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Abstract 

This report investigates the performance of Aiolos Forecast Studio (AFS) in 

forecasting hydropower production by comparing the computed power 

production and runoff with the historical ones. Several statistical tools are used 

to assess the performance and accuracy of the models, which were also 

essential for deriving results and conclusions of this study. At first, two 

hydropower stations are taken as a case study (Holmen and Jordalen 2) which 

are in Norway and run by Småkraft. Said hydropower stations lie in the same 

watershed (Jordalselvi) in succession to each other on the same river. 

Furthermore, for validating the findings of this report, five more hydropower 

stations are chosen. The approach was to achieve an in-depth understanding of 

the program, followed by developing a recalibration procedure to enhance the 

production forecasts accuracy. Some limitations prevent the production 

forecast from attaining a higher level of accuracy; however, this report analyses 

those limitations thoroughly and provides recommendations for surpassing 

them. Overall coupled with the recalibration procedure, AFS has proven to be 

a reliable tool in Hydropower production forecasting. 

 



Amer Al-Qes  06/2020 

iii 

 

  



Amer Al-Qes  06/2020 

iv 

 

Symbols and Abbreviations  
 

ROR Run of River P Power 

RORs Run of river 

hydropower stations 
ρ Water mass density 

𝑔 Gravitational acceleration 

TSO Transmission System 

Operator 

Q Flow 

H Water head 

HBV Hydrologiska Byråns 

Vattenbalansavdelning 
𝜂 Turbine efficiency 

NSEC  Nash-Sutcliffe 

Efficiency Coefficient  

Qs Surface Runoff 

HSPF Hydrological 

Simulation Program - 

FORTRAN 

ET Evapotranspiration 

ΔG

W 

Change in groundwater storage 

AFS Aiolos Forecast Studio Pr Precipitation 

GIS Geographical 

information system 

ΔS Change in storage due to snow 

cover 

RMSE Root mean square error ΔS

M 

Change in soil moisture storage 

MAE Mean absolute error t Time 

ME Mean error k Decay constant 

NRMSE Normalized RMSE fc Minimum infiltration rate 

r Runoff factor   
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f0 Maximum (initial) 

infiltration rate 

fp Potential infiltration rate 

R Runoff Qe Vapour condensation energy 

ΔM Other change in water 

storage volume 

(ground, lakes and 

groundwater) 

Qg Energy conduction from ground 

Qp Energy conducted from rainfall 

E Evaporation ΔQi Rate of change in the internal 

energy stored in the snow 

αMP average forecasted 

production at hour t 

Ql Total shortwave energy emitted 

by the snow 

βH(t) The sensitivity for 

differences in the runoff 

B Thermal quality of the snow 

yi Measured data A Albedo 

ŷi or fi Computed data li Daily incident solar radiation 

ӯi The arithmetic mean of 

the measured data 

Ts Blackbody temperature (snow 

surface temperature) 

N or n Number of values σ Stefan-Blotzman constant 

Qm The total energy 

available for snowmelt 

Dh Bulk transfer coefficient for 

sensible heat transfer 

Qsn Net shortwave radiation De Bulk transfer coefficient for 

latent heat transfer 

Qln Net long-wave radiation uz Wind speed at a chosen height 

above the snow surface 

Qc Convection from air Ta The temperature at the air 

surface 

Qi Internal energy of snow Tr Temperature of rain 



Amer Al-Qes  06/2020 

vi 

 

ea Vapour pressure of the 

air surface 

es Vapour pressure of the snow 

surface 

Cp Specific heat   
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1 Introduction 
Production forecasting is an essential tool for power companies, that facilitates 

bidding in the power market, as well as for power stations operation. In this 

report AFS is adopted as a tool for forecasting power production; it consists of 

several models simulating power production from various power sources. The 

most relevant model is the Achelous, which is the hydropower model in AFS, 

specialised in unregulated hydropower production forecasting. The Achelous 

model comprises a hydrological model and a statistical model that use the 

weather forecast and historical data as input. Those two models work 

simultaneously to produce the most accurate result (Vitec Energy AB, 2020).     

Run-of-river (ROR) hydropower stations have regulating structures with little 

water storage capacity on the upstream side, making it challenging to regulate 

the streamflow in dry periods. Therefore, produce power depending on the 

river flow regime, which is also why RORs can be unreliable as the primary 

power source. RORs can provide financial benefits for small communities as 

well. As an example, Småkraft (a power company in Norway) operates 112 

ROR power stations across Norway that created job opportunities, provided 

income for landowners, and tax funds for local municipalities (Smakraft, 

2019). 
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2 Background 
Models are created to simulate an actual process or phenomena as accurately 

as possible. There are many applications for models, but in this case, the model 

is used to accurately forecast the hydropower production, to optimise power 

production and market bidding. There are several statistical tools used to assess 

the accuracy of a model, for simplicity and ease of interpretation the most 

relevant were chosen and applied. The Nash-Sutcliffe Coefficient and the 

Deviation of the Runoff Volumes are the two criteria (tools) used to assess the 

model. 

Typically, hydropower is planned and run based on a complete optimisation 

using price forecasting and water availability. Production planning is often 

done manually using optimisation tools tailored to the company's overall 

business image, which can be time-consuming and more susceptible to error. 

A computer model can replace the manual procedure to provide higher 

efficiency and more accurate forecasts. The model shall comprise algorithms 

for forecasting runoff power production and power consumption.  

2.1 ROR Hydropower Generation 
Run of river hydropower station is a term used to describe hydropower stations 

with limited regulation to the river flow since it usually holds little or no storage 

on the upstream part of the river. Thus, given the name Run of River since the 

power generation is controlled mostly by the hydrological conditions of the 

river watershed. (Helston, 2017). 

2.1.1 Hydropower 
Hydropower is an environmentally friendly and sustainable form of power 

generation; the water mechanics and behaviour fuel it in a watershed. 

Hydropower is generated through harnessing the kinetic and potential energy 

of the streamflow and converting it to mechanical energy by running the water 

through the turbine blades setting the turbine into rotational motion. The 

turbine is centred around a shaft perpendicular to the blades motion direction 

which transfers the mechanical torque to the generator, which in turn converts 

the mechanical energy into electrical energy. Figure 1 shows a simplified 

model of a hydropower generator (USBR Power Resources Office, 2005). 
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Figure 1 Simple hydropower generator sketch (USGS, 2018) 

 

𝑃 =  𝜂𝜌𝑔𝑄𝐻                               (1) 
Equation 1 The governing equation for calculating hydropower, where; 

P = power (MW)  

η = turbine efficiency  

ρ = water mass density (kg/m3)  

Q = discharge (m3/s) 

g = gravity (9.82 m/s2)  

H = hydraulic head (m). 

(Oregon State University, 2020) 

From Equation 1, it is clear that the significant factors in determining the power 

production are the inflow volume and the water head. Depending on the 

topography of the watershed, a large dam can be built to remarkably increase 

the water head and enhance the storage capabilities (for seasonal production 

control). While for ROR hydropower stations, a regulating hydraulic structure 

is constructed to control the power production and in turn raise the water head.  
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2.1.2 ROR Hydropower Stations 
ROR is usually composed of three main parts an intake structure, powerhouse 

and an outlet as seen in (Figure 2). Those three main parts vary in their design 

and composition, depending on several determining factors, for instance; water 

head, generation capacity and river conditions. In the upstream part of the 

structure lies the water intake which redirects water from the stream or 

reservoir into the turbine through an inlet fitted with screens to filter the debris 

and large sediments. When the inlet structure is located further upstream the 

hydropower station, the water is transported through a penstock, which acts 

like a pipe connecting the inlet structure to the turbine, as shown in Figure 2. 

Finally, the water is discharged back to the stream through an outlet.  

 
Figure 2 Simple sketch for a run of river hydropower station (Scottish Government, 2020) 

Due to their small storage capacity, it is viable for ROR hydropower stations 

to have accurate forecasts that integrate them into a power production grid 

which serves to be both energies efficient and economically feasible. (USGS, 

2018).  
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2.2 Deregulated power markets 
Power markets are mainly composed of three main sectors production, 

transmission, and distribution. Traditionally those sectors were controlled by 

large often state-owned monopolies, but in the past decades, many markets 

became deregulated. Several approaches achieved deregulation, but its main 

aim was to stimulate competition, to achieve lower retail prices for the 

consumer side. The deregulation began by the split of vertically integrated 

power producers and privatised state-owned utilities, in other words, the 

transmission sector was separated from the production and distribution as an 

independent system operator currently known as TSO (transmission system 

operator). Despite the deregulations, the electrical grid is still heavily regulated 

to ensure the balance between production and demand. In many countries, 

wholesale markets were established where the power producers could sell their 

generated electricity, considering the grid connection and the need to balance 

the supply and demand instantly. As a result of deregulation two basic models 

for power, markets were developed: power pools and power exchanges. The 

power pools are the one where the trading, dispatch and transmission takes 

place at the system operators' side. While at the power markets, trading and 

initial dispatch take place at power exchanges which are independent of the 

transmission. In the Nordic countries, the power pool model is used, where the 

system operators are responsible for estimating the power demand, receiving 

bids from power producers, and calculating the pricing. Moreover, TSO mainly 

ensures the balance in the power grid by continually monitoring the balance 

between the supply and demand. 

Several electrical markets exist all around the world, from which some are 

regional (local), and some are international, which involve power trading 

among multiple countries. The Nordic market is an example of an international 

market; in other means, electrical power produced in one country can be sold 

to another (Mayer & Trück, 2018). 

