#### **MASTER'S THESIS 2020**

# How Substances in Agricultural Waste Material Can Be Used as Active Ingredients in Skin Care Products

POLINAE POLINAE

Lisa Prawitz

DEPARTMENT OF FOOD TECHNOLOGY, ENGINEERING AND NUTRITION LTH | LUND UNIVERSITY

## How Substances in Agricultural Waste Material Can Be Used as Active Ingredients in Skin Care Products

Master's Thesis by Lisa Prawitz

June 2020

| Oriflame Cosmetics, Stockholm | Faculty of Engineering, LTH, Lund University |
|-------------------------------|----------------------------------------------|
| Skin Research Institute       | Supervisor: Björn Bergenståhl                |
| Supervisor: Nahid Amini       | Examiner: Marie Wahlgren                     |

## Abstract

Aging of the skin is an inevitable process that occurs throughout a lifetime and exposure to environmental pollutants is a factor accelerating this process. Phytochemicals present in plants possess biological activities known to protect or repair the skin cells and when used in skin care products they can slow down the skin aging process. In this project agricultural waste materials are investigated to see if they contain compounds with biological activity on human skin and can be used as active ingredients in skin care products. Secondary metabolites were extracted from up to six fractions from seven different crops. 76 compounds were found and identified using liquid chromatography-mass spectrometry and 68 human targets were found using insilico evaluation. The extracts were also investigated for antioxidant activity, inhibition of glycation processes and inhibition of the enzymes tyrosinase and kallikrein-related peptidase 5. Each of the seven plants showed some promising results and 10 extracts had high activity for one of the four primary screening assays, one extract had high activity for two. There is a possibility for some of these extracts being used as active ingredients in skin care products. However, more research is needed to fully know which extracts and for what purpose. The method can be used to investigate the activity of other plant extracts to broaden the research and increase the chances of finding a new active ingredient for skin care.

## Acknowledgment

I would like to thank my supervisor and examiner at LTH Björn Bergensthål and Marie Wahlgren for supporting the writing part of this project. I would also like to give thanks to Oriflame for letting me do my thesis with them and for letting me use their lab and equipment. I would like to give special thanks to Nahid Amini for being a supportive and engaged supervisor throughout the project and for teaching me the method of extraction of natural compounds and how to analyze data from LC/MS systems. I would also like to thank her for helping me perform the LC/MS system. Thank you, Virginie Lafon Kolb, for introducing me to the primary screening assays and for always supporting me in the lab. Thank you, Christina Österlund, for letting me use the skin cells and run the qPCR and thereby get some very interesting data about the effect of pollution on gene expression for my report. Thank you, Michele Leonardi, for supporting me when using the database Reaxys for research and prediction of targets, especially after the outbreak of SARS-CoV-2 when my access to the lab was limited and the project needed another source of information. I would like to thank Susanne Fabre and the rest of the Skin Research Team for sharing your knowledge and supporting me these months.

## Table of content

| Chapter 1: Introduction                     |  |
|---------------------------------------------|--|
| 1.1 Aims and Objectives                     |  |
| 1.2 Outline                                 |  |
| Chapter 2: Theoretical Background           |  |
| 2.1 Skin Structure                          |  |
| 2.2 Skin Aging                              |  |
| 2.2.1 Reactive Species and Oxidative Stress |  |
| 2.2.2 Intrinsic Skin Aging                  |  |
| 2.2.3 Extrinsic Skin Aging or Photoaging    |  |
| 2.3 Environmental Pollution                 |  |
| 2.3.1 Oxides                                |  |
| 2.3.2 Volatile Organic Compounds            |  |
| 2.3.3 Ultraviolet Radiation and Ozone       |  |
| 2.3.4 Polycyclic Aromatic Hydrocarbons      |  |
| 2.3.5 Particulate Matter                    |  |
| 2.4 Diseases Caused by Oxidative Stress     |  |
| 2.5 Protective Compounds Present in Plants  |  |
| 2.6 The Examined Crops                      |  |
| Chapter 3: Method                           |  |
| 3.1 Laboratory Procedures                   |  |
| 3.1.1 Freeze Drying                         |  |
| 3.1.2 Extraction                            |  |
| 3.1.3 Identification                        |  |
| 3.1.4 Primary Screening                     |  |

| 3.1.4.1 Calculations                                                                 | 27 |
|--------------------------------------------------------------------------------------|----|
| 3.1.4.2 IC50 Evaluation                                                              | 27 |
| 3.1.5 In-Vitro Assay                                                                 | 28 |
| 3.1.5.1 Calculations                                                                 | 31 |
| 3.1.6 In-Silico Target Prediction                                                    | 31 |
| Chapter 4: Results                                                                   | 33 |
| 4.1 Identification                                                                   | 33 |
| 4.2 Antioxidant Activity Investigated Using the DPPH Method                          | 35 |
| 4.3 Anti-Glycation Activity Using the Fluorescence of BSA-Ribose Reaction Products 3 | 36 |
| 4.4 Depigmentation Measured Using a Tyrosinase Inhibition Assay                      | 37 |
| 4.5 Kallikrein-Related Peptidase 5 Inhibition Assay                                  | 38 |
| 4.6 Pollution Induced CYP1A1 Gene Expression                                         | 39 |
| 4.7 Target Prediction                                                                | 41 |
| 4.8 Summary of Results                                                               | 44 |
| Chapter 5: Discussion                                                                | 47 |
| 5.1 Phytochemical Content and Biological Activity                                    | 47 |
| 5.1.1 Patterns Between Activity and Fraction Type                                    | 48 |
| 5.1.2 Connection Between Compounds and Activity                                      | 48 |
| 5.2 Human Targets                                                                    | 48 |
| 5.3 Reliability of Results                                                           | 49 |
| 5.4 Evaluation of Method                                                             | 50 |
| 5.5 Future Aspects                                                                   | 50 |
| Chapter 6: Conclusion                                                                | 53 |
| References                                                                           | 55 |
| Appendices                                                                           | 59 |

| Appendix 1: Material and Preparations                    | 59 |
|----------------------------------------------------------|----|
| Appendix 2: Additional Data for Calculations and Results | 65 |

## Chapter 1: Introduction

Right now, the world is facing a challenge it has never faced before: reducing our negative impact on the environment. The success of this challenge is depending on support from every country, every industry and every individual. For as long as we can remember, the human population has been using the resources of earth to create a life where development and achievement have been the main goals. In this process of becoming who we are today and creating the society we now live in we have discovered the results of our actions. The United Nations has decided on global goals of sustainable development to deal with this challenge and in 2030, the aim is that these 17 goals are adopted by every member who thereby contributes to a safe and green world. The industry of cosmetic products is not an exception and more companies strive to use sustainable resources in their products and packages. One big driving force of this change is the global awareness among consumers and their request for using sustainable skin care products. Along with awareness and people wanting to contribute to a healthier world, the trend of using natural products for personal care is greater than ever. People are nowadays more aware of what they put on their skin and they want the products to be as natural as possible.

Oriflame is a Swedish cosmetic company founded in 1967 and is now existing on the market in over 60 countries. Their products are inspired from the Swedish nature and are therefore based on plant extracts. They have, from the beginning, focused on being natural and not tested any products on animals. Year 2009 Oriflame opened a skin research institute in Stockholm where research scientists search for new ingredients and create new methods for skin health research in order to fashion unique skin care products. Oriflame's skin research institute (SRI) is today organised by over ten scientists who discover, develop and test new useful active skin care ingredients. Among other things, they explore the plant kingdoms and the marine searching for potent ingredients that might have different protecting or healing qualities, such as antiaging profits. Oriflame works with natural ingredients and strive to use sustainable resources for their skin care products.

This project was a part of one of Oriflame's newly started collaboration projects together with The Plant Protein Factory (PPF). PPF is currently working on becoming a new supplier of raw material such as plant protein and other nutritional material from the plant parts that are left behind and not used today. Their vision is to minimise the waste and find useful applications for these materials in, among others, the food and cosmetic industry. In this collaboration, PPF provided Oriflame with fractionated samples of waste material from different crops cultivated in south of Sweden. These fractions were then examined for their potential use in coming skin care products to take advantage of the biological activity of compounds produced by the crops. Cellulose, proteins and sugars are some of the components present in plants, phytochemicals or phytonutrients that are also present in plants are more specific and unique for each species. It is the phytochemicals (e.g. polyphenols) that are interesting when in search of biologically active ingredients for skin care products since they are metabolites produced by the plants as protection to ensure survival in their environment.

### 1.1 Aims and Objectives

The main aim of this project is to investigate if extracts from various sample fractions produced from agricultural waste material can be used as active ingredients in skin care products. The specific objectives for this project are:

- to analyse and identify the content of the extracts using Liquid Chromatography-Mass Spectrophotometry (LC/MS),
- to examine some biological activities of the extracts known to protect or repair skin cells using different primary activity screening methods,
- to examine the protective properties against pollution using a cell based in-vitro assay, and
- to find potential targets using an in-silico method.

#### 1.2 Outline

The rest of this report is divided into five chapters covering theoretical background, method, results, discussion and conclusion. The theoretical background in Chapter 2 describes the environmental mechanism of skin aging and how plant secondary metabolites can be used to protect the skin against pollution. Chapter 3 covers the method of the laboratory procedures used for the project. In Chapters 4 and 5 the results of the biological activities of the extracts are evaluated and discussed. Finally, the report is concluded in Chapter 6.

## Chapter 2: Theoretical Background

This chapter describes relevant topics to provide knowledge to understand the project: facts about the skin and the mechanism behind skin aging, environmental pollution and its contribution to skin aging and various diseases, the protective properties of plant secondary metabolites, some sustainability aspects and information about the crops examined. It also describes the assays used in this project to extract these compounds and examine their properties.

#### 2.1 Skin Structure

The skin is the largest organ of the body and serves as a barrier to protect us from intruding materials and organisms as well as keep us contained. The skin structure is mainly two layers called epidermis and dermis containing cells such as keratinocytes, melanocytes and fibroblasts that can be viewed in figure 1. Epidermis is the outer layer of the skin while dermis is the inner part of the skin and both consist of multiple layers of cells and tissues. Hypodermis is deeper, beneath dermis and connects the skin to the rest of the body, e.g. muscles and bones but is not considered a part of the skin. (Lawton 2019)

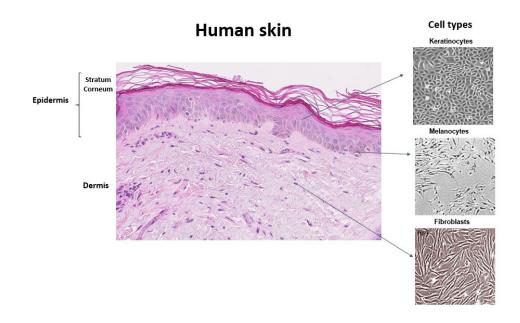
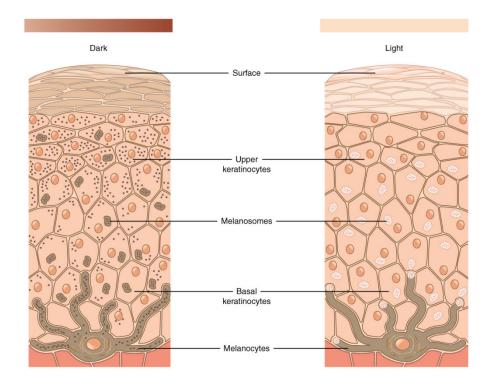




Figure 1. Dermatological picture of the different layers of the human skin (epidermis and dermis) including the three cell types; Keratinocytes, Melanocytes and Fibroblasts. (Taken from the skin lab at Oriflames head office in Stockholm)

The cells of epidermis are keratinocytes that produces keratin, a protein that provides the skin with its hard texture. The most superficial layer of keratinocytes are dead cells accumulated with keratin called corneocytes. This layer is called stratum corneum and is a complex structure of fatty acids, cholesterol and corneocytes. It is a lipid barrier directly exposed to the outer environment protecting the body from penetration of foreign particles and microbes as well as water loss. This layer is regularly replaced by new dead cells and every month we have a completely new layer of corneocytes. The inner keratinocytes lay where epidermis connects to dermis and they bind together through collagen fibers. This part of epidermis also contains melanocytes and Merkle cells that play important roles. Merkel cells cooperate with the nerve

cells of the brain which makes us feel the sensation of touch. Melanocytes are cells producing melanin which is a pigment and the reason for our skin colours. (Lawton 2019) Only 1% of cells in the epidermis are melanocytes and one melanocyte is therefore surrounded by about 36 keratinocytes. Melanin is produced and distributed by melanosomes to keratinocytes where they are accumulated. The skin cells are protected by melanin since it blocks ultraviolet radiation (UVR) from damaging the cells. About 50% of the UVR is absorbed by melanin and therefore not penetrating through epidermis. Darker skin has higher absorbance and thereby protection, a demonstration of melanin production and distribution can be viewed in figure 2. (Brenner, Hearing 2008)



*Figure 2. Melanin production and distribution from melanocytes to keratinocytes in dark and light skin. (Betts, J.G et. al 2013)* 

Unlike epidermis, dermis contains blood vessels and nerves. The fibroblasts in the dermis layers produce collagen fibers to keep the structure and strength of the skin as well as to bind water for hydration. Fibroblasts also produce elastin fibers that give the skin its elasticity which is an important property of the skin. (Lawton 2019)

#### 2.2 Skin Aging

The human skin naturally undergoes changes throughout the years. When skin gets damaged, we say it ages, it gets filled with wrinkles, pigment spots and it loses lots of its elasticity. The aging of the skin occurs mainly in two different ways. Firstly, photoaging which relates to the exposure of UV radiation and other environmental pollutants and results in coarsely wrinkled skin and can even lead to chronical diseases. Lastly, we have the natural aging of the skin which is dependent on ethnicity and genetics and is considered to give a smoother wrinkle appearance. (Rhie, Shin et al. 2001) What they both have in common is the process of oxidative stress, where the accumulation of reactive species in the skin cells is the greatest harm.

#### 2.2.1 Reactive Species and Oxidative Stress

As mentioned before, reasons for skin aging is related to the presence of reactive species (RS) that are formed in the body from metabolic reactions as well as from interference from environmental pollutants. The term RS includes radicals, reactive oxygen species (ROS) and reactive nitrogen species (RNS). (Rhie, Shin et al. 2001) When they are produced in a faster pace or a larger amount than what the body is in need of the balance between oxidation and antioxidation is disrupted. This leads to over oxidation of components in the cells as well as outside of the cells, and proteins, lipids, barriers and DNA are only a few examples of components that get damaged through this interference. One oxidation process can easily lead to another by chain reactions. If, for example, phospholipids in the membranes of the skin cells are oxidised, lipid peroxide is formed causing inflammation and then upregulation of specific enzymes degrading collagen leading to looser skin. (Dayan 2008)

#### 2.2.2 Intrinsic Skin Aging

The natural aging process is called intrinsic skin aging and is determined by genetics. The results of this process are multiple, among other, fine wrinkles, hollowed eye sockets and cheeks due to loss of underlying fat and that the skin gets more transparent and thinner. (Ahsanuddin, Lam et al. 2016) For intrinsic aging, ROS is generated in the cells both enzymatically and non-enzymatically. In mitochondria, ROS particles are produced as a by-product as the cell respiration occurs. During oxidative phosphorylation in the mitochondria, electrons from the electron transport chain (ETC) are unintentionally released to oxide molecules O<sub>2</sub> resulting in the generation of superoxides O<sub>2</sub><sup>-</sup>. (Rinnerthaler, Bischof et al. 2015) ROS can also be produced in a non-mitochondrial way, for example, through a Fenton reaction which is a catalysed degradation process of H<sub>2</sub>O<sub>2</sub> by free bivalent iron ions. (Ahsanuddin, Lam et al. 2016)

The skin gets older as we grow older for primarily the reasons above. Over the years, ROS production increases and thereby the exposure of them to the cells, at the same time there is a decrease in antioxidant activity and the cell's ability to repair the oxidative damage caused by ROS. (Ahsanuddin, Lam et al. 2016) Every year, the skin loses 1% of its elasticity due to lowered production of collagen and elastin (Obagi 2005), the change in collagen-elastin structure is demonstrated in figure 3, where a comparison between the structure of the collagen and elastin in young skin and aging skin is shown.

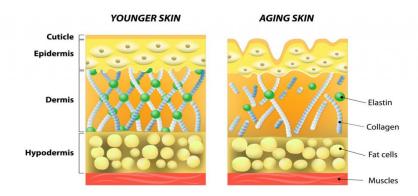



Figure 3. The figure demonstrates the complex structure of collagen and elastin in the skin. The left picture demonstrates the structure and elasticity of young skin while the right picture shows the broken structure of an older skin that has lost its former elasticity. (Kwall, R 2016)

#### 2.2.3 Extrinsic Skin Aging or Photoaging

Photoaging is the part of skin aging that is dependent on exposure to several pollutants in our surrounding. UV radiation is the largest source of this type of aging and studies show that the skin areas that are mostly exposed to the sun: face, neck, hands, forearms and upper chest are significantly more photodamaged than the rest of the skin. Photoaging appears in a different way than intrinsic aging, not at all as smooth and finely wrinkled but rather a dry, sallow and coarsely wrinkled finish with changes in pigmentation. This aging process, in contrast to intrinsic, is more severe since exposure to UV radiation and environmental pollutants can lead to chronical diseases such as allergic reactions, acne and skin cancer. (Helfrich, Sachs et al. 2008)

What happens is that the epidermal skin gets thicker, solar elastosis, which is an elastin containing material, is accumulated and the collagen production and structure are disrupted. Transforming growth factor (TGF) and activator protein (AP-1) are two collagen regulators that promotes collagen formation and collagen breakdown respectively. The breakdown is induced as a result of the up-regulation of matrix metalloproteinase (MMPs: enzymes that degrades collagen) in presence of AP-1. A study showed that within 15 minutes after irradiation of UVA/UVB light on the skin, hydrogen peroxide was generated and the levels of AP-1 noticeably increased as well as the MMPs and the collagen levels were then decreased because of degradation. The changed levels remained for 24 hours. This indicates that the aging procedure starts immediately after exposure of pollutants. (Helfrich, Sachs et al. 2008)

#### 2.3 Environmental Pollution

Environmental pollutants are agents that, in a negative way, modify the natural composition and characteristics of the atmosphere. They originate from different sources that could be human made (e.g. fossil burning and car emissions) or natural (e.g. vulcanic activities and forest fires). Air pollution, which is one kind of environmental pollutant, and the most interesting one for skin health concerns, is present in various forms and phases. (Puri, Nandar et al. 2017) Exposure to environmental pollutants can contribute to oxidative stress in the cells of the body. Pollutants are, or can generate, free radicals which disturb the oxidant and antioxidant balance of the cells. Overproduction, or lack of antioxidant defence lead to oxidative stress. This is because many compounds are involved in production of ROS and RNS and an overproduction of these due to pollution can lead to various chronic diseases. (Poljšak, Fink 2014)

Example of environmental pollutants are:

- Oxides
- Volatile Organic Compounds
- Ultraviolet radiation
- o Ozone
- Polycyclic aromatic hydrocarbons

Other broader pollutants are for example:

• Particulate matter such as particles from traffic and cigarette smoke

#### 2.3.1 Oxides

Different pollutive oxides present in the air are nitrogen oxides (NOx), sulphur dioxide (SO<sub>2</sub>) and carbon monoxide (CO) that all have damaging effects on the cells. Nitrogen dioxide (NO<sub>2</sub>) can cause oxidation of amino acids in proteins and CO, which is a well-known pollutant, acts damaging on the metabolism of the cells. (Drakaki, Dessinioti et al. 2014)

#### 2.3.2 Volatile Organic Compounds

Organic solvents present in paints, tobacco smoke and fuels lead to emissions of volatile organic compounds (VOCs) that can induce inflammation and allergic reactions such as eczema. They react with sunlight and NOx to form ozone molecules that have negative effects on the skin, see section 2.3.3. (Drakaki, Dessinioti et al. 2014)

#### 2.3.3 Ultraviolet Radiation and Ozone

Ultraviolet radiation can be divided into three different types according to wavelength: UVA, UVB and UVC. 95% of all UVR that reaches the surface of the earth is UVA which has wavelengths between 320-400 nm. The rest are UVB (280-320 nm) and UVC (180-280 nm). UVA reaches the skin and penetrates to epidermis and dermis and is a leading cause for photoaging. Together with UVB, that reaches only to epidermis, they can lead to immunosuppression and skin cancers. (Drakaki, Dessinioti et al. 2014) UVR decreases the activity of antioxidants in the skin as well as generates ROS that damage the cells. (Poljšak, Fink 2014)

The stratosphere and troposphere naturally contain ozone. If the skin is exposed to high levels of ozone the levels of antioxidants such as vitamin E and ascorbic acid (vitamin C) can be decreased, epidermis can be inflamed, and cells damaged due to oxidative stress. Moreover, extracellular matrix components such as collagen and elastin are degraded which results in extrinsic aging of the skin. When exposed to ozone in presence of other pollutants (e.g. UVR) the effects can be intensified. (Drakaki, Dessinioti et al. 2014)

#### 2.3.4 Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants that originate from wood burning, car fumes and cigarette smoke and are easily spread in the air. PAHs can produce epoxides and diols that act carcinogenic by binding to DNA molecules and they can transform into redox-cycling chemicals that generate ROS particles and induce oxidative stress. Other diseases can form from halogenated PAHs, e.g. chloracne and arthritis. (Drakaki, Dessinioti et al. 2014)

#### 2.3.5 Particulate Matter

Particulate matter (PM) is a name of all the different complex particles suspended in the air. They are classified by their sizes and range from ultrafine (<0.1  $\mu$ m), fine (<2.5  $\mu$ m) to coarse particles (<10  $\mu$ m) that can penetrate the skin. (Jin, Li et al. 2018) They appear from different sources, but the ones originating from traffic events are considered highly dangerous since they are prone to react with the human body causing, among other, oxidative stress. The effects of

such exposure are pigment changes as well as wrinkles, but PMs can also cause more severe diseases such as cancer and cardiovascular diseases. (Drakaki, Dessinioti et al. 2014) Cigarette smoke is another source of particulate matter and hold thousands of harmful substances like ROS and RNS, free radicals, carcinogens and oxygen radical forming substances. They are responsible for causing oxidative stress in the skin cells, trans-epidermal water loss, degeneration of collagen and elastin and the levels of certain antioxidants such as vitamin C and glutathione are decreased. Moreover, smoking cigarettes will lead to deep wrinkled skin and skin discoloration. Studies have shown that smoking is also connected with development of acne and psoriasis. (Drakaki, Dessinioti et al. 2014)

#### 2.4 Diseases Caused by Oxidative Stress

As a result of increased amount of air pollution and thereby our exposure to it, we tend to develop various diseases. Many diseases are linked to the skin and some examples are acne, psoriasis, arthritis, chloracne, atopic dermatitis, eczema and skin cancer but we can also develop other serous conditions such as cataracts, cardiovascular diseases and other types of cancer. (Poljšak, Fink 2014, Puri, Nandar et al. 2017)

#### 2.5 Protective Compounds Present in Plants

The body has ways to protect the skin from aging processes like oxidative stress, different substances and mechanisms work to prevent or repair such processes. These compounds work by, for instance, having inhibitory effects on the enzymes kallikrein-related peptidase 5 or tyrosinase. Kallikrein-related peptidase 5 (KLK5) is a serine protease present in epidermis where it is part of the renewal process of skin cells and the skin barrier. The enzyme helps release the old and dead corneocytes as they get closer to the skin surface by degrading one key player in the junction matrix, the protein corneodesmosomes. When the KLK5 enzyme is overactivated this process is accelerated, damaging the function of the barrier leading to skin diseases such as rosacea. By suppressing the activity of the enzyme, such diseases can be prevented or treated. (Matsubara, Matsumoto et al. 2017) Tyrosinase is another enzyme which is involved in the synthesis of melanin in the skin. Its activity is highly connected to the skin pigmentation and it is shown to be much more active in darker skin than in lighter skin. Regulating its activity will therefore affect the pigmentation of the skin. (Iwata, Corn et al. 1990)

There are also non-enzymatic processes affecting the aging of the skin, glycation and oxidation are two examples. The glycation process is a multiple step reaction between proteins, nucleic acids and lipids with reducing sugars that lead to the formation and accumulation of advanced glycation end products (AGEs). These end products are key players in skin aging as well as in other damaging processes in the body. They contribute to oxidative stress in the cells as well as damage important factors like proteins, all affecting the aging of the skin in a negative way. AGEs have multiple damaging properties such as decreasing skin elasticity by cross-linking with the extracellular matrix (ECM), affecting cellular functions by modifying proteins as well as binding to specific receptors for AGEs (RAGE) and thereby induce inflammation. (Kim, Park et al. 2017) Studies have shown that the accumulation of AGEs is increased or accelerated in presence of UV-irradiation and cigarette smoke but also in people that have diabetes. (Gkogkolou, Böhm 2012) Knowing how to hinder this process is not as simple as for an enzyme, but phytochemical compounds have shown inhibitory effects of the formation of AGEs, compounds possessing high antioxidant activity is one of them. (Kim, Park et al. 2017)

Plant secondary metabolites have shown to possess inhibitory qualities as such and therefore, looking through the plant kingdom for active compounds to be used as protectors and repairers in skin care products is highly interesting. Just like all other organisms, plants produce chemicals to survive and function, phytochemicals are specific chemicals produced by plants and therefore only occurring naturally in plants. There are five types of phytochemicals: carbohydrates, lipids, phenolics, terpenoids and alkaloids where the three latter are bioactive, meaning they have biological activity in humans. (Huang, Xiao et al. 2016) Phytochemicals are present in various plant parts in high concentrations (e.g. flowers, leaves, stems and roots) and some are said to have protective properties against cell damage from free radicals. (Altemimi, Lakhssassi et al. 2017) Polyphenols are phytochemical properties (e.g. anti-inflammatory and antimicrobial activities and gene expression influence). They are plant secondary metabolites and can be divided into different subgroups, the two general classes are: flavonoids and phenolic acids but there are also tannins, lignans and more (figure 4). (Chu, Gross et al. 2000)

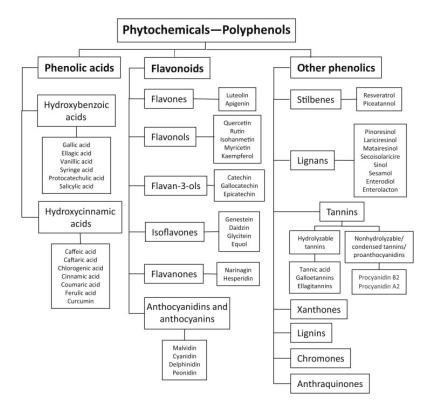



Figure 4. A schematic overview of polyphenolic subgroups and some polyphenolic compounds. (Martinez, K.B et. al 2017)

Flavonoids, which are polyphenols, are antioxidants present in the leaves, flowers, seeds, berries, bark and roots of green plants. They are mostly present as flavonoid glucosides, and play great roles in plant growth, disease resistance, protection from free radicals, UV radiation and bacterial and viral attacks. Some flavonoid subclasses are flavones, flavonois, isoflavones, flavanones and anthocyanidins and anthocyanins. The structure of flavonoids does not differ much between molecules and they all contain two phenolic rings, A and B, and a heterocyclic ring, C, which contain an oxygen atom. What does differ between the subgroups of flavonoids is the structure of the C ring, more specifically, there are different levels of oxidation of the ring. Flavonols are the most common flavonoid in plants, examples of flavonols are: Quercetin, Kaempferol, Myricetin, Isohamnetin, Rhamnetin and Rutin. (L Miranda, F Stevens et al. 2012)

Phenolic acids is the other general subgroup of polyphenols and are present in various parts of plants, such as seeds, fruits and leaves. They are known to possess very high levels of antioxidant activity and by eating these compounds they can reduce the risk of oxidative stress in the cells. The level of antioxidant activity is dependent on the compounds but generally, by the radical scavenging mechanism, they provide antioxidation by donating H-atoms. Besides being antioxidants, phenolic acids act antimicrobial and anti-inflammatory in the human body. Examples of phenolic acids are caffeic acid, ferulic acid, benzoic acid and syringic acid. (Kumar, Goel 2019)

#### 2.6 The Examined Crops

This report investigates the possibilities of using wasted fractions from plant materials as a source of active ingredients in skin care. The plant materials originate from Sugar beet, Lucerne, Kale, Phacelia, Crimson clover, Oil radish and Red beet leaves. Fractions, such as white, green and brown juices, fibers, proteins and whole leaves are produced as biproducts when retrieving the wanted parts of the plant. These could therefore be interesting sources of natural active ingredients for health care products. The process of retrieving these fractions is shown in figure 5 and is done by The Plant Protein Factory using wasted agricultural material.

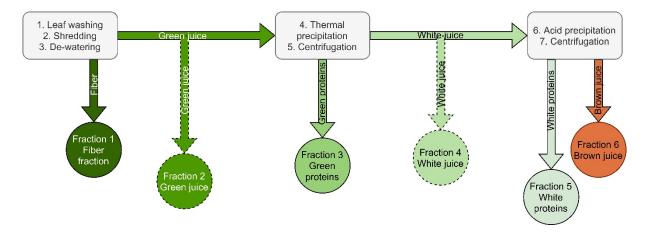



Figure 5. The process where the different fractions are derived. The fractions are produced by the Plant Protein Factory in Alnarp where they harvest the plants and collect the waste. The dashed fractions are optional fractions that are only produced if needed.

Information regarding the composition of phytochemicals within these plants can be found in scientific studies. Mostly the studies focus on the active compounds present in the roots and flowers and might or might not be present in the leaves which is the focus of this project. Thus, the results could be used as a prediction or a guide to know what to look for in the fractions. In table 1, the plants examined in this project are briefly described.

Table 1. Description and prediction of compounds of the plant materals examined in the project.

| Plant name                                       | Picture of the plant                    | Description and prediction of compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kale<br>(Brassica<br>oleracea var.<br>Sabellica) | Photo by Rasbak (2005)                  | Kale is a leafy vegetable that has high concentrations of<br>flavonoids, low molecular weight polyphenols, that have<br>multiple protective characteristics to human health. The<br>flavonoids in plants are often conjugated with glucose and<br>are therefore present as glycosides. (Schmidt, Zietz et al.<br>2010) A study of Kale extract using LC/MS showed high<br>levels of flavonol glucosides, such as quercetin,<br>kaempferol and isorhamnetin. (Neugart, Krumbein et al.<br>2016)                                                                                                                                                                |
| Sugar beet<br>(Beta<br>Vulgaris)                 | Photo by Jacopo Werther<br>(2010)       | Sugar beet is mainly a source of sucrose and substrate for<br>ethanol production, but apart from that it appears to be<br>beneficial for human health. Sugar beets consist of<br>phenolic compounds and saponins whom both have<br>significant relevance as active ingredients in nutritional<br>and cosmetic products. (Mikołajczyk-Bator, Błaszczyk et<br>al. 2016) The family of the sugar beet and the sugar beet<br>itself and their leaves, are known to contain various<br>phenolic acids and flavonoids, such as quercetins and<br>vitexins. (Vissers, Kiskini et al. 2017)                                                                           |
| Lucerne<br>( <i>Medicago</i><br>sativa)          | Photo by Robert<br>Flogaus-Faust (2018) | Lucerne is an herbal plant with blue coloured flowers and<br>deep roots. (Dolling, Revell 2018) The levels of phenolic<br>compounds in Lucerne are dependent on what part of the<br>plant that is investigated. The leaves have a higher<br>concentration of phenolic acids compared to the flower<br>and stalk whereas the flower contained the highest level<br>of flavonoids. Antioxidants identified in Lucerne are 4-<br>hydroxybenzoic acid, Rutin, Quercetin, Formononetin,<br>Taxifolin, Coumestrol (phytoestrogen) and<br>formononetin-7-O-glucoside-6"-malonate (Bajkacz,<br>Baranowska et al. 2018)                                                |
| Phacelia<br>(Phacelia<br>tanacetifolia)          | Photo by Faxstaff (2006)                | Phacelia is an herbal plant that is commonly used as green<br>manure to improve the soil structure and give nutrition<br>between periods of cultivation. A study of the antioxidant<br>activity in the seeds and sprouts of Phacelia showed, using<br>HPLC method, that the total content of free phenolic acids<br>and flavonoids in Phacelia sprouts was 5.20 mg/100g dry<br>mass while the total content of bound phenolic acids and<br>flavonoids was 61.82 mg/100g dry mass. The antioxidant<br>activity was analysed for DPPH radical and measured to<br>be 7.35 mg trolox/g dry mass which is not considered to<br>be high. (Pająk, Socha et al. 2019) |

19

Crimson clover (Trifolium incarnatum)



Wikimedia Commons (2010)

Crimson clover in an herbal plant with red flowers used to temperate and moist fields. According to a study where multiple *Trifolium* species were investigated, there were multiple phytochemicals found (e.g. flavonoids such as quercetin and kaempferol). (Sabudak, Guler 2009) Another study of the antioxidant activity of red clover (*T. pratense*), which comes from the same family and even genus as Crimson clover but are different species, showed that the total amount of polyphenols was 153 mg/g. (Kroyer 2004) The results of this study does not guarantee similarities to the content of Crimson clover but due to similarities between the species it can be used to predict the amount of polyphenols present.

Oil radish (*Raphanus sativus*)



bv

**KENPEI** 

Photo

(2007)

Radishes have a history of being used in medicinal contexts treating digestion issues and liver failures. They contain multiple beneficial compounds such as phenolic acids and anthocyanins and they claim to have antioxidant activity. (Hanlon, Barnes 2011)

Red beet (Beta vulgaris)



Photo by Horticulturalist RJ (2016) The leaves of Red beet are a source of numerous compounds with antioxidant capacities. Studies show that they, among others, contain polyphenols, flavonoids, vitamins, betalains and folic acid. The extract of red beet leaves could therefore be a great source of ROS scavengers and therefore have protective properties on the skin cells. (Lee, Son et al. 2009)

## Chapter 3: Method

This chapter describes the methodology of the project which includes a detailed description of the laboratory procedures. All the steps of the examination process are described: the process used for extraction of plant secondary metabolites, how compounds were identified, the primary assays used to examine the biological activity of the extracts as well as the in vitro assay used to examine protective properties against pollution.

#### 3.1 Laboratory Procedures

This project was based primarily in the lab. The total process included the following 6 steps, but for this project step 5 was not performed. Steps 1-3 (and a little bit of step 4), were performed in the lab and step 6 was preformed digitally:

- 1. Extraction
- 2. Identification
- 3. Activity screening
- 4. In-vitro assays
- 5. Ex-vivo assays
- 6. In-silico prediction of biological activity and targets

The first step was extraction of secondary metabolites from the plant samples using methanol extraction. In the second step these extracts were analysed using Liquid Chromatography-Mass Spectrophotometry (LC/MS) to identify the compounds present. After this, in the third step, activity screening methods were used to find the extracts showing activity. Those extracts would then have been further studied in step 4-5, by cell-based in-vitro assays and lastly exvivo assays. The cell-based assays look for anti-pollution, UV protection or anti-inflammatory properties of the extracts. The ex-vivo assays uses qPCR, flow cytometry and histology to further examine these properties after the substances has been applied to donated skin. The last step was not performed as mentioned earlier. Instead the digital platform Reaxys was used to predict the biological activity of the extracts on the skin, this is step 6. Descriptions and procedures of the methods used in this project were available as standard procedures in the Oriflame network written by members of the SRI team.

To summarize, the laboratory part of the project consists of four main experiment types: extraction of secondary metabolites, identification of compounds, primary activity screening and in-vitro assay. Figure 6 demonstrates a flow chart over the experiments mentioned as well as the previous harvesting and processing steps that is not part of this project.

