

Department of Automatic Control

Anomaly Detection in Streaming Time Series
Data Using Active Learning and Metalearning

Jonas Lundgren

MSc Thesis
TFRT-6101
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2020 by Jonas Lundgren. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2020

Abstract

In this thesis a framework for finding anomalies in streaming data is proposed.
The framework proposed is not necessarily applicable only to problems in
anomaly detection, but could be applied to other problems as well. There are
three main concepts at play in the framework: (i) Active Learning, a learning
algorithm which can query a human specialist for labels of instance such that
the model can improve, from an otherwise unlabeled data set. (ii) Ensemble
which is a combination of models, often weaker models, where the idea is
that the combined result from all models will mitigate the error in every
single model and thus provide better results. (iii) Metalearning which is the
concept of having a second model learn model characteristics for a problem.
In this thesis metalearning will be used to weight ensemble members.

The framework is displayed in Figure 0.1. The meta learner takes in-
stances as input and output weights for each ensemble member according
to its performance of previous similar instances. Thus the total output is
a dynamically weighted ensemble output where the weighting is based on
the input. When a human expert provides label feedback on misclassified
instances only the meta learner is updated in order to provide new weights
for the ensemble to suppress the error and not the entire ensemble.

3

Model Framework

Figure 0.1: The active anomaly detection framework used.

We want to leverage the fact that different ensemble members have differ-
ent characteristics which makes them more or less suitable to make predic-
tions for certain instances. We weight the ensemble members using a neural
network, taking the instance as input to weight the ensemble members in
accordance with their capacity to make a prediction for certain instances.
The loss to train the neural network is composed of two parts, the first a
supervised part lossAAD, using the labels provided by a human expert, and
a second part lossprior which places a uniform prior on the ensemble mem-
bers. When new labels are provided the meta learner is updated so as not to
misclassify any of the labeled instances.

The framework was tested on the Yahoo Webscope benchmark dataset
consisting of four different types of time series. The proposed framework had
an AUC of 0.9088, 0.9787, 0.8998 and 0.8123 for the four datasets corre-
sponding to the second highest AUC for 2 data sets and third highest for the
remaining 2 data sets out of the models that were used for comparison.

4

Acknowledgements

This master’s thesis was written as a part of the Master of Science in Engi-
neering Mathematics degree at the Faculty of Engineering at Lund University.
It was written during the spring of 2020 and was done in collaboration with
Sentian.ai in Malmö.

I would like to thank Sentian for giving me the opportunity to let me write
about something that interests me. I would like to thank Kenneth Ulrich for
guidance. I would like to thank Ponuts Giselsson for his time and feedback.

5

Contents

1. Introduction 9
1.1 Problem Description . 10
1.2 Technologies . 10

2. Theoretical Background 11
2.1 Machine Learning . 11
2.2 Anomaly Detection . 12
2.3 Learning . 13
2.4 Structures . 19
2.5 Performance Measures . 31

3. Methodology 35
3.1 Data Preprocessing . 35
3.2 Framework . 37
3.3 The Ensemble . 40
3.4 The Meta Model . 45
3.5 Setup . 48

4. Results 49
4.1 Yahoo Webscope Dataset . 49

5. Discussion 53
5.1 Conclusion . 55

Bibliography 56

7

1
Introduction

This thesis aims to investigate how active learning and metalearning can
be applied to anomaly detection in a streaming setting. There are numer-
ous application areas in which the thesis could be applied, including fraud
prevention, medical diagnostics, prevention of machine failure, security.

The problem of anomaly detection is a classification problem where we
would like to separate normal (nominals) and unusual (anomalous) instances.
Anomaly detection itself poses some challenges not present in a usual learning
problem. (i) Since unusual instances are, by definition, unusual, we will have
a skewed distribution in the target distribution and notably fewer anomalous
than nominal instances. (ii) There is no hard decision boundary separating
the anomalies from nominal instances.

The framework proposed in the thesis requires a human expert to be able
to provide true labels to the model. This could be seen as a limiting factor
since a truly unsupervised approach would not require a human. However
there are instances where a human will be present regardless, and possess
expertise that can be used to improve the model compared to an unsupervised
model. One such scenario would be in self driving cars where the driver is
the human expert and driver disengagement from the autopilot could be
considered as feedback to the model. Another example could be in detecting
fraudulent transactions, in which a human expert reviews only the most
interesting transactions1.

Most algorithms used for anomaly detection are designed neither to allow
for human intervention nor to deal with data in a streaming setting[Das
et al., 2019]. Using an active approach where human feedback is allowed to
improve the performance of such algorithms is a way to continuously improve
the model. In real world applications we usually don’t want the model to be
static and data is often sampled continuously and does not come in batches.
Streaming time series data is steadily increasing across industries [Subutai

1 https://youtu.be/60KJz1BVTyU?t=762

9

Chapter 1. Introduction

and Scott, 2016] and it has been observed that research in the area is lacking2.
We would therefore like the model to be able to deal with data in a streaming
setting and to continuously improve over time.

1.1 Problem Description

This thesis aims to address the following questions:

1. Can we create a framework which can be used to find anoma-
lies in and adjust to streaming time series data?

2. Can we update the framework such that it can improve by
human intervention?

3. How well does our framework compare to other anomaly de-
tection systems for streaming data?

1.2 Technologies

All programming done in this thesis was done in the programming lan-
guage Python. This is the programming language used at Sentian. Numerous
Python packages were used throughout the thesis. Modeling of neural net-
works was done using PyTorch. For most other models used in the thesis
scikit-learn was used. Pandas was used for data handling and numpy for
other numeric computation to name a few.

All coding and testing was done on a Lenvo ThinkPad T470 with an Intel
i5-7200U CPU provided by Sentian.

2 https://youtu.be/0VH1Lim8gL8?t=4219

10

2
Theoretical Background

The theoretical background needed in this thesis can be divided into two parts
learning and structures. The structures provide the framework in which the
learning can occur, and learning in turn provides a way for the structure
to improve. In the machine learning world the two go hand in hand. Before
looking at the learning techniques and structures used in the thesis, we first
give a background of machine learning and the main application in thesis:
anomaly detection.

2.1 Machine Learning

What is machine learning? There are numerous definitions and explanations
of what machine learning is in books and online. Most explanations of ma-
chine learning are some kind of variant of the definition made by TomMitchell
in his book Machine Learning [Mitchell, 1997]:

Definition: A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience
E.

From my point of view the key in the definition is that the program is
said to learn, hence does not need to be explicitly programmed. However,
I feel that these definitions exclude a lot of what I consider to be machine
learning. The definition only accounts for a small part of what it to me means
to work in machine learning, namely the modeling part. I would therefore
rather define machine learning as a framework in which we are moving from
(i) fundamentals to (ii) extraction to (iii) applications. Where (i) the fun-
damentals include probability theory, statistics, mathematics and computer
science. Further (ii) extraction is how to, from observations in the world,
with the use of the fundamentals being able to know what to do with the
observation. And finally with the use of analysis of causality, uncertainty,

11

Chapter 2. Theoretical Background

modeling, optimization, simulation, to name some ways, we want to create
(iii) applications in healthcare, energy, safety, technology, advancing science
and climate to name a few areas.

The American astronomer Clifford Stoll has been quoted saying:
Data is not information, information is not knowledge, knowledge is
not understanding, understanding is not wisdom.1

Human biases are not present when a program is not explicitly programmed,
therefore one could make an argument of it being wise. To me machine learn-
ing is a problem solving framework which lets us go from data to wisdom.

2.2 Anomaly Detection

Anomaly Detection (AD) refers to the problem of detecting unusual, deviat-
ing and/or interesting instances among a set of normal instances. The term
anomaly detection is often referred to as either rare event detection, outlier
detection or novelty detection. The line between what is what is blurry. An
attempt to clarify how the terms have been used in the literature was done
by Carreño, Inza and Lozano [Carreño et al., 2019]; the result is presented
in Table 2.1. Even though this thesis will mainly focus on time series data
which should be refered to rare event detection according to Table 2.1, the
problem of detecting unusual, deviating and/or interesting instances will be
referred to as anomaly detection in this thesis.

Relative to Characteristics Rare Events Anomaly Novelty Outlier
Data Temporal data Yes No No Possible

Data All classes represented in training
data Yes Yes No -

Problem Unbalanced Classification Yes Yes Possible -
Problem Supervised Classification Yes Yes Yes No

Table 2.1: Summary of how the terms Rare Events, Anomaly, Novelty and
Outlier have been used in the literature according to [Carreño et al., 2019]
in relation to characteristics for either the type of data and/or problem.

The problem of anomaly detection can look rather different depending
on the application, the data available and the remedy put in place when an
anomaly is found. However most algorithms for anomaly detection try to
model some probability density function of normal instances fX(x), where
the set of instances X often contains both the anomalous and normal in-
stances. The model labels instances as anomalous or normal based on the
likelihood that these instances belong to the modeled distribution. Therefore

1 https://www.brainyquote.com/quotes/clifford_stoll_212166

12

2.3 Learning

anomaly detection models tend to present outliers in the modeled distribu-
tion as anomalies. The problem is thus reduced to measuring distances from
an expected value to the instance [Wang et al., 2019]. This type of approach
has shortcomings, as it, for cases where anomalies occur within the distribu-
tion and for cases where normal instances happen to lie far from the center
of the distribution and thus result in an unnecessarily high amount of false
categorisations [Das et al., 2019]. Working with high dimensional data ex-
poses another shortcoming; distance measures loses their usefulness, one of
several components of the curse of dimensionality[Wikipedia, 2020c].

Anomaly detection is essentially "finding a needle in a haystack" in data...
but you don’t know it’s a needle you’re looking for.

2.3 Learning

Learning is what makes machine learning algorithms able to solve problems
that would be too difficult to solve with a rule based program. We often
want the learning to occur with as little human guidance as possible, partly
because we do not want to infer our human biases of how a problem should
be solved and partly because we in many times don’t know how to guide
the learning algorithm ourselves. We as humans can for example distinguish
between a cat and a dog in a picture, but to express what makes a cat a
cat and a dog a dog from pixel values in a computer program is a hard task
[Goodfellow et al., 2016].

Learning itself is not the ability to solve a problem, but rather the way
to obtain the capacity to solve the problem. If we want a computer program
to distinguish between cats and dogs, to discriminate between the two is
the problem. We could try to create a program based on typical cat and
dog features, or we could could create a program that learns to distinguish
between the two. The learning problem is most of the time distilled to some
optimization problem, where we optimize the model performance for the
problem.

