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Abstract

Over just a few years, methods to manipulate videos have become so sophisti-
cated that even someone without much expertise or computational resources can
forge videos inseparable from pristine ones to the human eye. These methods
can for instance insert a person in a video or manipulate their lip movements
to make them say anything of the manipulator’s liking. Though there exist
harmless and constructive uses of these technologies, it is not hard to imagine
the harm they could cause if put in the wrong hands.

This report presents a model to detect forged manipulated videos, more
specifically those where faces have been manipulated. Four kinds of manipu-
lation videos were taken into consideration: FaceSwap, DeepFakes, Face2Face
and Neural Textures. The model proposed consists of a feature extraction CNN
followed by an LSTM network. The FaceForensics+-+ dataset was used, as well
as the associated benchmark. The model, though not competing with the state-
of-the-art detectors, was able to classify videos with an accuracy higher than or
close to that of several models in the benchmark.
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1. Introduction

Figure 1.1: Deepfake of Back to the Future, where Tom Holland and Robert
Downey Jr has taken the places of Michael J Fox and Christopher Lloyd. Screen-
shot from [§].

In recent years, technologies to manipulate facial videos have reached the
point where it might not be possible for a human to detect that the video is ma-
nipulated. One could insert a person into a video by pasting their face onto that
of another person (see for instance [§]), or change a person’s mouth movement
and facial expressions to make them say whatever you wish (for example [I7]).
It is not hard to imagine what harm these kind of videos could cause if created
with malicious intent; fake videos of politicians making outrageous statements,
news anchors presenting fake news, business partners or family members asking
for money et cetera. These could harm everyone, from individuals to society and
democracy as a whole. Already there exist reports of this happening; Indian
journalist Rana Ayyub discovered a fake pornographic video of her circulating
on social media. In Huffington Post she describes how devastating the video
had been to her, both emotionally and to her career and everyday life [4]. The
video had been used with the intention of quieting her.

It should thus come to no surprise that these videos, sometimes collectively



referred to as "deepfakes’, and the task to detect them has received large at-
tention recently. Many models and algorithms have been implemented (some
of them mentioned under "Related Work” below), and companies like Google
and Facebook are investing large amounts of resources to the task [7, [24]. This
project aspires to contribute to this.

In this report, a neural network model which is trained to classify videos
as pristine or manipulated will be presented. Four different techniques to ma-
nipulate facial videos will be taken into consideration: FaceSwap, Deepfakes,
Face2Face and Neural Textures. The model includes a feature extraction net-
work, where several publicly available networks will be tested: GoogleNet, Xcep-
tion and DenseNet, as well as all three networks together. The data and bench-
mark provided by Rossler et al. [211, 22] is used to train and evaluate the model.
An introduction to neural networks is given in chapter 2, to the facial video ma-
nipulation methods in chapter 3 and the feature extraction networks in section
4.2.

1.1 Related Work

As mentioned above, the interest in both creating and detecting manipulated
facial videos has largely increased, for which reason covering all recent advances
in the fields here would be near impossible. Instead only a few highlights will
be covered. On the generating side, the work most relevant to this work are
of course the methods used to create the dataset which is used to train and
evaluate the proposed model; these are covered in detail in chapter 3. Other
methods have been introduced by Nirkin et al. [19], who take an RNN-based
approach for both face swapping and reenactment, and Siarohin et al. [25], who
animate single images (of faces in particular) using a driving video. Audio can
also be used to drive facial reenactment; this is done by for instance Thies et al.
[29] and Yi et al. [37]. Advances has also been made in facial image synthesis,
for instance by Karras et al. [12, [13].

When it comes to detecting forged videos, most modern works use deep
learning. Examples are Giiera & Delp [9] who use an approach similar to that
of this report, with a feature extraction network followed by an LSTM, and
Afchar et al. [I], who present two network architectures, one CNN-based an
one Inception-based. Both these train on datasets consisting of many different
target actors. Agarwal et al. [2] instead train models on single individuals,
learning solely to detect manipulated videos of that person. Some models focus
on specific aspects of videos, such as blinking patterns [16] or head poses [36].

