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Abstract

Simulations of large detectors such as the ATLAS detector at the LHC (Large Hadron
Collider) are compute-intensive projects, and are according to current internal estimates ex-
pected to be consuming 40% of the total ATLAS CPU resources in 2020, creating a need
for software optimization strategies. We investigate build configurations of the Geant4 sim-
ulation software to find if a) a performance improvement can be made by switching build
configuration and b) if such build configuration switches produce the same physics results.
We performed measurements of CPU time per event and energy deposited per event using
both the ATLAS detector geometry and the CMS detector geometry on two types of hard-
ware. We find potential performance improvements using static linking of the Geant4 libraries
of up to ∼19% using unsafe build options and up to ∼10% using safe build options. We ob-
serve three sources of differences in the average energy deposition per event of order ∼0.1%.
These sources include the expected unsafe optimization methods but also differences between
hardware platforms and from changing the compiler that is used to build the simulation.
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Glossary
Athena A software framework for most of ATLAS computing.

ATLAS A Toroidal LHC AparatuS: One of the four large experiments at the LHC. A general
purpose particle physics detector. See Section 2.1.4

Aurora Computing cluster at LUNARC.

Bremsstrahlung Breaking radiation. Emission of photons when a charged particle is accelerated
by the electric field of nuclei in a medium.

CERN Organisation européenne pour la recherche nucléaire/European Organization for Nuclear
Research: European subatomic physics laboratory.

Clang A free and open source C and C++ compiler frontend provided by the LLVM project.Specifically
for this project, this refers to the C++ compiler, sometimes referred to as clang++.

CLHEP A Class Library for High Energy Physics: A collection of common utility classes for
high energy physics programming in C++.

CMS Compact Muon Solenoid: One of the four large experiments at the LHC. A general purpose
particle physics detector.

Configuration A combination of five parameters used to describe one method of compiling and
linking the benchmark and validation code used in this project. The parameters and how
they are labeled in this thesis can be found in 3.4.

EM Electromagnetic

EMEC Electromagnetic Endcap Calorimeter: An electromagnetic calorimeter in ATLAS.

FCal Forward Calorimeter: One of the outer calorimeters of ATLAS.

GCC Gnu Compiler Collection: A collection of free and open source compilers from the GNU
project. Specifically for this project, this refers to the C++ compiler, sometimes referred to
as G++.

GDML Geometry Description Markup Language: An XML-based markup language for describing
detector geometries for Geant4.

Geant4 GEometry and Tracking: A simulation software toolkit for subatomic physics.

GOT Global Offsets Table

HEC Hadronic Encap Calorimeter: A part of the outer calorimeters of ATLAS.

HepExpMT A standalone benchmarking application for high energy physics simulations using
Geant4.

HS06 HepSpec06: A standard unit for computing performance used in high energy physics.

ICC Intel C++ Compiler: A C and C++ compiler frontend provided by Intel. Specifically, in
this project, this refers to the C++ compiler, sometimes referred to as icpc.

IEEE Institute of Electrical and Electronics Engineers



Implementation-defined behavior Parts of the C++ programming language for which the
behavior of a program depends on the concrete implementation of the language. Guaran-
teed to be consistent throughout the program and must be documented and defined by the
implementation. One example is the size of an integer.

ISO International Organization for Standardization

LHC Large Hadron Collider: A particle accelerator located at CERN.

LTO Link-Time Optimization: An optimization strategy where all optimization is delayed until
link-time providing additional optimization opportunities at the cost of build time. Some-
times referred to as interprocedural optimization or whole program optimization.

LUNARC Lund university’s center for scientific and technical computing.

Monte Carlo A class of methods for solving numerical problems by utilizing random number
generation. See Section 2.2.1.

ODR One definition rule: A rule in the C++ programming language stating that a valid
program contains no more than one definition of e.g., a function .

PIC Position Independent Code

PLT Procedure Linkage Table

ROOT A data analysis framework commonly used in high energy physics.

SCT Semiconductor Trackers/Silicon Microstrip Trackers: A part of the inner detector of AT-
LAS.

Tile Calorimeters A central hadronic calorimeter in ATLAS.

TRT Transition Radiation Tracker: A part of the inner detector of ATLAS.

UB Undefined/Unspecified behavior: Parts of the C++ programming language for which the
international standard imposes no requirements (undefined) or for which the behavior of a
program depends on the concrete implementation of the language (unspecified). Undefined
and unspecified behavior is often used interchangeably with each other and implementation
defined behavior. For example, accessing an array out of bounds is undefined behavour,
while the order of evaluation of function arguments is unspecified.
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1 Introduction
1.1 Purpose and motivation
Researching the fundamental parts of our universe has been one of mankind’s longest running
endeavors. These days, in order to be able to probe further into nature, particle physicists require
conditions mimicking that of the early universe which can be found in either extreme astrophysical
phenomena or in the experimental halls of particle colliders such as the LHC (Large Hadron
Collider). At the LHC, protons are accelerated in two beams and brought to collide within one of
four detectors, providing sufficient energy to produce events that, when studied, can deepen our
understanding of the microcosmos.

Large experiments such as ATLAS (A Toroidal LHC AparatuS) [1] and CMS (Compact Muon
Solenoid) [2] at the LHC generate unprecedented volumes of raw data. However, in order to
interpret the output of such instruments, we need to have a model of both the background and
the characteristics of the instruments. With large systems, analytical solutions for describing
expected properties are not going to be feasible. Rather, so-called Monte Carlo simulations are
used to compute everything from initial reactions to detector response. Monte Carlo simulations
(see Section 2.2.1) are a family of methods that rely on probabilities and random number generation
to model systems.

In ATLAS, Monte Carlo simulations of the detector consume a large portion of the available
computing resources. Current internal estimates predict detector simulations to be consuming
∼ 40% of the total 4.5HS06 CPU budget for ATLAS in 2020. As the rate of data generated by
the experiment is increasing, our computing capabilities have to be able to keep up. If we fail to
keep pace, we risk being bound by our computing capabilities rather than our experiments.

The software used to perform the detector simulations in ATLAS is based on a simulation
toolkit called Geant4 (Geometry and tracking 4) [3]. Geant4 is a large international software
project, and while improving the detector simulation performance by improving the source code
of either Geant4 or the ATLAS simulation implementations is important, it is a long-term and
expensive process. An alternative and orthogonal approach to improving performance is to change
the way that the simulations are built in terms of compilation and linking (see Section 2.3.1).

There are theoretical reasons to expect that runtime performance could be improved by per-
forming such changes. However, without proper measurements to confirm, it is possible that the
improvement is minimal, and thus not worth losing the benefits of the current way of building
the simulations. Even worse, the changes could reduce performance. Therefore, it is going to be
important for the experiment to properly investigate and measure the performance characteristics
of simulations built with different methods with as realistic as possible scenarios.

Beyond ensuring that a change would provide a substantial performance improvement, it is
important that the change does not change the physics results from the simulations. First of all,
the results must not be wrong. A program that runs fast but wrong is not hard to create but is not
particularly useful. Furthermore, if different ways of building the same software produce different
output for a given input, the possibility of replicating any simulation might not be possible. It is,
therefore, going to be important for the experiment to ensure that any transformation it applies
to its simulations produces the same results.
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1.2 Goals
There are two parts to this project:

1. Investigate the potential for improving runtime performance of simulation of large detectors
through a combination of the following build time methods:

• Statically linking the Geant4 library and its companion libraries (Expat, Xerces-C++,
CLHEP (Class Library for High Energy Physics)) rather than dynamically (see Sec-
tion 2.3.2).

• Upgrading or using a different compiler to build the simulation libraries (see Sec-
tion 2.3.1).

• Changing the so-called optimization level used by the compiler when building the
project (see Section 2.3.1).

• Instructing the compiler to use so-called unsafe math optimizations or to use specialized
instructions (see Section 2.3.1)

• Using additional optimization methods such as LTO (Link Time Optimization), which
sacrifice the time it takes to compile the simulations to potentially improve runtime
performance (see Section 2.3.2).

2. Perform measurements that check if physics results from the simulations change when ap-
plying any of the above mentioned methods, and if they do, estimate the relative impact of
such differences.
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2 Theory and background
2.1 A brief introduction to experimental particle physics
The focus of this project is detector simulations in high energy physics in general and for the
ATLAS detector in particular. In order to understand what such simulations need to model for an
experiment like ATLAS, we will introduce the basics of the Standard Model in Section 2.1.1, and
how the particles and forces of the Standard Model interact with matter in Section 2.1.2. Equipped
with this knowledge, we can discuss the basic components of modern detectors that Geant4 has to
simulate. As we will see, Geant4 and detectors rely on a few simple parts of the Standard Model as
it deals with the products of an initial interaction and not how the initial interaction is generated,
which is where the more complicated theoretical parts find their home. In general, we will leave
out material that is not relevant for getting an overview of ATLAS detector simulations for brevity.
For a more complete picture we refer the reader to literature such as [4] for Section 2.1.1 and [5]
for Section 2.1.2 and Section 2.1.3.

2.1.1 The Standard Model

The Standard Model of particle physics is the name of our current model of the microcosmos. It
describes experimental results to an astonishing degree. At its heart are a couple of families of
particles and their interactions. We will review these to highlight their characteristic observable
properties.

The quarks are lightweight fermions not observed directly but as constituent parts of composite
particles called hadrons, such as the proton. While the quarks carry fractional electric charge,
compositions of quarks can be both charged or neutral. The quarks are bound together tightly
due to the strong force which is mediated through the gluon. The reach of the strong force is
technically infinite, but due to mutual interactions of the gluons, its effective reach is short. As we
do not observe free quarks, interactions involving the strong force typically produce new hadrons.
With enough energy available, strong interactions result in showers of hadrons.

The leptons, unlike the quarks, are free fermions. Half of the leptons carry charge (the electron,
the muon, and the tauon) while the remaining, called the neutrinos, only couple to the weak force.
Because of this, neutrinos barely interact with matter, and we typically do not observe neutrinos
directly in our experiments but infer their presence through missing energy. The remaining leptons
are similar to each other but have different masses, with the muon being ∼ 200 times more massive
than the electron. As we shall see in Section 2.1.2, this mass difference allows the heavy leptons
to penetrate much further through matter than the electron and its anti-particle the positron.

We have already mentioned the gluon, which mediates the strong force. Correspondingly there
are bosons for both the electromagnetic and weak forces. While the weak interaction and its three
bosons, W+,W−, Z0, are typically negligible in particle detection, the photon, typically denoted
γ, which mediates the electromagnetic force, is a key part of particle detection.

At the detectors at the LHC, see Section 2.1.4, the Standard Model is studied by colliding pro-
tons or heavy ions with each other. However, most collisions will not result in anything interesting
being produced. In fact, the LHC does not accelerate individual protons but bunches of them. In
the interesting events, a hard scattering occurs between partons, constituent quarks or gluons, in
a proton where a large transfer of momentum allows for the production of a particle of interest
such as the Higgs boson. The hard scattering event is distinguished from everything else that
happens in the collision, such as soft parton interactions, which is referred to as the underlying
event.
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2.1.2 Interactions of particles with matter

The forces that play a part in detector physics are typically the strong and electromagnetic forces.
We will briefly discuss the primary interactions involved in detectors for high energy physics
experiments and corresponding concepts.

The interactions that are relevant in a given system can be viewed as a function primarily of
the particle species/matter constituents and the energy and momentum scale. For a proton with
low momentum, the probability of strong interaction with another proton as part of the early
stages of nuclear fusion is negligible due to the repulsion of the electromagnetic Coulomb force.
However, for protons traveling with relativistic velocity in the core of a star, the momentum scale
allows rare events to occur with enough frequency to allow for life in the universe. On the flip
side, the electromagnetic force plays a far less prominent role for the neutron, where the strong
and weak interactions are the most relevant forces.

When discussing the probability of interactions between radiation and matter, physicists typ-
ically discuss in terms of cross-sections, denoted σ, which is a characteristic function of the inter-
action itself. The total probability of an interaction occurring is given by the cross-section and
the relevant parameters of the system, such as the thickness of a material that a particle passes
through.

Heavy charged particles, such as the proton or muon, primarily loose energy in a medium
by exciting or ionizing atomic electrons and secondarily through strong interactions with nuclei.
These electrons can receive enough energy to create further interactions within the materials and
are then referred to as δ-rays, which are a key component in many detectors. For heavy neutral
particles, the primary interactions are with the nuclei. As the cross-section for these interactions
is lower than the ionization of their charged counterparts, neutral particles typically have greater
penetrating powers.

For light charged particles, electrons and positrons, the same interactions are available as
for their heavier cousins. However, due to the much smaller mass, bremsstrahlung becomes an
important factor in the equation. Bremsstrahlung can be thought of in a classical model as the
emission of photons when a charged particle is accelerated in an electric field, such as the field of
a nucleus. The cross-section for bremsstrahlung, σrad, scales as

σrad ∝
(

e2

mc2

)2

(1)

which is why bremsstrahlung is typically insignificant even for the fairly lightweight muon for
which the cross-section is a factor ∼ 40 000 lower than the electron.

As mentioned in Section 2.1.1, photons are capable of passing through and interacting with
matter. There are three primary processes involved. The photon can be absorbed by an atomic
electron leading to ionization, called the photoelectric effect, or reemission of one or more photons;
they can scatter with free electrons, and, if their energy is greater than the invariant mass of an
electron-positron pair, decay into an electron-positron pair. The charged particles produced in pair
creation can then produce new photons through bremsstrahlung, which in turn can pair produce
further as long as Eγ ≥ 1.022MeV, producing an electromagnetic shower in the detector.

2.1.3 Detector fundamentals

Detectors are highly specialized instruments designed to measure a specific property of a type
of radiation. Experiments, therefore, are typically constructed by layering detectors that each
produce some observable, which, when combined, can be reconstructed into an initial state.

Trackers are detectors that are used to determine where a charged particle has traveled. Track-
ing is typically done by measuring a small energy deposition at multiple points and interpolating
the route that the particle must have gone. If this is done in a homogeneous magnetic field, the
momentum of a charged particle can be estimated through the radius of curvature inside the track-
ing volume. Tracking is usually the first part of a detector as further components typically stop
the incoming particles, and knowledge about the precise location of interaction points, so-called
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vertices, is crucial for the further interpretation of an event. Certain types of trackers can fur-
ther be used to provide particle identification through time-of-flight measurements or a particle’s
characteristic ionization energy loss.

Beyond momentum and position, one of the most important components to be able to recon-
struct an event is the measurement of a particle’s energy. The detector components responsible
for measuring energy are called calorimeters. An effective calorimeter needs to be able to both
completely stop the particle and measure the deposited energy. Homogeneous calorimeters are
constructed of materials capable of performing both functions. In contrast, sampling calorimeters
consist of layers of material where one material breaks the incoming particle and produces showers
that are then measured by a layer of a different material.

For photons, electrons, and positrons, the strategy for energy measurement in an electromag-
netic calorimeter is to utilize the pair-production and bremsstrahlung showers, which will halt
an incoming photon, electron, or positron but not their heavier cousins. The material used to
produce electromagnetic showers will typically not be well suited for hadrons, and therefore, elec-
tromagnetic calorimeters are usually followed up by calorimeters designed to stop the remaining
particles. The only particles that remain will be muons, which can be identified by another layer
of tracking, and the weakly interacting neutrinos whose existence has to be inferred.