Problems in machine learning often stem from observations in the real
world. The idea is to teach the learning algorithm by showing it examples of
previous observations of the same type it will face in the future. In the case
of distinguishing between cats and dogs, an image of a cat or a dog would
correspond to such an observation. The observations are typically represented
as a vector x ∈ Rn where the ith entry in the vector xi corresponds to a
feature, for example the pixel value for pixel i in an image [Goodfellow et al.,
2016].

There are mainly three types of learning used in the context of machine
learning, supervised learning, unsupervised learning and reinforcement learn-
ing [Géron, 2019]. Reinforcement learning deals with problems where agents

13

Chapter 2. Theoretical Background

take actions in some environment [Wikipedia, 2020d]. It will not be used in
this thesis. We are instead going to look into other types of learning tech-
niques, active learning and metalearning.

Supervised Learning
For supervised learning we have labels available when training for all obser-
vations. In the dogs and cats example this would correspond to our having
a correct label available for each image. An image of a dog x would have a
corresponding label y indicating if the image is representing a dog or cat.
The task of anomaly detection is also a classification task since we try to
classify as anomaly or normal.

Typically there are two types of tasks withing supervised learning, clas-
sification and regression. Distinguishing between cats and dogs would be a
classification task. Regression is the task of predicting some numeric value,
such as price of a house. Training a model would require examples of houses
with different features x and the price y [Géron, 2019].

The use of labels and supervised learning is rarely used for anomaly detec-
tion. Since the goal when using supervised learning is to discriminate between
prelabeled classes, the model is likely to perform poorly on previously unseen
anomaly classes [Goernitz et al., 2014]. Anomaly detection algorithms also
typically have to be adaptable and continue learning as there often are drifts
and/or changes in streaming data, illustrated in Figure 2.1. If a model was
trained on data up to 2014-02-25 and then deployed it could potentially flag
all instances as anomalous. Therefore it is essential for the model to be able
to adapt to the change in the data stream.

Figure 2.1: The CPU utilization for an Amazon EC2 instance. At about 2014-
02-25 a change in the streaming CPU utilization is present. It is essential for
a model to be able to adapt to the change in the data stream at 2014-02-25.

Unsupervised Learning
For unsupervised learning we do not have any labels available during training.
In the dogs and cats example this would correspond to our having only the
images x, with no labels y indicating if the image is representing a dog or

14

2.3 Learning

cat. We would have to try to group the images based on similarity, using
some clustering algorithm. Even if this algorithm succeeded in separating
the images into two clusters, one with dog images and one with cat images,
it would not be able to tell us which is which, but rather that the images in
one cluster are more similar to each other than images in the other cluster
[Géron, 2019].

For the task of anomaly detection, unsupervised learning is more com-
mon than supervised learning [Goernitz et al., 2014]. In an unsupervised
setting, models are trained for data characterization and there is a difference
when models are trained using both normal and anomalous instances dur-
ing training or only normal instances. The difference is that an algorithm
trained on only normal instance only expects to encounter normal instances
and therefore essentially tries to model the distribution of normal instances
fnormal(x). Everything outside fnormal(x) is thus anomalous. While if the
model is trained on both normal and anomalous instances the algorithm
tries to model the combined distribution of normal and anomalous instances
fnormal∪anomalous(x). Classical methods used are thresholds, clustering and
exponential smoothing. Anomalies are then determined based on some dis-
tance measure [Ahmad and Purdy, 2016]. The performance of these methods
are often sensitive to window sizes for time series and what thresholds to use.

There are two main problems using unsupervised learning in anomaly
detection. The first is that results will be sensitive to what threshold to use,
illustrated in Figure 2.2. Most models are soft in their classification, meaning
that the model assigns an anomaly score to each instance. Categorization as
normal or anomalous is then determined by some cut-off in the anomaly score,
the threshold. Instances are essentially categorized as anomalous based on
some distance from the mean of the distribution. The threshold will directly
influence the number of type 1 (false positive) and type 2 (false negative)
errors. Sometimes we prefer one error over the other and could adjust the
threshold accordingly. For example when determining if someone is sick and
the available cure has no side effects we might have a lower threshold while
if the cure instead had severe side effects we might want a higher threshold.
The other problem of using unsupervised learning for anomaly detection is
that we assume that there is a difference in the distributions fnormal(x) and
fanomalous(x) and that we can separate the two. In real world cases this
is often not the case. Figure 2.2 displays the problem when fnormal(x) and
fanomalous(x) are overlapping and the same unsupervised learning algorithm
(isolation forest) classifies instances as normal or anomalous based on two
different thresholds. It should be mentioned that since we are in an unsuper-
vised setting, the model, isolation forest, does not have access to the labels.
Imagine trying to predict the anomalous instances in the figure to the left,
if all dots were displayed to you in white. Adjusting the threshold for the
unsupervised algorithm will not result in a sufficiently good model.

15

Chapter 2. Theoretical Background

Unsupervised Learning for Toy Data

Figure 2.2: The figure to the left displays a toy dataset where the red dots
indicate the real anomalies. The middle and right figures display the result of
how the same unsupervised learning algorithm would classify the instances as
normal or anomalous based on two different thresholds. The anomaly score is
indicated by the blue scale: darker blue indicates higher anomaly score than
lighter blue in the middle and right figures. Inspiration for plotting code 2.

Active Learning
At the 2019 International Conference on Machine Learning Yoshua Bengio,
recipient of the Turing Award 2018, Professor at University of Montreal said
in an interview [Synced, 2019]:

“I see a move from passive machine learning, where the learner gets a
big dataset and trains; to active machine learning, where the learner
interacts with its environment. It’s not just reinforcement learning. It
is active learning, things like dialogue systems where the interaction
allows the learner to improve and to seek information.”

Active learning is not considered as one of the typical types of learning
in machine learning. The idea is to design the model such that it can query
a human expert for labels of some instances to improve. The process is dis-
played in Figure 2.3 where the model queries a human expert (step 1) who
provides labels for the requested instances (step 2) and the model updates
according to the label feedback (step 3) [Wikipedia, 2020a].

2 https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-
glr-auto-examples-ensemble-plot-isolation-forest-py

16

2.3 Learning

The Active Learning Process

Figure 2.3: Step 1: the model queries a human expert. Step 2: the human
expert provides labels for the requested instances. Step 3: the model updates
according to the label feedback.

The process now has two goals: to minimize the number of queries and
to obtain a sufficiently accurate model [Das et al., 2019].

Metalearning
Metalearning has been around since the mid-1970s but started to appear
in the machine learning community in the 1990s[Lemke et al., 2013]. To
distinguish between a learning system in general and a metalearning system
can be somewhat tricky. One definition made by [Schaul and Schmidhuber,
2010] states:

Metalearning is the process of learning to learn. Informally speaking,
a metalearning algorithm uses experience to change certain aspects
of a learning algorithm, or the learning method itself, such that the
modified learner is better than the original learner at learning from
additional experience.

Another definition made by [Lemke et al., 2013] states:
1. A metalearning system must include a learning subsystem, which

adapts with experience.
2. Experience is gained by exploiting metaknowledge extracted

a) ...in a previous learning episode on a single dataset, and/or
b) ...from different domains or problems.

The idea is to use a framework consisting of two systems: an unsupervised
learning anomaly detection system and a metalearning system, which adapts
with experience and affects the unsupervised learning system. The second
system is the one mentioned in the first statement in the above definition.

The first learning system will consist of several models i.e. an ensemble.
The role of the second metalearning system is to weight the several models
in the first system, depending on the input. The systems thus adapt the

17

Chapter 2. Theoretical Background

weighting of the models in the first system based on the input. The second,
metalearning system will in the thesis consist of a neural network, taking an
instance as input to weight the models in the first system, in accordance with
their capacity to make a prediction for certain instances.

Ensemble learning
Combing several models to make a prediction is called ensemble learning,
the models used in an ensemble are often simpler models. The idea is that
the different models in the ensemble should be different to each other. The
bias introduced by any single model is reduced by averaging over the large
number of ensemble members. We often want to introduce more variance on
purpose for every single model in the ensemble. One way to introduce more
variance among the models is to train each model with a randomly sampled
subset of the data. This is used in for example the Random Forest algorithm
which uses committee of trees to make a final prediction. Another tree based
ensemble algorithm which will be used in this thesis is the Isolation Forest
which is more suited for the problem of anomaly detection [Hastie et al.,
2001].

There are two benefits in using ensembles in combination with active
learning in a streaming seating. The first benefit is that using an active
learning approach, we gain control over the ensemble members which we oth-
erwise would lack control over. The common approach in ensemble learning is
to weight all ensemble members equally. Using metalearning, the second sys-
tem allows us to weight the ensemble members based on their performance,
thus gaining control over them. The ensemble itself is based on an unsuper-
vised algorithm that would not allow the incorporation of label feedback,
which could improve performance of the algorithm. The improved perfor-
mance is displayed in Figure 2.4 where the same ensemble members are used
to categorize anomalies in the middle and right figures. The difference is that
all ensemble members are equally weighted in the middle figure while a feed
forward neural network is used as a second metalearning system to weight
the ensemble members based on the instance in the right figure.

18

2.4 Structures

Active Learning for Toy Data

Figure 2.4: The red dots in the figure to the left indicates the real anomalies.
The anomaly score is indicated by the blue scale, darker blue indicates higher
anomaly score than lighter blue. The middle and right figure uses the same
ensemble members. While the model in the middle figure weights all ensemble
members equally the model in the left figure uses a feed forward neural
network to weight the ensemble members. Inspiration for plotting code 3.

The second benefit is associated with streaming data, which potentially
is unlimited and fed to the model in windows. Using an ensemble we can
use the first window of data to train all ensemble members. When new data
is provided to the model, we can update subset of the models used in the
ensemble. Consequently, we remove the oldest fraction of the members in
the ensemble and train the same number new members on the new data.
Therefore we have a way to deal with drifts or shifts in streaming data, such
as the data displayed in Figure 2.1 [Das et al., 2019].

2.4 Structures

In order to create a structure in which learning can occur we have to make
some assumptions. (i) We have some vector x with p parameters. (ii) We
have some variable y. (iii) There exists a function f returning y given x. (iii)
The function f is optimal when satisfying minimizing some loss function L.
The loss function L will return large values if the output from f given x is far
from the true y and small if the output is close to y. The goal is to find the
optimal f i.e. the structure. The structure consists either of parameters, such
as linear regression, that can be tuned in order to change an output ŷ from
a structure for some input x or some algorithm that applied to an input x
produces an output ŷ, such as an isolation forest. These algorithms can vary

3 https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-
glr-auto-examples-ensemble-plot-isolation-forest-py

19

Chapter 2. Theoretical Background

in complexity, giving rise to large research fields such as deep learning4 while
others, such as decision trees, can be explained in a short YouTube clip5.
What they all have in common is that they try to model data and usually
generalize better with more data.