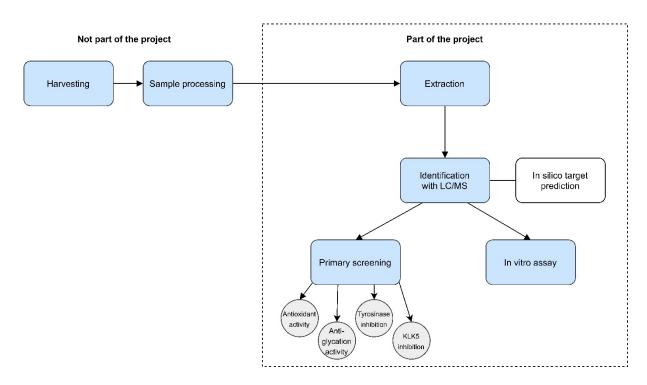



Figure 6. Overview of the analytical steps from harvesting and processing (which is done by the PPF before sent to Oriflame) to extraction, identification, primary screening assays, in-vitro assay and in-silico evaluation which are all done as a part of the project.

#### 3.1.1 Freeze Drying

In this project, the samples investigated are freeze dried multiple times to dry and remove all water to make it possible to dissolve the samples in other liquids, like methanol, which is essential for extraction. When freeze drying the samples, the samples first freeze and then the ice is subliming which means it converts into vapor directly and is removed (Mellor, Bell 2003). The freeze dryers used were a Labconco 4.5 Plus FreeZone and a VirTis Benchtop K and the freeze drying was performed as following. The freeze dryer was turned on and approaching a collector temperature of -50 °C. In the meantime, the tubes containing the samples or extracts were covered with two layers of parafilm and then, using a small needle, 15-20 small holes were made so that the water could leave the tubes. When the system had reached the desired temperature, the tubes were placed in the system and the vacuum was turned on, decreasing the pressure to 0.45 mbar. The system was running for three days until all water was removed, then the vacuum and the freezer were turned off, and then the whole system. A valve was opened to slowly let air enter the system increasing the pressure back to normal and the tubes, now containing a powder, were taken out and stored in a -20 °C freezer.

#### 3.1.2 Extraction

For extraction of the secondary plant metabolites from the plant cells, methanol extraction was used. Methanol is known to extract most of the content and is a fitting extraction solvent for a primary investigation of the samples. Figure 7 shows an overview of the extraction method used.

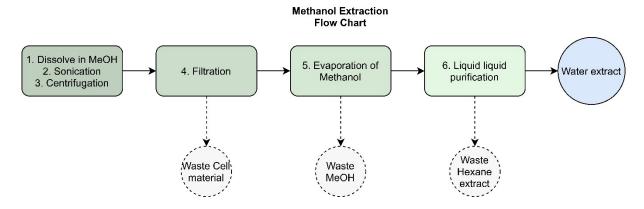



Figure 7. Overview of the steps in the methanol extraction process, showing six laboratory steps as well as three waste lines and the desired water extract.

A total of 38 plant fractions were received from PPF, they are listed in table A1 in Appendix 1. The extraction of the secondary metabolites from these plants fractions was executed as following. The fractions were first freeze dried according to section 3.2.1. About 1-2 g of plant cells of each fraction was weighed and placed in separate 40 mL falcon tubes. 20 mL methanol was then added per gram cells before sonication in ultra-sound bath Fisher scientific, Branson 5510 for 120 min. After sonication, the tubes were centrifuged for 5 minutes at 1000 rcf to spin down all large particles. The extracts were filtered using grade 4 upon grade 1 filter papers, a vacuum flask and a vacuum pump. The filtered extracts were then transferred into roundbottomed flasks before evaporation. Evaporation of the methanol was done using a rotavapor where the flasks containing the extracts were placed in 37 °C water and the pressure was gradually decreased until it reached ~100 mbar. The rotavapor used was from Büchi Switzerland and included a vacuum pump, vacuum controller, heating bath and a rotavapor. This was done until the extracts were almost dry. After evaporation of methanol, 20 mL distilled water was added to each extract and they were put ultrasound bath for a few minutes to try to get as much extract as possible out into the water. The water extract was transferred to a separatory funnel. 6.5 mL Hexane was added to the round-bottomed flask to clean out the extract residues and then transferred to the same funnel. The solutions were carefully mixed and separated. The hexane extraction was repeated three times until purified. The hexane extracts, containing lipids, cellulose, chlorophyll and other cell components, were discarded, and the water extracts containing phytochemicals were put in new 40 mL purple falcon tubes. The extracts were finally freeze dried again under the same conditions as before. The final extract powders were stored in a -20 °C freezer.

#### 3.1.3 Identification

The compound contents of the extracts were identified using the equipment and method of Liquid Chromatography-Mass Spectrometry (LC/MS) or more specifically: ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-Q-ToF/MS). UHPLC is the first part and is a chromatography technique that separates the compounds in the extracts when passing via a mobile phase through a column with a stationary phase. Each compound will pass through the column in a specific time and give a unique chromatogram. What differs the UHPLC from the HPLC is that the pressure is significantly higher making it possible to use columns with smaller particle sizes resulting in faster analyses, higher resolution and higher separation efficiency of the compounds. (Nováková, Svoboda et al. 2017) After passing through the LC, the extracts reach the Q-

ToF/MS (quadrupole time-of-flight mass spectrometer) where the accurate mass-to-charge ratio (m/z) of each compound is determined which makes the technique reliable and greatly advantageous for compound identification. Q-ToF/MS uses an electrospray ionizing the molecules to then measure the time of flight. If the particles are negatively charged the electric field is adjusted to make the molecules travel to the right direction. (Allen, McWhinney 2019)

The following preparations were done for identification. First, the freeze-dried extracts were weighed separately into 1.5 mL Eppendorf tubes. They were then dissolved 10 mg/mL in H<sub>2</sub>O/ACN 95:5. Some extracts were not soluble in H<sub>2</sub>O/ACN 95:5 and were instead dissolved in H<sub>2</sub>O/ACN 50:50 or in solution with even higher %ACN. Some that were not soluble at all in H<sub>2</sub>O/ACN were dissolved in DMSO. If the extracts weren't soluble at 10 mg/mL they were diluted until dissolved. Table A2 in Appendix 1 shows the final concentration of each extract were dissolved. Finally, the extracts were filtered through 1  $\mu$ M filters into 2 mL vials. The solutions prepared was used for identification via LC/MS.

The identification was performed using the LC/MS system Agilent Technologies 1290 Infinity, 6520 Accurate-Mass Q-TOF LC/MS and gave chromatograms for each extract (section 4.1) as well as m/z value for each peak (compound). By comparing the m/z values from the LC/MS with values from pure compounds found in literature and through Reaxys, they were identified. The Reaxys system contains an enormous amount of information about different compounds: where they can be found (e.g. specific plants), what properties they have as well as known targets. Excel files containing information of what compounds might be present in the plants were downloaded containing compound name, molecular formula and molar weight. The molar weights from this file were then converted to m/z values using a website called Warwick. These were then compared to the m/z values from the files retrieved from the LC/MS system and thereby the peaks (compounds) were identified by names.

From the LC/MS analysis, the ponderate molecular weight for each extract was also retrieved and could then be used in the primary screening assays and the in vitro assay to calculate the mass (g) needed of each extract to receive a specific concentration (mol/L ponderate). The ponderate MW is a MW value that is an average value for the whole extract and is derived from the mentioned LC/MS system. It makes it possible to dissolve the extracts at the same concentration leading to the possibility of comparing them in the activity screening assays. In the rest of this report the molar ponderate will be referred to as M p (e.g. 1 mM p).

#### 3.1.4 Primary Screening

After identification of the compounds the biological activities were examined through four different primary screening assays.

The first method looks for radical scavenging activity by 2,2-Diphenyl-1-picrylhydrazyl radical (DPPH) which will, in presence of antioxidant activity, react and the compound inhibition can be determined. DPPH is a free radical and thus it has an unpaired valence electron placed on one of the nitrogen atoms. Due to its purple colour, it absorbs light at a wavelength of 516 nm and after reaction it turns yellow resulting in no such absorbance which makes measuring the inhibition possible. (Chandra Shekhar, Anju 2014) In figure 8 the inhibitory reaction of DPPH is shown, turning DPPH into DPPHH which no longer is a radical.

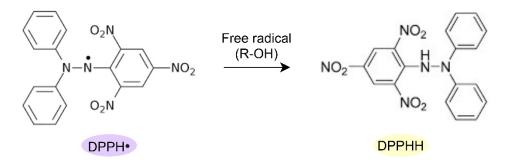



Figure 8. The figure shows the antioxidation reaction where DPPH transforms to DPPHH.

The second method used for primary screening is an anti-glycation assay where the extracts are tested for inhibitory characteristics of the glycation mechanism. The principle of this assay is that ribose will react with bovine serum albumin (BSA) to form AGEs and since it is fluorescence based, the spectrophotometer measures the fluorescence spectra of the formed AGEs. The absorbance will be lower if the extract acts inhibitory of this process. (Séro, Sanguinet et al. 2013)

The third method is a Tyrosinase inhibition assay that is an enzymatic assay screening for possible inhibitory effects on the enzyme tyrosinase. If a compound or an extract is inhibiting this enzyme and lowering the melanin production, they can be used in depigmentation approaches. (Momtaz, Lall et al. 2008)

The fourth and last method is a human tissue kallikrein-related peptidase 5 inhibition assay where the extracts are examined for inhibiting activity towards the enzyme KLK5. This method measures the enzymes ability to cleave the substrate Boc-VPR-AMC by measuring the absorbance of the fluorogenic group AMC. High absorbance is equivalent to the extract having low inhibition activity and low absorbance is equivalent to the extract having high inhibition activity.

The general procedure of the assays can be described using four steps (figure 9). They can be viewed more specifically in table 2.

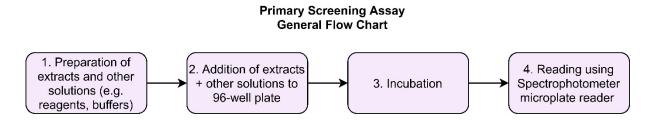



Figure 9. Overview of a general working process of the different primary screening assays. What differs between the assays are reagent preparation, solvent and concentration, volume added to the plates, incubation time and temperature as well as reading parameters.

Each screening method has unique reagents, substrates and solvents, incubation time and temperature as well as reading parameters. The concentrations of the extracts and the solvents used are also specific for each method. The material and solutions used as well as the preparation of the reagents can be viewed in table A3 and A4 in Appendix 1. The spectrophotometer used was a Spectrophotometer Microplate Reader - Cytation 3 – BioTek.

Table 2. Four steps of primary screening for four different assays: radical scavenging activity, glycation inhibition, tyrosinase inhibition and KLK5 inhibition. These assays should be repeated three times on three different days. Preparation details for extracts, references and other solutions can be found in Appendix 1. \*Room temperature

| Step 1. Preparation |                                   | Radical<br>scavenging<br>activity                                                                                                                                                      | Glycation<br>Inhibition                                                                                                                                                                                                                                                                                                                | Tyrosinase<br>Inhibition                                                                                                                                                                                                                                | KLK5 Inhibition                                                                                                                                                                                                                               |  |  |
|---------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                     |                                   | -DPPH solution<br>-Vitamin C<br>stock solution<br>10000 μM<br>-Vitamin C<br>100 μM<br>-Extracts 2 mM p<br>in methanol<br>(1 mM p in plate)                                             | <ul> <li>-Sodium phosphate<br/>buffer 50 mM,<br/>pH 7.4</li> <li>-BSA 10 mg/mL</li> <li>-D-Ribose 0.5 M</li> <li>-Rutin stock solution<br/>100 mM</li> <li>-Rutin solution<br/>10 mM</li> <li>-Rutin solution<br/>10 mM</li> <li>-Extracts 10 mM p<br/>in 10% DMSO<br/>(1 mM p in plate)</li> <li>-Or 10 mM p in<br/>Buffer</li> </ul> | -Potassium<br>phosphate buffer<br>50 mM<br>-L-tyrosine 2 mM<br>-Tyrosinase 333<br>units/mg solid<br>-Kojic Acid<br>150 mM<br>-Extracts<br>100 mM p in<br>DMSO (1 mM p<br>in plate)                                                                      | -Sodium<br>phosphate buffer<br>0.1 M pH 8<br>-Enzyme KLK5<br>1 ng/μL<br>-Substrate Boc-<br>VRP-AMC<br>100 μM<br>-Control SBTI<br>100 μM<br>-Extracts<br>100 mM p in<br>DMSO<br>(1 mM p in<br>plate)                                           |  |  |
| 2.                  | Sampling<br>into 96-well<br>plate | <ul> <li>-100 μL of Blank<br/>or Standard or<br/>extract was added<br/>to each well of<br/>the plate.</li> <li>-100 μL of DPPH<br/>are added to each<br/>well of the plate.</li> </ul> | -50 μl BSA 10<br>mg/ml to all wells<br>-40 μl D-ribose<br>0.5 M or for blank<br>wells: 40 μl buffer<br>-10 μl extract or<br>blank solution                                                                                                                                                                                             | <ul> <li>-70 μL reference or<br/>Blank or 2.1 μL<br/>(100 mM) extract<br/>+ 67.1 μL Buffer</li> <li>-30 μL tyrosinase<br/>or Blank</li> <li>5 min incubation</li> <li>-110 μL substrate<br/>(L-tyrosine<br/>2 mM)</li> <li>30 min incubation</li> </ul> | <ul> <li>-1 μL blank<br/>(DMSO)/<br/>control or<br/>extract</li> <li>-50 μL<br/>enzyme/buffer<br/>for the blank</li> <li>5 min incubation<br/>+ pre-reading</li> <li>-50 μL substrate</li> <li>15 min<br/>incubation +<br/>reading</li> </ul> |  |  |
| 3.                  | Incubation                        | 30 min at RT*                                                                                                                                                                          | 24 h at 37 °C                                                                                                                                                                                                                                                                                                                          | 5 min + 30 min at<br>RT                                                                                                                                                                                                                                 | 5 min + 15 min<br>at RT                                                                                                                                                                                                                       |  |  |
| 4.                  | Reading<br>parameters             | Wavelength:<br>516 nm                                                                                                                                                                  | Wavelength:<br>$\lambda exc = 370 \text{ nm}$<br>$\lambda em = 440 \text{ nm}$                                                                                                                                                                                                                                                         | Wavelength:<br>492 nm                                                                                                                                                                                                                                   | Wavelength:<br>$\lambda exc = 380 \text{ nm}$<br>$\lambda em = 460 \text{ nm}$                                                                                                                                                                |  |  |

#### 3.1.4.1 Calculations

The radical scavenging by DPPH assay measures the absorbance at  $\lambda$ =516 nm and by using those values the %radical inhibition (or free radical scavenging activity) could be calculated.

$$\% Radical Inhibition = \frac{Absorbance Blank-Absorbance Extract}{Absorbance Blank} * 100$$
(1)

The %Inhibition of glycation was calculated using the AGE fluorescence intensity (FI) from the emission and excitation values at  $\lambda exc=370$  nm;  $\lambda em=440$  nm, as following,

$$\% AGEs = \frac{FI \ extract - FI \ blank \ extract}{FI \ control - FI \ blank \ control} * 100$$
(2)

$$\%Inhibition = 100 - \%AGEs \tag{3}$$

The %Inhibition of the tyrosinase activity was calculated using the absorbance at  $\lambda$ =492 nm and the following equations:

$$\%Inhibition = \frac{Absorbance of max activity - Absorbance of extract}{Absorbance of max activity} * 100$$
(4)

Where the average absorbance of the blanks was removed from the absorbance of max activity and extract in advance.

The %Inhibition of KLK5 was calculated using the AMC fluorescence intensity (FI) from the emission and excitation values at  $\lambda exc=380$  nm;  $\lambda em=460$  nm pre- and post-reaction, as following,

$$\%Inhibition = \frac{FI Max Activity - FI extract}{FI Max Activity} * 100$$
(5)

Before calculating, the FI from the pre-reading was subtracted from the final FI for each sample. Then an average FI from the background was subtracted from each sample, see table A40 in Appendix 2 for full calculation.

#### 3.1.4.2 IC50 Evaluation

For all four assays, if an extract shows high activity, they can be further analysed at different concentrations to calculate the inhibitory concentration for which the extract gives 50% inhibition of the enzyme, IC50 value. After knowing the IC50 value it is easier to determine whether the extract is a good inhibitor or not as well as comparing and ranking the performances in the assay. The four assays have two limits each to easier see if the activity is good, medium or not good, table 3 shows the limits used.

Table 3. Guidelines for screening results to evaluate the level of activity for the extracts in each of the four primary screening assays.

| Assay                 | %Inhibition (below this<br>value, the compound is<br>not considered to be a<br>good inhibitor) | these values, the | %Inhibition (above this<br>value, the compound is<br>a good inhibitor and an<br>IC50 can be determine<br>as a second step) |  |
|-----------------------|------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| DPPH inhibition       | 30%                                                                                            | 30-60%            | 60%                                                                                                                        |  |
| Glycation inhibition  | 10%                                                                                            | 10-40%            | 40%                                                                                                                        |  |
| Tyrosinase inhibition | 20%                                                                                            | 20-60%            | 60%                                                                                                                        |  |
| KLK5 inhibition       | 20%                                                                                            | 20-60%            | 60%                                                                                                                        |  |

An estimation of the IC50 value can, as mentioned, be determined if an extract is considered a good inhibitor. Then the assay would be performed as in table 2 but instead of using the extract concentration described, around six different concentration is used for the extract. That is done to be able to create a curve where the IC50 value can be calculated from.

To calculate the IC50 value the software GraphPad was used. The logarithmic value of the concentration  $\log[C]$  was plotted on the x-axis against the %inhibition on the y-axis. A non-linear regression was then created to find the  $\log[C]$  where the inhibition was 50%.

#### 3.1.5 In-Vitro Assay

To examine the extracts protective properties against pollution, a pollution induced CYP1A1 gene expression assay was performed. When CYP1A1 is expressed in human skin it can result in cornification of follicles that later can lead to chloracne outbreak. (Fabbrocini, Kaya et al. 2015) In this experiment diesel particulate matter (DPM) acted as pollution and was added to cultured keratinocytes together with the extracts of interest. The gene expression was then measured from cDNA using quantitative PCR (qPCR). Figure 10 shows an overview of the main steps of the assay and each step includes more specific steps described below. This experiment was only performed on four extracts due to limited access to the labs after the outbreak of SARS-CoV-2.

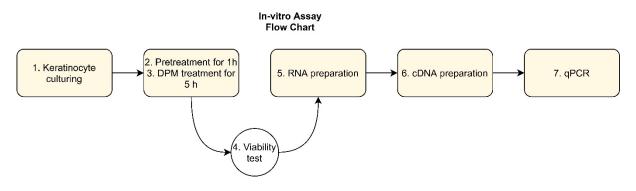



Figure 10. Overview of the main steps of pollution induced CYP1A1 gene expression experiment.

First, keratinocyte cells were cultured into a 48-well plate. Unfortunately, the cells on half of the plates did not survive, therefore only half of two plates were used, see figures 11 and 12. For each extract and each concentration, four replicates were prepared, two for the gene expression experiment and two for the viability experiment as can be seen in figures 11 and 12.

The wells used for compounds and control were pretreated with compound 1 hour prior to DPM treatment. DPM and vehicles were then added, and the cells were incubated for 5h at 37 °C. After 5h the media was removed, and the wells were washed with PBS. 300  $\mu$ L RLT buffer was added to the cells prepared for gene expression to lyse them. The lysate was then transferred to RNase free 1.5 mL Eppendorf tubes and put at -20 for RNA/qPCR analysis to be carried out another day.

| Gene e                             | xpression                          | Viat                               | oility                             |  |  |
|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|--|
| UT/Vehicle                         | UT/Vehicle                         | UT/Vehicle                         | UT/Vehicle                         |  |  |
| DPM                                | DPM                                | DPM                                | DPM                                |  |  |
| Kale brown<br>juice 100 µM         |  |  |
| Kale green<br>juice 10 µM          |  |  |
| Lucerne<br>white protein<br>100 µM | Lucerne<br>white protein<br>100 µM | Lucerne<br>white protein<br>100 µM | Lucerne<br>white protein<br>100 µM |  |  |
| Lucerne<br>white protein<br>10 µM  | Lucerne<br>white protein<br>10 µM  | Lucerne<br>white protein<br>10 µM  | Lucerne<br>white protein<br>10 µM  |  |  |

Figure 11. Lay-out for the first 48-well plate where the right half of the cells are dead. The two columns to the left are used for gene expression and each extract is done in duplicates. The two columns to the right are used for viability experiment and are done in duplicates. UT/Vehicle = not treated with DPM, DPM = treated with DPM but no extract is added, the rest are the two extracts Kale brown juice and Lucerne white protein that are added in two concentrations 100  $\mu$ M and 10  $\mu$ M.

| Gene e                       | xpression                    | Viat                         | oility                       |  |  |
|------------------------------|------------------------------|------------------------------|------------------------------|--|--|
| UT/Vehicle                   | UT/Vehicle                   | UT/Vehicle                   | UT/Vehicle                   |  |  |
| DPM                          | DPM                          | DPM                          | DPM                          |  |  |
| Lucerne<br>Leaves 100<br>µM  | Lucerne<br>Leaves 100<br>µM  | Lucerne<br>Leaves 100<br>µM  | Lucerne<br>Leaves 100<br>µM  |  |  |
| Lucerne<br>Leaves 10 µM      | Lucerne<br>Leaves 10 µM      | Lucerne<br>Leaves 10 µM      | Lucerne<br>Leaves 10 µM      |  |  |
| Quercetin 10<br>µM (control) | Quercetin 10<br>µM (control) | Quercetin 10<br>µM (control) | Quercetin 10<br>µM (control) |  |  |
| Sugar beet<br>fiber 10 µM    |  |  |

Figure 12. Lay-out for the second 48-well plate where the right half of the cells are dead. The two columns to the left are used for gene expression and each extract is done in duplicates. The two columns to the right are used for viability experiment and are done in duplicates. UT/Vehicle = not treated with DPM, DPM = treated with DPM but no extract is added, the rest are the extract Lucerne leaves that is added in two concentrations 100  $\mu$ M and 10  $\mu$ M, sugar beet fiber that is added in one concentration 10  $\mu$ M due to lack of space, and the control Quercetin that is added in the concentration 10

Before continuing to RNA extraction, the cell viability test was performed (the same day as cell treatment) with a Cell Titer-Glo kit, see table A3 in Appendix 1. This was done to calculate the viability of the cells. The cells needed to have > 80% viability to be usable for the experiment. The media in the rest of the wells (the ones for viability) were first replaced with 100  $\mu$ L PBS and 100  $\mu$ L Cell Titer-Glo reagent that were mixed to induce cell lysis. The cells were incubated at room temperature for 10 minutes and then transferred to a 96-well plate before reading (200  $\mu$ L of each well). The luminescent signal was measured using a spectrophotometer microplate reader.

RNA synthesis was done for the cells that had been exposed to the highest concentration of extract given they had viability > 80%. The cells were taken out from the freezer and 300  $\mu$ L 70% ethanol was added to each tube and the cell suspension was carefully mixed before transferred to spin columns placed in 2 mL collection tubes. The tubes were centrifuged for 15 s at 18000 x g. The collected media was discarded and 350 µL RW1 buffer was added to remove biomolecules (e.g. carbohydrates, fatty acids and proteins). The tubes were centrifuged again at the same conditions, discarded and repeated once more. Then 500 µL RPE buffer was added to remove salts, the tubes were spun as before but for two minutes and the media discarded, this was also repeated once more. To make sure all liquid was gone, the spin column was placed in a new 1.5 mL Eppendorf tube and spun for 1 min. The Eppendorf tube was discarded, and the column placed in a new one. This time, 30 µL RNase-free water was added directly to the column membrane, it was centrifuged for 1 min and now the RNA had left the membrane and was placed in the Eppendorf tube. The column was discarded, and the Eppendorf tube saved and marked. Using Nanodrop the concentration of RNA was estimated, 2 µL of each sample was measured at absorbance ratio 260 nm/280 nm. This was done to see that the concentration was high enough to proceed to the next step.

In order to look at the CYP1A1 gene expression the RNA had to be converted to cDNA. From each sample of RNA two new samples were prepared by doing the following steps in duplicates. In a PCR plate, 15  $\mu$ L RNA was transferred from each sample, 4  $\mu$ L 5x iScript advanced reaction mix and 1  $\mu$ L iScript advanced reverse transcriptase were then added to each well and mixed. The plate was sealed using a sticky film and then run through the qPCR. The reversed transcription in the qPCR ran at 42 °C for 30 minutes and the procedure ended with inactivation at 85 °C for 5 minutes.

After cDNA synthesis a BIORAD CFX Connect Real-Time qPCR System was used to monitor the DNA via fluorescent signals. qPCR enables real time monitoring while the DNA amplifies until it reaches a threshold where a Ct value is given and the lower amount of DNA, the higher the Ct value since it takes longer until the threshold is reached. In the last step, each sample was duplicated and for the two samples (same origin), two different mixes were prepared, one using the CYP1A1 primers to find the Ct value for that gene expression and one using primers for the housekeeping gene GAPDH. They were prepared in a PCR plate but first, the cDNA was diluted 1:2 in RNase free water. Then it proceeded as following: 10  $\mu$ L of SYBR green mix (containing DNA polymerase required for reaction and fluorescent dye) was added to all used wells, 5  $\mu$ L diluted cDNA was added to the corresponding wells, 1  $\mu$ L primer (CYP1A1 or GAPDH) was added as well as 4  $\mu$ L RNase free water before mixing. The qPCR plate was placed in the qPCR which was run as following: 95 °C for 2 minutes for enzyme activation, then 40 cycles 95 °C for 10 seconds and 60 °C for 30 seconds.

#### 3.1.5.1 Calculations

The fold change was calculated in several steps. First the Ct values were calculated for each gene replicate. The Ct value represents the number of cycles required for the fluorescent signal to cross the threshold representing the background level. Then the Ct value for the reference gene (GAPDH) was compared to the Ct of the target gene (CYP1A1) by calculating the difference,  $\Delta$ Ct. The Ct values and the  $\Delta$ Ct values were calculated for both treated and untreated cells so that the difference between the two  $\Delta$ Ct could be calculated,  $\Delta\Delta$ Ct. The fold change was then finally calculated by assuming that in each cycle, the transcript was doubled.

$$\Delta Ct_1 = Ct(CYP1A1_{treated} - GAPDH_{treated}) \tag{6}$$

$$\Delta Ct_2 = Ct(CYP1A1_{untreated} - GAPDH_{untreated})$$
<sup>(7)</sup>

 $\Delta \Delta C t = \Delta C t_1 - \Delta C t_2 \tag{8}$ 

(9)

Fold change =  $2^{-\Delta\Delta Ct}$ 

#### 3.1.6 In-Silico Target Prediction

Reaxys (https://www.reaxys.com/#/search/quick) is a digital platform with information about plants, substances and targets. For instance, if it is desired to know what compounds are present in kale that have a molecular weight between x and y and have biological activity in human or any other characteristics that might be of interest, Reaxys database have the tools to get results. The same way it can be used to find targets for a specific compound, e.g human target. In this project the Reaxys system was used to predict human targets for the compounds identified in the extracts and thereby predict possible activities and targets for the whole extract.

After a list of identified compounds had been made in section 3.2.3, that information could be used to look for interesting targets in human skin. Each compound was screened through Reaxys, limiting the data to activity of >3 pX<sup>1</sup> and human target only an excel file containing physical data and data of drug likeness (such as Lipinski's variables) was downloaded and compared to another file more specific to target. The second file was prepared by opening a so-called Heat map where all human targets were listed together with pX value, after downloading this file as well a tidy table was created with the following information:

- Plant species and chemical name of the compound
- Molar weight, log P, H-bond acceptor, H-bond donor and rotable bonds
- Target uniport ID
- Type of action
- Value and unit of activity

Analysing the target uniport ID for each target in the website "the human protein atlas" (https://www.proteinatlas.org/), the target acronym could be identified as well as the level of

<sup>&</sup>lt;sup>1</sup> The value of pX is defined as a measurement of activity for the substrate to each target. The activity data that Reaxys uses is taken from literature and might therefore be described differently for different targets and substrates. The pX is therefore a way of comparing these activities between the targets and can therefore not be defined with a unit.

protein expression in the three different human skin cells: fibroblasts, keratinocytes and melanocytes. These results were then added to the tidy table resulting in a list of what target each compound is predicted to have and how active it is in the skin. Depending on what information that is desired, more specific parameters can be chosen such as the substance action on target (e.g. agonist, antagonist, inhibitor, stimulator etc), bioassay category (e.g in vitro, metabolism), type of activity (e.g. inhibition, IC50, EC50) or target species (e.g. human, mouse, mango).

# Chapter 4: Results

This chapter includes the results of the identification of compounds, results of the activity from the primary screening assays as well as target prediction from the database study.

## 4.1 Identification

Results from LC/MS analysis show that there are interesting compounds found in the different fractions of each plant and some are found in more than one. In table 4 the compounds are shown as C1-C76 and figure 13 shows an example of what a chromatogram can look like. Each peak represents a compound present in the extract and the intensity of the peak (the area) is a measurement of the quantity of the compound. The latter was not calculated or used in this project.

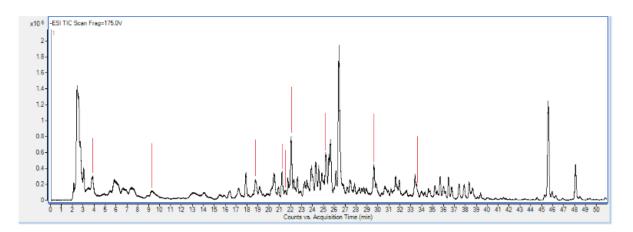



Figure 13. The figure shows a chromatogram of one of the extracts analyzed. This is an example of the results retrieved from LC/MS analysis. Some of the peaks are identified by mass and compound name.

The results in table 4 show that the composition in the fractions of the same plant are very similar whereas the plants show very different compositions compared to each other. Sugar beet and Red beet are the same species and have very similar composition. The compounds identified, C1-C76, were categorized into the different subgroups of polyphenols: flavonoids, phenolic acids and other phytochemicals, according to section 2.5. The matrix shows that every plant material is composed of flavonoids, the yellow boxes. Lucerne, Crimson clover and Phacelia are also composed of phenolic acids, green boxes, where Phacelia had most phenolic acids and then Sugar beet and Red beet included one phenolic acid for only a few fractions. Oil radish did not include any phenolic acids in the fractions. The blue boxes represent other phytochemicals and include for instance carbohydrates, lipids and terpenoids. These compounds were present in most plant material except for Phacelia.

|                      | Plant and            |   | Lu | iceri    | ne       |          |   |    | Kale     |          |          |          | Cri      | mso      | n Clo | over     |          |          |          | Pha | celia    | 1        |          |          | (  | Dil R    | adisl | h        |    |          | Red      | Bee      | t        |          | Sug                | ar Be | eet    |    |
|----------------------|----------------------|---|----|----------|----------|----------|---|----|----------|----------|----------|----------|----------|----------|-------|----------|----------|----------|----------|-----|----------|----------|----------|----------|----|----------|-------|----------|----|----------|----------|----------|----------|----------|--------------------|-------|--------|----|
|                      | Fraction             |   |    | -        |          |          |   |    |          |          |          |          | 1        | 1        |       |          |          |          |          |     | -        | 1        |          |          |    |          |       | -        |    |          |          | 1        |          |          |                    |       |        |    |
|                      | Identified compounds | F | GJ | BJ       | WP       | L        | F | GJ | GP       | BJ       | WP       | F        | GJ       | GP       | BJ    | WP       | WJ       | F        | GJ       | GP  | BJ       | WP       | WJ       | F        | GJ | GP       | BJ    | WP       | WJ | GJ       | GP       | BJ       | WJ       | F        | GJ                 | GP    | BJ     | WP |
|                      | C5                   |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C6                   |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C8                   |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C9                   |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C10                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    | _     |        |    |
|                      | C11                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    | -        |          | -        |          |          |                    |       |        |    |
|                      | C12<br>C18           |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    | _     |        |    |
|                      | C18<br>C20           |   |    |          |          |          |   |    |          |          |          |          |          |          |       | -        | -        |          |          |     |          |          |          |          |    |          |       |          |    | -        | -        | -        |          |          |                    | _     |        |    |
|                      | C25                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       | -        | -        |          |          |     |          |          |          |          |    |          |       |          |    | -        | -        | -        |          |          |                    | _     |        |    |
|                      | C26                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    | _     | _      |    |
|                      | C27                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C32                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C33                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C34                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
| s                    | C35                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
| oid                  | C37                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
| ū                    | C39                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          | <u> </u> |          |                    |       |        |    |
| Flavonoids           | C40                  |   |    |          |          | -        |   |    |          |          |          |          | -        | -        |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          | <u> </u> |                    |       |        |    |
| "                    | C44<br>C46           |   |    | -        | ┣—       | <u> </u> |   |    | -        | -        | -        |          |          |          |       |          |          |          | -        |     |          |          | -        | $\vdash$ | -  |          | -     | -        |    | ┢─       |          |          |          | <u> </u> |                    |       | _      |    |
| 1                    | C46<br>C47           | - |    | -        | -        | -        |   |    | -        | -        | -        |          |          |          |       |          |          |          |          |     |          |          |          |          | -  | -        | -     | -        | -  |          |          |          |          | -        |                    |       |        |    |
| 1                    | C50                  | - |    |          | $\vdash$ | -        |   |    |          |          |          |          |          |          |       | ┢        |          |          |          |     |          | -        |          |          |    |          |       |          |    |          |          |          |          |          |                    |       | _      |    |
|                      | C52                  |   |    | $\vdash$ | 1        |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     | $\vdash$ |          |          |          |    |          |       | $\vdash$ | -  | t        | 1        | t        |          |          |                    |       | $\neg$ |    |
|                      | C53                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    | 1        |          | 1        |          |          |                    |       |        |    |
| 1                    | C54                  |   |    |          | L        | L        |   |    |          |          |          | L        | L        |          |       |          | L        | L        |          |     |          | L        |          |          |    |          |       |          | L  | L        | L        | L        | L        | L        |                    |       |        |    |
|                      | C56                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C57                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C58                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C59                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C60<br>C66           |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    | _     |        |    |
|                      | C67                  |   |    |          | -        |          |   |    |          |          |          |          |          |          |       | -        | -        |          |          |     |          |          |          |          |    |          |       |          |    | -        | -        | -        |          |          |                    | _     |        | _  |
|                      | C69                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    | _     |        |    |
|                      | C74                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C76                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C3                   |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C7                   |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
| s                    | C19<br>C45           |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
| Phenolic acids       | C45<br>C48           |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       | -      |    |
| ic.                  | C55                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    | 1        |          | 1        |          |          |                    | _     |        |    |
| bua                  | C62                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
| Phe                  | C63                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C64                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C65                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C68<br>C1            |   |    |          | -        |          |   |    |          |          |          |          |          |          |       | -        | -        |          |          |     |          |          |          |          |    |          |       |          |    | -        | -        | -        |          |          |                    | _     |        |    |
|                      | C1<br>C2             |   |    |          | -        |          |   |    |          |          |          |          |          |          |       | -        | -        |          |          |     |          |          |          |          |    |          |       |          |    | -        | -        | -        |          |          |                    |       |        |    |
|                      | C4                   |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C13                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
| 1                    | C14                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C15                  |   |    |          |          |          |   |    |          |          |          | <u> </u> | <u> </u> | <u> </u> | _     |          |          | <u> </u> |          |     |          | <u> </u> |          |          |    |          |       |          | _  |          |          |          |          | <u> </u> |                    | [     | ]      |    |
| 1                    | C16                  |   |    |          |          | -        |   |    |          |          |          |          | -        | -        |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    | _        |          | _        |          |          |                    |       |        |    |
| 1                    | C17<br>C21           |   |    | _        | <u> </u> |          |   |    | -        | -        | -        |          | <u> </u> | <u> </u> | -     | <u> </u> | <u> </u> |          | -        |     | _        |          | -        |          | -  | -        | -     | _        | -  | $\vdash$ | <u> </u> | $\vdash$ | <u> </u> |          |                    |       | _      |    |
|                      | C21<br>C22           | - |    | -        | 1        |          |   |    | -        | -        | -        | -        | -        | -        | -     | 1        | 1        | -        | -        |     | -        | -        | -        |          | -  | -        | -     | -        | -  | $\vdash$ | 1        | $\vdash$ | 1        | -        |                    |       | -      |    |
| s                    | C22                  |   |    |          |          |          |   |    |          |          |          |          |          |          | -     |          |          |          |          |     |          |          |          |          |    |          |       |          | -  | t        |          | t        |          |          |                    |       | $\neg$ |    |
| ica                  | C24                  |   |    |          |          |          |   |    |          |          |          | 1        |          |          |       | 1        | 1        | 1        |          |     |          | 1        |          |          |    |          |       |          |    | 1        | 1        | 1        | 1        | 1        |                    |       |        | _  |
| em                   | C28                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
| усh                  | C29                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       | ]      |    |
| Other phytochemicals | C30                  |   |    | _        | <u> </u> | <u> </u> |   |    | L        |          | L        | <u> </u> | <u> </u> | <u> </u> |       | <u> </u> | <u> </u> | <u> </u> | L        |     | _        | <u> </u> | L        | H        | L  | L        | L     | _        |    | -        | <u> </u> | -        | <u> </u> | <u> </u> |                    |       |        |    |
| ųd .                 | C31<br>C36           |   |    | _        | <u> </u> | <u> </u> |   |    | -        |          | -        |          | <u> </u> | <u> </u> | -     | <u> </u> | <u> </u> |          | -        |     | _        |          | -        |          | -  | -        | -     | _        | -  | $\vdash$ | <u> </u> | $\vdash$ | <u> </u> |          |                    |       | _      |    |
| her                  | C36<br>C38           | - |    |          | $\vdash$ | -        |   |    | -        |          |          |          |          |          |       |          |          |          | -        |     |          |          | -        |          | -  | -        | -     |          |    | -        | $\vdash$ | -        | -        |          | $\left  - \right $ |       |        |    |
| ot                   | C38<br>C41           |   |    | -        | ŀ        | -        |   |    | -        | -        |          |          |          |          |       |          |          | -        | -        |     | -        | -        | -        |          | -  | -        | -     | -        |    |          |          | 1        | 1        | -        |                    |       | -      |    |
| 1                    | C42                  |   |    |          | 1        |          |   |    |          |          |          |          |          |          |       | 1        | 1        |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          | 1        |          |                    |       | $\neg$ |    |
| 1                    | C43                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
|                      | C49                  |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    |          |          |          |          |          |                    |       |        |    |
| 1                    | C51                  |   |    |          | <u> </u> | L        |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          | L        |          |          |    |          |       |          |    | _        | <u> </u> | _        | <u> </u> | L        |                    |       |        |    |
| 1                    | C61                  |   |    |          |          | -        |   |    |          |          |          |          |          | -        |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    | <u> </u> |          | _        |          |          |                    |       |        |    |
|                      | C70<br>C71           |   |    | -        | ┣—       | -        |   |    | -        | -        | -        | <u> </u> | -        | -        | -     | ┣—       | ┣—       | <u> </u> | -        |     | -        | <u> </u> | -        | $\vdash$ |    |          |       |          | F  | ⊢        | ┣—       | ⊢        | ┣—       | <u> </u> |                    |       | _      |    |
| 1                    | C71<br>C72           | - |    |          | $\vdash$ | -        |   |    | -        | -        | -        |          | -        | -        |       | $\vdash$ | $\vdash$ |          | -        |     |          |          | -        |          |    |          |       |          |    | -        | $\vdash$ | -        | -        |          | $\left  - \right $ |       |        |    |
| 1                    | C72                  | - |    |          | $\vdash$ | -        |   |    |          |          |          | -        | -        | -        |       | $\vdash$ | $\vdash$ | -        |          |     |          | -        |          |          |    |          |       |          |    |          | $\vdash$ |          | -        | -        |                    |       | _      |    |
|                      | C75                  |   |    | $\vdash$ | t –      | -        |   |    | $\vdash$ | $\vdash$ | $\vdash$ |          | -        | -        | -     | t –      | t –      |          | $\vdash$ |     | $\vdash$ |          | $\vdash$ |          |    | $\vdash$ |       | $\vdash$ |    | $\vdash$ | t –      |          |          |          |                    |       | -      |    |
|                      |                      |   |    |          |          |          |   |    |          |          |          |          |          |          |       |          |          |          |          |     |          |          |          |          |    |          |       |          |    | ,        |          |          |          |          |                    |       |        |    |

Table 4. Matrix of compounds identified and where they are present. The compounds are named C1-C76 but represent actual compounds. F=Fiber, GJ=Green juice, GP =Green protein, BJ=Brown juice, WP=White protein, WJ=White juice and L=Leaves.