2.2.1 Day-Ahead and Real-Time Market 
The day-ahead market (also referred to as intra-day) allows the participants to 

prepare their bids for buying and selling power and services day ahead of the 

sale. The day-ahead market bidding takes place in power pools; for the Nordic 
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market, the power pool is called Xbid and managed by Nord pool. The system 

operators (TSO) give out information and forecasts regarding the next day, 

which helps the participants in optimising their production and formulating 

their bids for the power company's dispatchers to make the sales. Production 

and consumption forecasting are crucial in this type of market, mainly because 

it involves selling a large amount of power. The real-time market functions 

differently, the system operators continuously monitor the system and bids, 

that happen in an interval of every 5-15 minutes to ensure that the balance is 

set between the supply and demand. The power companies readjust their 

production and reallocate their resources to meet the short time notice demand, 

where the dispatchers continuously monitor the market and make bids for the 

real-time market. (Cramton, 2017) 

The day-ahead market gives enough time for the participants to formulate their 

bids, optimise their production and reallocate their resources. However, it 

estimates the demand for every hour throughout the day, but, the actual demand 

follows a fluctuating curve; thus, the demand varies more rapidly. That is why 

some markets couple day-ahead market with the real-time market to keep the 

electricity grid in a stable state so that no district or region experiences supply 

shortage or even blackout (Mayer & Trück, 2018).  

One of the TSO's primary responsibilities is the power balance in the grid. For 

example, the Nordic power grid operates at a frequency of 50 Hz, where the 

frequency is maintained when the power supply equals the demand. If the 

power supply is less than the demand the frequency falls below 50 Hz, 

therefore a separate market called the regulating market is responsible for 

compensating the shortage in supply. The power companies submit their hourly 

bids to the regulating market a day ahead, where power is sold to the TSO to 

maintain balance in the grid, in case the power company fails to produce the 

required power supply it becomes exposed to the regulating market. Being 

exposed obliges the power company to compensate for the shortage either by 

purchasing the remaining amount or produce it at a higher cost. Accurate 

forecasts add higher certainty to power production planning, helping power 

companies minimise imbalance costs.  
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2.3 Hydropower production forecasting 
Ever since the deregulation of the electricity market, power companies have 

been in a very long race to acquire the most accurate forecasts, making 

electricity price forecasting a continuous research area. The bidding price 

mainly depends on market demand and the power company's ability to meet 

that demand. Energy companies focus on two problems to maximise their 

profit, firstly by optimising their production quantity for each hour of the next 

day, by making accurate production forecast, secondly by associating suitable 

price bids with those quantities. The following problem (price bids forecast) 

heavily depends on the market conditions, and with many different participants 

in the market, price forecasting can be a complicated procedure. In such 

complex markets price forecasting is done with the aid of dedicated computer 

models such as statistical time-series methods and machine learning models, 

this report focuses on the first problem (power production forecasting). Unlike 

fossil fuel power stations, sustainable energy sources such as hydropower, 

solar power and wind power generation have a range of uncertainty to their 

production quantities. Therefore, different forecasting models were developed 

to narrow that gap between the day ahead of planned production and actual 

real-time production. Some of these modelling techniques are Machine 

learning models, fundamental models, statistical time-series methods, 

regression type methods (as used in this case study) and others (Umut Ugurlu, 

2018). 

2.4 Rainfall-runoff modelling 
As a part of the hydrological cycle, precipitation becomes surface runoff and 

converges into small water streams, which serve as tributaries for larger ones. 

Surface runoff is mainly driven by the force of gravity and flowing from higher 

altitudes to lower ones. Rainfall-runoff modelling is a method that simulates 

this natural phenomenon by creating a model of a topographical area or a 

watershed that collects and discharges surface runoff through an outlet (Mays, 

2005). A rainfall-runoff model comprises input data, governing equations, 

boundary conditions and processes, collectively carrying out computations to 

help visualise the behaviour of the surface runoff and its response to varying 

weather conditions. A hydrological model can be used in estimating water 



Amer Al-Qes  06/2020 

8 

 

yields, runoff volume, runoff forecasting and streamflow rate periodically 

(Sitterson, et al., 2017). 

Principally hydropower derives its energy from the water flowing in the 

stream, thus a runoff model can prove to be a powerful tool for hydropower 

production forecasting. By forecasting runoff accurately, power companies can 

obtain accurate estimates of their future production capacity, which can serve 

as essential data for bidding in the power market. There are several types of 

runoff models, ranging from simple to complex models, where a model is 

created based on its output requirements and available input data. Runoff 

models can be categorised based on their model structure and spatial processes. 

According to a models structure, it can be categorised as an empirical model, 

conceptual model or physical model (Sitterson, et al., 2017). 

2.4.1 Conceptual model 
A conceptual model uses the water balance equation for computing the runoff 

values, based on the catchment area properties and available weather data. A 

conceptual model simplifies the somewhat complicated catchment area, 

through several assumptions that relate the catchment behaviour to simplified 

equations of the hydrological process. Those simplified equations mainly 

calculate the change in the storage or explain the water allocation in a 

watershed. This type of model is easy to calibrate due to its simple model 

structure. However, since it does not consider the spatial change in the 

watershed properties, it can have a noticeable margin of error for complex 

watersheds. Some popular conceptual models are HBV, TOPMODEL, HSPF. 

(Sitterson, et al., 2017) 
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2.4.2 Spatial Processes 
The Spatial processes decide whether all the catchment area has the same 

properties or different properties. The catchment area has spatial variability in 

geology, soils, vegetation, topography and even weather data for large 

catchment areas. Therefore, taking this variability into account when designing 

the model can return more accurate forecasts, but this can also complicate the 

model and make it difficult to calibrate. The spatial structure of the rainfall-

runoff model can be categorised as a fully distributed model, a semi-distributed 

model and a lumped model. A fully distributed model divides the catchment 

area into a grid with spatial heterogeneity in inputs and parameters, each cell 

of the grid calculated runoff separately but incorporates interactions with other 

cells. A semi-distributed model divides the catchment into regions (sub-areas) 

with different parameter properties. The advantage of semi-distributed is that 

it accounts for spatial variability in a simple manner requiring fewer parameters 

and less data. Finally, lumped models consider the catchment area as a single 

homogenous unit and neglect the concept of spatial variability; the catchment 

parameter values are averaged, such as mean-field capacity and uniform 

precipitation. Lumped models tend to under-parametrise and underestimate the 

runoff value, but by assuming homogeneity data become much easier to 

acquire and possible to attain high accuracy in less diverse catchment areas 

(Sitterson, et al., 2017). 
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3 Theory 

3.1 The hydrologic cycle and surface runoff 
The hydrologic cycle outlines and briefly describes the spatial and physical 

changes water undergoes annually, as seen in Figure 3. Initially, solar energy 

with other factors causes the evaporation of water from the oceans and land 

surfaces. As the water vapour rises to the atmosphere, it condenses into the 

form of clouds. The clouds travel to another location-driven mainly by wind. 

As the clouds move to another location where it is a subject to colder 

atmospheric conditions, the water precipitates in the form of rain, hail, or snow.    

 

 

Figure 3 Hydrologic cycle (Pidwirny, 2006) 

Not all the precipitation becomes runoff; the net precipitation is the remaining 

precipitation after subtracting the losses due to the evaporation of water from 

the soil and vegetation, as well as transpiration (known collectively as 

evapotranspiration). Surface runoff is the fraction of the net precipitation that 

moves along the surface of a watershed and converges into a stream, which 

eventually exits the watershed through an outlet. Some of the net precipitation 

is stored and hindered by surface vegetation by the act of interception, while 
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some infiltrate the soil or percolates into the groundwater. When the 

precipitation happens in the form of snow or hail, the precipitation that remains 

frozen is stored in the watershed until it melts to become runoff (Mays, 2005). 

The hydrological cycle can be represented by the water balance equation that 

describes the water flow of water into and out of the watershed for a chosen 

period (as shown in Equation 2). 

𝐐𝐬 = 𝐏𝐫 − 𝐄𝐓 − 𝚫𝐒𝐌 − 𝚫𝐆W      (2) 

Equation 2 water balance equation, where;  

Pr = precipitation 

Qs = surface runoff 

ET = evapotranspiration  

ΔSM = the change in soil moisture 

ΔGW = the change in groundwater storage 

(Sitterson, et al., 2017) 

The runoff is mainly affected by storm and watershed properties. Such 

properties are storm duration, precipitation amount, intensity soil properties, 

watershed topography and land cover. Generally, surface runoff is generated 

due to two cases, saturation excess and infiltration excess. Saturation excess is 

when the soil is saturated with water, exceeding its water holding capacity. 

Thus, most of the precipitation runs off to a stream or forms a pond. Infiltration 

excess is when the precipitation intensity exceeds the infiltration rate of the 

soil, thus exceeding the rate at which water seeps into the soil causing the 

excess water to runoff (Sitterson, et al., 2017). Typically, surface runoff is 

generated by the combination of these two cases. The soil infiltration rate is 

influenced by the soil moisture content as explained, by the Horton model of 

potential infiltration capacity, which presents an empirical equation (as shown 

in Equation 3) for determining the potential infiltration capacity as a function 

of time (Chin, 2013). 

𝒇𝒑 =  𝒇𝒄 +  (𝒇𝟎 –  𝒇𝒄)𝒆−𝒌𝒕
                                                                                                 (3) 

Equation 3 for potential infiltration rate where, 

fp = potential infiltration rate 

 fc = minimum infiltration rate 

f0 = maximum infiltration rate 

k = decay constant (T-1) 
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t = time into the storm 

(Chin, 2013) 

3.2 Linear Regression (statistical model) 
Linear regression is a statistical analysis tool that interprets the X, Y variables 

as independent and dependent variables, respectively. Linear regression 

formulates an equation showing the relationship between X and Y; if the 

relationship is assumed to be linear, then it can be represented as, 

 

𝐘 = 𝛃𝟏 + 𝛃𝟐𝐗 

 

Where β1 is the Y-intercept value, and β2 is the slope of the regression line. 

