743	2/00./00	7410.074	203.3032	2.45	2314.201	1733.333	8177 144	241 4205
0.18	/05./551	2469.558	/3/4.643	225.8226	5.43	2492.93	1/28.044	01/7.144	341.4293
0.23	614.9146	2774.679	69/1.534	193.5386	3.49	2456.28	1635.976	8385.646	3/1.913
0.27	580.141	2781.441	7010.665	189.2998	3.54	2429.373	1583.485	8218.242	356.0485
0.31	551.8317	2915.978	6994.272	190.884	3.58	2483.472	1557.509	7989.212	425.3898
0.35	457.6017	2823.881	6908.426	175.6163	3.62	2452.867	1524.732	7878.381	401.7071
0.40	485.0033	3216.064	6747.022	189.1969	3.66	2557.938	1324.879	8042.054	395.9966
0.44	509.2613	3042.57	6688.013	138.6	3.71	2546.76	1465.779	7804.789	419.196
0.48	484.6463	2970.959	6731.157	151.7901	3.75	2595.109	1443.288	8096.373	356.3161
0.53	477.9868	3206.178	6630.615	162.9935	3.79	2610.329	1277.527	7819.759	381.5837
0.57	462.6205	3201.793	6777.495	143.8677	3.84	2476.377	1316.936	7895.188	422.1289
0.61	445.1205	3394.544	7028.957	127.5097	3.88	2488.235	1553.849	7886.679	380.9868
0.66	465.1017	3456.954	6902.854	156.9646	3.92	2685.605	1280.977	7907.829	387.8392
0.70	410.3776	3546.095	7211.657	190.9772	3.97	2506.952	1281.272	8098.938	364.7522
0.74	501.2278	3592.284	6913.665	124.4129	4.01	2536.121	1344.24	8054.831	404.9064
0.78	505 6943	3719.148	6918.965	140.2775	4.05	2662.61	1303.772	7857.144	360.4417
0.83	423 4906	3697 417	7297 335	195 6066	4 09	2579.074	1358.315	8172.452	389.8447
0.87	444 0536	3033 572	7059 334	133.0549	4 14	2798 937	1287 666	7848 3	411 7478
0.07	446 5052	3800 858	7151 560	130.0097	4.18	2594.5	1201.000	7966 7	305 9868
0.91	451 1686	3710 455	6080.461	140 526	4.10	2476 573	1311 757	8085 947	327 7764
1.00	412 7502	3710.455	7005 007	149.520	4.22	2470.575	1202 603	7700 137	374 7313
1.00	412.7393	3793.339	7093.907	134.3313	4.27	2570.4	1202.093	7091761	292 7026
1.04	445.1515	4040.248	7272.0	134.1333	4.31	2551.465	1245 157	7901.701	242 0205
1.09	456.3961	4030.741	/383.324	129.6806	4.55	2505.915	1345.157	7988.175	343.9293
1.13	4/9.1628	3966.586	/41/.2/2	98.32259	4.39	2603.511	1252.558	7903.428	405.9868
1.17	486.978	4018.502	/632.89	125.1643	4.44	2529.108	1165.953	7934.185	380.6784
1.21	517.4926	4110.678	7891.353	98.5903	4.48	2484.678	1220.451	/915.138	404.6388
1.26	495.2889	4298.257	7953.504	117.1806	4.52	2551.594	1277.839	7746.548	360.4009
1.30	545.1609	4290.646	7802.688	157.9935	4.57	2510.634	12/1.265	7875.121	398.0649
1.34	497.6905	4516.244	7950.771	126.2131	4.61	2441.944	1289.862	7684.361	334.4747
1.39	464.6963	4342.059	8021.356	137.5711	4.65	2555.033	1189.231	7996.572	395.4417
1.43	515.0518	4297.394	8020.294	131.9646	4.70	2609.183	1265.148	7999.585	401.5221
1.47	525.9907	4535.78	7836.687	115.1643	4.74	2592.76	1266.557	7898.125	339.6498
1.52	450.7535	4403.657	8193.079	85.82259	4.78	2664.69	1217.649	7786.069	323.3327
1.56	479.707	4488.239	8001.344	146.3063	4.82	2580.706	1374.568	8051.384	390.7191
1.60	450.9611	4459.831	7945.214	126.5224	4.87	2570.626	1303.314	7998.955	419.7425
1.64	419.2908	4591.297	7870.762	138.1066	4.91	2559.299	1328.108	7609.038	334.0837
1.69	431.7908	4716.789	8231.965	126.7901	4.95	2579.075	1223.307	8017.32	366.5837
1.73	455.8519	4905.862	7939.087	137.1806	5.00	2569.595	1308.93	8009.152	391.5837
1.77	482.1962	4802.861	8230.063	116.0386	5.04	2629.802	1294.552	7940.174	413.7124
1.82	471.0514	4963.366	8145.001	135.4935	5.08	2700.048	1343.626	7842.821	407.3446
1.86	410.8831	4829.88	8166.784	92.77744	5.13	2585.093	1297.536	7841.579	407.6122
1.90	428 5498	5019 379	8364 357	118 168	5.17	2490.36	1328.904	7616.421	422.1288
1.94	424 1037	5244 642	8387.819	85 49346	5.21	2614.695	1274.344	7821.886	353.1169
1 99	440 2389	5289.072	8508 46	146 5224	5.25	2603.707	1429.24	7645.543	418.98
2.03	430 1609	5149 852	8636 496	128 5903	5 30	2427 927	1399.275	7829 468	438,8878
2.03	475 8519	5141 218	8501 459	125.8226	5 34	2540 457	1258.904	7804.299	390,9563
2.07	529 7759	5257.098	8670.037	152 4483	5 38	2542 685	1461 609	7885 923	362 7357
2.12	470 2297	5220.848	8874 4	115.0614	5.43	2520 783	1304 542	7944 89	365 2258
2.10	451 8112	5280 597	8552 /16	107 6228	5.47	2638 233	1343 279	7819 426	423 9701
2.20	496 5241	5381.083	8672 024	135 2775	5.51	2499.856	1184 846	783/ 697	392 1288
2.25	447 5722	5080.006	8413 307	124 0223	5.51	2661 391	1368 027	7643.06	396 8712
2.29	621 5691	5021 826	0413.307	124.0223	5.50	2607.027	1102 775	7651 674	299 4967
2.55	541 1409	4972 402	0420.015 9500.09	139./93/	5.00	2605.927	1262.042	7031.074	406 1621
2.37	541.1498	48/3.492	8509.98	117.1192	5.04	2005.815	1302.045	7707.019	400.1021
2.42	605.3201	4957.203	8/31.53/	184.2066	5.08	2405.489	1304.344	7597.818	321.3779
2.46	537.8188	4993.702	8463.914	1/1.6244	5.73	25/3.395	12/2.183	15/9.755	429.4131
2.50	656.8025	4825.276	8351.735	129.5264	5.77	2477.25	1331.452	/563.14	4/5.9563
2.55	698.8278	4710.712	8446.553	196.0385	5.81	2450.883	1355.321	1921.278	3/9.6288
2.59	699.3726	4692.577	8775.858	181.522	5.86	2459.027	1444.707	/864.171	436.1721
2.63	740.715	4657.289	8501.121	184.4648	5.90	2592.24	1359.569	7758.156	348.5385
2.68	863.2947	4267.427	8433.961	142.4482	5.94	2618.131	1265.52	7700.482	473.8161
2.72	786.8727	4408.895	8533.049	163.6002	5.99	2617.158	1325.059	7840.812	358.9297
2.76	903.6909	4025.295	8501.702	186.3678	6.03	2586.356	1282.173	7833.675	381.48
2.80	1054.375	4076.571	8524.703	233.1574	6.07	2487.108	1290.946	7956.748	436.8612
2.85	1227.684	3686.534	8664.621	204.1971	6.11	2545.559	1367.856	7779.33	387.3042
2.89	1390.994	3321.823	8620.832	212.3965	6.16	2480.596	1205.945	7758.249	356.1003
2.93	1413.18	3327.292	8344.727	228.2709	6.20	2516.909	1306.999	7630.95	397.4681
2.98	1556.137	2889.735	8380.65	246.1002	6.24	2490.626	1268.298	7571.616	379.0837
3.02	1752.866	2736.725	8327.637	301.1002	6.29	2531.396	1365.953	7837.155	433.826
3.06	1771.806	2473.092	8172.128	374.8447	6.33	2580.161	1353.634	7813.036	369.3613
3.11	1980.414	2507.293	8328.977	306.1619	6.37	2500.25	1281.715	7757.448	386.5837
3.15	2000.696	2260.012	8275.644	346.913	6.41	2662.504	1293.142	7798.221	329.0318

6.46	2615.962	1308.115	7591.385	412.1906	9.72	2580.169	1384.832	7519.743	470.0194
6.50	2532.208	1426.894	7697.251	429.6288	9.77	2650.83	1295.205	7511.158	379.2999
6.54	2439.379	1380.84	7624.025	341.4701	9.81	2554.063	1363.612	7601.423	407.8484
6.59	2425.526	1379.198	7740.809	445.3494	9.85	2528.39	1421.278	7623.11	392.4064
6.63	2628.435	1232.831	7624.074	358.0437	9.90	2492.293	1445.198	7839.859	423.487
6.67	2527.496	1197.208	7645.478	352.3042	9.94	2465.651	1521.715	7406.047	394,6486
6.72	2519.48	1298.289	7697.223	383.6621	9.98	2655.355	1425.181	7917.235	422.0159
6.76	2558,998	1466 627	7720.183	413 3327	10.03	2487 749	1274.06	7418 469	384,6903
6.80	2494 59	1296 558	7533 485	445 8945	10.07	2565 367	1377 232	7391 904	433.6
6.84	2462 645	1361 913	7689 194	383 6003	10.11	2466 522	1450 854	7571.001	393 0032
6.89	2402.049	1366.075	7770 356	393 2092	10.11	2559.2	1329 402	7799 //9	377 0773
6.03	2043.737	1365 313	7678 102	394 8546	10.13	2501 72	1456 762	7//8 822	128 8774
6.07	2611 082	1350.87	7650.001	388 1573	10.20	2532 786	1304 341	7667 118	4/1 0830
7.02	2626 700	1267.05	7572.46	373 5880	10.24	2760.031	1352 102	7756 667	441.9639
7.02	2620.799	1207.05	7795 866	224 6288	10.20	2700.031	1522.192	7744 552	478.1070
7.00	2030.977	1206 462	7765.800	354.0200	10.55	2560 753	1323.137	7824 206	431.3101
7.10	2444.558	1390.402	7970 629	424 0592	10.37	2309.733	1405.528	7526 166	400.3043
7.15	2/21.414	1362.334	7812.02	454.9562	10.41	2469.613	1404.100	7520.100	439.8347
7.19	2005.55	1364.065	7012.02	401.4913	10.40	2500.87	1461.204	7307.707	393.4418
7.23	2489.037	1314.555	7906.149	420.5032	10.50	2502.184	1504.902	7406.042	445.6579
7.27	2500.021	1307.819	7739.925	425.9869	10.54	2387.087	1447.844	/55/./4/	438.1259
7.32	2585.882	1299.837	7593.244	451.1098	10.58	2361.839	1454.851	7489.383	430.7709
7.36	2520.005	1436./56	/655.3/9	355.2872	10.63	2421.563	1450.///	/630.696	406.5418
7.40	2636.417	13/1.558	/812.666	388./643	10.6/	2528.804	1552.046	/456.156	4/4.2065
7.45	2538.044	1325.345	7779.443	439.4842	10.71	2386.541	1520.675	7445.74	462.1483
7.49	2592.363	1321.246	/39/.938	382.9515	10.76	2388.893	1451.561	7446.637	445.5032
7.53	2568.163	1286.541	7638.99	349.197	10.80	2304.594	1436.529	7635.969	511.7065
7.58	2577.126	1315.943	7605.157	399.197	10.84	2537.935	1499.841	7215.987	471.171
7.62	2649.891	1236.539	7940.303	400.1327	10.88	2505.771	1429.72	7621.683	439.8451
7.66	2674.271	1201.618	7454.484	443.7546	10.93	2338.44	1546.485	7328.853	476.5935
7.70	2443.678	1346.274	8175.2	410.7709	10.97	2466.225	1545.032	7546.369	453.158
7.75	2619.013	1272.17	7733.018	438.6415	11.01	2399.734	1561.122	7466.518	502.7968
7.79	2691.894	1254.714	7713.818	409.248	11.06	2473.844	1529.825	7119.562	497.129
7.83	2623.027	1235.655	7589.803	420.1838	11.10	2325.169	1461.306	7411.561	515.6259
7.88	2464.282	1226.86	7737.749	344.8035	11.14	2329.763	1542.102	7536.412	440.6676
7.92	2660.685	1419.09	7708.536	389.865	11.19	2431.642	1551.95	7303.701	509.9064
7.96	2705.872	1200.734	7685.828	395.3487	11.23	2397.342	1571.482	7098.385	517.2516
8.01	2657.255	1219.402	7916.792	383.7133	11.27	2330.781	1471.627	7615.742	517.345
8.05	2614.439	1204.139	7436.995	387.4064	11.31	2401.443	1546.906	7335.965	551.8096
8.09	2537.55	1289.691	7692.512	377.8487	11.36	2359.496	1545.361	7655.613	508.7227
8.13	2526.938	1245.175	7725.408	417.149	11.40	2324.952	1566.801	7252.703	430.0611
8.18	2549.558	1289.668	7679.8	435.4515	11.44	2433.321	1483.782	7249.256	457.0773
8.22	2541.622	1235.934	7722.056	404.6289	11.49	2394.299	1570.966	7208.271	508.8161
8.26	2549.289	1318.32	7693.179	376.697	11.53	2219.744	1476.899	7383.379	454.6386
8.31	2563.696	12/8.615	7778.612	399.9064	11.57	2379.2	1554.127	6994.125	470.884
8.35	2536.009	1353.297	7766.084	410.7192	11.62	2242.094	1572.064	7521.917	512.6225
8.39	2522.611	1277.838	7902.517	403.0032	11.66	2308.865	1652.77	7210.979	526.8612
8.44	2642.719	1304.686	7627.67	377.3449	11.70	2316.927	1595.495	7333.494	540.5032
8.48	2548.717	1400.182	7815.675	456.2029	11.74	2128.271	15/3.65	7301.269	481.9226
8.52	2603.015	1306.048	7875.014	384.9581	11.79	2402.528	1633.981	7237.324	456.7065
8.56	2526.88	1392.037	7/41.686	379.7001	11.83	2344.723	16/1.615	7264.118	480.7192
8.61	2645.231	1268.746	7658.908	356.5838	11.87	2168.379	1623.787	7495.257	486.0484
8.65	2417.475	1290.492	7657.94	382.5098	11.92	2346.531	1639.762	7235.326	505.6579
8.69	2428.697	1311.611	7682.923	434.9581	11.96	2492.758	1591.164	7592.151	439.3709
8.74	2566.969	1384.267	/821.694	400.1741	12.00	2160.355	1542.395	/334.162	432.4677
8.78	2630.635	1266.6	7748.482	388.2192	12.05	2334.704	1584.205	7219.027	511.5934
8.82	2584.695	1327.049	/864.75	388.4966	12.09	2335.414	1600.819	/062.403	530.1741
8.86	2443.568	1385.771	7911.643	418.7126	12.13	2216.996	1615.649	7296.57	444.4749
8.91	2538.926	1296.758	7767.298	439.4227	12.17	2377.733	1552.846	7434.512	459.0318
8.95	2584.822	1270.317	7688.375	359.4227	12.22	2373.48	1514.7	7328.871	364.4749
8.99	2638.667	1279.211	7608.425	429.6904	12.26	2435.903	1696.566	7466.504	484.7006
9.04	2472.452	1312.423	8110.515	419.2681	12.30	2356.448	1571.489	7377.868	504.4849
9.08	2767.671	1308.45	7856.038	335.9869	12.35	2259.063	1728.026	7275.177	483.9397
9.12	2596.021	1331.143	7633.38	363.4869	12.39	2362.771	1615.848	7220.011	558.2191
9.17	2541.652	1331.262	7895.392	355.7709	12.43	2338.702	1703.625	7203.389	485.1221
9.21	2633.432	1345.95	7692.995	408.1164	12.48	2404.718	1718.953	7337.266	549.6388
9.25	2630.15	1299.377	7806.379	402.4678	12.52	2353.983	1728.019	/350.944	565.7175
9.29	2803.619	1312.51	/638.182	412.8073	12.56	2362.932	1602.234	/376.499	482.4682
9.34	2559.537	13/6.269	/66/.517	422.9515	12.60	2511.749	1665.736	/480.68	462.333
9.38	2633.55	1343.317	/526.784	377.839	12.65	2365.335	1572.682	/285.308	568.1155
9.42	2496.652	1372.905	7673.778	450.7393	12.69	2388.089	1548.685	7286.285	449.8043
9.47	2610.505	1428.843	//66.511	414.3095	12.73	2418.186	1695.924	/390.493	522.2525
9.51	2608.845	1368.494	7613.993	409.8449	12.78	2335.28	1592.412	7350.652	526.1104
9.55	2586.058	1298.285	/655.65	377.3036	12.82	2280.271	1/17.094	/122.208	501.3261
9.60	2491.091	1449.672	/513.445	419.3515	12.86	2416.732	1567.595	7293.777	509.3194
9.64	2032.009	1416.139	/098.662	435.4869	12.91	2448.878	1062.871	/196.413	478.0034
9.68	2490.555	1355.931	1185.113	5/4.9064	12.95	2325.875	1704.594	/363.78	479.0937