These detectors are not foolproof. Vougioukas et al [34], for instance, manage
to generate facial reenactment videos with convincing blinking patterns. Mean-
while, Neekhara et al. [I8] add noise to videos, invisible to the human eye, that
trick detection algorithms to believe that manipulated videos are pristine. This
arms race will likely continue for as long as detecting forged videos is possible.



2. Neural Networks - an Overview

Briefly put, a neural network is an attempt to mimic how the human brain
solves problems. See figure 2.1a] for an example of a network. The network is
built up by nodes (circles in the figure), mimicking synapses, usually ordered
in layers. Nodes send output signals (a scalar number) based on what signals
they receive from other nodes; typically, input signals are received from nodes
in the previous layer and output signals are sent to the next one. If every node
in a layer has an input edge from every node in the previous layer, that layer
is said to be fully connected. The first layer is referred to as the input layer
(pink in the figure), and the last one the output layer (yellow). For instance, a
network could take black-and-white images and try to decide if there is a human
in the image; in this case, each input node would correspond to one pixel value
in the image, and the output node would output one number, say ”1” if there
is a human present and ”0” otherwise. Layers that are neither input or output
layers are referred to as hidden layers. If a neural network has more than one
hidden layer, the term deep learning is used.

#C.)—

' (b) Overview of a node. The node weighs
input signals with w, sums them together,
adds a bias term b and applies the ac-

(a) Ezample of a network. Only edges to | tivation function ¢ to receive its output
and from the red node are shown. signal.

Figure 2.1: Overview of neural networks.

Figure [2.10] shows a zoom-in on one node. First, each input signal to the
node are weighted by multiplying them with a number (wq,ws,...). Training a
network means finding values for all these weights so that the network solves



its task as well as possible. This is done by feeding in input data into the
network and telling it what output is expected. By using a method called back
propagation [3], the weights can then be tweaked iteratively.

Once the input signals have been weighted, they are summed together and
a bias is added. This is another scalar number which is trained alongside the
weights. The received value is fed into an activation function, which could be
nearly any function. Today, the RELU function is the most commonly used
function, which simply passes through the input if it is positive and outputs
zero if the input is negative. This function value is then what is sent as output
from the node. This calculation is done for every node in the network until the
output layer is reached.

See Appendix B for any equations. A slightly longer, yet easy to understand,
overview of neural networks can be found at [35], while a more mathematical
introduction can be found at [38].

2.1 Recurrent Neural Networks

A recurrent neural network (RNN) is a network tailored for sequential data,
such as stock exchange data, letters in a text or frames in a video. It takes into
account not only data from the current element, but also that from previous
elements in the sequence. One kind of RNN is the long short-term memory
(LSTM) network. The details of how these networks work are fairly technical, for
which reason they are not covered here. See for instance [26] for an introduction.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNN’s) are most commonly used when the input
consists of images or videos. These are usually fairly large; for instance, if the
input were 300 - 300 pixel color images, the network would require 300-300-3 =
270000 input nodes. If one was to use a network consisting of fully connected
layers, the number of weights in the network would explode. Moreover, these
networks tend to struggle with translation in images; simply moving around
objects in the image could render completely different results.

CNN'’s solve both these problems. They use so-called filters to analyse the
image: windows, usually only a few pixels wide, that are moved across the image.
For all positions the window is moved into, the pixel values are multiplied with
learned parameters to generate an output value, all of which together form a 2D
image. Using several filters in a layer results in one 2D image per filter, together
forming a 3D “data cube”. The layer creating one of these cubes from an image
or another cube is called a convolutional layer, named after the mathematical
operation used to get the output value from the filter (convolutions). A CNN
is a network built up by these layers, often with other layers in between these
(maz-pooling layers, for instance, are popular). For more information on CNN’s,
see for instance [27], or [39] for a more mathematical introduction.



3. Facial Video Manipulation - an
Overview

There are two main types of facial video manipulations: identity modification
means to replace a person’s face with someone else’s, while expression modifi-
cation (or facial reenactment) means changing a person’s facial expressions and
lip movements. For the proposed model, four methods for facial video manipu-
lation will be taken into account. FaceSwap and DeepFake are both examples
of methods for identity modification, while Face2Face and NeuralTextures are
examples of expression modification methods. All methods take videos of two
persons as input: the “original” video, referred to as the target video, and the
video of the person whose identity or facial expressions one wants to transfer
into the other video, referred to as the source video. Below are the four manip-
ulation methods explained. Unless otherwise specified, all facial images in the
figures are screenshots from [22].