Furthermore, a statistical model can use linear regression and display the 

forecasted value as a Y variable using the X variables (also called predictor) as 

input data. Firstly, the model uses historical data to calibrate itself by 

formulating equations, that describe the relationship between the dependent 

variable and independent variables. These equations nearly represent real-time 

conditions, and thus by adding forecasted X values, a Y value can be calculated 

(forecasted). 

In practice, the regression line will not coincide with all the plotted points; thus, 

a coefficient of error can be introduced and represented by; 

 

𝒆 = 𝒚 − 𝐲ˆ 
𝐘 = 𝛃𝟏 + 𝛃𝟐𝐗 + 𝐞 

 
Where ± yˆ represents over and under predictions, introducing this value helps 

to fit the regression line to obtain minimal error value (McCuen, 1984). 

There are several methods for achieving that such as visual fitting, least sum 

of errors and least sum of absolute errors, but the most common method is the 

least-squares approach, which would construct a line with the minimised sum 

of squared errors. 

In many cases, a regression model can be dependant on several variables 

(predictors) rather than just one; this case is called a multiple linear regression 

model. Consider multiple independent predictors to be X1, X2,...,Xk, where k 
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is the number of independent predictors and those predictors, influence the 

forecasted value of Y giving the general equation for multiple linear regression 

model as represented in Equation 4 (Alkarkhi & A.A.Alqaraghuli, 2019). 

𝐘 = 𝛃𝟎 +  𝛃𝟏𝐗𝟏 +  𝛃𝟐𝐗𝟐 + ⋯ +  𝛃𝐤𝐗𝐤 +  𝐞                                          (4) 

Equation 4 for the multiple linear regression model 

3.3 Nash-Sutcliffe Efficiency Coefficient  
The NSEC is a statistical tool that can be used to assess the accuracy of a model 

by measuring the goodness of fit between computed data and actual data. 

NSEC gives a value of R2 (can be called the coefficient of determination) as 

seen in Equation 5. 

 

 

                                                      (5)              

 

Equation 5 the NSEC equation where 

yi = measured data 

ŷi= computed data 

ӯi= arithmetic mean of the measured data 

The efficiency coefficient is sensitive to significant deviations from the mean 

value as well as offsets (delay) between computed and measured data; 

therefore, R2 can describe how reliable a model is. 1 is the ultimate value 

indicating the computed data curve lies identically on the actual data curve 

since measured data do not deviate from computed data (Xie, et al., 2019). 

This coefficient is generally used for evaluating conceptual and linear 

regression models, of applications in hydrology. A value of 0.5 is considered 

acceptable, but for an accurate model, a higher value is required. For this 

report, the NSEC coefficient was used as the primary tool for evaluating a 

model's accuracy, but in case of significant deviations from the mean value 

normalised root mean square error (NRMSE) is more reliable in accuracy 

assessment. The NRMSE measures the average deviation between the 

measured and computed values and is divided by the arithmetic mean of 

measured data, in order to present a value unaffected by the units. NRMSE is 



Amer Al-Qes  06/2020 

14 

 

a measure of error; therefore, a lower value indicates a higher accuracy. For 

NRMSE, a value of 1 and above represents an unreliable model. 

3.4 Aiolos Forecast Studio and The Achelous model 
AFS is a forecasting software developed by Vitec AB, AFS creates models 

based on historical data or even based on old models, to carry out future 

forecasts of power consumption and power production. The program can 

import historical forecasts for validation and follow up. The software was 

named Forecast Studio because it can contain many different forecast models 

working simultaneously, such as models for hydropower, solar power, wind 

power, consumption and more. Different sub-models exist within those 

forecast models, in other words for the same hydropower station, multiple 

forecasts can be made simultaneously, each with a sub-model having different 

basin properties. The program was designed to be user friendly with its clear 

layout, data visualisation techniques and its various facilitative functions for 

monitoring and forecasting power production (Vitec Energy AB, 2020). 

The Achelous model focuses on forecasting unregulated hydropower 

production. Unregulated hydropower means that the power stations lack a dam 

on the upstream and have little to no storage. Thus, the hydropower production 

solely depends on the instantaneous access to the water produced by the runoff 

in the watershed. The Achelous model depends on data from weather stations, 

historical input and output data, as well as watershed properties to forecast 

hydropower production rapidly. 

There are two components behind Achelous forecasting ability, A hydrological 

component and a statistical component. The hydrological component contains 

a conceptual rainfall-runoff model that uses lumped spatial processes to 

describe the watershed properties. It adopts a slightly different water balance 

equation than Equation 2 since it includes snow storage computation and 

unifies groundwater storage and soil moisture storage, as shown in Equation 6. 
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𝑹 =  𝑷𝒓 –  𝜟𝑺 –  𝜟𝑴 –  𝑬          (6) 
 

Equation 6 water balance equation of Achelous model, where 

R = runoff  

Pr = precipitation in the form of rain 

ΔS = change in storage due to snow cover  

ΔM = other change in storage (ground, lakes and groundwater) 

E = evaporation 

While the hydrological component depends on the physical properties of the 

watershed to forecast the runoff behaviour, the statistical component purely 

relies on past data to forecast production. It relies on linear regression to 

forecast power production, as outlined in Equation 7. 

 

𝑷(𝒕) =  𝜶𝑴𝑷𝒕 +  𝜷𝑯(𝒕)  +  𝜸      (7) 

Equation 7 power production forecasting (statistical component) 

Where αMPt = average forecasted production at hour t and βH(t) estimates the 

sensitivity for differences in the runoff, H is the runoff in mm. The Achelous 

uses previous production values, for the computations of the statistical part. A 

reference period (training period) is set for the Achelous to search for similar 

past intervals, to determine if the power production value will incline or decline 

(Vitec Energy AB, 2020). 
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3.4.1 Achelous Hydrological Component  
Achelous Hydrological Component estimates runoff by firstly calculating the 

snowmelt, snowmelt is calculated based on the energy budget equations and 

then added to the precipitation. Secondly, Achelous models the soil storage 

recharged by the snowmelt and precipitation collectively, where the excess 

accounts for runoff. AFS developers adopted U.S. Army Corps of Engineers, 

1960 as a manual for modelling the snowmelt. 

Primarily whenever there is sufficient energy a portion of the snow melts 

(usually top layer or bottom layer of the snow) and according to the physical 

properties of the snow, the snow is a porous medium that can hold the 

snowmelt as liquid water. Whenever the water holding capacity of the snow is 

exceeded, the snowmelt moves down-gradient to become direct runoff. Also, 

some might infiltrate the soil depending on the soil properties, moisture content 

and if the ground surface was frozen or not. 

The energy budget equations simulate the snow melting mechanism by relating 

it to the incident energy sources. Furthermore, those energy sources are both 

shortwave and long-wave net radiation, convection from the air (sensible 

energy), vapour condensation (latent energy), conduction from the ground, and 

the energy contained from rainfall. These energy fluxes are shown in Equation 

8 and are labelled Qsn, Qln, Qh, Qe, Qg, and Qp respectively, and all 

represented as a unit of energy per time per unit area of snow (kJ/m2 per unit 

of time). 

 

Qm =Qsn +Qln +Qh +Qe +Qg +Qp -ΔQi                                                             (8) 
 

Equation 8 energy budget equation where 

Qm = total energy available for snowmelt 

Qsn = net shortwave radiation 

Qln = net long-wave radiation 

Qh = convection from the air 

Qe = vapor condensation energy 

Qg = energy conduction from the ground 

Qp = energy contained in rainfall 

ΔQi = rate of change in the internal energy stored in the snow 

ΔQi represents the energy required to melt the ice in the snowpack, freeze the 

liquid water in the snow and change the temperature of the snow. Moreover, in 
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warm periods ΔQi represents energy into the snowpack, while in cold periods 

it represents energy out of the snowpack. 

In order to calculate the snowmelt amount a general formula is used as shown 

in Equation 9; where B is the ratio of heat required to melt a unit weight of 

snow at 0 °C to that of ice. 334.9 is the value of the latent heat of fusion of 

water in kJ/kg (energy required to change water from solid-state to a liquid 

state. 

   

𝑴 =  
𝑸𝒎

𝟑𝟑𝟒.𝟗𝝆𝑩
                                                                                                      (9) 

 

Equation 9 general formula for calculating the amount of snowmelt where 

M = snowmelt (mm/time) 

Qm = total energy available for snowmelt (kJ) 

ρ = water mass density (kg/m3) 

B = thermal quality of the snow 

Usually, the snowpack is composed of snow (ice) with liquid water held within 

its pores, a snowpack that contains no liquid water would have a thermal 

quality value of 1, but once melting has begun that value would be less than 1. 

For a melting snowpack, the thermal quality is usually between 0.95-0.97, that 

is because the latent heat required to release the water is less than the latent 

heat of fusion of water. 

Radiation energy is the main energy source for earth's surface; some of this 

energy is solar shortwave radiation and terrestrial long-wave radiation. 

Shortwave radiation (solar) provides most energy for snowmelt, the net 

amount of shortwave radiation (Qsn) is the snowpack absorbs that portion of 

that. The amount of solar radiation reaching the snowpack varies with, altitude, 

time of day and year, atmosphere, forest cover and reflectivity of the snow 

(albedo). 

The surface of the snowpack reflects a high percentage of the incident solar 

radiation; at the same time, the snowpack absorbs the rest. Albedo is how much 

the snow would reflect of the incoming shortwave radiation, for fresh snow 

albedo is above 80%, and it decreases as the snow get older or refreezes; As 

seen from Equation 10 of net shortwave energy. 
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𝑸𝒔𝒏 = (𝟏 − 𝑨)𝑰𝒊                                                                                               (10) 
Equation 10 of net shortwave energy available for snowmelt where 

A=Albedo (expressed as a decimal fraction) 

Ii = daily incident solar radiation (kJ/m per day) 

The applied equation for calculating the amount of snowmelt from shortwave 

radiation is acquired by taking Equation 10 and merging it with the general 

formula of Equation 9 to get Equation 11 with the assumption of thermal 

quality as 0.97. 