12.99	2435.771	1683.339	7229.408	428.6103	16.26	2559.096	1500.323	7773.737	285.6794
12.02	2202.91	1620 220	7272 215	512 2800	16.20	2024 870	1527 570	7952 095	106 8002
15.05	2392.81	1029.239	1215.515	515.2809	10.50	2924.079	1337.379	1652.965	400.8095
13.08	2327.902	1629.568	7222.964	533.2909	16.34	2552.003	1654.275	7639.71	360.2878
13 12	2364 299	1674 438	7334.07	398 9297	16 39	2506.09	1493 703	7580.81	313 447
10.12	2004.200	1674.450	7354.07	1/5 7000	16.57	2500.07	14/5.705	7500.01	250.0502
13.16	23/3.465	1635.085	/286.4/2	465.7809	16.43	2697.123	1467.365	/669.891	359.9583
13.21	2383.936	1635.977	7531.956	489.2791	16.47	2579.819	1572.208	7574.996	331.4301
12.25	2250 264	1706 045	7217 561	444 7027	16.52	2627 452	1501 107	7401 262	202 0769
13.25	2339.204	1/90.945	/31/.301	444.7927	10.52	2037.452	1581.127	/401.203	302.0768
13.29	2397.282	1694.152	7468.11	507.077	16.56	2669.679	1645.938	7659.453	349.9064
12.22	2206 408	1726 72	7424 446	408 1055	16.60	2582 708	1675 625	7721.25	204 2001
15.55	2290.498	1/50./5	/424.440	498.1055	10.00	2382.708	10/3.033	//21.23	294.2991
13.38	2490.93	1710.39	7461.487	472.4064	16.64	2614.962	1639.75	7591.658	339.6287
13 /2	2406 752	1764.02	7150 747	527 52	16.60	2507 230	1613 134	7611.028	336 0486
13.42	2400.752	1704.92	7130.747	521.52	10.09	2391.239	1015.154	7011.028	330.0480
13.46	2517.546	1701.503	7038.913	453.373	16.73	2714.662	1653.046	7948.894	401.7596
13 51	2333.96	1664.1	7428 015	519 7927	16 77	2558.86	1653 454	7439 831	314 4008
12.51	22000.007	1640.010	7120.012	405 7000	16.77	2220.00	1 600 642	7 107.001	227.0414
13.55	2364.997	1640.019	/144./13	485.7809	16.82	2/12.402	1680.643	/42/.453	337.9414
13.59	2233.811	1573.806	7403 294	446.6858	16.86	2439 153	1586.333	7619.731	340.0203
12.01	2576 200	1651 027	7064 100	459 2229	16.00	2522.022	1500.000	7710 164	266 4201
15.04	2370.300	1031.237	/204.192	436.3326	16.90	2355.655	1392.223	//10.104	500.4501
13.68	2433.836	1616.773	7206.677	452.7358	16.95	2720.355	1593.997	7521.721	303.8781
13 72	2444 093	1761 47	7132.012	484 0015	16.99	2621 429	1638 978	7435 542	3// 619
13.72	2444.093	1/01.4/	/152.012	404.0015	10.99	2021.429	1030.978	7455.542	344.019
13.76	2438.45	1651.799	7199.42	452.7358	17.03	2714.222	1632.541	7662.64	365.0198
13.81	2440.2	1698 3/19	7453 777	183 7613	17.07	2716 201	1612 362	7153 387	353 3326
12.07	2440.2	10/0.347	7455.777	407.7045	17.07	2/10.2/1	1500.055	7155.507	251.0547
13.85	2349.169	1/00.242	/063.25	427.53	17.12	2657.107	1589.255	/526.228	351.9747
13.89	2714.688	1741.281	7125.09	469.6906	17.16	2739.734	1671.132	7674.462	363.0551
12.04	2202 620	1616 909	7114 404	422 1006	17.20	2654.54	1552.074	7675 266	222 5075
13.94	2393.039	1010.808	/114.424	432.1906	17.20	2054.54	1552.074	/025.300	333.3275
13.98	2428.801	1758.988	7089.795	473.4348	17.25	2690.24	1652.118	7743.401	341.9747
14.02	2423 56	1647 604	7507 721	477 1007	17.20	2671 662	1688 476	7615 185	308 2003
14.02	2425.50	1047.004	1391.121	4//.190/	17.29	2071.002	1000.470	7015.165	508.2095
14.07	2459.69	1728.052	7300.878	413.3946	17.33	2658.452	1548.019	7768.083	347.4582
1/ 11	2466 714	1579 55	7268 003	/31 3161	17 38	2678 016	1596 695	7507 963	330 2764
14.11	2400.714	1377.33	7200.775	+51.5101	17.50	2070.010	1570.075	7507.905	550.2704
14.15	2358.208	1692.995	7390.034	418.5485	17.42	2770.27	1632.854	7547.148	322.3965
14.19	2525.626	1515.39	7589.622	370.4415	17.46	2706.021	1527.353	7724 771	326 5319
14.04	25251020	1607.57	7507.022	252.4967	17.10	2/00.021	1661 700	7721.771	264.9657
14.24	2551.07	1627.57	/591.1/8	353.4867	17.50	2644.669	1661./88	//16.851	364.8657
14.28	2690.443	1666.143	7311.601	366.2025	17.55	2504.251	1587.293	7513.61	325.9868
14.22	2506 912	1692 076	7700.04	220 0027	17.50	2622 527	1604 201	7560 47	251 0495
14.52	2300.812	1082.970	//99.94	559.0657	17.39	2025.327	1004.291	/309.4/	551.0465
14.37	2609.003	1643.167	7281.187	373.8779	17.63	2796.812	1713.017	7381.169	407.9934
14 41	2724 862	1547 845	7530 225	123 117	17.68	2623 551	1583 029	7524 21	206 5036
14.41	2724.002	1547.045	7559.225	423.117	17.00	2023.331	1505.027	7524.21	200.5750
14.45	2660.529	1502.397	7632.136	362.0367	17.72	2715.02	1684.272	7532.413	399.5154
14.50	2550.343	1624.282	7170.039	374.321	17.76	2567.897	1610.803	7537.665	349,8965
14.54	2702.505	1420.047	7520 704	272 0022	17.00	2007.000	1707.504	7671.000	200 (005
14.54	2702.585	1438.947	/539./04	372.9933	17.80	2637.622	1/0/.594	/6/1.329	329.6905
14.58	2664.846	1532.537	7579.202	385.5034	17.85	2723.255	1628.901	7487.603	321.9229
14.62	2615 844	1/01 283	7502 686	368 1865	17.80	2612 032	1502.002	7641 821	353 30/3
14.02	2015.044	1491.205	7502.080	508.4805	17.89	2012.032	1392.092	7041.021	333.3943
14.67	2689.673	1513.964	7570.256	354.1456	17.93	2651.381	1518.323	7663.349	350.4515
14 71	2684 849	1552 596	7587 47	367 2427	17.98	2647 95	1687 75	7603 47	338 7026
1475	2500 525	1005 005	7006 602	267.2121	19.00	2017.55	1400 (59	7517 905	260 5154
14.75	2590.525	1605.685	/286.683	367.6739	18.02	2863.354	1490.658	/51/.895	369.5154
14.80	2736.816	1490.504	7660.802	390.4119	18.06	2540.457	1643.97	7499.96	327.5717
1/ 9/	2611 626	1522.052	7661 499	270 1210	19.11	2566 420	1504.065	7224 56	225 7700
14.04	2044.050	1552.055	7001.400	570.1219	10.11	2500.429	1394.005	7554.50	525.1109
14.88	2636.723	1643.349	7705.205	341.5836	18.15	2883.492	1570.967	7658.529	315.4416
14 93	2538 943	1474 856	7715 375	349 4752	18 19	2649 739	1597 403	7466 432	377 4582
14.95	2550.545	1504.561	7715.575	255 10 10	10.17	2049.159	1577.405	7400.452	077.4002
14.97	25/8.59/	1504.561	//30.445	355.1242	18.23	2729.362	1640.352	/552.039	3/7.674
15.01	2775.735	1597.587	7373.553	371.2642	18.28	2693.977	1673.104	7472.766	327,1905
15.05	2650.002	1476 240	7500 077	200.0592	19.22	2722 778	1611 754	7601 000	240 2975
15.05	2039.992	14/0.249	1300.977	309.9363	18.32	2123.110	1011./54	/091.909	540.2875
15.10	2689.43	1463.627	7727.215	384.6908	18.36	2613.631	1580.823	7557.244	370.5033
15 14	2738 99	1659 57	8018 907	340 4413	18.41	2558 936	1665 502	7605 297	333 4251
15.14	2750.77	1057.57	0010.207	100.115	10.41	2550.550	1005.502	7005.277	333.4231
15.18	2659.955	1533.808	/4/8.442	408.157	18.45	2682.515	14/5.214	/63/.912	318.2709
15.23	2590.019	1500.988	7685.96	354.9481	18.49	2724.719	1482.542	7348.058	319.2589
15 27	2652 925	1525 079	7549 201	390 6174	18 54	2603 374	1632 713	7540 924	332 3657
15.21	2032.723	1.120.017	75-77.201	370.0174	10.34	2003.374	1002./10	7540.724	22.3037
15.31	2618.201	1443.791	/673.399	356.9131	18.58	2513.581	1689.333	/544.385	336.1002
15.36	2651.533	1603.678	7783.14	339.6287	18.62	2728.87	1665.682	7381.375	347.8898
15 40	2662 577	1405 272	7056.02	120 117	10.02	2720 470	1570.000	7560 417	207 1200
15.40	2003.377	1493.373	/930.93	428.44/	18.66	2129.419	13/9.099	/309.41/	297.1288
15.44	2557.642	1552.537	7666.65	385.9245	18.71	2564.942	1674.894	7433.711	381.3777
15 48	2533 813	1534.06	7617 966	410 605	18 75	2561 632	1510 985	7360 532	338 0058
15.40	2001.101	1334.00	7017.200	+10.003	16.73	2501.052	1510.905	7500.552	330.0938
15.53	2601.101	1458.505	/668./58	400.07	18.79	2592.811	16/5.526	/521.954	304.8965
15.57	2648.644	1443.315	7642.161	340.833	18.84	2610.579	1697.37	7742.955	363.826
15 (1	2670.772	1405 202	7451 202	204 1450	10.00	2020 (74	1476.96	74(7(2)	202 4502
13.01	20/8.//3	1493.323	/431.282	374.1430	18.88	2032.074	14/0.80	/40/.031	302.4382
15.66	2566.204	1455.47	7745.367	381.1401	18.92	2734.973	1660.051	7617.456	286.1002
15 70	2780 680	1566 67	7607 550	3/6 2781	19.07	2645 420	1528 624	7303 675	366 1002
15.70	2107.009	1300.07	1001.339	3-0.5701	10.97	2043.429	1520.024	1375.015	300.1003
15.74	2640.255	1465.323	7233.39	332.3962	19.01	2725.767	1684.774	7476.997	388.065
15.78	2532 272	1592 726	7810 982	394,0316	19.05	2692 085	1635 985	7691 562	296 3777
15.00	2754.000	1550.255	7000 621	245.0510	19:05	2572.005	1000.000	7701.000	200.0777
15.83	2754.989	1550.365	/008.631	545.0599	19.09	2523.923	1608.858	7721.098	525.5733
15.87	2642.292	1474.431	7660.315	391.6953	19.14	2723.182	1651.434	7432.795	306.522
15.01	2501 211	1404 102	7740 100	202 0412	10.10	2002 000	1600 204	7654 700	251 6442
13.91	2391.311	1494.102	//48.188	362.9413	19.18	2692.008	1000.294	/054./08	551.0442
15.96	2531.729	1606.422	7670.342	358.0554	19.22	2651.697	1554.73	7584.526	341.9747
16.00	2640 658	1496 119	7706 /03	409 6784	10.27	2551 282	1618 200	7/71 9	377 7975
10.00	2040.030	1720.110	1190.493	-02.0704	19.27	2554.205	1010.209	/+/1.0	511.1015
16.04	2723.894	1561.291	7736.686	339.9063	19.31	2638.452	1644.574	7564.733	348.9296
16.09	2773 543	1637 406	7654 931	366 1106	19 35	2614.206	1640 354	7511 29	287 1288
16.10	2007 645	1502 151	7550 201	220 (707	12.55	2511.200	1400 024	7250.020	220 6002
10.13	2607.645	1523.151	/559.291	338.6727	19.40	2557.09	1490.234	1359.038	558.6003
16.17	2455.285	1484.881	7399.061	338.333	19.44	2641.04	1573.287	7457.558	333.9193
16 21	2530 103	1677 52	7758 157	370 1527	10.49	2643 351	1583 /01	73/8 11/	331 0/92
10.41	2557.105	1011.32	1150.157	517.7541	17.40	2075.551	1.505.471	/ 540.114	551.0405