2.1.4 The ATLAS detector and the LHC

The LHC is currently the world’s largest particle accelerator. It is a circular accelerator for protons
and heavy ions located at the border of France and Switzerland and hosts four major experiments
as part of the CERN (European Organization for Nuclear Research) laboratory. This project
focuses primarily on the ATLAS experiment, an overview of which can be found in Figure 1 and
Table 1, and in part on the CMS experiment that are two general-purpose detectors. ATLAS
is a layered instrument surrounding the beampipe in which the collisions occur in accordance
with the principles discussed earlier. Closest to the beampipe is a tracking region called the
inner detector, which is covered by first EM (Electromagnetic) calorimetry and then hadronic
calorimetry. The choice of calorimeter varies from region to region of the experiment as they have
different requirements. For example, tracks that are perpendicular to the beampipe require much
higher precision than those passing through near the beampipe. Finally, ATLAS has detectors to
measure any escaping muons. A description of CMS in detail can be found in [2] and of ATLAS
can be found in [1].

Figure 1: Overview of the ATLAS detector. The inner detector, which primarily does tracking,
can be seen in the center surrounded by both EM and hadronic calorimetry [1].
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The coordinate system commonly used when discussing ATLAS places the origin at the collision
point, with the z-axis along the beamline, the y-axis oriented upwards, and the x-axis pointing
parallel along the radius of the collider. Angular coordinates are defined as θ, the polar angle from
the beam axis, and ϕ, the azimuthal angle going around the beam axis. In practice, the coordinates
y Equation (2) and η Equation (3) called rapidity and pseudorapidity are used to characterize the
polar coordinate. As the name suggests, pseudorapidity is an approximation for rapidity. The
coverage of detector components in ATLAS are usually referred to using the corresponding range
in η.

y =
1

2

E + pz
E − pz

(2)

η = − ln tan
(
θ

2

)
(3)

For small polar angles where particle momentum is primarily along the beampipe, lim
∣∣
θ→0

η =

∞ while for large values of θ lim
∣∣
θ→90

η = 0. The regions that different components of ATLAS
cover are usually described in terms of η, so it is important to keep in mind that large values mean
closer to the beampipe and that the scale is not linear.

Table 1: An overview of the detector components of ATLAS, their purpose, and the corresponding
η regions they cover. Multiple values for η range correspond to separate parts of the same detector
system. Adapted from [1].

Name Type η coverage
Pixel detectors Tracking |η| < 2.5
Semiconductor Tracker (SCT) Tracking |η| < 2.5
Transition Radiation Tracker (TRT) Tracking |η| < 2.0
Barrell EM calorimeter EM calorimetry |η| < 1.475
Electromagnetic Endcap Calorimeter (EMEC) EM calorimetry 1.375 < |η| < 2.5 and

2.5 < |η| < 3.2
Tile calorimeters Hadronic calorimetry |η| < 1.0 and

0.8 < |η| < 1.7
Hadronic Endcap Calorimeter (HEC) Hadronic calorimetry 1.5 < |η| < 3.2
Forward Calorimeter (FCal) Hadronic calorimetry 3.1 < |η| < 4.9
Muon spectrometer Tracking & Muon ID |η| < 1.05 and

1.05 < |η| < 2.7 and
2.0 < |η| < 2.7 and
|η| < 2.7
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2.2 Data and simulation
2.2.1 The role of simulation in experimental physics

In order to interpret the data our experiments generate, we need a model of both the expected
outcome of an initial collision and what signal we should expect from our instruments. The primary
tool for this job is the Monte Carlo method, both for event generation and detector simulation.
In this thesis, the focus will lie on the second half, detector simulation, as it is currently the most
CPU intensive part of ATLAS computing.

Monte Carlo methods are a family of computing techniques based on probability and random
number generation. In order to understand the usefulness of Monte Carlo for understanding
physics systems, consider an isolated hypothetical particle Q at rest that we wish to simulate. For
simplicity, let us assume that the only allowed interaction is a single decay channel with some
mean lifetime τ . Given an initial population of N(t = 0) = N0 particles, how will the evolution of
the system look?

Since the decay process is random in nature, we cannot make any simple deterministic calcu-
lation of when each particle will decay. However, since we know τ , we can give a probability, P ,
that a given particle will undergo decay given a small unit of time, δt ≪ τ , is

τP = δt ⇔ P =
δt

τ
(4)

If we discretize time in units of δt, we can model the remaining population without computing
the theoretical value for N at a given time point by iterating and at each step, allowing each
particle a chance to decay with probability according to Equation (4). We do this by generating
a random number, xi, from a uniform distribution in the range [0, 1] for each particle, Qi, and if
xi ≥ δt

τ , we consider the particle to have decayed, and decrease the number of remaining particles.
If we repeat this process for a sufficient number of generations each of length δt, we can plot

N as a function of t and obtain a distribution that matches what we would have observed if
we performed a similar experiment in nature or the theoretical distribution that we could have
calculated by integrating a differential form of Equation (4) and using N(t0) = N0 as our boundary
condition1.

Despite not being able to predict when any given particle would decay, the Monte Carlo method
has allowed us to describe our physical system without any theoretical calculations, and therein
lies the power of the Monte Carlo method. When we are no longer able to find analytical solutions
to describe our physical systems, Monte Carlo stops being just interesting and starts becoming
mandatory. Monte Carlo is not without limits though, we still require a robust understanding of
the underlying system such as the cross-sections of interactions, and with increased complexity,
the computing resources required to simulate a system can increase rapidly.

2.2.2 The simulation package Geant4

The current primary software package for simulations of particles interacting with matter is Geant4
[3]. As the name suggests, Geant4 is the successor of the Geant3 package and was developed
to allow for similar performance but enabling more physicists to develop their own simulation
applications.

A Geant4 simulation can be broken down into steps. First, a geometry description is evaluated
and optimized. In a general Geant4 simulation, parts of the geometry can be designated as
sensitive regions that can record interactions and the response of the particular material in the
region. In our simulations, the XML-based GDML (Geometry Description Markup Language)
format [6] is used to describe our detectors. Geant4 is also responsible for maintaining definitions
of the materials of the geometry and their properties.

1If the reader has not performed any similar computing experiment before, we would recommend trying it out
as the results can be quite eye-opening. Remember to keep δt ≪ τ .
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In addition to the geometry, the system also requires a choice of physics models to be used
and a description of what magnetic fields will be present. Physics models are always at their core
approximations of a part of nature, and different models will better represent different systems.
In Geant4, this is described by the choice of physics list, which contains a set of processes and
models tuned for some specific application.

After this, Geant4 leaves possibilities to add arbitrary code to run both before and after
specific steps in the process. These opportunities are collectively referred to as user actions and
are registered as part of the setup process. For example, relevant for this project, a user can
register an action to occur at the start of an event to mark the current time and another action
at the end of the event, which registers the time that has elapsed.

Once all setup is done, a run can take place. A run is simply a collection of events, which is the
basic unit of computation in Geant4. An event describes an initial state, e.g., what particles are
present and what is their momentum, and the results of their interactions while traveling through
the detector geometry. An event can be provided by data, by an event generator, or by Geant4
itself.

Given the initial state, Geant4 will then model the transportation of each initial particle and
any particles it produces while interacting with the detector. Particles are transported in steps,
which can be both a spatial step, for a moving particle, or a unit of time, for particles at rest,
which is where physics processes take place in Geant4. A physics process can either take place
at rest, at the end of the step, or along the step for continuous processes. Each physics process
proposes a step, and the tracking system then decides which action will occur. Since Geant4
tracks individual particles, processes such as calorimetry, which involve the creation of showers of
particles, therefore incur a heavy cost in simulations.

Geant4 distinguishes between physics processes and models. The former describes a particular
initial and final state with its corresponding parameters, such as cross-section, while the latter
manages the production of secondary particles in order to allow for different models for any given
physics process. During transportation, each process will calculate an interaction distance based
on the underlying probability distribution and a uniformly generated random number. The process
which returns the smallest interaction distance is selected, and its action is performed. If the action
is an interaction or decay, the particle is killed as new secondary particles are created; otherwise,
it will undergo another process.

If one or more steps occur within a sensitive region of the detector geometry, a snapshot of the
physical interactions that were involved can be registered as a hit. Furthermore, Geant4 provides a
representation of the output of the detector called a digit that can be constructed either from hits,
from other digits, or both. The hits are registered as part of the event object, so processing can
be deferred and even done for several events at once in order to simulate more realistic situations
where events are well separated.

A powerful feature of the digitization and hits based simulation system is that it can produce
output in the same format as the experiment, which allows researchers to run simulated events
through the same pipeline as for reconstruction and analysis as the measured data. Unlike the
measurements, the simulated digitization can be provided with information about the initial event,
so-called truth-data.

2.2.3 The ATLAS simulation data workflow

The scale of computing required to deal with the output of instruments like ATLAS necessitates
specialized computing models. In ATLAS, the chosen computing model is Grid computing with
computing resources distributed world-wide across an array of computing resources. We will review
here how ATLAS manages its simulation components. The details of the overarching ATLAS
software project and the computing framework, Athena, which manages it all, are described in [7]
while further details on the simulations can be found in [8].
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Simulation in Athena for ATLAS is conceptually divided into three distinct steps. First, events
need to be generated along with their immediate decay products in the event generation step. Next,
the generated events are fed into the detector and physics portion of the full Geant4 simulation
process. Finally, the results are put through the simulated digitization process in Geant4, which
produces output in terms of voltages and currents from the sensitive regions of the detector. The
output can be produced either in an object-based format or in a format identical to that of the
actual detector.

Figure 2: Overview of the complete ATLAS simulation process and its relationship to the output
of the experiment originally from [8]. The locations where Monte Carlo-truth data can be stored
are shown as separate steps, and optional paths are marked with dashed outlines.

An overview of the entire process, including all the potential steps, can be seen in Figure 2
or, in detail, in [8]. In the first step, events are generated from a Monte Carlo program which
simulates the initial collision and its immediate decay products called, unsurprisingly, an event
generator into a standardized format called HepMC. Not every event type is going to be relevant
to any one particular analysis, and uninteresting events can be discarded here already. Truth
information from the generator can be perpetuated through the simulation chain, including, e.g.,
initial particles.

Following the generation step, the events are fed into the Geant4 simulation, which records
hits and truth data from the simulation. Optionally, multiple events can be combined into one
event at this step in order to simulate the so-called pile-up effect of multiple collisions occurring
at once, again storing truth data about the process. If pile-up simulation was performed, the
cumulative hits are merged and sent to the final step. The primary reason for simulating pile-up
by combining events rather than generating initial events with multiple collisions is to reduce the
CPU load of the simulations as Geant4 tracks each initial particle individually.

The third and final step of the simulation chain is digitization. Given either hits from individual
events or a collection of merged hits from pile-up, the digitization process converts hits into
detector responses, called digits. In producing the digits, the process will also overlay noise and
other effects that are going to be part of the non-idealized physical detector, such as potential
long-lived particles. The digits are then fed to an emulation layer of the detector electronics’ read
out drivers. The final output is a format called raw data object files that can be converted to and
from the bytestream produced by the detector.
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2.3 The production of scientific software
This section is intended to be a brief introduction to compilers, linkers, and optimizations. For the
interested reader, see Appendix A and [9, 10]. An overview of the complete process from source
code to executable can be found in Figure 3.

2.3.1 Compilers and optimization

Scientific software is not in principle different from any other kind of software. Source code is
written in a human-readable format called a programming language, which is then processed into
instructions to the hardware in a binary file, often called binary for short. This can be either in
a format that can be run immediately, called an executable binary or executable for short, or a
format containing code that other programs can use called library files. There exist a plethora of
languages that are optimized for different purposes, but they can, in general, sorted into one of
two categories: Compiled or interpreted languages.

The analogy with language provides for a useful metaphor for understanding the differences
between the two. If you need to communicate with someone who does not share any languages
with you, you will need external help. One way to do this is to use a translator who takes what
you want to say and translates it directly into a static form that can then be passed on to the
person you wish to communicate with. Alternatively, you can make use of an interpreter who will
perform the translation as you speak. Compiled languages communicate your thoughts based on
a translator called a compiler while interpreted languages, perhaps unsurprisingly, do the same
thing live like an interpreter. This project focuses on compiled languages, C++ in particular, as
these are the basis of simulation packages such as Geant4.

By default, compilers will perform a naive translation from the programming language to the
machine instructions. This is helpful for understanding what your program will actually do and
for debugging as there will, mostly, be a one to one translation from what you wrote to what the
computer will run. However, this is unlikely to be the most efficient way to perform the task you
wanted and, if you ask for it, the compiler can perform transformations, called optimizations, with
the goal to improve efficiency with respect to some metric, usually how fast the program runs.
Generally, the transformations are supposed to produce a binary that produces the same output
as the unoptimized version. However, as we shall see, there are cases where it can be desirable to
perform optimizations that can change the program output.

Most compilers allow users to specify exactly which transformations are allowed, but also
provide groups of transformations called optimization levels. In the compilers used in this project,
there are numbered optimization levels (labeled -O0,-O1,-O2, and -O3) that apply successively
more optimizations. Here, the higher numbers imply the optimizations of the lower numbers.
There are also specialized optimization levels that work well for some specific purpose or priority,
such as -Os, which prioritizes creating small executables.

The last optimization level discussed highlights an important principle for using these opti-
mization capabilities; There are always tradeoffs when choosing an optimization level, and one
such important tradeoff is the time/space tradeoff. When forced to choose, the -Os setting will
prioritize creating a small executable while -O3 will do everything it can to produce code that, in
principle, should run as fast as possible.

The compiler is, however, not omniscient, and optimization decisions are made based on heuris-
tics, so without measuring, it is impossible to know which setting will run the fastest. For example,
the aggressive optimizations in -O3 could produce code that does not fit the faster parts of the
processor, which then has to use the, sometimes orders of magnitude, slower parts of the hardware.
Compilers also are bound to do what you told them to do and cannot perform transformations
such as changing the traversal order of a matrix, which on modern computers does not perform the
same by a longshot, unless it can prove, definitively, that there is no way that you could observe
the difference.
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In this thesis, we will primarily discuss three kinds of optimizations, two of which will be
referred to as unsafe optimizations, which refers to their theoretical impact on output. The
safe optimizations are the types of optimizations you get from the standard optimization levels.
They only perform transformations that are guaranteed not to alter the output of the program.
More specifically, they only perform transformations that preserve IEEE (Institute of Electrical
and Electronics Engineers) and ISO (International Organization for Standardization) rules and
specifications for math functions and operations.

Next up and first in the unsafe category is architecture-specific optimizations. By default, most
compilers will produce binaries that run on multiple types of machines with the same underlying
architecture. This is useful for portability but prevents the compiler from making use of instruc-
tions that are not available on the lowest common denominator in the architecture family. An
important category of these instructions is the so-called vector instructions that perform multiple
computations in one instruction. The vector instructions are the main reason why these optimiza-
tions are considered unsafe, as the order of their operations is not guaranteed, and floating-point
arithmetic is not associative. Other than the safety aspect, the main challenge with these opti-
mizations is that you need knowledge of the hardware that the code will run on as it will risk
crashing on systems where particular instructions are not available and otherwise running slow.
In this thesis, we will commonly refer to these optimizations as the native optimizations as we tell
the compiler to use whatever the native architecture of the system it is running on.

The third category is the fast-math category. These are primarily optimizations for floating-
point mathematics that may violate strict standards compliance. Some allow the compiler to
rearrange floating-point calculations in ways that would reduce the number of necessary operations,
some can replace common operations with instructions, and some let the compiler assume that
your code will not rely on some parts of floating-point behavior such as infinities.