3.1 FaceSwap

Faceswap is usually a very broad term, used to denote any instance of the face
of a person in an image or video is replaced by that of someone else. Here,
however, it denotes a specific method for this, similar to the one implemented
by Kowalski [I5]. See figure [3.1] for an overview.

The method works for each pair of frames for the target and source video,
until one of them ends. In both images, facial landmarks are detected; these
could be the contour of the face, eyes, mouth, nose or more obscure features
that a face detector recognises as part of a face. Using the landmarks from the
source image, a 3D model of the source actor’s face is created. This is then
transformed to match the facial landmarks of the target actor, and blended into
the target image. After this is done for each frame, a video with the target
actor’s face swapped with that of the source actor is retrieved.

The algorithm does not require any training or having seen either actor’s
faces before, and doesn’t require much computational power (depending on face
detection algorithm). However, it struggles when there are large differences in
lighting in the two videos, and is very reliant on a good face detection algorithm.



Figure 3.1: The FaceSwap pipeline. A 3D model of the source actor’s face is
created using facial landmarks, and then transformed to match those of the target
actor. Finally, the 3D face is blended into the target video.

3.2 DeepFake

Just like the word faceswap can be used very broadly, deepfake is sometimes
used as a synonym for any video manipulated using a neural network, but was
originally the name of a specific manipulation method. This method is derived
from a kind of neural network known as an autoencoder.

The goal of an autoencoder is to encode a specific kind of input data (for
example images of a person) into a smaller, more compact representation and
then be able to retrieve the original data from this representation. The model
can be split into two parts; the encoder responsible for compressing the original
data, and the decoder responsible for trying to reconstruct the original image.
Both these parts are deep neural networks, and need to be trained on data
similar to the input one wishes to use the autoencoder on. See figure [3.2] for an
image of this.

The basic architecture of a deepfake model can be found in figure3.3] Here,
two autoencoders are trained on videos of a specific person each, the two people
whose identity one wishes to swap. These autoencoders are forced to share
the same encoder, while the decoders are allowed to differ. Ideally, this means
that the encoder focuses on video-specific information like facial expressions and
lighting while ignoring the traits of the two persons; these can be restored by
the decoders. Most often some face detection algorithm is used beforehand so
that only the faces of the persons are fed into the autoencoders.

Figure shows how the deepfake videos are generated. Once the autoen-

Figure 3.2: An autoencoder. An encoder (blue) takes the input image and re-
turns a compact representation of this image (gray), while the decoder (yellow)
tries to reconstruct the original image from this representation.
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Figure 8.3: The deepfake architecture. Two autoencoders are trained with the
same encoder (blue) but different decoders (yellow and pink).

Figure 3.4: The "wrong” video is fed into one of the autoencoders, resulting in
a video with the faces of the two persons swapped.

coders are trained, this is straightforward. The target video is fed into the
encoder, from witch a video is retrieved using the decoder trained on the source
actor instead of the target actor. This results in a video where the face of the
target actor is replaced by that of the source actor, while facial expressions, lip
movements et cetera remain unchanged.

Several of the most sophisticated examples of identity modification has been
created using the Deepfake algorithm. However, the algorithm require large
quantities of training videos of the target and source actors, and the autoen-
coders take a long time to train. Too little data or training time translates to
poor quality of the forged video.

3.3 Face2Face

Introduced by Thies et al. [3T], Face2Face is one of the more well-known method
for facial reenactment. The core idea behind the algorithm is to create 3D
models of the faces of the source and target actors, then track deformations in
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the model of the source actor and transfer these into that of the target actor.
This is not done by learning; instead, Principal Component Analysis (PCA) is
used to track deformations and parametrize the faces. These parameters are
plugged into an objective function, thus reducing the task to an optimisation
problem, which is solved using Iteratively Reweighted Least Squares (IRLS).
When the expressions have been transferred, a mouth interior is retrieved by
searching the video of the target actor and warping the best match to the current
frame. For this reason, the video of the target actor has to be known beforehand,
but the source video can be used to manipulate the video in real-time. See figure
for an overview of the algorithm.