19.52	2611.601	1604.249	7281.909	341.0999	22.79	2517.195	1773.968	7546.99	374.7422
19.57	2576.305	1591.163	7799.397	331.2741	22.83	2518.262	1715.225	7286.531	377.6331
19.61	2498.004	1629.587	7494.847	374.7419	22.88	2656.334	1696.632	7292.49	392.5715
19.65	2704.99	1655.743	7498.707	395.9871	22.92	2517.879	1694.721	7299.011	352.9515
19.70	2621.136	1648.185	7520.181	379.8451	22.96	2513.847	1678.456	7342.396	400.8326
19.74	2564.418	1777.045	7603.76	377.6741	23.01	2590.478	1671.807	7478.897	319.8557
19.78	2571.809	1635.701	7379.844	337.787	23.05	2469.162	1656.642	7524.773	333.2094
19.83	2702.165	1689.934	7811.637	372.7966	23.09	2670.322	1757.11	7651.877	389.1453
19.87	2754.083	1535.268	7507.101	373.0032	23.13	2605.263	1888.787	7387.727	350.2874
19.91	2637.511	1741.739	7649.433	342.2419	23.18	2591.513	1779.955	7313.397	384.6905
19.95	2689.368	1784.259	7343.147	363.0032	23.22	2589.796	1745.241	7434,927	380.6575
20.00	2719.26	1812.207	7612.476	342.3031	23.26	2503.845	1744.246	7520.959	357.0154
20.04	2626.079	1713.854	7562,792	353.8677	23.31	2666 801	1811.615	7397.942	392,4581
20.08	2496.907	1684.226	7682.983	326.0387	23.35	2601.427	1666.789	7390.892	364 4746
20.13	2601 73	1686 726	7464 888	384 0322	23 39	2592 482	1641 962	7640 629	404 0418
20.13	2515.05	1614 245	7470 797	375 1646	23.44	2610.88	1699 427	7565.616	341 1002
20.21	2647 037	1711 956	7284 547	349 4645	23.48	2524 539	1914 306	7222 769	396 2027
20.21	2458 676	1727 928	7328 338	397.0161	23.52	2573 296	1789 452	7503 519	323 2709
20.30	2728 707	1694 901	7585 807	401 316	23.56	2529.72	1741 013	7312 997	358 3942
20.30	2553 626	1688 787	7501 781	392 3548	23.61	2419 173	1862 738	7260.934	473 3118
20.34	2355.020	1753 497	7364 799	366 0483	23.65	2415.175	1727 239	7356 871	327 1387
20.30	2564 202	1691 742	7303.031	388.0968	23.69	2631 483	1880 232	7361.036	347 674
20.43 20.47	2511 886	1808 481	7195 983	370 5968	23.07	2433 608	1764 915	7381 318	375 0197
20.47	2531 285	1833 52	7427 753	331.8	23.74	2433.000	1777 67	7562.18	362 1288
20.51	2527 53	1710 812	7261 776	374 629	23.70	2445.214	1752 611	7660 638	388 1575
20.50	2527.55	1772 857	7507.862	333 5387	23.02	2075.912	1684 141	7451 794	363 2101
20.00	2025.702	1763 672	7401 458	306 8006	23.07	2430.921	1768 760	7280.200	375 4009
20.04	2488.004	1807 116	7401.438	375 6161	23.91	2540.15	1912 155	7422 705	207 5914
20.08	2314.377	1780 386	7275.090	414 9064	23.95	2549.710	1761 331	7433.793	320 7700
20.73	2490.239	1583.023	7204 003	381 6451	23.99	2557 740	1758 101	7140.440	315 2258
20.77	2555 861	1788 066	7433 116	388 75/8	24.04	2530.842	1850.046	7432 041	350 6280
20.81	2555.801	1622 522	7433.110	262 2102	24.00	2530.642	1720 462	7432.041	A19 9777
20.80	2313.32	1023.322	7167.015	366 5034	24.12	2380.033	1729.402	7329.804	3/0 207
20.90	2480.088	1929.019	7440.709	280 5022	24.17	2475.704	1662 501	7366.857	229 1167
20.94	25/70.409	1841.002	7170.001	401 5515	24.21	2037.82	1725 560	7520.251	274 0591
20.99	2307.037	1722 411	7430.104	401.3313	24.23	2030.304	1725.309	7320.231	292 1591
21.03	2469.991	1765 992	7214.445	240 6296	24.30	2550.507	1924 206	7430.337	201 2777
21.07	2515.651	1/03.002	7210.303	240 1069	24.54	2018.07	1002 675	7331.223	225 6266
21.11	2505.41	1009.225	7271.305	349.1908	24.50	2343.10	1903.073	7259.207	205.0200
21.10	2578.074	1616 202	7429.310	417.3452	24.42	2003.738	1/38.34/	7470.5	393.9808
21.20	2433.474	1010.505	7162.344	328.0031	24.47	2570.299	1/05.559	7417.132	420.2557
21.24	2557.501	1705.551	7424.29	269 0021	24.31	2508.572	1020.404	7331.803	247 0414
21.29	2300.978	1720.432	7434.30	420.0222	24.55	2502.990	1703.838	7141.943	280 4417
21.33	2401.140	1719.293	/148.09/	439.0322	24.00	2049.458	1805.084	7284.102	380.4417
21.57	2506.104	1/10.5//	7591.431	422.1996	24.04	2013.073	1/90.934	7018.930	309.7423 414.0064
21.42	2572.34	1700.343	7362.716	207.0772	24.08	2307.020	1823.037	7300.482	201.0012
21.40	2501.798	1/20.841	7274.398	397.0773	24.72	2401.80	1/8/./4	7311.07	381.8012
21.50	2047.770	1037.794	7224.38	200 4515	24.77	2703.202	1823.397	7333.099	201 (072
21.54	2581.097	1/14.109	7370.762	380.4515	24.81	2304.114	1//3.805	7200.937	255 2075
21.39	2302.930	1/99./39	7415.055	433.267	24.65	2570.938	1054.100	7245.061	220 4626
21.05	2504.18	1042.413	7269 129	225 55 49	24.90	2390.033	1762.050	7545.001	260 1000
21.07	2015.201	1613.332	7506.126	296 1	24.94	2415.551	1705.039	7619.62	220.1222
21.72	2334.129	1091.179	7355.792	252 6741	24.98	2497.300	1304.22	7200 520	201 012
21.70	2010.071	10//.000	7260.234	332.0741	25.05	2550.079	1751.24	7399.329	270 0044
21.60	2495.178	1793.538	7409.707	247 9492	25.07	2491.319	1796 222	7270.292	252 4064
21.65	2311.392	1/14.004	74/9.4/1	297 4064	25.11	2363.394	1721 121	7244 291	126 729
21.09	2437.335	1904.44	7545.075	387.4004	25.15	2570.717	1/51.121	7344.201	430.730
21.95	2594 454	1/39.693	7449.721	408.1373	25.20	2023.402	1051.191	7257.05	272 527
21.97	2584.454	17/5.019	7204.255	418.2808	25.24	2575.305	1850.578	7257.95	3/3.33/4
22.02	2580.04	1/05.032	7454 192	287.8392	25.28	2511.517	1//0.995	7380.127	240.913
22.00	2031.403	1044.115	7454.182	397.4004	25.55	2538.205	1812.700	7405.702	342.7770
22.10	2515.15	1730.208	7420.030	3/8.8101	25.57	2468.079	1815.811	7380.117	429.2385
22.15	2038.975	1707.110	7302.39	381.3777	25.41	2/45.062	17/4.304	7458.509	390.0380
22.19	2615.912	1/30.016	7121.912	338.6002	25.46	2431.822	1740.985	7217.845	342.1913
22.23	2484.329	1692.605	7500.999	369.5264	25.50	2514.476	1/25.68	7315.529	3/5.28/4
22.28	2399.904	1/13.832	7220 444	204.0289 414 7214	23.34	2391./1	1/80.13	7202 49	373.3380
22.32	2331.029	1013.344	7120 52	414./314	23.38 25.62	2403.030	10/9.0/2	1292.48	267 4064
22.30	24/9.401	1662 607	7307 150	382.0//1	25.03	2313.993	1074.31/	7400.032	31/ 7/004
22.40	2373.342	1604 764	1371.439	201 2642	25.07	2300.129	1/40.38/	7277 1 (2	267 6222
22.45	2420.11	1094./04	7420 021	259 6002	25.71	2307.107	1007.08/	71103	307.0332 405.0055
∠2.49 22.52	2550 042	1/02.248	7660 071	220.0949	25.10	2490.391 2571 615	1/00.129	7200 242	403.2238
22.33	2337.943	1020.933	7000.9/1	272 1005	25.00	2574.043	1014.297	7205 15	403.10/4
22.38	2519.202	1707.114	1200.3	312.1903	25.04	2030./30 2577 522	1710.0//	7121 014	385 0100
22.02	2012.07	1751 450	7/07 02	365 1117	25.07	2511.333	1790 702	/121.014 7070 600	420 7002
22.00 22.70	2401.22	1772 076	7673 104	202.4417 406 2777	25.93 25.97	2033.243	1/00./00	1212.082	420.7093
22.70	2310.377	1756 15	71/5 500	3/1 9610	25.71	2444.120	1007.913	7240.051	310 207
22.13	2447.100	1/30.43	/145.522	341.8012	20.01	2317.333	1903.091	1249.031	519.207