### 4.2 Antioxidant Activity Investigated Using the DPPH Method

The extracts in graph a and b were analysed simultaneously and the extracts in graph c were analysed at another time. %Radical inhibition of Vitamin C (the control) was 80% in the first experiment and 78% in the second experiment which is above the limit, 70%, which makes the experiments valid.

60% Radical inhibition or more was seen in three extracts: Phacelia green protein, Crimson clover fiber and Oil radish white protein. Some extracts (Phacelia fiber, Crimson clover green protein, Crimson clover white protein, Oil radish green protein and Red beet green protein, Red beet brown juice, Red beet white juice, Sugar beet brown juice, Lucerne white protein, Lucerne brown juice, Kale brown juice, Sugar beet green protein, Sugar beet green juice and Lucerne leaves) had medium radical inhibition (between 30-60%). The rest of the extracts had lower than 30% Radical inhibition or no radical inhibition at all. Figure 14 shows the average results for the assay, note that negative values do not imply activation of radical scavenging, but they imply there is no activity in the extracts.

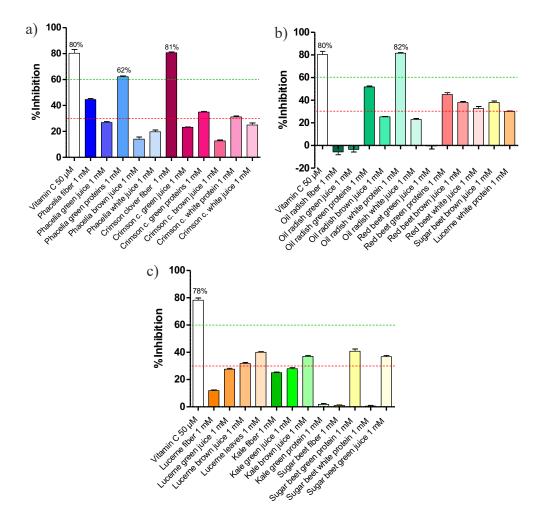



Figure 14. The three graphs a, b and c show the %radical inhibition for 35 extracts from the DPPH method. The values represent mean+/- SD. Each experiment was done n=3 times and each extract in the experiments was done in triplicates. Vitamin C, which is represented to the left in white in all three graphs, is the control. The red dashed line represents the 30% inhibition which is the lower limit for inhibitive effect and the green dashed line represents the 60% inhibition which is the lower limit for good inhibitive effect.

There were high activities for both Crimson clover fiber (80%) and for Oil radish white protein (80%) and the decision was made to continue analyzing the antioxidant activities of these two extracts with IC50. Although there was not enough extract to perform the assay on Oil radish white protein and more of it will have to be extracted for it to be done and therefore only IC50 was determined for Crimson clover fiber. The IC50 value for crimson clover fiber was calculated to 0.34 mM p. In this method a low value is what you strive for since a lower amount would be needed for higher inhibition. Figure 15 shows the IC50 curve along with the calculated IC50 value.

IC50 for Crimson Clover Fiber Fraction

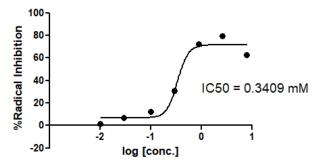



Figure 15. The graph shows the IC50 curve for the Crimson clover fiber extract. The IC50 value is calculated by plotting the logarithmic concentration against the %Radical inhibition and the value is the concentration where there is 50% inhibition.

# 4.3 Anti-Glycation Activity Using the Fluorescence of BSA-Ribose Reaction Products

The graphs in figure 16 show the percentage inhibition from the extracts from the experiments. Rutin 1 mM was used as a control for the assay and had 92%, 92% and 89% inhibition in the respective plates (1, 2 and 3) that are higher than 84% required for the validity of the assay. The anti-glycation assay shows that Kale brown juice, Lucerne white protein, Sugar beet brown juice, Crimson Clover fiber, Oil radish green juice, Oil radish white juice, Red beet brown juice and Lucerne leaves extracts had good effect on glycation inhibition. Phacelia fiber and Kale fiber had no effect on glycation inhibition and the rest of the extracts had medium effect on glycation inhibition. This is shown in figure 16.

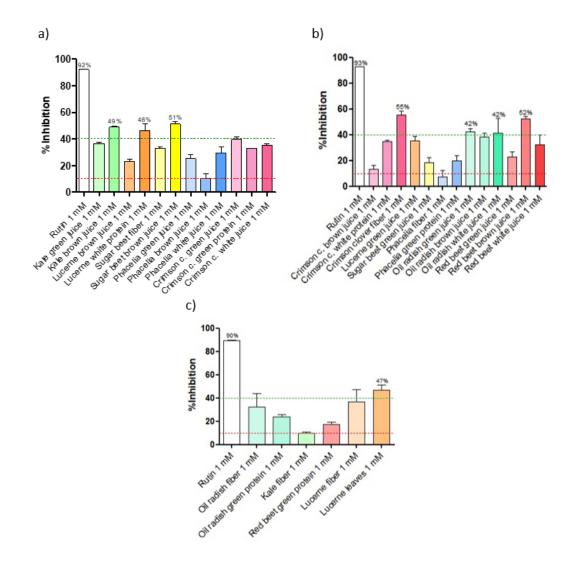



Figure 16. The three graphs a, b and c show the percentage inhibition of glycation for 31 extracts determined using the glycation inhibition method. The values represent mean+/- SD. Each extract in the experiment was done in triplicates. Rutin, which is represented to the left in white in all three graphs, is the control. The red dashed line represents the 10% inhibition which is the lower limit for inhibitive effect and the green dashed line represents the 40% inhibition which is the lower limit for good inhibitive effect.

The next step would be to examine the IC50 analysis of the extracts with %inhibition above 40%. As seen in the graphs, the %inhibition is around 50% for all eight extracts at 1 mM p which would mean that higher concentrations would need to be analyzed for the IC50. This could be difficult since the solutions were prepared 100 mM p in DMSO and higher concentrations could be hard to achieve due to small amount of extracts and difficulties to dissolve in higher concentration. This also indicates that the IC50 for the extracts are around 1 mM p.

## 4.4 Depigmentation Measured Using a Tyrosinase Inhibition Assay

The graphs in figure 17 show the percentage inhibition of Kojic acid and the extracts from the experiment. Kojic acid 156  $\mu$ M was used as a control for the assay and had 92% inhibition that is higher than 90% required for the validity of the assay. Phacelia green juice extract had medium anti-tyrosinase activity with 45% inhibition. The rest of the extracts had no anti-tyrosinase activity. Again, note that negative values do not imply activation of the enzyme, but

they imply there is no activity in the extracts. Due to the lack of activity in these extracts the decision was made not to repeat the experiment n=3 times which normally is required for secure results. No IC50 analysis was performed since no extracts showed high activity.

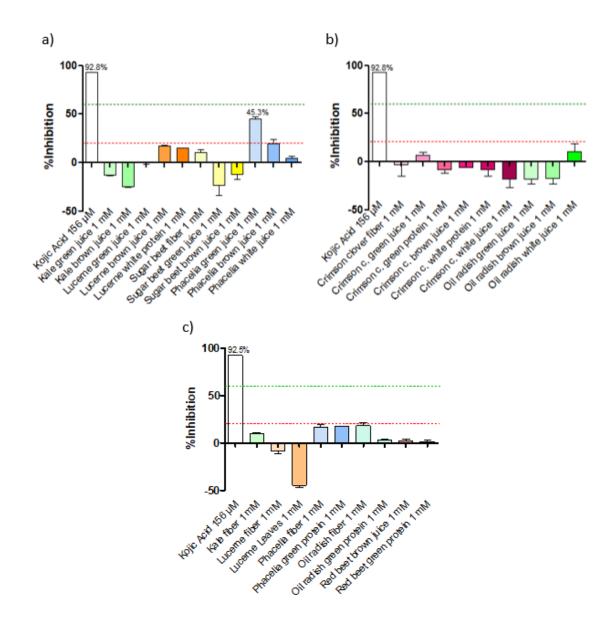



Figure 17. The graphs a, b and c show the percentage inhibition of the enzyme Tyrosinase for 29 extracts determined using the depigmentation assay. Graphs a and b represent plate 1 and graph c represent plate 2. The values represent mean+/- SD. Each extract in the experiment was done in triplicates. Kojic Acid, which is represented to the left in white in all three graphs, is the control. The red dashed line represents the 20% inhibition which is the lower limit for inhibitive effect and the green dashed line represents the 60% inhibition which is the lower limit for good inhibitive effect.

### 4.5 Kallikrein-Related Peptidase 5 Inhibition Assay

The graphs in figure 18 show the percentage inhibition of the SBTI and the extracts from the experiment. SBTI 1  $\mu$ M was used as a control for the assay and had 99% inhibition that is higher than 80% required for the validity of the assay. Three extracts, Sugar beet brown juice, Lucerne fiber and Lucerne leaves had medium inhibition activity on KLK5. Many of the extracts had negative result as shown in the figure, note that this does not imply activation of

the enzyme, but they imply there is no activity in the extracts. As for the tyrosinase inhibition assay, the decision was made not to repeat the experiment n=3. No IC50 analysis was performed since no extracts showed high activity. Although, Lucerne fiber had relatively high activity and it could be interesting to do an IC50 on that extract.

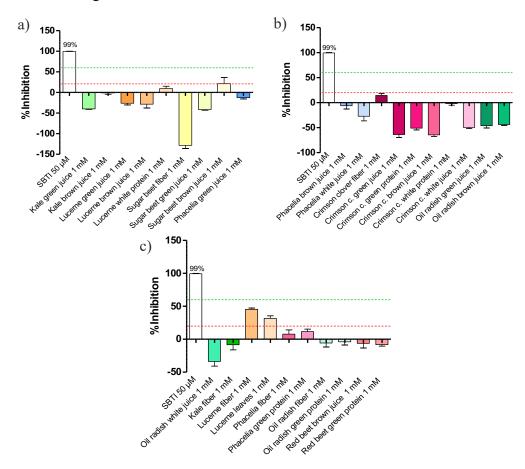



Figure 18. The three graphs a, b and c show the percentage inhibition of KLK5 for 29 extracts determined using the KLK% inhibition assay. The values represent mean+/- SD. Each extract in the experiment was done in triplicates. SBTI, which is represented to the left in white in all three graphs, is the control. The red dashed line represents the 20% inhibition which is the lower limit for inhibitive effect and the green dashed line represents the 60% inhibition which is the lower limit for good inhibitive effect.

### 4.6 Pollution Induced CYP1A1 Gene Expression

The viability test showed positive results, see figure 19. According to these results the highest concentration (100  $\mu$ M) was chosen for RNA expression analysis for Kale green juice and Lucerne white protein. For Sugar beet fiber, only one concentration was used (10  $\mu$ M) and therefore used for RNA analysis. The lowest concentration (10  $\mu$ M) was chosen for Lucerne leaves since the higher one (100  $\mu$ M) was below the accepted limit of 80%.

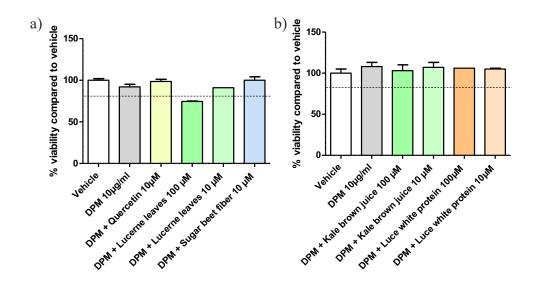



Figure 19. The diagrams show the % viability of the cells after 6 hours treatment with DPM and extracts. The dashed lines represent the lowest accepted % viability which is 80%.

Figure 20 shows the two graphs representing the gene expression in the cells for the different media. Vehicle did not have DPM or extract present and therefore the gene expression is low representing the normal CYP1A1 gene expression of the cells (untreated). DPM treatment of the cells significantly up regulated the gene expression of CYP1A1 on both plates (grey bars). The control compound Quercetin significantly downregulated the DPM induced gene expression back to the original level (yellow bars). Lucerne white protein extract also significantly downregulated the DPM induced CYP1A1 gene expression back to the original level (orange bar). The Kale brown juice and Sugar beet fiber extracts downregulated the gene expression, but not as significantly as Lucerne white protein (green and blue bars in graph b). The Lucerne leaves extract did not downregulate the DPM induced gene expression (green bar in graph a). Downregulation is desired for this assay since that implies the extracts protect the cells from DPM and prohibit the expression of the CYP1A1 gene.

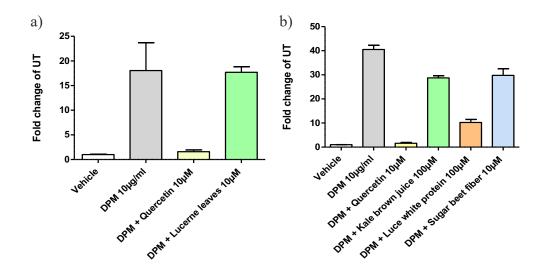



Figure 20. Graph a and b show the DPM induced CYP1A1 gene expression of the cells after 6 hours treatment with DPM and extracts. The white bars represent the vehicle where no DPM or extracts are added, the grey bars represent the DPM without extracts and therefore the gene expression is significantly upregulated compared to vehicle. The yellow bars are the control Quercetin that significantly downregulates the gene expression and validate the assay. The green, orange and blue bars represent the DPM + extracts.

## 4.7 Target Prediction

The target prediction via Reaxys gave results that can be found in table 5. In the table, the compounds (C1-C76), that were identified in 4.1, are matched to the targets that they were predicted to have activity on. The activities are ranked from low (light grey) to medium (grey) to high (dark grey) and only the 22 compounds that had targets in the skin are shown together with their corresponding phytochemical groups.

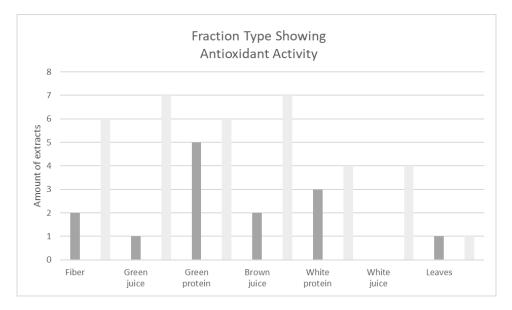
In table 6 the results from table 4 and 5 are compared resulting in a new table where the targets are identified for each extract. For Sugar beet, Red beet and Oil radish there were only a few targets identified and the skin expression was very low. This is seen by the lack of grey boxes to the right in the table. Sugar beet fiber, Phacelia fiber and Oil radish fiber, green juice and brown juice did not give any results. Kale matched some targets with low skin expression, Lucerne had similar results but also one target with medium skin expression and one with high skin expression. The rest of the Phacelia extracts matched some of the targets mainly with medium skin expression. The last crop, Crimson clover, had the strongest results where targets ranged from low to high skin expression and Crimson clover green juice stand out where it has seven targets with medium skin expression.

|                  |    |    |     |     |     | Flavo | Flavonoids |     |     |     |     |     | Phenolic acids |     |     |     | Other pl |     |     | phytochemicals |     |                                              |
|------------------|----|----|-----|-----|-----|-------|------------|-----|-----|-----|-----|-----|----------------|-----|-----|-----|----------|-----|-----|----------------|-----|----------------------------------------------|
| Compound         | C6 | С9 | C10 | C20 | C32 | C33   | C34        | C40 | C44 | C50 | C52 | C69 | C62            | C63 | C64 | C68 | C14      | C15 | C17 | C38            | C48 | C61                                          |
| Target           | 6  | C9 | 010 | C20 | C32 | 55    | C54        | C40 | C44 | 00  | C52 | 09  | C02            | 05  | C04 | 008 | C14      | C15 | C17 | 50             | C40 | 001                                          |
| ABCG2            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\vdash$                                     |
| AKR1B1           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\vdash$                                     |
| AKR1C1<br>AKR1C3 |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | <u> </u>                                     |
| AKR1C3           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| ALOX15           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CA1              |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CA12             |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CA14             |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CA2              |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\vdash$                                     |
| CA4<br>CA5B      |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | <u> </u>                                     |
| CA3B<br>CA7      |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\vdash$                                     |
| CBR1             |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CDK5             |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| COMT             |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CSNK2A1          |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CYP19A1          |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\square$                                    |
| CYP1A1           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\vdash$                                     |
| CYP1A2<br>CYP1B1 |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | <u>                                     </u> |
| CYP1B1<br>CYP2A7 |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CYP2C19          |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CYP2C9           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CYP2D6           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CYP2E1           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| CYP3A4           |    |    |     |     |     |       | -          | -   |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| DCK              |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| DCXR             |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | -                                            |
| DPP4<br>DYRK1A   |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | <u> </u>                                     |
| DYRK2            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| EGFR             |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| EGLN1            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| EPHX2            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| ESR2             |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| FFAR1            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\vdash$                                     |
| FFAR4<br>FTO     |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| GLS              |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | <b>—</b>                                     |
| GSTP1            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| HSD17B1          |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| HSD3B2           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| KDM2A            |    |    |     |     |     |       | -          | -   |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| КНК              |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\square$                                    |
| MAOA<br>MAPK8    |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | <u> </u>                                     |
| NCOA1            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\vdash$                                     |
| NQO2             |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| NR1I2            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| NR3C1            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| P2Y2             |    |    |     |     |     |       |            | -   |     |     |     |     |                |     |     |     |          |     |     |                |     | $\square$                                    |
| PDGFRB           |    |    |     |     |     |       |            |     |     |     |     |     |                |     | L   |     |          |     |     |                |     | $\vdash$                                     |
| PIK3R1           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | ┝──┤                                         |
| PPARA<br>PPARG   |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | ┝──┤                                         |
| PPARG<br>PRKG2   |    |    |     |     |     |       |            |     |     |     |     |     |                |     | -   |     |          |     |     |                |     | $ \square$                                   |
| PTGS1            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| PTGS2            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| PTPN1            |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| RPS6KA1          |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| RPS6KA3          |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     |                                              |
| SLC2A1           |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\mid$                                       |
| SLCO2B1          |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | $\vdash$                                     |
| SYK<br>TOP2B     |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | <u> </u>                                     |
| TYR              |    |    |     |     |     |       |            |     |     |     |     |     |                |     |     |     |          |     |     |                |     | ┢──┤                                         |
| UGT1A1           |    |    |     |     | -   |       |            |     |     | -   |     |     |                |     |     |     |          |     |     |                |     |                                              |
| 5511/1           |    |    |     | l   |     |       |            |     |     |     |     | L   | L              | l   |     | L   |          |     |     |                |     |                                              |

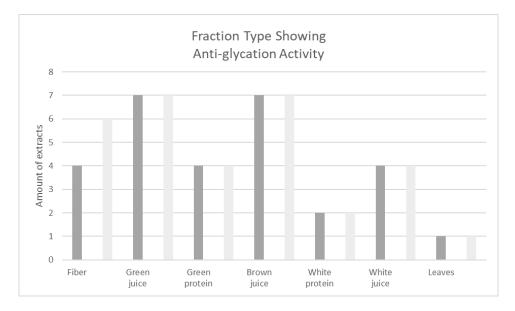
Table 5. Matrix of the compounds predicted to have biological activity. The x-axis shows the 22 compounds that are predicted to have activity and their corresponding phytochemical groups and the y-axis show the targets in the skin.

| Plan               | nt and |   | Lu | icer | ne |   |   |          | Kale     | è  |          |   | Crir | nsoi     | n Cl | over |          |   |           | Pha | celi      | а  |           |   | (        | Dil R    | adis | sh |    |    | Red      | Bee | t  |   | Sug       | ar B | leet |    |
|--------------------|--------|---|----|------|----|---|---|----------|----------|----|----------|---|------|----------|------|------|----------|---|-----------|-----|-----------|----|-----------|---|----------|----------|------|----|----|----|----------|-----|----|---|-----------|------|------|----|
|                    | oction | - |    |      | 1  |   | - | 1        |          |    |          |   |      |          |      |      |          | - |           |     |           |    |           | - |          |          |      |    |    |    |          | I   | 1  | - |           |      |      |    |
| Targets            |        | F | GJ | RÌ   | WP | L | F | GJ       | GP       | RÌ | WP       | F | GJ   | GP       | RÌ   | WP   | WJ       | F | GJ        | GP  | RÌ        | WP | WJ        | F | GJ       | GP       | RÌ   | WP | wJ | GJ | GP       | RÌ  | WJ | F | GJ        | GP   | RÌ   | WP |
| ABCG2              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| AKR1B1             |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| AKR1C1<br>AKR1C3   |        |   |    |      |    |   |   |          |          |    |          |   |      | _        |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| AKR1C3             |        |   |    |      |    |   |   |          |          |    |          |   |      | _        |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           | _    |      |    |
| ALOX15             |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CA1                |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CA12               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CA14               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CA2<br>CA4         |        |   |    |      |    |   |   |          |          |    |          |   |      | _        |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    | -        |     |    |   |           |      |      |    |
| CA5B               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CA7                |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CBR1               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CDK5               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| COMT               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CSNK2A1<br>CYP19A1 |        |   |    |      |    | - | - | -        | $\vdash$ |    |          |   | -    | -        | -    | -    | -        | - | $\vdash$  |     | $\vdash$  |    | $\vdash$  |   | -        | $\vdash$ |      |    | -  | -  | -        | -   | -  | - | $\vdash$  |      |      |    |
| CYP19A1<br>CYP1A1  |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    | $\square$ |   |          |          |      |    |    |    |          |     |    |   | $\square$ |      |      |    |
| CYP1A2             |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    | t        |     |    |   |           |      |      |    |
| CYP1B1             |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CYP2A7             |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| CYP2C19            |        |   |    |      |    |   |   | <u> </u> |          |    |          |   | _    |          | _    |      | <u> </u> | _ |           |     |           |    |           |   | <u> </u> |          |      |    |    |    | _        |     |    | _ |           |      |      |    |
| CYP2C9<br>CYP2D6   |        |   |    |      |    |   |   | -        |          |    |          |   | -    | -        | -    |      | -        | - |           |     |           |    | $\square$ |   | -        |          |      |    |    | -  |          |     |    | - | $\square$ |      |      |    |
| CYP2D6<br>CYP2E1   |        |   |    |      |    |   | - | -        | $\vdash$ | _  | $\vdash$ | _ | -    | $\vdash$ | -    |      | -        | - | $\vdash$  |     | $\vdash$  |    | $\square$ |   | -        |          |      |    |    | -  | -        |     |    | - | $\vdash$  |      |      |    |
| CYP3A4             |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| DCK                |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| DCXR               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| DPP4               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| DYRK1A<br>DYRK2    |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| EGFR               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| EGLN1              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| EPHX2              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| ESR2               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| FFAR1              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| FFAR4<br>FTO       |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| GLS                |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| GSTP1              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           | _    |      |    |
| HSD17B1            |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| HSD3B2             |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| KDM2A              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| KHK<br>MAOA        |        |   |    |      |    |   | - | -        | $\vdash$ |    |          |   |      |          |      |      |          | - | $\vdash$  |     | $\vdash$  |    |           |   | -        | $\vdash$ |      |    | -  | -  | -        | -   | -  | - |           |      |      |    |
| MAPK8              |        |   |    |      |    |   | - | -        |          | _  |          |   |      |          |      |      |          | - |           |     |           |    |           |   | -        | $\vdash$ |      | -  | -  |    | $\vdash$ | -   |    | - | $\vdash$  | _    |      |    |
| NCOA1              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| NQO2               |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| NR1I2              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| NR3C1              |        |   |    |      |    | _ | - | -        |          |    |          |   |      |          |      |      |          | _ |           |     |           |    |           |   | -        |          |      |    | -  |    |          |     |    | _ |           |      |      |    |
| P2Y2<br>PDGFRB     |        |   |    | -    |    | - | - | -        |          |    |          |   |      |          |      |      |          | - |           |     |           |    | $\square$ |   | -        | $\vdash$ |      |    | -  |    |          |     |    | - |           |      |      |    |
| PDGFRB<br>PIK3R1   |        |   |    |      |    |   | - | -        | $\vdash$ | _  |          |   |      |          |      |      |          | - | $\vdash$  |     | $\vdash$  |    |           |   | -        | $\vdash$ |      |    | -  | -  | ⊢        | -   | -  | - | $\vdash$  |      |      | _  |
| PPARA              |        |   |    |      |    |   |   | -        |          |    | -        |   | -    |          | -    |      | -        | - | $\square$ |     | $\square$ |    |           |   | -        |          |      |    | -  | -  | $\vdash$ | -   | -  | - |           |      | -    |    |
| PPARG              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    | L        |     |    |   |           |      |      |    |
| PRKG2              |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| PTGS1              |        |   |    |      |    |   |   |          | Щ        |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          | Щ        |      |    |    |    | <u> </u> |     |    |   | Ц         |      |      |    |
| PTGS2              |        |   |    |      |    | _ |   | _        |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   | _        | $\vdash$ |      |    | _  |    | -        | _   |    |   |           | _    |      |    |
| PTPN1<br>RPS6KA1   |        |   |    | -    |    | - | - | -        | $\vdash$ |    |          |   | -    | $\vdash$ |      |      |          | - |           |     |           |    |           |   | -        | $\vdash$ |      |    | -  | -  | ┝        | -   | -  | - | $\vdash$  |      |      |    |
| RPS6KA1            |        |   |    | -    |    | - | - | -        | $\vdash$ | -  |          | - | -    | $\vdash$ | -    | -    | -        | - |           |     |           |    |           |   | -        | $\vdash$ |      | -  | -  | -  | ┢        | -   | -  | - | $\vdash$  |      |      |    |
| SLC2A1             |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    | t        |     |    |   |           |      |      |    |
| SLCO2B1            |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| SYK                |        |   |    |      |    |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      |    |    |    |          |     |    |   |           |      |      |    |
| TOP2B              |        |   |    |      | L  |   |   |          |          |    |          |   |      |          |      |      |          |   |           |     |           |    |           |   |          |          |      | L  |    |    | <u> </u> |     |    |   |           |      |      |    |
| TYR<br>UGT1A1      |        |   |    | _    |    | _ | - | -        | $\vdash$ |    |          |   | _    | $\vdash$ | _    |      | -        | _ |           |     |           |    |           |   | -        |          |      |    |    | _  |          |     |    | _ |           |      |      |    |
| TATIOU             |        |   |    | L    | I  | I | L | L        |          |    |          |   | l    |          |      |      |          |   |           |     |           |    |           |   | L        |          |      |    |    |    |          |     |    |   |           |      |      |    |

Table 6. Matrix of the extracts that consist of compounds predicted to have biological activity. The x-axis shows the extracts that are predicted to have activity and the y-axis show the targets in the skin.


## 4.8 Summary of Results

The results from the primary screening assays are summarized in table 7 where the four investigated activities are marked for each fraction. The dark blue marks represent high activity, the light blue marks represent medium activity while the empty boxes represent no activity and the boxes with a line means these extracts weren't analyzed due to either lack of material or difficulties when dissolving. Inhibition of glycation was the most common activity among the extract and inhibition of tyrosinase and KLK5 were more rare activities found in only a few extracts. Lucerne leaves was the only extract showing three types of activities. Crimson clover fiber was the only extract showing high activity for more than one type. Kale fiber was the only extract lacking activity in all four categories. The results from the in vitro assay was not included since it was only performed on four extracts which is not enough to get an all covering picture.


Table 7. Summary of activity for each extract investigated from the primary screening assays. Dark blue mark = high activity, light blue mark = medium activity and empty box = no activity. The white protein fractions whit a line lacked material and Kale and Sugar beet green protein and Red beet green and white juice were unable to be dissolved and weren't analyzed.

| Plant          | Fraction      | Antioxidant  | Glycation inhibition | Tyrosinase inhibition | KLK5<br>inhibition |
|----------------|---------------|--------------|----------------------|-----------------------|--------------------|
|                | Fiber         |              | $\checkmark$         |                       | $\checkmark$       |
|                | Green juice   |              | $\checkmark$         |                       |                    |
| Lucrene        | Brown juice   |              | $\checkmark$         |                       |                    |
|                | White protein |              | $\checkmark$         |                       |                    |
|                | Leaves        |              | $\checkmark$         |                       | $\checkmark$       |
|                | Fiber         |              |                      |                       |                    |
|                | Green juice   |              | $\checkmark$         |                       |                    |
| Kale           | Green protein |              | -                    | -                     | -                  |
|                | Brown juice   |              | $\checkmark$         |                       |                    |
|                | White protein | -            | -                    | -                     | -                  |
|                | Fiber         |              | $\checkmark$         |                       |                    |
|                | Green juice   | $\checkmark$ | $\checkmark$         |                       |                    |
| Sugar beet     | Green protein | $\checkmark$ | -                    | -                     | -                  |
|                | Brown juice   |              | $\checkmark$         |                       | $\checkmark$       |
|                | White protein |              | -                    | -                     | -                  |
|                | Fiber         |              |                      |                       |                    |
|                | Green juice   |              | $\checkmark$         | $\checkmark$          |                    |
| Phacelia       | Green protein | $\checkmark$ | $\checkmark$         |                       |                    |
| Fliacella      | Brown juice   |              | $\checkmark$         |                       |                    |
|                | White protein | -            | -                    | -                     | -                  |
|                | White juice   |              | $\checkmark$         |                       |                    |
|                | Fiber         | $\checkmark$ | $\checkmark$         |                       |                    |
|                | Green juice   |              | $\checkmark$         |                       |                    |
| Crimson clover | Green protein |              | $\checkmark$         |                       |                    |
| crimson ciover | Brown juice   |              | $\checkmark$         |                       |                    |
|                | White protein |              | $\checkmark$         |                       |                    |
|                | White juice   |              | $\checkmark$         |                       |                    |
|                | Fiber         |              | $\checkmark$         |                       |                    |
|                | Green juice   |              | $\checkmark$         |                       |                    |
| Oilradish      | Green protein |              | $\checkmark$         |                       |                    |
| Offaush        | Brown juice   |              | $\checkmark$         |                       |                    |
|                | White protein | $\checkmark$ | -                    | -                     | -                  |
|                | White juice   |              | $\checkmark$         |                       |                    |
|                | Green juice   |              | $\checkmark$         | -                     | -                  |
|                | Green protein |              | $\checkmark$         |                       |                    |
| Redbeet        | Brown juice   |              | $\checkmark$         |                       |                    |
|                | White protein | -            | -                    | -                     | -                  |
|                | White juice   |              | $\checkmark$         | -                     | -                  |

The graphs in figure 21 and 22 represent how many of each fraction showed activity for antioxidation and antiglycation. This was done to try to find any correlations between the fraction type and the activities. The dark grey bars represent the amount of extracts showing activity for each fraction type and the light grey bars represent the total amount of extracts examined for each fraction type.



*Figure 21. Seven different fraction types examined for antioxidant activity where the total amount of extracts analyzed are shown as light grey and the extracts with medium or high activity are shown as dark grey.* 



*Figure 22. Seven different fraction types examined for antiglycation activity where the total amount of extracts analyzed are shown as light grey and the extracts with medium or high activity are shown as dark grey.* 

# Chapter 5: Discussion

In this chapter, the results are interpreted and discussed, and their reliability, based on performance and error factors, is evaluated. The overall method of the project is assessed, and future aspects are discussed.

