
Automated bone segmentation
in computed tomography using
deep learning with distance
maps

Julius Åkesson
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Abstract

3D-models of bone structures from computed tomography (CT) data can be
used for surgical planning, education and a wide range of other purposes.
They can also be used in both digital and 3D-printed format. The currently
used process to obtain such models consists of a combination of thresholding,
morphological operations and manual adjustments. This can be very time-
consuming. Deep Learning (DL) can be used to automatically segment
organs such as bones in CT data, and can thus be used to automate such a
process. Emerging data also suggests that including distance maps (DM) of
ground truth segmentation masks when using DL for segmentation problems
can yield improved performance. In this thesis project, a well-known neural
network architecture for segmentation was modified in three different ways
to include DM during training and prediction. The three modifications
were inspired by three types of methods for DM-inclusion used in previous
work, but simplified. Estimates of the generalization performances of the
three modifications and the network in its original state were compared
using both an in-house dataset and a publicly available dataset. The results
showed that at least one of the modified networks outperformed the network
in its original state in all the tested cases. This indicates that DL-methods
for performing bone structure segmentation in CT data could benefit from
an inclusion of DM during training and prediction. This was especially
indicated when using a multi-task network to perform both segmentation
and DM-regression in parallel. However, these results have to be further
validated.
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1 Introduction

This introductory part of the report first describes the background and mo-
tivation behind the project (Section 1.1). Then, the aims and main research
questions of the project are presented (Section 1.2), followed by a discussion
about how the project was delimited (Section 1.3).

1.1 Background and motivation

3D-models of bone structures from CT-data can be used in both digital
and 3D-printed format for a wide range of purposes. They can be used
by physicians to perform surgical planning, which can lead to safer and
more successful surgeries. Further, they can also be used for other purposes
within the medical field, such as for education and as anatomical simulators
for practicing surgery.

Currently, the process of going from a Hounsfield-valued CT-volume to a seg-
mented 3D-model of the depicted bone structure is highly time-consuming.
The procedure to obtain an adequately segmented model involves a combi-
nation of thresholding, morphological operations and manual adjustments.
There are many possible approaches that one can use to reduce the time
for this process. Deep Learning (DL) using Convolutional Neural Networks
(CNN) has previously shown promising results in the area of general bone
structure segmentation in CT-data [1] [2].

Recent studies in the areas of medical and non-medical image segmentation
have also shown that including the Distance Transform (DT) of ground truth
segmentation masks, also known as Distance Maps (DM), during training
and prediction for CNN in various ways can improve segmentation results.
The observed improvements include increased performance measured in sev-
eral common metrics for segmentation performance in both 3D and 2D and
for both multi- and single-organ segmentation, as well as non-medical seg-
mentation problems [3] [4] [5] [6]. Hypotheses regarding the benefits of the
inclusion of DM include that it helps regularize the training process by in-
corporating more spatial information [6] as well as more shape information
about the target objects [4].

To the best of the author’s knowledge, there exists no previous work as-
sessing the benefits of including DM during training and prediction for
CNN-based general (non-specific) bone segmentation. This was therefore
performed in this project. There however exists previous work comparing
different types of DM-inclusion on other segmentation problems. The mo-
tivation behind performing this assessment was partly that it could shed
further light on what types of problems can benefit from the inclusion of
DM. It was also partly to see if this simple method could prove to be helpful
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when applying a standard DL-method for segmentation to the difficult prob-
lem of segmenting bones in CT-data in practical implementations.

1.2 Aims

The principal aim of this project was to assess the benefits of including
DM during training and prediction when performing bone segmentation in
CT-data using a well-known CNN. The underlying goals of this were to
evaluate the possibility to use such a method in a practical framework for
bone segmentation as well as shedding more light on what type of segmen-
tation problems can benefit from DM-inclusion. This could be done simply
by observing the results obtained on this specific problem. Since this was
done specifically by modifying a well-known CNN in three different simple
ways inspired by general methods for DM-inclusion used in previous work,
the aim was also to investigate which of these methods could yield the best
performance.

To clarify, the main research question that this project aimed to shed more
light on by the performed evaluations was thus whether simple modifications
of a well-known CNN to include DM during training and prediction could
help improve its performance for bone segmentation in CT-data. A sec-
ondary research question was simply which method for including DM could
yield the best performance on the given bone segmentation problem.

1.3 Delimitations

The delimitations of this project include a restriction to the use of a sin-
gle backbone network structure, a 2D U-Net (see Section 3.3), taking 2D
image-data as input. 3D CT-volumes were thus seen as a set of 2D-slices
throughout the project. This delimitation was set partly because existing
3D DL-methods require a training process that is highly computationally
expensive [10], something that is not compatible with the limited amount of
time and computational resources that were given. The use of a 2D U-Net
allowed an easier assessment of the inclusion of DM. Another reason for this
delimitation was that benchmark results on a publicly available dataset for
bone segmentation were available using a similar 2D network structure [1]
[7]. This allowed loose comparisons between results to be done.

This thesis project was also delimited to only assess the benefits of DM-
inclusion. An initial additional aim of this project was to develop a func-
tional tool for bone segmentation. This had to be reconsidered as a conse-
quence of the limited amount of available data. An in-house dataset was
created from 5 CT-volumes from SUS (Sk̊ane University Hospital) and a
small public dataset was found online (see Sections 4.2.1 and 4.2.2). These
datasets are relatively small for DL, and do not fully represent all types of
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bones. This limits the possibilites of developing and evaluating the true ro-
bustness and functionality of a tool for general bone segmentation. Further
limitations of this project are discussed in Section 6.1.
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2 Previous work

This section gives an overview of some of the previous work that is related
to the work of this project and that has contributed in some way to the
used methodology. Firstly, a few recent methods for including DM in CNN
are presented and roughly divided into three different categories (Section
2.1). Lastly, an overview of previous projects that have performed bone
segmentation in CT-data is given (Section 2.2).

2.1 Distance maps in deep learning-based segmentation

DL has been widely used for medical image segmentation during the past few
years. Emerging data also suggests that including DM in various ways dur-
ing training and prediction can yield improvements to existing DL-methods
for segmentation [3] [5] [6]. The recent work on DL-based segmentation that
involves DM is in this project roughly divided into three categories. Each
category could potentially be useful for the problem of bone segmentation.
In the first category, image-to-image regression is performed to map an input
image to a DM that is then internally post-processed in the network to yield
a segmentation mask. The second category adds the regression of a DM as
a complementary task to the task of learning a segmentation mask, creat-
ing multitask network. The third category performs pure image-to-image
regression and outputs the DM without internal post-processing, leaving
the need to post-process the DM-output in order to obtain a segmentation
mask.

In the first category there exists the recent work of Xue et al. (2019). They
propose a method where signed DM (SDM) are generated by a 3D U-Net and
internally post-processed in the network using an approximated threshold
operation (a modified sigmoid function) to create an output segmentation
map. They include an intermediate output of the SDM in the used loss
function. This showed improvements in most performance metrics as well
as in smoothness and shape-preservation for both single- and multi-organ
segmentation problems in 3D [3]. Similarly, Audebert et al. (2019) gen-
erates a DM, gives this as an intermediate output to be used in the loss
function, and then performs internal operations in the network to output a
segmentation mask. They apply their network to aerial images [6].

As a part of the second category, Navarro et al. (2019) observed that a multi-
task network with a backbone similar to the U-Net, using DM-regression as
a complementary task to learning a segmentation mask could improve their
segmentation results compared to baseline results from their U-Net on a 2D
multi-organ segmentation problem. However, they suggest a final network
using another auxiliary task performing contour detection as an addition
to the DM-regression [4]. Similarly, Dangi et al. (2019) performed DM-
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regression as an auxiliary task to segmentation during training, using the
DM output in the loss function to regularize the learning process. This
yielded improvements in the segmentation results on 2D binary and mutli-
class organ segmentation problems [5].

A model corresponding to the third category was used in preliminary exper-
iments in [6], indicating that pure image-to-image regression of DM could
not improve their results compared to baseline methods. Nevertheless, in
the work of Naylor et al. (2018), 2D DM-regression was succesfully used to
perform the segmentation of nuclei in histopathological data [8].

From the above mentioned projects, one can see indications that including
DM in DL by using methods from these three categories seems to have
potential to yield improved performance on segmentation problems. There
are several hypotheses as to why DM could be beneficial in a training process.
According to [3], DM (SDM) encodes richer information about structural
features of the target segmentation objects by embedding e.g. contours in a
higher dimensional (sub-pixel) space. They also state that small changes in
a DM representation affects the values of many pixels, globally, while in a
binary mask, only local changes occur when small changes are made. They
state that learning this representation could lead to more continuity in the
segmented shapes [3]. In [6], it is (roughly) stated that the use of DM assists
the network in learning spatial structures of the segmentation maps, and
observes that an inclusion of DM forces networks to better learn segmented
objects that are closed shapes, giving sharper boundaries as well less holes
in the objects. According to [4], including DM helps inferring geometric
shape properties of the target segmentation objects into the learning.

This project aimed to see if the problem of segmenting bone structures in
CT-images, which consist of many different shapes and sizes, could also
benefit from this. Modifications corresponding to each of these three cate-
gories were performed and tested during the course of this project, especially
inspired by [3], [4] and [8], but simplified. The implementations of these sim-
ple modifications are explained in detail in Sections 4.3.2-4.3.4. It should
be noted that a similar study on how DM can boost segmentation CNNs
for other problems than bone segmentation was released during this project
[9]. The results from this study were however not taken into account in this
project.