26.06	2575.228	1702.749	7357.652	367.0154	29.32	2575.114	1536.117	7605.148	288.1572
26.10	2557 870	1006 025	7207 695	280 0582	20.27	2752 664	1547 921	7400.80	200 0101
20.10	2551.019	1990.955	/30/.085	369.9362	29.37	2732.004	1347.031	/490.89	300.9101
26.14	2557.219	1875.402	7233.765	442.674	29.41	2724.061	1463.678	7411.539	343.8161
26.19	2589 719	1715 25	7262 869	129 804	29.45	2636 409	1560 485	7710 807	292 5502
20.19	2309.719	1/15.25	7202.809	429.004	29.43	2030.409	1500.485	7719.097	292.3302
26.23	2588.107	1859.125	7129.239	350.4417	29.50	2717.47	1559.412	7702.486	343.0034
26.27	2538 344	1769 149	7230 709	348 3326	29.54	2709 195	1429 881	7942 44	349 0836
20.27	2550.544	1707.147	7230.707	340.3320	27.54	2707.175	1427.001	7742.44	347.0050
26.32	2477.027	1775.89	7274.759	367.1289	29.58	2693.254	1575.995	7540.198	331.9131
26 36	2492 254	1715 225	7328 28	408 1784	29.62	2702 009	1523 133	7758 18	324 8044
20.30	2472.234	1713.223	7320.20	400.1704	29.02	2702.007	1525.155	7750.10	324.0044
26.40	2574.292	1821.347	/385.25	401.913	29.67	2//1.814	1467.241	/624.044	352.6739
26 44	2507 409	1835 769	7189 416	446 3161	29.71	2611 543	1430 97	7607 849	312 6338
20.11	2307.107	1055.707	7107.110	110.5101	29.71	2011.515	1 10 6 90	7007.015	212.0000
26.49	2463.096	1//9./81	/315.609	393.2191	29.75	2926.777	1496.29	//29.915	364.9064
26.53	2530.013	1771.511	7392.446	355,5033	29.80	2752.893	1527.396	7646.911	329.9582
20.00	2550.554	1070010	7007.005	420.071	20.04	2064.06	1464 704	70101211	222,5002
26.57	2560.564	16/6.316	/32/.685	438.271	29.84	2864.96	1464./24	//9/.49/	322.5/19
26.62	2352.159	1765.559	7342.603	396.7687	29.88	3010.144	1429.299	7527.106	357.0368
20.02	2467.007	1021 107	7242 110	260.7700	20.02	26101111	1512 102	7620.640	207.0000
26.66	2467.097	1831.167	/343.119	360.7709	29.93	2627.138	1513.192	/629.649	297.0669
26.70	2469.201	1821.356	7311.293	316.913	29.97	2776.941	1706.732	7653.863	290.9465
2675	24765	1655 701	7247 221	275 0000	20.01	2651 040	1402 200	7725 005	255 7001
20.75	2470.3	1055.781	/54/.551	575.0822	50.01	2034.040	1492.389	1123.803	555.7091
26.79	2574.526	1723.175	7430.051	369.0317	30.05	2768.522	1514.316	7653.206	355.0819
26.82	2522.9	1820 160	7420 081	280 7527	20.10	2840 472	1416 259	7629 791	210 700
20.85	2555.0	1629.109	7439.001	369.1321	30.10	2040.475	1410.558	/030./01	510.709
26.87	2529.749	1701.307	7370.419	401.1624	30.14	2901.06	1503.184	7612.449	356.4298
26.92	2627 222	1830 636	7308 738	362 1288	30.18	2756 565	1512 882	7705 511	329 0318
20.92	2027.222	1859.050	1390.130	302.1288	50.18	2750.505	1312.002	7705.511	529.0518
26.96	2516.473	1686.471	7452.818	366.3781	30.23	2792.021	1513.357	7627.364	287.3964
27.00	2401 842	1871 947	7239 535	362 8497	30.27	2703 632	1447 726	7858 104	299 9582
27.00	2401.042	10/1./4/	7237.333	502.0477	50.27	2705.052	1447.720	7050.104	277.7502
27.05	2419.938	1817.422	7240.234	371.1624	30.31	2658.578	1523.781	7680.888	288.3846
27.09	2608 264	1702 233	7221 831	392 7137	30.36	2784 581	1518 341	7597 69	328 7944
27.07	2000.204	1702.233	7221.051	372.7137	30.30	2704.301	1510.541	7577.07	320.7744
27.13	2499.409	1765.579	7219.54	357.1907	30.40	2661.862	1556.618	7706.763	350.7091
27 17	2669 116	1752 734	7249 873	324 7426	30.44	2712 868	1551 757	7787 307	340 9248
27.17	2007.110	1011.00	7219.075	221.7120	30.11	2/12.000	1001.707	7707.507	210.2210
27.22	2537.631	1811.29	7243.804	333.9299	30.48	2622.776	1434.749	7/16.54	335.2876
27.26	2495.035	1674.283	7491.832	350 8949	30.53	2601.212	1402.682	7806.302	378,7141
27.20	2199.000	1700.004	7171.052	200.0717	20.55	2001.212	1401.002	7000.302	205.0720
27.30	2538.793	1/00.094	1331.259	369.4131	30.57	2861.822	1401.29	/685.111	285.8729
27.35	2377.338	1793.635	7427.138	402.7358	30.61	2666.989	1551.946	7813.796	325,7709
27.20	2610 201	1696 012	7261 004	206.9612	20.00	2020.025	1402.054	7051 176	201 0205
27.39	2610.391	1686.912	/361.884	396.8612	30.66	2839.935	1493.054	/851.1/6	281.0385
27.43	2560.344	1852.225	7415.132	393.7022	30.70	2534.588	1507.83	7715.623	273.3228
27.49	2524.055	1000.050	70(1.20	445 2070	20.74	2569 202	1515 247	7507 055	226 1002
27.48	2524.955	1822.850	/201.32	445.2878	30.74	2308.393	1515.547	1521.255	330.1003
27.52	2498.001	1632.604	7512.81	318.0553	30.79	2626.568	1503.209	7646.976	314.6906
27.56	2505 521	1712 751	751262	207 5002	20.92	2786 240	1200 165	7701 492	244.0592
27.50	2595.521	1/12./51	/542.05	387.3082	50.85	2780.349	1390.105	//01.482	344.9382
27.60	2562.219	1619.127	7537.613	402.622	30.87	2793.938	1390.175	7609.708	292.7258
27.65	2656 586	1785 062	7280.61	266 21 42	20.01	2668 047	1546 215	7778 076	227 2425
27.05	2050.580	1765.902	7209.01	500.2145	30.91	2008.047	1540.515	1110.910	557.2425
27.69	2553.34	1617.562	7536.442	418.9798	30.96	2681.864	1477.897	7915.454	302.3964
27 72	2565 02	1622 526	7609 19	402 2527	21.00	2762.01	1206 291	7662.25	221 7074
21.13	2505.92	1052.550	/000.10	402.2527	31.00	2702.91	1390.281	7002.25	551.7074
27.78	2547.651	1636.109	7330.74	360.0101	31.04	2644.728	1567.943	7539.855	332.9014
27 82	2642 615	1527 882	7578 725	358 868	31.00	2664 406	1502 552	7672 200	200 6006
27.02	2042.015	1527.002	1310.123	556.606	31.09	2004.400	1392.332	1012.299	299.0900
27.86	2537.059	1594.923	7519.302	304.0836	31.13	2765.906	1435.225	7784.776	267.8896
27.91	2669 189	1476 341	7756 981	372 9293	31.17	2782 97	1480.071	7776 057	309 0837
27.71	2007.407	1470.341	7750.901	512.9295	51.17	2762.97	1400.071	7770.037	507.0057
27.95	2638.487	1589.586	7524.302	366.7993	31.22	2652.771	1363.643	7752.253	323.7024
27 99	2613.5	1666 593	7537.01	365 6172	31.26	2674.95	1451 324	7505 465	273 209
21.))	2015.5	1000.373	7557.01	505.0172	51.20	2074.75	1431.324	7505.405	273.207
28.03	2728.49	1564.438	7679.219	378.6004	31.30	2799.394	1587.059	7653.032	317.4582
28.08	2544 033	1553 643	7778 335	392 9117	31 34	2748 319	1479 993	7719 189	266 8612
20.00	2544.055	1555.045	7770.555	372.7117	31.34	2740.517	1477.775	7/17.107	200.0012
28.12	25/8.553	1648.782	///0.211	326.1624	31.39	2591.08	1558.825	/460.2/5	345.4934
28.16	2688 224	1658 521	7614 083	339 6907	31.43	2708 353	1541 437	7724 708	318 9298
20.10	2772 (94	1501 125	7440 754	240.2512	21.47	2(77.196	1462.007	7960 674	216.0205
28.21	2772.084	1521.155	/448./54	549.5512	31.47	20//.180	1462.907	/809.0/4	510.0585
28.25	2709.868	1501.766	7489.584	337.9016	31.52	2726.805	1396.005	7483.937	354.1455
28 20	2606 600	15/18 816	7557 019	37/ 1/56	31 56	2700 807	1/27 362	7532.0	3/1 25/2
20.27	2000.009	1.150.010	1551.910	574.1450	51.50	2109.091	1-127.303	1334.9	3-1.23-2
28.34	2741.465	1453.773	/936.56	326.6975	31.60	2596.17	1401.127	7/12.064	357.3444
28 38	2612 180	1567 684	7462 636	299 41 31	31.64	2749 335	1435 070	7637 010	314 9582
20.30	2012.10)	1507.004	7(10.74	277.7131	31.04	27 4 500	1201 202	7(00,500	221 100
28.42	2037.751	1526.594	/019./4	5/4.0317	31.69	2704.599	1391.299	/089.598	331.1004
28.46	2638.923	1519.544	7666.181	314.8046	31.73	2704.472	1416.429	7770.388	410.2878
20.10	2622.020	1400 447	7621 004	245 0250	21.75	2720.977	1510 104	7708.020	267 (720
28.51	2623.028	1499.44/	/621.994	545.2559	31.77	2/30.86/	1518.184	1 198.938	307.6739
28.55	2773.88	1587.674	7635.424	368.4347	31.82	2724.032	1454.716	7854.375	335.1739
28.50	2710.021	1492.062	7071 400	260 2612	21.96	2767.000	1460.922	7600 070	240 5769
28.39	2/10.931	1463.063	1211.429	309.3012	31.86	2101.009	1400.832	/088.0/8	349.3/68
28.64	2776.3	1509.604	7653.894	326.0385	31.90	2716.506	1450.832	7528.975	321.8612
20 60	2667 722	1660.052	7005 001	377 2042	21.05	2511 252	1//1 11	7/20 1/2	285 1110
∠0.0ð	2007.722	1000.052	1993.981	322.3903	51.95	2344.233	1441.11	1420.143	203.1119
28.72	2775.121	1367.65	7819.357	333.3727	31.99	2672.505	1388.479	7929.474	374.7925
70 77	2797 205	1509 072	7860 707	321 162	22.02	2700 002	1/77 079	7607 720	314 0926
20.//	2101.303	1508.972	/000./0/	554.405	52.03	2190.880	14/7.078	1091.129	514.0830
28.81	2709.123	1492.676	7670.251	361.9131	32.07	2631.616	1452.406	7860.633	391.0486
28.85	2720 781	1503 063	7848 221	310 700	32 12	28/17 028	1483 816	7820 157	348 5385
20.00	2127.101	1505.905	70+0.321	510.709	32.12	20+1.920	1-05.010	1047.137	5-0.5505
28.89	2753.487	1464.863	7492.265	332.5202	32.16	2611.853	1450.478	7705.091	266.368
28 94	2666 370	1512 060	7632 861	319 4751	32.20	2814 442	1545 651	7813 384	347 6110
20.94	2000.379	1512.009	7052.001	517.4/51	32.20	2014.442	1345.051	1015.304	5-7.0119
28.98	2559.419	1588.816	7614.394	348.281	32.25	2697.784	1471.889	7680.98	346.44
20.02	2622 801	1461 888	7485 280	334 8046	27 70	2561 306	1475 70	7634 560	336 3161
27.02	2022.071	1401.000	7-05.209	354.0040	32.29	2501.590	17/3./9	7034.309	330.3101
29.07	2780.092	1481.093	/626.307	360.1119	32.33	2590.488	1557.768	7/26.108	311.2143
29.11	0001 0 00	1//8 618	7694 214	315 9468	37 38	2708 28	1482 069	7501 767	317 4583
~/.II	7781767		11177.414	515.7400	52.50	2700.20	1702.009	1501./0/	211.7202
00 1 -	2781.267	1407.000	7005 0 5 1	252 01 51	22.10		1407 040	7015 501	000 47
29.15	2781.267 2753.047	1497.086	7885.964	353.8161	32.42	2831.586	1495.848	7915.784	288.4765
29.15 29.19	2781.267 2753.047 2764.461	1497.086	7885.964 7591 185	353.8161 338 7542	32.42 32.46	2831.586	1495.848 1425 184	7915.784 7457 315	288.4765 372 1907
29.15 29.19	2781.267 2753.047 2764.461	1497.086 1508.927	7885.964 7591.185	353.8161 338.7542	32.42 32.46	2831.586 2725.201	1495.848 1425.184	7915.784 7457.315	288.4765 372.1907
29.15 29.19 29.24	2781.267 2753.047 2764.461 2577.457	1497.086 1508.927 1567.673	7885.964 7591.185 7803.637	353.8161 338.7542 345.5034	32.42 32.46	2831.586 2725.201	1495.848 1425.184	7915.784 7457.315	288.4765 372.1907
29.15 29.19 29.24 29.28	2781.267 2753.047 2764.461 2577.457 2754.715	1497.086 1508.927 1567.673 1431.143	7885.964 7591.185 7803.637 8007.356	353.8161 338.7542 345.5034 292.6338	32.42 32.46	2831.586 2725.201	1495.848 1425.184	7915.784 7457.315	288.4765 372.1907