## 5.1 Phytochemical Content and Biological Activity

Looking at the compounds identified in the plant fractions, there is a clear pattern of the contents. The contents are very different between the plant species pointing out how unique the composition of phytochemicals is. It is also easily seen that the fractions within one species have similar compositions, and that is not surprising since they are from the same plants. However, it is interesting to see that there is a slight difference that indicates that different compounds ended up in different fractions which might be the cause that different fractions from the same crop showed different levels of activity in the primary screening assays. The compound compositions in Sugar beet and Red beet are as mentioned in section 4.1 very similar which might be since they are the same species and only different cultivar groups. Overall, looking at the phytochemical content of the fractions within each plant they are not significantly different and therefore it cannot be stated that fractionating the plant material split the phytochemicals in a certain way or that it will benefit the process of finding active ingredients.

There were three extracts that showed high antioxidant activity from the radical scavenging experiment, no extract had high activity for tyrosinase or KLK5 inhibition but eight had high activity for inhibition of the glycation mechanism. One extract showed high activity for both antioxidation and glycation inhibition: Crimson clover fiber that is composed of substances predicted to target 21 targets. All Crimson clover extracts showed promising activity for glycation inhibition and half of them for antioxidation. Some extracts lacked material or were insoluble in the solvents used (section 4.8) this means that all extracts were not analyzed for all assays. However, ten of the extracts showed high activity for at least one of the four categories. These ten extracts are therefore extra interesting in the search for active ingredients: Lucerne white protein and leaves, Kale brown juice, Sugar beet brown juice, Phacelia green protein, Crimson clover fiber, Oil radish green juice, white protein and white juice and Red beet brown juice. Looking at the seven plants, at least one extract from each of them showed some type of high activity and Oil radish was the plant that had most positive results, namely three extracts with activity higher than average, two for antiglycation and one for antioxidation and might therefore be interesting to further investigate.

The IC50 of Crimson clover fiber was calculated to 0.34 mM p and to evaluate this result it can be compared to Green tea extract which is an extract considered an excellent antioxidant. Green tea extract has an IC50 of around 0.1 mM which has been estimated in the SRI laboratory. The IC50 of Crimson clover fiber is more than three times higher indicating that to get the same antioxidant effect as for Green tea, three times more extract would be needed in the formulation. Depending on the cost for raw material and extraction of the two extracts, it can be discussed whether Crimson clover fiber is still a potential active ingredient for antioxidative purposes or not. It can also be discussed that the story behind the extract's origin, that it is retrieved from wasted plant material grown in Sweden and thereby supporting a sustainable environment, could benefit and compensate for the fact that the IC50 value is higher. This cannot be fully examined without looking further into the cost of large-scale production as well as comparing costs for antioxidants currently in use. The in-vitro pollution induced CYP1A1 gene expression experiment was performed on four extracts where one of them showed promising results. Lucerne white protein significantly down regulated the DPM induced CYP1A1 gene expression and continuing the examination of its protective properties could lead to it being used as an active pollution protector in a skin care product.

### 5.1.1 Patterns Between Activity and Fraction Type

In section 4.8 the relationship between fraction type and activity for both antioxidation and antiglycation was examined and summed up in two graphs. In the examination the medium and high activities were used (light and dark blue marks). For antioxidation, there was no fraction type that was active for all included extracts except for leaves but that fraction was only existing for one plant type. For green protein and white protein 5/6 and 3/4 extracts showed activity respectively and for the rest of the fraction types less than half of the extracts showed activity, among the white juices no extract showed activity and among the green juices one showed activity.

For antiglycation, all extracts except two showed activity (two fiber extracts) and therefore it is not possible to really compare the different fraction types except that they are all showing high levels of activity. For the fiber fractions 4/6 extracts showed activity even though this is the fraction type with fewest extracts showing activity, it still has more than half showing activity.

### 5.1.2 Connection Between Compounds and Activity

The connection between the compounds identified and the activities examined in the primary screening experiments were examined for each of the four activities. The comparison was made for the higher activities (the dark blue marks in table 7) for antioxidation and antiglycation and for the medium activities (light blue marks in table 7) for tyrosinase and KLK5 inhibition.

Phacelia green juice was the only extract that showed activity for Tyrosinase inhibition, but it does not have any compound that other extracts do not and therefore the activity cannot be related to a specific compound.

Sugar beet brown juice, Lucerne fiber and leaves that had activity for KLK5 inhibition do not have any specific compound or compounds in common that could be responsible for the activity. Lucerne fiber and leaves have some compounds in common, flavonoids and other phytochemicals but no that other extracts of Lucerne or other plants do not have. Therefore, there is no clear connection between any specific compounds and the activity of KLK5 inhibition either.

## 5.2 Human Targets

The in-silico prediction of targets gave interesting results that made it possible to see which compounds of C1 to C76 that might have biological activity on human skin and it also gave indications on which plants and which fractions that are of interest. There were 68 identified targets and most of them are targeted by multiple substances, such as CA12 that is targeted by six compounds present in totally 14 extracts and all with medium skin expression. The results from the in-silico study were negative for three of the plant materials as mentioned in section 4.7, Sugar beet, Red beet and Oil radish. The three plants are therefore not as interesting for

further studies using these targets. However, it is interesting that Oil radish gave promising results for the primary screening assays and then three of the extracts showed no results at all in the in-silico study. This could be a result of some errors in the identification where maybe all compounds were not identified and therefore the compounds showing activity in the assays were not found in-silico. Instead Crimson clover was the crop that was more interesting and matched targets with quite high skin expression. This makes Crimson clover more interesting than Oil radish in this aspect. Phacelia was close behind Crimson clover and the results can be valuable for further studies. When the targets are more detailly identified and their effects known, these results will give helpful indications on what these plant materials can be used for. When looking at target prediction it is not very specific for the fractions but instead very similar within the specific plants and can therefore specify which plants are more interesting, leaving out the fractions to be examined and compared to each other in the assays.

### 5.3 Reliability of Results

The metabolites were extracted using methanol but there are many other solvents that can be used for extraction and depending on what solvent is used, different types and amounts of compounds might be extracted. Choosing a different extraction method could therefore result in different results for identification but also for activity screening. In order to find the optimal extraction solvent, different solvents need to be used and the assays performed need to be performed for the extracts and then the results can be compared between the extracts originating from the same plants and fractions. Therefore, the results for each assay is limited to the method of extraction and can only be interpreted with that in mind.

The identification method of the compounds is very reliable since the method used is approved by SRI and used by them continuously even though all compounds could not be identified, and some remain unknown. This will lead to some lacking information about the content and as a result to that, the in-silico evaluation is not fully complete.

The primary screening assays have also been approved and when followed accurately, they should be reliable. For each assay a control was used to see if the test was valid or not, the value for the control had to exceed a certain value (stated in table 3), this was the case for each experiment and from that aspect the experiments are valid and reliable. The methods also say to repeat the same experiment three times on three different days and retrieve a result based on data from all three of them. Since the lab access was limited in the later part of the project period, repeated experiments were not performed for all assays. Glycation inhibition, tyrosinase inhibition and KLK5 inhibition assays were only performed once and the results are not as reliable as if they could be completed with two more trials. Two more trials for each of the three assays must therefore be performed in order to state that the level of activity is proven. The antioxidant activity assay was the only assay performed three times and is therefore the only assay with results that can be said to be reliable and proven. Similar statements can be said for the in-vitro test where the assay should be repeated with different keratinocyte donors as well as with different concentrations of the extracts to be able to give reliable and accurate results.

The in-silico evaluation was based on prediction of targets in the human skin for the compounds identified. How reliable it is, is hard to know and the results from this evaluation is more meant to be a guide into further analysis. The results are meant to give an indication of what assays should be performed, which plants and fractions that should have higher priority or are of

greater interest in the area of skin care. Using these results, unnecessary experiments can hopefully be avoided and finding an active ingredient that is useful might be easier.

# 5.4 Evaluation of Method

Overall, the method used to find new active ingredients has been working as wanted and has successfully generated results. It is an excellent step by step procedure that investigates the crops potential as active ingredients in multiple ways. The secondary metabolites were extracted, and their content identified using a relatively fast method. The identification procedure where the results from the LC/MS were compared to the lists retrieved from Reaxys was done manually and might therefore be less reliable than if it was done automatically. On the other hand, the list where the two files were compared and matched was double-checked again using the LC/MS instrument.

The activity screening methods covered the most important areas of activity desired for skin care. The assays rely on manual preparation of the extracts and other reagents using micro pipettes, ultrasound baths and vortex. The micro pipettes used were calibrated in the beginning of the year and should therefore not contribute to any errors. The homogeneity of the samples after mixing is approved by the human eye and could therefore fail to detect smaller undissolved particles leading to inaccurate concentration of extract able to react inhibitory in the assays and give faulty results. By repeating the assays three times these errors are minimised and should not be a big concern.

## 5.5 Future Aspects

This project can be improved and continued. Firstly, the extraction method can be optimized by exploring different extraction solvents other than methanol, such as alkalic solvents. Secondly, extraction yields can be compared as well as looking at the phytochemicals present. Optimizing this method would mean repeating the extraction for the samples multiple times which would require time and material but could lead to better results in the end. The primary screening assays can also be repeated for stronger results as mentioned in section 5.2, and IC50 experiments can be performed on the extracts showing higher than average activity to establish the activity is something to further investigate. Other primary activity assays screening for collagenase inhibition, elastase inhibition, hyaluronidase inhibition and SIRT 1 activation and inhibition can also be performed to increase the possibility if finding biologically active extracts.

Further investigation of the targets (e.g. what they do and how the substances would affect them) can result in a great guide for choosing the next step in the analysis as well as for knowing what extracts that should be further investigated. To know how active a substance is on a predicted target and how it affects the aging of the skin, specific laboratory procedures must be designed to be able to test the activity on the skin cells in question. Before that, it is only possible to know that there is a potential activity. Also, the actual amount of the compound within the extract is not known and to get a more precise prediction on the activity of the extract, that must be examined. To better understand this prediction and not only see that there might be activity on the skin, the targets could be further investigated through research to find the true activity. That could also help rank the targets to see which are more interesting to create a product for.

By quantifying the compounds within the extracts, they can bring more information for the insilico evaluation as well as making it possible to examine if the plant materials can be used as resources for a specific compound of interest. Some compounds might already have been investigated for the purpose or even used in existing products today and finding them in these extracts could lead to them being a new resource for that material. This could contribute to a more sustainable solution as well as be economically advantageous.

The process of finding an active ingredient suitable for being in a skin care product is long and screening for biological activity is an early stage of that process. Steps 1-5 in section 3.2 briefly describe this process of finding active ingredients and after primary screening there are two more steps: in-vitro assays where the activities found in step 4 are further investigated using skin cell-based assays such as anti-pollution, UV-protection and anti-inflammatory properties, and ex-vivo assays where the activities are confirmed using donated skin. When an extract or compound has gone through all these steps and has positive results and desired characteristics a formulation of a product (e.g. cream, serum or priming essence) can be created using the found substance as an active ingredient.

# Chapter 6: Conclusion

The aim of this project to investigate if extracts from various sample fractions produced from agricultural waste material can be used as active ingredients in skin care products. The secondary metabolites were extracted from the agricultural waste material using methanol extraction which resulted in 37 extracts that were analysed for their contents that were identified using LC/MS system and Reaxys. The extracts were also investigated for biological activities using four primary screening methods and an in-vitro assay was used to look for anti-pollution properties for four extracts. Apart from this, human targets were found using an in-silico evaluation method that can be used to further investigate the extracts. This summarizes the events leading to fulfilling the aim and additional objectives of this project.

The results from this research are not enough to state that the extracts will provide protection of the skin from pollutants. More examination must be done in order to know the exact protective properties of them. However, the plant materials did not possess any outstanding activities and in the current situation, with the current knowledge, not many extracts show suitable as active ingredients. Nevertheless, it cannot be excluded that an outstanding result for one or more of the extracts might be found using these assays and the extracts could possibly be suitable as active ingredients. However, Lucerne white protein is highly potential to be used for anti-pollution approaches but will have to be further investigated. Crimson clover fiber could potentially act as an antioxidant and/or glycation inhibitor since it showed high activity for both assays. The rest of the Crimson clover extracts are also interesting as a result of the insilico evaluation where they matched multiple targets with both medium and high skin expression.

In other words, there is a possibility for some of these extracts having biological activities valuable enough for them being used as active ingredients in skin care products. However, more research is needed to fully know which extracts and for what purpose. The method can be used to investigate the activity of other plant extracts to broaden the research and increase the chances of finding a new active ingredient for skin care.

No relationships were found between the identified compounds and the activities from the primary screenings. Likewise, no relationships were found between the fraction types and the activities from the primary screenings, but one could see that the phytochemical contents of the fractions within the same plants were very similar and therefore using different fractions might not be very beneficial.

# References

AHSANUDDIN, S., LAM, M. and D. BARON, E., 2016. Skin aging and oxidative stress. *AIMS Molecular Science*, **3**(2), pp. 187-195.

ALLEN, D.R. and MCWHINNEY, B.C., 2019. Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. *The Clinical Biochemist Reviews*, **40**(3), pp. 135-146.

ALTEMIMI, A., LAKHSSASSI, N., BAHARLOUEI, A., WATSON, D.G. and LIGHTFOOT, D.A., 2017. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. *Plants (Basel, Switzerland)*, **6**(4), pp. 42.

BAJKACZ, S., BARANOWSKA, I., BUSZEWSKI, B., KOWALSKI, B. and LIGOR, M., 2018. Determination of Flavonoids and Phenolic Acids in Plant Materials Using SLE-SPE-UHPLC-MS/MS Method. *Food Analytical Methods*, **11**(12), pp. 3563-3575.

BETTS, J.G., YOUNG, K.A., WISE, J.A., JOHNSON, E., POE, B., KRUSE, D.H., KOROL, O., JOHNSON, J.E., WOMBLE, M. and DESAIX, P., 2013. *Anatomy and Physiology*. 1 edn. XanEdu Publishing Inc.

BRENNER, M. and HEARING, V.J., 2008. The Protective Role of Melanin Against UV Damage in Human Skin. *Photochemistry and photobiology*, **84**(3), pp. 539-549.

CHANDRA SHEKHAR, T. and ANJU, G., 2014. Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides Linn. Leaves. *American Journal of Ethnomedicine*, **1**(4), pp. 244-249.

CHU, E.H.Y., GROSS, G.G. and HEMINGWAY, R.W., 2000. *Plant Polyphenols*. Boston: Springer.

DAYAN, N., 2008. Skin Aging Handbook. US: William Andrew.

DOLLING, P. and REVELL, C., Oct 2, 2018-last update, Lucerne - the plant and its establishment. Available: <u>https://www.agric.wa.gov.au/pasture-establishment/lucerne-plant-and-its-establishment</u> [Jan 14, 2020].

DRAKAKI, E., DESSINIOTI, C. and ANTONIOU, C.V., 2014. Air pollution and the skin. *Frontiers in Environmental Science*, **2**, pp 1-6.

FABBROCINI, G., KAYA, G., CASEIRO SILVERIO, P., DE VITA, V., KAYA, A., FONTAO, F., SORG, O. and SAURAT, J., 2015. Aryl Hydrocarbon Receptor Activation in Acne Vulgaris Skin: A Case Series from the Region of Naples, Italy. Dermatology, 231(4), pp. 334-338.

FAXSTAFF. 2006. https://commons.wikimedia.org/wiki/File:Phacelia\_tanacetifolia\_fax02.jpg [Photograph]. (accessed June 8, 2020) FLOGAUS-FAUST, ROBERT. 2018.

https://commons.wikimedia.org/wiki/File:Medicago\_sativa\_RF.jpg [Photograph]. (accessed June 8, 2020)

GKOGKOLOU, P. and BÖHM, M., 2012. Advanced glycation end products. *Dermato-Endocrinology*, **4**(3), pp. 259-270.

HANLON, P.R. and BARNES, D.M., 2011. Phytochemical Composition and Biological Activity of 8 Varieties of Radish (Raphanus sativus L.) Sprouts and Mature Taproots. *Journal of Food Science (John Wiley & Sons, Inc.)*, **76**(1), pp. C185.

HELFRICH, Y.R., SACHS, D.L. and VOORHEES, J.J., 2008. Overview of skin aging and photoaging. *Dermatology nursing*, **20**(3), pp. 177.

HORTICULTURALIST, RJ. 2016. https://commons.wikimedia.org/wiki/File:Detroit\_Red\_Beet\_plant\_(Beta\_vulgaris).jpg [Photograph]. (accessed June 8, 2020)

HUANG, Y., XIAO, D., BURTON-FREEMAN, B.M. and EDIRISINGHE, I., 2016. Chemical Changes of Bioactive Phytochemicals during Thermal Processing. *Reference Module in Food Science*. Elsevier, .

IWATA, M., CORN, T., IWATA, S., EVERETT, M.A. and FULLER, B.B., 1990. The Relationship Between Tyrosinase Activity and Skin Color in Human Foreskins. *Journal of Investigative Dermatology*, **95**(1), pp. 9.

JIN, S., LI, Z., KYUNG CHOI, E., LEE, S., KYUNG KIM, Y., YOUNG SEO, E., HO CHUNG, J. and CHO, S., 2018. Urban particulate matter in air pollution penetrates into the barrierdisrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo. Journal of Dermatological Science, **91**(2), pp. 175-183.

KENPEI. 2007. https://commons.wikimedia.org/wiki/File:Raphanus\_sativus2.jpg [Photograph]. (accessed June 8, 2020)

KIM, C., PARK, S. and KIM, J., 2017. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. *Journal of Exercise Nutrition & Biochemistry*, **21**(3), pp. 55-61.

KROYER, G.T., 2004. Red clover extract as antioxidant active and functional food ingredient. *Innovative Food Science and Emerging Technologies*, **5**(1), pp. 101-105.

KUMAR, N. and GOEL, N., 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. *Biotechnology reports*, **24**, article e00370.

KWALL, R., 2016. *Ablative Vs. Non-Ablative Treatments.* 

L MIRANDA, C., F STEVENS, J. and S MAIER, C., 2012. Flavonoids. *World Journal of Pharmaceutical Research*, pp. 335-355.

LAWTON, S., 2019. Skin 1: the structure and functions of the skin. *Nursing Times*, **115**(12), pp. 30-33.

LEE, J.H., SON, C.W., KIM, M.Y., KIM, M.H., KIM, H.R., KWAK, E.S., KIM, S. and KIM, M.R., 2009. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6J mice fed high fat high cholesterol diet. *Nutrition Research and Practice*, **3**(2), pp. 114-121.

MARTINEZ, K.B., MACKERT, J.D. and MCINTOSH, M.K., 2017. Polyphenols and Intestinal Health. *Nutrition and Functional Foods for Healthy Aging*. Elsevier Inc, pp. 191-210.

MATSUBARA, Y., MATSUMOTO, T., KOSEKI, J., KANEKO, A., AIBA, S. and YAMASAKI, K., 2017. Inhibition of Human Kallikrein 5 Protease by Triterpenoids from Natural Sources. *Molecules: A Journal of Synthetic Chemistry and Natural Product Chemistry*, **22**(11), pp. 1829.

MIKOŁAJCZYK-BATOR, K., BŁASZCZYK, A., CZYŻNIEJEWSKI, M. and KACHLICKI, P., 2016. Identification of saponins from sugar beet (Beta vulgaris) by low and high-resolution HPLC–MS/MS. *Journal of Chromatography B*, **1029-1030**, pp. 36-47.

MOMTAZ, S., LALL, N. and BASSON, A., 2008. Inhibitory activities of mushroom tyrosine and DOPA oxidation by plant extracts. *South African Journal of Botany*, **74**(4), pp. 577-582.

NEUGART, S., KRUMBEIN, A. and ZRENNER, R., 2016. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica). *Frontiers in plant science*, **7**, pp. 326.

NOVÁKOVÁ, L., SVOBODA, P. and PAVLÍK, J., 2017. *Liquid Chromatography*. 2 edn. Elsevier: Fundamentals and Instrumentation.

OBAGI, S., 2005. Why does skin wrinkle with age? What is the best way to slow or prevent this process? Scientific American.

PAJĄK, P., SOCHA, R., BRONIEK, J., KRÓLIKOWSKA, K. and FORTUNA, T., 2019. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. *Food Chemistry*, **275**(2), pp. 69-76.

POLJŠAK, B. and FINK, R., 2014. The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. *Oxidative Medicine and Cellular Longevity*, **2014**, pp. 671539.

PURI, P., NANDAR, S.K., KATHURIA, S. and RAMESH, V., 2017. Effects of air pollution on the skin: A review. *Indian journal of dermatology, venereology and leprology*, **83**(4), pp. 415-423.

RASBAK. 2005. [Photograph]. https://commons.wikimedia.org/wiki/File:Boerenkool.jpg (accessed June 8, 2020)

Reaxys Home Page. https://www.reaxys.com/#/search/quick (accessed June 8, 2020).

RHIE, G., SHIN, M.H., SEO, J.Y., CHOI, W.W., CHO, K.H., KIM, K.H., PARK, K.C., EUN, H.C. and CHUNG, J.H., 2001. Aging- and Photoaging-Dependent Changes of Enzymic and Nonenzymic Antioxidants in the Epidermis and Dermis of Human Skin In Vivo. *Journal of Investigative Dermatology*, **117**(5), pp. 1212-1217.

RINNERTHALER, M., BISCHOF, J., STREUBEL, M.K., TROST, A. and RICHTER, K., 2015. Oxidative Stress in Aging Human Skin. *Biomolecules*, **5**(2), pp. 545-589.

SABUDAK, T. and GULER, N., 2009. Trifolium L. - A review on its phytochemical and pharmacological profile. *Phytotherapy Research*, **23**(3), pp. 439.

SCHMIDT, S., ZIETZ, M., SCHREINER, M., ROHN, S., KROH, L.W. and KRUMBEIN, A., 2010. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry. *Rapid Communications in Mass Spectrometry*, **24**(14), pp. 2009-2022.

SÉRO, L., SANGUINET, L., BLANCHARD, P., TAI DANG, B., MOREL, S., RICHOMME, P., SÉRAPHIN, D. and DERBRÉ, S., 2013. Tuning a 96-Well Microtiter Plate Fluorescence-Based Assay to Identify AGE Inhibitors in Crude Plant Extracts. *Molecules*, **18**(11), pp. 14320-14339.

The Human Protein Atlas Home Page. <u>https://www.proteinatlas.org/</u> (accessed June 8, 2020)

VISSERS, A., KISKINI, A., HILGERS, R., MARINEA, M., WIERENGA, P.A., GRUPPEN, H. and VINCKEN, J., 2017. Enzymatic Browning in Sugar Beet Leaves (Beta vulgaris L.): Influence of Caffeic Acid Derivatives, Oxidative Coupling, and Coupled Oxidation. *Journal of Agricultural and Food Chemistry*, **65**(24), pp. 4911-4920.

#### WERTHER, JACOPO. 2010.

https://commons.wikimedia.org/wiki/File:Sugar\_beet\_field\_(4799481326).jpg [Photograph]. (accessed June 8, 2020)

### Wikimedia Commons. 2010.

https://commons.wikimedia.org/wiki/File:Trifolium\_incarnatum.Crimson\_Clover%E3%80% 81\_%E3%82%AF%E3%83%AA%E3%83%A0%E3%82%BD%E3%83%B3%E3%82%AF% E3%83%AD%E3%83%BC%E3%83%90%E3%83%BC%E3%83%BB%E3%83%99%E3%8 3%8B%E3%83%90%E3%83%8A%E3%83%84%E3%83%A1%E3%82%AF%E3%82%B5.J PG [Photograph]. (accessed June 8, 2020)

# Appendices

# Appendix 1: Material and Preparations

In this section, the fractions are listed in table A1 and the final concentration and solvent used for each extract for the LC/MS assay are listed in table A2. It also includes information about the material and chemicals used for the laboratory experiments of this project, in table A3 as well as preparation information of the reagents for the different assays in table A4.

| Plant      | Fraction      | Plant          | Fraction      |
|------------|---------------|----------------|---------------|
| Lucerne    | Fiber         | Crimson Clover | Fiber         |
|            | Green juice   |                | Green juice   |
|            | Brown juice   |                | Brown juice   |
|            | Leaves        |                | White juice   |
|            | White protein |                | Green protein |
| Kale       | Fiber         |                | White protein |
|            | Green juice   | Oil Radish     | Fiber         |
|            | Brown juice   |                | Green juice   |
|            | Green protein |                | Brown juice   |
|            | White protein |                | White juice   |
| Sugar Beet | Fiber         |                | Green protein |
| 0          | Green juice   |                | White protein |
|            | Brown juice   | Red Beet       | Green juice   |
|            | Green protein |                | Brown juice   |
|            | White protein |                | White juice   |
| Phacelia   | Fiber         |                | Green protein |
|            | Green juice   |                | White protein |
|            | Brown juice   |                |               |
|            | White juice   |                |               |
|            | Green protein |                |               |
|            | White protein |                |               |

Table A1. A complete list of the plants and fractions received from the PPF.

| Plant        | Fraction      | Solvent       | Concentration |
|--------------|---------------|---------------|---------------|
| Lucerne      | Fiber         | H2O/ACN 30:70 | 5 mg/mL       |
|              | Green juice   | H2O/ACN 95:5  | 10  mg/mL     |
|              | Brown juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Leaves        | DMSO          | 8 mg/mL       |
|              | White protein | H2O/ACN 50:50 | 6 mg/mL       |
| ale          | Fiber         | H2O/ACN 25:75 | 5 mg/mL       |
|              | Green juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Brown juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Green protein | DMSO          | 8 mg/mL       |
|              | White protein | H2O/ACN 50:50 | 10 mg/mL      |
| ugar Beet    | Fiber         | H2O/ACN 31:69 | 5 mg/mL       |
|              | Green juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Brown juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Green protein | DMSO          | 5 mg/mL       |
|              | White protein | H2O/ACN 50:50 | 10 mg/mL      |
| hacelia      | Fiber         | H2O/ACN 25:75 | 10 mg/mL      |
|              | Green juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Brown juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | White juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Green protein | DMSO          | 5 mg/mL       |
|              | White protein | H2O/ACN 50:50 | 5 mg/mL       |
| imson Clover | Fiber         | H2O/ACN 25:75 | 10 mg/mL      |
|              | Green juice   | H2O/ACN 95:5  | 8 mg/mL       |
|              | Brown juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | White juice   | H2O/ACN 95:5  | 8 mg/mL       |
|              | Green protein | DMSO          | 10 mg/mL      |
|              | White protein | H2O/ACN 50:50 | 10 mg/mL      |
| il Radish    | Fiber         | DMSO          | 8 mg/mL       |
|              | Green juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Brown juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | White juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Green protein | DMSO          | 6 mg/mL       |
|              | White protein | H2O/ACN 50:50 | 5 mg/mL       |
| ed Beet      | Green juice   | H2O/ACN 25:75 | 5 mg/mL       |
|              | Brown juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | White juice   | H2O/ACN 95:5  | 10 mg/mL      |
|              | Green protein | DMSO          | 6 mg/mL       |
|              | White protein | _*            | -             |

Table A2. Final concentration and solvent used for each extract for the LC/MS analysis. \*After extraction there wasn't enough material to do an identification with LC/MS.

| Assay                                        | Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chemicals                                                                                                                                                                                                                          |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Methanol</i><br><i>Extraction</i>         | <ul> <li>Free standing centrifuge tubes, 50 mL</li> <li>Polypropylene conical tube, 50 mL (falcon tube)</li> <li>Balance</li> <li>Freeze dryer 1: Labconco 4.5 Plus FreeZone</li> <li>Freeze dryer 2: VirTis, Benchtop K</li> <li>Graduated cylinder</li> <li>VWR Ultrasonic cleaner, USC-THD</li> <li>Ultrasound bath - Fisher scientific, Branson 5510</li> <li>Eppendorf Centrifuge 5702</li> <li>Filter paper grade 1: Qualitative Circles, Cat No 1004-042 (Ø = 42.5 mm, pore size = 11 µm)</li> <li>Filter paper grade 4: Qualitative Circles, Cat No 1004-042 (Ø = 42.5 mm, pore size = 20.25 µm)</li> <li>Vacuum flask</li> <li>Round-bottomed flask</li> <li>Rotavapor - Buchi Switzerland</li> <li>Separatory funnel</li> <li>Fume hood</li> <li>Disposable gloves</li> </ul> | <ul> <li>Distilled water</li> <li>Methanol – Sigma<br/>Aldrich – 34860N</li> <li>Hexane</li> </ul>                                                                                                                                 |
| LC/MS                                        | <ul> <li>1,5 mL Eppendorf tubes</li> <li>Micropipettes BIOHIT + tips Eppendorf</li> <li>Vials</li> <li>LC/MS - Agilent Technologies 1290<br/>Infinity, 6520 Accurate-Mass Q-TOF<br/>LC/MS</li> <li>Disposable gloves</li> <li>Fume hood</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Distilled water</li> <li>Ethanol</li> <li>DMSO</li> <li>H<sub>2</sub>O/AcN 50/50</li> </ul>                                                                                                                               |
| Radical<br>Scavenging<br>Activity by<br>DPPH | <ul> <li>Balance</li> <li>Beakers</li> <li>1,5 mL tubes Eppendorf</li> <li>96 wells plate - Costar 3595 - Corning<br/>Incorporated</li> <li>Spectrophotometer Microplate Reader -<br/>Cytation 3 - BioTek</li> <li>Ultrasound bath - Fisher scientific, Branson<br/>5510</li> <li>Vortex - Genie2 - Scientific Industries</li> <li>Micropipettes BIOHIT + tips Eppendorf</li> <li>Disposable gloves</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Methanol – Sigma<br/>Aldrich – 34860N</li> <li>DMSO Fisher<br/>Scientific</li> <li>DPPH (2,2-diphenyl-<br/>1-pikryl-hydrazyl) –<br/>Aldrich cat. D913-2</li> <li>Ascorbic acid –<br/>Sigma Aldrich -<br/>33034</li> </ul> |

Table A3. Material and chemicals used or prepared for each assay preformed.

| Anti-<br>Glycation                          | <ul> <li>500 mL and 25 mL and 10 mL volumetric flask</li> <li>Micropipettes BIOHIT + tips Eppendorf</li> <li>1.5 mL and 2 mL tubes Eppendorf 5 mL tubes</li> <li>pH-meter (from plant stem cell lab)</li> <li>Scale</li> <li>Vortex - Genie2 - Scientific Industry</li> <li>Ultrasound bath - Fisher scientific, Branson 5510</li> <li>96 wells plate black + Aluminium cover</li> <li>37 °C oven</li> <li>Spectrophotometer microplate reader - Cytation 3 – BioTek</li> <li>Disposable gloves</li> </ul> | <ul> <li>Distilled water</li> <li>DMSO - Fisher<br/>Scientific</li> <li>Sodium phosphate</li> <li>HCl (1M)</li> <li>BSA - Bovine Serum<br/>Albumin – Sigma</li> <li>D-Ribose – Aldrich</li> <li>Rutin - Sigma</li> </ul>                                                                                                                                           |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tyrosinase<br>inhibition                    | <ul> <li>Beakers</li> <li>Glass pipettes</li> <li>10 mL and 50 mL volumetric flask</li> <li>Micropipettes BIOHIT + tips Eppendorf</li> <li>1.5 mL, 2 mL and 5 mL tubes Eppendorf</li> <li>Scale</li> <li>Vortex - Genie2 - Scientific Industry</li> <li>96 wells plate</li> <li>Spectrophotometer microplate reader - Cytation 3 – BioTek</li> <li>Disposable gloves</li> </ul>                                                                                                                            | <ul> <li>L-tyrosine - Sigma<br/>T3754-100G</li> <li>Mushroom tyrosinase<br/>-Sigma T3824, Batch<br/>no: SLBM7158V (see<br/>details of units/mg<br/>solid attached)</li> <li>Potassium phosphate<br/>monobasic - Sigma<br/>P8414-500G</li> <li>DMSO Fisher<br/>Scientific</li> <li>Kojic Acid – Sigma</li> </ul>                                                    |
| Kalikrein 5<br>inhibition                   | <ul> <li>Beakers</li> <li>Volumetric flasks 500ml</li> <li>pH meter</li> <li>Magnetic stirrer</li> <li>1.5 ml and 2 ml tubes Eppendorf</li> <li>Micropipettes BIOHIT + tips Eppendorf</li> <li>Vortex - Genie2 - Scientific Industry</li> <li>96-well plates black</li> <li>Spectrophotometer Microplate Reader -<br/>Cytation 3 – Biotek</li> <li>Disposable gloves</li> </ul>                                                                                                                            | <ul> <li>Distilled water</li> <li>DMSO Fisher<br/>Scientific</li> <li>Sodium phosphate<br/>dibasic anhydrous -<br/>Fluka71636</li> <li>Rh Kallikrein 5 -<br/>R&amp;D Systems - 1108-<br/>SE010</li> <li>Boc-VPR-AMC -<br/>R&amp;D Systems -<br/>ES011</li> <li>SBTI - Trypsin<br/>inhibitor from<br/>Glycine max<br/>(Soybean) - Sigma -<br/>T6522-25MG</li> </ul> |
| DMP<br>induced<br>CYP1A1 gene<br>expression | <ul> <li>48 well cell culture plates</li> <li>Multichannel pipette</li> <li>Sterile RNase-free pipet tips</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>DPM</li> <li>Vehicles</li> <li>PBS -/- Mg2+ and Ca2+</li> </ul>                                                                                                                                                                                                                                                                                           |

| ٠ | Sterile RNase-free Eppendorf tubes 1,5 |
|---|----------------------------------------|
|   | and 2 mL                               |

- Disposable gloves
- 96-well plate
- Spectrophotometer microplate reader Cytation 3 Biotek
- Freezer -20 °C
- Laminar Air Flow cabinet
- Fume hood
- Centrifuge 10 000 g
- Nanodrop
- Micropipettes + tips Eppendorf
- PCR Plate + seal
- qPCR BIORAD CFX Connect Real-Time System
- Ice

- RLT buffer
- RW1 buffer
- RPE buffer
- CellTiter-Glo Kit (including Buffer and Substrate)
- 5x iScript advanced reaction mix (contains dNTPS, oligo(dt), random primers, buffer, MgCl2, enhancers and stabilizers)
- iScript advanced reverse transcriptase (contain iScript MMLV-RT (RNaseH+) and RNase inhibitor)
- RNase free water
- Ethanol 70 %
- SYBR green mix (containing DNA polymerase and fluorescent dye)
- Housekeeping gene GAPDH primers
- CYP1A1 primers

| Assay                                | Solution                                        | Preparation                                                                                                                                                                                   |
|--------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radical<br>Scavenging<br>Activity by | DPPH                                            | $m_{DPPH} = 7,9055$ mg was first dissolved with help of sonication and vortex in a 1,5 mL tube and then poured in a 100 mL volumetric flask with MeOH and the volume was completed to 100 mL. |
| DPPH                                 |                                                 | The solution should be placed in the fridge and can be kept two weeks.                                                                                                                        |
|                                      | Vitamin C                                       | $m_{Ascorbic acid} = 1,7640$ mg was dissolved in MeOH with help of sonication and vortex in a 1,5 mL tube (Vit C 10000 $\mu$ M).                                                              |
|                                      |                                                 | 100 $\mu$ L of that solution was then diluted with 900 $\mu$ L MeOH with help of sonication and vortex in a new 1,5 mL tube (Vit C 1000 $\mu$ M).                                             |
|                                      |                                                 | 100 $\mu$ L of the newly prepared solution was then diluted again with 900 $\mu$ L MeOH with help of sonication and vortex in a new 1,5 mL tube (Vit C 100 $\mu$ M).                          |
|                                      |                                                 | The solutions should be stored in freezer.                                                                                                                                                    |
| Anti-<br>Glycation                   | Buffer sodium<br>phosphate (pH<br>7,4 at 50 mM) | 0,354 g was dissolved into ~400 mL H2O. The pH was adjusted to 7,405 with HCl 1M using a pH-meter. More H2O was added into the 500 mL volumetric flask until the total volume was 500 mL.     |
|                                      | BSA                                             | 10 mg/mL was prepared by dissolving 0,25044 g BSA in 25 mL<br>Buffer. Aliquot 5 x 5 mL in 5 mL tube, stored in freezer.                                                                       |
|                                      | D-Ribose<br>(0,5 M)                             | 0,75031 g D-Ribose was dissolved in 10 mL Buffer. Aliquot 5 x 2 mL in 2 mL Eppendorf tube, stored in freezer.                                                                                 |
|                                      | Rutin                                           | Stock solution Rutin 100 mM:<br>61,18 mg was dissolve into 1000 μl DMSO in a 2 mL Eppendorf<br>tube and vortexed for 30 sec then sonicated for 50 min                                         |
|                                      |                                                 | Solution Rutin 10 mM:<br>100 µl stock solution Rutin 100 mM + 900 µl buffer<br>(This solution was newly prepared before each experiment)                                                      |
| Tyrosinase<br>inhibition             | Potassium<br>Phosphate<br>Buffer<br>(50 mM)     | Preparation in EXP_018_GJ3505                                                                                                                                                                 |
|                                      | L-tyrosine                                      | 2 mM was prepared by dissolving 18,2424 mg in 50 mL Buffer.                                                                                                                                   |
|                                      | Tyrosinase                                      | Aliquot 3 mL in 5 mL tubes, stored in freezer.The enzyme arrived from supplier as 2687 units/mg solid.                                                                                        |
|                                      |                                                 | Calculations:<br>333 units/mg solid * 1 / 2687 units/mg solid = 0,124 mg/mL<br>> 1,24 mg/10 mL                                                                                                |
|                                      |                                                 | 333 units/mL was prepared by dissolving 1,2345 mg in 10 mL<br>Buffer. Aliquot 2 mL in 2 mL Eppendorf tubes, stored in freezer.                                                                |

Table A4. Preparation description of all reagents and other solutions needed for each of the assays.

|                                          | Kojic Acid          | <ul> <li>Kojic Acid stock solution 150 mM was taken from freezer. Following ddilutions were newly prepared before each experiment the same day as reading.</li> <li>23400 μM Kojic acid was prepared by diluting 15,6 μL of stock solution with 84,4 μL DMSO.</li> <li>468 μM Kojic acid was finally prepared by diluting 20 μL of 23400 μM Kojic acid with 980 μL DMSO.</li> </ul> |
|------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KLK5<br>inhibition                       | Sodium<br>Phosphate | The buffer was already prepared.                                                                                                                                                                                                                                                                                                                                                    |
| IIIIIDICIOII                             | Buffer              |                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | KLK5 enzyme         | 1 ng/ $\mu$ L was prepared by dissolving 18,13 $\mu$ L of KLK5 enzyme (332ng/ $\mu$ l) in 6000 $\mu$ L buffer in a 15 mL tube. Then mixed using Vortex.                                                                                                                                                                                                                             |
|                                          | Boc-VPR-AMC         | 100 $\mu$ M was prepared by dissolving 7,6 $\mu$ L substrate (98,6 mM) from freezer in 7492,4 $\mu$ L buffer in a 15 mL tube. Then mixed using Vortex.                                                                                                                                                                                                                              |
|                                          | STBI                | 100 $\mu$ M was prepared by dissolving 0,4258 mg STBI in 213 $\mu$ L DMSO using vortex and ultrasound bath.                                                                                                                                                                                                                                                                         |
| DMP induced<br>CYP1A1 gene<br>expression |                     | All solutions used came in kits ready to use.                                                                                                                                                                                                                                                                                                                                       |

## Appendix 2: Additional Data for Calculations and Results

In this section additional data is added to support calculations and results of the assays performed. Plate lay-outs, reading results and calculation tables are shown for each of the four primary screening assays as well as for the in-vitro assay.