2.2 Bone segmentation in CT-images

The specific segmentation problem that this project investigates is the seg-
mentation of bone structures in CT-data. This is done with the specific
method of using CNN. According to a recent study [10], the segmentation
of target objects with large differences in appearances like irregular shapes,
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sizes and positions is one of the big difficulties for medical image segmenta-
tion when using DL.

Nevertheless, this specific problem has been approached in previous work
by using both 2D- and 3D-approaches. Klein et al. (2018) applied a slightly
modified version of a U-Net on transversal 2D slices to segment bone struc-
tures in CT-data. They also tested a pseudo-3D approach where the net-
work is trained and tested on transversal, coronal and sagittal slices, without
showing improvements to their results. They trained and tested their net-
work on a publicly available dataset [7], obtaining results that exceeded the
results of previously tested methods (that were not based on DL) on the
same dataset. This dataset is also used in this project. This was the most
similar method to the one used in this project.

Similar problems have also been solved with DL using other approaches.
Kvam et al. (2018) performed 3D bone-segmentation of full-body CT-scans
of pigs by performing several 2D segmentation problems solved by using
a U-Net [11]. Further, a 3D-approach for segmenting bones in dual energy
CT-images (where CT-images of the same structure are obtained at different
energies) was proposed by Sànchez et al. (2020). Here, two 3D CT volumes
of the same structure obtained by using different energies were inserted
into a slightly modified version of the 3D U-Net [21] for segmentation of
bone structures [2]. These types of solutions were not used during this
project.
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3 Theory

This section describes the theoretical aspects behind the technical imple-
mentations that were used in this project. It also gives a theoretical back-
ground for the data that was used and the challenges that come with it.
First, Distance transforms are defined and discussed (Section 3.1). Then,
the basic concepts of Deep learning that were used in this project are ex-
plained (Section 3.2). In this section, some concepts are explained in detail,
while other concepts that are less important are given a more synoptic ex-
planation. Further, the concepts behind the U-Net are explained (Section
3.3) and the used performance measures of the project are defined and dis-
cussed (Section 3.4). After this, some used concepts for model comparison
that were applied during testing are presented (Section 3.5). Finally, a brief
explanation behind the characteristics and challenges of CT-data is given
(Section 3.6).

3.1 Distance transforms

A distance transform (DT) is an alternative way to represent a digital image.
This is most commonly used to transform binary images. In the DT of a
binary image, also called a distance map (DM), each pixel contains the value
of the distance between the pixel itself and the closest pixel that contains the
value 1 [12]. There are several different types of distance functions that can
be used to calculate the distances in a DT of a binary image. The two types
that were considered in this project were the Euclidean Distance Transform
(EDT) and the Chessboard Distance Transform (CDT).

For a more mathematical description, consider the binary image b(x, y) as a
function describing the elements of a binary image matrix, for which a feature
point, a point describing an object, or foreground in the binary image matrix,
is defined as b(x, y) = 1 and a non-feature point is defined as b(x, y) = 0. For
a point (x, y), the nearest feature point to this can be given by the nearest
feature transform of b(x, y), defined as

[nx(x, y), ny(x, y)]
def
= [x′, y′] : b(x′, y′) = 1 closest to (x, y), given D (1)

where D = D[(x, y), (x′, y′)] is a distance function that gives the distance
between two points (x, y) and (x′, y′) using some distance measure [12]. The
notation states that [x′, y′] is the feature point closest to (x, y) measured by
D. The distance transform d(x, y) of b(x, y) for a point (x, y) can then be
defined as

d(x, y)
def
= D[(x, y), (nx(x, y), ny(x, y))] (2)
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for some distance function D [12], namely the distance D between the point
and its closest feature point. The Euclidean distance function DEDT that
defines the EDT can be given using above notation as

DEDT [(x, y), (nx(x, y), ny(x, y))] =
√

(x− nx(x, y))2 + (y − ny(x, y))2.

(3)

The Chessboard distance function (also known as the Chebyshev distance
function) DCDT that defines the CDT, uses an 8-connected neighbourhood
for each pixel (as in a chessboard) [23], and can be given as

DCDT [(x, y), (nx(x, y), ny(x, y))] = max(|x− nx(x, y)|, |y − ny(x, y)|). (4)

In this project, the EDT was calculated using the fast algorithm described
in Maurer et al. (2003) [24]. The CDT was given by using the sequential
scanning algorithm given in Rosenfeld et al. (1966) [13]. In both cases, the
built in MATLAB-function bwdist was used [23]. Examples of these two DT
inversely applied to a binary image can be seen in Figure 1. The DT applied
to the inverse of the binary image seen to the left describes the distance to
the nearest background pixel for each object pixel. This can be called a
foreground DM. This was the only type of DM used in this project.

Fig. 1: This figure shows an example of a binary image (left). This binary
image was inverted and transformed using the Chessboard Distance
Transform (middle) and the inverted Euclidean Distance Transform
(right).

Different truncations of the used DT:s were also tested during this project.
A truncation is an upper distance limit that is set for the DT. Pixel distances
of larger magnitude than this are clipped to this maximum value.

Amongst the mentioned projects in Section 2.1 that have included DM in
DL for segmentation, the DM were processed in different ways. Some used
signed DM [3] [6] and others used unsigned DM [8]. Signed DM additionally
uses signed pixel values to indicate whether the pixel is inside or outside an
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object of interest. Some used the EDT [4] [6], some used the CDT [8]
and others used a different DT of choice [3]. Some used truncation [6] and
some used max-min normalization of the DM [3]. The deciding factor for
choosing the DM-representation was in the case of this thesis that an integer
representation such as is given by the CDT would simplify the storage and
the processing of the data before being inserted into the networks, since this
representation can be saved and treated as a grayscale image. The CDT,
that yields values in discrete integer pixel units, was thus the DT of choice
throughout the project. Truncation was used, in order to limit the numerical
difference between DM that represents large and small objects.

3.2 Deep learning

3.2.1 Feed-forward neural networks

The methodology for solving the bone segmentation problem in this project
was exclusively based on deep learning. This is a subdomain of machine
learning that focuses on the use of neural networks (NN). A basic type of NN
are feed-forward neural networks (FFNN). Such networks are characterized
by not containing any feedback connections [14]. This is also the only type
of network that was used in this project. The main objective of such a
network is simply to perform a mapping between an input x and an output
y by approximating a specific function ftrue(x). The network that performs
this mapping can be seen as a parametrized function y = f(x; Ω), where Ω
are learnable parameters of the network [14].

The target function ftrue that the network aims to approximate through
acquiring good values for the parameters Ω can be a function that performs
a wide range of tasks. Two types of tasks were performed by NN in this
project. The first one was classification. The classification performed in
this project was done pixel-wise on an input image. The output of the NN
for this task was an image of the same dimensions as the input image, but
where each pixel has been assigned a class label. This operation is also
known as segmentation, and the output image with class labels is known
as a segmentation mask. The segmentation task in this project was binary,
meaning that each pixel in the resulting segmentation mask was labeled as
one of two possible classes, either bone (foreground) or background.

The second task performed in this project was regression. This was done
in the form of image-to-image regression, where the output of the network
is again an image of the same dimensions as the input image, but where
each pixel is instead assigned a continuous, non-discrete value. In this case,
these values corresponded to the values of a DM. The target function ftrue
was for this regression problem a function that generates a DM of the bone
structures directly from an input image.
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A FFNN generally consists of an assembly of layers that are connected in
a specific way [14]. A layer can be seen as a sub-function of the entire
parametrized network function f that either acts upon the input x (this is
done by the input layer), or on the output of previous layers in the network.
These yield outputs that are either used as inputs to other layers or as the
output of the network (this is done by the output layer). The layers in
between the input layer and the output layer are called hidden layers [14].
A principal model of a possible FFNN with two hidden layers can be seen in
Figure 2. This model was drawn by the author of this report, but inspired
by how a general FFNN is often presented in Deep Learning-literature. This
figure illustrates that a layer is a collection of many parallell units [14]. It is
also an example of a fully-connected network, since each unit is connected
to every unit in the preceeding layer. The network used in this project
contained other possible connectivites for a FFNN.

Fig. 2: This figure shows the principal structure of a possible type of FFNN.
The network has an input layer with two units, a first hidden layer
with four units, a second hidden layer with three units and an output
layer with two units.

In a FFNN, most hidden- or output units take a set of inputs z (either from
the input to the network or the output from other layers), multiplies these
with a set of weights w, adds a bias b and uses some activation function φ
(see section 3.2.2) to calculate the output value of the unit, o [14]. This is
done according to the expression in Equation 5. Such weights and biases of
the units constitute the learnable parameters Ω of a FFNN that are updated
during training, also called the model parameters.

o = φ(wT z+ b) (5)
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3.2.2 Activation functions

Activation functions are used in most units of a FFNN to compute the value
that they output. Activation functions are used in units in both the hidden
layer and the output layer, and what type of output activation function is
chosen for a NN is highly connected with the choice of loss function (see
Section 3.2.5) that is used during training [14]. This section describes the
activation functions that were used in this project.