A final complication that is specific to C++ and related languages is something which is called
UB (Undefined Behavior) 2 [11]. Some things are either forbidden by the language to rely upon
or do, or that the language simply cannot specify the behavior of. The dangers of UB are often
stated with hyperbole3, but a much more helpful way to think about it is that a program invoking
UB is incorrect. This matters for our purpose both because compilers are allowed to optimize
assuming that undefined behavior does not occur and as the output of two different compilers
is not guaranteed to be the same if the software contains or relies upon UB. In other words, if
the program is incorrect, the safe optimizations are no longer safe. A further introduction and
a famous demonstration of how a program with UB can disprove Fermat’s last theorem can be
found in Appendix B.

2.3.2 Linking

Complex programs such as scientific analysis code are made by stitching together code that has
been written by someone else, so-called libraries, that is combined with the researcher’s code.
Furthermore, code is typically split up into different subparts called translation units. In order
to make compilations take less time, compilers process each such translation unit independently
into object files, which allows builds to be parallelized and reduces the amount of code that needs
to be recompiled when one translation unit is changed. At the end stage of a build process, we,
therefore, find ourselves with a group of object files and files from our libraries, and we need some
process for merging them into the executable. This process is linking and has room for interesting
tradeoffs in its own right, which we will review here based on [9, 10].

2Technically speaking, there are different categories in addition to UB that are often collectively referred to
as UB, such as implementation-defined behavior and the somewhat unhelpfully named unspecified behavior. The
difference can be important but is omitted in this project for simplicity.

3It is not uncommon to hear that programs invoking UB are allowed to make your male cat pregnant, erase your
hard drive, or summon nasal demons. While technically true, what is much more likely is that they simply will
produce wrong output or, much worse, produce what looks like correct output but isn’t.
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Figure 3: Simplified overview of the model of separate compilation and linking with two translation
units producing either an executable, a static library, or a dynamic library. Each translation unit
is first parsed, translated, and optimized independently by a compiler into an object file. The
object files are then combined with any libraries that the program makes use of into the final
product. If LTO is utilized, the optimization step is moved from the compiler and into the linker.

When it comes to the library files, they come in two different formats for two separate ways of
linking, static and dynamic linking. Static linking is the more straightforward method. A useful
mental model for static linking is that the linker cuts and pastes the relevant parts of the object
files and the libraries together and leaving the other parts be. In fact, static libraries are just
collections of object files.

Dynamic linking, on the other hand, is a bit more complicated. When a program is dynamically
linked, the linker, rather than inserting the functions and values into the program, will record what
functions or values are needed from the dynamic libraries. Not putting the functions directly
into the executable allows the same binary to use different versions of the same library without
recompiling and linking the executable. On Linux systems, the necessary setup to combine the
executable and the libraries is done at runtime by a program called the dynamic loader.

There are two methods for performing this setup on Linux systems, load-time relation, and
PIC (Position Independent Code). The latter of the two is the most commonly used and is what
we will use in this project. With PIC, a layer of indirection is inserted into the executable. When
the program starts, the dynamic loader loads the dynamic libraries but does not look up any
individual function that is to be used. Whenever a function in a dynamic library is to be used,
a call to a function in an area called the PLT (Procedure Linkage Table) is called instead. This
function first does an indirect jump into a region called the GOT (Global Offsets Table), which
will on the first entrance return back to the PLT-code. The PLT-code will then continue into the
dynamic loader. The dynamic loader will look up the address in the dynamic library and write
it back into the location in GOT before proceeding to call the original function. This allows the
subsequent calls to the function to avoid the overhead of looking up addresses, but the initial
indirection remains.

A simple, but useful, mental model to remember how dynamic linking and loading works is
that the linker leaves a note in the executable with everything that is missing that the loader then
goes and looks up at runtime.

A consequence of the separate compilation of translation units is that languages like C++ face
a challenge that other languages do not. How can the language ensure that a variable, function,
or another part of the language is defined the same way throughout every translation unit? In
C++ the resolution of this problem is the ODR (One definition rule) [11]. ODR can, with much
simplification, be understood as stating that a valid program does not contain different definitions
but not requiring that the language implementation, in general, identify if it occurs. The details
of the rule are complex and can be found in the current ISO specification of the language. ODR
violations can be the source of subtle and serious errors.

Beyond static and dynamic linking, the link-time provides an additional opportunity for im-
proving runtime performance. A disadvantage of the model of separate compilation of translation
units is that the compiler only has vision of a limited section of the program and will be unable
to make certain assumptions. For example, consider Listing 1 where a global variable, such as the
global integer pi, might be constant throughout a given translation unit, which could allow the
compiler to remove redundant code, such as in use.cxx. However, it could still be possible that
the variable is modified in another translation unit, such as might_modify.cxx in our example,
so the compiler cannot perform the optimization.
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Since the linker sees the entire program at once, it does not face the same visibility restrictions
as the compiler, and if optimization is deferred until link-time, more optimization opportunities
may present themselves. This method is called LTO (Link Time Optimization) 4. In Listing 1,
the branch in the relies_on_i function can safely be removed, and the entire function reduced
to return 3;. In more realistic scenarios, the dependencies that have to be calculated to find out
if an optimization is safe are much more complicated. In addition to providing novel optimization
opportunities, LTO can potentially allow compilers to diagnose ODR violations.

// header.h
// Define a global variable
int pi = 3;
// use.cxx
#include "header.h"
int relies_on_i () {

if (pi == 3) {
return pi;

}
// This never happens!
return 0;

}
// might_modify.h
#include "header.h"
// might_modify.cxx
#include "header.h"
void might_modify_i() {

// pi = 4;
}

Listing 1: Example pseudo-code demonstrating how LTO can allow optimizations that are im-
possible in the standard model of separate compilation of translation units. The comments, i.e.,
text following //, designate what part of the code belongs to which of the files involved.

4LTO is often used interchangeably with whole program optimization and interprocedural optimization. We
make no distinguishment between the three in this project.
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2.4 Challenges with measuring computing performance
When measuring the performance of software, or benchmarking as it is often referred to, there are
a couple of ways that things can go wrong, and it can be hard to detect if something is incorrect.
Going into all the potential pitfalls is beyond the scope of this thesis, but we will discuss some
basic principles and some of the more nefarious issues that are unique to measuring computing
performance. Together with a solid understanding of basic statistics, such as can be found in [12],
this material should provide the reader with sufficient knowledge to analyze basic performance
benchmarks.

First of all, we need to make sure that we are producing a controlled environment. There are
two parts to this problem, how can we ensure that our process is as independent of the host system
as possible, and how do we control the build. For the second part, we need to monitor the actual
compiler and linker invocations that our system produces, which has been done manually in this
project. A significant source of problems here that one has to take care of is that build systems,
being helpful, will set recommended optimization flags for you. In normal scenarios, this is what
you want, but for us, this is a problem since build systems will typically append their flags to the
ones we provide, and compilers will use the last flag given to them (i.e., -O3 -O2 is equivalent to
-O2).

Measuring itself has some caveats of its own. First, we need to consider what we measure when
we time an event. In addition to the time it took to run the event, t, there can be background
caused by the rest of the system, tbackground, and the time it takes to perform the measurement,
toverhead. The time we measure, tmeasured, can thus be represented as

tmeasured ≈ t+ toverhead + tbackground (5)

The benchmark we utilize in this project, see 3.6, however, assumes

t ≫ toverhead + tbackground ⇒ (6)
tmeasured = t (7)

There are further issues that are not covered by this simple model that we have to pay close
attention to. First of all, t is not going to be consistent across runs even with a single-threaded
measurement. This is because the time that the program is allowed to be on the CPU is split up
into slices by the kernel. These slices can be split onto different cores, which can have different
properties. This effect can produce an additional spread in the t-distribution but can be mitigated,
to some degree, by pinning the process to a single core. Finally, the act of measuring itself can
affect the time an event takes. One way this can happen is by affecting the CPU caches. Caches
are small but fast pieces of memory where recently accessed data can remain. This is excellent
for a process that keeps doing the same thing, but introducing timing code into the system can
interfere with this. In pathological cases, this can have orders of magnitude of impact on the
execution time. An in-depth discussion of these issues is beyond the scope of this text, but the
interested reader is encouraged to explore literature such as [13].

If Equation (6) does not hold, there is no clear cut solution; however, there are steps that
can be taken to mitigate the situation. The measurement can be amortized, offsetting the impact
of toverhead by measuring the time it takes to perform a set number of events rather than a
single event. A disadvantage with amortization is that it can hide some of the features of the
distribution of your events. Additionally, care can be put into reducing toverhead by performing
as few operations as possible, in particular, avoiding I/O operations, such as by storing timing
results locally while measuring and processing the events only after the simulation is complete.



3 METHODOLOGY 15

3 Methodology
3.1 Overview
We have performed measurements of both time per event and energy deposited per event in
Geant4 simulations with both ATLAS and CMS detector geometries. These measurements were
made on two hardware platforms, the Aurora computing cluster at LUNARC in Lund and a
standalone machine at CERN, which we will refer to as PMPE in this thesis (Section 3.3). To
perform the measurements, a common toolchain, containing both compiler, linker, and relevant
system libraries, was bootstrapped on each machine. This toolchain is then used to compile three
versions of the GCC (GNU Compiler Collection) compiler as well as the Clang compiler.

Using these compilers and a version of the ICC (Intel C++ Compiler) compiler provided by
the host system, the Geant4 library, three of its dependencies, the HepExpMT benchmark, and
a modified version of HepExpMT for physics validation (Section 3.6) were compiled once for
every configuration (Section 3.4) in an isolated environment (Section 3.5). Once compiled, the
benchmark and validation programs were run for 5000 isotropically distributed 50GeV π− events
each (Section 3.5).

The benchmark recorded CPU time per event, tb, while the validation code recorded CPU
time per event, tv, and energy deposited per event, E. In order to be able to spot differences
originating in the random number generation, the last random number generated, X, in the
benchmark program is also recorded. Any difference in random number generation occurring in
the process will result in a different value for X. Finally, the validation code is run one more time
for each configuration to be able to see if the output is stable.

3.2 History and initial work
Initial work was done using geometry for CMS and the inner detector of ATLAS as we had yet
to acquire a useful GDML file for the full ATLAS detector. The initial measurements were made
using multiple threads, i.e., splitting the work into chunks that can run at the same time on
the hardware, but no significant difference in the relative performance characteristics could be
seen between runs with multiple or a single thread. For validation purposes, the order of events
is important to ensure reproducibility, and single-threaded runs were therefore necessary. We,
therefore, decided to focus on single-threaded runs for both validation and benchmark runs.

3.3 Hardware used
In order to avoid the quirks of any particular hardware configuration, we performed measurements
on two platforms. The Aurora cluster at LUNARC in Lund is a shared computing cluster where
each node has 2 Intel Xeon E5-2650 v3 CPUs, (2.3GHz base frequency, 10 physical cores per socket,
25MB cache). The standalone machines at CERN used in the project, referred to as PMPE in
this thesis, are dedicated to the benchmark and validation. The CPUs on PMPE are dual socket
Intel Xeon E5-2630v3, (2.4GHz base frequency, 8 physical cores per socket, 20MB cache). Both
the Aurora and PMPE CPUs are from the Haswell microarchitecture generation.
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3.4 Configurations
We define a configuration as a combination of a

• A compiler

• If the libraries are compiled as dynamic or static libraries

• What optimization flags are used

• If the native architecture flags are used

• If LTO was used

We use three versions of the GCC compiler, 4.9.4, 6.2.0, 8.3.0. GCC version 4 is the system
compiler on CentOS 6 and CentOS 7, two distributions used on scientific computing clusters, and
is, therefore, what physicists often will be using as it is what you get by default. We wanted to
look at later versions of GCC as well to see if there was a performance difference or, perhaps more
importantly, in the physics output. As potential alternatives to GCC, we have used the most
recent versions available of the Clang compiler (10.0.0) and Intel’s ICC (19.0.5.281).

For optimization levels, we look at -O2, which is what is often set by default, the more aggressive
-O3, -Os which optimizes for small binary size, and -Ofast, which is equivalent to -O3 but with
additional unsafe math optimizations. There have been two exceptions during this project. First,
LTO and -Os do not work together with Clang. Due to a bug in our version of Geant4 and the
specific version of ICC on Aurora causing the compilation process to fail, no configurations with
ICC could be tested on Aurora.

In total, we have looked at 156 configurations. To keep things brief we use the following naming
scheme for the configurations

Compiler-{D/S}Flag[N][L]

where {D/S} represents either static (S) or dynamic (D) linking, N represents if native archi-
tecture flags were used, and L represents if LTO was used. As an example, gcc4-SOfastNL is the
GCC 4.9.4 compiler, static linking, -Ofast, and native architecture and LTO. We will be using
the gcc4-DO2 configuration as the reference configuration.

We will further make use of three additional categories. We will refer to any configuration
which uses either -Ofast or native architecture flags as unsafe configuration. Correspondingly,
the remaining configurations we will categorize as safe. However, the ICC compiler uses some
unsafe methods by default, and it will be important to be able to separate the safe configurations
which use ICC from those that use GCC or Clang. Otherwise, it is possible that the unsafe
methods in ICC would artificially increase the performance of the safe category. Therefore, we
classify all members of the safe category that are not using ICC as very safe configurations.

3.5 Setup and building
We have developed a simple system for reproducible Geant4 performance measurements. As
we want to perform measurements on two separate platforms, which have different models for
execution, we had to develop a system where adding support for other systems is trivial. In the
system we produced, adding support for a different model of execution requires at most defining
a couple of shell script functions and a couple of environment variables.

In order to reduce the dependency on the underlying operating system, we start by setting up
a local filesystem on each machine and bootstrap a small but sufficient toolchain for compiling our
project and their dependencies. There are limitations to this procedure as the lowest parts of the
computing stack, such as the C library and the kernel, are not possible to swap out in this way.
However, most other important parts of the system, such as compiler and binary utilities, can be
replaced. For a detailed listing, see Appendix C.
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With this setup, we compile CLHEP [14], expat, xerces-c++, Geant4, HepExpMT (see Sec-
tion 3.6), and our validation code individually for each configuration. The compilation is performed
in an isolated environment, details of which are described in Appendix C, and the output from
each configuration is logged and monitored manually to ensure that we measure what we set out
to measure. One caveat to this procedure regards the Intel compiler, which we do not have access
to the source code for and, therefore, cannot isolate as well as the remaining compilers. When
compiling HepExpMT and the validation code, we also set the initial seed value for the random
number generators to a set value, 6446.

In order to reduce noise from other processes running on the machines, the code was run on
a compute node with exclusive access on Aurora. Since the code does not make use of multiple
threads, we can reduce noise on the PMPE machines by turning off hyperthreading and pinning
each run to an individual physical core. Turning off hyperthreading means that we only use the
physical cores on the CPU, which reduces the risk of cache effects. Pinning the process to a CPU
reduces the impact of the operating system scheduler moving the process between CPUs.

3.6 Benchmarking with HepExpMT and validation
Once every setup is compiled, the actual benchmarking and validation can take place. We use the
HepExpMT benchmark [15], originally designed for benchmarking Geant4 simulations for CMS,
and a version which we modified for validation. HepExpMT is a simple benchmarking program
that constructs a geometry from a GDML-file, generates events according to instructions, and
measures the time it takes from the start of an event to the end of the event, tb. The validation
version adds additional logic to store the total energy, E, deposited throughout the event by
summing up the event deposited in each step as well as recording the time per event, tv. The
rationale for the method of calculating the energy deposited is that we do not have access to
the sensitive detector regions that are used by the experiment in our GDML-files, so we cannot
determine if an energy deposition would have been registered.