Isolation Forest
The Isolation forest algorithm, first proposed in [Liu et al., 2008] is a tree
algorithm designed for anomaly detection. The assumption the algorithm
makes is that anomalies lie further away, distance wise, from other observa-
tions. The idea is that if we separate all instances less than and larger than
some random point into two groups, we are likely to make the separation
such that the anomaly is on one side of the random point and the remaining
normal instances on the other side of the point. In extension, we continue
to make random separations until all instances have been fully separated.
The random separations are made on each interval where instances have not
yet been isolated. The partitioning can be described by tree structure and
is displayed for 8 instances along some axis x in Figure 2.5. When the final
tree is constructed, the tree in Figure 2.5 (f), the depth from the root node
to each isolated instance is measured. An anomaly score is assigned to each
sample based on the depth, where a higher anomaly score corresponds to a
more shallow depth. When the first tree is completed new trees with different
random splits are created.

4 https://scholar.google.com/scholar?hl\=en\&as_sdt=0\%2C5\&q=deep+learning\
&btnG=

5 https://www.youtube.com/watch?v=7VeUPuFGJHk

20

2.4 Structures

Isolation Forest Partitioning of Instances with Corresponding
Trees

(a) Instances along x, no
separations

(b) First separation (c) Second separation

(d) Third separation (e) Fourth separation (f) Fifth separation

Figure 2.5: The splitting process for the Isolation Forest algorithm for 8 in-
stances displayed in (a) along axis x. The first random separation displayed
in (b) isolates the instance furthest to the left. The second separation dis-
played in (c) isolated no additional instances. The third separation displayed
in (d) isolated 2 additional instances, the fourth separation, displayed in (e),
isolated three additional instances and the fifth separation, displayed in (f),
isolated the remaining two instances. In total five separations were required
to isolate all instances. The tree corresponding to each random partitioning
is displayed for each seperation.

The depth of each observation for all trees determines the final anomaly
score for each instance. Algorithm 1 displays how the anomaly score a(xn) =

2
E[h(xn)]
E[h(xn)|ψ] for an instance xn is a power. The base, 2, arises from the fact

that the height of an isolation tree grows in the order of log(ψ) where ψ is
the size of the sample size of the data. The depth h(xn) is determined by the
number of edges e from the root node to the leaf node where xn has been
isolated in the isolation tree. The average E[h(xn)] is thus the average over
all isolation trees. Not all observations xn will be used in the construction
of each isolation tree since we are using a subsample of the data X′ of size
ψ when constructing each isolation tree. We therefore need to normalize the
depth of each instance h(xn) which is the reason we divide the exponent with
E[h(xn)|ψ] when calculating the anomaly score [Liu et al., 2008].

21

Chapter 2. Theoretical Background

Algorithm 1: Isolation Forest
Inputs: X - input data, N - number of trees, ψ - subsample size
Outputs: Anomaly score for each instance
for i = 1 to N do

X′ = sample(X,ψ)
Initialize isolation tree
Choose random feature j in X′
while Not all instances are isolated do

Randomly pick threshold θ ∈ [min(xj),max(xj)] uniformly
Recursively split X′ on θ

end
end
Let E[h(x)] be the average depth over all isolation trees for x ∈X
Let E[h(x)|ψ] be the average depth over all isolation trees for x ∈X
given ψ
Return: Anomaly score of each instance a(x) = 2

E[h(x)]
E[h(x)|ψ]

In Algorithm 1 a function sampling was used in order to resample the
input data X to some new data set X′. This result in each isolation tree
being trained on different data, resulting in a variation among the trees. The
sampling method used is bootstrap, which means that we are going to sample
with replacement from X. The probability that an instance from the dataset
X of size n is in X′ is given accordingly:

P("included in X′") = 1−P("excluded in X′")n = 1−
(n−1

n

)n
As n is large we get:

lim
n→inf

1−
(n−1

n

)n = 1− 1
e
≈ 0.63

Each isolation tree is therefore constructed of roughly two thirds of the ob-
servations where half of the observations are duplicates.

Linear Regression
Linear Regression is a useful statistical approach for solving supervised prob-
lems. The goal of linear regression is to investigate relationships in data, and
especially the relationship between instances xi and their corresponding tar-
get yi. In the example from section 2.3 Supervised Learning, it was stated
that one task in the domain of supervised learning could be to predict a nu-
meric value, such as the price of a house y based on some house features
x e.g. number_of_rooms, indoor_area and plot_area. Questions we are
interested in when looking for a house could then be: what is the relation-
ship between number_of_rooms and the price? Between indoor_area and

22

2.4 Structures

price? Between plot_area and price? The idea with linear regression is
to estimate these relationships. If we assume that the relationships are linear
we could write this as:

price≈ β0 +β1number_of_rooms+β2indoor_area+β3plot_area

We would now like to make estimations of the coefficients β0,β1,β2,β3 in
order to figure out the price. These estimations are made with the use of data
from previous house sales. We could arrange the housing features of the 10
most recent house sales in the same neighbourhood in a matrix X of size 10×4
where each house corresponds to a row and the first column corresponds to
the number_of_rooms for each house, the second the indoor_area and the
third the plot_area as well as their corresponding prices in a vector y. The
problem can thus be written in the form:

Ŷ = Xβ̂

Where β̂ = [β̂0 β̂1 β̂2 β̂3]> are our estimations of the coefficients β0,β1,β2,β3
and Ŷ our estimation of the 10 house prices. The vector β̂ is estimated by
minimizing the sum of squares difference between our estimation and the true
values, i.e. least squares problem which is for the example above is defined
as:

β̂ =minimize
β

10∑
i=1

(yi−β0 +β1number_of_roomsi+β2indoor_areai+β3plot_areai)2

=minimize
β

10∑
i=1

(yi− ŷi)2

=minimize
β

‖Y−Xβ‖22[James et al., 2014]. (2.1)

If the matrix X has full column rank, the matrix X>X will be invertible
and there exists a unique optimal β∗, with a zero gradient, which satisfies
the normal equations:

F (β) = ‖Xβ−Y‖22 = (Xβ−Y)>(Xβ−Y) = β>X>Xβ−2β>X>Y +Y>Y
⇒ F ′(β) = 0 = 2X>Xβ∗−2X>Y⇔X>Xβ∗ = X>Y⇔ β∗ = (X>X)−1X>Y.

However, the normal equations are usually not used when solving the least
squares problem, since we have to invert X>X which is a costly opera-
tion [Trefethen and Bau, 1997]. In this thesis the least squares problem
was solved using the function LinearRegression from the Python pack-
age sklearn. The function is based on the software package LAPACK and
the algoritm xGELSD which uses the singular value decomposition and an

23

Chapter 2. Theoretical Background

algorithm based on divide and conquer to solve the least squares problem
[scikit-learn, 2020][scipy, 2020][LAPACK, 2020].

It should be mentioned that Equation 2.1 makes no assumptions of the
distribution of the data in X and Y, but rather finds the best linear fit to
the data. We would have to make assumptions about the data if we were to
make inference regarding any parameters of the model. If that is the case the
first assumption we have to make is that all observations are independent
and identically distributed. Further there is a linear relationship between the
target Y and the features X1, ...,Xp which are the columns of X. And we
assume normality in the residual i.e. the distance for the model space to
the observations. The regression is fitted such that the distributions of the
residuals is Gaussian with zero mean and constant variance:

Y = β0 +
p∑
i=1

Xiβi+ ε

Where the error ε ∼ N (0,σ2) is a Gaussian random variable [Hastie et al.,
2001].

Gradient Descent
Another way of finding the optimal solution for linear regression is use the
algorithm Gradient Descent. The idea with gradient descent is to iteratively
update the parameters of a model to reduce the error of the model. The
error is calculated by a cost function or loss function, which has the purpose
of reducing the model performance to a single metric, which we want to
minimize.

The loss, i.e. the value of the loss function will be depending on the model
parameters. If we let θ be a parameter in a model, the loss will change if we
increase/decrease θ by some small value. We want to increase/decrease θ such
that the loss decreases. Hence we want to get the gradient of the loss with
respect to the parameter θ and change θ in the direction of the decreasing
gradient. We want to change the parameter θ iteratively until the loss is
minimized, displayed in Figure 2.6[Géron, 2019].

24

2.4 Structures

Gradient Descent

Figure 2.6: Visualisation of gradient descent where the loss is being minimized
with respect to a model parameter θ. The loss in minimized at when θ = θ̂.

There are three problems with gradient descent which have to be ad-
dressed. (i) In Figure 2.6 the learning steps are taken such that the gradi-
ent descent algorithm ends up at the minimum θ̂. We could imagine taking
learning steps that are either too small, such that it takes too long for the
algorithm to converge, or too large, such that the algorithm would jump back
and forth over the minimum never converging. (ii) In Figure 2.6 the initial
value for θ was randomized, regardless of the initial value for θ we would con-
verge to θ̂. This would be the case if the loss function was a convex function
with respect to θ. If the loss function contains local minima different from
the global minimum gradient descent risk getting stuck in a local minimum
instead of the global. In the case of linear regression, this is not a problem
since the function to minimize is convex (minimize

β
‖Xβ−Y‖22). There are

multiple ways to tackle these problems for the gradient descent algorithm,
especially when working with neural networks where the loss function (al-
most) never is convex, one way, used in this thesis to train neural networks
is an algorithm called Adam[Géron, 2019]. (iii) For large amounts of data,
computing the gradient can be time consuming. The calculations can be sped
up using stochastic gradient descent[Goodfellow et al., 2016].

Stochastic Gradient Descent Calculating the gradient with respect to
an entire data set can be computationally expensive. A method for reducing
the computation time is to use stochastic gradient descent where the gradient
is estimated using a randomly sampled subset of the dataset. This means
that each gradient step will not be taken aimed straight towards the minima.
However each gradient step can be calculated faster. There is therefore a

25

Chapter 2. Theoretical Background

trade off between faster interactions and convergence rate. Especially when
dealing with large amounts of data, we would typically favour the faster
iterations over faster convergence rate [Goodfellow et al., 2016].

Adaptive Moment Estimation (Adam) If normal gradient descent is
like a frog jumping down a valley, getting stuck in the first pond it reaches
(local minima), then Adaptive Moment Estimation (Adam) is more like a
large ball rolling down the valley through the pond, continuing past the
bottom of the valley, going back and forth until finally stoping at the bottom
(or that’s the idea at least). Adam [Kingma and Ba, 2015] does not have
a static learning rate, but instead makes use of an exponentially decaying
average of previous gradients mt and the exponentially decaying average of
previous squared gradients vt in order to have a momentum to be able to
continue to take learning steps through flat regions and local minimas. These
could be seen as estimates of the mean mt and variance vt of the gradients.

mt = β1mt−1 + (1−β1)gt
vt = β2vt−1 + (1−β2)g2

t

When initializing the algorithm both mt and vt will be zero making them
biased towards 0, especially at the start and when β1 and β2 are close to 1.
To counteract this bias let

m̂t = mt

1−βt1
v̂t = vt

1−βt2
.