The sigmoid function is an activation function that can be used as the
activation function in the output layer for binary classification problems. It
is defined for some input x as

φ(x) =
1

1 + e−x
. (6)

This function converts its input to a value in the interval (0, 1) [25]. This
value can be used to represent an unnormalized probability distribution
(since it does not sum up to 1) [14]. This project also includes a modified
version of the sigmoid function, which aims to approximate a differentiable
version of the Heaviside step-function by using a factor k for scaling the
slope and an offset factor o for choosing the threshold value. This was
defined as

φ(x) =
1

1 + e−(x−o)·k . (7)

The soft-max function is a generalization of the sigmoid function for the
multi-class case. This function can represent a probability distribution where
the output can take on n possible values (classes). The soft-max function
can, as an output unit, produce a vector ŷ, with elements ŷi = P (y = i|x)
of probabilities (for the specific classes) that sums up to 1 [14]. Such an
element is defined for a specific target index i = 1, ..., n in such a vector
as

φ(x)i =
exi∑n

j=1 e
−xj

. (8)

Since this project only tackled a binary classification problem, the sigmoid-
function could be used instead of the soft-max-function, since this is equiv-
alent to a two-class soft-max function [25].

The ReLU -function is an activation function that is used as a hidden layer
activation function in the U-Net in this project. The ReLU-function is
defined as

φ(x) = max(0, x). (9)
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The plots in Figure 3 shows the two versions of the sigmoid function as well
as the ReLU-function.

Fig. 3: This plot shows the two versions of the sigmoid function used in the
output layers of networks during this project (left) and the ReLU
activation function (right) used in the U-Net.

3.2.3 Basics of convolutional neural networks

A type of NN that is commonly applied to image analysis tasks (such as
in this project), due to its ability handle image-like data by using sparse
connectivity, is Convolutional Neural Networks (CNN). Such connectivity is
given by convolutions. This section aims to give an overview of the basic
concepts of CNN such that the description of the U-Net (a CNN) in Section
3.3 is understandable. A CNN is (roughly) defined in [14] as a NN that
performs a convolution in at least one layer. A CNN can thus be a FFNN,
but also other types of networks. A convolution is an operation that applies
a kernel (or filter) to its input, yielding a feature map as output. An example
of how an application of such a kernel to an input can compute one element
in the output feature map is shown in Figure 4. This example involves no
flipping of the kernel, as some mathematical definitions of convolutions do
[14].

Practical implementations of convolutions also commonly involve stride,
which is a hyperparameter that controls how the kernel is step-wisely ap-
plied across the input in each dimension. An example of how the feature
map elements are given in a practical implementation of a 2D convolution
operation can be seen in Figure 5, where the input image has the dimensions
4× 4, the kernel has the dimensions 2× 2 and the output feature map has
the dimensions 3× 3 as a result of using a stride of 1. Both figures 4 and 5
are slightly inspired by the figure on page 330 in [14].

The application of one kernel is only associated with one specific feature
given at the different positions in the input. Since one often wants to detect
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Fig. 4: This figure shows an example of how a 2D convolutional operation
can compute one element F1 in the output feature map.

Fig. 5: This figure shows a 2D convolution operation in practice (3 of 9
steps). The kernel is with stride 1 applied to different positions of
the input image to generate elements in the output feature map.

many different types of features of the input, it is common for a convolutional
layer to contain multiple kernels, and thus perform multiple convolutional
operations [14]. The number of separate feature maps that build up the
resulting output feature map from such a layer then matches the number of
kernels that has been applied to the input [18]. The input to a convolution
can also have multiple channels (a depth larger than 1). The applied kernels
can then have a depth that matches the input image that they are applied
to [18].

The elements of the kernels in a convolutional layer are part of the learnable
parameters (model parameters) of a CNN. The values of these elements are
learned during training such that useful attributes can be extracted from the
input image by application of the kernel. Commonly, a convolutional layer
performing convolutional operations is followed by layers performing other
operations [10]. A following layer might apply some activation function to
each element of the feature map generated by the convolutions. After this,
it is common for some kind of pooling-operation to be performed [10]. This
is an operation that produces a downsampled output feature map by sum-
marizing nearby elements. In the the U-Net in this project, max-pooling was
used. This operation downsamples the feature map by finding the maximum
element of a specified area of nearby elements [14]. An example of such an
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operation can be seen in Figure 6, where the max-pooling of a nearby pixel
area of dimensions 2× 2 is performed on a 3× 3 feature map (that could be
the output of the convolution in Figure 5 after an activation layer) using a
stride of 1. This figure was drawn by the author of this report.

Fig. 6: This figure shows how an element is given in a 2 × 2 max-pooling
operation on a feature map of dimensions 3 × 3 using stride 1. The
resulting feature map has the dimensions 2× 2.

3.2.4 Training a neural network

During the training process of a NN, the objective is usually to obtain the
parameters Ω that optimizes (minimizes) some type of loss function L. The
underlying objective of this is also usually to optimize some performance
measure, which is indirectly optimized through minimizing the loss function
[14], and that can measure in some way how well the NN solves the problem.
This is often done by using a gradient-based optimization method, as for
example Adam [16]. Gradient-based optimization methods use the gradient
of the loss function with respect to the model parameters Ω, ∇ΩL(Ω) in
order to minimize it.

To compute this gradient, the back-propagation algorithm can be used.
When training a FFNN, an input x is inserted into the network and forward-
propagated through the network, giving an output y [14]. By comparing
this to the corresponding ground truth ŷ (what the output should optimally
be) by using the loss function, one can produce a scalar loss value L(Ω)
[14]. The back-propagation algorithm uses this information and propagates
it back through the network in order to compute ∇ΩL(Ω). This compu-
tation is done inexpensively by using the chain rule in a recursive manner
to compute gradients with respect to all parameters Ω in the network [14].
The computed gradient ∇ΩL(Ω) is then used by the chosen optimization
method to update the learnable parameters Ω. For a more detailed expla-
nation of the back-propagation algorithm, the reader is referred to other
literature.

This project used networks that yielded not only one, but two outputs y1

and y2. In these implementations, the total loss function Ltotal(Ω) was
calculated as a sum of two different loss functions L1(Ω) and L2(Ω), each
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calculated from the two respective outputs, as

Ltotal(Ω) = L1(Ω) + L2(Ω). (10)

In the used framework for these networks, Keras, the implemented back-
propagation computed a single ∇ΩLtotal(Ω) based on this combined loss
function [25].

In this project, the chosen gradient-based optimization algorithm for up-
dating the parameters Ω to minimize L(Ω) was Adam. This method is a
modified version of gradient descent (GD). GD minimizes a loss function
by iteratively updating the learnable parameters of the network, Ω in each
iteration step t by moving slightly in the negative direction of the gradient
with respect to the current set of parameters. The formula for updating the
parameters in GD can be given as

Ω(t+1) = Ω(t) − η · ∇ΩL(Ω
(t)) (11)

where η is the learning rate that determines the size of the step in the
negative direction of the gradient [20]. This method can be stochastic in
the sense that it can use randomly selected mini-batches, i.e. small parts (of
specified size) of the training data to compute the gradient.

The Adam algorithm offers improvements to GD by using adaptive and
decaying learning rates individually for each learnable parameter [16]. For a
more in-depth explanation of the Adam algorithm than the one given here,
see [16]. The individual learning rates for each parameter are calculated from
running averages of the gradients from previous iterations that are iteratively
updated at each step [16]. This causes the algorithm to adapt to the behavior
of the gradients. Further, there are hyperparameters that controls how fast
these averages will decay exponentially (causing the learning rate to decay),
and another hyperparameter that functions like η in Equation 11 [16], often
denoted as the initial learning rate. This terminology was used during this
project.

3.2.5 Loss functions

Since two separate problems were tackled in this project, namely pixel-
classification and image-to-image regression, different loss functions had to
be used for each problem. This section describes the two loss functions that
were used in this project.

For the binary classification (segmentation) output, Dice-loss was used. This
is a loss function based on the Sørensen-Dice coefficient, which is a com-
monly used performance metric for segmentation problems (see section 3.4).
There are several different existing definitions of this loss function [3] [4] [21]
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that also extend to multiclass segmentation problems. In this project, the
definition of the Dice-loss for binary classification, similar to [21], was used.
This definition was given as

LDice = 1− 2
∑N

i=1 yiŷi∑N
i=1 y

2
i +

∑N
i=1 ŷ

2
i

(12)

where it is assumed that the predicted output from the network, y =
(y1, y2, ..., yN ) and the ground truth targets ŷ = (ŷ1, ŷ2, ..., ŷN ) are equidi-
mensional volumes with N corresponding elements (pixels), in this project
given by a mini-batch of 2D image-slices. Here, ŷ contains annotated binary
values, i.e. ŷ ∈ {0, 1} and the values of y are given by a pixel-wise sigmoid
in the output layer (see section 3.2.2), which yields outputs in the range
y ∈ (0, 1) [17].

The 1 is added to yield positive loss values, as opposed to the form in [17].
Commonly, a factor ε is added in both the denominator and the numerator to
avoid zero-division when y = ŷ = 0. However, the training data contained
no fully zero-valued images, which causes this situation to never occur. This
loss function makes up for class imbalances in the data, such as the imbalance
between foreground (bone) and background pixels in this project [21].

For the regression output, the common mean squared error (MSE) loss was
used. This is defined as

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (13)

where again the output y = (y1, y2, ..., yN ) and the ground truth targets ŷ =
(ŷ1, ŷ2, ..., ŷN ) are equidimensional volumes with N elements corresponding
to mini-batches of 2D image slices. In this project, the elements in y and ŷ
are DM-values.