Tables A5-A19 represent the radical scavenging experiments that were performed for Kale, Lucerne and Sugar beet (n=3 times) and then later for Crimson clover, Phacelia, Oil radish and Red beet (n=3 times). Table A5 shows the plate lay out for the three experiments done for Kale, Lucerne and Sugar beet, tables A6, A8 and A10 are absorption results retrieved from the spectrophotometer microplate reader and can be compared to the plate lay-out. Tables A7, A9 and A11 are calculations where the absorbances are converted to %inhibition using equation 1 in section 4.2. Table A12 shows the plate lay out for the three latter experiments done for Crimson clover, Phacelia, Oil radish and Red beet, tables A13, A15 and A17 are absorption results retrieved from the spectrophotometer microplate reader and can be compared to the plate lay-out. Tables A14, A16 and A18 are calculations where the absorbances are converted to %inhibition using equation 1 in section 4.2. Table A18 are calculations where the absorbances are converted to %inhibition using equation 1 in section 4.2. Tables A14, A16 and A18 are calculations where the absorbances are converted to %inhibition using equation 1 in section 4.2. Table A19 is a summary of the results for all seven plants (35 extracts) where the %inhibition is shown as an average from all three repeated experiments. Note that the plate lay outs also include the reagents added as well as their volumes (this goes for all plates in all the assays).

*Table A5. Plate lay out of DPPH experiment for Kale, Lucerne and Sugar beet using methanol and DMSO as blanks and Vitamin C as reference. Three replicates of each sample were analyzed, and three replicates of the blanks and reference were also analyzed.* 

|   | 1                                     | 2                            | 3                            | 4                             | 5                             | 6                             | 7             | 8             | 9             | 10 | 11 | 12 |
|---|---------------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------|---------------|---------------|----|----|----|
|   | 100 µ MeOH                            | 100 µ MeOH                   | 100 µ MeOH                   | 100 µL Kale                   | 100 µL Kale                   | 100 μL Kale                   | 100 µL Vit C  | 100 µL Vit C  | 100 µL Vit C  |    |    |    |
| 4 | + 100 μL DPPH                         | + 100 μL DPPH                | + 100 μL DPPH                | green juice                   | green juice                   | green juice                   | (100 µM)      | (100 µM)      | (100 µM)      |    |    |    |
|   |                                       |                              |                              | + 100 μL DPPH                 | + 100 μL DPPH                 | + 100 μL DPPH                 | + 100 μL DPPH | + 100 μL DPPH | + 100 μL DPPH |    |    |    |
|   | 2µL DMSO                              | 2µL DMSO                     | 2µL DMSO                     | 100 µL Kale                   | 100 µL Kale                   | 100 μL Kale                   |               |               |               |    |    |    |
| P | + 98 μL MeOH                          | + 98 µL MeOH                 | + 98 µL MeOH                 | brown juice                   | brown juice                   | brown juice                   |               |               |               |    |    |    |
|   | + 100 μL DPPH                         | + 100 μL DPPH                | + 100 μL DPPH                | + 100 μL DPPH                 | + 100 μL DPPH                 | + 100 μL DPPH                 |               |               |               |    |    |    |
|   |                                       | 100 µL Lucerne               | 100 µL Lucerne               | 2 μL Kale                     | 2 μL Kale                     | 2 μL Kale                     |               |               |               |    |    |    |
|   | fiber + 100 μL                        | fiber + 100 µL               | fiber + 100 µL               | green protein                 | green protein                 | green protein                 |               |               |               |    |    |    |
| C | DPPH                                  | DPPH                         | DPPH                         | in DMSO<br>+ 98 μL MeOH       | in DMSO<br>+ 98 μL MeOH       | in DMSO<br>+ 98 μL MeOH       |               |               |               |    |    |    |
|   |                                       |                              |                              | + 98 με WeOH<br>+ 100 μL DPPH | + 98 με NeOH<br>+ 100 με DPPH | + 98 με WeOH<br>+ 100 με DPPH |               |               |               |    |    |    |
|   |                                       |                              |                              | -                             |                               |                               |               |               |               |    |    |    |
|   | · · · ·                               | 100 µL Lucerne               |                              | 100 μL Sugar                  | 100 μL Sugar<br>beet fiber    | 100 μL Sugar<br>beet fiber    |               |               |               |    |    |    |
| C | green juice +<br>100 μL DPPH          | green juice +<br>100 μL DPPH | green juice +<br>100 µL DPPH | beet fiber<br>+ 100 μL DPPH   | + 100 µL DPPH                 | + 100 µL DPPH                 |               |               |               |    |    |    |
|   | · · · · · · · · · · · · · · · · · · · |                              |                              |                               |                               |                               |               |               |               |    |    |    |
|   |                                       | 100 µL Lucerne               | 100 µL Lucerne               | 100 μL Sugar                  | 100 μL Sugar                  | 100 μL Sugar                  |               |               |               |    |    |    |
|   | brown juice +                         | brown juice +                | brown juice +                | beet green                    | beet green                    | beet green                    |               |               |               |    |    |    |
| E | 100 µL DPPH                           | 100 µL DPPH                  | 100 µL DPPH                  | protein + 100                 | protein + 100                 | protein + 100                 |               |               |               |    |    |    |
|   |                                       |                              |                              | µL DPPH                       | µL DPPH                       | µL DPPH                       |               |               |               |    |    |    |
|   |                                       |                              |                              | 100 μL Sugar                  | 100 μL Sugar                  | 100 μL Sugar                  |               |               |               |    |    |    |
|   |                                       |                              |                              | beet white                    | beet white                    | beet white                    |               |               |               |    |    |    |
| F |                                       |                              |                              | protein + 100                 | protein + 100                 | protein + 100                 |               |               |               |    |    |    |
|   |                                       |                              |                              | µL DPPH                       | µL DPPH                       | µL DPPH                       |               |               |               |    |    |    |
|   | 100 μL Kale                           | 100 µL Kale                  | 100 µL Kale                  | 100 μL Sugar                  | 100 μL Sugar                  | 100 μL Sugar                  |               |               |               |    |    |    |
|   | fiber + 100 μL                        | fiber + 100 μL               | fiber + 100 μL               | beet green                    | beet green                    | beet green                    |               |               |               |    |    |    |
| Ģ | DPPH                                  | DPPH                         | DPPH                         | juice + 100 μL                | juice + 100 μL                | juice + 100 μL                |               |               |               |    |    |    |
|   |                                       |                              |                              | DPPH                          | DPPH                          | DPPH                          |               |               |               |    |    |    |
|   |                                       |                              |                              | 100 μL Lucerne                | 100 µL Lucerne                | 100 μL Lucerne                |               |               |               |    |    |    |
| F |                                       |                              |                              |                               | leaves + 100 µL               |                               |               |               |               |    |    |    |
|   |                                       |                              |                              | DPPH                          | DPPH                          | DPPH                          |               |               |               |    |    |    |
|   |                                       |                              |                              | l                             |                               |                               |               |               |               |    |    |    |

Table A6. Results for inhibition from DPPH screening (n=1) according to the plate lay-out in table A5.

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| А | 0,508 | 0,504 | 0,513 | 0,392 | 0,365 | 0,368 | 0,146 | 0,102 | 0,093 | 0,048 | 0,048 | 0,048 | 516 |
| В | 0,505 | 0,509 | 0,518 | 0,344 | 0,328 | 0,319 | 0,462 | 0,471 | 0,459 | 0,048 | 0,048 | 0,048 | 516 |
| С | 0,464 | 0,457 | 0,459 | 0,513 | 0,507 | 0,508 | 0,459 | 0,454 | 0,452 | 0,05  | 0,049 | 0,049 | 516 |
| D | 0,386 | 0,376 | 0,378 | 0,513 | 0,507 | 0,509 | 0,461 | 0,457 | 0,454 | 0,049 | 0,048 | 0,051 | 516 |
| Е | 0,377 | 0,355 | 0,355 | 0,343 | 0,323 | 0,321 | 0,47  | 0,461 | 0,456 | 0,05  | 0,05  | 0,049 | 516 |
| F | 0,431 | 0,432 | 0,431 | 0,516 | 0,51  | 0,519 | 0,464 | 0,464 | 0,468 | 0,05  | 0,048 | 0,05  | 516 |
| G | 0,392 | 0,384 | 0,384 | 0,35  | 0,33  | 0,334 | 0,473 | 0,465 | 0,468 | 0,051 | 0,049 | 0,05  | 516 |
| Н | 0,434 | 0,431 | 0,45  | 0,314 | 0,301 | 0,301 | 0,457 | 0,451 | 0,46  | 0,051 | 0,048 | 0,048 | 516 |

Table A7. Calculation of %Radical inhibition for Kale, Lucerne and Sugar beet (n=1).

|                          | Abs 1 | Abs 2 | Abs 3 | Abs<br>average | % Radical<br>inhibition<br>1 | % Radical<br>inhibition<br>2 | % Radical<br>inhibition<br>3 | Average%<br>Radical<br>inhibition | Std Dev |
|--------------------------|-------|-------|-------|----------------|------------------------------|------------------------------|------------------------------|-----------------------------------|---------|
| MeOH                     | 0,508 | 0,504 | 0,513 | 0,508          |                              |                              |                              |                                   |         |
| DMSO + MeOH              | 0,505 | 0,509 | 0,518 | 0,511          |                              |                              |                              |                                   |         |
| Lucerne fiber            | 0,464 | 0,457 | 0,459 |                | 8,7                          | 10,1                         | 9,7                          | 9,5                               | 0,7     |
| Lucerne green juice      | 0,386 | 0,376 | 0,378 |                | 24,1                         | 26,0                         | 25,6                         | 25,2                              | 1,0     |
| Lucerne brown juice      | 0,377 | 0,355 | 0,355 |                | 25,8                         | 30,2                         | 30,2                         | 28,7                              | 2,5     |
| Kale fiber               | 0,392 | 0,384 | 0,384 |                | 22,9                         | 24,5                         | 24,5                         | 23,9                              | 0,9     |
| Kale green juice         | 0,392 | 0,365 | 0,368 |                | 22,9                         | 28,2                         | 27,6                         | 26,2                              | 2,9     |
| Kale brown juice         | 0,344 | 0,328 | 0,319 |                | 32,3                         | 35,5                         | 37,2                         | 35,0                              | 2,5     |
| Kale green protein       | 0,513 | 0,507 | 0,508 |                | -0,5                         | 0,7                          | 0,5                          | 0,3                               | 0,6     |
| Sugar beet fiber         | 0,513 | 0,507 | 0,509 |                | -0,9                         | 0,3                          | -0,1                         | -0,3                              | 0,6     |
| Sugar beet green protein | 0,343 | 0,323 | 0,321 |                | 32,5                         | 36,5                         | 36,9                         | 35,3                              | 2,4     |
| Sugar beet white protein | 0,516 | 0,51  | 0,519 |                | -1,5                         | -0,3                         | -2,1                         | -1,3                              | 0,9     |
| Sugar beet green juice   | 0,35  | 0,33  | 0,334 |                | 31,1                         | 35,1                         | 34,3                         | 33,5                              | 2,1     |
| Lucerne leaves           | 0,314 | 0,301 | 0,301 |                | 38,2                         | 40,8                         | 40,8                         | 39,9                              | 1,5     |
| Vitamin C                | 0,146 | 0,102 | 0,093 |                | 71,3                         | 79,9                         | 81,7                         | 77,6                              | 5,6     |

Table A8. Results for inhibition from DPPH screening (n=2) according to the plate lay-out in table A5.

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| А | 0,486 | 0,492 | 0,495 | 0,36  | 0,341 | 0,35  | 0,138 | 0,092 | 0,101 | 0,048 | 0,048 | 0,047 | 516 |
| В | 0,479 | 0,477 | 0,464 | 0,31  | 0,293 | 0,308 | 0,436 | 0,442 | 0,442 | 0,048 | 0,049 | 0,048 | 516 |
| С | 0,428 | 0,427 | 0,429 | 0,484 | 0,482 | 0,488 | 0,429 | 0,437 | 0,438 | 0,05  | 0,048 | 0,048 | 516 |
| D | 0,358 | 0,347 | 0,352 | 0,482 | 0,482 | 0,484 | 0,433 | 0,44  | 0,427 | 0,048 | 0,048 | 0,048 | 516 |
| Е | 0,327 | 0,326 | 0,326 | 0,287 | 0,265 | 0,275 | 0,439 | 0,439 | 0,434 | 0,048 | 0,048 | 0,048 | 516 |
| F | 0,432 | 0,434 | 0,429 | 0,486 | 0,478 | 0,492 | 0,436 | 0,443 | 0,436 | 0,048 | 0,048 | 0,048 | 516 |
| G | 0,375 | 0,364 | 0,359 | 0,318 | 0,301 | 0,302 | 0,44  | 0,445 | 0,436 | 0,049 | 0,048 | 0,047 | 516 |
| Н | 0,415 | 0,436 | 0,434 | 0,301 | 0,291 | 0,289 | 0,439 | 0,439 | 0,433 | 0,049 | 0,049 | 0,048 | 516 |

 Table A9. Calculation of %Radical inhibition for Kale, Lucerne and Sugar beet (n=2).

|                          | Abs 1 | Abs 2 | Abs 3 | Abs<br>average | % Radical<br>inhibition<br>1 | % Radical<br>inhibition<br>2 | % Radical<br>inhibition<br>3 | Average%<br>Radical<br>inhibition | Std Dev |
|--------------------------|-------|-------|-------|----------------|------------------------------|------------------------------|------------------------------|-----------------------------------|---------|
| MeOH                     | 0,486 | 0,492 | 0,495 | 0,491          |                              |                              |                              |                                   |         |
| DMSO + MeOH              | 0,479 | 0,477 | 0,464 | 0,473          |                              |                              |                              |                                   |         |
| Lucerne fiber            | 0,428 | 0,427 | 0,429 |                | 12,8                         | 13,0                         | 12,6                         | 12,8                              | 0,2     |
| Lucerne green juice      | 0,358 | 0,347 | 0,352 |                | 27,1                         | 29,3                         | 28,3                         | 28,2                              | 1,1     |
| Lucerne brown juice      | 0,327 | 0,326 | 0,326 |                | 33,4                         | 33,6                         | 33,6                         | 33,5                              | 0,1     |
| Kale fiber               | 0,375 | 0,364 | 0,359 |                | 23,6                         | 25,9                         | 26,9                         | 25,5                              | 1,7     |
| Kale green juice         | 0,36  | 0,341 | 0,35  |                | 26,7                         | 30,5                         | 28,7                         | 28,6                              | 1,9     |
| Kale brown juice         | 0,31  | 0,293 | 0,308 |                | 36,9                         | 40,3                         | 37,3                         | 38,2                              | 1,9     |
| Kale green protein       | 0,484 | 0,482 | 0,488 |                | 1,4                          | 1,8                          | 0,6                          | 1,3                               | 0,6     |
| Sugar beet fiber         | 0,482 | 0,482 | 0,484 |                | 1,8                          | 1,8                          | 1,4                          | 1,7                               | 0,2     |
| Sugar beet green protein | 0,287 | 0,265 | 0,275 |                | 41,5                         | 46,0                         | 44,0                         | 43,9                              | 2,2     |
| Sugar beet white protein | 0,486 | 0,478 | 0,492 |                | 1,0                          | 2,6                          | -0,2                         | 1,2                               | 1,4     |
| Sugar beet green juice   | 0,318 | 0,301 | 0,302 |                | 35,2                         | 38,7                         | 38,5                         | 37,5                              | 1,9     |
| Lucerne leaves           | 0,301 | 0,291 | 0,289 |                | 38,7                         | 40,7                         | 41,1                         | 40,2                              | 1,3     |
| Vitamin C                | 0,138 | 0,092 | 0,101 |                | 71,9                         | 81,3                         | 79,4                         | 77,5                              | 5,0     |

*Table A10. Results for inhibition from DPPH screening (n=3) according to the plate lay-out in table A5.* 

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| А | 0,503 | 0,503 | 0,507 | 0,369 | 0,353 | 0,353 | 0,133 | 0,092 | 0,084 | 0,048 | 0,048 | 0,047 | 516 |
| В | 0,497 | 0,499 | 0,506 | 0,323 | 0,309 | 0,307 | 0,448 | 0,451 | 0,446 | 0,048 | 0,048 | 0,047 | 516 |
| С | 0,438 | 0,435 | 0,44  | 0,472 | 0,486 | 0,495 | 0,447 | 0,438 | 0,441 | 0,048 | 0,048 | 0,048 | 516 |
| D | 0,361 | 0,348 | 0,359 | 0,495 | 0,496 | 0,496 | 0,445 | 0,443 | 0,444 | 0,048 | 0,048 | 0,048 | 516 |
| Е | 0,347 | 0,331 | 0,338 | 0,298 | 0,281 | 0,278 | 0,447 | 0,449 | 0,451 | 0,048 | 0,048 | 0,048 | 516 |
| F | 0,427 | 0,429 | 0,423 | 0,496 | 0,495 | 0,495 | 0,449 | 0,442 | 0,438 | 0,048 | 0,048 | 0,049 | 516 |
| G | 0,376 | 0,37  | 0,378 | 0,314 | 0,301 | 0,301 | 0,442 | 0,441 | 0,439 | 0,049 | 0,048 | 0,048 | 516 |
| Н | 0,414 | 0,429 | 0,434 | 0,313 | 0,3   | 0,296 | 0,438 | 0,436 | 0,431 | 0,048 | 0,048 | 0,048 | 516 |

|                          | Abs 1 | Abs 2 | Abs 3 | Abs<br>average | % Radical<br>inhibition<br>1 | % Radical<br>inhibition<br>2 | % Radical<br>inhibition<br>3 | Average%<br>Radical<br>inhibition | Std Dev |
|--------------------------|-------|-------|-------|----------------|------------------------------|------------------------------|------------------------------|-----------------------------------|---------|
| MeOH                     | 0,503 | 0,503 | 0,507 | 0,504          |                              |                              |                              |                                   |         |
| DMSO + MeOH              | 0,497 | 0,499 | 0,506 | 0,501          |                              |                              |                              |                                   |         |
| Lucerne fiber            | 0,438 | 0,435 | 0,44  |                | 13,2                         | 13,7                         | 12,8                         | 13,2                              | 0,5     |
| Lucerne green juice      | 0,361 | 0,348 | 0,359 |                | 28,4                         | 31,0                         | 28,8                         | 29,4                              | 1,4     |
| Lucerne brown juice      | 0,347 | 0,331 | 0,338 |                | 31,2                         | 34,4                         | 33,0                         | 32,8                              | 1,6     |
| Kale fiber               | 0,376 | 0,37  | 0,378 |                | 25,4                         | 26,6                         | 25,0                         | 25,7                              | 0,8     |
| Kale green juice         | 0,369 | 0,353 | 0,353 |                | 26,8                         | 30,0                         | 30,0                         | 28,9                              | 1,8     |
| Kale brown juice         | 0,323 | 0,309 | 0,307 |                | 36,0                         | 38,7                         | 39,1                         | 37,9                              | 1,7     |
| Kale green protein       | 0,472 | 0,486 | 0,495 |                | 6,4                          | 3,6                          | 1,9                          | 4,0                               | 2,3     |
| Sugar beet fiber         | 0,495 | 0,496 | 0,496 |                | 1,9                          | 1,7                          | 1,7                          | 1,7                               | 0,1     |
| Sugar beet green protein | 0,298 | 0,281 | 0,278 |                | 40,9                         | 44,3                         | 44,9                         | 43,4                              | 2,1     |
| Sugar beet white protein | 0,496 | 0,495 | 0,495 |                | 1,7                          | 1,9                          | 1,9                          | 1,8                               | 0,1     |
| Sugar beet green juice   | 0,314 | 0,301 | 0,301 |                | 37,7                         | 40,3                         | 40,3                         | 39,5                              | 1,5     |
| Lucerne leaves           | 0,313 | 0,3   | 0,296 |                | 37,9                         | 40,5                         | 41,3                         | 39,9                              | 1,8     |
| Vitamin C                | 0,133 | 0,092 | 0,084 |                | 73,6                         | 81,8                         | 83,3                         | 79,6                              | 5,2     |

#### Table A11. Calculation of %Radical inhibition for Kale, Lucerne and Sugar beet (n=3).

Table A12. Plate lay out of DPPH experiment for Crimson clover, Phacelia, Oil radish and Red beet using methanol and DMSO as blanks and Vitamin C as reference. Three replicates of each sample were analyzed, and three replicates of the blanks and reference were also analyzed.

|   | 1                                                  | 2                                                    | 3                                                    | 4                                                      | 5                                                         | 6                                                      | 7                                                             | 8                                                             | 9                                                             | 10            | 11                                               | 12                                        |
|---|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------|--------------------------------------------------|-------------------------------------------|
| A | 100 μ MeOH<br>+ 100 μL DPPH                        | 100 μ MeOH<br>+ 100 μL DPPH                          | 100 μ MeOH<br>+ 100 μL DPPH                          | clover green                                           | 100 μL<br>Crimson<br>clover green<br>iuice + 100 μL       | 100 μL<br>Crimson<br>clover green<br>iuice + 100 μL    | 100 μL Oil<br>radish brown<br>juice + 100 μL<br>DPPH          | 100 μL Oil<br>radish brown<br>juice + 100 μL<br>DPPH          | 100 μL Oil<br>radish brown<br>juice + 100 μL<br>DPPH          | white protein | 101 μL Lucerne<br>white protein<br>+ 100 μL DPPH | white protein                             |
| E |                                                    |                                                      | 2μL DMSO<br>+ 98 μL MeOH<br>+ 100 μL DPPH            | 100 μL<br>Crimson                                      | 100 μL<br>Crimson<br>clover green<br>protein + 100        | 100 μL<br>Crimson<br>clover green<br>protein + 100     | 100 μL Oil<br>radish white<br>protein + 100<br>μL DPPH        | 100 μL Oil<br>radish white<br>protein + 100<br>μL DPPH        | 100 μL Oil<br>radish white<br>protein + 100<br>μL DPPH        | (100 µM)      | 100 μL Vit C<br>(100 μM)<br>+ 100 μL DPPH        | 100 μL Vit C<br>(100 μM)<br>+ 100 μL DPPH |
| c | 100 μL<br>Phacelia<br>fiber + 100 μL<br>DPPH       | 101 μL<br>Phacelia<br>fiber + 100 μL<br>DPPH         | 102 μL<br>Phacelia<br>fiber + 100 μL<br>DPPH         | 100 μL<br>Crimson<br>clover brown<br>juice + 100 μL    | 100 μL<br>Crimson<br>clover brown<br>juice + 100 μL       | 100 μL<br>Crimson<br>clover brown<br>juice + 100 μL    | 100 μL Oil<br>radish white<br>juice + 100 μL<br>DPPH          | 100 μL Oil<br>radish white<br>juice + 100 μL<br>DPPH          | 100 μL Oil<br>radish white<br>juice + 100 μL<br>DPPH          |               |                                                  |                                           |
| D | 100 μL<br>Phacelia<br>green juice +<br>100 μL DPPH | 100 μL<br>Phacelia<br>green juice +<br>100 μL DPPH   | 100 μL<br>Phacelia<br>green juice +<br>100 μL DPPH   | 100 μL<br>Crimson<br>clover white<br>protein + 100     | 100 μL<br>Crimson<br>clover white<br>protein + 100        | 100 μL<br>Crimson<br>clover white<br>protein + 100     | 2 μL Red beet<br>green juice +<br>98 μL MeOH +<br>100 μL DPPH | 2 μL Red beet<br>green juice +<br>98 μL MeOH +<br>100 μL DPPH | 2 μL Red beet<br>green juice +<br>98 μL MeOH +<br>100 μL DPPH |               |                                                  |                                           |
| E | green protein                                      | 100 μL<br>Phacelia<br>green protein<br>+ 100 μL DPPH | 100 μL<br>Phacelia<br>green protein<br>+ 100 μL DPPH | 100 μL<br>Crimson<br>clover white<br>juice + 100 μL    | 100 μL<br>Crimson<br>clover white<br>juice + 100 μL       |                                                        | 100 μL Red<br>beet green<br>protein +100<br>μL DPPH           | 100 μL Red<br>beet green<br>protein +100<br>μL DPPH           | 100 μL Red<br>beet green<br>protein +100<br>μL DPPH           |               |                                                  |                                           |
| F | 100 μL<br>Phacelia<br>brown juice +<br>100 μL DPPH | 100 μL<br>Phacelia<br>brown juice +<br>100 μL DPPH   | 100 μL<br>Phacelia<br>brown juice +<br>100 μL DPPH   |                                                        | 2 μL Oil radish<br>fiber + 98 μL<br>MeOH + 100<br>μL DPPH | fiber + 98 µL                                          | 100 μL Red<br>beet brown<br>juice +100 μL<br>DPPH             | 100 μL Red<br>beet brown<br>juice +100 μL<br>DPPH             | 100 μL Red<br>beet brown<br>juice +100 μL<br>DPPH             |               |                                                  |                                           |
| G | 100 μL<br>Phacelia<br>white juice +<br>100 μL DPPH | 100 μL<br>Phacelia<br>white juice +<br>100 μL DPPH   | 100 μL<br>Phacelia<br>white juice +<br>100 μL DPPH   | green juice +<br>98 μL MeOH +                          |                                                           | green juice +<br>98 μL MeOH +                          | 100 μL Red<br>beet white<br>juice +100 μL<br>DPPH             | 100 μL Red<br>beet white<br>juice +100 μL<br>DPPH             | 100 μL Red<br>beet white<br>juice +100 μL<br>DPPH             |               |                                                  |                                           |
| н | ciover                                             | 100 μL<br>Crimson<br>clover<br>fiber + 100 μL        | 100 μL<br>Crimson<br>clover<br>fiber + 100 μL        | 100 μL Oil<br>radish green<br>protein + 100<br>μL DPPH | 101 μL Oil<br>radish green<br>protein + 100<br>μL DPPH    | 102 μL Oil<br>radish green<br>protein + 100<br>μL DPPH | 100 μL Sugar<br>beet brown<br>juice + 100 μL<br>DPPH          | 100 μL Sugar<br>beet brown<br>juice + 100 μL<br>DPPH          | 100 μL Sugar<br>beet brown<br>juice + 100 μL<br>DPPH          |               |                                                  |                                           |

*Table A13. Results for inhibition from DPPH screening* (n=1) *according to the plate lay-out in table A12.* 

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| А | 0,547 | 0,553 | 0,561 | 0,433 | 0,423 | 0,424 | 0,414 | 0,406 | 0,406 | 0,378 | 0,379 | 0,378 | 516 |
| В | 0,542 | 0,562 | 0,564 | 0,377 | 0,36  | 0,357 | 0,097 | 0,1   | 0,093 | 0,094 | 0,057 | 0,056 | 516 |
| С | 0,315 | 0,293 | 0,302 | 0,48  | 0,475 | 0,476 | 0,425 | 0,409 | 0,414 | 0,503 | 0,508 | 0,501 | 516 |
| D | 0,399 | 0,389 | 0,397 | 0,39  | 0,373 | 0,372 | 0,537 | 0,546 | 0,492 | 0,495 | 0,504 | 0,5   | 516 |
| E | 0,229 | 0,201 | 0,207 | 0,398 | 0,403 | 0,4   | 0,298 | 0,274 | 0,278 | 0,506 | 0,508 | 0,502 | 516 |
| F | 0,461 | 0,457 | 0,468 | 0,569 | 0,566 | 0,53  | 0,337 | 0,337 | 0,335 | 0,493 | 0,506 | 0,502 | 516 |
| G | 0,432 | 0,425 | 0,436 | 0,549 | 0,551 | 0,566 | 0,36  | 0,349 | 0,345 | 0,496 | 0,5   | 0,497 | 516 |
| Н | 0,109 | 0,093 | 0,095 | 0,279 | 0,254 | 0,256 | 0,341 | 0,325 | 0,323 | 0,484 | 0,5   | 0,491 | 516 |

Table A14. Calculation of %Radical inhibition for Crimson clover, Phacelia, Oil radish and Red beet (n=1) using equation 1 in section 4.2

|                               | Abs 1 | Abs 2 | Abs 3 | Abs<br>average | % Radical<br>inhibition<br>1 | % Radical<br>inhibition<br>2 | % Radical<br>inhibition<br>3 | Average%<br>Radical<br>inhibition | Std Dev |
|-------------------------------|-------|-------|-------|----------------|------------------------------|------------------------------|------------------------------|-----------------------------------|---------|
| MeOH                          | 0,547 | 0,553 | 0,561 | 0,554          |                              |                              |                              |                                   |         |
| DMSO+MeOH                     | 0,542 | 0,562 | 0,564 | 0,556          |                              |                              |                              |                                   |         |
| Phacelia Fiber                | 0,315 | 0,293 | 0,302 |                | 43,1                         | 47,1                         | 45,5                         | 45,2                              | 2,0     |
| Phacelia Green juice          | 0,399 | 0,389 | 0,397 |                | 27,9                         | 29,7                         | 28,3                         | 28,7                              | 1,0     |
| Phacelia Green proteins       | 0,229 | 0,201 | 0,207 |                | 58,6                         | 63,7                         | 62,6                         | 61,6                              | 2,7     |
| Phacelia Brown juice          | 0,461 | 0,457 | 0,468 |                | 16,7                         | 17,5                         | 15,5                         | 16,6                              | 1,0     |
| Phacelia White juice          | 0,432 | 0,425 | 0,436 |                | 22,0                         | 23,2                         | 21,3                         | 22,2                              | 1,0     |
| Crimson clover Fiber          | 0,109 | 0,093 | 0,095 |                | 80,3                         | 83,2                         | 82,8                         | 82,1                              | 1,6     |
| Crimson clover Green juice    | 0,433 | 0,423 | 0,424 |                | 21,8                         | 23,6                         | 23,4                         | 22,9                              | 1,0     |
| Crimson clover Green proteins | 0,377 | 0,36  | 0,357 |                | 31,9                         | 35,0                         | 35,5                         | 34,1                              | 1,9     |
| Crimson clover Brown juice    | 0,48  | 0,475 | 0,476 |                | 13,3                         | 14,2                         | 14,0                         | 13,8                              | 0,5     |
| Crimson clover White protein  | 0,39  | 0,373 | 0,372 |                | 29,6                         | 32,6                         | 32,8                         | 31,7                              | 1,8     |
| Crimson clover White juice    | 0,398 | 0,403 | 0,4   |                | 28,1                         | 27,2                         | 27,8                         | 27,7                              | 0,5     |
| Oil radish Fiber              | 0,569 | 0,566 | 0,53  |                | -2,3                         | -1,8                         | 4,7                          | 0,2                               | 3,9     |
| Oil radish Green juice        | 0,549 | 0,551 | 0,566 |                | 1,3                          | 0,9                          | -1,8                         | 0,1                               | 1,7     |
| Oil radish Green proteins     | 0,279 | 0,254 | 0,256 |                | 49,6                         | 54,1                         | 53,8                         | 52,5                              | 2,5     |
| Oil radish Brown juice        | 0,414 | 0,406 | 0,406 |                | 25,2                         | 26,7                         | 26,7                         | 26,2                              | 0,8     |
| Oil radish White protein      | 0,097 | 0,1   | 0,093 |                | 82,5                         | 81,9                         | 83,2                         | 82,5                              | 0,6     |
| Oil radish White juice        | 0,425 | 0,409 | 0,414 |                | 23,2                         | 26,1                         | 25,2                         | 24,9                              | 1,5     |
| Red beet Green juice          | 0,537 | 0,546 | 0,492 |                | 3,4                          | 1,8                          | 11,5                         | 5,6                               | 5,2     |
| Red beet Green proteins       | 0,298 | 0,274 | 0,278 |                | 46,2                         | 50,5                         | 49,8                         | 48,8                              | 2,3     |
| Red beet Brown juice          | 0,337 | 0,337 | 0,335 |                | 39,1                         | 39,1                         | 39,5                         | 39,3                              | 0,2     |
| Red beet White juice          | 0,36  | 0,349 | 0,345 |                | 35,0                         | 37,0                         | 37,7                         | 36,5                              | 1,4     |
| Sugar beet Brown juice        | 0,341 | 0,325 | 0,323 |                | 38,4                         | 41,3                         | 41,7                         | 40,5                              | 1,8     |
| Lucerne White protein         | 0,378 | 0,379 | 0,378 |                | 31,7                         | 31,5                         | 31,7                         | 31,7                              | 0,1     |
| Vitamin C                     | 0,094 | 0,057 | 0,056 |                | 83,0                         | 89,7                         | 89,9                         | 87,5                              | 3,9     |