Target video Target Mask Manipulated video
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Figure 3.5: Face2Face. 3D models of the source and target actors’ faces are
created (pink arrows). Then, for each frame, the model of the target actor’s face
is deformed to match the expressions of the source actor (blue), whereafter the
mouth interior that best matches the new facial expression is retrieved from the
target video (red). Finally, the modified 3D face is blended back into the target
video (yellow).

3.4 NeuralTextures

In computer graphics, a texture map is a map that holds information of a 3D
object, about for instance color or texture of the object, its albedo or small
displacements on the surface. Introduced by Thies et al. [30], neural textures
replace these hand-crafted features of the object with learned ones, using im-
ages of the object as input. With this neural texture, a viewpoint and a uv-
map that links elements in the neural texture map to points in the object, a
viewpoint-specific texture can be generated. If this is plugged into a deferred
neural renderer, trained alongside the neural texture, it can generate an image
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of the object from the given viewpoint. Figure visualises the pipeline.

Neural textures can thus be used for more than facial video manipulation,
but Thies et al. mention this as one of its applications. This is shown in figure
[377 Here, just as in the Face2Face method, training videos are used to create a
3D model of the target actor’s face. On top of that, however, a person-specific
neural texture and a person-specific deferred neural renderer is created for the
target actor. By using the same expression transfer technique as Face2Face,
a uv-map is created from the target video and is then altered to match the
expressions of the source actor. Using this uv-map, the neural texture and the
neural renderer, one receives the manipulated video.

UV-Map Sampled Texture  Neural Renderer Output Image
Neural Texture — g

Target Image

Figure 3.6: The process of generating an image of an object from a novel view-
point using neural textures. The neural texture of the object, along with an
UV-map generated using the desired viewpoint, is used to sample a viewpoint-
specific texture. Feeding this texture into the deferred meural renderer returns
an tmage of the object from the desired viewpoint. Image from [30].

Neural
Renderer Output

Background

Target Actor

Source Actor

.D TRUMP ON BEST & WORST PRESI
|

Neural Texture

Figure 3.7: Ezxpression modification using neural textures. A person-specific
neural texture and neural renderer is trained on the target actor. Then, a UV-
map matching the target actor’s face but the source actor’s facial expressions is
calculated. By sampling a texture from this and the neural texture, and feeding
this into the neural renderer, the manipulated video is received. Image from [30).
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4. The Classifier

This chapter is where the proposed model is explained in detail. This consist of
one or several feature extraction networks followed by an LSTM layer and lastly
a classification output layer, see section 4.3 for details. MATLAB was used for
all implementations.

4.1 Data

The dataset used for training and evaluating the network is the FaceForen-
sics++ dataset, created by Rossler et al. [2I], 22]. This dataset consists of
1000 sequences of videos downloaded from Youtube, each around a few hundred
frames long, 30 frames per second, focused on a human face. The person in
the video is always close to front-facing, and there’s always only one face in the
video. All videos have also been modified using the four manipulation methods
described above, the entire dataset thus consisting of 5000 videos. In the Neural
Texture videos, only the mouth of the target actor was modified. All videos were
compressed using the H.264 codec, with a constant rate quantisation parameter
of 40, resulting in fairly low-quality videos. Higher quality videos as well as
the uncompressed ones are also available in the dataset, but wasn’t used in this
report due to memory limitations. Examples of video screenshots can be found
in figure B.113.5]

Masks were also supplied for each manipulation method, of which only the
masks for the Deepfake videos were used. These are videos with a white square
in the area that the corresponding deepfake video has been manipulated, and
are black everywhere else. Since the manipulated area always was the face area
in the video, these could be used to cut out the this area and input this into the
network instead of the entire video. The reason the masks were used instead of
a face detector was so that the input videos would look as similar as possible as
the ones used for the benchmarks [2I]. Finally, after this was done, the videos
were rescaled to the input size of the used feature extraction network.

4.2 Feature Extraction

After a video is preprocessed, it is either fed into a feature extraction network.
Four different options were tested here: GoogleNet, Xception, DenseNet (all
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introduced below) and a combination of all three. In this last case. the video
was simply fed into all three networks, and all output was sent to the LSTM
layer. The three networks are all trained on the ImageNet dataset [23], made for
training image classification networks, and were not retrained due to this taking
too much time. The layer before the classification layer of these networks was
used as output layer.