3.2.6 Regularizing a neural network

During the process of minimizing a loss function L(Ω) such as the ones
given in the previous section, a problem called overfitting can occur. Briefly
explained, this is when the NN starts to tend too much to details in the train-
ing data, decreasing its ability to generalize on unseen data, thus decreasing
what can be called the generalization performance. During a training pro-
cess, this can be observed when the loss evaluated on the training data keeps
decreasing while the loss evaluated on the validation data starts to increase
or diverge. An example of such a training process from this very project can
be seen in Figure 15.
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To cope with this problem, regularization can be used. Regularization is
(roughly) defined in [14] as any type of modification to a network that
is performed with the intention to increase the generalization performance
without decreasing the performance on the training data. This is often
done by adding a penalty term to the loss function. One of the most basic
examples of this is L2-regularization. For a loss function L(Ω), with w being
the weights in Ω (that also contains biases), this can be written as

L̂(Ω) = L(Ω) +
λ

2
wTw (14)

for a specific regularization coefficient (hyperparameter) λ [20].

In essence, L2-regularization is used to force the magnitude of the weights to
stay relatively low, since large weight values penalize the loss function more
[20], and can improve the generalization performance. In a similar way,
one can add other types of penalty terms to the loss function to improve
generalization performance. There is a clear similarity between Equations
10 and 14. Adding multiple loss functions based on different outputs from
the network can also be seen as a means of regularization, and has indicated
the ability to improve generalization performance, as e.g. in [5]. Using a
network that performs multiple tasks with some parameters of the models
being shared between the two (or even more) tasks is also known as multitask
learning, as previously mentioned in category two in Section 2.1. Solving
multiple, related tasks can improve the network’s ability to generalize. The
parameters shared between the tasks are forced to take on values that allows
it to generalize well enough to be able to perform all tasks during training
[14].

Regularization is however not only done by adding penalty terms. A non-
penalty regularization technique that is included in this project is data aug-
mentation, which aims to increase the variance of a dataset by performing
random alterations to existing examples in the dataset in order to create
new examples. Data augmentation is done using several techniques in this
project. These are presented in Section 4.2.4.

3.3 The U-Net

In this project, all network models were implemented by modifying a net-
work architecture similar to the U-Net. The U-Net is a well-known CNN-
architecture that was established in Ronneberger et al. (2015). It has been
modified by others and used for a wide range of segmentation tasks. This
network is built up by a contractive path that downsamples an input im-
age and an expansive path that upsamples the downsampled data into an
output image. Figure 7 shows the U-Net as defined in [15]. This network
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architecture is said to be able to apprehend context through the contraction
and get precise localizational information through the expansion [15]. This
has shown great results in medical image segmentation, being one of the
most well-known architectures for this purpose [10].

The contractive path is built up by several repetitions of the process of
applying two successive convolutional layers with kernels of dimensions 3×3.
These are both succeeded by a ReLU -activation layer as well as a layer
performing 2 × 2 max-pooling on the output feature maps. This uses a
stride of 2. In the first such process, the channels for the output feature
map (the number of filters for the convolutional layers) are set to 64. In
each following process, the number of channels are increased by a factor of
2. In each contracting step, a skip-connection sends the current feature map
to the corresponding level in the contractive path [15]. Dropout is used in
end of the contractive path. This technique randomly drops out elements of
the current feature map by setting them to zero. This can be seen as a way
to augment a feature map [15].

The expansive path performs similar sub-processes as the contractive path
but uses up-convolutions (denoted up-conv 2 × 2 in Figure 7) instead of
max-pooling. This operation has the ability to up-sample its input to a
larger dimensionality. For more information about specific implementations
of this, the reader is referred to [18]. The up-convoluted feature map is
concatenated in the depth-dimension with the feature map given from the
corresponding skip-connection in the contractive part of the network. Two
convolutions with 3×3 kernels and ReLU -activation layers follows this. The
number of channels is reduced by a factor of 2 in each such process. When
the data has been upsampled by the expansive path, a feature map of depth
of 64 remains (see Figure 7) [15].

The network up until this point is used as the backbone network in this
project. This means that all modifications that were done in this project
were done to the layers following this corresponding position in the used
U-Net implementation (see Section 4.3).

In the original implementation, the final output is obtained by using convo-
lutions with 1 × 1 kernels to transform each pixel, at this point given as a
feature vector of depth 64, to a depth corresponding to the wanted number
of classes for classification, then applying a soft-max activation function to
yield a channel-wise probability vector for each pixel (as explained in Section
3.2.2) [15].

In the case of a binary classification, a sigmoid activation can correspond-
ingly be applied to get an output segmentation map with a depth of 1 where
the value of each pixel, in the interval (0, 1), can be seen as a probability of
belonging to one of the two classes. This is the method that is used in the
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implementations in this project, since only a binary classification problem
was approached.

Fig. 7: This figure shows the U-Net architecture introduced in Ronneberger
et al. (2015). The image is taken (with permission) from the original
paper [15]. The data dimensions in this differ from the ones used in
this project.

3.4 Measuring performance

To assess how well the the tested networks performed the bone segmentation,
performance metrics that could satisfactorily measure this had to be used.
This section describes the measurements that were used. All well-known per-
formance metrics for evaluating segmentation results are, naturally, based
on segmentation masks. A DM can adequately be transformed into a binary
segmentation mask by a thresholding operation at a specific distance value.
For models that yielded a DM-output, the resulting DM were thus thresh-
olded and evaluated as binary segmentation masks. The evaluation metrics
that were used in this project were defined for binary objects, regardless of
the fact that some model outputs were only approximately binary (given by
a sigmoid output activation).

When bone segmentations are 3D-printed at SUS, the digital representation
that is used is an isosurface. An isosurface is created by connecting pixels of
a specific (pre-set) value (isovalue) on a sub-pixel level [23]. Creating an iso-
surface directly from a DM can adequately be approximated by creating an
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isosurface from a thresholded DM. Figure 8 shows isosurfaces created from
the two respective representations of a sphere. There is thus little apparent
benefit of using an un-thresholded DM-representation for 3D-printing.

Fig. 8: This figure shows isosurfaces of a sphere from a binary representation
(left) and a (CDT) DM-representation (right) using the isovalue 0 in
both cases.

The main performance metric used to evaluate segmentation results in this
project was the Sørensen-Dice coefficient. This is the metric that the Dice
loss described in Equation 12 is based on. The definition of the Sørensen-
Dice coefficient as given in [21] was used. This can be seen in Equation 15,
where y = (y1, y2, ..., yN ) and ŷ = (ŷ1, ŷ2, ..., ŷN ) are binary volumes, both
containing N binary elements.

Dice(y, ŷ) =
2
∑N

i=1 yiŷi∑N
i=1 y

2
i +

∑N
i=1 ŷ

2
i

. (15)

The Jaccard similarity coefficient can be defined, with the same prerequi-
sites, as in Equation 16.

Jaccard(y, ŷ) =

∑N
i=1 yiŷi∑N

i=1 y
2
i +

∑N
i=1 ŷ

2
i −

∑N
i=1 yiŷi

. (16)

Both of these metrics are measures of spatial overlap for binary objects [22].
One can also define the both the Sørensen-Dice coefficient and the Jaccard
index for measuring the similarity between two binary objects in terms of the
measures TP, TN, FP and FN as defined in Figure 9 for two binary objects.
This figure is inspired by the table given in [22]. These alternative definitions
are shown in Equations 17 and 18. They are equivalent to Equations 15 and
16, respectively, that describe the practical implementations of said metrics
in this project. The subtracted term in the denominator in Equation 16
is added to avoid two instances of the TP, as in the denominator in the
Sørensen-Dice coefficient.
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Fig. 9: This figure shows a table defining the binary overlap measures that
can be used to alternatively define Sørensen-Dice coefficient and the
Jaccard index [22].

Sørensen-Dice coefficient =
2 ·TP

2 ·TP+ FP+ FN
(17)

Jaccard Index =
TP

TP+ FP+ FN
(18)

3.5 Comparing models

To be able to measure a potential gain in performance given by the per-
formed modifications of the U-Net as well as the differences in performance
between the different modifications, some type of model comparison proce-
dure had to be used in this project. To compare different models, one can
obtain estimates of their generalization performances. Obtaining such esti-
mates can however be a difficult task, since they are often biased. Bias can
be defined as the difference between the expected value of the estimation of
a parameter (such as the generalization performance) and the true value of
the parameter [19]. Bias can be added to such estimations both positively
and negatively.

K-fold cross-validation is a method commonly used to estimate the general-
ization performance of a model on a specific, typically smaller dataset. Since
both datasets used in this project were relatively small, this was an appro-
priate method to use. This method is based on dividing the dataset into k
folds. During the process of the method, networks are trained on k−1 folds
and evaluated on the remaining fold of the dataset [14]. This is done for all
k folds. This means to essentially train k different networks. Each network
is evaluated on the remaining fold using a performance metric of choice. By
computing the average performance as well as the standard deviation over
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folds, one can obtain an estimate of the generalization performance of the
NN.