The final update of the parameter θ is determined by:

θt+1 = θt+ η√
v̂t+ ε

m̂t

Where η is the learning rate, ε some small error term. The authors of the
paper that first propose the Adam algorithm [Kingma and Ba, 2015] sug-
gested the default values: β1 = 0.9, β2 = 0.999, ε= 10−8. The learning rate η
is specific to the problem and will have to be determined by the user of the
algorithm.

Cosine Annealing Another way to improve the convergence rate espe-
cially for neural networks is to use schedule schemes for the learning rate η
such that η becomes a function of t where t is the batch index i.e. ηt. One
way of changing ηt is with warm restarts. The learning rate ηt is scheduled
to decrease for some predetermined number of batches t. After t batches we
restart the learning rate ηt and set it to its initial value. The process is then

26

2.4 Structures

repeated. One type of warm restart is called cosine annealing [Loshchilov
and Hutter, 2016] given by:

ηt = ηmin+ 1
2(ηmax−ηmin)(1 + cos(t

T0
π)).

Where ηmin and ηmax are ranges for the learning rate, t the current batch
index and T0 the number of batch indices before a reset. The function is
displayed in Figure 2.7.

Cosine Annealing

Figure 2.7: Cosine annealing where the learning rate ηt is a function of time.

The intuition for why we would want to use warm resets is that we con-
verge to some local minima where we get stuck, then we take a large leap and
start over, potentially jumping out of the local minima, then we get stuck in
another and so on. Used in combination with the Adam optimizer, cosine an-
nealing is like increasing the friction and giving legs to the ball rolling down
the valley, the ball is slowing down all the time and every now and then the
ball takes a large leap.

Neural Network
A neural network is a type of structure in which learning can occur. The goal
of a neural network is to approximate some function f mapping an input x
to an output y. The most elementary neural network, a single perceptron,
displayed in Figure 2.8, consists of 1 node, an input vector x a bias b and an
activation function φ. The output y is thus given by y = ϕ

(∑N
i=1ωixi+ b

)
.

We see that without the activation function ϕ or ϕ being the identity function
(ϕ(.) = .), the perceptron is a linear regression [Géron, 2019].

27

Chapter 2. Theoretical Background

Single Perceptron

Figure 2.8: The perceptron mapping an input x of length 2 to an output y
accordingly y = ϕ

(∑N
i=1ωixi+ b

)
.

The choice of activation function is determined by the architect of the
neural network. Some typical activation functions are the Heaviside, sigmoid
and rectified linear unit (relu).

Heaviside Sigmoid Relu

ϕ(x) =
{

0 if x < 0
1 if x≥ 0

ϕ(x) = 1
1 + exp(−x) ϕ(x) =max(0,x)

A slightly more complicated neural network is created when adding single
perceptions, nodes, in a layer, where each node is connected to all inputs and
each node has its own bias, as displayed in Figure 2.9. The layer is then called
a fully connected layer or a dense layer and maps an input x of length n to
an output y of length m and y = ϕ(xW+b). The matrix W is of size n×m
consisting of the weights (excluding bias terms) with one row per input and
one column per node in the fully connected layer. The bias vector b of size
m contains a bias term for each of the nodes in the fully connected layer.

28

2.4 Structures

Fully Connected Layer

Figure 2.9: A fully connected layer mapping an input x of length 2 to an
output y of length 3, accordingly y = ϕ(xW + b). The matrix W of size
2× 3 consist of the weights (excluding bias terms) with one row per input
and one column per node in the fully connected layer. The bias vector b of
size 3 contain a bias term for each of the nodes in the fully connected layer.

We want to find values for the parameters, called weights, ωij in the
matrix W and the bias terms bj in b that create the mapping f that best fit
our data. When the perceptron is given an instance x it returns an output
ŷ. If the prediction is incorrect we update the weights to improve f . The
weight update is made using the perceptron learning rule (weight update)
accordingly:

ω
(next step)
ij = ωij +η(yj− ŷj)xi

Where xi is the value at the ith position in the input x, the ωij is the
connection between the and the jth node in the fully connected layer, ŷj the
output from the jth node, yj the target for the jth node, corresponding to
the current input x and η a learning rate, which is determined by the model
architect[Géron, 2019].

Stacking several fully connected layers results in a slightly more compli-
cated neural network structure called Multi Layer Perceptron (MLP) dis-
played in Figure 2.10. A MLP can consist of several layers between the input
and output layers, these layers are called hidden layers.

29

Chapter 2. Theoretical Background

Multi Layer Perceptron

Figure 2.10: A fully connected layer mapping an input x of length 2 to an
output y of length 3, accordingly y = ϕ(ϕ(xW(1) + b(1))W(2) + b(2)). The
matrix W(1) of size 2× 2 and W(2) of size 2× 3 consist of the weights
(excluding bias terms) with one row per input node and one column per
output node in corresponding layer. The bias vectors b(1) of size 2 and b(2)

of size 3 contain a bias term for each of the nodes in the fully connected layer.

In order to update the weights and biases of a MLP we make use of
the training algorithm called backpropagation [Rumelhart et al., 1986]. Back-
propagation is the process of computing the gradients needed for applying
Gradient Descent to a neural network. By passing an input x to a neural
network we calculate the network output ŷ, i.e. a forward pass. Based on the
error or the network output we want to go backward through the network, a
backward pass, calculating the impact of each weight and bias on the error,
i.e. the gradient of error with respect to each parameter in the network. When
all gradients are computed we take a gradient step (or some other gradient
descent algorithm, such as Adam) and update all parameters. This process
is repeated until we (in theory) converge to a solution [Géron, 2019].

The complexity of neural networks can further increase with more lay-
ers, nodes, connections, activation functions and stacking different networks.
Different types of neural networks are suitable for different tasks. Some ex-
amples would be Convolutional Neural Networks suitable when working with
images, Recurrent Neural Networks suitable when working with sequences or
Autoencoders suitable when working with dimensionality reduction.

Loss function Training the weights in the neural network is done through
optimizing a loss function and applying backpropagation. The loss function
is minimized using gradient descent, discussed in section 2.4 Gradient De-
scent, or some gradient based method such as Adam, discussed in section 2.4
Adaptive Moment Estimation (Adam). In order to use gradient based

30

2.5 Performance Measures

algorithms partial gradients of the loss function with respect to all weights
in the neural network have to be calculated. Computing these gradients are
done using the chain rule, iterating backward, layer by layer, through the
neural network [Wikipedia, 2020b].

Common types of loss functions are: mean squared error, lMSE =
1
n

∑n
i=1(yi − ŷi)2 where n is the number of instances ŷi is the prediction

for the ith observation and yi the true label, for regression problems while,
or Cross entropy used for classification lCE = − 1

n

∑n
i=1
∑K
k=1 y

(k)
i log(p̂(k)

i),
where n is the number of instances, K the number of classes, p̂(k)

i the pre-
dicted probability that the ith instance belong to class k and y(k)

i the true
class. Another common loss function used for binary classification is the hinge
loss lhinge = max(0, c− yŷ), where c is some constant, y ∈ {−1,1} the true
label and ŷ ∈ [−1,1] the predicted value [Goodfellow et al., 2016].

2.5 Performance Measures

Metrics are needed in order to measure the performance of models. For clas-
sification models, such as anomaly detection models determining whether an
instance is anomalous or normal, the evaluation itself can be challenging. The
choice of evaluation metric should be picked with the application in mind.
For the purpose of the thesis, the metrics used were largely determined by
the papers, which we are comparing our results to. The papers used well
established metrics.

Model Validation
Cross validation is closely related to the concept of the phenomenon of over-
fitting. Overfitting is essentially to train a model with complexity such that it
follows the noise of the training data too closely. This will lead to poor model
model performance for new, unseen data and we say that the model is not
generalizing well to unseen data [James et al., 2014]. When evaluating the
performance of a model an out of sample data set or testing set, should be
used. Evaluating the model on the same data it was trained on is essentially
meaningless since by just having a complex enough model we could get a
perfect score. Therefore we use the practice of cross validation.

The idea is to split the available data into a training and test set, where
the test set is only used to check the model performance. Further, we have to
make decisions for our model, such as the architecture of the neural network,
the number of trees used in an isolation forest or what learning rate to use.
Since we don’t want these decisions to create a model that overfits to the
training data we need to evaluate our model decisions on data that was not

31

Chapter 2. Theoretical Background

used when training the model. Part of the training data is therefore set aside
for model validation, called the validation set.

The process of finding the best model is therefore to (i) train several
different models on training data, where different model choices are made.
Preferably models for all combinations of considered model choices should
be trained. (ii) the models are evaluated based on their performance on the
validation data, which was not used in the training process. (iii) The best
model based on the validation set is chosen to be the final model. (iv) The
final model is evaluated on the test set. This is the performance which is
released to the public since it is the best estimation of how the model would
perform on unseen data [Jake, 2016].

Confusion Matrix
Several metrics for evaluating classification models, such as an anomaly detec-
tion model, make use of a confusion matrix. The idea for a confusion matrix
is to compare predictions with their true labels. In a confusion matrix each
row represents a predicted class and each column represents the true class.
A confusion matrix for a binary classification is therefore composed of four
values displayed in Figure 2.11.

Confusion Matrix

Figure 2.11: Confusion Matrix

For a perfect classifier, all instances would either be true positives or true
negatives. The false positives are sometimes referred to as type I error and
false negatives as type II error [Géron, 2019].

F1 score
From the confusion matrix we can deduce more concise metrics. Precision
and recall are two such metrics. Precision is the fraction of predicted positive
instances that are real positive instances while recall is the fraction of real
positive instances that are correctly predicted as positive. The metrics can
be thought of as measures along each of the axes in the confusion matrix,

32

2.5 Performance Measures

precision along the first row and recall along the first column[Powers, 2011].
They are defined accordingly:

Precision = TP

TP +FP
Recall = TP

TP +FN

There is a tradeoff between precision and recall. Moving a threshold to in-
crease the precision will reduce the recall and vice versa. F1-score is a metric
which combines the precision and recall into one metric and favours both
precision and recall equally[Géron, 2019]. F1-score is given by:

F1-Score = 2 Precision ·Recall
Precision+Recall

Using F1-score as a metric in an anomaly detection setting can be problem-
atic. There are few positive labels, anomalies present in a data set. Splitting
the data into a training and test set can result in there not being any anoma-
lies present in the one or the other. The absence of anomalous data points
will result in no true positive or false negative values in the confusion ma-
trix since no predicted positive (anomalous) instances will be correct and all
predicted negative (normal) will be correct. This will lead to the recall being
undefined since we will be dividing by zero and thus also the F1-score being
undefined.