 

𝑴𝒔𝒘 = 𝟎. 𝟎𝟎𝟑𝟎𝟖𝑰𝒊(𝟏 − 𝒂)                                                                              (11) 
Equation 11 amount of snowmelt in mm due to shortwave radiation energy 

The earth emits Long-wave radiation (terrestrial) to the outer space in the form 

of thermal radiation; the atmosphere and forest cover reflect some of this 

radiation. Snow almost acts as a perfect blackbody for long-wave radiation, 

where the snowpack absorbs all the incident long-wave radiation. However, 

snow constantly emits some of the absorbed shortwave radiation back to the 

atmosphere as long-wave radiation. The net long-wave radiation (Qln) is the 

difference between the absorbed and emitted long-wave radiation by the 

snowpack. In clear skies, the absorbed radiation is more than the emitted giving 

a positive value for Qln, but if the snow was beneath the forest canopy and 

cloudy sky, Qln might be a negative value. Equation 12 expresses the amount 

of shortwave radiation that the snow emits. 

 

𝑸𝒍 = 𝟄𝝈𝑻𝒔
𝟒                                                                                                           (12) 

 

Equation 12 of emitted shortwave radiation by snow where 

Ql = total shortwave energy emitted by the snow (kJ/m2 per second) 

𝟄 = 0.99 for clean snow 

σ = Stefan-Boltzman constant (5.735×10-11 kJ/m2 s K4) 

Ts
4 = blackbody temperature in Kelvin (K)(temperature of the snow surface)                                      

For the computation of black radiation, different factors are included, such as 

the temperature of the cloud cover, forest canopy, distribution of the water 

vapour and temperature in the atmosphere. These different factors made it 

complicated to calculate the snowmelt by long-wave radiation, thus by using 



Amer Al-Qes  06/2020 

19 

 

experimental data and assumptions, a non-linear relationship between 

temperature (in Kelvin) and long-wave radiation was produced. This function 

was reduced into linear relationship through shifting to Fahrenheit temperature 

scale and by fitting to linear approximations. The final equation for calculating 

the snowmelt in inches and Fahrenheit is described for two cases; 

 

(a) Snowmelt under clear skies. 

𝑴𝒍 = 𝟎. 𝟎𝟐𝟏𝟐(𝑻𝒂 − 𝟑𝟐) − 𝟎. 𝟖𝟒                                                      (13) 
Equation 13 snowmelt due to long-wave radiation under clear skies 

(b) Snowmelt under a forest canopy. 

𝑴𝒍 = 𝟎. 𝟎𝟐𝟗(𝑻𝒂 − 𝟑𝟐)                                                                        (14) 
Equation 14 snowmelt due to long-wave radiation under a forest canopy 

Another source of energy is the turbulent transfer, which is a term used to 

collectively represent the processes of convection (Qc) and condensation (Qe). 

The turbulent transfer is of little importance during the spring season where 

solar energy is dominant. However, during winter, turbulent transfer, along 

with energy from rainfall, is the dominant energy sources for snowmelt. 

Convection is the transfer of sensible heat from warm air advected over the 

snowpack, and the latent heat is provided from the condensation of moisture 

from the atmosphere on the snowpack 

Equation 15, and 

Equation 16 expresses the turbulent transfer. 

 

𝑸𝒄 = 𝑫𝒉𝒖𝒛(𝑻𝒂 − 𝑻𝒔)                                                                                       (15) 
 

Equation 15 for energy obtained from convection where 

Qc = total energy obtained from convection 

Dh = bulk transfer coefficient for sensible heat transfer (kJ/m3 °C) 

uz = wind speed at a chosen height above the snow surface (m/s) 

Ta  = temperature at the air surface (°C) 

Tz = temperature at the snow surface (°C) 
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𝑸𝒆 = 𝑫𝒆𝒖𝒛(𝒆𝒂 − 𝒆𝒔)                                                                                   (16) 
 

Equation 16 for energy obtained from condensation where 

Qe = total energy obtained from the condensation 

De = bulk transfer coefficient for latent heat transfer (kJ/m3 Pa) 

uz = wind speed at a chosen height above the snow surface (m/s) 

ea = vapour pressure of air surface (Pa) 

es = vapour pressure of the snow surface (Pa) 

Snow can also melt due to the heat conducted from the ground (Qg), this value 

is small and usually neglected for short periods, but for long periods and 

lumped models a value of 0.25-0.76 mm/day is assumed. 

Similar to convection from the air, convection from snow by rainfall also 

accounts as an essential factor in snowmelt. The temperature of the 

precipitation is assumed to be the same as the air temperature. Melting due to 

rainfall can be expressed in Equation 17. 

 

𝑸𝒑 =  𝑪𝒑𝝆𝑷𝒓(𝑻𝒓 − 𝑻𝒔)/𝟏𝟎𝟎𝟎                                                                        (17) 
 

Equation 17 heat convicted by rain where 

Qp = energy convicted by rain 

Cp =  specific heat (2.1 kJ/kg for snowfall and 4.2 kJ/kg for rainfall)  

ρ = mass density of water (kg/m3) 

Pr = precipitation (mm/ unit time) 

Tr = temperature of rain (°C) 

Ts = temperature of snow (°C) 

The last energy component in the energy budget equation is the internal energy 

of the snow. When the heat deficit of the snowpack is positive (snowpack's 

temperature below freezing), that deficit can be decreased when rain and 

meltwater freeze inside the snowpack. This phenomenon will stop when the 

snowpack temperature reaches 0°C, where the snowpack will become 

isothermal. The internal temperature is expressed in Equation 18, i,l and v stand 

for ice, liquid and vapour, respectively, but the vapour component is negligible.  
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𝑸𝒊 = 𝒅𝒔(𝝆𝒊𝑪𝒑𝒊 + 𝝆𝒍𝑪𝒑𝒍 + 𝝆𝒗𝑪𝒑𝒗)𝑻𝒎                                                             (18) 

 
Equation 18 internal energy of the snow where 

Qi = internal energy of snow 

Cp = specific heat (2.1 kJ/kg for snow and 4.2 kJ/kg for water) 

ρ = mass density (1000 kg/m3for water and 922 kg/m3for ice) 

3.4.2 Achelous basin properties 
Each power station can have its basin properties, and those properties simulate 

the physical parameters of a watershed. The basin properties include forest 

canopy, altitude, max storage (field capacity), discharge rate per hour, delay, 

snow depth and minimum standard deviation of runoff, as shown in Figure 4. 

 
Figure 4 basin properties window in AFS 

The forest canopy field represents the portion of the watershed that the model 

considers as forest; it has a significant effect on the snowmelt calculations and 

is represented by a fraction from 0-1. 

The snow depth field represents the amount of snowpack (in mm) present at 

the training period start, and this is an optional setting used in recalibrating the 

Achelous models. When the snowmelt contribution to the runoff is 

overestimated or underestimated, this setting can be used to recalibrate the 

model. 

The minimum standard deviation field specifies the minimum permitted value 

for the standard deviation of a parameter involved in the regression. If any 

parameter has a lower standard deviation than the set value (in mm), no 

regression will take place, and the model will rely on the statistical component 

and real-time correction instead. 
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The max storage field represents the average storage capacity of the watershed 

soil (in mm) when the storage capacity is exceeded all the precipitation 

accounts for runoff.   

The discharge rate represents how much of the stored amount of water in the 

soil escapes the groundwater (per hour) and flows back to the stream to 

contributes to power production. Both the max storage and the discharge rate 

field enables the smoothening and reduction of the runoff curve, to better 

simulate the actual runoff phenomena. The runoff curve peaks can be too high 

if the max storage was set to a low value, or the discharge rate was too high 

(Vitec Energy AB, 2020). 

3.4.3 Achelous statistical component 
The statistical component is the main driver of the Achelous model since it 

cannot be disabled; the statistical component uses stepwise regression analysis 

with multi variables (predictors). The statistical component has two functions: 

it relates the runoff to the power production and estimates the delay between 

the runoff and production. The delay is determined by the distance between the 

weather observation station and the power station, topography, nature of the 

ground, systematic errors in the weather forecasts. 

Generally, the statistical part assumes the production at time t similar to a 

historical time with similar conditions; moreover, it adopts the interval directly 

preceding the forecast time for comparison, where the model uses predictors 

to search the historical production for similar intervals. The model selects those 

intervals based on the predictors of power production and runoff directly. At 

the same time, the cloud cover, precipitation, air pressure, relative humidity 

and temperature serve as indirect predictors since they influence the runoff. 

The statistical component uses Equation 7 for forecasting production; the value 

of average forecasted production (αMPt) is estimated using the intervals. 

Furthermore, the model searches for sensitivity difference in runoff (βH(t)), 

which is the impact of runoff difference between the preceding period and 

forecasted period. The impact can be an increase in production, a decrease in 

production or no change. The impact is taken as both instantaneously and 

retrospectively, then calculated by creating secondary predictors of the inflow. 

The secondary predictors include the runoff, the runoff delayed by 1 and 2 
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hours, the average runoff 6, 12, 24 and 48 hours, and All these are expressed 

as deviations from the corresponding averaged values. 

 

The statistical component performance depends on the training period of the 

model, which can be tuned from the reference and training period parameters, 

as seen in  Figure 5. 