For many NN, there is a set of hyperparameters that needs to be tuned. In
contrast to the model parameters mentioned in Section 3.2.1, these are pa-
rameters that affect how the training procedure is carried out, and that have
to be specified manually or by an external procedure before training [19].
These parameters can affect the model that is obtained from the training
procedure. If one uses the same test set to both tune the hyperparameters
and estimate the generalization performance of the model, a positive bias
can be added to the estimate [19].

Nested k-fold cross validation can be used to obtain an almost entirely unbi-
ased estimate of the generalization performance of a model when the tuning
of hyperparameters is needed. This finds the best hyperparameters in an
inner cross-validation loop for each training fold by using a hyperparameter
optimization method (such as e.g. grid search) and then uses the found hy-
perparameters to train the model on the current training set before testing
it on the current test fold. The inner loop thus performs the hyperparameter
tuning. This gives a more unbiased estimate of the generalization perfor-
mance, since information leakage from the test set to the training set is no
longer possible.

However, when only performing model or algorithm comparisons, such a
process may not be needed, since one is commonly only interested in the
relative performance of the different models. An equal (positive or negative)
bias between the different models will thus not affect the model comparison
procedure negatively [19]. Nevertheless, it might be hard to tell if the added
bias is equal for the different models.

Since the different models in this project were essentially the same model,
but with the final layers modified, the common hyperparameters were set
to the same fixed values when performing the k-fold cross-validation for
comparison. This was done because the aim was to observe the direct impact
in performance given by the modifications. The common hyperparameter
values were found by using part of the training set in each fold as a validation
set to find a set yielding converging validation and training set losses for
all models. The term convergence is used in this project to denote when
the loss value approaches a local or global minimum of the loss function
and ceases to notably decrease or increase. More details regarding how the
final evaluations were carried out is given in Section 4.5 and the possible
limitations of this are discussed Section 6.
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3.6 Computed Tomography (CT) data

The data in the two datasets that were used this project was generated
by Computed Tomography (CT). CT is a medical imaging modality that
produces images where different types of tissue are assigned different values
according to the Hounsfield scale. The Hounsfield scale ranges from values
of −1000, which corresponds to air, to +3000, which corresponds to dense
bones [27].

Many difficulties for bone-segmentation in CT-data arrive from the fact that
bones consist of several different types of tissue that result in very differ-
ent Hounsfield values during a CT-scan, among which cortical bone (com-
pact bone), cancellous bone (spongy bone) and bone marrow are examples
[7].

Two example problems for bone segmentation in CT-data that were observed
in this project can be seen in Figure 10. The problem denoted as P1 arises
due to some bones being very closely situated, making separation difficult
due to the limited resolution of the CT-image. The problem denoted as P2
arises directly from the fact that bones consist of different types of tissues.
Some bones only have a thin, outer layer of cortical bone and a large inner
cavity of bone marrow or cancellous bone. If one performs a thresholding
operation, these may not result in fully enclosed objects, which one usually
wants. This is also due to restrictions in resolution.

Fig. 10: This figure shows the example problems P1 (left) and P2 (right).
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4 Methodology

This project included a lot of practical work. This section first describes the
used hardware, and then two datasets that were used in this project and
how they were partitioned and pre-processed (Sections 4.2.1-4.2.4). Then,
the backbone U-Net implementations (Section 4.3.1) and the modifications
that were performed to them to include DM in three different ways (Sections
4.3.2-4.3.4) are presented in detail. Further, the tests that were carried out
are described and rationalized in two different parts. First, the less struc-
tured preliminary testing that was performed, the results that were obtained
from this and the conclusions that were drawn are presented (Section 4.4).
The reason for presenting these results in the section describing the method-
ology were that they were used during the development of the methods that
were utlized for the final evaluations. Finally, descriptions of the evalua-
tions that were performed to get the final results for comparing the different
models are given (Section 4.5).

4.1 Hardware

The training and prediction that was performed during this project (for all
models) used either one or two NVIDIA Titan RTX GPU:s.

4.2 Data

Two different datasets were used in this project. This section describes
these datasets, how they were partitioned during training and testing and
how they were pre-processed before being used.

4.2.1 In-house dataset

The in-house data available at Sk̊ane University Hospital (SUS) consisted of
five volumetric CT-images with values within the standard Hounsfield scale
and corresponding segmentation masks. One volume depicted a set of arms
(and hands) and had the dimensions 398× 512× 945, two volumes depicted
legs (and feet) and had the dimensions 288× 710× 648 and 325× 718× 899.
The remaining two volumes depicted pelvises, and were of the dimensions
327 × 454 × 448 and 327 × 454 × 565. Ground truth segmentation masks
were annotated through manual segmentation by the author of this report
using a segmentation software.

4.2.2 Public dataset

The publicly available dataset from Peréz-Carrasco et al. (2017) consisted
of 27 CT-volumes of size 512 × 512 × 10 with corresponding segmentation
masks from 20 different patients, and depicted a wide range of body parts,
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such as spines, skulls and arms, resulting in a large variety of shapes and
sizes of the depicted bones [7]. In contrast to the in-house dataset, this
dataset had been scaled and offset from the standard Hounsfield scale in a
way that was unknown, with values ranging from −2000 to 3000+. The
dataset was used with permission from the author of [7] and administrator
of the dataset.

4.2.3 Data partitioning

In the initial phase of this project, only three CT-volumes were available
from the in-house dataset. This data was only used for initial testing of
the backbone U-Net (MATLAB). The dataset was divided into training,
testing and validation data by assigning the two first volumes as training
data, and the last volume as validation and testing data (60% testing and
40% validation). However, there was a clear shape overlap of bones within
volumes. To avoid the risk of inducing bias if data from the same volume
was used across partitions, the splitting of the data was reconsidered. It
was decided that a volume-wise partitioning of the data was the best way
to completely avoid this type of bias. The volume-wise partitioned data is
suitable for performing a k-fold cross-validation. This was the method of
choice for evaluating the models. When all 5 CT-volumes were acquired for
the in-house dataset, they were split volume-wise in a 5-fold cross-validation
in both the preliminary and final evaluations.

The public dataset was also split volume-wise, but since the CT-volumes
were smaller in this dataset, the folds had to contain multiple volumes. The
same evaluation method and data partitioning as used in [1] was performed,
in order to also make comparisons between results possible. The used eval-
uation method for the models on this dataset was 3-fold cross-validation in
both the preliminary and final evaluations. The used partitioning for this
was 15 CT-volumes for training, 9 CT-volumes for testing and 3 CT-volumes
for validation [1].

4.2.4 Pre-processing the data

The pre-processing that was used on the two datasets was similar. In both
datasets, the CT-volumes were split and saved as 2D CT-slices from the
transversal view (feet to head). As an initial pre-processing step, the CT-
slices in the in-house dataset were clipped to the scale [−300, 500], with the
motivation that this showed good contrast between bones and background.
The slices were then max-min normalized to the range [0, 1], multiplied by
255 and saved as grayscale images. The CT-slices in the public dataset
dataset were instead clipped to the scale [800, 1800], with the same motiva-
tion as above, and then processed and saved in the same manner.
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For the public dataset, data-augmentation of the CT-slices and the corre-
sponding segmentation masks was performed. The used augmentation was
inspired by the augmentation used in [1]. It consisted of random rotations of
degrees in the range [−10, 10], random reflections around the vertical axis,
random scaling between 60% and 140% as well as random shearing in both
the x and y-direction of degrees in the range [−10, 10]. The data augmenta-
tion function augment in MATLAB was used to perform all augmentation
[23]. For each transversal image slice, 5 image slices with different random
augmentations were obtained. The amount of data from each CT-volume
was consequently increased by a factor of 5. A slight drop in quality for the
segmentation mask boundaries was observed after augmentation. Neverthe-
less, it was still decided to use the augmented data.

For the in-house dataset, random patches of size 128 × 128 were extracted
from all images and the corresponding segmentation masks. The use of
patches was initially motivated by the fact that there was a wide range of
dimensions of the transversal slices in the in-house dataset. To cope with the
imbalance between bone and background, patches where the segmentation
mask contained at least 1000 pixels of annotated bone were saved, and the
patches that did not fulfill this criterion were not saved.

For the preliminary testing on the in-house dataset (see Section 4.4), 50
patches from random positions in the image were extracted. This resulted
in the smallest amount of patches extracted from a single volume being 4088.
Since the data was split CT-volume-wise, this smallest number of patches
was utilized as a threshold for the number of patches that was used from
each volume during training. The entire in-house dataset thus consisted of
5 · 4088 = 20440 patches during training.

For the final evaluations on the in-house dataset, new patches were gener-
ated. Due to limited computational resources and time, a reduction in the
amount of patches had to be done. The amount of random patches from
each image was significantly lowered to 6 patches, resulting in the smallest
number of patches from a single volume being 806. This yielded a training
set of 3224 images and a test set of 806 images for each fold. The net-
works were in both cases trained and tested on these randomly extracted
patches.

For the public dataset, a similar procedure for patch extraction was used.
The smallest number of randomly extracted patches from a single volume
in this dataset was 85. Since the partitioning was 15 volumes for training, 3
volumes for testing and 9 volumes for testing, the network was thus trained
on 1275 patches and validated on 255 patches in each fold. For the public
dataset, the network was tested on 128 × 128 patches that were extracted
from the 9 testing volumes in each fold by using a sliding window approach.
This means that from each 512×512 transversal slice in each testing volume,
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16 separate, non-overlapping patches were extracted and used as test data.
This yielded 16 · 10 · 9 = 1440 testing patches for each fold.