AUC
Another metric commonly used is the Receiver Operating Characteristic
(ROC) curve. The purpose of the ROC curve is to express the capability
to discriminate between classes regardless of a threshold. The ROC curve is
a curve where the False Positive Rate (FPR), x-axis, has been plotted against
True Positive Rate (TPR), y-axis, where the TPR (which is the same as re-
call) and FPR are given by:

TPR = TP

TP +FN
FPR = FP

FP +TN

The Area Under the Curve (AUC) is the area under the ROC curve. A perfect
model would have a AUC of 1 and a model making classifications on random
would have an AUC of 0.5 [Powers, 2011]. The goal of any classifier is to try
to distinguish between two (or more) distributions. We are able to perfectly
separate the two distributions if they don’t overlap, resulting in an AUC of
1. There will be false negatives and false positives if the two distributions
overlap, illustrated in Figure 2.12, regardless of threshold.

33

Chapter 2. Theoretical Background

AUC

Figure 2.12: We are trying to separate the green and the red distributions.
False positives and False Negatives shows up regardless of threshold. The
corresponding ROC curve is displayed to the right in blue with the AUC
corresponding to the filled area.

For the model in Figure 2.12 with an AUC = 0.8, there is a 80% prob-
ability that the model can distinguish between the classes. A classifier with
an AUC < 0.5 can be inverted and thus have a AUC > 0.5.

Similar to F1-score, using AUC can be problematic if there is an absence
of anomalous data points. This will result in no true positive or false negative
values in the confusion matrix, leading to the TPR being undefined since we
will be dividing by zero and thus also the AUC being undefined.

34

3
Methodology

We can now take a look at the models that were taken into consideration in
this thesis and the framework that was used. Some implementation details
will be provided.

The main aim of the thesis is to address anomalies in a streaming data
setting. The model would have to be able to deal with shifts in the data
stream and have ways of dealing with missing values. In addition we would
like to have some way of updating the model without having to retrain the
entire model.

3.1 Data Preprocessing

To evaluate the model performance of our model we measure the performance
on benchmark data sets. The benefit by using a public standard benchmark
for time series data is that others also have used the dataset and we will be
able to compare our results with theirs.

We want to make the comparison with other published models as much
of an apples-to-apples comparison as possible. The fact that we are work-
ing in an active anomaly detection setting, where the model has access to
queried labels, makes it impossible to make the comparison completely fair,
due to other benchmarks models being either supervised or unsupervised.
However in order to get an indication of the model performance we are go-
ing to compare results to other benchmark models. The choice of metrics
and proportion of train and test sets were thus determined by the paper
containing the benchmark we are comparing our results to.

The performance of the few published active anomaly detection models
are dependent on the number of observations that the model was allowed to
query. More queries would result in more labels and thus a better model [Das
et al., 2019] [Zhang et al., 2019].

35

Chapter 3. Methodology

Yahoo Webscope Dataset
The publicly available [Yahoo! Labs, 2020] Yahoo Webscope dataset created
by Yahoo Labs to benchmark anomaly detection systems was used. The data
set includes 367 time series, each containing 1420 - 1680 instances, it is di-
vided into four categories: A1, A2, A3, A4 [Nikolay et al., 2015]. The A1
consists of real time series data of aggregated user logins to the Yahoo net-
work. The remaining A2, A3, A4 data sets consist of synthetic data.

Preprocessing
Each time series was normalized by subtracting the mean and dividing by
the standard deviation of the series i.e.

x
(t)
normalized = x(t)− x̄

σ
.

The time series in the Yahoo Webscope dataset were then converted into
sliding windows of data displayed in Table 3.1. Using the data itself for
both input and target can be seen as unsupervised learning since we don’t
need anyone to label the data, or it can be seen as supervised since we
have data and corresponding labels. In order to mitigate confusion Yann
LeCun has proposed calling this type of learning self-supervised learning1.
As displayed in Table 3.1 a time series can thus be split into either X(+ the
last row, corresponding to 12:07) if we are using an unsupervised model such
as isolation forest, or it can be split into X and y if we are using a supervised
model such as linear regression. The size of the sliding window was set as a
hyperparameter and was determined through cross validation.

Timestamp xt Timestamp xt xt−1 xt−2 xt−3 yt
12:01 1 12:01 1 2
12:02 2 12:02 2 1 3
12:03 3 12:03 3 2 1 4
12:04 4 ⇒ 12:04 4 3 2 1 5
12:05 5 12:05 5 4 3 2 X 4 y
12:06 4 12:06 4 5 4 3 3
12:07 3 12:07 3 4 5 4

Table 3.1: The time series to the left is converted into sliding windows with a
maximum lag of 3. Only the instances highlighted in grey are used as input
data X after creating the sliding windows since we are missing values for
the first 3 sliding windows and the last time point is used as corresponding
targets y.

1 https://twitter.com/ylecun/status/1123235709802905600

36

3.2 Framework

In accordance, with the comparison paper, each time series was split
into a training set containing the first 40% and a testing set containing the
remaining 60% of each time series in the data set.

3.2 Framework

All anomaly detection systems in this thesis were constructed according to
the model framework displayed in Figure 3.1. The model consists of an en-
semble of anomaly detection models, each providing an anomaly score fi(xt),
for the ith ensemble member, for the current input xt and a Neural Network
Meta Model which outputs weights pi(xt) corresponding to each ensemble
member. The final anomaly score is given by

∑M
i=1 pi(xt)fi(xt), where M is

the total number of ensemble members.

Model Framework

Figure 3.1: The the active anomaly detection framework used.

The idea is that since the meta learner takes instances as input and
output weights for each ensemble member, each ensemble member should be
weighted according to its previous performance of similar instances. In Figure
3.2 the idea is displayed. If a new instance x∗t lies in the green region, i.e. 1,
and Ensemble member 1 is most accurate among the ensemble members for
instances in that region, then we would like to give that ensemble member
a higher weight p1(x∗t). In the same way, we want to increase the weight
pM (x∗t) of Ensemble member M if it performs better than the other ensemble
members in the orange region, M, and the new instance x∗t lies in that region.
Thus the total output is a dynamically weighted ensemble output where the
weighting is based on the input.

37

Chapter 3. Methodology

Idea of Model Framework

Figure 3.2: The active anomaly detection framework used.

The framework is at the start in an unsupervised setting, i.e. we don’t
have any labels available. However the model can query a human expert who
provides the true labels for the queried instances. The main algorithm for
the framework is displayed in Algorithm 2.
Algorithm 2: Framework

Inputs: X - input data, ensemble - Ensemble, meta_model - Meta Model, Q - number
of queries

Outputs: meta_model - Meta Model, ensemble - Ensemble, queried_instances - queried
instances and labels

queried_instances = [] // Initiate empty list for queried instances and their labels
train(ensemble(X)) // Train ensemble in an unsupervised setting

for k = 1 to Q do
f (ensemble)
score = ensemble(X) // Get anomaly scores from ensemble for each instance

p(meta_model) = meta_model(X) // Get weights from meta_model for each instance

a =
∑N

i=1
f (ensemble)
score ·p(meta_model) // Final anomaly score for each instance

Let x̃ = xi where i = argmaxi(a) // Greedy query label for most anomalous instance
Get label ỹ = {−1,1} for x̃ from human expert
Append (x̃, ỹ) to queried_instances

Update meta_model such that all instances in queried_instances are correctly
classified

end
return meta_model, ensemble, queried_instances

We start out by training the ensemble without any labels i.e. unsuper-
vised. The ensemble then remains constant throughout the process and we
are only adjusting the meta learner. There are two things required in order
to make the algorithm work. The first is that there is variation among the
models in the ensemble. The second is that we do not restrict the output
from the meta model too much, for example a softmax function as output
activation in the meta learner, i.e.

∑M
i=1 pi = 1 and pi ∈ [0,1] for all output

38

3.2 Framework

weights pi could restrict the output too much. The model will have trouble
correctly classifying all queried instances if these two requirements are not
fulfilled. This is due to the fact that we are only able to make model changes
using the output from the meta learner, weights.

Some adjustments to Algorithm 2 will have to be made in order to deal
with streaming time data. We would have to have some way to be able
to adapt to shifts in the data without having to retrain the entire model.
Therefore we will not be keeping all queried instances, but rather some fixed
number, determined through cross validation, of labeled instances. When we
reach the limit of queried instance we disregard the first queried instance and
add the new one. The reason that we don’t want to keep old queries is that
the data stream is continuously changing and we don’t want to update the
meta model with regard to data which is not representative of the current
data.

In streaming data, queries will be performed slightly differently. At each
time t a new data point xt will be considered and the model will provide
an anomaly score. The new instance xt will be classified as anomalous if the
anomaly score is above some threshold th. We are going to query labels for
instances which have an anomaly score of (1− qf) · th where qf ∈ [0,1] is a
constant determining the query frequency. A higher value for qf will result
in more queries and a more accurate model with more human intervention.
A lower value for qf will result in less queries being made and a less accurate
model. The choice of qf will have to be determined depending on use case
of the model. There could be reasons to have a higher value for qf at the
training phase of the model and to lower the it later. For example if the
model were to be deployed, for a limited amount of time we could request
more human intervention while the model is being calibrated. When the
model has reached an adequate level, the value for qf could be decreased
and less human interaction is needed.

To summarize the framework in a streaming setting, displayed in Algo-
rithm 3, we first initiate the ensemble by training it at some window of length
m of data. While there is data stream we (i) get the anomaly score for the
instance. (ii) classify the instance as anomalous or normal. (iii) if anomaly
score is above the threshold to query, we query a human expert for the true
label and (iv) if our prediction does not correspond to the true label, update
the oldest part of the ensemble and the meta learner.