The validation code uses ROOT [16] to store its data, while HepExpMT prints it to standard
output. Neither method is optimal with respect to toverhead or potential observer effects, but given
our assumption in Equation (6) it should suffice. For measurements with less complex geometries,
other strategies such as amortization would be required.

If the validation runs would show that there are differences in energy deposition per event
between configurations, we want to be able to investigate the source of the differences. In Monte
Carlo simulations, any perturbation in the way that random numbers are generated will produce
a different output. Differences arising purely from the sequence of random numbers would pro-
duce a different sample from the same underlying distribution and should converge to the same
distribution given enough events. We utilize that HepExpMT records the final random number
produced, denoted X, to get insight into if differences in energy deposition are due to a difference
in random number generation. If there are differences in random number generation between two
configurations, then the corresponding values of X will differ.

In total, we use 5000 50GeV isotropically distributed π− events for both the CMS and ATLAS
geometries. We run the validation code twice for each configuration on both Aurora and PMPE, so
we can ensure that the output is reproducible, and the benchmark code one for each configuration
on both Aurora and PMPE. The physics list used was FTFP_BERT for both CMS and ATLAS.



3 METHODOLOGY 18

3.7 Analysis
For each configuration, we calculate an average CPU time per event in the benchmark, µtb , average
CPU time per event in the validation run, µtv , and average energy deposited in the detector per
event, µE . We then calculate the average gain or loss in the benchmark

∆tb =
µtb − µref

tb

µref
tb

(8)

where µref
tb

is the average CPU time per event in the reference configuration (gcc4-DO2).
Similarly, the average gain or loss in the validation run with respect to the reference average, µref

tv ,
is calculated as

∆tv =
µtv − µref

tv

µref
tv

(9)

For µE we are interested in the relative absolute size of any difference between µE and the
average energy deposited per event in the reference configuration, µref

E

∆E =

∣∣∣µE − µref
E

∣∣∣
µref
E

(10)

We found that there appeared to be two distinct classes of events, one fast and one slow in
both the tv and tb distributions and that the complete distribution could be well described by
a fit of a combination of a Landau distribution, for fast events, and a Gaussian distribution,
for slow events. We characterize the full distribution by the average CPU time per event, the
location parameter of the Landau distribution of the fast events, denoted µfast, and the mean of
the Gaussian distribution denoted µslow.
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4 Results
4.1 Performance measurements
We present here results for the first part of the project, measuring the effect of alternative con-
figurations on Geant4 simulations with ATLAS and CMS detector geometries. We first review
the baseline configurations with gcc4-DO2, which can be found in Figures 4 and 5, and their
characteristics.
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Figure 4: Reference measurements with the benchmark and validation code using the ATLAS
geometry and PMPE hardware (left) and Aurora hardware (right). Average CPU time per event
in benchmark on PMPE µtb = 2.44(1) s and on Aurora µtb = 2.23(1) s. Average CPU time per
event in validation runs on PMPE µtv = 2.45(1) s and on Aurora µtv = 2.22(1) s.

0 0.5 1 1.5 2 2.5 3 3.5 4

CPU Time [s]

0

100

200

300

400

500

600

700

E
nt

rie
s

Reference (gcc4-DO2)
 events−π5000 50 GeV 

Benchmark + validation
with CMS Geometry
on PMPE

 0.003 [s]± = 1.310 
tb

µ

 0.003 [s]± = 1.308 
tv

µ

 0.01 [s]± = 1.46 
slow

µ

 0.003 [s]±=0.979 
fast

µ

0 0.5 1 1.5 2 2.5 3 3.5 4

CPU Time [s]

0

100

200

300

400

500

600

700

E
nt

rie
s

Reference (gcc4-DO2)
 events−π5000 50 GeV 

Benchmark + validation
with CMS Geometry
on Aurora

 0.003 [s]± = 1.182 
tb

µ

 0.003 [s]± = 1.160 
tv

µ

 0.01 [s]± = 1.33 
slow

µ

 0.003 [s]±=0.876 
fast

µ

Figure 5: Reference measurements with the benchmark and validation code using the CMS
geometry and PMPE hardware (left) and Aurora hardware (right). Average CPU time per event
in benchmark on PMPE µtb = 1.310(3) s and on Aurora µtb = 1.182(3) s. Average CPU time per
event in validation runs on PMPE µtv = 1.308(3) s and on Aurora µtv = 1.160(3) s.

For both ATLAS and CMS, the µtb is roughly 10% shorter on Aurora than on PMPE. No
significant difference between µtb and µtv can be observed for either reference configuration, in-
dicating that either Equation (6) holds for both measurements or none of them. The combined
Gaussian and Landau distribution fit for the benchmark distributions matches our measurements
reasonably well.
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For ATLAS, the fast events are located around µfast = 1.389(5) s (PMPE), and µfast =
1.262(4) s (Aurora), while the slow events are located around µslow = 3.06(1) s (PMPE) and µslow =
2.79(1) s (Aurora). With CMS, the peaks are closer together but still distinct, with µfast =
0.979(3) s, µslow = 1.46(1) (s) (PMPE) and µfast = 0.876(3) s, µslow = 1.33(1) (s) (Aurora).

Given the information from the reference runs, we can now begin to consider performance
improvements. We will only review a representative selection here. However, the complete results
are available in Appendix D. We will look in particular at static and dynamic versions of four
configurations for each compiler, the small size optimizing -Os, a basic -O2, a version with unsafe
optimizations -OfastN, and the same version but including LTO. These measurements are shown
in Figure 6 for GCC 4.9.4 and GCC 6.2.0, Figure 7 for GCC 8.3.0 and Clang, and Figure 8. From
these configurations, we can obtain the following key observations:

• -Os will, in general, perform worse than the corresponding -O2, and in some cases much
worse. For example, the performance of dynamically linked -Os for GCC 4 is on average
∆tb ≈ −15%. The primary exception is Clang, where it tends to perform the same as -O2,
for example, ∆tb ≈ 0% for dynamically linked -Os with Clang.

• Performance improvements with GCC are, in general, more stable across geometry and
platform than ICC and, particularly, Clang.

• Statically linked configurations perform better in general. For example, for GCC 4, the
average for statically linked -O2 is ∆tb ≈ 8% when compared to its dynamically linked
counterpart, the reference.

• The unsafe optimizations perform better in general. For example, the relative improvement
for -DOfastN with GCC 8 is ∆tb ≈ 8%.

• There seems to be little performance improvement or loss from LTO, except for ICC and
the CMS geometry, where performance drops by ∼ 50%.

• There are exceptions to all of the above.
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Figure 6: Relative performance improvements, ∆tb, for the GCC 4.9.4 (left) and GCC 6.2.0
compilers (right) for dynamic and static versions of four configurations. Results are relatively
similar across the two compilers, although there are some differences for ATLAS geometry on
Aurora (-DO2 and -DOfastN).
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Figure 7: Relative performance improvements, ∆tb, for the GCC 8.3.0 (left) and Clang compilers
(right) for dynamic and static versions of four configurations. The performance characteristics for
GCC 8.3.0 is similar to those in Figure 6 but quite different from that of Clang. Notably, the
-Os performance is much worse for GCC. Furthermore, Clang performs better on PMPE than on
Aurora, and better with the CMS geometry for -Os and -O2, but worse for -OfastN and -OfastNL.

As shown in Figure 8, something goes wrong for ICC with LTO and the CMS geometry.
Figure 9 demonstrates the difference between one such configuration with LTO on or off. In the
LTO scenario, there is a long tail after the initial peak rather than the second peak. Furthermore,
the fast peak is moved from ∼ 0.77 s to ∼ 1.0 s. This behavior is unique to ICC and the CMS
geometry, which is curious as there is no obvious reason as to why CMS should be different from
ATLAS here.

Figure 8: Relative performance improvement, ∆tb, for dynamic and static versions of four con-
figurations using the ICC compiler. No measurements could be made on Aurora with ICC due
to a bug in the version of Geant4 used in the project. ICC performs better in general with the
CMS geometry, except -OfastNL where ICC with the CMS geometry performs far below other
configurations.
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Figure 9: Performance measurement with HepExpMT for one of the ICC configurations, which
performed drastically below average with the CMS geometry when using LTO (left) than without
(right). Average CPU time per event in benchmark µtb = 1.798(8) s (left), µtb = 1.062(3) s (right).
Combined Gaussian and Landau fit for two separate event categories estimates average CPU time
per fast event µfast = 0.997(3) s (left), µfast = 0.770(3) s (right), and average CPU time per slow
event µslow = 2.40(2) s (left), µslow = 1.22(1) s (right).

So far, we have looked in some detail at a limited set of configurations. To get an overview of
the remaining material, we present the best performing configurations in Tables 2 to 9. We will for
brevity not include corresponding tables for the safe and very safe categories, refer to Appendix D
for the remaining measurements, but we will still describe their corresponding characteristics. The
overall results can be summarized as follows:

• The overall best performing configuration in each safety category was

– Unsafe: ∆tb = 18.9%, icc-SOfastN
– Safe: ∆tb = 15.0%, icc-SO2
– Very safe: ∆tb = 9.5%, clang-SO3L

• On average, of the 20 top-performing configurations in each hardware platform and geometry
category

– 96% (unsafe), 85% (safe), 78% (very safe), were statically linked
– 66% (unsafe) used -Ofast
– 70% (unsafe) user native architecture optimizations

• On average, of the 20 worst performing configurations in each hardware platform and geom-
etry category

– 71% were dynamically linked
– 79% used -Os
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For ATLAS geometry on PMPE the range in the 20 top-performing configurations, see Table 2,
was ∆tb = 17.3% for clang-SOfastNL to ∆tb = 9.5% for gcc4-SO3N while the corresponding range
in worst performing configurations, see Table 3, was ∆tb = −9.3% for icc-DOsN to ∆tb = −20.1%
for gcc6-DOsNL. For the safe configurations, the best performing configuration with ∆tb = 10.2%
was icc-SO2. Discarding the ICC compiler, the best performing configuration was clang-SO2L
with ∆tb = 8.1%.

Of the top 20 performing configurations, 19 unsafe, 18 safe, and 15 very safe were statically
linked, and of the unsafe, 15 were compiled with -Ofast, 13 were using native architecture flags,
and 8 were using LTO. Of the 20 worst performing configurations, 15 were dynamically linked, 19
were compiled with -Os, 9 were using native architecture flags, and 12 were using LTO.

Table 2: Top 20 performing configurations with respect to ∆tb with ATLAS geometry on PMPE

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

clang-SOfastNL 2.02(1) 17.3 2.07(1) 42.91(4) 0.19
gcc8-SOfastNL 2.07(1) 15.1 2.19(1) 42.92(4) 0.17
clang-SOfastN 2.09(1) 14.6 2.12(1) 42.87(5) 0.30
gcc8-SOfastN 2.10(1) 14.0 2.14(1) 42.93(4) 0.15
gcc4-SOfastN 2.10(1) 14.0 2.15(1) 42.98(4) 0.03
icc-SOfastN 2.12(1) 13.3 2.16(1) 42.93(4) 0.14
gcc4-SOfastNL 2.12(1) 13.1 2.16(1) 43.02(4) 0.05
gcc6-SOfastN 2.13(1) 12.9 2.13(1) 42.95(4) 0.11
clang-SOfastL 2.13(1) 12.8 2.21(1) 42.99(4) 0.00
clang-DOfastNL 2.13(1) 12.7 2.13(1) 43.07(4) 0.17
icc-SOfast 2.16(1) 11.8 2.20(1) 42.98(4) 0.02
gcc6-SOfastNL 2.17(1) 11.2 2.23(1) 42.96(4) 0.08
gcc8-SOfast 2.18(1) 10.8 2.21(1) 42.96(4) 0.09
gcc6-SOfast 2.18(1) 10.7 2.24(1) 42.94(4) 0.13
gcc8-SOfastL 2.19(1) 10.4 2.21(1) 43.05(4) 0.12
icc-SO2 2.19(1) 10.2 2.24(1) 42.97(4) 0.05
clang-SO2NL 2.20(1) 10.0 2.24(1) 43.04(4) 0.12
icc-SO3 2.20(1) 10.0 2.25(1) 42.97(4) 0.05
gcc6-SO3N 2.20(1) 9.9 2.22(1) 43.00(4) 0.01
gcc4-SO3N 2.21(1) 9.5 2.26(1) 43.07(4) 0.18

Table 3: 20 worst performing configurations with respect to ∆tb with ATLAS geometry on PMPE

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

icc-DOsN 2.67(1) −9.3 2.62(1) 42.96(4) 0.08
gcc4-SOsNL 2.70(1) −10.6 2.70(1) 42.95(4) 0.10
gcc8-SOsL 2.73(1) −11.5 2.73(1) 42.99(4) 0.00
gcc8-DOsN 2.74(1) −12.0 2.74(1) 42.96(4) 0.08
gcc6-SOsNL 2.76(1) −12.9 2.70(1) 43.00(5) 0.01
gcc4-SOsL 2.77(1) −13.5 2.73(1) 42.99(4) 0.00
gcc6-DOsN 2.79(1) −14.3 2.77(1) 42.96(4) 0.08

Continued on next page
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Table 3: 20 worst performing configurations with respect to ∆tb with ATLAS geometry on PMPE

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc4-DOsN 2.79(1) −14.4 2.82(1) 42.95(4) 0.11
icc-DOs 2.80(1) −14.7 2.90(1) 42.97(4) 0.05
icc-DOsL 2.82(1) −15.6 2.75(1) 42.97(4) 0.05
gcc4-DOs 2.83(1) −16.0 2.83(1) 42.99(4) 0.00
gcc4-DOsNL 2.86(1) −17.1 2.88(1) 43.01(4) 0.03
gcc8-DOsNL 2.86(1) −17.1 2.88(1) 42.98(4) 0.04
gcc6-SOsL 2.86(1) −17.2 2.78(1) 42.99(4) 0.00
gcc8-DOs 2.87(1) −17.5 2.86(1) 42.99(4) 0.00
gcc4-DOsL 2.90(1) −18.6 2.92(1) 42.99(4) 0.00
gcc6-DOs 2.90(1) −18.8 2.86(1) 42.99(4) 0.00
gcc6-DOsL 2.91(1) −19.1 2.92(1) 42.99(4) 0.00
gcc8-DOsL 2.92(1) −19.4 2.86(1) 42.99(4) 0.00
gcc6-DOsNL 2.94(1) −20.1 2.84(1) 42.96(4) 0.09

For ATLAS geometry on Aurora the range in the 20-top performing configurations, see Table 4,
was ∆tb = 16.1% for clang-SOfastNL to ∆tb = 9.8% for gcc4-SOfastL while the corresponding
range in worst performing configurations, see Table 5, was ∆tb = −9.6% for gcc8-SOsNL to
∆tb = −33.8% for gcc4-DOsNL. For the safe configurations, the best performing configuration
with ∆tb = 8.24% was gcc4-SO2.

Of the top 20 performing configurations, 19 unsafe and 16 safe were statically linked, and of
the unsafe, 14 were compiled with -Ofast, 15 used native architecture flags, and 11 used LTO. Of
the 20 worst performing configurations, 13 were dynamically linked, 19 were compiled with -Os,
9 used native architecture flags, and 12 used LTO.