 
Figure 5 Statistical component parameters 

The reference period specifies the number of days in historical production used 

for the search, where the model searches for similar intervals, moreover the No 

of intervals parameter controls the number of the similar intervals the model 

chooses. The Compare parameter determines the length of the interval directly 

preceding the forecast period, that will be used for the search of similar past 

intervals of the same length. For example; if a reference period were set to 90 

days with an interval period of 12 hours and 30 intervals, the model would look 
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for 30 best matching intervals searched for 12 hours within those nine days. 

The intervals are furtherly divided into hourly sub-intervals, so it can be said 

that the compare parameter indirectly determines the number of subintervals.  

F-value include in a stepwise forward regression model, the model starts as 

empty without predictors, for determining the predictors to be included in the 

model, a statistical test based on the partial correlation coefficient for each 

predictor is used. F-value include specifies the significance level for an error 

that a model a shall include, and the value will act as a probability of including 

an uncorrelated predictor and is used as a stopping criterion for the stepwise 

regression. As the model runs for each step of the procedure, if the model 

cannot find a significant predictor, the maximum number is set, and the last 

predictor with the least significant value is excluded. If the F-value include is 

set to 0.05, that means the model will risk including an uncorrelated predictor 

having an error in 5% of the cases taken.    

 F-value exclude as the model runs, for each step of the stepwise procedure; it 

makes a backward check to determine if any of the already included predictors 

should be now excluded. The program carries out a partial F test based on the 

partial sum of squares (SS) for each of the predictors which are included in the 

model, then exclude the predictor with the highest probability to fall short of 

the significance value set in the F-value exclude box. In summary, this 

parameter enables the user to set the risk of keeping a predictor that was 

relatively significant in the previous step but no longer in the current step. To 

acquire a conservative model that generally does not throw out variables, that 

have already been included, the value of F-value exclude should be more than 

the F-value include. 

The predictors to be used in the statistical component can further be controlled 

by changing the max model size value, as shown in   
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Table 1. 
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Table 1 Effects of different Max model size values 

Max model 

size value 
The accompanying effect 

-1 

Regression is disconnected. The forecast is made only by the 

statistical component of Achelous. Where the runoff calculated by 

the hydrological component is disconnected, and the historical 

runoff is used instead. 

0 Constant forecast using mean values only for forecasts. 

1 

One explaining variable. Most probably, the statistical component 

will be the first explaining variable. The forecast will be scaled 

with a constant due to the regression. 

2-5 
Several explaining variables are used, which are sorted by their 

impact. 

 

To relate what the runoff in mm equates to in production, a parameter of runoff 

factor (r) is set, which mainly bridges the hydrological component of Achelous 

with the statistical component. The runoff factor ranges from 0-1, where 0 

means none of the runoff contributes to production, and one means that all of 

the runoff contributes to production. A possible misconception is that the 

runoff factor parameter explains how much of the physical runoff enters the 

turbine, which would be true in a physically-based model using Equation 1, but 

that is not the case here since the Achelous is a statistical model. The r 

parameter indicates how dependent the statistical component is on the runoff 

as a predictor; Equation 19 computes the total MAE for the sub-intervals, on 

which the degree of similarity to the interval preceding the forecast period is 

evaluated. 
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𝐌𝐀𝐄 = (𝟏 − 𝐫)𝐌𝐀𝐄𝐩 + 𝐫(
𝐌𝐏

𝐌𝐑
)𝐌𝐀𝐄𝐫                                                          (19) 

Equation 19 Mean absolute error for the sub-intervals where 

r = runoff factor 

MAE = mean absolute error 

MAEp = mean absolute error in production 

MP = mean production 

MR = mean runoff 

MAEr = mean absolute error in runoff 

The total MAE of a sub-interval is calculated by; dividing the mean production 

of the training period to its mean runoff (to provide a rough estimate of how 

runoff in mm equates to production)—then multiplied by runoff and the MAE 

of the runoff, to give weight to the influence of the runoff. Second, the 

influence that MAE of production is weighted by multiplying it with 1-r; this 

explains the influence of the other predictors.  

The sub-intervals are disabled for forecast periods with monotonically non-

increasing inflow if they are followed by periods where the largest absolute 

difference between two values corresponds to an increase in production. This 

condition prevents inaccurate runoff values to have an undesirable effect on 

the forecast accuracy. 
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3.4.4 Aiolos Forecast Studio built-in evaluation tools. 
AFS forecast studios evaluate its production forecasting using mean error 

(ME), mean absolute error (MAE), and root mean square error (RMSE). These 

tools actively evaluate the power forecast made by AFS but do not evaluate the 

accuracy of the hydrological component in the Achelous. Thus, to assess and 

inspect the model accuracy, the runoff model will be evaluated separately using 

Microsoft Excel. 

 

 

(20) 

 

 

(21) 

 

 

                                              

(22)              

 

Equation 20, 21, 22 for Aiolos built-in evaluation tools where 

yi = measured data 

fi= computed data 

n= No. of values 

e= error 

RMSE like the NSEC is a good tool to evaluate a model's accuracy. However, 

it has an advantage over the NSEC with its suitability to evaluate non-linear 

models (Zhong & Dutta, 2015), but RMSE has a variable range of values 

depending on the models unit. Moreover, if the model output values were large, 

the RMSE value would be large as well. 
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3.5 ArcMap (GIS) 
The geographical information system (GIS) is a powerful tool for facilitating 

the management and analysis of geographical or spatial data. 

ArcMap is a GIS computer software developed by Esri, designed to serve many 

purposes and has a comprehensive and various range of applications. Of which 

most relative to this study is; its ability to create maps, perform analysis and 

manage geographical data. This software has an informative and easy to use 

user interface where it represents the data in layers and tables, with the option 

of exporting those in the format of other commonly used computer programs.  

ArcMap contains numerous geoprocessing tools that drive its applications; 

these tools deal with data in the form of tables, vector and raster layers. The 

vector layers compose points, lines and polygons, where these layers are 

accompanied by an attribute table that sorts these components into rows and 

permits the addition of properties to each component in columns. These 

properties can be area, volume, name, type and more. ArcMap tools also 

provide the means for performing calculations, transformations and analysis to 

the attribute table for acquiring more data. Raster layers represent the data in a 

grid of cells, and each cell can represent one unique type of data, in this study 

raster layers are used to represent the elevation and land use of a watershed. 

ArcMap can be used to compensate for the lack of AFS in visually presenting 

some data helpful to the understanding of the physical properties of a 

watershed. Moreover, it can be used in the computation of the physically-based 

parameters of the AFS models; necessary for the model calibration. (esri, 2020) 
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4 Delimitations, limitations and Assumptions 
Primarily certain delimitations were set to this study to serve as boundaries for 

this report's scope of work. Firstly this study revolves around improving the 

RORs production forecasting, thus is not applicable for large dams or 

hydropower stations of considerable water storage capacity in their upstream. 

Secondly, Småkraft's run of river hydropower stations in Norway was adopted 

as a case study for the availability of needed data and resources. Fortum 

manages the production forecasts for Småkraft and AFS was chosen as a tool 

for the forecasting production of those RORs since it is implemented in other 

processes at Fortum. Finally, Achelous hydrological model was constructed to 

simulate the actual runoff in Norway and regions of similar topographical 

properties. 

During this study, certain limits were encountered, that prevented the forecast 

accuracy from being increased further. Those limits are; 

a) error percentage in the weather forecasts since the Achelous relies on 

weather forecast data for forecasting power production and runoff, and error in 

the input data limits the accuracy of the model. 

b) the use of empirical relationship by the Achelous to describe the direct 

runoff, this relationship enables the user to adjust the runoff curve to fit the 

historical runoff better. However, it fails to simulate peak flows, runoff during 

wet periods and snowmelt. 

c) while inspecting the historical data given by AFS, some missing or faulty 

historical production data were encountered. Historical production data has a 

considerable influence on Achelous ability to forecast power production; 

therefore, limitation impacts the accuracy of the forecasts. 

d) unavailability of actual historical runoff values in AFS, where the historical 

runoff is substituted by the runoff calculated with the latest weather forecasts. 

Some assumptions were made in the making of this report, first of which is that 

the historical runoff values created by AFS are reliable and thus were used in 

evaluating the accuracy of the runoff forecasts. Secondly, the application of the 

lumped model assumption, in order to acquire certain parameters. The final 

assumption was that this model provides hourly forecasts making the forecast 

curve more detailed thus accuracy of 50% is acceptable, whereas, in daily mean 

models, higher accuracies are preferred. 
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5 Preliminary Model Accuracy Assessment 
Vitec has already set the hydropower model parameters values for each power 

station; therefore, it is necessary to evaluate the current model and use the 

evaluation results as a benchmark for future comparisons. The Achelous 

forecasts power production using two components statistical and hydrological, 

working together to increase the accuracy of the forecasts. In a meeting with 

Vitec developers, they stated that it is possible to disable the hydrological 

model, but not the statistical model. Also, the model automatically disregards 

the hydrological model forecasts if they increased the error percentage. 

5.1 Input data 
AFS is a server-based program that gets a live feed of weather data from local 

providers, which is used for production forecasting; the weather data includes 

temperature, precipitation, cloud cover and relative humidity. It also stores 

recorded actual data and forecast results; thus, these data will be used for 

assessing the model accuracy. Fortum has been running AFS for its RORs since 

late December 2019, which is a short period for running evaluations. Luckily, 

AFS contains the 'follow up' tab which enables the back-casting feature. 

Through this feature, AFS can access historical weather and hydrological data 

of a period even before its installation. With those historical data, the follow-

up function can back-cast power production and runoff, then plotting it along 

with measured values.  