39

Chapter 3. Methodology

Algorithm 3: Framework Streaming Data
Inputs: X - input data, ensemble - Ensemble, meta_model - Meta Model, th -
Threshold, qf - Query Frequency Constant

Outputs: meta_model - Meta Model, ensemble - Ensemble, queried_instances - queried
instances and labels

queried_instances = [] // Initiate empty list for queried instances and their labels
train(ensemble(X)) // Train ensemble in an unsupervised setting on the first m instances

while data stream do
f (ensemble)
score (t) = ensemble(x(t)) // Anomaly scores from ensemble for current instance

p(meta_model)(t) = meta_model(x(t)) // Weights from meta_model for current instance

a(t) =
∑N

i=1
f (ensemble)
score (t) ·p(meta_model)(t) // Get weighted sum of anomaly scores

if a(t) > th then
ŷ(t) = 1 // Classify instance as anomalous

else
ŷ(t) =−1 // Classify instance as normal

end

if a(t) > qf · th then
Get label y(t) = {−1,1} for x(t) from human expert.
Append (x(t),y(t)) to queried_instances and remove oldest query.
if ŷ(t) 6= y(t) then

Retrain oldest *% of ensemble members at last m instances
Update meta_model such that all instances in queried_instances are
correctly classified

end
end

end
return meta_model, ensemble, queried_instances

In Algorithm 3 the number of instances to keep in queries_instances
before removing the oldest queried instances and the percentage * of oldest
ensemble members to update are both set as hyperparameters and are chosen
through cross validation.

3.3 The Ensemble

Different ensemble compositions were used for different problems.

Ensemble of Isolation Trees
Isolation forest was used when working with non-time series data such as the
Toy Data displayed in Figure 2.2 in Section 2.3 Unsupervised learning.
Each ensemble member was composed of a single isolation tree. Each tree was
trained on a bootstrap sample from the training data. Each tree assigned an
anomaly score to each instance and the final anomaly score was a weighted
sum of all tree outputs.

However, in a streaming setting the isolation forest approach did not per-
form well. Isolation forest makes splits along a randomly chosen dimension,
which in a time series setting with sliding windows, are represented by the

40

3.3 The Ensemble

time series itself, where each dimension is shifted one step compared to the
previous. Theoretically this results in the anomalous instance being predicted
as an anomaly in any dimensions, i.e. all sliding windows passing over the
anomaly will predict its window as anomalous shown in Figure 3.3. We want
to detect the anomaly as soon as it appears and therefore want to tag the
sliding window first reaching the anomaly as anomalous, i.e. the upper time
series in Figure 3.3. We preferably don’t want to tag a later sliding window,
lower time series in Figure 3.3, as anomalous as well. Hence we are only in-
terested in categorizing instances along dimension 5 as normal/anomalous
which defeats the purpose of having a sliding window. Additionally, in prac-
tice isolation forest will not be able predict each anomaly in all dimensions,
therefore only some of the sliding windows sliding over an anomaly will be
anomalous, resulting in an inaccurate model.

Isolation Forest for Streaming Time Series Data

Figure 3.3: A sliding window of length five is sliding over a time series con-
taining an anomaly tagged with a red cross. When isolation forest is used for
streaming time series data we want to tag the sliding window first reaching
the anomaly as anomalous, i.e. the upper time series. We preferably don’t
want to tag a later sliding window, lower time series, as anomalous as well.
Hence we are only interested in categorizing instances along dimension 5 as
normal/anomalous.

Ensemble of Linear Regression Models
In order to better deal with streaming data, a different approach was needed.
Instead of using a model such as isolation forest, which is specifically used
for anomaly detection, regression models were used. The first approach was
an ensemble composed of linear regression models. Each of the models in the
ensemble made a prediction ŷ based on previous time steps. The number of
previous time steps to take into account for each model was randomized in

41

Chapter 3. Methodology

an interval where the interval ranges were treated as hyperparameters which
were determined through cross validation.

In order to (i) introduce more randomness, (ii) differentiate between
model using the same number of previous steps and (iii) to better deal with
missing values in the data for the ensemble members, a different random
proportion of the time series was imputed by the previous value for each
ensemble member displayed in Table 3.2.

Timestamp xt Timestamp xt xt−1 xt−2 xt−3 yt
12:01 1 12:01 1 2
12:02 2 12:02 2 1 2
12:03 3 12:03 2 2 1 4
12:04 4 ⇒ 12:04 4 2 2 1 5
12:05 5 12:05 5 4 2 2 X 5 y
12:06 4 12:06 5 5 4 2 3
12:07 3 12:07 3 5 5 4

Table 3.2: The highlighted values 3 and 4 from the original time series to
the left are imputed by the previous value, 2 and 5. The time series is then
converted using sliding windows with a maximum lag of 3 as described in
section 3.1 Preprocessing. Corresponding imputed values are highlighted
after creation of sliding windows.

The imputation ensures that the prediction will be different for two mod-
els in the ensemble even if they are based on the same number of previous
instances. This increases the variation within the ensemble. Since the model
is trained using imputed values it’s more robust when dealing with missing
values when doing predictions. We simply impute these missing values with
the previous value.

The final decision on whether an instance is an anomaly or not is then
based on a threshold compared to the true value. We make the assumption
that we are able to predict the next value in the data stream accurately
enough for our prediction to be within some threshold of the true value, if
the prediction is outside of the threshold interval we categorize the instance as
anomalous. To further explain the process, at time t each ensemble member
make a prediction for the value in the time series at time t+ 1, ŷ(i)

t+1 for the
ith ensemble member. At time t+ 1 when we have access to the true value
yt+1 we calculate the anomaly score for the ensemble member as fi(xt+1) =
|yt+1− ŷ(i)

t+1|.
How is the threshold determined? Normally a poor threshold will ruin the

entire model. An overly large threshold will never categorize any instances as
anomalous and a too small threshold will categorize all instance as anomalous
and in between the two extremes there is a trade-off between the number of
type I and type II errors. The answer is that when using our framework, it

42

3.3 The Ensemble

doesn’t matter what we set the threshold to. The framework will adapt to
it for us. When weighting the anomaly scores from the different ensemble
members the meta learner will provide the weighting to the anomaly scores
that satisfies the queried labels accordingly.

M∑
i=1

pi(x)fi(x)> th

⇔
M∑
i=1

cp′i(x)fi(x)> th

⇔
M∑
i=1

p′i(x)fi(x)> th

c

Here M are the number of models in the ensemble and c a constant. We
see that since the meta model can choose c, the threshold can be set to
any value and the anomaly score will adapt accordingly. The phenomena of
the meta learner changing the anomaly score to address the set threshold
can be seen in Figure 3.4. Here the anomaly score, displayed in the bottom
figure, initially is above the anomaly threshold for all instances in the first
window (100 instances) of training data. The last instance in the window is
therefore labeled as anomalous and the model asks for the true label of the
instance, which is non-anomalous. The prediction is thus wrong, since the
instance is not an anomaly, and the meta model is updated to categorize the
labeled instance correctly. After the query, the anomaly score drops below
the anomaly threshold where it stays as training continues. This procedure is
repeated every time when training a model. The first instance is categorized
as anomalous and the meta model updates the weighting of the ensemble
members to accommodate the chosen threshold.

43

Chapter 3. Methodology

Anomaly Score at Start of Training

Figure 3.4: The training process for the time series in blue in the upper
figure. The red cross indicates the true anomaly, the green line the maximum
length used by the ensemble members to make a prediction for the next
time step, the red line the training data used to train the ensemble members
when they are updated, the yellow circle a predicted anomaly and the green
circle the queried instance. The corresponding anomaly score is displayed
in the bottom figure and thresholds for tagging an instance as anomalous
and to query. Initially the anomaly score is above the anomaly threshold for
all instances in the first window (100 instances) of training data. The last
instance in that window is therefore labeled as anomalous and the model asks
for the true label of the instance, which is non-anomalous. The prediction
is thus wrong, since the instance is not an anomaly, and the meta model
is updated to categorize the labeled instance correctly. After the query the
anomaly score drops below the anomaly threshold where it stays as training
continues.

It is worth mentioning that when using regression models in the ensemble,
each model outputs its own anomaly score rather than a prediction. If they
were to output a prediction, the final classification as normal/anomalous
would be determined by

|(
M∑
i=1

piŷ
(i)
t+1)−yt+1|> th.

Where M is the number of models in the ensemble ŷ(i)
t+1 the predicted value at

the next time step t+ 1 for model i ∈ [1,M], yt+1 the true time series value
at time t+ 1 and pi the weight for model i given by the meta model. We
would therefore not have the same influence over the threshold by adjusting
the weights pi.

44

3.4 The Meta Model

3.4 The Meta Model

The meta model is a multi layer perceptron consisting of 1 hidden layer
where the number of nodes are three times the number of output nodes,
which is the same as the number of ensemble members. The sigmoid function
was used as the activation function both in the hidden and output layer.
The model architecture was taken from [Das et al., 2019]. The choice of the
sigmoid function as the output function over for example the softmax function
is motivated by the reduced restriction of the weighting of the ensemble
members. Using a softmax function instead resulted in the model sometimes
getting stuck during the training process due to the restriction,

∑M
i=1 pi = 1.

For example if the ensemble consists of three models giving the anomaly
scores 0.62, 0.65, 0.70 for an non-anomalous instance and our threshold is
0.5 to categorize an instance as anomalous. If p1 +p2 +p3 = 1 and pi ∈ [0,1]
for i= 1,2,3 then p10.62+p20.65+p30.70> 0.5. However relieving the model
of the restriction,

∑M
i=1 pi = 1 will result in the model being able to classify

the instance as non-anomalous.
Worth mentioning is that [Das et al., 2019] choose to use Xavier initial-

ization [Glorot and Bengio, 2010] (named normalized initialization in the
paper) when initializing the weights. The meta learner was able to train and
converge to a solution fast enough using Xavier initialization and sigmoid
as activation function in all layers. However, it is specifically mentioned by
Glorot and Bengio in [Glorot and Bengio, 2010] that:

- For tanh networks, the proposed normalized initialization can be quite
helpful, presumably because the layer-to-layer transformations main-
tain magnitudes of training iterations is a powerful investigative tool
for understanding training difficulties in deep nets.

- Sigmoid activations (not symmetric around 0) should be avoided when
initializing from small random weights, because they yield poor learn-
ing dynamics, with initial saturation of the top hidden layer.

This indicates that we could expect faster training using tanh as activation
function (at least in the hidden layer). The reason we normalized the in-
put to the meta model was in order for the network to consider each input
feature equally and to have both positive and negative values in the input,
which improves the expressiveness of the layer. Ideally, we would like the
input to each layer in the neural network to be normally distributed for the
same reasons. Using Xavier initialization and sigmoid as activation function
in a neural network (as in [Das et al., 2019]) will result in non normally
distributed outputs from each layer. The impact on the output mean and
standard deviation using Xavier initialization can be seen here 2.

2 https://nbviewer.jupyter.org/github/LurreMcFly/masters_thesis/blob/master/
xavier_initialization.ipynb

45

Chapter 3. Methodology

Loss Function
The loss function used to train the meta model has to be designed in a
way where we are able to train the weights in the neural network based on
weighted ensemble output. The final loss function lMM , equivalent to the
one used in [Das et al., 2019], consists of two main parts:

lMM = 1
|Qt|

∑
(x,y)∈Qt

lAAD(x,y)

︸ ︷︷ ︸
(1)

+ λ1
|Xt|

∑
x∈Xt

lprior(x)︸ ︷︷ ︸
(2)

+λ2
∑

ω2︸ ︷︷ ︸
(3)

.