Table 4: Top 20 performing configurations with respect to ∆tb with ATLAS geometry on Aurora

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

clang-SOfastNL 1.87(1) 16.1 1.85(1) 42.91(4) 0.19
gcc8-SOfastNL 1.89(1) 15.5 1.89(1) 42.92(4) 0.17
gcc6-SOfastN 1.93(1) 13.8 1.92(1) 42.97(4) 0.06
clang-SOfastL 1.93(1) 13.7 1.98(1) 42.99(4) 0.00
gcc4-SOfastN 1.93(1) 13.6 1.87(1) 42.86(5) 0.31
clang-SOfastN 1.93(1) 13.5 1.92(1) 42.87(5) 0.30
gcc8-SOfastN 1.94(1) 13.2 1.90(1) 42.93(4) 0.15
gcc4-SOfastNL 1.94(1) 13.2 1.92(1) 42.95(4) 0.09
gcc6-SO2N 1.94(1) 13.1 1.95(1) 42.90(4) 0.22
gcc6-SOfastNL 1.97(1) 12.0 1.93(1) 42.87(5) 0.28
gcc8-SOfastL 1.97(1) 11.7 1.93(1) 43.05(4) 0.12
clang-DOfastNL 1.98(1) 11.5 1.99(1) 43.07(4) 0.17
gcc6-SOfast 1.99(1) 11.0 2.20(1) 42.94(4) 0.13
gcc8-SOfast 1.99(1) 10.7 2.02(1) 42.96(4) 0.09
gcc8-SO3NL 2.00(1) 10.7 1.96(1) 42.90(4) 0.21
gcc8-SO3N 2.00(1) 10.4 2.06(1) 42.97(4) 0.05

Continued on next page
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Table 4: Top 20 performing configurations with respect to ∆tb with ATLAS geometry on Aurora

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc4-SO3NL 2.00(1) 10.4 1.99(1) 42.88(4) 0.27
gcc4-SO3N 2.01(1) 10.1 1.98(1) 43.07(4) 0.18
gcc6-SO2NL 2.01(1) 10.1 1.91(1) 42.96(4) 0.08
gcc4-SOfastL 2.01(1) 9.8 2.01(1) 42.91(4) 0.18

Table 5: 20 worst performing configurations with respect to ∆tb with ATLAS geometry on Aurora

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc8-SOsNL 2.45(1) −9.6 2.42(1) 42.91(4) 0.20
gcc4-SOs 2.45(1) −9.8 2.53(1) 43.03(4) 0.08
gcc4-SOsNL 2.48(1) −10.8 2.42(1) 42.95(4) 0.10
gcc8-DOsN 2.51(1) −12.3 2.46(1) 42.96(4) 0.08
gcc4-SOsL 2.51(1) −12.3 2.49(1) 42.99(4) 0.00
gcc8-SOsL 2.51(1) −12.4 2.49(1) 42.99(4) 0.00
gcc8-DO3 2.53(1) −13.3 2.48(1) 42.99(4) 0.00
gcc4-DOsN 2.54(1) −13.6 2.47(1) 42.95(4) 0.11
gcc6-SOsL 2.54(1) −13.9 2.55(1) 42.99(4) 0.00
gcc6-DOsN 2.55(1) −14.3 2.53(1) 42.96(4) 0.08
gcc6-SOsNL 2.56(1) −14.5 2.50(1) 43.00(5) 0.01
gcc8-DOs 2.57(1) −15.2 2.54(1) 42.99(4) 0.00
gcc8-DOsNL 2.59(1) −16.0 2.52(1) 42.98(4) 0.04
gcc4-DOs 2.60(1) −16.6 2.56(1) 42.99(4) 0.00
gcc6-DOsNL 2.64(1) −18.2 2.58(1) 42.96(4) 0.09
gcc8-DOsL 2.65(1) −18.8 2.60(1) 42.99(4) 0.00
gcc6-DOsL 2.68(1) −20.0 2.64(1) 42.99(4) 0.00
gcc6-DOs 2.70(1) −21.0 2.57(1) 42.99(4) 0.00
gcc4-DOsL 2.76(1) −23.6 2.58(1) 42.99(4) 0.00
gcc4-DOsNL 2.99(1) −33.8 2.83(1) 43.01(4) 0.03

For CMS geometry on PMPE the range in the 20-top performing configurations, see Table 6,
was ∆tb = 18.9% for icc-SOfastN to ∆tb = 10.1% for gcc8-SO2NL while the corresponding range
in worst performing configurations, see Table 7, was∆tb = −15.7% for gcc8-DOs to∆tb = −57.9%
for icc-DO2L. For the safe configurations, the best performing configuration with ∆tb = 15% was
icc-SO2. Discarding the ICC compiler, the best performing configuration was clang-SO3L with
∆tb = 9.5%.

Of the top 20 performing configurations, 19 unsafe, 17 safe, and 15 very safe were statically
linked, and of the unsafe, 13 were compiled with -Ofast, 13 used native architecture instructions,
and 5 used LTO. Of the 20 worst performing configurations, 14 were dynamically linked, 8 were
compiled with -Os, 16 used LTO (note: primarily ICC), and 8 using native architecture flags.
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Table 6: Top 20 performing configurations with respect to ∆tb with CMS geometry on PMPE

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

icc-SOfastN 1.062(4) 18.9 1.077(4) 42.98(4) 0.02
icc-SOfast 1.095(4) 16.4 1.114(4) 42.95(4) 0.05
icc-SO2 1.115(4) 14.9 1.116(4) 42.98(4) 0.00
icc-SO2N 1.126(4) 14.1 1.138(4) 42.97(4) 0.00
gcc6-SOfastN 1.133(4) 13.5 1.168(4) 42.99(4) 0.04
gcc8-SOfastN 1.134(4) 13.4 1.141(4) 43.03(4) 0.12
icc-SO3 1.136(4) 13.3 1.150(4) 42.98(4) 0.00
gcc4-SOfastNL 1.137(4) 13.2 1.142(4) 42.96(4) 0.03
gcc8-SOfastNL 1.138(4) 13.2 1.161(4) 43.00(4) 0.05
gcc4-SOfastN 1.143(4) 12.7 1.135(4) 42.96(4) 0.04
icc-SO3N 1.144(4) 12.7 1.143(4) 42.97(4) 0.00
gcc6-SOfastNL 1.163(4) 11.3 1.177(4) 42.99(4) 0.03
gcc4-SOfast 1.163(4) 11.2 1.178(4) 42.89(4) 0.21
gcc8-SOfastL 1.167(4) 10.9 1.188(4) 42.99(4) 0.03
gcc6-SOfast 1.169(4) 10.8 1.207(4) 42.93(4) 0.10
gcc8-SOfast 1.173(4) 10.5 1.187(4) 42.89(4) 0.19
gcc4-SO3N 1.173(4) 10.5 1.183(4) 42.92(4) 0.12
icc-DOfastN 1.173(4) 10.4 1.191(4) 42.96(4) 0.05
gcc6-SO3N 1.177(4) 10.2 1.173(4) 42.93(4) 0.10
gcc8-SO2NL 1.178(4) 10.1 1.186(4) 42.92(4) 0.13

Table 7: 20 worst performing configurations with respect to ∆tb with CMS geometry on PMPE

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc8-DOs 1.515(5) −15.7 1.519(5) 42.98(4) 0.00
gcc4-DOsN 1.520(5) −16.0 1.488(5) 42.93(4) 0.11
gcc4-DOs 1.521(5) −16.1 1.486(5) 42.98(4) 0.00
gcc6-DOsL 1.522(5) −16.2 1.585(6) 42.98(4) 0.00
gcc6-DOs 1.529(5) −16.7 1.531(5) 42.98(4) 0.00
gcc8-DOsL 1.534(5) −17.1 1.512(5) 42.98(4) 0.00
gcc6-DOsNL 1.536(5) −17.2 1.497(5) 42.99(4) 0.03
gcc4-DOsL 1.585(5) −20.9 1.557(5) 42.98(4) 0.00
icc-SOfastNL 1.843(12) −40.7 1.840(13) 42.92(4) 0.14
icc-SO2NL 1.857(12) −41.7 1.871(13) 42.98(4) 0.00
icc-SO2L 1.899(13) −44.9 1.890(13) 43.00(4) 0.05
icc-SO3NL 1.906(13) −45.5 1.888(13) 42.99(4) 0.03
icc-SOfastL 1.926(13) −47.0 1.899(13) 42.89(4) 0.19
icc-SO3L 1.933(13) −47.5 1.951(13) 43.00(4) 0.05
icc-DO2NL 1.987(14) −51.6 2.016(14) 43.03(4) 0.12
icc-DOfastNL 2.000(14) −52.6 1.985(13) 43.02(4) 0.10
icc-DO3NL 2.028(14) −54.8 2.001(14) 43.03(4) 0.12
icc-DOfastL 2.028(13) −54.8 2.006(13) 42.96(4) 0.05
icc-DO3L 2.047(14) −56.2 2.050(14) 43.01(4) 0.08
icc-DO2L 2.069(14) −57.9 2.020(14) 43.01(4) 0.08
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For CMS geometry on Aurora the range in the 20 top-performing configurations, see Table 9,
was∆tb = 13.3% for gcc8-SOfastNL to∆tb = 8.8% for gcc4-SO2NL while the corresponding range
in worst performing configurations, see Table 8, was∆tb = −10.5% for gcc4-SOL to∆tb = −22.6%
for gcc4-DOsL. For the configurations, the best performing configuration with ∆tb = 8.75% was
clang-SO2L.

Of the top 20 performing configurations, 20 unsafe and 17 safe were statically linked, and of
the unsafe, 11 were compiled with -Ofast, 15 used native architecture flags, and 10 used LTO. Of
the 20 worst performing configurations, 15 were dynamically linked, 17 were compiled with -Os,
14 used LTO, and 9 used native architecture flags.

Table 8: 20 worst performing configurations with respect to ∆tb with CMS geometry on Aurora

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc4-SOsL 1.306(4) −10.5 1.265(5) 42.98(4) 0.00
gcc8-SOsL 1.307(4) −10.6 1.274(5) 42.98(4) 0.00
gcc4-SOsNL 1.309(4) −10.7 1.258(5) 42.87(4) 0.25
gcc6-SOsL 1.321(5) −11.8 1.293(5) 42.98(4) 0.00
gcc6-SOsNL 1.328(5) −12.4 1.279(5) 42.92(4) 0.13
gcc6-DO2NL 1.333(5) −12.8 1.285(4) 42.93(4) 0.10
gcc8-DOsN 1.337(5) −13.1 1.321(5) 42.92(4) 0.13
gcc4-DO3L 1.346(4) −13.9 1.296(4) 42.98(4) 0.00
gcc4-DOsN 1.362(5) −15.2 1.298(4) 42.93(4) 0.11
gcc8-DOsNL 1.374(5) −16.3 1.323(5) 43.03(4) 0.12
gcc4-DOsNL 1.383(5) −17.0 1.332(5) 43.00(4) 0.06
gcc8-DOs 1.383(5) −17.0 1.340(5) 42.98(4) 0.00
gcc6-DOsN 1.385(5) −17.2 1.337(5) 42.89(4) 0.19
gcc8-DOsL 1.386(5) −17.3 1.376(5) 42.98(4) 0.00
gcc6-DOsNL 1.392(5) −17.8 1.341(5) 42.99(4) 0.03
gcc6-DO3L 1.398(4) −18.3 1.308(4) 42.98(4) 0.00
gcc6-DOs 1.406(5) −18.9 1.356(5) 42.98(4) 0.00
gcc4-DOs 1.415(5) −19.7 1.338(5) 42.98(4) 0.00
gcc6-DOsL 1.423(5) −20.4 1.367(5) 42.98(4) 0.00
gcc4-DOsL 1.450(5) −22.6 1.385(5) 42.98(4) 0.00
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Table 9: Top 20 performing configurations with respect to ∆tb with CMS geometry on Aurora

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc8-SOfastNL 1.024(4) 13.3 1.020(4) 43.00(4) 0.05
gcc4-SOfastNL 1.026(4) 13.2 1.034(4) 42.84(4) 0.31
gcc8-SO2NL 1.026(4) 13.2 1.012(4) 42.92(4) 0.13
gcc4-SOfastN 1.027(4) 13.1 1.025(4) 42.97(4) 0.03
gcc8-SO2N 1.028(3) 13.0 1.005(4) 42.91(4) 0.15
gcc8-SOfastN 1.031(4) 12.7 1.027(4) 43.03(4) 0.12
gcc6-SOfastNL 1.053(4) 10.9 1.032(4) 42.91(4) 0.16
gcc6-SOfastN 1.053(4) 10.9 1.031(4) 42.92(4) 0.13
gcc8-SO3NL 1.055(4) 10.7 1.060(4) 42.91(4) 0.15
gcc4-SOfast 1.057(4) 10.6 1.050(4) 42.89(4) 0.21
gcc4-SO3NL 1.058(4) 10.5 1.030(4) 43.00(4) 0.06
gcc4-SOfastL 1.062(4) 10.2 1.046(4) 43.04(4) 0.14
gcc8-SO3N 1.066(4) 9.8 1.064(4) 42.93(4) 0.11
gcc6-SO3NL 1.068(4) 9.7 1.064(4) 42.96(4) 0.04
gcc4-SO3N 1.070(4) 9.5 1.046(4) 42.92(4) 0.12
gcc8-SOfastL 1.070(4) 9.5 1.053(4) 42.99(4) 0.03
gcc8-SOfast 1.071(4) 9.4 1.055(4) 42.89(4) 0.19
gcc4-SO2N 1.073(4) 9.2 1.076(4) 42.94(4) 0.09
gcc6-SOfast 1.075(4) 9.0 1.088(4) 42.93(4) 0.10
gcc4-SO2NL 1.078(4) 8.8 1.062(4) 42.96(4) 0.04
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4.2 Physics validation
For the second part of the project, we have carried out measurements of the energy deposited
per event, E, distribution for each configuration. Furthermore, we have recorded the final random
number generated by HepExpMT,X, for each configuration in order to determine if any differences
in random number generation have occurred throughout the simulation process. We will present
here both the reference results as well as demonstrate three seemingly distinct categories of ∆E.

The reference E distributions for both ATLAS and CMS can be found in Figure 10. The
distribution is similar between the two detectors and identical between hardware platforms. The
shape of the distribution is a single peak with a small bump at near E = 50GeV, corresponding
to events that deposited all of their energy during the simulation. It is important to note here
that the validation code considers any energy deposited through any interaction regardless of if
the location in the detector is capable of measuring energy.
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Figure 10: Reference energy measurements with the validation code using the ATLAS geometry
(left) and the CMS geometry (right) on both Aurora and PMPE. Average energy deposited within
the geometry per event is µE = 42.99(3)GeV (ATLAS) and µE = 42.98(3)GeV CMS. Note: The
distributions within the figures are identical event by event.

While compiling with LTO, GCC 6 and 8 both report multiple ODR violations in the various
Geant4 manager classes and some in its internal libraries. Energy distributions are event by
event identical within a given configuration both between Aurora and PMPE and between two
independent runs for all configurations except those listed in Table 10.

The final random number generated in HepExpMT was

• X = 0.713087 (ATLAS), X = 0.70476 (CMS) for the Clang and ICC compilers

• X = 0.137428 (ATLAS), X = 0.231357 (CMS) for the GCC compilers

This difference indicates that somewhere throughout the simulation process, the sequence of
random numbers that are generated by each compiler family diverges. As the reproducibility of
a Monte Carlo experiment is dependent on the stability of its random number generators, which
is why an arbitrary but defined number is used to start the random number generation, finding
evidence of instability is concerning. This observed difference does not tell us where it originates
or which, if any, of the sequences is correct.