5.2 Procedure and Results 
The assessment procedure starts with carrying out back-casts between the 

period of 1/1/2019-1/1/2020 (a whole year); naturally better observations can 

be made by looking back-casting for a longer period than a year, but currently, 

such data is not available. The back-casting was done for the hydropower 

stations of Holmen and Jordalen 2 using AFS follow-up tab. The follow-up 

function uses the model's current parameter values to simulate the production 

forecasts in the past with the given historical weather data. The first step was 

to choose the type of extract, which defines the values to be chosen from the 

forecast for comparison with the actual values. The recreated extract is chosen 

so that the model recreates forecasts as it would have been in the past. After 
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the forecasts were calculated, they were exported to excel sheet to be used for 

evaluation. The exported data included measured and forecasted values for 

load and runoff, where the hydrological component calculates the runoff 

values. The evaluation results of power production forecasts are seen in Table 

2. 

  
Table 2 Evaluation results of power production forecasts 

Power Station ME MAE NRMSE R2 

Holmen 0.0585 0.3948 0.6506 0.6459 

Holmen Statistical 

component only 
0.05 0.3984 0.651 0.6455 

Jordalen 2 0.0857 0.5133 0.8765 0.5909 

Jordalen 2 

Statistical part only 
0.0924 0.5181 0.8899 0.5783 

 

First back-casts done returned R2 values of 0.64 and 0.59 for Holmen and 

Jordalen 2, respectively. This value is above 0.50, which makes it acceptable 

but not considered highly accurate, leading to the next step of investigating the 

cause of this low value. As mentioned earlier, Achelous relies on two 

components for forecasting power production; therefore, it was crucial to 

investigate the performance of these two components. The investigation began 

by disabling the hydrological model; this was done by setting the max model 

size to (-1). It can be seen from Table 2 that the hydrological model barely 

increased the accuracy of the model, leading to the next step of evaluating the 

hydrological model accuracy. It is not possible to disable the statistical 

component of Achelous as was done for the hydrological component, thus by 

inspecting  
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Equation 6, Equation 7 and Aiolos user manual, it can be understood that the 

runoff is forecasted solely from the hydrological component. R2 was calculated 

for the runoff, as shown in Table 3. The accuracy of the runoff forecast is very 

poor; for Holmen, it was a negative value indicating that the model 

performance is unacceptable. This poor accuracy can be caused by incorrect 

calibration or wrong understanding of the watershed properties. 

Table 3 Evaluation results of the runoff forecasts 

Power station R2 

Holmen -0.0927 

Jordalen 2 0.0365 

 

In conclusion, the current accuracy is given by the statistical component only, 

because the hydrological component is disregarded, due to giving out poor 

results. The next step would be to optimise the production forecast accuracy 

by improving the hydrological component. Correspondingly the optimisation 

shall comprise adjusting the model parameters to improve the simulation of the 

water behaviour in the watershed; given that the hydrological component is 

based on sound theory and can estimate hourly runoff values. Recalibration of 

the model will involve extracting values for adjusting the watershed properties 

to simulate the runoff phenomena better. ArcMap (GIS) computer program will 

be used to extract those values by importing reliable layers of those watersheds, 

on which suitable tools (from ArcMap) will be used for computation and 

analysis. 
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6 Recalibration 
Before this study, Fortum calibrated the models for each of its RORs and are 

currently using them for their power production forecasts; this study aims to 

increase the accuracy of these models even further. Recalibration of these 

models is necessary and shall follow a systematic approach applicable to all 

the models, and that requires a wholesome understanding of the Achelous 

model.  

The recalibration underwent several phases that involved literature reading, 

model trials and meetings with AFS developers. This study had several 

hypotheses regarding improving the accuracy, some proved to work, others 

failed or were inapplicable, but the outcome was a guideline on improving the 

forecast accuracy by adjusting the value of the parameter. 

The first step of the recalibration involved adjusting the basin properties of the 

models to simulate the runoff phenomena better, and this was done with the 

help of ArcMap (GIS). Some parameters, such as forest canopy, max storage, 

altitude, and delay, were planned to be calculated with the help of GIS. The 

reason for adjusting the hydrological component first is to evaluate its effect 

on the total model accuracy. 

The second step was to adjust the statistical component parameters by 

understanding the relation to the hydrological component and the effect of 

different predictors accuracy. The excel sheet used for the accuracy assessment 

has proved to be a powerful tool for recalibrating the statistical component 

since Aiolos built-in accuracy assessment tools are limited to the power 

production only. 

The final step was to validate the procedure by applying the approach to other 

hydropower stations and use the excel sheet to assess and compare the results. 

As mentioned earlier, the Achelous model only assesses the accuracy of the 

power production forecasts, which is not enough to make the necessary 

observations to be adopted by this study. 

A large part of this study's scope included the formulation of an excel sheet 

specialised in analysing the output data from the model; statistical analysis 

accompanied every step of the recalibration procedure as well as investigating 

the Achelous model performance. Measured and forecasted values of 

production, runoff, precipitation and snow cover are extracted from AFS and 
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imported into the excel sheet, where these data are compared and analysed 

using NSEC, NRMSE and Volume difference as shown in Figure 6. 

 

 
Figure 6 a sample of the excel sheet 

The excel sheet was used to inspect the influence of the changes made on the 

model parameters, during every step of the recalibration to ensure higher 

forecast accuracy. Also, by inspecting the influence of these parameters on 

the forecasts provided a better understanding of the model parameters and 

how to adjust the forecasted curve to fit the actual curve better. The excel 

sheet includes two spreadsheets for each hydropower station; one which 

evaluates the standard model and the second for the recalibrated model for 

comparison.  
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6.1 Improving the runoff forecast accuracy 
Determining the basin properties using GIS included using both vector and 

raster layers taken from reliable sources, in addition to creating points and other 

layers. 

The procedure started by setting up the environment for the map, the layers are 

saved in geodatabase file and choosing the projected coordinate system of 

ETRS 1989 ETRS-TM33 since it is the adopted geographical reference system 

in Norway. 

The first layer added was the world map stored as a Basemap in the ArcMap 

program, then a vector layer was made representing the power stations located 

on the map each power station represented as points as seen in Figure 7. The 

power stations layer was created from data provided by Fortum, which 

included names, coordinates, elevation, power production capacity and other 

information of each power station. From Figure 7 it can be seen that the RORs 

are widely distributed over Norway, next step was identifying the watersheds 

in Norway, in which vector layers for watersheds and streams were taken from 

(NVE, 2019). After carefully inspecting the streams, watersheds, and power 

stations layers two RORs Holmen and Jordalen 2 were chosen for calibration 

since they have a respectively high amount of power production and lie in the 

same watershed. Importing layers for all of Norway would make the file size 

too large and in turn significantly slow down the program. Therefore, most 

layers were cropped by selecting the needed data and exporting it as a new 

layer or by downloading layers for the region of the concerned watershed and 

not all of Norway if available.  
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Figure 7 Smakraft RORS in Norway represented as points 
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6.1.1 Altitude 
The altitude parameter affects the wind and temperature values used for 

snowmelt calculations; the Achelous uses the average altitude of the watershed, 

to acquire such value as a raster layer of surface elevation with a resolution of 

50m was taken from (Geonorge, 2019). The raster layer cells are symbolised 

as stretched, which interpolates the raster cells into a smooth view, as shown 

in Figure 8.  

 
Figure 8 Surface elevation for Jordalselvi watershed 

The surface elevation layer 

was taken for a region of 

Norway and then cropped 

by the watershed layer; the 

cropped elevation layer 

represents the elevation of 

the watershed only. In the 

symbology tab from layer 

properties for the elevation 

layer, some statistics can be 

found with the mean 

elevation value included. A 

value for the altitude basin 

property is assigned from 

the mean elevation since a 

lumped model is used.  
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6.1.2 Forest canopy 
As mentioned earlier forest canopy has is an important parameter in snowmelt 

since it affects snowmelt by reducing the incoming solar and terrestrial 

radiation. The forest canopy fraction was calculated by importing land cover 

maps to GIS from (FAO, 2013) and (esa, 2009) as raster data. The data includes 

tables with the description and forest percentage of every land cover, as well 

as a legend file for GIS. A land cover for Norway was not available, so the 

global land cover was used instead with a resolution of 500m. Thus to get the 

land cover for a specific watershed, the watershed is exported as a unique layer 

from the Norway watersheds layer and then used for cropping the global land 

cover layer. Further calculations are then performed to acquire a unique value 

of forest canopy for the watershed, the forest canopy is determined by creating 

a spreadsheet table that identifies the land cover with forest canopy then joined 

to the watershed land cover map. The watershed land cover attribute table is 

then modified by adding a new field used for calculating the area fraction of 

forest canopy as seen in Figure 9. 
 

 

Figure 9 Jordalselvi Land cover layer attribute table 
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The land cover layer divides the earth surface into 20 different classes, as 

shown in Table 4, where the value column specifies the class and the fractions 

column symbolises the weight given to each class. 
Table 4 Land cover classes and forest canopy fraction 

Value Description Fraction 

1 Broadleaf Evergreen Forest 1 

2 Broadleaf Deciduous Forest 1 

3 Needleleaf Evergreen Forest 1 

4 Needleleaf Deciduous Forest 1 

5 Mixed Forest 1 

6 Tree Open 1 

7 Shrub 0.5 

8 Herbaceous 0.2 

9 Herbaceous with Sparse Tree/Shrub 0.3 

10 Sparse vegetation 0.15 

11 Cropland 0 

12 Paddy field 0 

13 Cropland / Other Vegetation Mosaic 0 

14 Mangrove 0 

15 Wetland 0 

16 Bare area,consolidated (gravel,rock) 0 

17 Bare area,unconsolidated (sand) 0 

18 Urban 0 

19 Snow / Ice 0 

20 Water bodies 0 
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Classes are weighted between 0-1, where 0 means no forest canopy, 1 is 

considered forest and intermediate values for land cover with trees but not 

considered as a forest. The values of 0 and 1 were decided from (FAO, 2013) 

and (esa, 2009) and the intermediate values were approximated. For Holmen, 

the forest canopy was calculated to be 0.3, which increased the runoff and 

production accuracy after re-running the model. 