Where Qt is the set and |Qt| the number of queried instances at time t, Xt
the set and |X(t)| the number of instances at time t, ω the weights in the
neural network, λ1 and λ2 hyperparameters, scaling the impact of (2) and
(3). The first part (1) of the loss function lAAD is defined in equation 1.

lAAD(xt,y) =max(0,y(th−a(xt))︸ ︷︷ ︸
(a)

+max(0,y(a(xt−1)−a(xt))︸ ︷︷ ︸
(b)

(1)

Where y ∈ {−1,1} (-1 normal instance and 1 anomalous instance) is the true
label, a(xt) =

∑N
i=1 f (ensemble)

score (xt) ·p(meta_model)(xt) the anomaly score for
for xt and q the threshold over which we categorize an instance as anoma-
lous. Both of the terms (a) and (b) displayed in Figure 3.5 making up lAAD
are hinge losses. The first term (a) penalizes a wrongly classified instance
by |th−a(xt)| the difference between the threshold th and the predicted
anomaly score a(xt). The second term (b) penalizes a decrease in model per-
formance after a label feedback by |a(xt−1)−a(xt)|, the difference between
the anomaly score at previous query and current anomaly score.

Hinge Loss Functions.

(a) (b)

Figure 3.5: The two hinge loss terms making up lAAD. The first term (a)
penalizes a wrongly classified instance by |th−a(xt)| the difference between
the threshold th and the predicted anomaly score a(xt). The second term
(b) penalizes a decrease in model performance after a label feedback by
|a(xt−1)−a(xt)|, the difference between the anomaly score at previous query
and current anomaly score.

46

3.4 The Meta Model

The loss terms contribute to the loss depending on the anomaly score
a(xt) as follows:

(a)
{
Instance is correctly classified i.e. a(xt) is on correct side of th : 0 loss
Instance is wrongly classified i.e. a(xt) is on wrong side of th : |th−a(xt)| loss

(b)
{
Anomaly score a(xt) improves over previous anomaly score a(xt−1) : 0 loss
Anomaly score a(xt) deteriorate over previous anomaly score a(xt−1) : |a(xt−1)−a(xt)| loss

The second part (2) of the final loss function lMM is a cross entropy loss
defined in equation 2.

lprior(xt) =−
M∑
m=1

b log(pm(xt)) + (1− b)log(1−pm(xt)) (2)

Where M is the number of ensemble members, pm(xt) the weight set by the
meta model for the mth member and b a prior, set to 1

M . The loss puts a
prior over the weighting of the ensemble members to weight the members
equally. Deviation from the prior is penalized according to Figure 3.6, where
the cross entropy function is displayed for one dimension.

Cross Entropy in One Dimension with Prior b.

Figure 3.6: The cross entropy loss in the dimension p(xt) with the prior b.

Minimizing the loss function thus obtains three main goals. (i) Reduces
misclassified queried instances, (ii) prevents the anomaly from previously
queried instances to deteriorate and (iii) places a prior over the ensemble
members, such that they are equally weighted.

The last part (3) of the loss function is an L2 regularization term, penal-
izing the squared magnitude of the weights in the neural network.

47

Chapter 3. Methodology

3.5 Setup

Model 1
Model 1 was composed of an ensemble with linear models described in section
3.3Ensemble of Linear Regression Models. Each linear regression model
containing a randomized number of coefficients and each with imputed values
as described in Table 3.2. The meta model was the MLP first described in
section 3.4 The Meta Model, composed of the same number of outputs
as the number of ensemble members and a single hidden layer with three
times the number of nodes as the output layer. No transformations other
than normalizing were done to the time series data.

The model hyperparameters that were tuned for this model using valida-
tion set were:

• Number of ensemble members.

• Interval from which the number of previous instances to use in each
linear regression models is drawn randomly.

• The impute rate in the linear models.

• Number of previous instances to take into account when updating the
ensemble.

• The proportion of ensemble members to update when updating the
ensemble.

• Number of queried labels to keep.

• Learning rate for the Adam optimizer.

• The coefficients λ1 and λ2 in the loss function.

• Coefficient T0 associated with the cosine annealing.

Hyperparameters were selected using a grid search where the model resulting
in the maximum validation score was selected for each data set.

48

4
Results

4.1 Yahoo Webscope Dataset

The models were evaluated on the four parts of Yahoo Webscope Dataset and
compared to results presented in [Mohsin et al., 2019]1. The metric used in
[Mohsin et al., 2019] was AUC. For each of the four parts of the data set a new
model was trained with its own hyperparameter tuning. Similar to [Mohsin
et al., 2019] the average AUC for all time series in that part of the data set
was used as metric. As mentioned in section 2.5 AUC the use of AUC as a
metric is problematic when there are no positive label (anomalies) present
in the data set. After splitting the data into training (first 40%) and test
(remaining 60%) sets some of the time series lacked anomalous data points.
These time series were removed 2 both during hyperparameter tuning and
during testing. However in the second part of the Yahoo Webscope Dataset
A2 all anomalies occurred in the last 60% of the data set, meaning that
we have no way of evaluating the hyperparameter tuning using AUC3. The
model used for A2 part is therefore the same model used for A1 part. There is
no reason to believe that the hyperparameters used when evaluating A2 are
optimal. The results are displayed in Table 4.1. It is also worth to remind the
reader that this comparison is made with unsupervised learning algorithms
without any access to the true labels.

1 The most recent published results I could find for Yahoo Webscope Dataset.
2 I had an email correspondence with the authors of the paper [Mohsin et al., 2019] to
be sure I dealt with this problem in the same way they did.

3 The authors of the paper [Mohsin et al., 2019] did not respond to how they dealt with
this problem.

49

Chapter 4. Results

Results for Yahoo Webscope Dataset
Benchmark A1 A2 A3 A4
iForest[Liu et al., 2008] 0.8888 0.6620 0.6279 0.6327
OCSVM[Ma and Perkins, 2003] 0.8159 0.6172 0.5972 0.6036
LOF[M.M. et al., 2000] 0.9037 0.9011 0.6405 0.6403
PCA[M.L. et al., 2003] 0.8363 0.9234 0.6278 0.6100
TwitterAD[twitter] 0.8239 0.5000 0.6176 0.6534
DeepAnT[Munir et al., 2019] 0.8976 0.9614 0.9283 0.8597
FuseAD[Mohsin et al., 2019] 0.9471 0.9993 0.9987 0.9657
My Framework (0.4) 0.9088 0.9787 0.8998 0.8123
My Framework (0.1) 0.9042 0.9769 0.8993 0.7990

Table 4.1: The average AUC per part of Yahoo Webscope Dataset for com-
parison with other state-of-the-art anomaly detection methods. Results for
My Framework are displayed with a query frequency of 0.4 and 0.1.

Two versions of the framework were used, the first with a query frequency
of 0.4 and the second with a query frequency of 0.1 both displayed in Table
4.1. My Framework has the second highest AUC for the benchmarks A1 and
A2, and third highest AUC for A3 and A4 benchmark. The second model
queries fewer instances from the human expert but has a lower AUC for all
four benchmarks.

Snapshots of the prediction process for My Framework with query fre-
quency 0.4 and 0.1 are displayed in Figure 4.1 for time series number 10
in the A1 benchmark data set. The time series displays data of aggregated
user logins to the Yahoo network. The optimal hyperparameters were used
for My Framework, determined through cross validation. The corresponding
AUC for the series displayed in Figure 4.1 was 0.9987 for the model with
query frequency 0.4 and 0.9995 for the model with query frequency 0.1. The
F1-score was 0.8571 and 0.8727 respectively. The model using a lower query
frequency thus performed better in terms of AUC and F1-score for this time
series, which was not the general case as displayed in Table 4.1.

Comparing the snapshots in Figure 4.1 a lower query frequency results in
less queries being made. The model with the higher query frequency made
a total of 53 queries, while the model with lower query frequency made 39
queries. This is especially observable when comparing (e) and (f) where the
interval over which the queries spread is much narrower in (e) than the inter-
val in (f) meaning that more queries are being made over the same amount
of time. The same phenomenon is observable when comparing (g) and (h).

It is worth mentioning here that in Figure 4.1 it is observable how the
model adjusts to the new level after the jump in values after instance 1200.
When the time series settles at the new level, and we no longer consider in-
stances at the new level as anomalous, only three instances (for both models)

50

4.1 Yahoo Webscope Dataset

My Framework, Different Query Frequencies Prediction Process
for Series 10 in A1 Benchmark

Query Frequency: 0.4 Query Frequency: 0.1

(a) Instance 662 (b) Instance 662

(c) Instance 1237 (d) Instance 1237

(e) Instance 1262 (f) Instance 1262

(g) Instance 1292 (h) Instance 1292

(i) Instance 1407 (j) Instance 1407

Figure 4.1: Snapshots of the prediction process for My Framework with tuned
hyperparameters for time series 10 displaying aggregated user logins to the
Yahoo network in the A1 benchmark data set. The model used in the left
column uses a query frequency of 0.4 while the right column uses a query
frequency of 0.1. The AUC and F1-score were 0.9987 and 0.8571 respectively
for the model used in the left column. The AUC and F1-score were 0.9995
and 0.8727 respectively for the model used in the right column. Snapshots
have been taken for each of the two models when making predictions for
instances 662, 1237, 1262, 1292 and 1407 (corresponding to instances 100,
575, 600, 630 and 745 of test set). The entire prediction process is displayed
at https://gifyu.com/image/n2hr for query frequency 0.4 and at https:
//gifyu.com/image/n2h1 for query frequency 0.1. 51

Chapter 4. Results

are flagged as anomalous while not being real anomalies (the yellow circles
without a red cross at around 1230 observable in Figure 4.1 (c), (d), (e), (f),
(g), (h), (i) and (j)) after the initial surge in anomalies after instance 1200.

The anomaly at approximately instance 1300, which is at the level that
was previously considered to be normal, is correctly flagged as being an
anomaly by the framework. The remaining instances are all rightfully flagged
as normal. This shows that the framework has adjusted to the change in the
time series.

52

5
Discussion

The proposed framework works as intended. It is able to adapt to the stream-
ing data, updating the ensemble members to accommodate the data stream
and it can be updated based on human intervention. In the thesis the frame-
work has been used to detect anomalies in time streaming data. The appli-
cation of the framework is however not restricted to anomaly detection and
could be applied to other problems.

Comments on Results
It should be stated again that the results presented in Table 4.1 are not an
apples-to-apples comparison. The models we are comparing to are operating
in an unsupervised setting while the framework proposed have access to labels
by making queries.