*Table A15. Results for inhibition from DPPH screening (n=2) according to the plate lay-out in table A12.* 

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| Α | 0,544 | 0,543 | 0,549 | 0,431 | 0,412 | 0,415 | 0,416 | 0,403 | 0,401 | 0,393 | 0,377 | 0,378 | 516 |
| В | 0,538 | 0,538 | 0,553 | 0,368 | 0,352 | 0,345 | 0,094 | 0,099 | 0,097 | 0,21  | 0,128 | 0,132 | 516 |
| С | 0,307 | 0,302 | 0,304 | 0,473 | 0,465 | 0,466 | 0,422 | 0,405 | 0,409 | 0,498 | 0,498 | 0,505 | 516 |
| D | 0,402 | 0,39  | 0,393 | 0,387 | 0,365 | 0,357 | 0,514 | 0,52  | 0,54  | 0,546 | 0,547 | 0,553 | 516 |
| E | 0,211 | 0,191 | 0,195 | 0,399 | 0,387 | 0,383 | 0,309 | 0,283 | 0,285 | 0,495 | 0,491 | 0,499 | 516 |
| F | 0,447 | 0,449 | 0,45  | 0,551 | 0,564 | 0,548 | 0,336 | 0,322 | 0,322 | 0,491 | 0,488 | 0,492 | 516 |
| G | 0,427 | 0,419 | 0,423 | 0,531 | 0,535 | 0,532 | 0,363 | 0,349 | 0,342 | 0,487 | 0,482 | 0,494 | 516 |
| Н | 0,104 | 0,098 | 0,099 | 0,279 | 0,246 | 0,252 | 0,338 | 0,32  | 0,316 | 0,485 | 0,489 | 0,488 | 516 |

Table A16. Calculation of %Radical inhibition for Crimson clover, Phacelia, Oil radish and Red beet (n=2) using equation 1 in section 4.2.

|                               | Abs 1 | Abs 2 | Abs 3 | Abs<br>average | % Radical<br>inhibition<br>1 | % Radical<br>inhibition<br>2 | % Radical<br>inhibition<br>3 | Average%<br>Radical<br>inhibition | Std Dev |
|-------------------------------|-------|-------|-------|----------------|------------------------------|------------------------------|------------------------------|-----------------------------------|---------|
| MeOH                          | 0,544 | 0,543 | 0,549 | 0,545          |                              |                              |                              |                                   |         |
| DMSO+MeOH                     | 0,538 | 0,538 | 0,553 | 0,543          |                              |                              |                              |                                   |         |
| Phacelia Fiber                | 0,307 | 0,302 | 0,304 |                | 43,7                         | 44,6                         | 44,3                         | 44,2                              | 0,5     |
| Phacelia Green juice          | 0,402 | 0,39  | 0,393 |                | 26,3                         | 28,5                         | 27,9                         | 27,6                              | 1,1     |
| Phacelia Green proteins       | 0,211 | 0,191 | 0,195 |                | 61,3                         | 65,0                         | 64,2                         | 63,5                              | 1,9     |
| Phacelia Brown juice          | 0,447 | 0,449 | 0,45  |                | 18,0                         | 17,7                         | 17,5                         | 17,7                              | 0,3     |
| Phacelia White juice          | 0,427 | 0,419 | 0,423 |                | 21,7                         | 23,2                         | 22,4                         | 22,4                              | 0,7     |
| Crimson clover Fiber          | 0,104 | 0,098 | 0,099 |                | 80,9                         | 82,0                         | 81,8                         | 81,6                              | 0,6     |
| Crimson clover Green juice    | 0,431 | 0,412 | 0,415 |                | 21,0                         | 24,4                         | 23,9                         | 23,1                              | 1,9     |
| Crimson clover Green proteins | 0,368 | 0,352 | 0,345 |                | 32,5                         | 35,5                         | 36,7                         | 34,9                              | 2,2     |
| Crimson clover Brown juice    | 0,473 | 0,465 | 0,466 |                | 13,3                         | 14,7                         | 14,5                         | 14,2                              | 0,8     |
| Crimson clover White protein  | 0,387 | 0,365 | 0,357 |                | 29,0                         | 33,1                         | 34,5                         | 32,2                              | 2,8     |
| Crimson clover White juice    | 0,399 | 0,387 | 0,383 |                | 26,8                         | 29,0                         | 29,8                         | 28,5                              | 1,5     |
| Oil radish Fiber              | 0,551 | 0,564 | 0,548 |                | -1,5                         | -3,9                         | -0,9                         | -2,1                              | 1,6     |
| Oil radish Green juice        | 0,531 | 0,535 | 0,532 |                | 2,2                          | 1,5                          | 2,0                          | 1,9                               | 0,4     |
| Oil radish Green proteins     | 0,279 | 0,246 | 0,252 |                | 48,8                         | 54,9                         | 53,8                         | 52,5                              | 3,2     |
| Oil radish Brown juice        | 0,416 | 0,403 | 0,401 |                | 23,7                         | 26,1                         | 26,5                         | 25,4                              | 1,5     |
| Oil radish White protein      | 0,094 | 0,099 | 0,097 |                | 82,8                         | 81,8                         | 82,2                         | 82,3                              | 0,5     |
| Oil radish White juice        | 0,422 | 0,405 | 0,409 |                | 22,6                         | 25,7                         | 25,0                         | 24,4                              | 1,6     |
| Red beet Green juice          | 0,514 | 0,52  | 0,54  |                | 5,3                          | 4,2                          | 0,6                          | 3,4                               | 2,5     |
| Red beet Green proteins       | 0,309 | 0,283 | 0,285 |                | 43,3                         | 48,1                         | 47,7                         | 46,4                              | 2,7     |
| Red beet Brown juice          | 0,336 | 0,322 | 0,322 |                | 38,4                         | 41,0                         | 41,0                         | 40,1                              | 1,5     |
| Red beet White juice          | 0,363 | 0,349 | 0,342 |                | 33,4                         | 36,0                         | 37,3                         | 35,6                              | 2,0     |
| Sugar beet Brown juice        | 0,338 | 0,32  | 0,316 |                | 38,0                         | 41,3                         | 42,1                         | 40,5                              | 2,1     |
| Lucerne White protein         | 0,393 | 0,377 | 0,378 |                | 27,9                         | 30,9                         | 30,7                         | 29,8                              | 1,6     |
| Vitamin C                     | 0,21  | 0,128 | 0,132 |                | 61,5                         | 76,5                         | 75,8                         | 71,3                              | 8,5     |

Table A17. Results for inhibition from DPPH screening (n=3) according to the plate lay-out in table A12.

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| А | 0,447 | 0,453 | 0,459 | 0,347 | 0,347 | 0,345 | 0,352 | 0,34  | 0,337 | 0,335 | 0,315 | 0,321 | 516 |
| В | 0,437 | 0,443 | 0,469 | 0,295 | 0,293 | 0,284 | 0,092 | 0,09  | 0,09  | 0,105 | 0,075 | 0,063 | 516 |
| С | 0,266 | 0,252 | 0,238 | 0,406 | 0,407 | 0,41  | 0,372 | 0,363 | 0,36  | 0,476 | 0,47  | 0,46  | 516 |
| D | 0,343 | 0,339 | 0,344 | 0,322 | 0,316 | 0,317 | 0,491 | 0,503 | 0,491 | 0,477 | 0,473 | 0,466 | 516 |
| E | 0,18  | 0,167 | 0,177 | 0,374 | 0,365 | 0,366 | 0,291 | 0,267 | 0,257 | 0,478 | 0,474 | 0,468 | 516 |
| F | 0,412 | 0,42  | 0,42  | 0,512 | 0,518 | 0,522 | 0,298 | 0,299 | 0,294 | 0,434 | 0,473 | 0,464 | 516 |
| G | 0,381 | 0,391 | 0,388 | 0,501 | 0,508 | 0,508 | 0,352 | 0,328 | 0,329 | 0,478 | 0,477 | 0,468 | 516 |
| Н | 0,094 | 0,099 | 0,1   | 0,232 | 0,222 | 0,222 | 0,314 | 0,3   | 0,296 | 0,481 | 0,473 | 0,463 | 516 |

Table A18. Calculation of %Radical inhibition for Crimson clover, Phacelia, Oil radish and Red beet (n=3) using equation 1 in section 4.2.

|                               | Abs 1 | Abs 2 | Abs 3 | Abs<br>average | % Radical<br>inhibition<br>1 | % Radical<br>inhibition<br>2 | % Radical<br>inhibition<br>3 | Average%<br>Radical<br>inhibition | Std Dev |
|-------------------------------|-------|-------|-------|----------------|------------------------------|------------------------------|------------------------------|-----------------------------------|---------|
| MeOH                          | 0,447 | 0,453 | 0,459 | 0,453          |                              |                              |                              |                                   |         |
| DMSO+MeOH                     | 0,437 | 0,443 | 0,469 | 0,450          |                              |                              |                              |                                   |         |
| Phacelia Fiber                | 0,266 | 0,252 | 0,238 |                | 41,3                         | 44,4                         | 47,5                         | 44,4                              | 3,1     |
| Phacelia Green juice          | 0,343 | 0,339 | 0,344 |                | 24,3                         | 25,2                         | 24,1                         | 24,5                              | 0,6     |
| Phacelia Green proteins       | 0,18  | 0,167 | 0,177 |                | 60,3                         | 63,1                         | 60,9                         | 61,4                              | 1,5     |
| Phacelia Brown juice          | 0,412 | 0,42  | 0,42  |                | 9,1                          | 7,3                          | 7,3                          | 7,9                               | 1,0     |
| Phacelia White juice          | 0,381 | 0,391 | 0,388 |                | 15,9                         | 13,7                         | 14,3                         | 14,6                              | 1,1     |
| Crimson clover Fiber          | 0,094 | 0,099 | 0,1   |                | 79,2                         | 78,1                         | 77,9                         | 78,4                              | 0,7     |
| Crimson clover Green juice    | 0,347 | 0,347 | 0,345 |                | 23,4                         | 23,4                         | 23,8                         | 23,5                              | 0,3     |
| Crimson clover Green proteins | 0,295 | 0,293 | 0,284 |                | 34,9                         | 35,3                         | 37,3                         | 35,8                              | 1,3     |
| Crimson clover Brown juice    | 0,406 | 0,407 | 0,41  |                | 10,4                         | 10,2                         | 9,5                          | 10,0                              | 0,5     |
| Crimson clover White protein  | 0,322 | 0,316 | 0,317 |                | 28,9                         | 30,2                         | 30,0                         | 29,7                              | 0,7     |
| Crimson clover White juice    | 0,374 | 0,365 | 0,366 |                | 17,4                         | 19,4                         | 19,2                         | 18,7                              | 1,1     |
| Oil radish Fiber              | 0,512 | 0,518 | 0,522 |                | -13,9                        | -15,2                        | -16,1                        | -15,0                             | 1,1     |
| Oil radish Green juice        | 0,501 | 0,508 | 0,508 |                | -11,4                        | -13,0                        | -13,0                        | -12,5                             | 0,9     |
| Oil radish Green proteins     | 0,232 | 0,222 | 0,222 |                | 48,8                         | 51,0                         | 51,0                         | 50,3                              | 1,3     |
| Oil radish Brown juice        | 0,352 | 0,34  | 0,337 |                | 22,3                         | 24,9                         | 25,6                         | 24,3                              | 1,8     |
| Oil radish White protein      | 0,092 | 0,09  | 0,09  |                | 79,7                         | 80,1                         | 80,1                         | 80,0                              | 0,3     |
| Oil radish White juice        | 0,372 | 0,363 | 0,36  |                | 17,9                         | 19,9                         | 20,5                         | 19,4                              | 1,4     |
| Red beet Green juice          | 0,491 | 0,503 | 0,491 |                | -9,2                         | -11,9                        | -9,2                         | -10,1                             | 1,5     |
| Red beet Green proteins       | 0,291 | 0,267 | 0,257 |                | 35,8                         | 41,1                         | 43,3                         | 40,0                              | 3,9     |
| Red beet Brown juice          | 0,298 | 0,299 | 0,294 |                | 34,2                         | 34,0                         | 35,1                         | 34,4                              | 0,6     |
| Red beet White juice          | 0,352 | 0,328 | 0,329 |                | 22,3                         | 27,6                         | 27,4                         | 25,8                              | 3,0     |
| Sugar beet Brown juice        | 0,314 | 0,3   | 0,296 |                | 30,7                         | 33,8                         | 34,7                         | 33,0                              | 2,1     |
| Lucerne White protein         | 0,335 | 0,315 | 0,321 |                | 26,0                         | 30,5                         | 29,1                         | 28,6                              | 2,3     |
| Vitamin C                     | 0,105 | 0,075 | 0,063 |                | 76,8                         | 83,4                         | 86,1                         | 82,1                              | 4,8     |

Table A19. Summary of results from the radical scavenging analyses where the average %radical inhibition is shown next to the average standard deviation.

|                               | % Radical<br>inhibition | Std Dev |
|-------------------------------|-------------------------|---------|
|                               | average                 | average |
| Lucerne fiber                 | 11,9                    | 1,8     |
| Lucerne green juice           | 27,6                    | 2,1     |
| Lucerne brown juice           | 31,7                    | 2,7     |
| Kale fiber                    | 25,0                    | 1,3     |
| Kale green juice              | 27,9                    | 2,4     |
| Kale brown juice              | 37,0                    | 2,3     |
| Kale green protein            | 1,8                     | 2,1     |
| Sugar beet fiber              | 1,1                     | 1,0     |
| Sugar beet green protein      | 40,8                    | 4,6     |
| Sugar beet white protein      | 0,5                     | 1,7     |
| Sugar beet green juice        | 36,8                    | 3,1     |
| Lucerne leaves                | 40,0                    | 1,3     |
| Phacelia Fiber                | 44,6                    | 1,9     |
| Phacelia Green juice          | 26,9                    | 2,0     |
| Phacelia Green proteins       | 62,2                    | 2,1     |
| Phacelia Brown juice          | 14,1                    | 4,7     |
| Phacelia White juice          | 19,7                    | 3,9     |
| Crimson clover Fiber          | 80,7                    | 2,0     |
| Crimson clover Green juice    | 23,2                    | 1,1     |
| Crimson clover Green proteins | 35,0                    | 1,8     |
| Crimson clover Brown juice    | 12,7                    | 2,1     |
| Crimson clover White protein  | 31,2                    | 2,1     |
| Crimson clover White juice    | 25,0                    | 4,8     |
| Oil radish Fiber              | -5,7                    | 7,4     |
| Oil radish Green juice        | -3,5                    | 6,8     |
| Oil radish Green proteins     | 51,8                    | 2,4     |
| Oil radish Brown juice        | 25,3                    | 1,5     |
| Oil radish White protein      | 81,6                    | 1,3     |
| Oil radish White juice        | 22,9                    | 2,9     |
| Red beet Green juice          | -0,4                    | 7,9     |
| Red beet Green proteins       | 45,1                    | 4,7     |
| Red beet Brown juice          | 37,9                    | 2,8     |
| Red beet White juice          | 32,6                    | 5,5     |
| Sugar beet Brown juice        | 38,0                    | 4,1     |
| Lucerne White protein         | 30,0                    | 2,0     |

Tables A20-A29 represent the glycation inhibition experiment that was performed (n=1 time) using three different plates (plate 1, 2 and 3). Table A20 shows the plate 1 lay out, table A21 is the absorption results retrieved from the spectrophotometer microplate reader and can be compared to plate 1 lay-out. Table A22 is the calculations where the absorbances are converted to %inhibition using equations 2 and 3 in section 4.3. Table A23 shows the plate 1 lay out, table A24 is the absorption results retrieved from the spectrophotometer microplate reader and can be compared to plate 1 lay-out. Table A25 is the calculations where the absorbances are converted to %inhibition using equation 2 and 3 in section 4.3. Table A26 shows the plate 1 lay out, table A27 is the absorption results retrieved from the spectrophotometer microplate reader and can be compared to plate 1 lay-out. Table A25 is the calculations where the absorbances are converted to %inhibition using equation 2 and 3 in section 4.3. Table A26 shows the plate 1 lay out, table A27 is the absorption results retrieved from the spectrophotometer microplate reader and can be compared to plate 1 lay-out. Table A28 is the calculations where the absorbances are and can be compared to plate 1 lay-out. Table A28 is the calculations where the absorbances are converted to %inhibition using equation 2 and 3 in section 4.3. Table A26 shows the plate 1 lay out, table A27 is the absorption results retrieved from the spectrophotometer microplate reader and can be compared to plate 1 lay-out. Table A28 is the calculations where the absorbances are converted to %inhibition using equation 2 and 3 in section 4.3. Table A29 is a summary of the results for all seven plants (31 extracts) where the %inhibition is shown as an average.

Table A20. Plate lay-out of plate 1 for anti-glycation assay where everything is done in triplicates. The blank control = 100% inhibition, control = no inhibition and then there are two preparations for each extract: blank extract = BSA + extract and extract = BSA + D-ribose + extract. The reference is Rutin 1 mM. When pipetting sample 12 and 13 in plate 1, there was a mix-up and the extracts were re-analyzed in plate 2.

|   | 1                                  | 2                                     | 3                                     | 4                                     | 5                                  | 6                                     | 7                                  | 8                                  | 9                                  | 10               | 11               | 12               |
|---|------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|---------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------|------------------|------------------|
|   |                                    |                                       |                                       | Blank Lucerne                         | Blank Lucerne                      | Blank Lucerne                         | Blank Phacelia                     | Blank Phacelia                     | Blank Phacelia                     | Blank Crimson C  | Blank Crimson G  | Blank Crimson G  |
|   | Blank control:                     | Blank control:                        | Blank control:                        | white protein:                        | white protein:                     | white protein:                        | brown juice:                       | brown juice:                       | brown juice:                       | brown juices     | brown juices     | brown juicez     |
| Α | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA        | 50 µL BSA        | 50 µL BSA        |
|   | +50 μL Buffer                      | + 50 µL Buffer                        | + 50 µL Buffer                        | + 40 μL Buffer                        | + 40 μL Buffer                     | +40 μL Buffer                         | + 40 μL Buffer                     | + 40 μL Buffer                     | + 40 μL Buffer                     | +40 xL Buffer    | +40 aL Buffer    | + 40 µL Buffer   |
|   |                                    |                                       |                                       | + 10 µL Sample                        | + 10 μL Sample                     | +10 μL Sample                         | + 10 µL Sample                     | +10 μL Sample                      | + 10 μL Sample                     | +10 μL Sample    | +10 μL Sample    | +10 μL Sample    |
|   | Control:                           | Control:                              | Control:                              | Lucerne white                         | Lucerne white                      | Lucerne white                         | Phacelia brown                     | Phacelia brown                     | Phacelia brown                     | Crimson C. brown | Crimson C. brown | Crimson C. brown |
|   | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                             | protein:                              | protein:                           | protein:                              | juice:                             | juice:                             | juice:                             | juice:           | juice:           | juice:           |
| В | +10 μL Buffer                      | +10 μL Buffer                         | + 10 μL Buffer                        | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA        | 50 µL BSA        | 50 µL BSA        |
|   | (10% DMSO)                         | (10% DMSO)                            | (10% DMSO)                            | + 40 μL D-ribose                      | +40 μL D-ribose                    | +40 μL D-ribose                       | + 40 μL D-ribose                   | +40 μL D-ribose                    | + 40 μL D-ribose                   | +40 aL D-ribose  | +40 µL D-ribose  | +40 µL D-ribose  |
|   | +40 μL D-ribose                    | +40 μL D-ribose                       | +40 μL D-ribose                       | +10 μL Sample                         | +10 μL Sample                      | + 10 μL Sample                        | + 10 µL Sample                     | +10 μL Sample                      | + 10 μL Sample                     | +10 μL Sample    | +10 μL Sample    | ≠10 μL Sample    |
|   | Blank Kale green                   | Blank Kale green                      | Blank Kale green                      | Blank Sugar beet                      | Blank Sugar beet                   | Blank Sugar beet                      | Blank Phacelia                     | Blank Phacelia                     | Blank Phacelia                     | Blank Crimson C  | Blank Crimson C  | Blank Crimson C  |
|   | juice:                             | juice:                                | juice:                                | fiber:                                | fiber:                             |                                       | white juice:                       | white juice:                       | white juice:                       | white protein:   | white protein:   | white protein:   |
| С | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA        | 50 µL BSA        | 50 µL BSA        |
|   | + 40 μL Buffer                     | + 40 μL Buffer                        | + 40 μL Buffer                        | + 40 μL Buffer                        | + 40 μL Buffer                     | + 40 μL Buffer                        | + 40 μL Buffer                     | + 40 μL Buffer                     | + 40 μL Buffer                     | +40 AL Buffer    | +40 aL Buffer    | + 40 µL Buffer   |
|   | +10 μL Sample                      | + 10 µL Sample                        | + 10 µL Sample                        | +10 μL Sample                         | +10 μL Sample                      | +10 μL Sample                         | + 10 µL Sample                     | +10 μL Sample                      | +10 μL Sample                      | +∕10 μL Sample   | +10 μL Sample    | +10 μL Sample    |
|   | Kale green juice:                  | Kale green juice:                     | Kale green juice:                     | Sugar beet fiber:                     | Sugar beet fiber:                  | Sugar beet fiber:                     | Phacelia white                     | Phacelia white                     | Phacelia white                     | Crimson C. white | Crimson C. white | Crimson C. white |
|   | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                             | 50 uL BSA                          | 50 µL BSA                             | juice:                             | juice:                             | juice:                             | protein:         | protein:         | protein:         |
| D | + 40 µL D-ribose                   | + 40 µL D-ribose                      | + 40 µL D-ribose                      | + 40 µL D-ribose                      | +40 µL D-ribose                    | + 40 µL D-ribose                      | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA        | 50 µL BSA        | 50 µL BSA        |
|   | + 10 uL Sample                     | + 10 uL Sample                        | + 10 uL Sample                        | + 10 µL Sample                        | + 10 uL Sample                     | + 10 uL Sample                        | +40 μL D-ribose                    | +40 μL D-ribose                    | + 40 μL D-ribose                   | +40 xL D-ribose  | +40 µL D-ribose  | +40 µL D-ribose  |
|   | - · · ·                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 N N                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | + 10 µL Sample                     | +10 μL Sample                      | +10 μL Sample                      | +10 μL Sample    | +10 μL Sample    | + 10 μL Sample   |
|   | Blank Kale brown                   | Blank Kale brown                      | Blank Kale brown                      | Blank Sugar beet                      | Blank Sugar beet                   | Blank Sugar beet                      | Blank Crimson C.                   | Blank Crimson C.                   | Blank Crimson C.                   | Blank Crimson C. | Blank Crimson C. | Blank Crimson C. |
| _ | juice:                             | juice:                                | juice:                                | brown juice:                          | brown juice:                       | brown juice:                          | green juice:                       | green juice:                       | green juice:                       | white juice:     | white juice:     | white juice:     |
| E | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA        | 50 µL BSA        | 50 µL BSA        |
|   | +40 μL Buffer                      | +40 μL Buffer                         | + 40 μL Buffer                        | + 40 μL Buffer                        | + 40 μL Buffer                     | + 40 μL Buffer                        | + 40 μL Buffer                     | + 40 μL Buffer                     | + 40 μL Buffer                     | + 40 μL Buffer   | + 40 μL Buffer   | + 40 μL Buffer   |
|   | +10 μL Sample                      | +10 μL Sample                         | +10 μL Sample                         | + 10 µL Sample                        | + 10 μL Sample                     | +10 μL Sample                         | + 10 µL Sample                     | + 10 µL Sample                     | + 10 μL Sample                     | +10 μL Sample    | + 10 µL Sample   | + 10 µL Sample   |
|   | Kale brown juice:                  | Kale brown juice:                     | Kale brown juice:                     | Sugar beet brown                      |                                    |                                       |                                    | Crimson C. green                   | Crimson C. green                   | Crimson C. white | Crimson C. white | Crimson C. white |
| - | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                             | juice:                                | juice:                             | juice:                                | juice:                             | juice:                             | juice:                             | juice:           | juice:           | juice:           |
| F | + 40 µL D-ribose                   | + 40 µL D-ribose                      | + 40 µL D-ribose                      | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA        | 50 µL BSA        | 50 µL BSA        |
|   | + 10 µL Sample                     | + 10 µL Sample                        | + 10 µL Sample                        | +40 μL D-ribose                       | +40 μL D-ribose                    | +40 μL D-ribose                       | +40 μL D-ribose                    | + 40 µL D-ribose                   | +40 μL D-ribose                    | +40 μL D-ribose  | +40 µL D-ribose  | +40 μL D-ribose  |
|   |                                    |                                       |                                       | + 10 µL Sample                        | + 10 µL Sample                     | + 10 µL Sample                        | + 10 µL Sample                     | + 10 µL Sample                     | + 10 µL Sample                     | +10 μL Sample    | +10 μL Sample    | +10 μL Sample    |
|   | Blank Lucerne                      | Blank Lucerne                         | Blank Lucerne                         | Blank Phacelia                        | Blank Phacelia                     | Blank Phacelia                        | Blank Crimson C.                   | Blank Crimson C.                   | Blank Crimson C.                   | Blank reference: | Blank reference: | Blank reference: |
| ~ | brown juice:                       | brown juice:                          | brown juice:                          | green juice:                          | green juice:                       | green juice:                          | green protein:                     | green protein:                     | green protein:                     | 50 µL BSA        | 50 µL BSA        | 50 µL BSA        |
| G | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA                          | + 40 μL Buffer   | +40 μL Buffer    | + 40 µL Buffer   |
|   | +40 μL Buffer                      | +40 µL Buffer                         | +40 µL Buffer                         | +40 µL Buffer                         | +40 μL Buffer                      | +40 µL Buffer                         | +40 µL Buffer                      | + 40 µL Buffer                     | +40 μL Buffer                      | +10 μL Sample    | +10 μL Sample    | + 10 µL Sample   |
|   | + 10 µL Sample                     | + 10 µL Sample                        | + 10 µL Sample                        | + 10 µL Sample<br>Phacelia green      | + 10 µL Sample<br>Phacelia green   | + 10 µL Sample<br>Phacelia green      | + 10 µL Sample<br>Crimson C. green | + 10 µL Sample<br>Crimson C. green | + 10 µL Sample<br>Crimson C. green |                  |                  |                  |
|   | iuice:                             | iuice:                                | iuice:                                | iuice:                                | iuice:                             | iuice:                                | protein:                           | protein:                           | protein:                           | Reference:       | Reference:       | Reference:       |
|   | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                             | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA                          | 50 µL BSA        | 50 µL BSA        | 50 µL BSA        |
| н | + 40 μL D-ribose                   | + 40 µL D-ribose                      | + 40 μL D-ribose                      | + 40 μL D-ribose                      | + 40 µL D-ribose                   | + 40 μL D-ribose                      | + 40 μL D-ribose                   | + 40 μL D-ribose                   | + 40 μL D-ribose                   | + 40 μL D-ribose | + 40 μL D-ribose | + 40 µL D-ribose |
|   | + 40 µL D-ribose<br>+ 10 µL Sample | + 40 μL D-ribbse<br>+ 10 μL Sample    | + 40 μL D-ribose<br>+ 10 μL Sample    | + 40 μL D-ribose<br>+ 10 μL Sample    | + 40 μL D-ribose<br>+ 10 μL Sample | + 40 µL D-ribose<br>+ 10 µL Sample    | + 40 µL D-ribose<br>+ 10 µL Sample | + 40 μL D-ribose<br>+ 10 μL Sample | + 40 μL D-ribose<br>+ 10 μL Sample | +10 μL Sample    | +10 μL Sample    | + 10 µL Sample   |
|   | + 10 µc sample                     | + 10 µc sample                        | + 10 µc sample                        | + 10 µc sample                        | + 10 µc sample                     | + 10 µc sample                        | + 10 µc sample                     | + 10 µL sample                     | + 10 µc sample                     |                  |                  |                  |

*Table A21. Results for inhibition from anti-glycation screening* (n=1) *according to the plate lay-out in table A20.* 

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |        |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Α | 4472  | 4777  | 4796  | 36067 | 34485 | 36964 | 10240 | 11025 | 11200 | 14579 | 20496 | 20014 | 370,44 |
| В | 24364 | 23693 | 24792 | 46646 | 46756 | 45770 | 28987 | 27491 | 28804 | 30781 | 31089 | 32765 | 370,44 |
| С | 11345 | 11470 | 12076 | 11435 | 11215 | 11509 | 14589 | 13613 | 13355 | 14950 | 4607  | 15299 | 370,44 |
| D | 23738 | 23664 | 24784 | 24110 | 24379 | 25112 | 26912 | 27369 | 28610 | 27403 | 26631 | 25642 | 370,44 |
| Е | 9567  | 9589  | 9065  | 11397 | 12086 | 12017 | 12310 | 11935 | 11844 | 12711 | 12524 | 12999 | 370,44 |
| F | 19898 | 19298 | 19042 | 20711 | 21268 | 22251 | 23696 | 24487 | 23490 | 25485 | 25759 | 25214 | 370,44 |
| G | 14766 | 14063 | 14436 | 10605 | 10425 | 11241 | 12126 | 12448 | 11874 | 756   | 761   | 659   | 370,44 |
| Н | 30007 | 29589 | 28938 | 25822 | 25704 | 24794 | 25398 | 25514 | 25158 | 2336  | 2190  | 2182  | 370,44 |

Table A22. Calculation of %Inhibition for the sample analyzed in plate 1 (n=1), see table A20. The %inhibition that are colored light brown represent the extracts showing medium activity and the %inhibition that are colored brown represent the extracts showing good activity.

|               |                  |       |       |       |         | %AGEs 1 | %AGEs 2 | %AGEs 3 | %Inhibition 1 | %Inhibition 2 | %Inhibition 3 | Average | Stdv |
|---------------|------------------|-------|-------|-------|---------|---------|---------|---------|---------------|---------------|---------------|---------|------|
| Blank control |                  | 4472  | 4777  | 4796  | 4681,67 | 101,5   | 96,5    | 102.0   | - 1,5         | 3,5           | - 2,0         | - 0.0   | 3.0  |
| Control       |                  | 24364 | 23693 | 24792 | 24283   | 101,5   | 90,5    | 102,0   | - 1,5         | 3,5           | - 2,0         | - 0,0   | 5,0  |
| Blank sample  | Kale green juice | 11345 | 11470 | 12076 |         | 63,2    | 62.2    | 64.8    | 36.8          | 37.8          | 35.2          | 36,6    | 1,3  |
| Sample        | kale green juice | 23738 | 23664 | 24784 |         | 05,2    | 02,2    | 04,0    | 50,6          | 57,6          | 33,2          | 30,0    | 1,5  |
| Blank sample  | Kale brown       | 9567  | 9589  | 9065  |         | 52.7    | 49,5    | 50,9    | 47,3          | 50,5          | 49,1          | 49.0    | 1,6  |
| Sample        | juice            | 19898 | 19298 | 19042 |         | 52,7    | 49,5    | 50,9    | 47,5          | 50,5          | 45,1          | 45,0    | 1,0  |
| Blank sample  | Lucerne brown    | 14766 | 14063 | 14436 |         | 77,8    | 79,2    | 74,0    | 22,2          | 20,8          | 26,0          | 23,0    | 2,7  |
| Sample        | juice            | 30007 | 29589 | 28938 |         | 11,0    | 15,2    | 74,0    | 22,2          | 20,0          | 20,0          | 23,0    | 2,1  |
| Blank sample  | Lucerne white    | 36067 | 34485 | 36964 |         | 54.0    | 62,6    | 44.9    | 46.0          | 37,4          | 55,1          | 46,2    | 8,8  |
| Sample        | protein          | 46646 | 46756 | 45770 |         | 54,0    | 02,0    | 44,5    | 40,0          | 57,4          | 1,10          | 40,2    | 0,0  |
| Blank sample  | Sugar beet fiber | 11435 | 11215 | 11509 |         | 64.7    | 67,2    | 69.4    | 35.3          | 32,8          | 30,6          | 32,9    | 2.4  |
| Sample        | Sugar Deet fiber | 24110 | 24379 | 25112 |         | 04,7    | 07,2    | 05,4    | 5,55          | 52,6          | 50,0          | 32,5    | 2,4  |
| Blank sample  | Sugar beet       | 11397 | 12086 | 12017 |         | 47.5    | 46.8    | 52,2    | 52,5          | 53,2          | 47,8          | 51,1    | 2,9  |
| Sample        | brown juice      | 20711 | 21268 | 22251 |         | 2,12    | 40,0    | 32,2    | 2,20          | 55,2          | 47,0          | 51,1    | 2,5  |
| Blank sample  | Phacelia green   | 10605 | 10425 | 11241 |         | 77,6    | 77,9    | 69,1    | 22,4          | 22,1          | 30,9          | 25,1    | 5,0  |
| Sample        | juice            | 25822 | 25704 | 24794 |         | 11,0    | 11,5    | 05,1    | 22,4          | 22,1          | 50,5          | 23,1    | 5,0  |
| Blank sample  | Phacelia brown   | 10240 | 11025 | 11200 |         | 95.6    | 84.0    | 89.8    | 4,4           | 16,0          | 10,2          | 10,2    | 5,8  |
| Sample        | juice            | 28987 | 27491 | 28804 |         | 55,0    | 04,0    | 65,0    | -,-           | 10,0          | 10,2          | 10,2    | 5,0  |
| Blank sample  | Phacelia white   | 14589 | 13613 | 13355 |         | 62.9    | 70,2    | 77.8    | 37.1          | 29,8          | 22,2          | 29.7    | 7,5  |
| Sample        | juice            | 26912 | 27369 | 28610 |         | 02,5    | 70,2    | 11,0    | 57,1          | 25,0          | 22,2          | 23,1    | د,،  |
| Blank sample  | Crison clover    | 12310 | 11935 | 11844 |         | 58.1    | 64.0    | 59,4    | 41.9          | 36,0          | 40,6          | 39,5    | 3,1  |
| Sample        | green juice      | 23696 | 24487 | 23490 |         | 56,1    | 04,0    | 55,4    | 41,5          | 50,0          | 40,0          | 35,5    | 3,1  |
| Blank sample  | Crimson clover   | 12126 | 12448 | 11874 |         | 67,7    | 66,7    | 67.8    | 32,3          | 33,3          | 32,2          | 32,6    | 0.6  |
| Sample        | green protein    | 25398 | 25514 | 25158 |         | 07,7    | 00,7    | 07,0    | 52,5          | 55,5          | 52,2          | 52,0    | 0,0  |
| Blank sample  | Crimson clover   |       |       |       |         |         |         |         |               |               |               |         |      |
| Sample        | brown juice      |       |       |       |         |         |         |         |               |               |               |         |      |
| Blank sample  | Crimson clover   |       |       |       |         |         |         |         |               |               |               |         |      |
| Sample        | white protein    |       |       |       |         |         |         |         |               |               |               |         |      |
| Blank sample  | Crimson clover   | 12711 | 12524 | 12999 |         | 65,2    | 67,5    | 62,3    | 34,8          | 32,5          | 37,7          | 35.0    | 2,6  |
| Sample        | white juice      | 25485 | 25759 | 25214 |         | 05,2    | 67,5    | 02,5    | 34,0          | 52,5          | 57,7          | 35,0    | 2,0  |
| Blank sample  | Rutin            | 756   | 761   | 659   |         | 8,1     | 7,3     | 7,8     | 91.9          | 92,7          | 92,2          | 92,3    | 0,4  |
| Sample        |                  | 2336  | 2190  | 2182  |         | 0,1     | 1,5     | 1,0     | 51,5          | 52,1          | 52,2          | 52,5    | 0,4  |

Table A23. Plate lay-out of plate 2 for anti-glycation assay where everything is done in triplicates. The blank control = 100% inhibition, control = no inhibition and then there are two preparations for each extract: blank extract = BSA + extract and extract = BSA + D-ribose + extract. The reference is Rutin 1 mM. The blue coloured extracts were prepared in DMSO whereas the green extracts were prepared in buffer since they were not soluble in DMSO. They correspond to the controls with the same colours.