Table 7: Fig 15, A2a Line 7

Distance	M		G *	T .	13.49	2593.617	1015.101	7
(um)	Mg	AI	SI	Ti	13.67	2683 109	920 1249	7547
0.00	7255 270	1028 042	70/0 272	100 72	13.85	2539 782	924 4513	738/
0.00	2333.328	1020.943	7947.0/2	190.73	14.04	2557.102	052 (270	7205
0.26	2385.977	926.3511	7861.24	248.7276	14.04	2534.159	953.6379	7295.
0.44	2482.406	826.8066	7738.454	236.5797	14.22	2508.549	963.3584	7489.3
0.62	2538 591	742,5728	7830.08	229.0538	14.40	2573.969	1005.297	7376.2
0.80	2552 706	700 810	7744 624	252 2208	14.58	2404 215	1087 227	7232 6
0.80	2555.790	700.819	7744.034	233.2396	14.50	2404.213	1140 727	7232.0
0.99	2569.077	//0.0616	7856.272	224.6513	14./6	2301.622	1149.737	/14/.1
1.17	2519.992	788.0366	7691.313	282.4597	14.94	2364.785	1209.574	7178.3
1.35	2544.864	788.5581	7758.555	243.9164	15.12	2259.979	1208.526	6986.2
1.52	2586 604	701 2021	7959 527	278 6410	15 30	2355 650	1207 613	7041.7
1.55	2380.004	/91.3921	1636.321	278.0419	15.50	2355.059	1207.013	7041.7
1.71	2706.947	822.7312	7673.326	299.02	15.49	2382.117	1242.172	/108.1
1.89	2581.96	805.8327	7700.33	247.2723	15.67	2282.58	1241.46	7006.
2 07	2550 748	734 577	7642 766	237 7229	15.85	2375.705	1176.064	7122.2
2.07	2619 922	790 1709	7607.021	285 2020	16.03	2550.050	1153 147	7346.6
2.23	2018.855	/ 69.1/98	/09/.951	263.2939	10.03	2350.959	1155.147	7340.0
2.44	2564.334	816.4271	7693.016	268.5839	16.21	2466.051	1056.378	7259.5.
2.62	2527.96	776.4022	7646.914	264.0656	16.39	2533.421	1148.035	7369.9
2.80	2472.46	787,1746	7574,797	246.521	16.57	2524.107	1088.46	7282.3
2.00	2612.874	202 2577	7758 072	254 1745	16.75	2485 262	1043 147	7281
2.98	2012.074	803.8377	1138.013	234.1743	10.75	2403.202	1045.147	7201.
3.16	2630.063	790.5897	7787.626	283.1012	16.94	2548.172	1130.781	7253.9
3.34	2703.687	768.2686	7584.223	284.3737	17.12	2511.634	1130.559	7321.8
3 52	2680.18	823 097	7669 938	273 1461	17 30	2539.006	1206 348	7321.2
2.54	2000.10	705 7070	7007.750	213.1401	17.50	2557.000	1255 221	7075 4
3.70	2369.088	185./0/9	1/35.211	245.6574	17.48	2327.701	1200.001	1013.40
3.89	2634.333	830.0649	7575.797	260.2405	17.66	2362.383	1203.687	7021
4.07	2656.782	857.6096	7684.904	298.0189	17.84	2479.051	1197.316	7158.42
4 25	2527 734	790 6443	7847 587	201 506	18.02	2583 902	1219 349	6944 (
4 42	2521.154	217 A000	7657 005	271.370	10.02	2303.702	1220 705	7044 70
4.45	2390.793	01/.4888	1051.985	201.//39	18.20	2433.079	1239.703	1244.12
4.61	2610.451	811.3241	7879.217	271.8811	18.39	2446.834	1213.077	7395.9
4.79	2658.368	785.0323	7603.54	251.1039	18.57	2519.395	1275.071	7244.00
4 97	2556 383	866 5112	7805 667	264 6364	18.75	2434 388	1246.95	7109.00
5 15	2520.505	QAA A107	7909 157	201.0304	18.02	25/1 910	1237 633	71/19 63
5.15	2552.272	044.4107	7696.437	277.1323	10.75	2341.019	1237.033	7140.0
5.34	2576.72	805.9847	/481.328	235.004	19.11	2335.95	12/8.30/	7240.84
5.52	2606.867	854.6636	7663.192	291.0738	19.29	2473.615	1206.826	7290.13
5.70	2600.239	846.0447	7663.455	266.2582	19.47	2540.899	1301.746	7260.29
5.88	2563 289	815.637	7502.773	242,9396	19.65	2524.387	1180.587	7221.12
6.06	2501.660	838 7853	7447 053	257 5832	19.84	2551 515	1230.015	7207 6
0.00	2571.007	050.7055	7761.549	207.5052	20.02	2502 (47	1227.096	7251.16
6.24	2548.534	853.2033	//61.548	292.5266	20.02	2505.047	1237.980	/351.13
6.42	2558.409	853.3932	7509.715	302.2042	20.20	2444.439	1274.065	7158.80
6.60	2626.875	860.0013	7589.838	302.5905	20.38	2572.666	1233.869	7519.47
6 70	2638 025	803 5680	7547 215	266 6510	20.56	2676 187	1273 018	7286.90
0.79	2036.923	073.3007	7547.215	200.0319	20.50	2070.107	1273.010	7200.72
6.97	2655.983	864.8571	/683.081	266.0217	20.74	2000.759	1257.544	1321.50
7.15	2617.83	843.4531	7451.331	270.4809	20.92	2619.181	1253.564	7266.12
7.33	2661.796	905.3184	7520.653	258.7356	21.10	2606.929	1267.453	7411.31
7.51	2592.124	868.374	7612,799	250,0045	21.29	2581.152	1171.414	7274.37
7.60	2600.05	853 7762	7573 301	277 0237	21.47	2663 576	1241 677	7258 12
7.09	2099.05	0161077	7575.501	217.0237	21.47	2005.570	1241.077	7250.12
/.8/	2548.496	816.1077	/548.1/	283.0487	21.65	2562.935	1191.565	/415.52
8.05	2613.228	800.9984	7697.719	296.2395	21.83	2534.515	1206.696	7237.44
8.24	2486.276	818.6871	7787.112	287.7219	22.01	2523.116	1257.335	7414.80
8 17	2572 024	8// 2000	7533 105	2/18 6620	22.01	2624 121	1254 4	7158 22
0.42	2575.054	044.3202	7535.105	240.0030	22.19	2027.424	12234.4	7140.02
8.60	2520.077	851.2811	1554.459	292.9396	22.37	2019.432	1222.995	/149.62
8.78	2647.93	891.7968	7807.785	262.8983	22.55	2607.392	1176.847	7350.23
8.96	2624.32	836.2845	7605.531	227.1402	22.74	2589.492	1254.47	7144.36
914	2692 107	883 4255	7672 517	316 8925	22.92	2570.948	1260.852	7053.28
0 27	2580 361	8/15 /07	7525 52	273 /312	23.10	2558 613	1181 307	7200 84
9.34	2507.501	040.407	7412.002	213.4313	23.10	2550.015	101.377	7005 1
9.50	2606.257	980.8366	/413.882	293.4168	23.28	2561.266	1269.485	/085.1
9.69	2681.692	891.2433	7658.934	269.1408	23.46	2488.945	1244.546	7521.75
9.87	2589,906	846.2426	7551.763	301.3295	23.64	2528.097	1241.147	7221.89
10.05	2660 856	843 85/1	7496 310	258 5781	23.82	2609 871	1198 802	7146.80
10.05	2000.000	001.00041	7(21,200	250.5701	23.02	2009.071	1004 501	7015.05
10.23	2/31.41	891.8994	/631.208	267.7031	24.00	2690.809	1284.501	1215.97
10.41	2510.188	837.5304	7709.107	273.2139	24.19	2612.904	1215.804	7368.17
10.59	2592.819	814.9553	7667.812	282.1215	24.37	2539.864	1308.568	7283.45
10 77	2481 452	756 7279	7620 201	281 3060	24 55	2602 055	1243 728	7304 70
10.77	2401.432	130.1310	7029.201	201.3009	24.33	2002.000	1245.720	7304.70
10.95	2538.498	829.35	/5/1.69	241.3142	24.73	2531.08	1285.954	7289.4
11.14	2558.993	787.3484	7847.373	271.2356	24.91	2534.708	1229.792	7403.49
11.32	2558.05	830.9858	7660.322	286.975	25.09	2565.82	1278.117	7287.46
11 50	2661 618	818 /1/2	7591 654	250 7513	25.27	2522 394	1276 367	7232.13
11.00	2001.010	010.4143	7571.054	230.7313	25.27	2522.374	1201 251	7001 70
11.68	2609.9	825.8345	/601.62	211.4853	25.45	2598.245	1301.351	/221./3
11.86	2565.586	856.3693	7640.466	293.2253	25.64	2546.716	1253.954	/108.17
12.04	2679.162	885.5374	7605.046	261.6299	25.82	2608.684	1281.174	7379.76
12.22	2651 376	804 0868	7463 054	282 7675	26.00	2609 845	1261 394	7252 83
12.22	2610 927	007.000	7444 500	202.1013	20.00	2502.042	12/0 5/1	7166 00
12.40	2019.82/	887.012	1444.522	285.7027	26.18	23/3.333	1249.541	/400.22
12.59	2576.652	961.9719	7382.751	291.8477	26.36	2642.965	1318.533	6960.44
12.77	2648,146	882.8525	7378.145	314.7491	26.54	2449.723	1222.251	7189.40
12 95	2636 372	972 6495	7459 361	278 9944	26 72	2515 047	1175 71	7151 2
12.75	2020.212	200 2070	7/17 071	200.0217	26.72	2628 2041	1304 202	7210 5
13.13	2411.038	002.00/8	1441.9/1	309.031/	20.90	2030.200	1070 176	7217.33
15.51	2331.324	939.4889	1455.192	280.119	27.09	2319.99	12/9.1/0	/21/.0