For both datasets, the extracted patches for training and testing consisted of
corresponding image patches and mask patches. To obtain the correspond-
ing DM-representions for these patches, the MATLAB-function bwdist [23]
was applied to the inverted mask patches. Because of the fact that the
ground truth DM were obtained from the segmentation masks, and misrep-
resentations could arise if augmenting a DM using standard techniques, the
data augmentation had to be performed jointly on the images and masks
prior to generating the DM-representations of the masks.

Figure 11 shows each step of the pre-processing pipeline for the public
dataset for a CT-image and segmentation mask pair that is transformed
into training, testing and validation data. It should be noted that such a
pair was of course used as training, validation and testing data for different
folds.

4.3 Models and modifications

The four models used in this project all utilized a U-Net very similar to the
one described in Section 3.3 as a backbone. The implementations of this are
both called U-Net in this project, and are presented in Section 4.3.1. The
final layers of this model were modified into three different models, all of
which are inspired by previous work, but simplified. The rationale behind
each performed modification of the U-Net are described in detail in Sections
4.3.2-4.3.4.

4.3.1 U-Net implementations

Two different implementations similar to the U-Net were used as backbones
for modifications. The first implementation was acquired in MATLAB by
using the MATLAB-function unetLayers [23]. The second implementation
was found in the git-repository [26], implemented in Keras using the Keras
functional API. This repository allows copying and modification of the code
[26]. Since operations in MATLAB and Keras might yield different nu-
merical results, full correspondence between the two networks could not be
guaranteed.

The differences between the two backbone implementations include the fact
that in MATLAB, the loss function for the network is defined in the final
layer of the network, the output layer, which in the used original implemen-
tation is a pixelClassificationLayer, which applies a pixel-wise soft-max and
a cross-entropy loss [23]. The final convolutional layer then has to use two
1 × 1 filters, in correspondence with the method used in [15], to yield the
needed 128× 128× 2 output for a binary soft-max. The backbone U-Net in
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Fig. 11: This figure shows the pre-processing pipeline for the public dataset.
The CT-image and its corresponding segmentation mask is denoted
Image + Mask and is shown as a combined image where the yellow
areas correspond to the segmentation ground truth for bone. The
example images are taken from the public dataset [7].

MATLAB was only used for preliminary testing. It is shown in Figure 19 in
Appendix A.

The Keras implementation of the backbone U-Net was slightly modified from
its original state found in [26] to more closely correspond to the MATLAB
implementation. The final layer of the network was modified to be given by
a layer that performs 1 × 1 convolution using a single filter on the 128 ×
128× 64 output from the final up-convolution process, and applies a pixel-
wise sigmoid activation function, resulting in an output segmentation mask
of dimensions 128 × 128 × 1. In Keras, the loss function is not specified
when specifying the output layer, but instead when compiling the network
[25]. This network is shown in Figure 20 in Appendix A. This network was
evaluated for baseline results in the final evaluations.
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The weights in both backbone implementations were initialized by using the
’He’ weight initialization method [23]. All modifications that were done to
the backbone U-Net were performed after the final process in the expansive
path, or in other words when the feature map has a depth of 64 (see Figure
7). All operations up until this layer were considered the backbone U-Net
in this project.

4.3.2 DTR-Net

The DTR-Net (Distance Transform Regression-Network) was a simple mod-
ification to the backbone U-Net that allowed it to perform image-to-image
regression, where the target regression output is a DM. This type of model
is mentioned in section 2.1 as a part of the third category.

The modification that was performed to the backbone U-Net (MATLAB)
was to modify the final 1 × 1 convolutional layer to only yield one output
channel resulting in an output of 128× 128× 1, and then applying a linear
activation function. Since working in MATLAB requires the loss function
to be specified by the output layer, a regressionLayer was chosen [23]. This
layer calculates the half MSE-loss between the output DM and the ground
truth DM. This simply means that the MSE-loss is multiplied by a factor
1
2 .

The same implementation was later performed for the U-Net (Keras), in-
stead using a regular MSE-loss. This was done for the final evaluations
described in Section 4.5. The principal structure of the DTR-Net can be
seen in Figure 12.

Fig. 12: This figure shows the structure of the DTR-Net with respect to the
backbone U-Net.
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4.3.3 MT-Net

The MT-Net (Multitask-Network) was a modification to the U-Net (Keras)
that allowed it to perform image-to-image regression of a DM as a comple-
mentary task to the segmentation performed by the U-Net, in a multitask
framework. This approach was inspired by [4], but simplified. In Section
2.1, this was mentioned as part of the second category. This architecture
removes the need of the post-processing that is needed on the DTR-Net out-
put in order to create a segmentation mask, but allows the network to still
possibly be regularized by the DM-output during backpropagation.

As for the practical implementation, the same technique as for the DTR-
Net was used in order to perform the image-to-image regression task. This
model can be seen as a combination of the U-Net and the DTR-Net. The
two branches simply consisted of two separate convolutional layers perform-
ing 1×1 convolutions added to the backbone. The branch for DM-regression
used linear activation, and the branch for segmentation used sigmoid acti-
vation.

The loss function that was used for the MT-Net was a joint loss function (see
section 3.2.4) of Dice-loss and MSE-loss. The Dice-loss LDice was evaluated
on the segmentation mask-output, yseg. The MSE-loss LMSE was evaluated
on the DM-output yDM . The total loss was given as in Equation 19. The
principal structure of the MT-Net can be seen in Figure 13.

Ltotal = LDice(yseg) + LMSE(yDM ). (19)

Fig. 13: This figure shows the structure of the MT-Net with respect to the
backbone U-Net.
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4.3.4 IO-Net

The IO-Net (Intermediate Output-Network) was a modification to the U-Net
(Keras) that was similar to the MT-Net, but instead of adding a separate
branch to learn the segmentation mask and DM separately, the network first
learns a DM-representation, gives this as an intermediate output, and then
performs an approximated thresholding operation by applying the modified
sigmoid function described in Section 3.2.2 and Figure 3 with nonzero k
and o to obtain the output segmentation mask. This is inspired by the
approach used in [3], previously mentioned in section 2.1 as a part of the
first category.

This was implemented in practice by again attaching a 1× 1 convolutional
layer with a linear activation function to the backbone U-Net to yield the
DM, giving this as an intermediate output. Then, the resulting DM is
inserted into an activation layer performing the modifed sigmoid activation.
During the final evaluations, the parameters k = 50 and o = 0.5 were used,
based on preliminary testing. The total loss function Ltotal for the IO-Net
was implemented identically to equation 19. The principal structure of the
IO-Net can be seen in Figure 14.

Fig. 14: This figure shows the structure of the IO-Net with respect to the
backbone U-Net.

4.4 Preliminary tests and results

In the initial phase of the project, less structured preliminary tests were
performed with the purpose of assessing the data, the possible difficulties of
the bone segmentation problem and the performance of the basic network
structures. Several hyperparameters and factors were decided from the re-
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sults. This section describes these tests, their results and the decisions that
were made based on them.

An initial assessment of the U-Net (MATLAB) was done by training and
testing using the in-house dataset consisting of 3 CT-volumes (see Section
4.2.3). During this initial training, clear signs of overfitting on the train-
ing set were observed. An example of this can be seen in Figure 15. The
overfitting occured very early in the training process for almost every com-
bination of hyperparameters that was tested. The U-Net initially had more
down-sampling (and up-sampling) steps, but in order to tackle the overfit-
ting problem, the complexity of the model was reduced by decreasing the
depth of the network to the final size (see Appendix B). The network con-
verged and a Sørensen-Dice coefficent of 89.53 % was obtained on the test
set. This result is biased due to information leakage between the validation
and testing sets, but showed potential for future modifications of the U-Net
backbone.

Fig. 15: This figure shows an example of the overfitting that consistently
occured during the first epochs of the initial testing of the backbone
U-Net (MATLAB). The orange curve represents the loss evaluated
on the training set and the black, dotted curve represents the loss
evaluated on the validation set, that clearly starts to increase during
the second epoch.

The succeeding preliminary test was an evaluation of the DTR-Net (MAT-
LAB) and its required post-processing. This was done by using the full
in-house dataset. Since overfitting was a problem during the evaluation of
the U-Net, it was concluded that hyperparameter tuning could be needed
for the validation loss to converge during training. By writing a script
performing volume-wise 5-fold nested cross-validation (see section 3.5), the
generalization performance of the network could be estimated. This script
was implemented to perform grid search (brute-force testing of all combi-
nations of a set of given hyperparameters) in its inner loop (performing
4-fold cross validation) to find the best performing combination of hyperpa-
rameters. The only two hyperparameters that were tuned were the initial
learning rate and the mini-batch size. Two truncation factors for the DM;
8 and 4, were tested. Each network was trained for 500 epochs each. The
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results after post-processing the DM by thresholding at 0, averaged across
folds, can be seen in Table 1.

Tab. 1: This table shows the results (across folds) given for the DTR-Net
for the 5-fold nested cross-validation, where t denotes the truncation
threshold that was used on the DM-representation of the ground
truth.