|   | 1                                                                                                     | 2                                                                                                     | 3                                                                                                     | 4                                                                                                     | 5                                                                                                     | 6                                                                                                     | 7                                                                                                     | 8                                                             | 9                                                                          | 10                                                                                | 11                                                                                | 12                                                                                |
|---|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| A | Blank control:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Buffer (10%<br>DMSO)                         | Blank control:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Buffer (10%<br>DMSO)                         | Blank control:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Buffer (10%<br>DMSO)                         | Blank Crimson C.<br>white protein:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                   | Blank Crimson C.<br>white protein:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                   | Blank Crimson C.<br>white protein:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                   | Blank Phacelia fiber:<br>50 μL BSA<br>+ 40 μL Buffer<br>+ 10 μL Sample                                | 50 μL BSA<br>+ 40 μL Buffer                                   | Blank Phacelia fiber:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample     | Blank Oil radish white<br>juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample | Blank Oil radish white<br>juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample | Blank Oil radish white<br>juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample |
| в | Control:<br>50 μL BSA<br>+ 10 μL Buffer (10%<br>DMSO)<br>+40 μL D-ribose                              | Control:<br>50 μL BSA<br>+ 10 μL Buffer (10%<br>DMSO)<br>+40 μL D-ribose                              | Control:<br>50 μL BSA<br>+ 10 μL Buffer (10%<br>DMSO)<br>+40 μL D-ribose                              | Crimson C. white<br>protein:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                       | Crimson C. white<br>protein:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                       | Crimson C. white<br>protein:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                       | Phacelia fiber:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample                                    | 50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample               | 50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                            | 50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                   | 50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                   | Oil radish white juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample        |
| с | Blank control:<br>50 μL BSA<br>+ 50 μL Buffer                                                         | Blank control:<br>50 μL BSA<br>+ 50 μL Buffer                                                         | Blank control:<br>50 μL BSA<br>+ 50 μL Buffer                                                         | Blank Crimson C.<br>fiber:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                           | Blank Crimson C.<br>fiber:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                           | Blank Crimson C.<br>fiber:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                           | Blank Phacelia green<br>protein:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                     | protein:<br>50 μL BSA<br>+ 40 μL Buffer                       | protein:                                                                   | Blank Red beet green<br>juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample   | Blank Red beet green<br>juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample   | Blank Red beet green<br>juice:<br>50 μL BSA<br>+ 40 μL Buffer<br>+ 10 μL Sample   |
| D | Control:<br>50 μL BSA<br>+ 10 μL Buffer<br>+40 μL D-ribose                                            | Control:<br>50 μL BSA<br>+ 10 μL Buffer<br>+40 μL D-ribose                                            | Control:<br>50 μL BSA<br>+ 10 μL Buffer<br>+40 μL D-ribose                                            | Crimson C. fiber:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                  | Crimson C. fiber:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                  | Crimson C. fiber:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                  | Phacelia green<br>protein:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                         | protein:<br>50 µL BSA<br>+ 40 µL D-ribose                     |                                                                            | Red beet green juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample          | Red beet green juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample          | Red beet green juice:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample          |
| E | Blank reference:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                                     | Blank reference:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                                     | Blank reference:<br>50 μL BSA<br>+ 40 μL Buffer<br>+ 10 μL Sample                                     | Blank Lucerne green<br>juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                        | Blank Lucerne green<br>juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                        | Blank Lucerne green<br>juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample                        |                                                                                                       | 50 µL BSA                                                     | juice:<br>50 µL BSA<br>+ 40 µL Buffer                                      | Blank Red beet<br>brown juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample   | Blank Red beet<br>brown juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample   | Blank Red beet<br>brown juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample   |
| F | Reference:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                         | <b>Reference:</b><br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                  | Reference:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                         | Luverne green juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                               | Luverne green juice:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample                               | Luverne green juice:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample                               | 50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                                       | + 40 μL D-ribose<br>+ 10 μL Sample                            | Oil radish green juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample | Red beet brown<br>juice:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample       | Red beet brown<br>juice:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample       | Red beet brown<br>juice:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample       |
| G | Blank Crimson C.<br>brown juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample<br>Crimson C. brown | Blank Crimson C.<br>brown juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample<br>Crimson C. brown | Blank Crimson C.<br>brown juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample<br>Crimson C. brown | Blank Sugar beet<br>green juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample<br>Sugar beet green | Blank Sugar beet<br>green juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample<br>Sugar beet green | Blank Sugar beet<br>green juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample<br>Sugar beet green | Blank Oil radish<br>brown juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample<br>Oil radish brown | brown juice:<br>50 μL BSA<br>+ 40 μL Buffer<br>+ 10 μL Sample | brown juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample              | juice:<br>50 μL BSA<br>+ 40 μL Buffer<br>+ 10 μL Sample                           | Blank Red beet white<br>juice:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample   | juice:<br>50 μL BSA<br>+ 40 μL Buffer<br>+ 10 μL Sample                           |
| н | juice:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample                                             | juice:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample                                             | juice:<br>50 µL BSA<br>+ 40 µL D-ribose<br>+ 10 µL Sample                                             | juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                             | juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                             | juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                             | juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample                                             | juice:<br>50 µL BSA<br>+ 40 µL D-ribose                       | juice:<br>50 µL BSA<br>+ 40 µL D-ribose                                    | Red beet white juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample          | Red beet white juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample          | Red beet white juice:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample          |

Table A24. Results for inhibition from anti-glycation screening (n=1) according to the plate lay-out in table A23.

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |        |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Α | 5959  | 6074  | 6619  | 19702 | 20822 | 20454 | 20361 | 20614 | 20527 | 25606 | 30486 | 23136 | 370,44 |
| В | 27487 | 28871 | 29679 | 34717 | 34986 | 35097 | 43300 | 40945 | 39604 | 40528 | 38714 | 39410 | 370,44 |
| С | 5910  | 6584  | 7007  | 22443 | 21747 | 21991 | 12920 | 12514 | 12332 | 13444 | 13488 | 13545 | 370,44 |
| D | 22789 | 23844 | 24636 | 31838 | 31124 | 33400 | 29226 | 31260 | 31343 | 27592 | 27256 | 25541 | 370,44 |
| Е | 773   | 837   | 901   | 19708 | 19987 | 19705 | 17651 | 17030 | 16563 | 13134 | 12559 | 13714 | 370,44 |
| F | 2337  | 2453  | 2486  | 33088 | 34127 | 35853 | 31172 | 28846 | 30107 | 23878 | 23893 | 23692 | 370,44 |
| G | 13394 | 13533 | 13357 | 10838 | 10257 | 10877 | 16279 | 15969 | 15857 | 12425 | 11017 | 11581 | 370,44 |
| Н | 31658 | 33119 | 33809 | 30339 | 29220 | 27486 | 31206 | 29200 | 29086 | 24433 | 24834 | 20810 | 370,44 |

Table A25. Calculation of %Inhibition for the sample analyzed in plate 2 (n=1), see table A23. The %inhibition that are colored light brown represent the extracts showing medium activity and the %inhibition that are colored brown represent the extracts showing good activity.

|               |                  |       |       |       |         | %AGEs 1 | %AGEs 2 | %AGEs 3 | %Inhibition 1 | %Inhibition 2 | %Inhibition 3 | Average | Stdv |
|---------------|------------------|-------|-------|-------|---------|---------|---------|---------|---------------|---------------|---------------|---------|------|
| Blank control |                  | 5959  | 6074  | 6619  | 6217,33 | 05.0    | 101.5   | 102.7   | 4.2           | 1.5           |               |         | 2.0  |
| Control       |                  | 27487 | 28871 | 29679 | 28679   | 95,8    | 101,5   | 102,7   | 4,2           | - 1,5         | - 2,7         | 0,0     | 3,6  |
| Blank control |                  | 5910  | 6584  | 7007  | 6500,33 | 07.0    | 400.0   | 102.2   |               |               |               |         |      |
| Control       |                  | 22789 | 23844 | 24636 | 23756,3 | 97,8    | 100,0   | 102,2   | 2,2           | - 0,0         | - 2,2         | -       | 2,2  |
| Blank control | Reference: Rutin | 773   | 837   | 901   |         | 7,0     | 7,2     | 7,1     | 03.0          | 02.8          | 92,9          | 92,9    | 0,1  |
| Control       | Kelerence. Kutin | 2337  | 2453  | 2486  |         | 7,0     | 7,2     | 7,1     | 93,0          | 92,8          | 92,9          | 92,9    | 0,1  |
| Blank control | Crimson clover   | 13394 | 13533 | 13357 |         | 81,3    | 87,2    | 91,1    | 18,7          | 12,8          | 8.9           | 13,5    | 4,9  |
| Control       | brown juice      | 31658 | 33119 | 33809 |         | 81,5    | 07,2    | 91,1    | 10,7          | 12,8          | 0,9           | 15,5    | 4,9  |
| Blank control | Crimson clover   | 19702 | 20822 | 20454 |         | 66,8    | 63,1    | 65.2    | 33,2          | 36,9          | 34,8          | 35,0    | 1,9  |
| Control       | white protein    | 34717 | 34986 | 35097 |         | 00,8    | 05,1    | 05,2    | 55,2          | 50,9          | 54,8          | 55,0    | 1,9  |
| Blank control | Crimson clover   | 22443 | 21747 | 21991 |         | 41,8    | 41,7    | 50,8    | 58,2          | 58,3          | 49,2          | 55,2    | 5,2  |
| Control       | fiber            | 31838 | 31124 | 33400 |         | 41,0    | 41,7    | 50,8    | 56,2          | 58,5          | 45,2          | 55,2    | 5,2  |
| Blank control | Lucerne green    | 19708 | 19987 | 19705 |         | 59,6    | 63,0    | 71,9    | 40,4          | 37,0          | 28,1          | 35,2    | 6,4  |
| Control       | juice            | 33088 | 34127 | 35853 |         | 59,0    | 03,0    | /1,5    | 40,4          | 57,0          | 20,1          | 55,2    | 0,4  |
| Blank control | Sugar beet green | 10838 | 10257 | 10877 |         | 86.8    | 84,4    | 73,9    | 13,2          | 15,6          | 26,1          | 18,3    | 6.8  |
| Control       | juice            | 30339 | 29220 | 27486 |         | 80,8    | 04,4    | 73,5    | 13,2          | 15,0          | 20,1          | 10,5    | 0,8  |
| Blank control | Phacelia fiber   | 20361 | 20614 | 20527 |         | 102,1   | 90,5    | 84,9    | - 2,1         | 9,5           | 15,1          | 7,5     | 8,8  |
| Control       | rhacena fiber    | 43300 | 40945 | 39604 |         | 102,1   | 50,5    | 04,5    | - 2,1         | 3,5           | 15,1          | 7,5     | 0,0  |
| Blank control | Phacelia green   | 12920 | 12514 | 12332 |         | 72,6    | 83,5    | 84,6    | 27,4          | 16,5          | 15,4          | 19,8    | 6,6  |
| Control       | protein          | 29226 | 31260 | 31343 |         | 72,0    | 65,5    | 84,0    | 27,4          | 10,5          | 10,4          | 19,0    | 0,0  |
| Blank control | Oil radish green | 17651 | 17030 | 16563 |         | 60,2    | 52.6    | 60.3    | 39.8          | 47,4          | 39.7          | 42,3    | 4.4  |
| Control       | juice            | 31172 | 28846 | 30107 |         | 60,2    | 52,0    | 60,5    | 59,6          | 47,4          | 59,7          | 42,5    | 4,4  |
| Blank control | Oil radish       | 16279 | 15969 | 15857 |         | 66,5    | 58,9    | 58,9    | 33,5          | 41,1          | 41,1          | 38,6    | 4,4  |
| Control       | brown juice      | 31206 | 29200 | 29086 |         | 00,5    | 56,5    | 56,5    | 55,5          | 41,1          | 41,1          | 38,0    | 4,4  |
| Blank control | Oil radish white | 25606 | 30486 | 23136 |         | 66.4    | 36.6    | 72,5    | 33.6          | 63,4          | 27,5          | 41,5    | 19,2 |
| Control       | juice            | 40528 | 38714 | 39410 |         | 00,4    | 30,0    | 12,5    | 33,0          | 03,4          | 27,5          | 41,5    | 19,2 |
| Blank control | Red beet green   | 13444 | 13488 | 13545 |         | 82,0    | 79.8    | 69.5    | 18.0          | 20,2          | 30,5          | 22,9    | 6.7  |
| Control       | juice            | 27592 | 27256 | 25541 |         | 82,0    | 19,0    | 03,5    | 18,0          | 20,2          | 50,5          | 22,5    | 0,7  |
| Blank control | Red beet brown   | 13134 | 12559 | 13714 |         | 47,8    | 50,5    | 44,4    | 52,2          | 49,5          | 55,6          | 52,4    | 3,0  |
| Control       | juice            | 23878 | 23893 | 23692 |         | 47,8    | 50,5    | 44,4    | 52,2          | 49,5          | 55,0          | 52,4    | 3,0  |
| Blank control | Red beet white   | 12425 | 11017 | 11581 |         | 69,6    | 80.1    | 53.5    | 30,4          | 19,9          | 46.5          | 32,3    | 13,4 |
| Control       | juice            | 24433 | 24834 | 20810 |         | 09,0    | 80,1    | 55,5    | 50,4          | 19,9          | 40,5          | 32,3    | 13,4 |

Table A26. Plate lay-out of plate 2 for anti-glycation assay where everything is done in triplicates. The blank control = 100% inhibition, control = no inhibition and then there are two preparations for each extract: blank extract = BSA + extract and extract = BSA + D-ribose + extract. The reference is Rutin 1 mM.

|   | 1                                                                                                                           | 2                                                                                                                           | 3                                                                                                                           | 4                                                                                                                                                                                    | 5                                                                                                                                                                                    | 6                                                                                                                                                                                                                                        | 7 | 8 | 9 | 10 | 11 | 12 |
|---|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|----|----|----|
|   | Blank control:                                                                                                              | Blank control:                                                                                                              | Blank control:                                                                                                              | Blank Lucerne                                                                                                                                                                        | Blank Lucerne                                                                                                                                                                        | Blank Lucerne                                                                                                                                                                                                                            |   |   |   |    |    |    |
|   | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | leaves:                                                                                                                                                                              | leaves:                                                                                                                                                                              | leaves:                                                                                                                                                                                                                                  |   |   |   |    |    |    |
| A | +40 µL Buffer                                                                                                               | +40 μL Buffer                                                                                                               | +40 μL Buffer                                                                                                               | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                                                                                |   |   |   |    |    |    |
|   | +10 μL Buffer                                                                                                               | +10 μL Buffer                                                                                                               | +10 μL Buffer                                                                                                               | + 40 µL Buffer                                                                                                                                                                       | + 40 µL Buffer                                                                                                                                                                       | + 40 μL Buffer                                                                                                                                                                                                                           |   |   |   |    |    |    |
|   | (10% DMSO)                                                                                                                  | (10% DMSO)                                                                                                                  | (10% DMSO)                                                                                                                  | + 10 µL Sample                                                                                                                                                                       | + 10 µL Sample                                                                                                                                                                       | + 10 µL Sample                                                                                                                                                                                                                           |   |   |   |    |    |    |
|   | Control:                                                                                                                    | Control:                                                                                                                    | Control:                                                                                                                    | Lucerne leaves:                                                                                                                                                                      | Lucerne leaves:                                                                                                                                                                      | Lucerne leaves:                                                                                                                                                                                                                          |   |   |   |    |    |    |
|   | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                                                                                |   |   |   |    |    |    |
| B | + 10 µL Buffer                                                                                                              | + 10 µL Buffer                                                                                                              | +10 μL Buffer                                                                                                               | + 40 uL D-ribose                                                                                                                                                                     | + 40 µL D-ribose                                                                                                                                                                     |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
|   | (10% DMSO)                                                                                                                  | (10% DMSO)                                                                                                                  | (10% DMSO)                                                                                                                  | + 40 μL D-ribose<br>+ 10 μL Sample                                                                                                                                                   | + 10 uL Sample                                                                                                                                                                       | + 40 µL D-ribbose<br>+ 10 µL Sample                                                                                                                                                                                                      |   |   |   |    |    |    |
|   | +40 μL D-ribose                                                                                                             | +40 μL D-ribose                                                                                                             | +40 μL D-ribose                                                                                                             | + 10 µL sample                                                                                                                                                                       | + 10 µL sample                                                                                                                                                                       | + 10 µL sample                                                                                                                                                                                                                           |   |   |   |    |    |    |
|   | Blank reference:                                                                                                            | Blank reference:                                                                                                            | Blank reference:                                                                                                            | Blank Oil radish                                                                                                                                                                     | Blank Oil radish                                                                                                                                                                     | Blank Oil radish                                                                                                                                                                                                                         |   |   |   |    |    |    |
|   | 50 uL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | fiber:                                                                                                                                                                               | fiber:                                                                                                                                                                               | fiber:                                                                                                                                                                                                                                   |   |   |   |    |    |    |
| C | + 40 µL Buffer                                                                                                              | + 40 µL Buffer                                                                                                              | + 40 µL Buffer                                                                                                              | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                                                                                |   |   |   |    |    |    |
|   | + 10 µL Sample                                                                                                              | + 10 µL Sample                                                                                                              | + 10 µL Sample                                                                                                              | + 40 μL Buffer                                                                                                                                                                       | + 40 μL Buffer                                                                                                                                                                       | + 40 μL Buffer                                                                                                                                                                                                                           |   |   |   |    |    |    |
|   | + 10 µc sample                                                                                                              | + 10 µc sample                                                                                                              | + 10 µc sample                                                                                                              | + 10 µL Sample                                                                                                                                                                       | + 10 µL Sample                                                                                                                                                                       | +10 μL Sample                                                                                                                                                                                                                            |   |   |   |    |    |    |
|   | Reference:                                                                                                                  | Reference:                                                                                                                  | Reference:                                                                                                                  | Oil radish fiber:                                                                                                                                                                    | Oil radish fiber:                                                                                                                                                                    | Oil radish fiber:                                                                                                                                                                                                                        |   |   |   |    |    |    |
|   | 50 uL BSA                                                                                                                   | 50 uL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | 50 uL BSA                                                                                                                                                                            | 50 uL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                                                                                |   |   |   |    |    |    |
| D | +40 uL D-ribose                                                                                                             | +40 µL D-ribose                                                                                                             | +40 µL D-ribose                                                                                                             | +40 µL D-ribose                                                                                                                                                                      |                                                                                                                                                                                      | + 40 µL D-ribose                                                                                                                                                                                                                         |   |   |   |    |    |    |
|   | + 10 µL Sample                                                                                                              | +10 µL Sample                                                                                                               | +10 µL Sample                                                                                                               | + 10 µL Sample                                                                                                                                                                       | + 10 µL Sample                                                                                                                                                                       | + 10 µL Sample                                                                                                                                                                                                                           |   |   |   |    |    |    |
|   | · To he comple                                                                                                              | · 10 pe dumple                                                                                                              | · 10 µe oumpre                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
|   | Blank Kale fiber:                                                                                                           | Blank Kale fiber:                                                                                                           | Blank Kale fiber:                                                                                                           | Blank Oil radish                                                                                                                                                                     | Blank Oil radish                                                                                                                                                                     | Blank Oil radish                                                                                                                                                                                                                         |   |   |   |    |    |    |
|   | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | green protein:                                                                                                                                                                       | green protein:                                                                                                                                                                       | green protein:                                                                                                                                                                                                                           |   |   |   |    |    |    |
| E | + 40 µL Buffer                                                                                                              | + 40 µL Buffer                                                                                                              | +40 μL Buffer                                                                                                               | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                                                                                |   |   |   |    |    |    |
|   | + 10 µL Sample                                                                                                              | + 10 µL Sample                                                                                                              | + 10 µL Sample                                                                                                              | +40 μL Buffer                                                                                                                                                                        | +40 μL Buffer                                                                                                                                                                        | + 40 μL Buffer                                                                                                                                                                                                                           |   |   |   |    |    |    |
|   | _ · ·                                                                                                                       |                                                                                                                             |                                                                                                                             | + 10 µL Sample                                                                                                                                                                       | + 10 µL Sample                                                                                                                                                                       | + 10 µL Sample                                                                                                                                                                                                                           |   |   |   |    |    |    |
|   | Kale fiber:                                                                                                                 | Kale fiber:                                                                                                                 | Kale fiber:                                                                                                                 | Oil radish green                                                                                                                                                                     | Oil radish green                                                                                                                                                                     | Oil radish green                                                                                                                                                                                                                         |   |   |   |    |    |    |
| _ | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | 50 µL BSA                                                                                                                   | protein:                                                                                                                                                                             | protein:                                                                                                                                                                             | protein:                                                                                                                                                                                                                                 |   |   |   |    |    |    |
| F | + 40 µL D-ribose                                                                                                            | +40 µL D-ribose                                                                                                             | +40 μL D-ribose                                                                                                             | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                            | 50 µL BSA                                                                                                                                                                                                                                |   |   |   |    |    |    |
|   | + 10 µL Sample                                                                                                              | + 10 µL Sample                                                                                                              | + 10 µL Sample                                                                                                              | +40 μL D-ribose                                                                                                                                                                      | + 40 µL D-ribose                                                                                                                                                                     | + 40 μL D-ribose                                                                                                                                                                                                                         |   |   |   |    |    |    |
|   |                                                                                                                             |                                                                                                                             |                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
|   |                                                                                                                             |                                                                                                                             |                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
| G |                                                                                                                             |                                                                                                                             |                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
| 0 |                                                                                                                             | 1                                                                                                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
|   |                                                                                                                             | 1                                                                                                                           | 1                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
|   |                                                                                                                             |                                                                                                                             |                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
|   |                                                                                                                             |                                                                                                                             |                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
| н | 50 µL BSA                                                                                                                   | 1                                                                                                                           |                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
|   | +40 µL D-ribose                                                                                                             | +40 μL D-ribose                                                                                                             | +40 μL D-ribose                                                                                                             |                                                                                                                                                                                      | 1                                                                                                                                                                                    |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
|   | + 10 µL Sample                                                                                                              | + 10 µL Sample                                                                                                              | + 10 µL Sample                                                                                                              | 1                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |   |   |    |    |    |
| G | Blank Lucerne<br>fiber:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample<br>Lucerne fiber:<br>50 µL BSA<br>+ 40 µL D-ribose | Blank Lucerne<br>fiber:<br>50 µL BSA<br>+ 40 µL Buffer<br>+ 10 µL Sample<br>Lucerne fiber:<br>50 µL BSA<br>+ 40 µL D-ribose | Blank Lucerne<br>fiber:<br>50 μL BSA<br>+ 40 μL Buffer<br>+ 10 μL Sample<br>Lucerne fiber:<br>50 μL BSA<br>+ 40 μL D-ribose | + 10 μL Sample<br>Blank Red beet<br>green protein:<br>50 μL BSA<br>+ 40 μL Buffer<br>+ 10 μL Sample<br>Red beet green<br>protein:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample | + 10 μL Sample<br>Blank Red beet<br>green protein:<br>50 μL BSA<br>+ 40 μL Buffer<br>+ 10 μL Sample<br>Red beet green<br>protein:<br>50 μL BSA<br>+ 40 μL D-ribose<br>+ 10 μL Sample | <ul> <li>+10 μL Sample</li> <li>Blank Red beet</li> <li>green protein:</li> <li>50 μL BSA</li> <li>+40 μL Sample</li> <li>Red beet green</li> <li>protein:</li> <li>50 μL BSA</li> <li>+40 μL D-ribose</li> <li>+10 μL Sample</li> </ul> |   |   |   |    |    |    |

*Table A27. Results for inhibition from anti-glycation screening* (n=1) *according to the plate lay-out in table A26.* 

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7  | 8  | 9  | 10 | 11 | 12 |        |
|---|-------|-------|-------|-------|-------|-------|----|----|----|----|----|----|--------|
| Α | 2891  | 3156  | 3449  | 8472  | 8770  | 8765  | 67 | 73 | 66 | 69 | 72 | 68 | 370,44 |
| В | 15260 | 16082 | 15687 | 19496 | 20122 | 20327 | 65 | 95 | 75 | 66 | 72 | 68 | 370,44 |
| С | 538   | 534   | 561   | 10919 | 11250 | 11331 | 69 | 76 | 77 | 72 | 76 | 78 | 370,44 |
| D | 1797  | 1928  | 1847  | 20822 | 21556 | 22119 | 88 | 70 | 80 | 74 | 80 | 68 | 370,44 |
| Е | 11679 | 14478 | 14507 | 36799 | 41763 | 42549 | 73 | 70 | 81 | 75 | 80 | 79 | 370,44 |
| F | 22903 | 21373 | 21700 | 47247 | 48773 | 48738 | 76 | 67 | 80 | 87 | 80 | 86 | 370,44 |
| G | 10248 | 11116 | 11533 | 17910 | 19229 | 19511 | 84 | 70 | 79 | 83 | 73 | 71 | 370,44 |
| Н | 19225 | 20971 | 21348 | 25214 | 26374 | 25054 | 72 | 66 | 88 | 70 | 73 | 59 | 370,44 |

Table A28. Calculation of %Inhibition for the sample analyzed in plate 3 (n=1), see table A26. The %inhibition that are colored light brown represent the extracts showing medium activity and the %inhibition that are colored brown represent the extracts showing good activity.

|               |                    |       |       |       |          | %AGEs 1 | %AGEs 2 | %AGEs 3 | %Inhibition 1 | %Inhibition 2 | %Inhibition 3 | Average | Stdv |
|---------------|--------------------|-------|-------|-------|----------|---------|---------|---------|---------------|---------------|---------------|---------|------|
| Blank control |                    | 2891  | 3156  | 3449  | 3165,333 | 98,9    | 103,3   | 97,8    | 1,1           | - 3,3         | 2,2           | -       | 2,9  |
| Control       |                    | 15260 | 16082 | 15687 | 15676,33 | 50,5    | 105,5   | 57,0    | 1,1           | - 5,5         | 2,2           | -       | 2,5  |
| Blank control | Reference:         | 538   | 534   | 561   |          | 10,1    | 11,1    | 10,3    | 89,9          | 88,9          | 89,7          | 89,5    | 0,6  |
| Control       | Rutin              | 1797  | 1928  | 1847  |          | 10,1    | 11,1    | 10,5    | 65,5          | 00,9          | 05,7          | 65,5    | 0,0  |
| Blank control | Oil radish fiber   | 11679 | 14478 | 14507 |          | 89.7    | 55,1    | 57,5    | 10,3          | 44,9          | 42,5          | 32,6    | 19,3 |
| Control       | Officialisti fiber | 22903 | 21373 | 21700 |          | 03,7    | 55,1    | 57,5    | 10,5          | 44,5          | 42,5          | 52,0    | 19,5 |
| Blank control | Oil radish green   | 10248 | 11116 | 11533 |          | 71,8    | 78,8    | 78,5    | 28,2          | 21,2          | 21,5          | 23,7    | 4,0  |
| Control       | protein            | 19225 | 20971 | 21348 |          | /1,0    | /0,0    | 76,5    | 20,2          | 21,2          | 21,5          | 25,7    | 4,0  |
| Blank control | Kale fiber         | 8472  | 8770  | 8765  |          | 88.1    | 90,7    | 92,4    | 11.0          | 9,3           | 7,6           | 9,6     | 2.2  |
| Control       | kale liber         | 19496 | 20122 | 20327 |          | 88,1    | 90,7    | 92,4    | 11,9          | 9,3           | 7,0           | 9,0     | 2,2  |
| Blank control | Red beet green     | 10919 | 11250 | 11331 |          | 79,2    | 82,4    | 86,2    | 20.9          | 17.6          | 12.0          | 17,4    | 3,5  |
| Control       | protein            | 20822 | 21556 | 22119 |          | 79,2    | 82,4    | 80,2    | 20,8          | 17,6          | 13,8          | 17,4    | 3,0  |
| Blank control | Lucerne fiber      | 36799 | 41763 | 42549 |          | 83,5    | 56,0    | 49,5    | 16,5          | 44,0          | 50,5          | 37,0    | 10.1 |
| Control       | Lucerne fiber      | 47247 | 48773 | 48738 |          | 83,3    | 50,0    | 49,5    | 10,5          | 44,0          | 50,5          | 37,0    | 18,1 |
| Blank control | Lucorno loguos     | 17910 | 19229 | 19511 |          | E0 4    | 57.1    | 44.2    | 41.6          | 42.0          | FF 7          | 46.7    | 7.0  |
| Control       | Lucerne leaves     | 25214 | 26374 | 25054 |          | 58,4    | 57,1    | 44,3    | 41,6          | 42,9          | 55,7          | 46,7    | 7,8  |

Table A29. Summary of results from the glycation inhibition analyses where the average %inhibition is shown next to the average standard deviation. The %inhibition that are colored light brown represent the extracts showing medium activity and the %inhibition that are colored brown represent the extracts showing good activity.

|    |                              | Average     |      |
|----|------------------------------|-------------|------|
|    | Extracts                     | %inhibition | Stdv |
| 1  | Kale green juice             | 36,6        | 1,3  |
| 2  | Kale brown juice             | 49,0        | 1,6  |
| 3  | Lucerne brown juice          | 23,0        | 2,7  |
| 4  | Lucerne white protein        | 46,2        | 8,8  |
| 5  | Sugar beet fiber             | 32,9        | 2,4  |
| 6  | Sugar beet brown juice       | 51,1        | 2,9  |
| 7  | Phacelia green juice         | 25,1        | 5,0  |
| 8  | Phacelia brown juice         | 10,2        | 5,8  |
| 9  | Phacelia white juice         | 29,7        | 7,5  |
| 10 | Crimson clover green juice   | 39,5        | 3,1  |
| 11 | Crimson clover green protein | 32,6        | 0,6  |
| 12 | Crimson clover brown juice   | 13,5        | 4,9  |
| 13 | Crimson clover white protein | 35,0        | 1,9  |
| 14 | Crimson clover white juice   | 35,0        | 2,6  |
| 15 | Crimson clover fiber         | 55,2        | 5,2  |
| 16 | Lucerne green juice          | 35,2        | 6,4  |
| 17 | Sugar beet green juice       | 18,3        | 6,8  |
| 18 | Phacelia fiber               | 7,5         | 8,8  |
| 19 | Phacelia green protein       | 19,8        | 6,6  |
| 20 | Oil radish green juice       | 42,3        | 4,4  |
| 21 | Oil radish brown juice       | 38,6        | 4,4  |
| 22 | Oil radish white juice       | 41,5        | 19,2 |
| 23 | Red beet green juice         | 22,9        | 6,7  |
| 24 | Red beet brown juice         | 52,4        | 3,0  |
| 25 | Red beet white juice         | 32,3        | 13,4 |
| 26 | Oil radish fiber             | 32,6        | 19,3 |
| 27 | Oil radish green protein     | 23,7        | 4,0  |
| 28 | Kale fiber                   | 9,6         | 2,2  |
| 29 | Red beet green protein       | 17,4        | 3,5  |
| 30 | Lucerne fiber                | 37,0        | 18,1 |
| 31 | Lucerne leaves               | 46,7        | 7,8  |

Tables A30-A36 represent the tyrosinase inhibition experiment that was performed (n=1 time) using two different plates (plate 1 and 2). Table A30 shows the plate 1 lay out, table A31 is the absorption results retrieved from the spectrophotometer microplate reader and can be compared to plate 1 lay-out. Table A32 is the calculations where the absorbances are converted to %inhibition using equation 4 in section 4.4. Table A33 shows the plate 2 lay out, table A34 is the absorption results retrieved from the spectrophotometer microplate reader and can be converted to plate 2 lay-out. Table A35 is the calculations where the absorbances are converted to plate 2 lay-out. Table A35 is the calculations where the absorbances are converted to %inhibition using equation 4 in section 4.4. Table A36 is a summary of the results for all seven plants (29 extracts) where the %inhibition is shown as an average.