27.27	2502 000	1175 101	7127 704	201.0000	41.04	2512 275	1201 000	7207 045	215 5666
21.21	2595.998	11/5.191	/15/./84	291.0900	41.04	2545.575	1381.809	7297.045	315.5000
27.45	2582.72	1194.94	7321.887	290.1074	41.22	2575.475	1223.632	7171.968	278.8232
27.63	2617.313	1257.078	7335.209	265.2776	41.40	2464.465	1243.813	7250.84	287.6213
27.91	2522.079	1009 292	7/25 776	272 27	41.50	2576 200	1265 048	7260 211	261 6241
27.01	2355.978	1226.365	7455.776	2/3.3/	41.59	2370.299	1203.948	7209.211	201.0241
27.99	2609.19	1255.945	7210.356	272.2245	41.77	2488.682	1280.6	7177.783	282.3467
28.17	2613.633	1333.356	7143.973	298.3756	41.95	2602.932	1299.29	6999.235	278.5368
28.25	2650 226	1174.14	7106.040	205 0919	42.12	2545 277	1202 406	7410 665	220 1052
28.55	2030.230	11/4.14	/190.049	295.0818	42.15	2343.377	1292.490	7410.005	520.1955
28.54	2603.012	1310.626	7237.052	259.4868	42.31	2555.349	1242.255	7080.175	307.8141
28 72	2471 835	1315 718	7256 211	302 0802	12 19	2575 562	1232 203	7231 889	308 0/139
20.72	2471.035	1313.710	7250.211	302.0002	+2.+)	2575.502	1252.205	7231.007	300.0437
28.90	2559.097	1230.726	7135.172	243.7469	42.67	2504.468	1263.14	7292.527	293.8092
29.08	2523 208	1318 415	7189 743	286 0486	42.85	2486.96	1241 835	7305 279	280 6687
29.00	2525.200	1211.050	7102.745	200.0400	42.03	2400.90	1241.000	7305.277	200.0007
29.26	2630.176	1311.852	/362.865	279.3986	43.04	2602.594	1201.087	/406.435	291.8959
29.44	2622.514	1302.452	7268.761	260.5945	43.22	2584.746	1179.638	7292.011	281.0174
20.62	2505 264	1321 400	7053 032	325 1158	13 10	25/3 710	1206.033	7171 561	282 3/01
29.02	2393.204	1321.409	7055.052	525.1156	43.40	2343.719	1200.055	/1/1.501	202.3491
29.80	2560.003	1306.381	7205.277	310.8757	43.58	2579.763	1223.692	7264.12	262.151
29.99	2602.328	1316.556	7363.113	266 3124	43.76	2592.34	1200.328	7407.574	221.1244
20.17	2672.004	1204 105	7000.050	220.4669	42.04	2572.042	1102 767	7071.0	275.079
30.17	20/3.004	1304.105	/080.958	239.4008	43.94	2572.942	1192.707	/2/1.9	215.918
30.35	2610.974	1235.427	7226.81	270.4275	44.12	2680.823	1254.267	7145.189	251.737
30.53	2640 545	1280 57	7131 880	208 880	44.30	2527 801	1277 175	7118 606	316 5440
50.55	2040.343	1280.57	/131.009	290.009	44.30	2527.001	12/1.1/5	/110.000	510.5449
30.71	2588.681	1328.779	7085.104	280.3227	44.49	2648.358	1263.059	7203.682	298.3734
30.89	2612.311	1325.045	7219.458	256.655	44.67	2529.662	1239.087	7235.355	342,1331
21.07	2500 715	1225 022	7010 015	207 2061	11.95	2617 29	1109 592	7255 604	260 2202
51.07	2388.745	1555.952	/210.215	287.3801	44.85	2047.28	1198.383	/333.094	209.3303
31.25	2468.219	1263.713	7274.477	289.8825	45.03	2549.248	1318.298	7097.43	290.1042
31 44	2507 648	1295 82	7306 073	294 6222	15 21	2619 223	1268 075	7258 846	261 5728
21.77	2507.040	1070 700	7144.072	207.0222	+3.21	2017.223	1200.075	7216 720	201.3720
51.62	25/6.281	12/9./08	/144.973	297.6865	45.39	24/3.253	1228.516	/316./29	262.9617
31.80	2497.293	1291.719	7301.097	242.2934	45.57	2623.218	1315.902	7242.26	253.531
31.09	2622 650	13/2 022	71/6 61	271 0969	15 76	2527 240	1107 124	7148 026	201 7709
51.90	2033.038	1342.922	/140.01	2/1.9000	43.70	2521.249	119/.134	/140.920	291.//98
32.16	2434.364	1282.384	7139.663	258.8571	45.94	2623.694	1254.435	7076.111	241.0802
32 34	2475 143	1264 649	7112 642	307 5223	46.12	2645 565	1296 51	7341 255	286 1777
32.54	2473.143	1204.04)	7112.042	200 6110	46.12	2045.505	1210.01	7341.233	200.1777
32.52	2569.057	1305.572	/269.4/5	280.6118	46.30	2580.789	1318.189	/3/8.092	302.5424
32.70	2621.463	1265.089	7197.875	289.7584	46.48	2591.653	1272.466	7477.407	308.9061
22.80	2501 082	1227 219	7252 200	270 776	16.66	2597 990	1240.072	7284 202	272 7484
32.69	2391.083	1327.318	7255.566	270.770	40.00	2307.009	1240.072	7364.203	272.7404
33.07	2537.677	1250.991	7169.017	307.3492	46.84	2663.304	1288.254	7296.799	284.8429
33 25	2623 607	1265 475	7265 242	282 8659	47.02	2576 576	1265 955	7069 811	290 5665
22.42	2525.007	1100.505	7205.212	271.0045	17.02	2010.010	1203.933	7002.011	2/0.2505
33.43	2570.994	1198.525	/218.934	271.9845	47.21	2628.625	1307.913	/232.651	260.3595
33.61	2690.504	1268.071	7105.529	270.8328	47.39	2589.974	1238.254	7421.659	272.6245
33 70	2517 074	1163 011	7/17 833	311 5134					
33.19	2317.974	1105.011	7417.635	511.5154					
33.97	2644.521	1207.41	7427.185	268.1687					
34.15	2615 479	1205.757	7416.359	259,1383					
24.24	2010.172	1210.956	7050 5 (0	276 2290					
54.54	2010.100	1210.850	1252.509	270.3289					
34.52	2652.918	1188.584	7200.956	262.7292					
34 70	26/13-1	1276 / 65	7207 04	262 1995					
54.70	2045.1	12/0.405	1291.94	202.4995					
34.88	2574.602	1235.532	7361.655	266.8464					
35.06	2644.968	1204.616	7393.389	297.3896					
25.00	2611.200	1100.002	7240 154	246 5941					
55.24	2043.717	1100.005	7240.134	240.3841					
35.42	2607.093	1210.932	7125.085	285.1221					
35.60	2536 475	1232 985	7132 000	274 7152					
25.00	2550.475	1232.705	7132.077	274.7152					
35.79	2553.649	1246.405	7289.642	266.2016					
35.97	2499.697	1245.617	7191.616	288.6534					
36.15	2587 762	1222 211	7374 900	268 0704					
26.15	2507.705	1222.211	1314.079	200.9/94					
36.33	2625.162	13/4.672	/234.8	276.7316					
36.51	2613.03	1331.741	7238.899	258.9113					
36.60	2630 525	1283 642	7201 69	278 1222					
30.09	2037.323	1203.042	1201.00	210.1232					
36.87	2575.78	1301.194	/454.735	284.4384					
37.05	2517.76	1353.771	7293.739	276.3914					
37 74	2616 222	1251 941	71/0 19/	245 1221					
57.24	2010.333	1201.041	/147.104	243.1331					
37.42	2683.849	1333.106	7233.133	278.8038					
37.60	2556.74	1234 591	7290 549	277,3805					
27.00	2000.74	1210 050	7000 274	205 5007					
51.18	2453.194	1310.030	/098.3/4	285.5297					
37.96	2516.354	1324.943	7269.691	295.5978					
38 14	2506 437	1290.026	7154 633	278 591					
20.14	2500.457	1276.006	7007 044	2,0.071					
38.52	2515.79	13/0.086	/02/.244	288./1					
38.50	2476.624	1383.911	7221.135	281.7148					
38 60	2378 131	1331 358	7218 402	281 7728					
20.07	2370.131	1000 404	7210.472	207.1/20					
38.87	2407.884	1360.491	/135.123	307.4659					
39.05	2546.71	1310.438	7299.376	288.1884					
20.00			6912 505	200.001					
211 22	2612 529	12/2012		277.991					
39.23	2613.528	1342.913	0842.505						
39.23 39.41	2613.528 2511.986	1342.913 1357.078	6961.238	323.5485					
39.23 39.41 39.59	2613.528 2511.986 2534.481	1342.913 1357.078 1326.432	6961.238 7235 786	323.5485 262.1989					
39.23 39.41 39.59	2613.528 2511.986 2534.481	1342.913 1357.078 1326.432	6961.238 7235.786	323.5485 262.1989					
39.23 39.41 39.59 39.77	2613.528 2511.986 2534.481 2511.169	1342.913 1357.078 1326.432 1365.434	6961.238 7235.786 7350.782	323.5485 262.1989 278.1801					
39.23 39.41 39.59 39.77 39.95	2613.528 2511.986 2534.481 2511.169 2498.39	1342.913 1357.078 1326.432 1365.434 1357.068	6842.303 6961.238 7235.786 7350.782 7219.141	323.5485 262.1989 278.1801 301.8448					
39.23 39.41 39.59 39.77 39.95 40.14	2613.528 2511.986 2534.481 2511.169 2498.39 2456.29	1342.913 1357.078 1326.432 1365.434 1357.068 1348.86	6842.303 6961.238 7235.786 7350.782 7219.141 6982 579	323.5485 262.1989 278.1801 301.8448 322.9672					
39.23 39.41 39.59 39.77 39.95 40.14	2613.528 2511.986 2534.481 2511.169 2498.39 2456.29	1342.913 1357.078 1326.432 1365.434 1357.068 1348.86	6842.503 6961.238 7235.786 7350.782 7219.141 6982.579	323.5485 262.1989 278.1801 301.8448 322.9672					
39.23 39.41 39.59 39.77 39.95 40.14 40.32	2613.528 2511.986 2534.481 2511.169 2498.39 2456.29 2596.39	1342.913 1357.078 1326.432 1365.434 1357.068 1348.86 1332.941	6842.503 6961.238 7235.786 7350.782 7219.141 6982.579 7048.702	323.5485 262.1989 278.1801 301.8448 322.9672 335.3003					
39.23 39.41 39.59 39.77 39.95 40.14 40.32 40.50	2613.528 2511.986 2534.481 2511.169 2498.39 2456.29 2596.39 2532.599	1342.913 1357.078 1326.432 1365.434 1357.068 1348.86 1332.941 1372.566	642.505 6961.238 7235.786 7350.782 7219.141 6982.579 7048.702 7124.621	323.5485 262.1989 278.1801 301.8448 322.9672 335.3003 314.9915					
39.23 39.41 39.59 39.77 39.95 40.14 40.32 40.50 40.68	2613.528 2511.986 2534.481 2511.169 2498.39 2456.29 2596.39 2532.599 2496.453	1342.913 1357.078 1326.432 1365.434 1357.068 1348.86 1332.941 1372.566 1354.448	6442.505 6961.238 725.786 7350.782 7219.141 6982.579 7048.702 7124.621 7186.8	323.5485 262.1989 278.1801 301.8448 322.9672 335.3003 314.9915 296.8763					
39.23 39.41 39.59 39.77 39.95 40.14 40.32 40.50 40.68	2613.528 2511.986 2534.481 2511.169 2498.39 2456.29 2596.39 2532.599 2496.453	1342.913 1357.078 1326.432 1365.434 1357.068 1348.86 1332.941 1372.566 1354.448	642.505 6961.238 7235.786 7350.782 7219.141 6982.579 7048.702 7124.621 7186.8	323.5485 262.1989 278.1801 301.8448 322.9672 335.3003 314.9915 296.8763					

Appendix F – LA-ICP-MS spot data

Data acquired from the LA-ICP-MS spot analyses are presented in tables 1-3, including error margins and limit of detection (LOD) for each element.

Table 1: Ala-spot-l - 4 and A2a-spot-l - 4

Element	A1a-spot-1	A1a-spot-2	A1a-spot-3	A1a-spot-4	A2a-spot-1	A2a-spot-2	A2a-spot-3	A2a-spot-4
Na_ppm_m23	Below LOD	Below LOD	5.20E+03	Below LOD	3.60E+03	3.00E+03	3.30E+03	4.20E+03
Na_ppm_m23_Int2SE	Below LOD	Below LOD	1.80E+03	Below LOD	1.40E+03	1.50E+03	1.70E+03	1.70E+03
Na_ppm_m23_LOD	3100	3900	3100	2900	2900	2500	2600	2700
Si_ppm_m29	2.40E+05	2.06E+05	2.20E+05	2.21E+05	2.12E+05	2.17E+05	2.19E+05	2.15E+05
Si_ppm_m29_Int2SE	1.00E+04	6.60E+03	1.00E+04	9.10E+03	8.40E+03	8.10E+03	7.70E+03	7.70E+03
Si_ppm_m29_LOD	2200	2300	2000	2300	2000	1900	2100	2100
Sc_ppm_m45	98.6	110.9	95.6	106	50.6	75.2	73.3	64.7
Sc_ppm_m45_Int2SE	3	3.7	3.7	3.5	1.6	2.4	2.4	1.8
Sc_ppm_m45_LOD	0.5	0.58	0.54	0.48	0.56	0.64	0.61	0.6
Ti_ppm_m49	10240	14280	12850	13350	15470	13190	12950	15810
Ti_ppm_m49_Int2SE	390	460	560	500	460	510	480	500
Ti_ppm_m49_LOD	2	2.7	2.5	2.3	2.1	2.1	2.2	2.2
V_ppm_m51	287	390	336	332	276	269	272	303
V_ppm_m51_Int2SE	14	15	17	15	10	10	12	12
V_ppm_m51_LOD	0.22	0.27	0.24	0.23	0.22	0.21	0.22	0.23
Cr_ppm_m52	37.2	51.6	303	364	9.5	65.3	5.32	7.3
Cr_ppm_m52_Int2SE	1.6	2.2	19	16	1.2	2.6	0.94	1
Cr_ppm_m52_LOD	2.4	2.6	2.7	2.2	2	2	2.2	2.1
Co_ppm_m59	42	39.4	36.5	36.8	32.6	34.4	33.7	31.5
Co_ppm_m59_Int2SE	1.7	1.5	2.2	1.7	1.4	1.3	1.4	1.3
Co_ppm_m59_LOD	1.6	1.9	1.6	1.6	1.6	1.5	1.7	1.7
Ni_ppm_m60	126	121.8	150	155.9	51.6	84	42.9	42.5
Ni_ppm_m60_Int2SE	9.4	8.6	11	8.8	6	6.7	6.9	6.5
Ni_ppm_m60_LOD	14	14	13	13	12	12	14	13
Sr_ppm_m88	74.5	87.7	80.2	79.1	97.2	86.8	87.2	99.5
Sr_ppm_m88_Int2SE	2.7	3.3	3.1	3	3.1	3.1	3.1	3.2
Sr_ppm_m88_LOD	0.38	0.37	0.4	0.4	0.55	0.45	0.45	0.53
Y_ppm_m89	17.55	27.3	13.51	13.81	18.07	15.74	17.61	19.79
Y_ppm_m89_Int2SE	0.57	1.1	0.44	0.53	0.59	0.62	0.57	0.72
Y_ppm_m89_LOD	0.049	0.058	0.045	0.05	0.037	0.04	0.043	0.043
Zr_ppm_m90	109.9	167.5	81.5	87.1	125.3	95	113.4	137.2
Zr_ppm_m90_Int2SE	3.4	5.9	2.9	3	4	3.4	3.6	4.5
Zr_ppm_m90_LOD	0.077	0.075	0.076	0.077	0.088	0.094	0.092	0.1
Nb_ppm_m93	0.54	1.126	0.608	0.61	0.977	0.642	1.37	1.07
Nb_ppm_m93_Int2SE	0.043	0.07	0.051	0.047	0.056	0.06	0.37	0.055
Nb_ppm_m93_LOD	0.027	0.031	0.026	0.026	0.023	0.024	0.023	0.024
Ba_ppm_m137	Below LOD							
Ba_ppm_m137_Int2SE	Below LOD							
Ba_ppm_m137_LOD	0.88	0.93	0.76	0.84	0.7	0.84	0.67	0.79
La_ppm_m139	5.12	9.12	3.98	3.91	5.82	4.72	5.58	6.27
La_ppm_m139_Int2SE	0.28	0.42	0.23	0.19	0.29	0.23	0.3	0.26
La_ppm_m139_LOD	0.064	0.064	0.054	0.06	0.053	0.054	0.058	0.051