4.2.1 GoogLeNet

GoogLeNet is an incarnation of the Inception network architecture (first ver-
sion), and the two were introduced in the same paper [28]. Inception networks
are essentially CNN’s, but were designed to tackle a few problems that conven-
tional CNN’s struggle with. Firstly, image classification can often be challeng-
ing, with high variation within classes and sometimes small variations between
them. For this reason, very deep networks have been used for these tasks, but
these use a lot of computational resources to train and are prone to overfitting.
Secondly, while conventional CNN’s have no trouble with translations in images,
they struggle when objects vary in size. If all objects of a class in the training
data take up roughly the same amount of space in their images, the classifier
generally will not recognise objects of different sizes.

Inception networks solve these problems by going wide rather than deep.
They are built up by Inception modules, which consist of several filters of dif-
ferent sizes applied to the input. See figure for this. Having filters of
different sizes means it is easier to detect objects of different sizes, and since an
Inception module can extract more information from its input than a conven-
tional CNN layer, the network doesn’t have to be as deep. The modules are still
computationally expensive, however.

Filter

concatenation
Filter
concatenation _—7
i /' - ‘

5x5 i ‘ 3x3 max pooling

1x1 convolutions 1x1 convolutions

Previous layer Previous layer

(a) A naive Inception module. (b) An Inception (vl) module using Izl
convolutions for dimensionality reductions.

3x3 max pooling

e

Figure 4.1: Images from [28].

To tackle this, 1x1 convolutions were introduced before each set of filters
was applied (see figure for this). These simply reduce the size of the "data
cube” received from each set of filters. For instance, applying D 3x3 filters to
an image of size HxW, one would get a data cube of size HxWxD (this assumes
we’ve done some form of padding, dealing with what happens when the filter
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partly moves outside of the image). A 1x1 convolution is a filter of size 1x1xD
that ”"pushes” the cube into a flat HxW image. By choosing a number N how
many if these we use, where N < D, we’ve reduced the data to the size Hx WxN.
See [28] for more details.

4.2.2 Xception

Xception, or Extreme Inception, was introduced by Chollet [5] and builds on
the Inception architecture. An overview of an Xception module can be found
in figure First, an 1x1 convolution is used on the input. Then, unlike
in Inception networks, each slice of the data cube is filtered separately with
unique filters. The hypothesis that this works, that each slice can be handled
independently, is the "extreme” part of Extreme Inception.

The Xception architecture also features residual connections. First intro-
duced by He et al. [10] as part of the ResNet architecture, these are "shortcuts”
in the network, where a layer sends its output not only to the next layers but
also further ahead, typically without passing it through any activation function.
This helps with the vanishing gradient problem which makes deep networks hard
to train, and was shown experimentally to improve the network’s performance
significantly.

Depthwise Convolution

IS S

;

Pointwise Convolution

= (M-S0
AN e/

N
—

Figure 4.2: Overview of an Xception module. Image from [32].

4.2.3 DenseNet

DenseNet blocks, or Dense Convolutional Network blocks, take the residual
connections discussed above to the extreme. Here, every layer is connected to
each other; layers get inputs from all previous layers and sends its output to all
layers ahead. See figure [4.3]for an illustration of this. DenseNets are created by
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putting together one or more of these blocks with transition layers in-between,
consisting of a 1x1 convolution as well as a 2x2 average pooling layer. This looks
at every set of four neighbouring pixels in the input and returns the average pixel
value for each of these.

The core argument behind connecting all layers is that it preserves infor-
mation. In a traditional CNN, all information that is not passed on from one
layer to the next is "forgotten” by the network. This means that these networks
typically have to be fairly wide to preserve as much information as possible. By
remembering the output of all previous layers, each layer can be much smaller
and only add a smaller amount of "knowledge” to the network. Thus, slightly
counter-intuitively, even though DenseNets seem to add more connections to
the CNN architecture, they actually require fewer parameters.

op¥t

Figure 4.3: An example of a DenseNet block. Image from [I1)].

4.3 The Proposed Architecture

Figure[4.4]shows an overview of the proposed model. As explained in section 4.1,
the model takes a video as input and starts by extracting the facial region. This
video is fed into one of the three feature extraction networks discussed above, or
alternatively all of them. The output of these is fed into a small LSTM network,
consisting of an LSTM layer with 75 nodes, followed by a fully connected layer
and finally a classification layer, outputting either ”1” for pristine or "0” for
manipulated.