Network Sørensen–Dice coefficient

DTR-Net (t = 4) 0.41 ± 0.15

DTR-Net (t = 8) 0.34 ± 0.09

Through troubleshooting, it was found that the results in Table 1 were
affected by the fact that the used (half) MSE-loss yielded small fluctuations
(noise) around it’s limits (0 and 4) in the predicted DM, making a threshold
close to 0 yield a bad segmentation map. This is probably due to the fact
that the used loss function does not give enough punishment to the network
for noise-like fluctuations. This problem is illustrated in Figure 16. This
figure shows how an input CT-slice inserted into the DTR-Net generates a
prediction of a noisy DM that contains values above 4 and below 0, giving
a very noisy segmentation mask when thresholding at 0. It also shows that
setting the threshold to 0.5 results in a segmentation mask more similar to
the ground truth, since this is more robust to noise.

Although it yields a good estimation of the generalization performance, the
nested cross-validation that was used in this evaluation was not a computa-
tionally feasible way to perform further estimations of network performances
in this project, since a limited amount of resources for computation were
available.

Further preliminary evaluations of the DTR-Net (MATLAB) were performed
using a script performing 3-fold cross-validation on the public dataset, post-
processing the results using a threshold at 0.5. This was implemented from
scratch, utilizing the data partitioning described in Section 4.2.3, and is
described in more detail in Section 4.5, since it was also used for the fi-
nal evaluation. The training was performed for 500 epochs using an initial
learning rate of 10−4 and a mini-batch size of 16. These hyperparameters
were determined by observing that convergence of the validation loss was
given for each fold (or rather non-divergence). A DM-truncation at 4 was
used. The results can be seen in Table 2. These results confirmed that the
use of the DM representation was possible for segmentation and that the
used pre- and post-processing was usable. The DM-truncation at 4 and the
post-processing threshold of 0.5 were used for the rest of the project, as well
as the chessboard distance transform (see section 3.1) for the DM.
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Fig. 16: This figure shows the thresholding issue for the post-processing of
the output of the DTR-Net. The example image is taken from the
public dataset [7].

Tab. 2: This table shows the results given by the DTR-Net (MATLAB) for
the 3-fold cross-validation using the public dataset.

Network Sørensen–Dice coefficient Jaccard Index

DTR-Net 0.82 ± 0.01 0.69 ± 0.01

4.5 Final evaluations

The aim of this project was to see if simple modifications of the U-Net to
include DM in the training and prediction processes could yield improved
performance for bone segmentation in CT-data. Another aim was to de-
termine which of these modifications yielded the best performance if the
previous aim proved to be true. To be able to meet these aims, controlled
evaluations that allowed a fair comparison between the performance estima-
tions of the different modifications had to be performed.

To do this, only the Keras-implementations of the U-Net and its modifica-
tions described in Sections 4.3.1-4.3.4 were used in the final evaluation. As
previously described, these were all implemented using the same backbone
network and either using Dice-loss, MSE-loss or the combination of these as
a loss function. The comparative evaluation was carried out using the two
different datasets. Each dataset used a different method for estimating the
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performances of the models. The scripts for training and testing were also
implemented in Keras, and the same scripts were used across networks to
ensure control.

For evaluation on the public dataset, a 3-fold cross-validation was imple-
mented using the training, testing and validation partitioning described in
Section 4.2.3. The evaluation pipeline for the 3-fold cross-validation is shown
in Figure 17.

A 3-fold cross-validation using a part of the training data as a validation set
is of course not optimal, since it lowers the amount of training data that is
used. However, the validation set was used to find an initial learning-rate for
the Adam-optimizer and a mini-batch size such that the backbone U-Net,
the DTR-Net, the MT-Net and the IO-Net all seemed to yield validation and
training losses that did not diverge. The validation set in each fold was thus
used for tuning these common hyperparameters. The used hyperparameters
were a mini-batch size of 4 and a learning rate of 10−4 .

All networks during this test were trained for 800 epochs. For reproducibilty
and control, training was performed using a fixed random seed. In order to
further evaluate the robustness to different hyperparameters of the different
modifications and to be able to show how this could affect the results, combi-
nations of mini-batch sizes 4 and 2 and initial learning rates 10−4 and 10−3

were also tested. All other common hyperparameters used preset values.
These results can be found in Table 4.

Fig. 17: This figure shows the partitioning of the 27 CT-volumes in the pub-
lic dataset for the different folds in the 3-fold cross validation as
well as the pipeline for obtaining the performance measure aver-
aged across folds.

For the in-house dataset, a volume-wise 5-fold cross-validation was per-
formed for all modifications. A schematic image of this pipeline for eval-
uation can be seen in Figure 18. Due to observations of an oscillating train-
ing loss during a first run where the same common hyperparameters as for
the 3-fold cross-validation were used, the initial learning rate was lowered
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to 10−5. The results for both runs are reported below. This test was run
for 200 epochs for all models, using a batch size of 4. All other common
hyperparameters used preset values.

The results from both these tests can be seen in Section 5. Examples of
resulting segmentations from each of the three test-folds by the respective
networks during the 3-fold cross-validation can be seen in Figure 21.

Fig. 18: This figure shows the partitioning of the 5 CT-volumes in the public
dataset for the different folds in the 5-fold cross-validation as well
as the pipeline for obtaining the performance measures (Dice and
Jaccard), averaged across folds.
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5 Results

The results given by the 3-fold cross-validation on the public dataset for the
combination of hyperparameters that allowed the training loss of all models
to converge can be seen in Table 3. Plots of the training and validation losses
during training for each model to obtain these results can be seen in Figure
22 in Appendix B. Table 4 shows the results of the 3-fold cross validation for
all combinations of the common hyperparameters initial learning-rate (with
values 10−4 or 10−3) and mini-batch sizes of 4 or 2. Example segmentation
predictions by each network for each fold of the 3-fold cross-validation can be
seen in Figure 21 in Appendix B. The results from the 5-fold cross-validation
using the in-house dataset for two different initial learning rates can be seen
in Table 5.

Tab. 3: This table shows the averages and standard deviations of the results
for all models for the 3-fold cross-validation on the public dataset,
using an initial learning rate of 10−4 and a mini-batch size of 4. The
averages and the standard deviations are computed across folds. For
reference, it also shows the results obtained by [1] for the similar test.
Dice denotes the Sørensen–Dice coefficient and Jaccard denotes the
Jaccard Index. The Loss-column describes the used loss functions
for the different models, either the Dice-loss, the Mean Squared Er-
ror (MSE) loss or a combination.

Network Loss Dice Jaccard

MT-Net Dice + MSE 0.79 ± 0.05 0.66 ± 0.07

IO-Net Dice + MSE 0.78 ± 0.10 0.65 ± 0.13

U-Net Dice 0.76 ± 0.06 0.62 ± 0.07

DTR-Net MSE 0.74 ± 0.11 0.60 ± 0.14

Klein et al. (2018) - 0.92 ± 0.05 0.85 ± 0.08
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Tab. 4: This table shows the results for all models for the 3-fold cross-
validation on the public dataset for all different combinations of
initial learning rates (ILR) and mini-batch sizes (MBS). The given
average scores and standard deviations are computed across folds.
Entries with a dash (-) indicates that the network diverged during
training for more than one of the 3 folds. The Loss-column describes
the used loss functions for the different models. The results in bold
were used in Table 3.

Network Loss ILR MBS Dice Jaccard

MT-Net Dice + MSE 10−4 4 0.79 ± 0.05 0.66 ± 0.07
2 0.79 ± 0.13 0.67 ± 0.16

10−3 4 - -
2 - -

IO-Net Dice + MSE 10−4 4 0.78 ± 0.10 0.65 ± 0.13
2 0.76 ± 0.13 0.63 ± 0.16

10−3 4 - -
2 0.41 ± 0.31 0.31 ± 0.25

U-Net Dice 10−4 4 0.76 ± 0.06 0.62 ± 0.07
2 - -

10−3 4 - -
2 - -

DTR-Net MSE 10−4 4 0.74 ± 0.11 0.60 ± 0.14
2 0.75 ± 0.09 0.61 ± 0.11

10−3 4 0.62 ± 0.14 0.46 ± 0.16
2 0.69 ± 0.11 0.54 ± 0.13
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Tab. 5: This table shows the results for all models for the 5-fold cross-
validation on the in-house dataset. The given average scores and
standard deviations are computed across folds. The results are
shown for two different initial learning rates for the Adam-optimizer,
denoted by ILR. The numbers in bold indicate the results for the
initial learning rate with which the training loss converged for all
networks and folds. Dice denotes the Sørensen–Dice coefficient and
Jaccard denotes the Jaccard Index. The Loss-column describes the
used loss functions for the different models, either the Dice-loss or
the Mean Squared Error (MSE) loss.

Network Loss ILR Dice Jaccard

MT-Net Dice + MSE 10−5 0.93 ± 0.04 0.88 ± 0.06
10−4 0.96 ± 0.01 0.93 ± 0.02

IO-Net Dice + MSE 10−5 0.86 ± 0.18 0.79 ± 0.23
10−4 0.96 ± 0.02 0.93 ± 0.03

U-Net Dice 10−5 0.88 ± 0.13 0.81 ± 0.18
10−4 0.56 ± 0.45 0.52 ± 0.42

DTR-Net MSE 10−5 0.85 ± 0.20 0.79 ± 0.24
10−4 0.96 ± 0.02 0.92 ± 0.04
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6 Discussion

The results from the 3-fold cross-validation in Table 3 shows a clear increase
in the Sørensen–Dice coefficent and the Jaccard index for both the MT-Net
and the IO-Net in comparison with the U-Net. The MT-Net also shows a
slight decrease in the standard deviation across folds in relation to the U-
Net. The DTR-Net shows the lowest Sørensen–Dice coefficient and Jaccard
index and the highest standard deviation across folds.