From Figure 9, the column (sheet1$.Fraction) is added from joining the table 

to the layer where it assigns forest canopy fraction for each class. The count 

column is multiplied by the sheet1$.Fraction column and divided by the total 

count to calculate the Fraction column, the summation of the Fraction column 

is the forest canopy value to be inserted in the model. 

If the exact value could not be calculated, due to missing data, then a national 

average or a region average forest canopy can be used instead.  

6.1.3 Maximum storage and Discharge rate 
Achelous defines the maximum storage is defined as; the average maximum 

water storage capacity in (mm) for a catchment area, which is the same 

principle as the maximum water holding capacity (MWHC) of soil taken in 

average for a given catchment area. The Achelous define the discharge rate 

parameter as the fraction of the contained water discharged from the storage 

per hour, which insinuates the case of throughflow which defines the water 

flowing horizontally inside the soil and exiting the soil into a river adding to 

the runoff. After carefully inspecting the theories composing the Achelous 

models, there was still no clear presentation to the direct runoff (as explained 

in the Horton infiltration model) Equation 3. A first approach to finding the 

maximum storage value was to divide the watershed into a different type of 

soils and add an MWHC value to each region and calculating the average, the 

same procedure which was used for calculating the forest canopy. However, 

after several corresponding with AFS developers, they stated that they used an 

empirical relationship to explain the direct runoff, where they consider a 

watershed as a container with an orifice. The container water storage capacity 

is explained by the maximum storage parameter, while the discharge rate 

parameter explains the direct runoff. Moreover, if the discharge parameter 

were set to 0.1, the direct runoff would be 10% of the total water stored in the 



Amer Al-Qes  06/2020 

42 

 

soil for an hourly interval. The AFS developers produced this theory, and after 

several inspections to the watershed hydrographs, this theory falls short in 

forecasting peak flows, during wet periods. 

The use of an empirical relationship to represent the direct runoff deviated the 

maximum storage parameter from the MWHC property of the soil. Therefore 

the calibration of these two parameters was done with trial and error starting 

with discharge rate value between 0.05-0.4 (most cases around 0.1), and select 

the value which gives the highest runoff forecast accuracy. 

6.2 Improving the power production forecast accuracy 
The production forecasts depend on both the hydrological component and the 

statistical component. The statistical component is controlled by several 

parameters most influential of which are Quarantine (h), runoff factor, 

compare, reference period, no. of intervals, max and min value. 

The Quarantine parameter specifies the number of hours before the forecast 

start date that should be ignored, when analysing different model settings, and 

comparing historical data. a Quarantine is set to 12 hours to simulate the power 

bidding procedure better. However, while running the model for getting power 

production forecasts, quarantine is set to 0, and real-time correction is activated 

to take into account the latest received production data. 

The runoff factor parameter specifies how dependant the model is on runoff 

compared to production when searching for similar intervals. Through multiple 

observations and comparisons its is observed that when the runoff accuracy is 

relatively low, a value between 0.4-0.5 will increase the accuracy, while for a 

good runoff accuracy value of 0.5-0.7 should be used. 

The compare parameter sets the period of the intervals in hours, that will be 

compared to the interval directly preceding the forecast. As mentioned in the 

previous parameter runoff has significant influence as a predictor, thus for a 

case of a good runoff accuracy, a period of 6 hours is chosen to while for a low 

accuracy of runoff 12 hours or more is used. The reason behind an increased 

period is that the model takes the mean values from these intervals; thus, a 

more extended period includes more values, which compensate for the low 

accuracy. While for a good runoff accuracy, a shorter period is used only to 

include values more recent, and more relevant. 
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The reference period parameter sets the historical period in days to look for 

similar intervals, after several trials, a value of 90 days gave the best increase 

inaccuracy. Shorter days count might exclude a day of more similar conditions 

while longer days count might include a day with faulty data. 

The no. of intervals parameter sets the no of the most similar intervals to be 

chosen by the Achelous, setting the value to 30-40 proved enough. 

Max and min value sets the limits to the amount of power produced by the 

power station, småkraft provided a table with the power production ranges for 

its RORs. However, in some cases, the max value could differ in the historical 

production, setting the max value parameter to that highest value improved the 

accuracy of the model. For the min value, through several trials, the findings 

recommend to set the min value as 0, if it was set to be higher, the model 

disables the forecast for the hours which are lower than the min value, in turn 

degrading the forecast accuracy. 

Finally, The Achelous automatically disables the hydrological component if it 

provided poor forecast accuracy, thus its helpful set the max storage parameter 

to 5. 
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7 Results and Discussion 
The first step was choosing two hydropower stations (Holmen and Jordalen 2) 

and investigating their model performance, In order to have a basic 

understanding of the issues causing lower accuracy. Based on those findings, 

a recalibration procedure was developed. 

The procedure as demonstrated in section 6 gave positive results, as a way to 

validate the procedure and prove its efficiency it was applied to 5 other 

hydropower stations Jordal, Usma, Rasdalen, Furegadane and 

Tverrgjuvlo. The validation introduced new findings that furtherly tuned the 

recalibration procedure. 

After the recalibration, all the models were run and their output data extracted 

and imported in the accuracy assessment excel file sheet, where a model's 

accuracy is assessed based on four criteria's; production forecasting, runoff 

forecasting, precipitation and snow cover. Table 5 shows the power production 

forecast accuracy between the old models and the new recalibrated models.  
Table 5 power production forecasts comparison results 

Power 

Station 

R2 Production NRMSE Production 

Achelous 

standard 

Achelous 

improved 

Achelous 

standard 

Achelous 

improved 

Holmen 0.6459 0.7330 0.6507 0.5650 

Jordalen2 0.5909 0.6345 0.8766 0.8286 

Jordal 0.6686 0.7250 0.4459 0.4062 

Usma 0.6864 0.7668 0.6846 0.5903 

Rasdalen 0.3260 0.4503 1.1487 1.0374 

Furegardane 0.2788 0.3130 1.2776 1.2469 

Tverrgjuvlo 0.1265 0.3749 1.4751 1.2478 

 



Amer Al-Qes  06/2020 

45 

 

What can be understood from the results is that all the hydropower models 

underwent a considerable increase in their accuracy. Higher NSEC value 

indicates a better curve fit, while a lower NRMSE value indicates a smaller 

deviation between the historical and forecasted values. The last three 

hydropower stations had a relatively large improvement but still not considered 

accurate. 

The inaccuracy of these models was further investigated by comparing the 

accuracy of the runoff forecasts, the weather forecasts, and snow storage. 

Table 6 includes the accuracy of the runoff forecasts between the standard 

models and the recalibrated models. The Achelous model computes the 

historical forecasts based on the most recent weather forecasts, for the 

Achelous improved model column, the recalibrated model computed the 

historical runoff. Therefore Table 8 shows the inaccuracy in the runoff 

forecasts rather than a comparison between the standard model and recalibrated 

model performance. 

  
Table 6 Runoff forecasts accuracy results 

Power 

Station 

R^2 Runoff NRMSE Runoff 

Achelous 

standard 

Achelous 

improved 

Achelous 

standard 

Achelous 

improved 

Holmen -0.0927 -0.0337 1.2118 1.4164 

Jordalen2 0.0181 -0.0389 1.3129 1.4182 

Jordal 0.3309 0.3639 1.0794 1.2463 

Usma -0.3241 -0.3265 1.2502 1.4825 

Rasdalen 0.6000 0.6230 0.9212 1.0511 

Furegardane 0.5710 0.4774 1.2973 1.1678 

Tverrgjuvlo 0.5113 0.5414 1.0819 1.2290 
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When inspecting the accuracy evaluation results of the last three hydropower 

stations, the NSEC appears to show high accuracy, and this is not necessarily 

an indication to an accurate model. Moreover, by inspecting the NRMSE 

values for the same power plants, the values show poor forecast quality. A 

logical interpretation of the results is that the deviation between the individual 

values and the mean value (yi- ӯi) is very large compared to the deviation 

between the historical and forecasted values (as demonstrated in Equation 5). 

The NRMSE values show a large deviation between the historical and 

forecasted values, indicating that the runoff forecasts are unreliable, especially 

that the forecasted values are compared with the computed values using more 

recent weather forecasts, rather than actual measured runoff values. This 

interpretation was supported by counting the 0 values using the excel sheet, 

where they composed about 25% of the runoff values causing this large 

deviation.  

One approach to investigating the contribution the hydrological component 

makes to the model's accuracy is to re-run the calibrated models with the 

hydrological component disconnected. 

  
Table 7 Comparison results for the hydrological component contribution to the model accuracy 

Power Plant 

R^2 Production NRMSE Production 

Runoff 

connected 

Runoff 

disconnected 

Runoff 

connected 

Runoff 

disconnected 

Holmen 0.7330 0.7169 0.5650 0.5818 

Jordalen2 0.6345 0.6359 0.8286 0.8271 

Jordal 0.7250 0.7133 0.4062 0.4148 

Usma 0.7668 0.7674 0.5903 0.5896 

Rasdalen 0.4503 0.3975 1.0374 1.0861 

Furegardane 0.3130 0.2544 1.2469 1.2990 

Tverrgjuvlo 0.3749 0.3730 1.2478 1.2498 
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From Table 7, it is clear that the hydrological component had little-almost no 

effect on the total accuracy for the hydropower models with high accuracy. 

Moreover, for Rasdalen and Furegardane hydropower stations with low 

forecast accuracy, the hydrological component seems to have an immense 

contribution to the forecast accuracy.  