To evaluate the model, the LSTM network was trained both on all manipu-
lation methods individually and on all methods simultaneously. In both cases,
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half of the videos used for training were pristine and the other half were the
corresponding manipulated videos. Training was done for 15 epochs using the
ADAM optimiser, binary cross-entropy loss, a dropout of 0.5 and a learning rate
of 0.001.

GoogleNet

FAKE
_—

Figure 4.4: An overview of the proposed network. The facial area of the input
video is extracted and rescaled, and then sent to one (or all) of the feature
extraction network. The output from these are fed into an LSTM network,
classifying the video as either real or fake.
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5. Results
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Figure 5.1: The results from training the networks on each manipulation method
individually, for each feature extraction network and the combination of all of
them.

Figure shows the results from training the network five times on each
manipulation method individually, and then evaluating it by calculating the
classification accuracy on the validation data. The results from training on
all methods simultaneously can be found in figure 5.2} To analyse biases in the
latter model, such as it potentially classifying videos as manipulated much more
often than pristine, the accuracy of using the model on only pristine videos was
plotted against that of only manipulated videos. One of these plots can be found
in figure [5.3] the rest can be found in Appendix A along with raw data.
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Figure 5.2: The results from training the networks on all manipulation method
simultaneously, for each feature extraction network and the combination of all
of them.
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Figure 5.8: Accuracy when classifying pristine versus manipulated videos using
the DenseNet network and having trained on all methods simultaneously.
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6. Discussion and Conclusion

6.1 The Results

Although the results vary with manipulation method and feature extraction
network, looking at figure 5.1 and [5.2] it is apparent that the model currently
is not commercially useful. Barely ever achieving an accuracy above 75% would
cause far too many videos to be incorrectly classified. This does not mean that
the results should be seen as a failure, however. The model with GoogleNet
for feature extraction when training on forgery methods individually and the
one using all networks when training on all methods are determined to be the
best models among the tested ones. Comparing the results from these with the
benchmark of Rossler et al. [21], it can be noted that their results are better or
equal to that of several methods presented, including the networks proposed by
Cozzolino et al. [0] and Rahmouni et al. [20]. Given the scope of the project,
this is considered a success.

There are still improvements to be made to the model, though. For one,
there is always more room for more polishing, adjusting hyperparameters and
longer training. The improvement believed to have the largest positive effect,
however, is retraining the feature extraction network; only the LSTM part of
the network was trained. This is likely the reason that one of the models in
the benchmark, using the Xception network, performs significantly better than
those proposed here. This network was initialised with the ImageNet weights,
but was retrained for 15 epochs. It is easy to imagine that this would make
a large difference; the task the ImageNet dataset is designed for is to classify
objects in videos. The network is thus more likely to pick up features that helps
identify the faces as faces and less likely to notice pixel-level details that help
classifying the video as pristine or manipulated. The training would have taken
far too long time to be a feasible part of this project however.

It is also worth noting that all the videos used for training and evaluation
were heavily compressed, more so than videos encountered on social media and
Youtube. It is evident in the benchmarks that these lower-quality videos are
far more hard to classify correctly; when using raw, uncompressed videos, all
evaluated architectures were close to 100% accuracy [2I]. It is therefore likely
that the proposed architecture would perform better on less compressed data,
with more realistic compression factors, if trained on it. The retraining is crucial,
though; no conclusions can be drawn without any experiments made how well
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the network would perform if it was not retrained on these videos.

Some manipulation methods were easier to detect than others; looking at
deepfakes were clearly the easiest to detect, while videos creating using neural
textures were the hardest. This goes for the benchmark as well [2I]. Why this
is the case could be analysed further; it is likely a combination of some methods
being superior to others in terms of being hard to detect, and the quality of
the videos in the dataset. One factor that could, at least partly, explain why
the neural texture videos were harder to detect is that only the mouth region
were modified in these videos, while the entire face was modified in the rest. A
smaller modified region could mean fewer artefacts left for the classifier to find.