Ce_ppm_m140	19.4	30.7	15.33	15.13	22.79	18.14	20.17	24.42
Ce_ppm_m140_Int2SE	1.1	1.3	0.83	0.64	0.93	0.69	0.92	0.99
Ce_ppm_m140_LOD	0.042	0.046	0.039	0.037	0.047	0.04	0.041	0.049
Pr_ppm_m141	3.4	5.46	2.75	2.59	4.18	3.38	3.59	4.23
Pr_ppm_m141_Int2SE	0.15	0.18	0.18	0.12	0.19	0.15	0.16	0.2
Pr_ppm_m141_LOD	0.041	0.037	0.032	0.032	0.042	0.04	0.041	0.045
Nd_ppm_m146	18.31	28.7	14.21	13.86	21.09	17.51	19.76	22.83
Nd_ppm_m146_Int2SE	0.81	1.1	0.82	0.54	0.89	0.72	0.83	0.88
Nd_ppm_m146_LOD	0.18	0.24	0.17	0.17	0.19	0.15	0.15	0.16
Sm_ppm_m147	5.23	8.42	4.26	4.3	6.26	5	5.63	6.84
Sm_ppm_m147_Int2SE	0.35	0.57	0.34	0.35	0.45	0.36	0.35	0.46
Sm_ppm_m147_LOD	0.24	0.24	0.23	0.29	0.2	0.21	0.22	0.25
Eu_ppm_m153	1.71	2.72	1.47	1.53	2	1.8	1.97	2.28
Eu_ppm_m153_Int2SE	0.14	0.15	0.11	0.12	0.14	0.13	0.14	0.14
Eu_ppm_m153_LOD	0.085	0.095	0.076	0.082	0.069	0.069	0.073	0.081
Gd_ppm_m157	5.68	9.28	4.5	4.54	6.08	4.88	5.48	6.44
Gd_ppm_m157_Int2SE	0.51	0.56	0.44	0.4	0.5	0.4	0.46	0.43
Gd_ppm_m157_LOD	0.41	0.41	0.4	0.36	0.37	0.33	0.36	0.39
Dy_ppm_m163	4.21	6.87	3.36	3.3	4.42	3.77	4.1	4.88
Dy_ppm_m163_Int2SE	0.27	0.42	0.27	0.24	0.29	0.26	0.27	0.32
Dy_ppm_m163_LOD	0.15	0.14	0.14	0.17	0.32	0.11	0.14	0.13
Er_ppm_m166	1.74	2.83	1.35	1.54	1.74	1.6	1.76	1.87
Er_ppm_m166_Int2SE	0.14	0.19	0.15	0.14	0.16	0.16	0.15	0.16
Er_ppm_m166_LOD	0.11	0.13	0.093	0.1	0.1	0.1	0.093	0.1
Yb_ppm_m172	1.18	1.56	0.88	0.98	1.05	1.01	1.14	1.15
Yb_ppm_m172_Int2SE	0.2	0.22	0.15	0.15	0.15	0.14	0.15	0.15
Yb_ppm_m172_LOD	0.19	0.19	0.19	0.17	0.17	0.15	0.16	0.15
Hf_ppm_m178	4.97	6.91	4.07	3.98	5	4.12	4.83	5.95
Hf_ppm_m178_Int2SE	0.34	0.42	0.35	0.28	0.3	0.3	0.34	0.41
Hf_ppm_m178_LOD	0.15	0.12	0.12	0.13	0.18	0.2	0.18	0.17

Element	A1b-spot-1	A1b-spot-2	A1b-spot-3	A1b-spot-4	A1b-spot-5	A1b-spot-6
Na_ppm_m23	Below LOD	Below LOD	3.50E+03	4.80E+03	4.00E+03	3.80E+03
Na_ppm_m23_Int2SE	Below LOD	Below LOD	1.60E+03	1.40E+03	1.50E+03	1.50E+03
Na_ppm_m23_LOD	3400	2800	3400	2900	2900	3300
Si_ppm_m29	2.36E+05	2.11E+05	2.17E+05	2.25E+05	2.29E+05	2.24E+05
Si_ppm_m29_Int2SE	7.80E+03	8.20E+03	6.50E+03	7.70E+03	9.70E+03	8.50E+03
Si_ppm_m29_LOD	2200	2200	2500	2200	2000	2000
Sc_ppm_m45	81.6	84.9	100.4	88.4	88.4	95.6
Sc_ppm_m45_Int2SE	2.4	2.4	2.8	2.5	2.5	3.2
Sc_ppm_m45_LOD	0.58	0.72	0.72	0.59	0.62	0.61
Ti_ppm_m49	7620	16300	15530	14480	14090	16740
Ti_ppm_m49_Int2SE	280	520	480	470	440	530
Ti_ppm_m49_LOD	3.4	2.2	2.2	2.5	2.1	2.3
V_ppm_m51	245.4	349	352	323	328	357
V_ppm_m51_Int2SE	9.1	13	13	10	12	13
V_ppm_m51_LOD	0.24	0.22	0.28	0.22	0.22	0.23
Cr_ppm_m52	5390	301	123.8	226.1	170.1	165.4
Cr_ppm_m52_Int2SE	170	10	4.2	8.9	6.5	6.5
Cr_ppm_m52_LOD	1.9	2.2	2.1	1.9	2.3	2.6
Co_ppm_m59	35.8	34.6	37.2	35.9	37.6	38.2
Co_ppm_m59_Int2SE	1.5	1.7	1.6	1.4	1.5	1.7
Co_ppm_m59_LOD	1.7	1.6	1.8	1.5	1.5	1.8
Ni_ppm_m60	240.3	139.9	135.3	123.3	107.8	105.1
Ni_ppm_m60_Int2SE	9.8	8.4	8.3	7.8	7.2	8.1
Ni_ppm_m60_LOD	14	14	13	13	13	14
Sr_ppm_m88	74.8	94.4	85.3	87.8	84.1	92.7
Sr_ppm_m88_Int2SE	2.6	3.1	2.7	2.6	2.7	3
Sr_ppm_m88_LOD	0.55	0.6	0.59	0.51	0.52	0.46
Y_ppm_m89	7.96	15.53	15.67	15.44	15.12	19.19
Y_ppm_m89_Int2SE	0.31	0.57	0.41	0.47	0.54	0.57
Y_ppm_m89_LOD	0.041	0.044	0.048	0.048	0.046	0.049
Zr_ppm_m90	33.8	100.6	108.4	103.2	92.7	129.5
Zr_ppm_m90_Int2SE	1	3.1	2.6	2.9	2.7	4
Zr_ppm_m90_LOD	0.11	0.13	0.11	0.094	0.11	0.11
Nb_ppm_m93	0.282	0.779	0.723	0.739	0.726	1.071
Nb_ppm_m93_Int2SE	0.031	0.051	0.05	0.048	0.049	0.06
Nb_ppm_m93_LOD	0.027	0.029	0.024	0.024	0.02	0.025
Ba_ppm_m137	Below LOD					
Ba_ppm_m137_Int2SE	Below LOD					
Ba_ppm_m137_LOD	0.78	0.86	0.83	0.8	0.8	0.91
La_ppm_m139	2.12	4.62	4.53	4.51	4.76	6.2
La_ppm_m139_Int2SE	0.11	0.24	0.2	0.19	0.22	0.29
La_ppm_m139_LOD	0.061	0.056	0.057	0.057	0.061	0.062
Ce_ppm_m140	8.49	18.06	16.92	17.97	17.87	22.35
Ce_ppm_m140_Int2SE	0.33	0.68	0.53	0.68	0.69	0.92
Ce_ppm_m140_LOD	0.049	0.052	0.046	0.042	0.04	0.052

Pr_ppm_m141	1.566	3.13	3.02	3.24	3.11	4.18
Pr_ppm_m141_Int2SE	0.083	0.13	0.12	0.12	0.13	0.16
Pr_ppm_m141_LOD	0.045	0.058	0.048	0.04	0.035	0.043
Nd_ppm_m146	7.87	16.56	16.16	16.84	16.31	21.19
Nd_ppm_m146_Int2SE	0.43	0.65	0.64	0.64	0.8	0.84
Nd_ppm_m146_LOD	0.17	0.2	0.16	0.19	0.17	0.15
Sm_ppm_m147	2.4	5.08	5.08	5.18	4.79	6.13
Sm_ppm_m147_Int2SE	0.26	0.37	0.36	0.33	0.36	0.4
Sm_ppm_m147_LOD	0.24	0.21	0.21	0.21	0.27	0.25
Eu_ppm_m153	0.905	1.86	1.72	1.78	1.67	2
Eu_ppm_m153_Int2SE	0.077	0.15	0.11	0.13	0.12	0.13
Eu_ppm_m153_LOD	0.077	0.079	0.085	0.08	0.076	0.085
Gd_ppm_m157	2.56	4.84	4.99	4.46	4.92	5.93
Gd_ppm_m157_Int2SE	0.33	0.42	0.37	0.34	0.44	0.46
Gd_ppm_m157_LOD	0.36	0.39	0.43	0.41	0.37	0.42
Dy_ppm_m163	1.88	3.53	4.03	3.84	3.65	4.91
Dy_ppm_m163_Int2SE	0.18	0.25	0.3	0.25	0.25	0.32
Dy_ppm_m163_LOD	0.12	0.16	0.14	0.11	0.15	0.14
Er_ppm_m166	0.69	1.31	1.48	1.57	1.5	1.8
Er_ppm_m166_Int2SE	0.1	0.14	0.13	0.16	0.13	0.15
Er_ppm_m166_LOD	0.11	0.12	0.12	0.11	0.11	0.12
Yb_ppm_m172	0.43	0.89	0.95	0.98	0.99	1.23
Yb_ppm_m172_Int2SE	0.11	0.14	0.16	0.12	0.16	0.19
Yb_ppm_m172_LOD	0.2	0.27	0.18	0.19	0.17	0.18
Hf_ppm_m178	1.78	4.75	5.2	4.33	3.84	5.97
Hf_ppm_m178_Int2SE	0.19	0.3	0.36	0.26	0.26	0.39
Hf_ppm_m178_LOD	0.15	0.2	0.18	0.17	0.14	0.14

Table 3: A2b-spot-1 – 5

Element	A2b-spot-1	A2b-spot-2	A2b-spot-3	A2b-spot-4	A2b-spot-5
Na_ppm_m23	3.70E+03	4.60E+03	Below LOD	4.60E+03	4.50E+03
Na_ppm_m23_Int2SE	1.30E+03	1.50E+03	Below LOD	1.50E+03	1.40E+03
Na_ppm_m23_LOD	2900	2900	3000	2900	2700
Si_ppm_m29	2.37E+05	2.16E+05	2.16E+05	2.18E+05	2.33E+05
Si_ppm_m29_Int2SE	9.00E+03	7.30E+03	7.90E+03	7.20E+03	8.50E+03
Si_ppm_m29_LOD	2100	2100	2100	2000	1900
Sc_ppm_m45	57.1	68.7	65	60.7	50.6
Sc_ppm_m45_Int2SE	1.9	1.9	2.2	2	1.6
Sc_ppm_m45_LOD	0.46	0.4	0.55	0.64	0.59
Ti_ppm_m49	9900	18240	18870	17060	11150
Ti_ppm_m49_Int2SE	320	580	730	600	370
Ti_ppm_m49_LOD	2	2.2	2.2	2	2.1
V_ppm_m51	325	453	438	457	326
V_ppm_m51_Int2SE	12	16	19	18	11
V_ppm_m51_LOD	0.22	0.24	0.2	0.22	0.2
Cr_ppm_m52	Below LOD				
Cr_ppm_m52_Int2SE	Below LOD				
Cr_ppm_m52_LOD	1.9	2	1.8	2.1	1.9
Co_ppm_m59	35.4	32.9	34.7	33.6	34.5
Co_ppm_m59_Int2SE	1.6	1.5	1.6	1.3	1.2
Co_ppm_m59_LOD	1.6	1.5	1.6	1.3	1.3
Ni_ppm_m60	Below LOD				
Ni_ppm_m60_Int2SE	Below LOD				
Ni_ppm_m60_LOD	11	13	13	13	12
Sr_ppm_m88	95.8	108.7	107.3	115.9	91.8
Sr_ppm_m88_Int2SE	3.1	3.4	3.6	4.1	3.2
Sr_ppm_m88_LOD	0.35	0.4	0.42	0.51	0.47
Y_ppm_m89	20.09	29.49	27.4	36.2	22.6
Y_ppm_m89_Int2SE	0.7	0.97	1	1.1	0.8
Y_ppm_m89_LOD	0.046	0.049	0.041	0.041	0.046
Zr_ppm_m90	108.3	222.2	185.4	222	121.2
Zr_ppm_m90_Int2SE	3.6	6.5	6.9	7.1	3.5
Zr_ppm_m90_LOD	0.07	0.06	0.082	0.084	0.092
Nb_ppm_m93	0.69	1.9	1.614	1.627	0.666
Nb_ppm_m93_Int2SE	0.047	0.086	0.088	0.076	0.038
Nb_ppm_m93_LOD	0.023	0.024	0.024	0.023	0.021
Ba_ppm_m137	Below LOD				
Ba_ppm_m137_Int2SE	Below LOD				
Ba_ppm_m137_LOD	0.88	0.79	0.86	0.71	0.72
La_ppm_m139	6.34	10.55	10.01	13.05	6.81
La_ppm_m139_Int2SE	0.3	0.44	0.48	0.56	0.27
La_ppm_m139_LOD	0.053	0.061	0.058	0.051	0.054
Ce_ppm_m140	24.5	37.8	37.4	46.8	25.23
Ce_ppm_m140_Int2SE	1.1	1.3	1.5	1.7	0.93
Ce_ppm_m140_LOD	0.034	0.034	0.037	0.047	0.048