Table 4 that presents results for the 3-fold cross-validation for slightly differ-
ent combinations of the initial learning-rate and mini-batch size indicate the
same internal order of performance. The MT-Net shows better performance
than the IO-Net and the DTR-Net for the two cases where these three mod-
els’ training losses converged. However, the DTR-Net seems to be the most
robust to slight perturbations of the hyperparameters, showing convergence
for the validation and training losses for all folds and for all combinations
of hyperparameters.

This table also shows that the U-Net only reached training- and validation
loss convergence on all folds for a single tested combination of hyperparam-
eters. The observed robustness during training of the DTR-Net indicates
that the added DM-regression for the MT-Net and the IO-Net might be the
factor that allowed them to be slightly more robust during training for dif-
ferent hyperparameters than the U-Net. This could possibly be due to the
DM-inclusion having a regularizing effect during the training process (see
Section 3.2.6).

Table 5 shows that for the volume-wise 5-fold cross-validation on the in-
house dataset, the MT-Net again yields the highest Sørensen–Dice coefficent
and Jaccard index. This is observed for both tested initial learning rates.
As for the U-Net, the validation loss diverged for two of the folds when using
the initial learning rate 10−4. When converging for all folds (using the initial
learning rate 10−5), the U-Net shows a significantly lower performance and
a higher variance across folds than the MT-Net. The DTR-Net and the
IO-Net both obtain worse results than the U-Net for this setting.

It is important to note that the principal aim of this project was to evaluate
if the inclusion of DM could improve the performance of the U-Net for bone
segmentation. The results show that for both datasets and for all tested
combinations of hyperparameters, at least one of the three modifications
that includes DM outperforms the U-Net. The MT-Net seems to yield the
overall best performance when converging, exhibiting the best performance
in all such cases. Due to the controlled circumstances during training, with
all common hyperparameters being fixed, the data being the same and the
only differences being the slight modifications to include DM, one can argue
that these results indicate that the inclusion of DM could actually help the
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U-Net obtain better performance. At least in all observed cases during this
project.

It is also important to stress the simplicity of the modifications that were
made to the U-Net. One can see the different methods for including DM
as simply forcing the network to give slightly more information about the
surroundings of each object (bone) pixel in the input image when predict-
ing the output. There was no noticeable difference in training or prediction
time between the U-Net and its modifications. This allows one to see these
modifications as possible additions or alternatives to tuning other hyperpa-
rameters or performing other modifications, if one wishes to obtain better
performance for general bone segmentation.

This view of the modifications can also be used to motivate why no separate
tuning of hyperparameters was used to evaluate the differences in perfor-
mances. One can argue that this could obscure the actual impact of the
modifications. Using a fixed set of common hyperparameters for comparing
the different model performances perhaps does not allow one to find the
optimal performances of the models, but it allows one to slightly decrease
the risk that better tuned hyperparameters for a specific model could be
the cause of that model performing better than the others. The testing of a
few different combinations of hyperparameters was done to further decrease
this risk. The method of using a fixed set of common hyperparameters
when comparing different modifications has also been used in other similar
projects, including [4].

There is a clear difference between the results obtained by [1], as seen in
Table 3, and the results given by the best-performing network, the MT-Net.
This shows that by applying other modifications to the U-Net and perhaps
using better hyperparameters, even better results could be obtained. The
aim of this project was however not to achieve optimal performance on the
dataset, but rather to see if the simple modifications that were done could
yield an improved performance for the specific problem. It is possible that
by combining the two methods, even better results could be obtained. There
were however also many differences between the test in this project and in
[1], including differences in pre-processing, augmentation and training time.
One can thus argue that the results are not really comparable.

By observing the training plots in Figure 22, one can see that for the U-Net,
the validation loss oscillated throughout the training. One should note that
the plots were created with adaptive scaling, causing the axes to (subopti-
mally) be of different scales. Although difficult to say with the difference in
scaling, it seems like the computed Dice-loss for the MT-Net and the IO-Net
shows less oscillations for the validation loss curve. This might be due to
regularization from the added DM-regression (see Section 3.2.6).
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From the example images in Figure 21, one can note that in the example
images from Fold 1, the MT-Net is the most sucessful in filling the bone in
the upper left corner. This indicates that it could be better than the other
models at solving P2 (see Section 3.6). In the example images from Fold 2,
there is visible salt- and pepper noise for both the U-Net and the DTR-Net.
No such noise is given in the corresponding example images for the MT-
Net and the IO-Net. In the example images from Fold 3, one can note and
speculate that the three modifications are slightly better at predicting the
shape of the bone in the upper right corner than the U-Net, which might be
due to some awareness in shape enforced by making the network predict a
DM.

Regarding the hypotheses of the benefits of DM from previous projects,
discussed in Section 2.1, the results indicate that even though bones in CT-
images contain such a wide variety of shapes, sizes and positions, a DL
framework could benefit from including DM in the training and prediction
processes when approaching this problem. However, since the actual poten-
tial benefits are obscured when only observing a few example predictions
and the difference in performance measures, further investigation has to be
done to note the actual benefits.

It should be further noted that the differences in results between the two
datasets possibly arise due to the difference in pre-processing or the fact
that the in-house dataset was tested on patches where no patch contained
only background, as opposed to the public dataset.

6.1 Limitations

There are many limitations to this project that affect what conclusions can
be drawn from the results. Firstly, since both datasets were limited to
depicting only a few types of bones, one cannot say that this project fully
assessed the models’ abilities to perform general bone segmentation. Rather,
the abilities of these models to perform bone segmentation for specific and
limited datasets were assessed.

Further, the resulting estimates of the generalization performances that were
obtained for comparing the models on these datasets by using the two cross-
validation techniques could be misleading in several ways. Only a limited
number of sets of common hyperparameters were tested and reported before
finding a set that allowed the validation and training loss to converge for
every fold and model. This choice could of course induce a more positive
bias for one model than for the other models. This could possibly cause
misleading results. There are better methods to estimate and compare the
true unbiased generalization performances for the models which could have
given more accurate and convincing results. These methods were not used
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due to a limited amount of computational resources and time.

The estimates of the model performances were thus only compared for a
limited, fixed number of situations. This only allows one to say that that
the MT-Net was observed to have the best estimated generalization per-
formance for this limited set of tested situations. To be able to say that
a general increase in performance is given for the U-Net for general bone
segmentation when modifying it to become the MT-Net, more sophisticated
tests would have to be carried out. Such tests would have to take into ac-
count the stochasticity of the training process by performing a large number
of evaluations. Many other aspects of the training and the networks would
also have to be taken into account.

Furthermore, the project itself is limited to evaluating and modifying a
backbone U-Net that uses sigmoid output activations and a Dice-loss imple-
mented in the specific way as described in Section 3.2.5. This might not be
the most commonly used implementation of a U-Net, and there might be
more optimal implementations of the U-Net for this problem that perhaps
would not benefit from DM-inclusion.

Regarding the project’s connection to 3D-modelling and 3D-printing, the
used approach with 128×128 patches of 2D CT-slices might not be optimal
for this purpose. The DM representation might cause problems when bones
are situated in the boundaries of the patches, since predicting DM values
for such bone pixels is difficult due to information shortage about adjacent
patches. This could however be solved by using more sophisicated algorithms
for reconstructing images from patches. This was however not the focus of
this project.

6.2 Future work

In order to be able to further assess the benefits of the tested modifications,
one could perform a wider range of tests, making it possible to investigate
if the observed increase in performance is statistically significant. Another
possibility is to further research the benefits of the inclusion of DM by using
other performance measures that capture other aspects of the segmentation,
such as the separability of adjacent objects (P1 in Section 3.6).
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7 Conclusion

This project has shown that by performing simple modifications to a U-Net
to make use of DM during training and prediction, indications of increased
performance can be given when performing bone segmentation in CT-data.
Especially, a multitask approach showed the most promising increasement
in performance and an improved robustness to changes in hyperparameters
during training. Pure DM-regression showed less of an increase in perfor-
mance, but more robustness in training. However, these indications have to
be further validated using more sophisticated methods before general conclu-
sions can be drawn and before being used in a practical framework for bone
segmentation. Nevertheless, this thesis sheds light on the possibility that
DM-inclusion can also be beneficial for segmentation problems that consist
of target objects with a wide range of shapes, sizes and positions.
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Fig. 19: This figure shows the implementation of the U-Net backbone in
MATLAB.
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Fig. 20: This figure shows the implementation of the U-Net backbone in
Keras.
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B Appendix

Fig. 21: This figure shows example images from each test fold of the 3-fold
cross-validation given by each model on the public dataset with the
initial learning rate 10−4 and the mini-batch size 4. CT denotes
the input CT-image, SM denotes a segmentation mask and DM
denotes the distance map.
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Fig. 22: This figure shows the training losses (blue) and validation losses
(orange) from each test fold of the 3-fold cross-validation during
training for each model on the public dataset with the initial learn-
ing rate 10−4 and the mini-batch size 4. For the MT-Net and the
IO-Net, three plots are shown. These correspond to the overall loss,
the Dice-loss and the MSE-loss, where the overall loss is a combi-
nation of the latter. The plotting was done using adaptive scaling
on the axes, and was not possible to redo using better scaling.
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