Comparing figures [5.1] and a higher accuracy overall was achieved when
training one network per manipulation method than when training on all meth-
ods simultaneously. This is to be expected; learning to identify one kind of
manipulation method is easier than keeping track of four of them at the same
time. In the case of neural textures, however, the accuracy seemed to increase
when training on all manipulation methods. The reason behind this is unknown,
but one hypothesis could be that neural textures leave artefacts similar to those
of some other method, but because of how small the modified area is, the net-
work isn’t able to pick up on these as signifiers. When there are “easier” videos
in the training dataset with the same artefacts present, the network learns to
look for these and will then find them in the neural texture videos as well.

One observation can be made in figure [5.3] which compares true positives
and true negatives of one of the models. Although the accuracy of the network
was fairly constant during the five times it was retrained and reevaluated, the
true-positive-to-true-negative-ratio varied greatly. The same phenomenon could
be seen when using for any feature extraction network (see Appendix A). The
models thus tended to either classify too many videos as pristine or as forged,
but which of them was the case changed when retraining the model. Whether
many false positives or many false negatives are to be preferred is debatable
(both cause serious problems, see below), but it is nevertheless important to
know of biases in the model to be able to correctly interpret its results.

6.2 The Role of a Forged Video Detector

As mentioned, the network presented in this work does not perform well enough
to be usable in its current state, but even if it would achieve a much higher
accuracy, it should still be used with caution. Any forged video detector can
arguably never be expected to perform with perfect accuracy, and expecting
such of one would be nearly as naive as ignoring the threat of forged videos
altogether. Falsely assuming the authenticity of videos could result to everything
from wrongful convictions to authenticating fake news, while a too high ratio of
false positives would damage online content creation if videos were filtered away
too harshly. Add to this the rapidity at which forgery methods are improving,
and it becomes apparent that the rulings of forgery detectors should be taken
with a grain of salt.

22



Furthermore, we might reach a point where detecting forged videos is no
longer possible. Hao Li, coauthor of [2], is one of the people who warn about
this, saying that “videos are just pixels, ultimately” [33]. The higher rate at
which detection algorithms improve, the sooner that point is reached; just like
detectors are trained on videos manipulated by current forgery algorithms, these
are often trained against current state-of-the-art detectors.

All this is not to say that developing forged video detectors is pointless.
These are still very much useful, if for instance used for showing warning mes-
sages when a video is thought to be manipulated, and the more detection algo-
rithms and models, the more trustworthy are their rulings if many of them say
the same. Thus, while they cannot make up the entire line of defence against
manipulated videos, they still play an important role in it. Research is being
made on other ways the authenticity of videos can be guaranteed; for instance,
Korus & Memon [I4] has created a way to digitally "watermark” pristine videos.
Most important, however, is to spread the knowledge that videos can be convinc-
ingly forged, and as with all media and information, advocate source criticism
and common sense.

6.3 Future Studies

There are several ways to improve on the proposed model, some of which have
already been mentioned. Training the feature extraction network along with
some polishing of hyperparameters would most likely increase the accuracy of
the model drastically. To increase utility of the model, more manipulation meth-
ods could be taken into consideration, for instance those proposed by Nirkin et
al [19] and/or Siarohin et al. [25]. They could either be trained on alongside
the other forgery methods (as in , or individual models could be created for
each method (as in. Videos could also be taken from more sources than the
FaceForensics++ dataset. On top of completely automatic manipulation meth-
ods, one could also try training the model on videos that has been manipulated
by hand, or a with a combination of automatic and manual manipulation.

On a broader scope, while there are many forgery detection methods that
are to be explored more thoroughly (such as using audio as well as video when
classifying), the most important task right now might be to find alternative
methods to tackle forged videos. Watermark methods such as the one presented
in [I4] could potentially guarantee the authenticity of videos without having to
detect forged ones, as could blockchain approaches. Still, the challenges forged
videos entails can’t be solved by computer scientists alone. For instance, a
juridical framework needs to be created for how to treat these videos, as well as
who bears the responsibility if a forged video is discovered. Although the threat
of forged videos cannot be eliminated, it is the author’s hope that as vigorous
effort as possible is made to diminish the harm they can cause, and that videos
will still be a trustworthy source of information in the future.
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Appendix A: Data