 

To further investigate the performance of the hydrological components the 

historical and forecasted snow cover was compared, this began when a 

significant deviation in the snow cover values was found, the results of this 

comparison are mentioned in Table 8. 

 
Table 8 comparison results for the precipitation data and snow cover forecast accuracy 

Power Plant 
Precipitation Snow cover 

R^2 NRMSE R^2 NRMSE 

Holmen 0.2775 1.3118 0.6003 1.7895 

Jordalen2 0.2775 1.3145 0.6049 1.7891 

Jordal 0.3257 1.2980 0.6517 1.6168 

Usma 0.1609 1.2533 0.5400 1.5685 

Rasdalen 0.5463 1.3148 0.5150 2.1927 

Furegardane 0.5177 1.2580 0.5048 2.0325 

Tverrgjuvlo 0.5159 1.2786 0.4520 2.1550 
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In most cases, the historical snow cover is around double the forecasted value, 

and the same models mainly produced overestimated runoff values. The 

inaccurate forecasting of snow cover value indicates that the hydrological 

component fails to simulate the snowfall phenomena, which is explained by 

the energy budget equation (Equation 8). The energy budget equation with its 

components dramatically relies on the temperature, which AFS acquires from 

the weather forecast. Two explanations can be provided for this issue, first is 

that the temperature forecast is poor, but wrong temperature forecasts cannot 

extend over the whole winter time (5 months). A second explanation is that the 

weather stations are located close to the power station which usually lies at an 

altitude 300-1000 meters (due to Norway's rough terrain) below the average 

watershed altitude, the temperature can vary within the same watershed. This 

issue can be surpassed by introducing a new parameter of temperature 

correction, through which the snow cover curve can be adjusted. Another 

possible solution is adding an empirical relationship between the temperature 

and altitude, bridging the weather forecast with the altitude parameter. 

 

Additionally, the volumetric difference between historical and forecasted 

values, for runoff and snow cover was analysed, as shown in Table 9. 

The volumetric difference of runoff represents the percentage difference 

between the total historical and forecasted runoff volumes of 2019. Moreover, 

the snow cover is taken as the accumulated value on the last day of the year.   

Looking at the results here is a significant difference between the forecasted 

and historical amounts of runoff and snow cover, where the model tends to 

overestimate runoff and underestimate the snow cover. The underestimation of 

the snow cover means that the precipitation becomes runoff rather than adding 

up to the snow cover. The runoff forecast accuracy will significantly improve 

if the model was adjusted to compute the snow storage in a watershed better. 
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Table 9 difference in volume in runoff and snow cover (in mm) 

Power 

Station 

Historical 

runoff 

(mm)  

Forecasted 

runoff 

(mm) 

 diff 

(%) 

Historical 

snow-cover 

(mm) 

Forecasted 

snow-cover 

(mm) 

 diff 

(%) 

Holmen 1242.9 1771.5 42.5 228 91.4 -59 

Jordalen2 1242 1770.6 42.5 193 65.3 -60 

Jordal 1423.1 1657.8 16.4 137 61 -55.4 

Usma 1180.4 1639.5 38.9 243 88.1 -63.7 

Rasdalen 1682.4 1936.3 15 125 43.4 -65.2 

Furegar-

dane 
1477.7 1822.3 23.3 193 65.2 -66.2 

Tverrg-

juvlo 
1518.2 1914.4 26 211 61.9 -70.6 

 

Table 10 explains the large difference between historical and forecasted runoff 

values, where the volumetric difference was calculated from the total historical 

and forecasted precipitation for each power station. Similar to the forecasted 

runoff; the Achelous model tends to overestimate the precipitation forecasts as 

well. Therefore the majority of the excess runoff values can be explained by 

the error in the precipitation forecasts; unfortunately, in the present time AFS 

does not include model parameter enabling the user to rectify those errors. 

However, if the issues in the runoff forecasts were to be corrected, the model 

would have a significant increase in the production forecast accuracy. Looking 

at Table 11, if the quarantine parameter were set to 0, the historical comparison 

would include more recent (more accurate) predictors, this would significantly 

increase the accuracy of the production forecast. This comparison provides a 

rough estimation of how the model would perform if it had more accurate 
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weather forecasts and was able to forecast runoff and snow cover more 

accurately.    
Table 10 difference precipitation volume between historical and forecasted values (in mm) 

Power Station 

Historical 

precipitation 

(mm) 

Forecasted 

precipitation 

(mm) 

 Diff (%) 

Holmen 1770.9 2197.3 24 

Jordalen2 1769.1 2197.3 24.2 

Jordal 1851.8 2025.3 9.3 

Usma 1710 2037.5 19.1 

Rasdalen 2118.4 2324.2 9.7 

Furegardane 1973.7 2228.4 12.9 

Tverrgjuvlo 2007.9 2278.2 13.4 

 
Table 11 power production forecast accuracy with no quarantine 

Power 

Station 

R2 Production NRMSE Production 

12h 

quarantine  

Recent 

forecasts 

12h 

quarantine  

Recent 

forecasts 

Holmen 0.7330 0.821848 0.5650 0.461529 

Jordalen2 0.6345 0.739251 0.8286 0.699869 

Jordal 0.7250 0.797259 0.4062 0.348774 

Usma 0.7668 0.857409 0.5903 0.461645 

Rasdalen 0.4503 0.602428 1.0374 0.882227 

Furegardane 0.3130 0.355688 1.2469 1.20754 

Tverrgjuvlo 0.3749 0.5367 1.2478 1.074303 
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Prior to AFS, Fortum forecasted the power production numerically, by 

manually inserting weather forecasts into a simpler model, where the output 

values are adjusted based on assumptions and relevant experience. This older 

method is time-consuming and required more personnel. Historical power 

production forecasts were acquired from Fortum for the period 1/1/2019-

30/9/2019 and then compared with Aiolos forecasts for the same hydropower 

stations and the same period as mentioned in Table 12. 

 
Table 12 power production forecasts comparison between the older method and AFS 

Power 

Station 

R^2 for Production NRMSE Production 

Old method 
Aiolos 

improved 
Old method 

Aiolos 

improved 

Holmen 0.6077 0.7185 0.6023 0.5140 

Jordalen2 0.9421 0.6209 0.9380 0.7629 

Jordal 0.9731 0.7073 0.4912 0.3757 

Usma 0.9942 0.7538 0.5569 0.5116 

Rasdalen 0.9539 0.3962 1.2614 1.0061 

Furegardane 0.9585 0.2546 1.3415 1.2004 

Tverrgjuvlo 0.9745 0.3505 1.5880 1.2275 

 

After inspecting the comparison results, the old method gave a high value for 

the NSEC. However, AFS provided a relatively significant improvement in the 

forecast quality when inspecting the NRMSE values. To be more sure of this 

interpretation, inspection to the power production values was carried out. The 

inspection found numerous periods where the production values were 0 for a 

time interval ranging between a day to approximately a week. Missing data, 

maintenance work, a frozen stream or other reasons can cause the 

discontinuation in power production. Overall Aiolos showed lower deviation 

between the historical and forecasted power production, proving to be more 

reliable than the older method. 
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8 Conclusions and Recommendations 
By comparing the forecast accuracy of the recalibrated and the standard models 

(old models), the comparison showed positive results (as shown in Table 5). 

Next step was to investigate the factors decreasing the model's performance, 

which included carrying out accuracy assessment analysis on the runoff, snow 

cover and precipitation forecast accuracy. Assessing the runoff forecasts 

showed poor forecast accuracy and as runoff is used as a main predictor for the 

linear regression; this poor forecast accuracy greatly influence the production 

forecasts. By comparing the total volume of annual historical runoff and 

forecasted runoff, a significant deviation was found as the model always 

overestimates the runoff forecasts (see Table 9). 

 
Figure 10 Precipitation forecasts influence on runoff 

forecasts 

Figure 10 demonstrates the 

influence of the precipitation 

forecasts on the runoff 

forecasts; each circle represents 

one of the 7 RORs taken as a 

case study. Where the circle 

circumference represents the 

deviation in annual runoff 

forecasts and the dark portion of 

the circle is an estimate of the 

error fraction, which is caused 

by the overestimation of 

precipitation forecasts. 

Additionally, the model tends to 

underestimate snow cover 

forecasts (see Table 9); this 

means that some of the 

precipitation is being computed 

as direct runoff instead of 

contributing to snow storage.  

 

Overestimation of Runoff

Precipitation Forecast Other
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Currently, the model lacks the necessary tools for correcting the precipitation 

and snow cover forecasts. Nevertheless, to provide an estimate of how the 

production forecasts accuracy would increase the models were run for a 

quarantine value of 0 allowing the model to use more recent forecasts (more 

accurate), the production forecast accuracy significantly improved as shown in 

Table 11. 

Collectively AFS currently produces more accurate production forecasts than 

the previous method used by Småkraft; this was concluded by comparing the 

forecast accuracy of both methods as displayed in Table 12. 

 

Several recommendations can be drawn from this study which would serve as 

an upgrade to the model and topics for future studies related to the scope of 

this thesis. The following recommendation was presented and discussed with 

the AFS developers: 

a) Training the model to adopt actual historical runoff data instead of 

calculating it using the latest weather forecasts, which will feed the regression 

model with more sound data for more accurate production forecasts and better 

calibration for the runoff model. 

b) Using more than one decimal for runoff calculations; the model generates 

forecasts in an hourly interval leading to small values of runoff in (mm), using 

more than one decimal would decrease the volume deviation. 

c) Furtherly develop the hydrological component to be able to forecast peak 

flows and production from runoff using a conceptual model rather than an 

empirical equation. 

d) Adjusting the precipitation forecasting by adding a new model parameter 

that is based on bias correction techniques or an empirical relationship, to 

simulate snowfall better. 
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