Table A30. Plate 1 lay-out for tyrosinase assay where everything is done in triplicates. The blank has no enzyme = 0% inhibition and max activity = 100% inhibition. The blank and max activity are done for both 2% DMSO (to be used for the reference) and for 10% DMSO (to be used for the extracts). The reference is Kojic acid 156  $\mu$ M.

|   | 1                                                                           | 2                                                                                  | 3                                                                                  | 4                                                                | 5                                                                | 6                                                                | 7                                                                | 8                                                                 | 9                                                                 | 10                               | 11                                                               | 12                                                               |
|---|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| A | 70 μL blank (2%<br>DMSO)<br>+ 30 μL buffer<br>+ 110 μL Sub                  | Blank:<br>70 μL blank (2%<br>DMSO)<br>+ 30 μL buffer<br>+ 110 μL Sub               | Blank:<br>70 μL blank (2%<br>DMSO)<br>+ 30 μL buffer<br>+ 110 μL Sub               | 2,1 μL S4<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S4<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S4<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S12<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S12<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S12<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | +67,9 μL Buffer<br>+30 μL enzyme | 2,1 μL S20<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S20<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub |
| в | Blank:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL buffer<br>+ 110 μL Sub | Blank:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL buffer<br>+ 110 μL Sub        | Blank:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL buffer<br>+ 110 μL Sub        | 2,1 μL S5<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S5<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S5<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S13<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                             | 2,1 μL S613<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub |                                  |                                                                  |                                                                  |
| с |                                                                             | Max Activity:<br>70 µL blank (2%<br>DMSO)<br>+ 30 µL enzyme<br>+ 110 µL Sub        | Max Activity:<br>70 μL blank (2%<br>DMSO)<br>+ 30 μL enzyme<br>+ 110 μL Sub        | 2,1 μL S6<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 µL S6<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub  | 2,1 μL S6<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S14<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S614<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S614<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub |                                  |                                                                  |                                                                  |
| D | 2,1 μL DMSO                                                                 | Max Activity:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | Max Activity:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S7<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S7<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S7<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S15<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | + 67,9 μL Buffer<br>+ 30 μL enzyme                                | 2,1 μL S615<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub |                                  |                                                                  |                                                                  |
| E | Reference:<br>70 μL Kojic Acid<br>+ 30 μL enzyme<br>+ 110 μL Sub            | <b>Reference:</b><br>70 μL Kojic Acid<br>+ 30 μL enzyme<br>+ 110 μL Sub            | Reference:<br>70 μL Kojic Acid<br>+ 30 μL enzyme<br>+ 110 μL Sub                   | 2,1 μL S8<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S8<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S8<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S16<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | + 67,9 μL Buffer<br>+ 30 μL enzyme                                | 2,1 μL S16<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  |                                  |                                                                  |                                                                  |
| F | 2,1 μL S1<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub             | 2,1 μL S1<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub                    | 2,1 μL S1<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub                    | 2,1 μL S9<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S9<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S9<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S17<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S17<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  | 2,1 μL S17<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  |                                  |                                                                  |                                                                  |
| G | 2,1 μL S2<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub             | 2,1 μL S2<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub                    | 2,1 μL S2<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub                    | 2,1 μL S10<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S10<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S10<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S18<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | +67,9 μL Buffer                                                   | 2,1 μL S18<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  |                                  |                                                                  |                                                                  |
| н | 2,1 μL S3<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub             | 2,1 μL S3<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub                    | 2,1 μL S3<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub                    | 2,1 μL S11<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S11<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S11<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S19<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | + 67,9 μL Buffer<br>+ 30 μL enzyme                                | 2,1 μL S19<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub  |                                  |                                                                  |                                                                  |

*Table A31. Results for inhibition from tyrosinase screening* (n=1) *according to the plate lay-out in table A30.* 

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| А | 0,04  | 0,041 | 0,04  | 0,45  | 0,449 | 0,456 | 0,496 | 0,488 | 0,676 | 0,43  | 0,565 | 0,464 | 492 |
| В | 0,041 | 0,041 | 0,042 | 0,47  | 0,466 | 0,461 | 0,53  | 0,483 | 0,503 | 0,048 | 0,048 | 0,048 | 492 |
| С | 0,522 | 0,476 | 0,508 | 0,477 | 0,469 | 0,519 | 0,618 | 0,565 | 0,556 | 0,048 | 0,048 | 0,048 | 492 |
| D | 0,508 | 0,547 | 0,563 | 0,671 | 0,561 | 0,735 | 0,569 | 0,563 | 0,57  | 0,048 | 0,048 | 0,048 | 492 |
| Е | 0,072 | 0,074 | 0,075 | 0,589 | 0,56  | 0,646 | 0,513 | 0,603 | 0,625 | 0,049 | 0,048 | 0,048 | 492 |
| F | 0,599 | 0,608 | 0,597 | 0,311 | 0,3   | 0,33  | 0,71  | 0,566 | 0,614 | 0,048 | 0,048 | 0,048 | 492 |
| G | 0,662 | 0,666 | 0,665 | 0,45  | 0,402 | 0,47  | 0,577 | 0,657 | 0,651 | 0,049 | 0,048 | 0,048 | 492 |
| Н | 0,551 | 0,537 | 0,535 | 0,512 | 0,535 | 0,501 | 0,613 | 0,582 | 0,682 | 0,048 | 0,049 | 0,049 | 492 |

Table A32. Calculation of %Inhibition for the extracts analyzed in plate 1 (n=1), see table A30. The %inhibition that are colored light brown represent the extracts showing medium activity.

|                             | Abs 1 | Abs 1 -<br>Average blank | Abs 2 | Abs 2 - Average<br>blank | Abs 3 | Abs 3 -<br>Average blank | Average<br>buffer and<br>average<br>abs - blank | StdDev | %Inhibition 1<br>calculated<br>from<br>equation 4 | %Inhibition 2<br>calculated<br>from<br>equation 4 | %Inhibition 3<br>calculated<br>from<br>equation 4 | %Inhibition<br>Average | StdDev |
|-----------------------------|-------|--------------------------|-------|--------------------------|-------|--------------------------|-------------------------------------------------|--------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------|--------|
| Blank ref                   | 0,04  |                          | 0,041 |                          | 0,04  |                          | 0,040                                           |        | 91,7                                              | 90,6                                              | 91,4                                              | 91,2                   |        |
| Blank samples               | 0,041 |                          | 0,041 |                          | 0,042 |                          | 0,041                                           |        | 91,2                                              | 91,9                                              | 91,9                                              | 91,7                   | 0,4    |
| Max Activity ref            | 0,522 | 0,482                    | 0,476 | 0,436                    | 0,508 | 0,468                    | 0,462                                           |        |                                                   |                                                   |                                                   |                        |        |
| Max Activity samples        | 0,508 | 0,467                    | 0,547 | 0,506                    | 0,563 | 0,522                    | 0,498                                           |        |                                                   |                                                   |                                                   |                        |        |
| Reference: Kojic Acid       | 0,072 | 0,032                    | 0,074 | 0,034                    | 0,075 | 0,035                    | 0,033                                           | 0,00   | 93,1                                              | 92,7                                              | 92,5                                              | 92,8                   | 0,3    |
| Kale green juice            | 0,599 | 0,558                    | 0,608 | 0,567                    | 0,597 | 0,556                    | 0,560                                           | 0,01   | -12,0                                             | -13,8                                             | -11,6                                             | -12,4                  | 1,2    |
| Kale brown juice            | 0,662 | 0,621                    | 0,666 | 0,625                    | 0,665 | 0,624                    | 0,623                                           | 0,00   | -24,6                                             | -25,4                                             | -25,2                                             | -25,1                  | 0,4    |
| Lucerne green juice         | 0,551 | 0,510                    | 0,537 | 0,496                    | 0,535 | 0,494                    | 0,500                                           | 0,01   | -2,3                                              | 0,5                                               | 0,9                                               | -0,3                   | 1,8    |
| Lucerne brown juice         | 0,45  | 0,409                    | 0,449 | 0,408                    | 0,456 | 0,415                    | 0,410                                           | 0,00   | 17,9                                              | 18,1                                              | 16,7                                              | 17,6                   | 0,8    |
| Lucerne white protein       | 0,47  | 0,429                    | 0,466 | 0,425                    | 0,461 | 0,420                    | 0,424                                           | 0,00   | 13,9                                              | 14,7                                              | 15,7                                              | 14,8                   | 0,9    |
| Sugar beet fiber            | 0,477 | 0,436                    | 0,469 | 0,428                    | 0,519 | 0,478                    | 0,447                                           | 0,03   | 12,5                                              | 14,1                                              | 4,1                                               | 10,2                   | 5,4    |
| Sugar beet green juice      | 0,671 | 0,630                    | 0,561 | 0,520                    | 0,735 | 0,694                    | 0,614                                           | 0,09   | -26,4                                             | -4,4                                              | -39,3                                             | -23,4                  | 17,7   |
| Sugar beet brown juice      | 0,589 | 0,548                    | 0,56  | 0,519                    | 0,646 | 0,605                    | 0,557                                           | 0,04   | -10,0                                             | -4,1                                              | -21,4                                             | -11,8                  | 8,8    |
| Phacelia green juice        | 0,311 | 0,270                    | 0,3   | 0,259                    | 0,33  | 0,289                    | 0,272                                           | 0,02   | 45,9                                              | 48,1                                              | 42,0                                              | 45,3                   | 3,0    |
| Phacelia brown juice        | 0,45  | 0,409                    | 0,402 | 0,361                    | 0,47  | 0,429                    | 0,399                                           | 0,03   | 17,9                                              | 27,6                                              | 13,9                                              | 19,8                   | 7,0    |
| Phacelia white juice        | 0,512 | 0,471                    | 0,535 | 0,494                    | 0,501 | 0,460                    | 0,475                                           | 0,02   | 5,5                                               | 0,9                                               | 7,7                                               | 4,7                    | 3,5    |
| Crimson clover fiber        | 0,496 | 0,455                    | 0,488 | 0,447                    | 0,676 | 0,635                    | 0,512                                           | 0,11   | 8,7                                               | 10,3                                              | -27,4                                             | -2,8                   | 21,3   |
| Crimson clover green juice  | 0,53  | 0,489                    | 0,483 | 0,442                    | 0,503 | 0,462                    | 0,464                                           | 0,02   | 1,9                                               | 11,3                                              | 7,3                                               | 6,8                    | 4,7    |
| Crimson clover green protei | 0,618 | 0,577                    | 0,565 | 0,524                    | 0,556 | 0,515                    | 0,538                                           | 0,03   | -15,8                                             | -5,2                                              | -3,3                                              | -8,1                   | 6,7    |
| Crimson clover brown juice  | 0,569 | 0,528                    | 0,563 | 0,522                    | 0,57  | 0,529                    | 0,526                                           | 0,00   | -6,0                                              | -4,8                                              | -6,2                                              | -5,6                   | 0,8    |
| Crimson clover white protei | 0,513 | 0,472                    | 0,603 | 0,562                    | 0,625 | 0,584                    | 0,539                                           | 0,06   | 5,3                                               | -12,8                                             | -17,2                                             | -8,2                   | 11,9   |
| Crimson clover white juice  | 0,71  | 0,669                    | 0,566 | 0,525                    | 0,614 | 0,573                    | 0,589                                           | 0,07   | -34,3                                             | -5,4                                              | -15,0                                             | -18,2                  | 14,7   |
| Oil radish green juice      | 0,577 | 0,536                    | 0,657 | 0,616                    | 0,651 | 0,610                    | 0,587                                           | 0,04   | -7,6                                              | -23,6                                             | -22,4                                             | -17,9                  | 8,9    |
| Oil radish brown juice      | 0,613 | 0,572                    | 0,582 | 0,541                    | 0,682 | 0,641                    | 0,584                                           | 0,05   | -14,8                                             | -8,6                                              | -28,6                                             | -17,3                  | 10,3   |
| Oil radish white juice      | 0,43  | 0,389                    | 0,565 | 0,524                    | 0,464 | 0,423                    | 0,445                                           | 0,07   | 22,0                                              | -5,2                                              | 15,1                                              | 10,6                   | 14,1   |

Table A33. Plate 2 lay-out for tyrosinase assay where everything is done in triplicates. The blank has no enzyme = 0% inhibition and max activity = 100% inhibition. The blank and max activity are done for both 2% DMSO (to be used for the reference) and for 10% DMSO (to be used for the extracts). The reference is Kojic acid 156  $\mu$ M.

|   | 1                                                                                  | 2                                                                                  | 3                                                                                  | 4                                  | 5                                                                | 6                                                                | 7 | 8 | 9 | 10 | 11 | 12 |
|---|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|---|---|---|----|----|----|
| А | + 30 μL buffer<br>+ 110 μL Sub                                                     | Blank:<br>70 μL blank (2%<br>DMSO)<br>+ 30 μL buffer<br>+ 110 μL Sub               | Blank:<br>70 μL blank (2%<br>DMSO)<br>+ 30 μL buffer<br>+ 110 μL Sub               | + 67,9 μL Buffer<br>+ 30 μL enzyme | 2,1 µL S24<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub | 2,1 µL S24<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub |   |   |   |    |    |    |
| в | Blank:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL buffer<br>+ 110 μL Sub        | Blank:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL buffer<br>+ 110 μL Sub        | Blank:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL buffer<br>+ 110 μL Sub        | + 67,9 μL Buffer<br>+ 30 μL enzyme | 2,1 µL S25<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub | 2,1 µL S25<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub |   |   |   |    |    |    |
| c | 70 µL blank (2%                                                                    | Max Activity:<br>70 μL blank (2%<br>DMSO)<br>+ 30 μL enzyme<br>+ 110 μL Sub        | Max Activity:<br>70 μL blank (2%<br>DMSO)<br>+ 30 μL enzyme<br>+ 110 μL Sub        | + 67,9 μL Buffer<br>+ 30 μL enzyme | 2,1 µL S26<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub | 2,1 µL S26<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub |   |   |   |    |    |    |
| C | Max Activity:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | Max Activity:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | Max Activity:<br>2,1 μL DMSO<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | + 67,9 μL Buffer<br>+ 30 μL enzyme | 2,1 µL S27<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub | 2,1 μL S27<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub |   |   |   |    |    |    |
| E | Reference:<br>70 μL Kojic Acid<br>+ 30 μL enzyme<br>+ 110 μL Sub                   | Reference:<br>70 μL Kojic Acid<br>+ 30 μL enzyme<br>+ 110 μL Sub                   | <b>Reference:</b><br>70 μL Kojic Acid<br>+ 30 μL enzyme<br>+ 110 μL Sub            | + 67,9 μL Buffer<br>+ 30 μL enzyme | 2,1 µL S28<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub | 2,1 μL S28<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub |   |   |   |    |    |    |
| F | 2,1 µL S21<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub                   | 2,1 µL S21<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub                   | 2,1 µL S21<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub                   | + 67,9 μL Buffer<br>+ 30 μL enzyme | 2,1 μL S29<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub | 2,1 μL S29<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub |   |   |   |    |    |    |
| G | 2,1 µL S22<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub                   | 2,1 µL S22<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub                   | 2,1 µL S22<br>+ 67,9 µL Buffer<br>+ 30 µL enzyme<br>+ 110 µL Sub                   |                                    |                                                                  |                                                                  |   |   |   |    |    |    |
| н |                                                                                    | 2,1 μL S23<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub                   | 2,1 μL S23<br>+ 67,9 μL Buffer<br>+ 30 μL enzyme<br>+ 110 μL Sub                   |                                    |                                                                  |                                                                  |   |   |   |    |    |    |

*Table A34. Results for inhibition from tyrosinase screening* (n=1) *according to the plate lay-out in table A33.* 

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| А | 0,04  | 0,041 | 0,041 | 0,493 | 0,508 | 0,555 | 0,049 | 0,048 | 0,048 | 0,048 | 0,048 | 0,048 | 492 |
| В | 0,04  | 0,04  | 0,041 | 0,515 | 0,52  | 0,515 | 0,048 | 0,049 | 0,048 | 0,048 | 0,048 | 0,048 | 492 |
| С | 0,705 | 0,478 | 0,609 | 0,491 | 0,488 | 0,55  | 0,051 | 0,049 | 0,048 | 0,049 | 0,048 | 0,048 | 492 |
| D | 0,666 | 0,672 | 0,504 | 0,592 | 0,59  | 0,612 | 0,049 | 0,048 | 0,048 | 0,048 | 0,048 | 0,048 | 492 |
| Е | 0,087 | 0,082 | 0,078 | 0,626 | 0,582 | 0,602 | 0,048 | 0,048 | 0,048 | 0,049 | 0,048 | 0,048 | 492 |
| F | 0,559 | 0,548 | 0,563 | 0,59  | 0,598 | 0,628 | 0,049 | 0,048 | 0,048 | 0,048 | 0,048 | 0,048 | 492 |
| G | 0,625 | 0,666 | 0,691 | 0,048 | 0,048 | 0,048 | 0,049 | 0,048 | 0,048 | 0,05  | 0,049 | 0,047 | 492 |
| Н | 0,858 | 0,855 | 0,898 | 0,047 | 0,048 | 0,048 | 0,048 | 0,049 | 0,048 | 0,048 | 0,048 | 0,048 | 492 |

Table A35. Calculation of %Inhibition for the extracts analyzed in plate 2 (n=1), see table A33. The %inhibition that are colored light brown represent the extracts showing medium activity although no extract has medium activity when looking at the average values.

|                          | Abs 1 | Abs 1 -<br>Average blank | Abs 2 | Abs 2 -<br>Average blank | Abs 3 | Abs 3 -<br>Average blank | Average<br>buffer and<br>average<br>abs - blank | StdDev | %Inhibition 1<br>calculated<br>from equation<br>4 | %Inhibition 2<br>calculated<br>from<br>equation 4 | %Inhibition 3<br>calculated<br>from<br>equation 4 | %Inhibition<br>Average | StdDev |
|--------------------------|-------|--------------------------|-------|--------------------------|-------|--------------------------|-------------------------------------------------|--------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------|--------|
| Blank ref                | 0,04  |                          | 0,041 |                          | 0,041 |                          | 0,041                                           |        |                                                   |                                                   |                                                   |                        |        |
| Blank samples            | 0,04  |                          | 0,04  |                          | 0,041 |                          | 0,040                                           |        |                                                   |                                                   |                                                   |                        |        |
| Max Activity ref         | 0,705 | 0,664                    | 0,478 | 0,437                    | 0,609 | 0,568                    | 0,557                                           |        |                                                   |                                                   |                                                   |                        |        |
| Max Activity samples     | 0,666 | 0,626                    | 0,672 | 0,632                    | 0,504 | 0,464                    | 0,574                                           |        |                                                   |                                                   |                                                   |                        |        |
| Reference: Kojic Acid    | 0,087 | 0,046                    | 0,082 | 0,041                    | 0,078 | 0,037                    | 0,042                                           | 0,005  | 91,7                                              | 92,6                                              | 93,3                                              | 92,5                   | 0,8    |
| Kale fiber               | 0,559 | 0,519                    | 0,548 | 0,508                    | 0,563 | 0,523                    | 0,516                                           | 0,008  | 9,6                                               | 11,5                                              | 8,9                                               | 10,0                   | 1,4    |
| Lucerne fiber            | 0,625 | 0,585                    | 0,666 | 0,626                    | 0,691 | 0,651                    | 0,620                                           | 0,033  | -1,9                                              | -9,1                                              | -13,4                                             | -8,1                   | 5,8    |
| Lucerne Leaves           | 0,858 | 0,818                    | 0,855 | 0,815                    | 0,898 | 0,858                    | 0,830                                           | 0,024  | -42,5                                             | -42,0                                             | -49,5                                             | -44,7                  | 4,2    |
| Phacelia fiber           | 0,493 | 0,453                    | 0,508 | 0,468                    | 0,555 | 0,515                    | 0,478                                           | 0,032  | 21,1                                              | 18,5                                              | 10,3                                              | 16,6                   | 5,6    |
| Phacelia green protein   | 0,515 | 0,475                    | 0,52  | 0,480                    | 0,515 | 0,475                    | 0,476                                           | 0,003  | 17,3                                              | 16,4                                              | 17,3                                              | 17,0                   | 0,5    |
| Oil radish fiber         | 0,491 | 0,451                    | 0,488 | 0,448                    | 0,55  | 0,510                    | 0,469                                           | 0,035  | 21,4                                              | 22,0                                              | 11,2                                              | 18,2                   | 6,1    |
| Oil radish green protein | 0,592 | 0,552                    | 0,59  | 0,550                    | 0,612 | 0,572                    | 0,558                                           | 0,012  | 3,8                                               | 4,2                                               | 0,3                                               | 2,8                    | 2,1    |
| Red beet brown juice     | 0,626 | 0,586                    | 0,582 | 0,542                    | 0,602 | 0,562                    | 0,563                                           | 0,022  | -2,1                                              | 5,6                                               | 2,1                                               | 1,9                    | 3,8    |
| Red beet green protein   | 0,59  | 0,550                    | 0,598 | 0,558                    | 0,628 | 0,588                    | 0,565                                           | 0,020  | 4,2                                               | 2,8                                               | -2,4                                              | 1,5                    | 3,5    |

*Table A36. Summary of results from the tyrosinase inhibition analysis where the average %inhibition is shown next to the average standard deviation. The %inhibition that is colored light brown represent the extract showing medium activity.* 

| Extracts                    | %Inhibitio<br>n | StdDev |
|-----------------------------|-----------------|--------|
| LAtiduts                    | Average         | Studev |
| Kale green juice            | -12,4           | 1,2    |
| Kale brown juice            | -25,1           | 0,4    |
| Lucerne green juice         | -0,3            | 1,8    |
| Lucerne brown juice         | 17,6            | 0,8    |
| Lucerne white protein       | 14,8            | 0,9    |
| Sugar beet fiber            | 10,2            | 5,4    |
| Sugar beet green juice      | -23,4           | 17,7   |
| Sugar beet brown juice      | -11,8           | 8,8    |
| Phacelia green juice        | 45,3            | 3,0    |
| Phacelia brown juice        | 19,8            | 7,0    |
| Phacelia white juice        | 4,7             | 3,5    |
| Crimson clover fiber        | -2,8            | 21,3   |
| Crimson clover green juice  | 6,8             | 4,7    |
| Crimson clover green protei | -8,1            | 6,7    |
| Crimson clover brown juice  | -5,6            | 0,8    |
| Crimson clover white protei | -8,2            | 11,9   |
| Crimson clover white juice  | -18,2           | 14,7   |
| Oil radish green juice      | -17,9           | 8,9    |
| Oil radish brown juice      | -17,3           | 10,3   |
| Oil radish white juice      | 10,6            | 14,1   |
| Kale fiber                  | 10              | 1,4    |
| Lucerne fiber               | -8,1            | 5,8    |
| Lucerne Leaves              | -44,7           | 4,2    |
| Phacelia fiber              | 16,6            | 5,6    |
| Phacelia green protein      | 17              | 0,5    |
| Oil radish fiber            | 18,2            | 6,1    |
| Oil radish green protein    | 2,8             | 2,1    |
| Red beet brown juice        | 1,9             | 3,8    |
| Red beet green protein      | 1,5             | 3,5    |

Tables A37-A40 represent the KLK5 inhibition experiment that was performed for all seven plants (29 extracts) n=1 time. Table A37 shows the plate lay out, table A38 and A39 are the absorption results for the pre- and full readings retrieved from the spectrophotometer microplate reader and can be compared to plate lay-out. Table A40 is the calculations where the absorbances are converted to %inhibition using equation 5 in section 4.5.

|   | 1                                                                 | 2                                                                 | 3                                                                 | 4                                                                  | 5                                                                  | 6                              | 7                              | 8                              | 9                                                                  | 10                                                                 | 11                                                                 | 12                                                                 |
|---|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| 4 | 1 μL DMSO<br>+ 50 μL buffer                                       | <b>Blank:</b><br>1 μL DMSO<br>+ 50 μL buffer<br>+ 50 μL Sub       | <b>Blank:</b><br>1 μL DMSO<br>+ 50 μL buffer<br>+ 50 μL Sub       | <b>Extract 6</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub  | <b>Extract 6</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub  | 1 μL extract<br>+ 50 μL enzyme | 1 μL extract<br>+ 50 μL enzyme | 1 μL extract<br>+ 50 μL enzyme | <b>Extract 14</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 22</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 22</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 22<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        |
| E |                                                                   | Max Activity:<br>1 μL DMSO<br>+ 50 μL enzyme<br>+ 50 μL Sub       | Max Activity:<br>1 μL DMSO<br>+ 50 μL enzyme<br>+ 50 μL Sub       | <b>Extract 7</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub  | Extract 7<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub         | 1 μL extract                   | 1 μL extract                   | 1 μL extract                   | <b>Extract 15</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 23<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        | <b>Extract 23</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 23<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        |
| c |                                                                   | 1 μL SBTI                                                         | Reference:<br>1 μL SBTI<br>+ 50 μL enzyme<br>+ 50 μL Sub          | <b>Extract 8</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub  | Extract 8<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub         | 1 μL extract<br>+ 50 μL enzyme | 1 μL extract<br>+ 50 μL enzyme | 1 μL extract<br>+ 50 μL enzyme | <b>Extract 16</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 24</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 24</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 24<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        |
| C | <b>Extract 1</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 1</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 1</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 9</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub  | <b>Extract 9</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub  | 1 μL extract                   | 1 μL extract                   | 1 μL extract                   | <b>Extract 17</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 25</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 25</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 25<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        |
| E | 1 μL extract                                                      | <b>Extract 1</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 1<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        | Extract 10<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        | <b>Extract 10</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | 1 μL extract                   |                                |                                | Extract 18<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        | <b>Extract 26</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 26</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 26</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub |
| F |                                                                   | <b>Extract 3</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 3<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        | <b>Extract 11</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 11</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | 1 μL extract                   | 1 μL extract<br>+ 50 μL enzyme | 1 μL extract<br>+ 50 μL enzyme | <b>Extract 19</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 27</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 27</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 27<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        |
| G | <b>Extract 4</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 4</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 4<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        | <b>Extract 12</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 12</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | 1 μL extract<br>+ 50 μL enzyme | 1 μL extract<br>+ 50 μL enzyme | 1 μL extract                   | <b>Extract 20</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 28</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 28</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 28</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub |
| F | 1 μL extract                                                      | <b>Extract 5</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 5<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        | <b>Extract 13</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 13<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        | 1 μL extract<br>+ 50 μL enzyme | 1 μL extract<br>+ 50 μL enzyme | 1 μL extract<br>+ 50 μL enzyme | <b>Extract 21</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 29</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | <b>Extract 29</b><br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub | Extract 29<br>1 μL extract<br>+ 50 μL enzyme<br>+ 50 μL Sub        |

Table A37. Plate lay-out for KLK5 assay where everything is done in triplicates. The blank has no enzyme = 0% inhibition and max activity = 100% inhibition. The reference is SBTI 50  $\mu$ M.

*Table A38. Results for pre-reading from KLK5 screening* (n=1) *according to the plate lay-out in table A37.* 

|   |     |     |     |    | Pre-readi | ng |     |    |     |     |     |     |        |
|---|-----|-----|-----|----|-----------|----|-----|----|-----|-----|-----|-----|--------|
|   | 1   | 2   | 3   | 4  | 5         | 6  | 7   | 8  | 9   | 10  | 11  | 12  |        |
| А | 49  | 57  | 58  | 69 | 73        | 76 | 84  | 81 | 92  | 142 | 149 | 151 | 380,46 |
| В | 58  | 49  | 56  | 87 | 102       | 83 | 96  | 89 | 98  | 111 | 105 | 100 | 380,46 |
| С | 59  | 59  | 52  | 94 | 74        | 87 | 92  | 74 | 81  | 76  | 90  | 81  | 380,46 |
| D | 85  | 72  | 80  | 70 | 73        | 76 | 103 | 85 | 104 | 64  | 67  | 73  | 380,46 |
| Е | 68  | 61  | 65  | 70 | 70        | 61 | 93  | 77 | 92  | 73  | 62  | 77  | 380,46 |
| F | 112 | 115 | 104 | 77 | 81        | 86 | 85  | 71 | 81  | 76  | 73  | 74  | 380,46 |
| G | 127 | 111 | 94  | 67 | 76        | 80 | 101 | 91 | 102 | 64  | 75  | 82  | 380,46 |
| Н | 176 | 185 | 161 | 72 | 91        | 89 | 68  | 65 | 72  | 98  | 99  | 86  | 380,46 |

Table A39. Results for full-reading from KLK5 screening (n=1) according to the plate lay-out in table A37.

|   |      |      |      |      | Full reading | ng   |      |      |      |      |      |      |        |
|---|------|------|------|------|--------------|------|------|------|------|------|------|------|--------|
|   | 1    | 2    | 3    | 4    | 5            | 6    | 7    | 8    | 9    | 10   | 11   | 12   |        |
| А | 72   | 73   | 74   | 3410 | 3181         | 3070 | 2109 | 2267 | 2140 | 913  | 956  | 871  | 380,46 |
| В | 1424 | 1500 | 1405 | 2008 | 2048         | 2086 | 2287 | 2408 | 2405 | 1154 | 1068 | 958  | 380,46 |
| С | 70   | 82   | 97   | 787  | 1286         | 1460 | 1513 | 1563 | 1416 | 1187 | 1502 | 1407 | 380,46 |
| D | 2032 | 1983 | 2028 | 1583 | 1604         | 1717 | 2172 | 2209 | 2109 | 1287 | 1390 | 1221 | 380,46 |
| Е | 1558 | 1417 | 1436 | 1640 | 1359         | 1619 | 2193 | 2141 | 1994 | 1502 | 1692 | 1421 | 380,46 |
| F | 1929 | 1760 | 1884 | 1589 | 1986         | 1951 | 2112 | 2080 | 2009 | 1396 | 1615 | 1542 | 380,46 |
| G | 1669 | 2089 | 1902 | 1337 | 1294         | 1161 | 1928 | 2123 | 1794 | 1365 | 1710 | 1569 | 380,46 |
| Н | 1401 | 1329 | 1567 | 2183 | 2481         | 2382 | 1778 | 1425 | 1516 | 1613 | 1647 | 1528 | 380,46 |

*Table A40. Calculation of %inhibition of KLK5 from pre-reading and full reading. The average %inhibition and standard deviation for each extract is shown to the right.* 

| actuation for each               |         |                     |     |         |                | ,    |                                                |      |      |         |                                         |      |      |         |                                                |                                                |                                                |                        |       |
|----------------------------------|---------|---------------------|-----|---------|----------------|------|------------------------------------------------|------|------|---------|-----------------------------------------|------|------|---------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------|-------|
| Sample                           | FI from | FI from pre-reading |     | FI fron | n full reading |      | FI from full reading - FI from pre reading (x) |      |      | Average | Values from (x) - Average<br>from blank |      |      | Average | %Inhibition 1<br>calculated from<br>equation 5 | %Inhibition 2<br>calculated from<br>equation 5 | %Inhibition 3<br>calculated from<br>equation 5 | Average<br>%Inhibition | StDev |
| Blank                            | 49      | 57                  | 58  | 72      | 73             | 74   | 23                                             | 16   | 16   | 18,3    |                                         |      |      |         |                                                |                                                |                                                |                        |       |
| Max activity                     | 58      | 49                  | 56  | 1424    | 1500           | 1405 | 1366                                           | 1451 | 1349 |         | 1348                                    | 1433 | 1331 | 1370    |                                                |                                                |                                                |                        |       |
| Control                          | 59      | 59                  | 52  | 70      | 82             | 97   | 11                                             | 23   | 45   |         | -7                                      | 5    | 27   |         | 100,5                                          | 99,7                                           | 98,1                                           | 99,4                   | 1,3   |
| S1 Kale green juice              | 85      | 72                  | 80  | 2032    | 1983           | 2028 | 1947                                           | 1911 | 1948 |         | 1929                                    | 1893 | 1930 |         | -40,7                                          | -38,1                                          | -40,8                                          | -39,9                  | 1,5   |
| S2 Kale brown juice              | 68      | 61                  | 65  | 1558    | 1417           | 1436 | 1490                                           | 1356 | 1371 |         | 1472                                    | 1338 | 1353 |         | -7,4                                           | 2,4                                            | 1,3                                            | -1,2                   | 5,4   |
| S3 Lucerne green juice           | 112     | 115                 | 104 | 1929    | 1760           | 1884 | 1817                                           | 1645 | 1780 |         | 1799                                    | 1627 | 1762 |         | -31,3                                          | -18,7                                          | -28,6                                          | -26,2                  | 6,6   |
| S4 Lucerne brown juice           | 127     | 111                 | 94  | 1669    | 2089           | 1902 | 1542                                           | 1978 | 1808 |         | 1524                                    | 1960 | 1790 |         | -11,2                                          | -43,0                                          | -30,6                                          | -28,3                  | 16,0  |
| S5 Lucerne white protein         | 176     | 185                 | 161 | 1401    | 1329           | 1567 | 1225                                           | 1144 | 1406 |         | 1207                                    | 1126 | 1388 |         | 11,9                                           | 17,9                                           | -1,3                                           | 9,5                    | 9,8   |
| S6 Sugar beet fiber              | 69      | 73                  | 76  | 3410    | 3181           | 3070 | 3341                                           | 3108 | 2994 |         | 3323                                    | 3090 | 2976 |         | -142,5                                         | -125,5                                         | -117,1                                         | -128,4                 | 12,9  |
| S7 Sugar beet green juice        | 87      | 102                 | 83  | 2008    | 2048           | 2086 | 1921                                           | 1946 | 2003 |         | 1903                                    | 1928 | 1985 |         | -38,8                                          | -40,7                                          | -44,8                                          | -41,4                  | 3,1   |
| S8 Sugar beet brown juice        | 94      | 74                  | 87  | 787     | 1286           | 1460 | 693                                            | 1212 | 1373 |         | 675                                     | 1194 | 1355 |         | 50,8                                           | 12,9                                           | 1,1                                            | 21,6                   | 25,9  |
| S9 Phacelia green juice          | 70      | 73                  | 76  | 1583    | 1604           | 1717 | 1513                                           | 1531 | 1641 |         | 1495                                    | 1513 | 1623 |         | -9,1                                           | -10,4                                          | -18,4                                          | -12,6                  | 5,1   |
| S10 Phacelia brown juice         | 70      | 70                  | 61  | 1640    | 1359           | 1619 | 1570                                           | 1289 | 1558 |         | 1552                                    | 1271 | 1540 |         | -13,2                                          | 7,3                                            | -12,4                                          | -6,1                   | 11,6  |
| S11 Phacelia white juice         | 77      | 81                  | 86  | 1589    | 1986           | 1951 | 1512                                           | 1905 | 1865 |         | 1494                                    | 1887 | 1847 |         | -9,0                                           | -37,7                                          | -34,8                                          | -27,1                  | 15,8  |
| S12 Crimson clover fiber         | 67      | 76                  | 80  | 1337    | 1294           | 1161 | 1270                                           | 1218 | 1081 |         | 1252                                    | 1200 | 1063 |         | 8,7                                            | 12,5                                           | 22,5                                           | 14,5                   | 7,1   |
| S13 Crimson clover green juice   | 72      | 91                  | 89  | 2183    | 2481           | 2382 | 2111                                           | 2390 | 2293 |         | 2093                                    | 2372 | 2275 |         | -52,7                                          | -73,1                                          | -66,0                                          | -63,9                  | 10,3  |
| S14 Crimson clover green protein | 84      | 81                  | 92  | 2109    | 2267           | 2140 | 2025                                           | 2186 | 2048 |         | 2007                                    | 2168 | 2030 |         | -46,4                                          | -58,2                                          | -48,1                                          | -50,9                  | 6,4   |
| S15 Crimson clover brown juice   | 96      | 89                  | 98  | 2287    | 2408           | 2405 | 2191                                           | 2319 | 2307 |         | 2173                                    | 2301 | 2289 |         | -58,6                                          | -67,9                                          | -67,0                                          | -64,5                  | 5,2   |
| S16 Crimson clover white protein | 92      | 74                  | 81  | 1513    | 1563           | 1416 | 1421                                           | 1489 | 1335 |         | 1403                                    | 1471 | 1317 |         | -2,4                                           | -7,3                                           | 3,9                                            | -1,9                   | 5,6   |
| S17 Crimson clover white juice   | 103     | 85                  | 104 | 2172    | 2209           | 2109 | 2069                                           | 2124 | 2005 |         | 2051                                    | 2106 | 1987 |         | -49,6                                          | -53,7                                          | -45,0                                          | -49,4                  | 4,3   |
| S18 Oil radish green juice       | 93      | 77                  | 92  | 2193    | 2141           | 1994 | 2100                                           | 2064 | 1902 |         | 2082                                    | 2046 | 1884 |         | -51,9                                          | -49,3                                          | -37,5                                          | -46,2                  | 7,7   |
| S19 Oil radish brown juice       | 85      | 71                  | 81  | 2112    | 2080           | 2009 | 2027                                           | 2009 | 1928 |         | 2009                                    | 1991 | 1910 |         | -46,6                                          | -45,3                                          | -39,4                                          | -43,7                  | 3,8   |
| S20 Oil radish white juice       | 101     | 91                  | 102 | 1928    | 2123           | 1794 | 1827                                           | 2032 | 1692 |         | 1809                                    | 2014 | 1674 |         | -32,0                                          | -46,9                                          | -22,1                                          | -33,7                  | 12,5  |
| S21 Kale fiber                   | 68      | 65                  | 72  | 1778    | 1425           | 1516 | 1710                                           | 1360 | 1444 |         | 1692                                    | 1342 | 1426 |         | -23,4                                          | 2,1                                            | -4,0                                           | -8,5                   | 13,3  |
| S22 Lucerne fiber                | 142     | 149                 | 151 | 913     | 956            | 871  | 771                                            | 807  | 720  |         | 753                                     | 789  | 702  |         | 45,1                                           | 42,4                                           | 48,8                                           | 45,4                   | 3,2   |
| S23 Lucerne Leaves               | 111     | 105                 | 100 | 1154    | 1068           | 958  | 1043                                           | 963  | 858  |         | 1025                                    | 945  | 840  |         | 25,2                                           | 31,1                                           | 38,7                                           | 31,7                   | 6,8   |
| S24 Phacelia fiber               | 76      | 90                  | 81  | 1187    | 1502           | 1407 | 1111                                           | 1412 | 1326 |         | 1093                                    | 1394 | 1308 |         | 20,3                                           | -1,7                                           | 4,6                                            | 7,7                    | 11,3  |
| S25 Phacelia green protein       | 64      | 67                  | 73  | 1287    | 1390           | 1221 | 1223                                           | 1323 | 1148 |         | 1205                                    | 1305 | 1130 |         | 12,1                                           | 4,8                                            | 17,6                                           | 11,5                   | 6,4   |
| S26 Oil radish fiber             | 73      | 62                  | 77  | 1502    | 1692           | 1421 | 1429                                           | 1630 | 1344 |         | 1411                                    | 1612 | 1326 |         | -2,9                                           | -17,6                                          | 3,3                                            | -5,8                   | 10,7  |
| S27 Oil radish green protein     | 76      | 73                  | 74  | 1396    | 1615           | 1542 | 1320                                           | 1542 | 1468 |         | 1302                                    | 1524 | 1450 |         | 5,0                                            | -11,2                                          | -5,8                                           | -4,0                   | 8,2   |
| S28 Red beet brown juice         | 64      | 75                  | 82  | 1365    | 1710           | 1569 | 1301                                           | 1635 | 1487 |         | 1283                                    | 1617 | 1469 |         | 6,4                                            | -18,0                                          | -7,2                                           | -6,3                   | 12,2  |
| S29 Red beet green protein       | 98      | 99                  | 86  | 1613    | 1647           | 1528 | 1515                                           | 1548 | 1442 |         | 1497                                    | 1530 | 1424 |         | -9.2                                           | -11.6                                          | -3,9                                           | -8.2                   | 4.0   |