DeepFake FaceSwap
GoogleNet | 71.43 | 76.79 | 71.79 | 73.79 | 72.50 72.50 | 70.00 | 60.36 | 67.50 | 69.29
Xception 73.57 | 68.93 | 70.36 | 70.00 | 72.86 57.14 | 61.43 | 57.50 | 55.00 | 54.64
DenseNet | 73.21 | 71.79 | 71.43 | 72.14 | 72.86 61.43 | 58.57 | 59.64 | 56.73 | 61.43
Combined | 75.00 | 65.71 | 65.00 | 72.86 | 74.29 64.29 | 67.14 | 62.86 | 55.00 | 68.57
Face2Face NeuralTextures
GoogleNet | 56.79 | 62.50 | 58.57 | 64.29 | 61.79 52.14 | 53.57 | 51.07 | 45.00 | 51.07
Xception 57.86 | 59.29 | 60.36 | 60.36 | 58.21 51.43 | 56.79 | 50.71 | 56.07 | 48.21
DenseNet | 62.50 | 60.00 | 61.43 | 58.93 | 56.79 52.50 | 45.00 | 48.57 | 47.50 | 51.07
Combined | 57.14 | 62.14 | 53.59 | 58.57 | 67.14 55.71 | 55.00 | 52.86 | 55.00 | 52.86

Table A.1: Validation results from training the network five times for each com-
bination of manipulation method and feature extraction network, when training

on the manipulation methods separately.

28




Table A.2: Validation results from training the network five times for each fea-
ture extraction network, when training on all manipulation methods simultane-

ously.
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(a) GoogleNet.
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[ _J
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(c) DenseNet.
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(b) Xception.
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(d) Combined.

Figure A.1: Accuracy when classifying pristine versus manipulated videos using
the different feature extraction networks, as well as all of them.

29

DeepFake FaceSwap
GoogleNet | 58.57 | 86.43 | 77.14 | 65.71 | 70.71 48.57 | 80.71 | 62.14 | 62.86 | 64.29
Xception 44.29 | 89.29 | 90.71 | 49.29 | 90.71 22.86 | 85.71 | 92.14 | 40.71 | 84.29
DenseNet | 55.00 | 62.14 | 96.43 | 85.71 | 42.86 39.29 | 50.00 | 92.14 | 75.00 | 28.57
Combined | 81.43 | 59.29 | 57.14 | 86.43 | 89.29 77.86 | 40.00 | 48.57 | 77.86 | 81.43
Face2Face NeuralTextures
GoogleNet | 38.57 | 77.14 | 62.14 | 52.14 | 72.86 27.86 | 70.00 | 61.43 | 52.14 | 62.86
Xception 27.14 | 82.14 | 82.14 | 37.86 | 84.29 27.86 | 76.43 | 84.29 | 39.29 | 75.00
DenseNet | 45.00 | 52.14 | 90.71 | 77.14 | 27.14 32.86 | 48.57 | 88.57 | 74.29 | 20.71
Combined | 82.14 | 47.86 | 55.71 | 82.86 | 84.29 76.43 | 41.43 | 42.86 | 67.14 | 80.71
Pristine
GoogleNet | 72.86 | 45.00 | 57.14 | 62.14 | 55.71
Xception 85.71 | 39.29 | 28.57 | 75.71 | 30.71
DenseNet 72.14 | 65.00 | 22.14 | 44.29 | 85.00
Combined | 41.43 | 75.71 | 73.57 | 50.00 | 35.00




Appendix B: Equations

Given input = = (x1,®9,...,z)), weights w = (w1,wa,...,wy), bias b and an
activation function ¢, the output y from a node is given by:

k
y = <Z)(Z w;x; + b). (B.1)
i=1
The RELU function:
a ifa>0
= -7 B.2
¢rzLy(0) {0 if a < 0. (B:2)
Mean square error loss (typically for regression):
1 n
MSE = — i — )2, B.3
> (i) (B.3)

=1

where y is the true values or labels of what is being predicted, n is the number
of these and y* is the predicted output.
Binary cross-entropy loss (for binary classification):

n

BOE =~ 3" (i log(y7) + (1 — yi)logli — 37), (B4)

i=1

with the same notations as above.
Filtering the image I(i,j) with the filter F'(m,n) giving the output S(i, j):

S(i,§) = (I K)(i,§) =Y > I(i—m,j—n)F(m,n). (B.5)

m n
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