The results in Table 4.1 were taken from [Mohsin et al., 2019] and not
verified. The way the testing of the reference models were conducted could
therefore differ from how the testing of the framework in the thesis was con-
ducted. The framework in this thesis was conducted in a streaming fashion,
where the model was fed one instance at a time. In Table 4.1 the model
iForest is the Isolation forest model discussed in Section 2.4 Isolation For-
est with which initial testing was done. Using Isolation forest for streaming
time series data runs into the problem discussed in Section 3.3 Ensemble of
Isolation Trees resulting in worse results than the ones displayed in Table
4.1, making me question that the testing was done in the same way. Hav-
ing access to the entire time series and in hindsight detect if an instance is
anomalous or not is an easier problem than determining if the next instance
in a stream is anomalous.

It is also worth mentioning that all hyperparameter tuning was done
using a query frequency of 0.4. The model with query frequency of 0.1 could
possibly improve by doing a hyperparameter tuning with query frequency of
0.1.

Model Remarks
My intuition is that a large improvement in the accuracy of the predictions
made by each individual member in the ensemble would not improve the

53

Chapter 5. Discussion

framework as much as I first thought. This is due to the fact that the mod-
els in the ensemble are weighted by the meta model. A minor difference in
how the meta model weights the ensemble members could easily ruin model,
independent of the accuracy of the ensemble members. Therefore the meta
model is of great importance and there is no reason to belief that the model
used in the thesis is optimal. As discussed in section 3.4 The Meta Model
we know that the initialization of weights in the model is in fact sub optimal.

Since we want the meta model to fit perfectly to all labels provided,
one could argue that we essentially want the meta model to overfit to the
labeled data. However, we still want the framework to generalize to new data.
We are therefore using a prior to equally weight the ensemble members and
L2 regularization in the loss function. Both these terms are forcing the meta
model to leverage the entire ensemble rather than weighting a single ensemble
member by 1 and the remaining by 0 which would probably not generalize
to the observations we don’t have label to.

Another thing to mention is that there is a trade off between a query
frequency and model performance. More queries, more labels, better model.
The benchmark dataset is constructed in such a way that anomalies are
present in the time series. If the framework was to be deployed for a real world
application we could imagine that some queries would have to be made when
initializing the model. After learning the normal behaviour of the streaming
data no queries would have to be made as displayed up until instance 1200 in
Figure 4.1 where no queries were made. In a real world setting, where time
series are not constructed to contain anomalies and with long times between
changes in the data stream, the framework would not make frequent queries.
When a query would be needed there are either changes in the data stream
or anomalies present, at which point human intervention is probably needed
anyways.

Improvements Future Work
The first improvement that should be made to the framework is to make
use of transformations to the input data. Only normalization was used for
the testing of the framework in the thesis. Since we are using an ensemble,
different ensemble members could make use of different transformations for
the input data. Examples of such transformations could be the difference to
previous instance, i.e. xt−xt−1, trend, seasonality or the residuals after a
time series decomposition, to name some examples. For future work I would
therefore suggest looking into transformations that could be applied. My
feeling is that applying transformations is the single thing that would have
the most beneficial impact on the framework.

The second thing to look into is to use another meta model than the one
in this thesis. I would suggest looking into models that have a track record
of performing well for time series such as different types of RNN’s. Another
model that I would look into is the model DeepAnT [Munir et al., 2019]

54

5.1 Conclusion

from Table 4.1 which is a CNN. This model was used (in combination with an
ARIMA model) for the best performing model in Table 4.1 FuseAd[Mohsin
et al., 2019].

Another improvement would be to dynamical set the query frequency.
The main reason to not have a constant query frequency is that the ensemble
members are updated by training on the (almost) same data when two queries
are made for two succeeding time steps xt and xt+1. We could therefore, for
example, restrict succeeding queries to increase the variability in the models
used in the ensemble.

5.1 Conclusion

To answer the questions stated in Section 1.1 Problem Description:

1. Can we create a framework which can be used to find anoma-
lies in, and adjust to streaming time series data?
Yes we can. The framework proposed in this thesis is able to identify
anomalies in streaming time series data. However we can not guarantee
that the framework is able to find all anomalies in all time series. As
shown in Figure 4.1 the framework is able to adapt to changes in the
data stream.

2. Can we update the framework such that it can improve by
human intervention.
Yes we can. The model is allowed to query samples and with the use of
a second, metalearning system, we are able to update the model such
that it improves after human intervention. The improvement after hu-
man intervention is displayed in Figure 3.4 showing how the framework
adapts the anomaly score after a query being made.

3. How well does our framework compare to other anomaly de-
tection systems for streaming data?
A comparison of how well the framework performperforms compared to
other anomaly detection systems is displayed in Table 4.1. The compar-
ison is however not completely fair discussed in the Model Remarks
section of the Discussion.

55

Bibliography

Ahmad, S. and S. Purdy (2016). Real-time anomaly detection for streaming
analytics. eprint: 1607.02480.

Carreño, A., I. Inza, and J. Lozano (2019). “Analyzing rare event, anomaly,
novelty and outlier detection terms under the supervised classification
framework”. Artificial Intelligence Review. doi: 10.1007/s10462-019-
09771-y.

Das, S., M. R. Islam, N. K. Jayakodi, and J. R. Doppa (2019). Active anomaly
detection via ensembles: insights, algorithms, and interpretability. arXiv:
1901.08930 [cs.LG].

Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow, 2nd Edition. O’Reilly Media, Inc.

Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training
deep feedforward neural networks.

Goernitz, N., M. M. Kloft, K. Rieck, and U. Brefeld (2014). “Toward su-
pervised anomaly detection”. Journal of Artificial Intelligence Research,
46:235–262. doi: 10.1613/jair.3623.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical
Learning. Springer New York Inc.

Jake, V. (2016). Python Data Science Handbook: Essential Tools for Working
with Data. O’Reilly Media.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2014). An Introduc-
tion to Statistical Learning: With Applications in R. Springer Publishing
Company, Incorporated. isbn: 1461471370.

Kingma, D. P. and J. Ba (2015). Adam: a method for stochastic optimization.
cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd
International Conference for Learning Representations, San Diego, 2015.

56

Bibliography

LAPACK (2020). Linear least squares (lls) problems. https://www.netlib.
org/lapack/lug/node27.html.

Lemke, C., M. Budka, and B. Gabrys (2013). “Metalearning: a survey of
trends and technologies”. Artificial intelligence review vol. 44(1). doi:
10.1007/s10462-013-9406-y.

Liu, F. T., K. M. T. Ting, and Z.-H. Zhuo (2008). “Isolation forest”. 2008
Eighth IEEE International Conference on Data Mining ISSN 2374-
8486.

Loshchilov, I. and F. Hutter (2016). Sgdr: stochastic gradient descent with
warm restarts. arXiv: 1608.03983 [cs.LG].

M.L., S., C. S.C., S. K., and C. L. (2003). “A novel anomaly detection scheme
based on principal component classifier.” Miami Univ Coral Gables FL
Department of Electrical and Computer Engineering; Coral Gables, FL,
USA.

M.M., B., K. H.P., N. R.T., and S. J. (2000). “Lof: identifying density-based
local outliers”. Proceedings of the 2000 ACM SIGMOD international con-
ference on Management of data; Dallas, TX, USA 3, pp. 93–104.

Ma, J. and S. Perkins (2003). “Time-series novelty detection using one-class
support vector machines”. 3, 1741–1745 vol.3.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Sci-
enceEngineeringMath.

Mohsin, M., S. S. Ahmed, C. M. Ali, D. Andreas, and A. Sheraz (2019).
“Fusead: unsupervised anomaly detection in streaming sensors data by
fusing statistical and deep learning models”. doi: 10.3390/s19112451.

Munir, M., S. A. Siddiqui, A. Dengel, and S. Ahmed (2019). “Deepant: a deep
learning approach for unsupervised anomaly detection in time series”.
IEEE Access 7, pp. 1991–2005.

Nikolay, L., A. Saeed, and F. Ian (2015). Generic and scalable framework for
automated time-series anomaly detection. eprint: 1901.08930.

Powers, D. M. W. (2011). “Evaluation: From precision, recall and f-measure
to roc., informedness, markedness & correlation”. Journal of Machine
Learning Technologies 2:1, pp. 37–63.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning internal
representations by error propagation.

Schaul, T. and J. Schmidhuber (2010). Metalearning. http : / / www .
scholarpedia . org / article / Metalearning. doi: 10 . 4249 /
scholarpedia.4650.

scikit-learn (2020). Sklearn.linear_model.linearregression. https://scikit-
learn . org / stable / modules / generated / sklearn . linear _ model .
LinearRegression.html.

57

Bibliography

scipy (2020). Scipy.linalg.lstsq. https://docs.scipy.org/doc/scipy/
reference/generated/scipy.linalg.lstsq.html.

Subutai, A. and P. Scott (2016). Real-time anomaly detection for streaming
analytics.

Synced (2019). Yoshua bengio on the turing award, ai trends, and ‘very un-
fortunate’ us-china tensions. https : / / medium . com / syncedreview /
yoshua - bengio - on - the - turing - award - ai - trends - and - very -
unfortunate - us - china - tensions - 4315d3642171. [Online; accessed
20-Feb-2020].

Trefethen, L. N. and D. Bau (1997). Numerical Linear Algebra. SIAM. isbn:
0898713617.

Wang, X., Y. Du, S. Lin, P. Cui, and Y. Yang (2019). “Self-adversarial varia-
tional autoencoder with gaussian anomaly prior distribution for anomaly
detection”. CoRR abs/1903.00904.

Wikipedia (2020a). Active learning (machine learning). https : / / en .
wikipedia.org/wiki/Active_learning_(machine_learning). [On-
line; accessed 20-Feb-2020].

Wikipedia (2020b). Backpropagation. https://en.wikipedia.org/wiki/
Backpropagation.

Wikipedia (2020c). Curse of dimensionality. https://en.wikipedia.org/
wiki/Curse_of_dimensionality.

Wikipedia (2020d). Reinforcement learning. https://en.wikipedia.org/
wiki/Reinforcement_learning. [Online; accessed 19-Feb-2020].

Yahoo! Labs (2020). S5 - a labeled anomaly detection dataset, version
1.0(16m). https : / / webscope . sandbox . yahoo . com / catalog . php ?
datatype=s&did=70. [Online; accessed 17-Feb-2020].

Zhang, Y., P. Zhao, S. Niu, Q. Wu, J. Cao, J. Huang, and M. Tan (2019).
Online adaptive asymmetric active learning with limited budgets.

58

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Model Framework

Figure 0.1: The active anomaly detection framework used.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