4 RESULTS 30

We observe three seemingly distinct sources of ∆E throughout our measurements of roughly
equal magnitude:

1. Unsafe optimizations: Applying unsafe math optimizations through -Ofast, using native
architecture instructions, or using the ICC compiler.

2. Choice of compiler: Configurations using one of the GCC compilers will produce different
output from configurations using Clang, even for safe configurations.

3. Platform differences: For a set of configurations using -Ofast with GCC 4 and 6, we see
differences between hardware platforms for the same configurations (see Table 10). Notably,
one of the configurations in this category does not use native architecture optimizations,
where it could be expected to see platform-dependent differences.

For the unsafe optimizations category and choice of compiler category respectively, a compar-
ison between the E distribution of gcc8-SOfastNL with the CMS geometry and clang-DO2 with
the ATLAS geometry on PMPE with the corresponding reference configuration can be found in
Figure 11. For both examples, the distributions are clearly distinct from the reference distribution
but still similar, ∆E = 0.1%. Finally, a list of all nine configurations in the platform category can
be found in Table 10. All of the platform category configurations are using -Ofast with either
GCC 4 or 6, and all but one, gcc4-DOfastL, uses native architecture optimizations.

Figure 11: Energy deposition in two configurations exhibiting two of the seemingly distinct
categories of sources of ∆E compared with the corresponding reference configurations. The gcc8-
SOfastNL (left) uses both native architecture optimizations and the unsafe math optimizations
while clang-DO2 (right) uses a different compiler than the reference configuration. Average energy
deposited per event is µE = 43.00(3)GeV (left) and µE = 43.03(3)GeV (right). Corresponding
absolute relative difference with respect to the reference configuration ∆E = 0.1% (left) ∆E =
0.1% (right).
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Table 10: Average energy deposited per event for all configurations where the E distribution
differed between Aurora and PMPE. This behavior is unique for the GCC 4.9.4 and GCC 6.3.0
compilers using -Ofast. Notably, one of the nine configurations is not using native architecture
optimizations, where such differences could be expected.

Configuration ATLAS, PMPE ATLAS, Aurora CMS, PMPE CMS, Aurora
(GeV) (GeV) (GeV) (GeV)

gcc4-DOfastN 42.93 42.97 42.95 42.99
gcc4-DOfastNL 42.92 42.91 43.00 42.93
gcc4-SOfastL 42.95 42.91 43.03 43.04
gcc4-SOfastN 42.98 42.86 42.96 42.97
gcc4-SOfastNL 43.02 42.95 42.96 42.84
gcc6-DOfastN 42.98 42.89 42.91 42.98
gcc6-DOfastNL 42.95 42.93 42.95 43.02
gcc6-SOfastN 42.95 42.97 42.99 42.92
gcc6-SOfastNL 42.96 42.87 42.99 42.91
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5 Discussion
5.1 Physics validation
We observe at least three sources of ∆E in the E measurements. As expected, the unsafe con-
figurations, native architecture flags and -Ofast, and configurations with ICC, which use unsafe
methods by default, do not produce the same output as the corresponding safe configurations.
However, while the safe options of the three GCC compilers produce event-wise identical output
to each other and all safe configurations with Clang produce event-wise identical output to each
other, the GCC family and Clang do not produce the same output (∆E = 0.1%).

What distinguishes GCC and Clang (and ICC) is that they output different values for X.
Notably, there is no difference between safe and unsafe methods to be seen in X. As discussed in
Section 2.3.1, compilers are allowed to optimize based on UB. If there is UB either in Geant4 or
the underlying random number generator code from CLHEP, it is possible for two compilers to
produce different output.

As can be seen in Table 10, we observe a platform-specific difference in the E distribution
for some of the -Ofast configurations with GCC 4.9.4 and GCC 6.2.0. This is a bit troubling
as accounting for what hardware simulations will run on is going to be a lot harder than with
the build configurations. Furthermore, one of the configurations that is part of Table 10 does
not use native architecture flags, gcc4-DOfastL. If platform dependence was limited to runs with
the native architecture flags, these results would not be outside of what we expected. Given that
the issue seems limited to the two earlier versions of GCC, it is possible that this is a bug which
has since been patched. We could also perform the validation runs on hardware which differs
significantly from Aurora and PMPE, which both run Intel CPU’s from the same generation.

As ∆E < 0.35% for all configurations, for compute-intensive simulations with a precision that
cannot resolve such differences using unsafe configurations could well be considered. Regardless,
the difference between the GCC and Clang compilers that we have observed do imply that sim-
ulated data that does not report how it was built might not be perfectly reproducible. Whether
or not our source of ∆E is UB in either Geant4 or CLHEP, it is not surprising that large and
complex software can contain these kinds of bugs. Therefore, if we do not know the compiler that
was used to build any piece of scientific software of similar scope, we cannot know if optimizations
based on UB might have altered the results.
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5.2 Performance of Geant4 simulations
As can be seen in Figure 4 and Figure 5, there are at least two kinds of events present, a fast and a
slow kind. A straight-forward explanation of this phenomenon lies in the detector geometry. Our
π− particles are distributed isotropically, and their trajectories will, therefore, have different η.
The detectors that any given η direction point through are very different (see Table 1 for details).
As discussed in Section 2.2.2, Geant4 performance is expected to be sensitive to the number of
particles produced as a π− passes through the detector; the length traveled through calorimeters
which produce particle showers should have a clear impact on performance. Therefore. it seems
likely that the event categories correspond to trajectories passing through either the barrel or
end cap calorimeters. Our GDML file for ATLAS also lacks the EMEC (Electromagnetic Endcap
Calorimeter) calorimetry in the forward region.

While it is hard to draw overarching conclusions, and there are exceptions to every rule, there
are some observations we can make with some confidence. Among the top-performing configu-
rations for both ATLAS and CMS with respect to ∆tb, we find: statically linked configurations
(96%), configurations using -Ofast (66%), and configurations using native architecture optimiza-
tions (70%). On the flip side, the slower region is dominated by dynamic linking (71%) and -Os
(79%).

These results are not surprising, optimizing for small size is not going to be helpful when your
code is already large, and, as discussed in Section 2.3.1, there is a runtime component of dynamic
linking which has a prize. Finally, the -Ofast and native architecture optimizations are primarily
optimizations of floating-point code, which is a large portion of what simulation code like Geant4
is occupied with.

It is interesting to compare the relative performance improvements presented in Figures 6
to 8. In general, results are more stable across hardware platforms and geometry with the GCC
compilers, although there are outliers such as gcc6-DOfastNL in Figure 6. Builds with Clang, as
can be seen in Figure 7, improved more on PMPE than on Aurora, and there are several cases
where the configuration performs better with one geometry than the other.

As can be seen in Table 7 or Figure 8, something goes wrong with several ICC configurations
where LTO is used with performance drops in the range −58% < ∆tb < −40% for the CMS
geometry. Comparing the distributions in Figure 9, we see that the pathological distribution is
significantly different. Rather than a sharp peak for fast events and a broader peak for slow events,
there is a single peak with a long tail. It is hard to speculate about the sources of this issue without
further research. Regardless, this result highlights the importance of measuring before and after
switching configurations. It is regrettable that we were unable to compile Geant4 with the version
of ICC on Aurora as it would be interesting to see if this issue occurs on both hardware platforms.

We do not see any significant difference in runtime performance that can be attributed to the
choice of compiler or usage of LTO in these studies. However, performance is not the only reason
why we could benefit from utilizing newer compilers or techniques such as LTO. As we have seen,
LTO has already provided information regarding potential ODR violations. These warnings were
only available in the later versions of GCC. Furthermore, the C++ language is evolving, and being
able to use more recent versions of compilers can allow physicists to write code that is more likely
to be correct without giving up the performance advantages of compiled languages. As discussed
earlier, GCC 8 does not seem to produce the same issue as the earlier versions regarding platform
differences in Table 10, suggesting that something might have been patched.
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5.3 Outlook
Our primary purposes have been to investigate the potential for improving the runtime perfor-
mance of Geant4 simulations for ATLAS using different build time methods and perform validation
of the physics output of these methods. Studying any individual method in detail or investigating
any of the curious observations, such as non-zero ∆E with safe methods, in detail is beyond the
scope of this project. However, the measurement setup we have created could be incorporated into
future studies and we can, based on our theoretical discussion and our observations, here propose
some potential avenues.

The observed differences inX and corresponding non-zero∆E between safe configurations with
the GCC family and Clang is arguably the most significant result of our validation measurements.
While the resulting relative difference is small (∆E = 0.1%), the core issue could, if part of software
which is used throughout ATLAS such as CLHEP or Geant4, produce worse errors elsewhere. This
is particularly true if the core issue is UB.

The validation code could be instrumented to record the next random number in the event
action sections, either at select events or for every event. This would provide guidance for further
investigations. If the recorded numbers are different before the first event, there is no need to
look into the event processing parts of Geant4. If the difference appears first during the event
processing state, the source could lie in a specific physics process or model. Since the process is
deterministic, the events near the first deviation could then be explored in further detail.

Another fairly simple method that could determine if the source of UB lies in the random
number generation of CLHEP is the following. As Geant4 is modular in nature, we can exchange
the current random number generator for a generator that produces a known stream of random
numbers, e.g., by reading from a preallocated array. If the source of UB lies in the random number
generation, then X for runs with this new generator should be equal across compilers. As the
validation code only uses standard Geant4 features, this should be trivial to implement. A similar
method that works if the difference is due to UB in CLHEP would be to compile CLHEP without
optimizations. If the differences in X disappear, we have our culprit.

Diagnosing UB is challenging, especially if the UB in question is ODR violation. We already
have some evidence for ODR violation in Geant4 from GCC version 6 and 8 when using LTO.
There are further methods that could be integrated into our setup that could provide significant
help. GCC and Clang both ship with so-called sanitizer options for both address/memory safety
and diagnosing common sources of UB by inserting compiler guided instrumentation code into the
binary that can help out.

The scope of this project has been limited to a single particle, π−, with a specific energy. It
would be a good idea to study the same setup with different particles and energies or to study
different physics by altering the physics list that we use. To study this setup further, one could
attempt to identify either what parts of the simulation code are consuming the most CPU resources
or what parts seem to benefit more or less from the kinds of transformations we have studied.
This could be done using operating tools such as perf, which our setup already has support for.

A simple method for investigating this difference further, which would be straight forward
to integrate into the current validation code, would be recording η for each event along with
the tv measurement and separating the two regions. In order to ensure that we do not violate
our assumption in Equation (6) regarding tmeasured, it would be recommended that the current
measurement of E be disabled during the measurement. If possible, finding a GDML file which
includes the EMEC calorimeters could also provide a better picture.

-Ofast is associated with some degree of ∆E. However, as mentioned in Section 2.3.1, -Ofast
is a group of optimizations. It would be interesting to compare these options on their own. It
is possible that there are options that contribute more to ∆E but provide little performance
improvement in which case, we could mitigate some of the energy difference and still get most of
the benefits of -Ofast.
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5.4 Conclusion
We have carried out a broad survey of 156 configurations to see if the performance of Geant4
simulations for the ATLAS experiment can be improved at build time while simultaneously per-
forming validation of the results. The project setup that we have developed, thanks to building
an isolated environment, has proven to be easy to adapt to new environments with drastically
different properties.

First and foremost, using statically linked libraries seems to produce a consistent performance
improvement, although measurements before and after will always be necessary given examples
such as Figure 9, without affecting the physics results. However, doing so is not going to be
easy, Athena was developed with “Extensive use of dynamic libraries” as one of its three goals
[7]. Researching how static linking can be introduced into the ATLAS software ecosystem while
maintaining the simplicity for users that Athena currently provides could prove to be a fruitful
endeavor.

We do not believe it is going to be worth the effort to continue studying -Os. However, -Ofast
has shown to be capable of producing decent performance improvements. We have proposed some
ways that we could study -Ofast further and potentially minimize ∆E while retaining some of
the performance improvements.

We have seen some evidence of native architecture flags providing a performance improvement
on its own. However, given that implementing these optimizations is likely much harder on a
large scale, using the wrong instructions can either slow down or crash a system, further studies
of utilizing them might not be worth the effort. For use on standalone systems, however, it is
possible that individual researchers can gain performance by using the flags in their computing.
As always, measurements of the impact before and after turning on these optimizations will be
important to avoid pathological cases.

The observation of both hardware-dependent ∆E and ∆E in safe configurations has interesting
implications, even though their magnitude is relatively small. While the differences likely are
negligible in most situations, any results relying on simulations such as ours that do not report
how they were built and on what hardware they ran on might not be perfectly reproducible. This
is not to say that these results are unusable, we would be in serious trouble if it was, but there
is an inherent uncertainty originating in how we build our projects that we should be aware of
and document. For the second category, potential UB or ODR violations are serious; a program
containing them has no guarantees to be correct. It is possible that what is the source of a small
∆E today can become much more serious as ATLAS software evolves.

In this project, we have found that runtime performance can be improved with ∼ 19% in the
best case and likely ∼ 10% at least if the build method is chosen well. With all of this in mind,
our recommendations for the ATLAS experiment are:

• Continue research into the possibility of using static libraries in Athena. Static linking seems
to provide consistent performance benefits without producing any ∆E.

• Consider utilizing unsafe configurations for simulations where the required resolution can
allow it, and testing before and after to ensure that there is a performance gain, and that
situations like Figure 9 are avoided.

• Consider reporting build configuration when reporting simulated data if reproducibility is
to be claimed.

• Consider integrating LTO with recent versions of compilers into the development and testing
of ATLAS simulation software to be able to catch issues such as ODR.

• Investigate the source of ∆E in the safe configurations with Clang to be able to determine
its severity, in particular with respect to UB and ODR violations.
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Appendix

A Compiler optimization by example
We will be demonstrating compiler optimization briefly here using pseudo-assembly code. To get
started, let’s look at the syntax we will be using and the instructions we will see

1 .L5

this is a label that other parts of the code can jump to.
1 sub eax eax

This is an instruction. The target, i.e. where the result will be stored, is the first argument.
The purpose of the second argument depends on the instruction but we will refer to it as the source.
Here, it corresponds to the value that is to be subtracted from the target. Many instructions will
in addition to performing the operation set a number of flags. In our example, this could be a
flag which specifies if the previous operation resulted in a negative number. In this example, both
the optional source and target arguments are registers (the same in this case). Registers are small
pieces of memory that can hold a single piece of data such as a number or an address.

Two important categories of instructions that we will encounter are the jumps and moves.

1 mov rax rdi
2 mov QWORD PTR [rbp-24], rdi

Mov, as the name suggests, takes a value from its source and puts it into the target. While
mov is straight forward to understand, the arguments it takes can be quite interesting. In the
first example, we move a value from one register into another. In the second example, we are
calculating an address ([rbp-24] would be the address corresponding to value in rbp - 24) and
using this location as our target (QWORD PTR [rbp-24]). Effectively, we are carrying out two
steps in one.

1 cmp edx, eax
2 jle .L5

Jump instructions will jump to a label depending on a condition. The condition is not part
of the jump instruction but instead, the jump instructions will use the flags set by the previous
instruction. In our example, we calculate (edx - eax) and then jump to .L5 if the result is zero or
negative (jle: jump if less than or equal).

Finally, there is the lea instruction. Lea stands for Load Effective Address and is primarily
intended to be used to calculate addresses. However, it can be utilized to perform arithmetic

1 mov rax 4
2 lea rdx [0 + rax * 4]

The lea instruction here calculates the value that would correspond to the address 0 + 4*4
and stores it in rdx.
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Now we can get started with some optimizations. We will be working with the following piece
of C-style C++ code.