Pr_ppm_m141	4.16	6.72	6.39	8.07	4.71
Pr_ppm_m141_Int2SE	0.18	0.26	0.29	0.33	0.22
Pr_ppm_m141_LOD	0.03	0.031	0.04	0.036	0.037
Nd_ppm_m146	22.46	34.1	32.6	42	25.1
Nd_ppm_m146_Int2SE	0.82	1.2	1.3	1.4	1
Nd_ppm_m146_LOD	0.19	0.2	0.16	0.18	0.16
Sm_ppm_m147	6.94	9.9	9	12.16	7.17
Sm_ppm_m147_Int2SE	0.44	0.38	0.45	0.59	0.43
Sm_ppm_m147_LOD	0.2	0.22	0.19	0.19	0.22
Eu_ppm_m153	2.04	3.04	3.04	3.77	2.26
Eu_ppm_m153_Int2SE	0.12	0.15	0.17	0.2	0.13
Eu_ppm_m153_LOD	0.076	0.08	0.077	0.083	0.062
Gd_ppm_m157	6.52	9.36	9.19	11.89	7.41
Gd_ppm_m157_Int2SE	0.47	0.56	0.57	0.63	0.51
Gd_ppm_m157_LOD	0.34	0.33	0.33	0.39	0.36
Dy_ppm_m163	4.98	7.46	6.49	8.7	5.42
Dy_ppm_m163_Int2SE	0.32	0.41	0.44	0.45	0.36
Dy_ppm_m163_LOD	0.11	0.13	0.13	0.15	0.097
Er_ppm_m166	2.03	2.74	2.55	3.67	2.18
Er_ppm_m166_Int2SE	0.17	0.2	0.2	0.26	0.16
Er_ppm_m166_LOD	0.11	0.1	0.11	0.11	0.092
Yb_ppm_m172	1.16	1.97	1.62	2.35	1.31
Yb_ppm_m172_Int2SE	0.15	0.19	0.16	0.22	0.17
Yb_ppm_m172_LOD	0.16	0.19	0.16	0.16	0.17
Hf_ppm_m178	4.75	9.32	7.7	8.78	4.91
Hf_ppm_m178_Int2SE	0.3	0.47	0.46	0.5	0.27
Hf_ppm_m178_LOD	0.12	0.12	0.13	0.17	0.16

Tidigare skrifter i serien "Examensarbeten i Geologi vid Lunds universitet":

- 541. Staahlnacke, Simon, 2018: En sammanställning av norra Skånes prekambriska berggrund. (15 hp)
- 542. Martell, Josefin, 2018: Shock metamorphic features in zircon grains from the Mien impact structure - clues to conditions during impact. (45 hp)
- 543. Chitindingu, Tawonga, 2018: Petrological characterization of the Cambrian sandstone reservoirs in the Baltic Basin, Sweden. (45 hp)
- 544. Chonewicz, Julia, 2018: Dimensionerande vattenförbrukning och alternativa vattenkvaliteter. (15 hp)
- 545. Adeen, Lina, 2018: Hur lämpliga är de geofysiska metoderna resistivitet och IP för kartläggning av PFOS? (15 hp)
- 546. Nilsson Brunlid, Anette, 2018: Impact of southern Baltic sea-level changes on landscape development in the Verkeån River valley at Haväng, southern Sweden, during the early and mid Holocene. (45 hp)
- 547. Perälä, Jesper, 2018: Dynamic Recrystallization in the Sveconorwegian Frontal Wedge, Småland, southern Sweden. (45 hp)
- 548. Artursson, Christopher, 2018: Stratigraphy, sedimentology and geophysical assessment of the early Silurian Halla and Klinteberg formations, Altajme core, Gotland, Sweden. (45 hp)
- 549. Kempengren, Henrik, 2018: Att välja den mest hållbara efterbehandlingsmetoden vid sanering: Applicering av beslutsstödsverktyget SAMLA. (45 hp)
- 550. Andreasson, Dagnija, 2018: Assessment of using liquidity index for the approximation of undrained shear strength of clay tills in Scania. (45 hp)
- 551. Ahrenstedt, Viktor, 2018: The Neoproterozoic Visingsö Group of southern Sweden: Lithology, sequence stratigraphy and provenance of the Middle Formation. (45 hp)
- 552. Berglund, Marie, 2018: Basaltkuppen ett spel om mineralogi och petrologi. (15 hp)
- 553. Hernnäs, Tove, 2018: Garnet amphibolite in the internal Eastern Segment, Sveconorwegian Province: monitors of metamorphic recrystallization at high temperature and pressure during Sveconorwegian orogeny. (45 hp)
- 554. Halling, Jenny, 2019: Characterization of black rust in reinforced concrete structures: analyses of field samples from southern Sweden. (45 hp)
- 555. Stevic, Marijana, 2019: Stratigraphy and

dating of a lake sediment record from Lyngsjön, eastern Scania - human impact and aeolian sand deposition during the last millennium. (45 hp)

- 556. Rabanser, Monika, 2019: Processes of Lateral Moraine Formation at a Debriscovered Glacier, Suldenferner (Vedretta di Solda), Italy. (45 hp)
- 557. Nilsson, Hanna, 2019: Records of environmental change and sedimentation processes over the last century in a Baltic coastal inlet. (45 hp)
- 558. Ingered, Mimmi, 2019: Zircon U-Pb constraints on the timing of Sveconorwegian migmatite formation in the Western and Median Segments of the Idefjorden terrane, SW Sweden. (45 hp)
- 559. Hjorth, Ingeborg, 2019: Paleomagnetisk undersökning av vulkanen Rangitoto, Nya Zeeland, för att bestämma dess utbrottshistoria. (15 hp)
- 560. Westberg, Märta, 2019: Enigmatic wormlike fossils from the Silurian Waukesha Lagerstätte, Wisconsin, USA. (15 hp)
- 561. Björn, Julia, 2019: Undersökning av påverkan på hydraulisk konduktivitet i förorenat område efter in situsaneringsförsök. (15 hp)
- 562. Faraj, Haider, 2019: Tolkning av georadarprofiler över grundvattenmagasinet Verveln - Gullringen i Kalmar län. (15 hp)
- 563. Bjermo, Tim, 2019: Eoliska avlagringar och vindriktningar under holocen i och kring Store Mosse, södra Sverige. (15 hp)
- 564. Langkjaer, Henrik, 2019: Analys av Östergötlands kommande grundvattenresurser ur ett klimtperspektiv - med fokus på förstärkt grundvattenbildning. (15 hp)
- 565. Johansson, Marcus, 2019: Hur öppet var landskapet i södra Sverige under Atlantisk tid? (15 hp)
- 566. Molin, Emmy, 2019: Litologi, sedimentologi och kolisotopstratigrafi över kritapaleogen-gränsintervallet i borrningen Limhamn-2018. (15 hp)
- 567. Schroeder, Mimmi, 2019: The history of European hemp cultivation. (15 hp)
- 568. Damber, Maja, 2019: Granens invandring i sydvästa Sverige, belyst genom pollenanalys från Skottenesjön. (15 hp)
- 569. Lundgren Sassner, Lykke, 2019: Strandmorfologi, stranderosion och stranddeposition, med en fallstudie på Tylösand sandstrand, Halland. (15 hp)
- 570. Greiff, Johannes, 2019: Mesozoiska konglomerat och Skånes tektoniska utveckling. (15 hp)
- 571. Persson, Eric, 2019: An Enigmatic Cerapodian Dentary from the Cretaceous of southern Sweden. (15 hp)
- 572. Aldenius, Erik, 2019: Subsurface charac-

terization of the Lund Sandstone – 3D model of the sandstone reservoir and evaluation of the geoenergy storage potential, SW Skåne, South Sweden. (45 hp)

- 573. Juliusson, Oscar, 2019: Impacts of subglacial processes on underlying bedrock. (15 hp)
- 574. Sartell, Anna, 2019: Metamorphic paragenesis and P-T conditions in garnet amphibolite from the Median Segment of the Idefjorden Terrane, Lilla Edet. (15 hp)
- 575. Végvári, Fanni, 2019: Vulkanisk inverkan på klimatet och atmorsfärcirkulationen: En litterarurstudie som jämför vulkanism på låg respektive hög latitud. (15 hp)
- 576. Gustafsson, Jon, 2019: Petrology of platinum-group element mineralization in the Koillismaa intrusion, Finland. (45 hp)
- 577. Wahlquist, Per, 2019: Undersökning av mindre förkastningar för vattenuttag i sedimentärt berg kring Kingelstad och Tjutebro. (15 hp)
- 578. Gaitan Valencia, Camilo Esteban, 2019: Unravelling the timing and distribution of Paleoproterozoic dyke swarms in the eastern Kaapvaal Craton, South Africa. (45 hp)
- 579. Eggert, David, 2019: Using Very-Low-Frequency Electromagnetics (VLF-EM) for geophysical exploration at the Albertine Graben, Uganda - A new CAD approach for 3D data blending. (45 hp)
- 580. Plan, Anders, 2020: Resolving temporal links between the Högberget granite and the Wigström tungsten skarn deposit in Bergslagen (Sweden) using trace elements and U-Pb LA-ICPMS on complex zircons. (45 hp)
- 581. Pilser, Hannes, 2020: A geophysical survey in the Chocaya Basin in the central Valley of Cochabamba, Bolivia, using ERT and TEM. (45 hp)
- Leopardi, Dino, 2020: Temporal and genetical constraints of the Cu-Co Vena-Dampetorp deposit, Bergslagen, Sweden. (45 hp)
- 583. Lagerstam Lorien, Clarence, 2020: Neck mobility versus mode of locomotion – in what way did neck length affect swimming performance among Mesozoic plesi-

osaurs (Reptilia, Sauropterygia)? (45 hp)

- 584. Davies, James, 2020: Geochronology of gneisses adjacent to the Mylonite Zone in southwestern Sweden: evidence of a tectonic window? (45 hp)
- 585. Foyn, Alex, 2020: Foreland evolution of Blåisen, Norway, over the course of an ablation season. (45 hp)
- 586. van Wees, Roos, 2020: Combining luminescence dating and sedimentary analysis to derive the landscape dynamics of the Velická Valley in the High Tatra Mountains, Slovakia. (45 hp)
- 587. Rettig, Lukas, 2020: Implications of a rapidly thinning ice-margin for annual moraine formation at Gornergletscher, Switzerland. (45 hp)
- 588. Bejarano Arias, Ingrid, 2020: Determination of depositional environment and luminescence dating of Pleistocene deposits in the Biely Váh valley, southern foothills of the Tatra Mountains, Slovakia. (45 hp)
- 589. Olla, Daniel, 2020: Petrografisk beskrivning av Prekambriska ortognejser i den undre delen av Särvskollan, mellersta delen av Skollenheten, Kaledonska orogenen. (15 hp)
- 590. Friberg, Nils, 2020: Är den sydatlantiska magnetiska anomalin ett återkommande fenomen? (15 hp)
- 591. Brakebusch, Linus, 2020: Klimat och väder i Nordatlanten-regionen under det senaste årtusendet. (15 hp)
- 592. Boestam, Max, 2020: Stränder med erosion och ackumulation längs kuststräckan Trelleborg - Abbekås under perioden 2007-2018. (15 hp)
- 593. Agudelo Motta, Catalina, 2020: Methods for rockfall risk assessment and estimation of runout zones: A case study in Gothenburg, SW Sweden. (45 hp)
- 594. Johansson, Jonna, 2020: Potentiella nedslagskratrar i Sverige med fokus på Östersjön och östkusten. (15 hp)
- 595. Haag, Vendela, 2020: Studying magmatic systems through chemical analyses on clinopyroxene - a look into the history of the Teno ankaramites, Tenerife. (45 hp)

LUNDS UNIVERSITET

Geologiska institutionen Lunds universitet Sölvegatan 12, 223 62 Lund