1 void bubblesort(int* arr, int n) {
2 for (int i = n-1; i > 0; i--) {
3 for (int j = 1; j < i+1; ++j) {
4 if (arr[j] > arr[j+1]) {
5 int tmp = arr[j];
6 arr[j] = arr[j+1];
7 arr[j+1] = tmp;
8 }
9 }

10 }
11 }

We can convert this to assembly with GCC as follows (assuming the function is stored in
bubblesort.cxx)

1 g++ -masm=intel -c bubblesort.cxx -S -o - | c++filt | grep -vE '\s+\.[a-z]'

The first flag tells GCC which assembly dialect we want to use. -S is the flag that tells GCC
to stop after generating assembly, and -o - means put the output directly to standard output. We
then do some filtering to make things easier to read.

By default, the compiler will generate a lot of boilerplate which we will skip here. The reader
is encouraged to try things out for themselves if they are interested.

The arguments of the function are passed in the registers rsi and rdi. rdi is our array, and rsi
is n. Note that registers beginning with r are 64-bit registers but have a corresponding name for
32-bit values beginning with e (e.g. rsi, esi are the same register). rbp is a register containing
information about where the stack starts.
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A.1 The unoptimized code
At -O0, most of the generated assembly is spent computing addresses. Registers are, in general,
not used to store values for very long, so the same computation has to be performed multiple times.
Additionally, a fair amount of instructions are spent managing 32-bit values in 64-bit registers.

1 bubblesort(int*, int):
2 .LFB0:
3 ;; Stack magnagement. Decrement stack pointer (top
4 ;; of stack is at low address)
5 ;; Store current base pointer, i.e. base of previous
6 ;; stack, at the current top of the stack (bottom of
7 ;; new stack frame)
8 push rbp
9 ;; Copy current stack pointer, top of previous

10 ;; stack, into the base pointer
11 mov rbp, rsp
12 ;; Copy function call variables from register into
13 ;; local variable
14 ;; rdi is the address of the array to sort
15 ;; esi has the value of n
16 mov QWORD PTR [rbp-24], rdi
17 mov DWORD PTR [rbp-28], esi
18 ;; Copy n from stack into eax
19 mov eax, DWORD PTR [rbp-28]
20 ;; Subtract one and store into stack variable i
21 sub eax, 1
22 mov DWORD PTR [rbp-4], eax
23 .L6:
24 ;; Jump to end if i is zero or negative
25 cmp DWORD PTR [rbp-4], 0
26 jle .L7
27 ;; j = 1
28 mov DWORD PTR [rbp-8], 1
29 .L5:
30 ;; Store i in register and compare with j. Jump to end
31 ;; of inner loop if i - j < 0
32 mov eax, DWORD PTR [rbp-4]
33 cmp eax, DWORD PTR [rbp-8]
34 jl .L3
35 ;; Copy j into register
36 mov eax, DWORD PTR [rbp-8]
37 ;; Extend size of the register to 64 bytes
38 cdqe
39 ;; Store the result of the computation 0 + j * 4 in
40 ;; rdx
41 lea rdx, [0+rax*4]
42 ;; Copy value of arr (an address) into rax
43 mov rax, QWORD PTR [rbp-24]
44 ;; Add 0 + j * 4 into the base address of arr
45 add rax, rdx
46 ;; Copy value att arr[0 + 0 + j * 4], i.e.
47 ;; arr[j] into register
48 mov edx, DWORD PTR [rax]
49 ;; Store j into register and extend size to 64-bit
50 mov eax, DWORD PTR [rbp-8]
51 cdqe
52 ;; k = j + 1
53 add rax, 1
54 ;; Compute 0 + (k) * 4, i.e. 0 + (j+1) * 4
55 lea rcx, [0+rax*4]
56 ;; Copy address of arr into rax
57 mov rax, QWORD PTR [rbp-24]
58 ;; Compute &arr[j+1] into rax
59 add rax, rcx
60 ;; Store arr[j+1] in eax
61 mov eax, DWORD PTR [rax]
62 ;; Compute edx - eax and jump if negative or zero
63 cmp edx, eax
64 jle .L4
65 ;; Copy j into register and extend
66 mov eax, DWORD PTR [rbp-8]
67 cdqe
68 ;; Compute 0 + j * 4
69 lea rdx, [0+rax*4]
70 ;; Copy address of arr into register
71 mov rax, QWORD PTR [rbp-24]
72 ;; Compute arr[j] and store into variable on stack
73 ;; (tmp)
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74 add rax, rdx
75 mov eax, DWORD PTR [rax]
76 mov DWORD PTR [rbp-12], eax
77 ;; Copy j into register, extend and add 1, compute
78 ;; corresponding length into memory
79 mov eax, DWORD PTR [rbp-8]
80 cdqe
81 add rax, 1
82 lea rdx, [0+rax*4]
83 ;; Compute address of arr[j+1]
84 mov rax, QWORD PTR [rbp-24]
85 add rax, rdx
86 mov edx, DWORD PTR [rbp-8]
87 ;; Perform sign-extension for a register other than
88 ;; rax/eax
89 movsx rdx, edx
90 ;; Compute &arr[j+1] into rcx
91 lea rcx, [0+rdx*4]
92 mov rdx, QWORD PTR [rbp-24]
93 add rdx, rcx
94 ;; Turn the value back to 32-bits
95 mov eax, DWORD PTR [rax]
96 ;; Store arr[j+1] into arr[j]
97 mov DWORD PTR [rdx], eax
98 ;;
99 mov eax, DWORD PTR [rbp-8]

100 cdqe
101 add rax, 1
102 lea rdx, [0+rax*4]
103 mov rax, QWORD PTR [rbp-24]
104 add rdx, rax
105 mov eax, DWORD PTR [rbp-12]
106 ;; Store arr[j] into arr[j+1]
107 mov DWORD PTR [rdx], eax
108 .L4:
109 ;; j++
110 add DWORD PTR [rbp-8], 1
111 jmp .L5
112 .L3:
113 ;; i--
114 sub DWORD PTR [rbp-4], 1
115 jmp .L6
116 .L7:
117 nop
118 pop rbp
119 ret
120 .LFE0:
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A.2 Local optimization
Okay, that was a lot of assembly. First, we will split the code into blocks. A block is defined by
a single entry and single output. We will then see what optimizations we can perform within a
block without any assumptions regarding other blocks. These are called local optimizations.

First out we have the stack management and setup block

1 bubblesort(int*, int):
2 .LFB0:
3 push rbp
4 mov rbp, rsp
5 mov QWORD PTR [rbp-24], rdi
6 mov DWORD PTR [rbp-28], esi
7 mov eax, DWORD PTR [rbp-28]
8 sub eax, 1
9 mov DWORD PTR [rbp-4], eax

We can begin by removing the stack management (-fomit-stack-pointer, turned on at -O1).
We already have n in a register, but we cannot assume that the memory location that we store it
into is not read later. We can skip one read from memory by moving n directly from esi to eax.

1 mov QWORD PTR [rbp-24], rdi
2 mov DWORD PTR [rbp-28], esi
3 mov eax, esi
4 sub eax, 1
5 mov DWORD PTR [rbp-4], eax

Not much shorter, but definitely more efficient. We now have three blocks that are trivial, so
we show them all here as one.

1 ;; First trivial block
2 .L6:
3 cmp DWORD PTR [rbp-4], 0
4 jle .L7
5 ;; Second trivial block
6 mov DWORD PTR [rbp-8], 1
7 ;; Third trivial block
8 .L5:
9 mov eax, DWORD PTR [rbp-4]

10 cmp eax, DWORD PTR [rbp-8]
11 jl .L3

Now we get to the point where we will be doing some computation. This is the first part of
the inner for-loop. First, we load 1 into j (1 was stored at rbp-8 in the second trivial block). Next,
we calculate the offset into the array which j corresponds to using the lea-instruction. We then
load arr[j] and repeat the process for j+1. Once everything is loaded, we compare and jump to
the j++ if the condition fails.

1 ;; 1, j (load)
2 mov eax, DWORD PTR [rbp-8]
3 cdqe
4 ;; 2, &[j]
5 lea rdx, [0+rax*4]
6 ;; 3, &arr (load)
7 mov rax, QWORD PTR [rbp-24]
8 ;; 4, &arr + &[j]
9 add rax, rdx

10 ;; 5, arr[j] (load)
11 mov edx, DWORD PTR [rax]
12 ;; 6, j (load)
13 mov eax, DWORD PTR [rbp-8]
14 cdqe
15 ;; 7, j+1
16 add rax, 1
17 ;; 8, &[j+1]
18 lea rcx, [0+rax*4]
19 ;; 9, &arr (load)
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20 mov rax, QWORD PTR [rbp-24]
21 ;; 10, &arr + &[j+1]
22 add rax, rcx
23 ;; 11, arr[j+1] (load)
24 mov eax, DWORD PTR [rax]
25 cmp edx, eax
26 jle .L4

In this block, we compute the following things:

1. j (load), r8

2. &[j]

3. &arr (load), r9

4. &arr + &[j]

5. arr[j] (load)

6. j (load), r8

7. j+1

8. &[j+1]

9. &arr (load), r9

10. &arr + &[j+1]

11. arr[j+1] (load)

We compute (load) j and &arr twice, we could keep it in a register instead. Let us use r8 and r9.

1 ;; 1, j (load)
2 mov r8, DWORD PTR [rbp-8]
3 cdqe
4 ;; 2, &[j]
5 lea rdx, [0+rax*4]
6 ;; 3, &arr (load)
7 mov r9, QWORD PTR [rbp-24]
8 ;; 4, &arr + &[j]
9 add rdx, r9

10 ;; 5, arr[j] (load)
11 mov edx, DWORD PTR [rax]
12 ;; 6, j + 1
13 add r8, 1
14 ;; 7, &[j+1]
15 lea rcx, [0+r8*4]
16 ;; 8, &arr + &[j+1]
17 add rcx, r9
18 ;; 9 arr[j+1] (load)
19 mov eax, DWORD PTR [rcx]
20 cmp edx, eax
21 jle .L4

We have saved 2 instructions. We will be able to reuse this idea in the next block. Beware,
this is a big one. We are now inside the if-statement.
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1 ;; 1, j (load)
2 mov eax, DWORD PTR [rbp-8]
3 cdqe
4 ;; 2, &[j]
5 lea rdx, [0+rax*4]
6 ;; 3, &arr (load)
7 mov rax, QWORD PTR [rbp-24]
8 ;; 4, &arr + &[j]
9 add rax, rdx

10 ;; 5, arr[j] (load)
11 mov eax, DWORD PTR [rax]
12 ;; 6, tmp = arr[j] (store)
13 mov DWORD PTR [rbp-12], eax
14 ;; 7, j (load)
15 mov eax, DWORD PTR [rbp-8]
16 cdqe
17 ;; 8, j + 1
18 add rax, 1
19 ;; 9, &[j+1]
20 lea rdx, [0+rax*4]
21 ;; 10, &arr (load)
22 mov rax, QWORD PTR [rbp-24]
23 ;; 11 &arr + &[j+1]
24 add rax, rdx
25 ;; 12, j (load)
26 mov edx, DWORD PTR [rbp-8]
27 movsx rdx, edx
28 ;; 13, &[j]
29 lea rcx, [0+rdx*4]
30 ;; 14, &arr (load)
31 mov rdx, QWORD PTR [rbp-24]
32 ;; 15, &arr + &[j]
33 add rdx, rcx
34 ;; 16, arr[j] (load)
35 mov eax, DWORD PTR [rax]
36 ;; 17, arr[j+1] = arr[j] (store)
37 mov DWORD PTR [rdx], eax
38 ;; 18, j (load)
39 mov eax, DWORD PTR [rbp-8]
40 cdqe
41 ;; 19, j+1
42 add rax, 1
43 ;; 20, &[j]
44 lea rdx, [0+rax*4]
45 ;; 21, &arr (load)
46 mov rax, QWORD PTR [rbp-24]
47 ;; 22, &arr + &[j]
48 add rdx, rax
49 ;; 23, tmp (arr[j]) (load)
50 mov eax, DWORD PTR [rbp-12]
51 ;; 24, arr[j+1] = tmp (store)
52 mov DWORD PTR [rdx], eax
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The computation this time is as follows

1. j (load), r8

2. &[j]

3. &arr (load), r9

4. &arr + &[j], r10

5. arr[j] (load), arr[r10], r13

6. tmp = arr[j] (store), tmp = arr[r10]

7. j (load), r8

8. j + 1, r11

9. &[j+1]

10. &arr (load), r9

11. &arr + &[j+1], r12

12. j (load), r8

13. &[j]

14. &arr (load), r9

15. &arr + &[j], r10

16. arr[j] (load), arr[r10], r13

17. arr[j] = arr[j+1] (store), arr[r10] = arr[r12]

18. j (load), r8

19. j + 1, r11

20. &[j+1]

21. &arr (load), r9

22. &arr + &[j+1], r10

23. tmp (load)

24. arr[j+1] = tmp (store), arr[r12] = tmp
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We can perform the same type of optimizations as in the previous block but in a much larger
scale. We can get rid of the second read of tmp but we cannot remove the store as we cannot
know that it is not used elsewhere.

We can also move things around to make it look prettier than before.

1 ;; 3, &arr (load)
2 mov r9, QWORD PTR [rbp-24]
3 ;; 1, j (load)
4 mov r8, DWORD PTR [rbp-8]
5 cdqe
6 ;; 2, j + 1 (part 1)
7 mov r11, r8
8 add r11, 1
9 ;; 2, &[j]

10 lea r10, [0+r8*4]
11 ;; 9, &[j+1]
12 lea r12, [0+r11*4]
13 ;; 4, &arr + &[j]
14 add r10, r9
15 ;; 11 &arr + &[j+1]
16 add r12, r9
17 ;; 5, arr[j] (load)
18 mov r13, DWORD PTR [r10]
19 ;; 5, arr[j+1] (load)
20 mov r15, DWORD PTR [r12]
21 ;; 6, tmp = arr[j] (store)
22 mov DWORD PTR [rbp-12], r13
23 ;; 17, arr[j] = arr[j+1] (store)
24 mov DWORD PTR [r10], r13
25 ;; 24, arr[j+1]
26 mov DWORD PTR [r12], r13

We now have three more trivial blocks. First, the block incrementing j, then the block decre-
menting i, and finally the return statement

1 ;; Fourth trivial block, j++
2 .L4:
3 add DWORD PTR [rbp-8], 1
4 jmp .L5
5 ;; Fifth trivial block, i--
6 .L3:
7 sub DWORD PTR [rbp-4], 1
8 jmp .L6
9 ;; Sixth trivial block

10 .L7:
11 nop
12 ret
13 .LFE0:
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A.3 Preparing for global optimization
We would like to make each block easier to compare with each other. We can do so if we try to
make similar expressions look the same. We store j in r8, j+1 in r9, &arr in r10, &[j] and (&[j] +
&arr) in r11, &[j+1] and (&[j+1] + &arr) in r12, arr[j] in r13, arr[j+1] in r14, and i in r15

1 ;; Block 1
2 bubblesort(int*, int):
3 .LFB0:
4 mov QWORD PTR [rbp-24], rdi
5 mov DWORD PTR [rbp-28], esi
6 mov r15, DWORD PTR [rbp-28]
7 sub r15, 1
8 mov DWORD PTR [rbp-4], r15
9 ;; Block 2

10 .L6:
11 cmp DWORD PTR [rbp-4], 0
12 jle .L7
13 ;; Block 3
14 mov DWORD PTR [rbp-8], 1
15 ;; Block 4
16 .L5:
17 mov r15, DWORD PTR [rbp-4]
18 cmp r15, DWORD PTR [rbp-8]
19 jl .L3
20 ;; Block 5
21 mov r10, QWORD PTR [rbp-24]
22 mov r8, DWORD PTR [rbp-8]
23 cdqe
24 lea r11, [0+r8*4]
25 add r11, r10
26 add r8, 1
27 lea r12, [0+r8*4]
28 add r12, r10
29 mov r13, DWORD PTR [r11]
30 mov r14, DWORD PTR [r12]
31 cmp r13, r14
32 jle .L4
33 ;; Block 6
34 mov r8, DWORD PTR [rbp-8]
35 cdqe
36 mov r10, QWORD PTR [rbp-24]
37 mov r9, r8
38 add r9, 1
39 lea r11, [0+r8*4]
40 lea r12, [0+r9*4]
41 add r11, r10
42 add r12, r10
43 mov r13, DWORD PTR [r11]
44 mov r14, DWORD PTR [r12]
45 mov DWORD PTR [rbp-12], r13
46 mov DWORD PTR [r11], r14
47 mov DWORD PTR [r12], r13
48 ;; Block 7
49 .L4:
50 add DWORD PTR [rbp-8], 1
51 jmp .L5
52 ;; Block 8
53 .L3:
54 sub DWORD PTR [rbp-4], 1
55 jmp .L6
56 ;; Block 9
57 .L7:
58 nop
59 ret
60 .LFE0:
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A.4 Global optimization
We can now get into some global optimization. First, we will consider global common subexpres-
sion elimination. If an expression occurs in multiple blocks and isn’t changed, we can get rid of
redundant loads and stores.

1. We can move the load of arr out of the whole thing, it is never changed. In fact, we do not
actually need to store it on the stack. We can let it remain in the register it was passed in
through.

2. We can (with some care) within the inner loop store j, j+1, and the addresses computed
with these in a single register for each. In fact, neither j nor j + 1 needs to be stored on the
stack.

• i, j, and j+1 can be stored in the same register through the entire procedure.
– j and j + 1 are only used and never updated between block 4 and block 6. They

are updated in block 7 and block 3 and there is no possible flow which could cause
problems.

• The addresses and their computations corresponding to j and j + 1 can be computed
at block 5 as no path through block 5 or block 6 can cause troubles.

1 ;; Block 1
2 bubblesort(int*, int):
3 .LFB0:
4 ;; mov QWORD PTR [rbp-24], rdi
5 ;; Keep arr in rdi
6 mov r15, esi
7 sub r15, 1
8 ;; Block 2
9 .L6:

10 cmp r15, 0
11 jle .L7
12 ;; Block 3
13 mov r8, 1
14 ;; Block 4
15 .L5:
16 cmp r15, r8
17 jl .L3
18 ;; Block 5
19 mov r9, r8
20 add r9, 1
21 lea r11, [0+r8*4]
22 add r11, rdi
23
24 lea r12, [0+r9*4]
25 add r12, rdi
26
27 mov r13, DWORD PTR [r11]
28 mov r14, DWORD PTR [r12]
29 cmp r13, r14
30 jle .L4
31 ;; Block 6
32 mov DWORD PTR [rbp-12], r13
33 mov DWORD PTR [r11], r14
34 mov DWORD PTR [r12], r13
35 ;; Block 7
36 .L4:
37 add r8, 1
38 jmp .L5
39 ;; Block 8
40 .L3:
41 sub r15, 1
42 jmp .L6
43 ;; Block 9
44 .L7:
45 nop
46 ret
47 .LFE0:
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This is already looking much better. Now that we have code that is easier to wrap your head
around, we can remove the redundant adds in our address calculations and perform them within
the instruction. We can then remove the store of addresses into registers and keep the whole thing
in the instructions themselves.

1 ;; Block 1
2 bubblesort(int*, int):
3 .LFB0:
4 ;; mov QWORD PTR [rbp-24], rdi
5 ;; Keep arr in rdi
6 mov r15, esi
7 sub r15, 1
8 ;; Block 2
9 .L6:

10 cmp r15, 0
11 jle .L1
12 ;; Block 3
13 mov r8, 1
14 ;; Block 4
15 .L5:
16 cmp r15, r8
17 jl .L3
18 ;; Block 5
19 mov r9, r8
20 add r9, 1
21 mov r13, DWORD PTR [rdi+r8*4]
22 mov r14, DWORD PTR [rdi+r9*4]
23 cmp r13, r14
24 jle .L4
25 ;; Block 6
26 mov DWORD PTR [rbp-12], r13
27 mov DWORD PTR [rdi+r8*4], r14
28 mov DWORD PTR [rdi+r9*4], r13
29 ;; Block 7
30 .L4:
31 add r8, 1
32 jmp .L5
33 ;; Block 8
34 .L3:
35 sub r15, 1
36 jmp .L6
37 ;; Block 9
38 .L7:
39 nop
40 ret
41 .LFE0:

Next optimization pass we can apply is induction variable elimination. There will never be a
reason to have j + 1 stored separately from j and similar for the computed addresses.

1 ;; Block 1
2 bubblesort(int*, int):
3 .LFB0:
4 ;; mov QWORD PTR [rbp-24], rdi
5 ;; Keep arr in rdi
6 mov r15, esi
7 sub r15, 1
8 ;; Block 2
9 .L6:

10 cmp r15, 0
11 jle .L1
12 ;; Block 3
13 mov r8, 1
14 ;; Block 4
15 .L5:
16 cmp r15, r8
17 jl .L3
18 ;; Block 5
19 mov r13, DWORD PTR [rdi+r8*4]
20 mov r14, DWORD PTR [rdi+r8*4 + 4]
21 cmp r13, r14
22 jle .L4
23 ;; Block 6
24 mov DWORD PTR [rbp-12], r13



A COMPILER OPTIMIZATION BY EXAMPLE 50

25 mov DWORD PTR [rdi+r8*4], r14
26 mov DWORD PTR [rdi+r8*4 + 4], r13
27 ;; Block 7
28 .L4:
29 add r8, 1
30 jmp .L5
31 ;; Block 8
32 .L3:
33 sub r15, 1
34 jmp .L6
35 ;; Block 9
36 .L7:
37 nop
38 ret
39 .LFE0:

Next up is dead code elimination. Now that we are looking at the entire code, we can get rid
of that icky store from earlier that we could not remove when looking locally.

1 ;; Block 1
2 bubblesort(int*, int):
3 .LFB0:
4 ;; mov QWORD PTR [rbp-24], rdi
5 ;; Keep arr in rdi
6 mov r15, esi
7 sub r15, 1
8 ;; Block 2
9 .L6:

10 cmp r15, 0
11 jle .L1
12 ;; Block 3
13 mov r8, 1
14 ;; Block 4
15 .L5:
16 cmp r15, r8
17 jl .L3
18 ;; Block 5
19 mov r13, DWORD PTR [rdi+r8*4]
20 mov r14, DWORD PTR [rdi+r8*4 + 4]
21 cmp r13, r14
22 jle .L4
23 ;; Block 6
24 mov DWORD PTR [rdi+r8*4], r14
25 mov DWORD PTR [rdi+r8*4 + 4], r13
26 ;; Block 7
27 .L4:
28 add r8, 1
29 jmp .L5
30 ;; Block 8
31 .L3:
32 sub r15, 1
33 jmp .L6
34 ;; Block 9
35 .L7:
36 nop
37 ret
38 .LFE0:

And we are done. For this case, the most important optimizations were removing redundant
address calculations and global common subexpression elimination. However, keep in mind that
even though we have optimized this bubblesort code thoroughly, we cannot fix the overarching
issue that the code author decided to use bubblesort.
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B Understanding undefined behavior
Let us start out with a simple example which could happen in some analysis code. We have some
class that represents a particle and can be constructed from a const char* (i.e. these -> “”). We
have written a function which checks if a particle, p, is a lepton (we disregard neutrinos in this
example to keep it brief). We do this by creating an array with all particles that are leptons and
we then intend to loop through the array and check if there is a match.

However, we make a small mistake in the loop. Our array has six elements but we have
accidentally let the loop go through seven elements. Reading out of bounds of an array is UB.
Imagine that you are the compiler and you are faced with this code. You look at the loop condition
and realize that if we ever enter the seventh (i=6) case, we will read out of bounds of the leptons-
array. Since UB is not allowed to happen, this must mean that the person who wrote the code
has written the code in such a way that we always find a match before the seventh case.

The only way to leave the loop is through the return-statement. You then reason that, since
the author must have written code where we never trigger UB, the only way out of the function
is through the return true;-statement. You can therefore remove the entire function and replace
it with return true;

1 bool is_lepton(const Particle& p) {
2 Particle leptons[] = {"e-", "e+", "m-", "m+", "t-", "t+"}; // Ignore neutrinos
3 // accidental <= instead of <
4 for (int i = 0; i <= 6 ;++i ) {
5 if (p == leptons[i]) {
6 return true;
7 }
8 }
9 return false;

10 }
11 // Lots of code
12 int main (){
13 if (is_lepton("pi-"))
14 return 0;
15 return 1;
16 }

When compiled with optimizations, Clang will return 1 as we would have expected. GCC
however, will return 0.

This next example is adapted from a blog post from John Regehr (University of Utah) [17].
Compiled with Clang and optimizations turned on, this will output “Fermat has been disproven!”
while it will keep on going when compiled with GCC.

As infinite loops are undefined in C++, the compiler observes an infinite loop with only one way
out, “return true”. Therefore, since infinite loops are undefined, this means that at some point,
our comparison must be true and the whole function can be reduced to “return true”. Note that
the loop itself is undefined, so this would work the same way if we had infinite size integers.

1 #include <cmath>
2 #include <iostream>
3 bool is_fermat_disproven() {
4 int a, b, c = 1;
5 int n = 3;
6 while (true) {
7 if ((std::pow(a,n) + std::pow(b,n)) == std::pow(c,n)) {
8 return true;
9 }

10 // do some interesting math here to update a,b,c,n
11 }
12 return false;
13 }
14 int main ( ) {
15 if(is_fermat_disproven()) {
16 std::cout << "Fermat has been disproven!\n";
17 } else {
18 std::cout << "Fermat has not been disproven!\n";
19 }
20 return 0;
21 }
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C Environment details and software versions
C.1 Environment variables that need to be managed
The following environment variables need to be changed to match either the toolchain, when
compiling the compilers, or the compiler that is to be used in a particular configuration.

CC, CXX, AS, AR, NM, RANLIB, OBJCOPY, LD, CMAKE_AR, CMAKE_RANLIB, CMAKE_NM, CMAKE_C_COMPILER,
CMAKE_CXX_COMPILER, and CMAKE_LINKER, all need to point to their corresponding tool. Notably,
the versions of AR, NM, RANLIB, need to point to the wrapper versions that support LTO, called
gcc-ar, gcc-nm, and gcc-ranlib.

The following environment variables need to be limited to prevent components of the host
system to be used instead of the local toolchain.

ROOTSYS, PATH, LIBRARY_PATH, LD_LIBRARY_PATH, CMAKE_PREFIX_PATH, PERL5LIB, PERLLIB,
PYTHONPATH, and CMAKE_MODULE_PATH.

To save on disk space, we download the required data files for Geant4 into a single location
rather than letting each configuration download its own version. If this is done, the following
environment variables need to be set to the corresponding location.

G4NEUTRONHPDATA, G4LEDATA, G4LEVELGAMMADATA, G4RADIOACTIVEDATA, G4ABLADATA, G4ENSDFSTATEDATA,
G4NEUTRONXSDATA, G4PIIDATA, G4SAIDXSDATA, and G4REALSURFACEDATA,

During compilation, the important environment variables are CFLAGS, CXXFLAGS, CMAKE_C_FLAGS,
CMAKE_CXX_FLAGS, and LDFLAGS.

In order to get around CMake appending its own optimization flags, we set CMAKE_CXX_FLAGS_RELEASE
and CMAKE_C_FLAGS_RELEASE manually to “”.

C.2 Software used in the setup

Table 11: Software compiled as part of each configurations. Note the source locations may change
over time in which case using the version number will be the way to reproduce the system.

Package Version Source
HepExpMT 0.9.4 https://cernbox.cern.ch/index.php/s/3MNrtycrirGalYa/

download
Geant4 10.02.p02 https://cernbox.cern.ch/index.php/s/3MNrtycrirGalYa/

download
CLHEP 2.4.1.3 https://proj-clhep.web.cern.ch/proj-clhep/dist1/clhep-2.

4.1.3.tgz
expat 2.2.9 https://github.com/libexpat/libexpat/releases/download/

R_2_2_9/expat-2.2.9.tar.gz
xerces-c++ 3.2.2 http://www.apache.org/dist/xerces/c/3/sources/

xerces-c-3.2.2.tar.gz

https://cernbox.cern.ch/index.php/s/3MNrtycrirGalYa/download 
https://cernbox.cern.ch/index.php/s/3MNrtycrirGalYa/download 
https://cernbox.cern.ch/index.php/s/3MNrtycrirGalYa/download
https://cernbox.cern.ch/index.php/s/3MNrtycrirGalYa/download
https://proj-clhep.web.cern.ch/proj-clhep/dist1/clhep-2.4.1.3.tgz 
https://proj-clhep.web.cern.ch/proj-clhep/dist1/clhep-2.4.1.3.tgz 
https://github.com/libexpat/libexpat/releases/download/R_2_2_9/expat-2.2.9.tar.gz 
https://github.com/libexpat/libexpat/releases/download/R_2_2_9/expat-2.2.9.tar.gz 
http://www.apache.org/dist/xerces/c/3/sources/xerces-c-3.2.2.tar.gz 
http://www.apache.org/dist/xerces/c/3/sources/xerces-c-3.2.2.tar.gz 
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Table 12: Core components of the local toolchain, version number, and source location. Includes
the compiler which is used to build the compilers used in our measurements Note the source
locations may change over time in which case using the version number will be the way to reproduce
the system.

Package Version Source
Toolchain compiler 9.2.0 ftp://ftp.gnu.org/gnu/gcc/gcc-9.2.0/gcc-9.2.0.tar.

gz
libtool 2.4 ftp://ftp.gnu.org/gnu/libtool/libtool-2.4.tar.gz
pkgconfig 0.29.2 https://pkg-config.freedesktop.org/releases/

pkg-config-0.29.2.tar.gz
zlib 1.2.11 https://www.zlib.net/zlib-1.2.11.tar.gz
help2man 1.47.12 https://ftp.gnu.org/gnu/help2man/help2man-1.47.12.

tar.xz
bzip2 1.0.8 ftp://sourceware.org/pub/bzip2/bzip2-1.0.8.tar.gz
xz 5.2.4 https://tukaani.org/xz/xz-5.2.4.tar.gz
readline 8.0 ftp://ftp.gnu.org/gnu/readline/readline-8.0.tar.gz
binutils 2.34 ftp://ftp.gnu.org/gnu/binutils/binutils-2.34.tar.xz
bash 5.0 https://ftp.gnu.org/gnu/bash/bash-5.0.tar.gz
m4 1.4.18 https://ftp.gnu.org/gnu/m4/m4-1.4.18.tar.gz
texinfo 6.7 https://ftp.gnu.org/gnu/texinfo/texinfo-6.7.tar.gz
automake 1.16 https://ftp.gnu.org/gnu/automake/automake-1.16.tar.

gz
autoconf 2.69 https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.

gz
bison 3.5 https://ftp.gnu.org/gnu/bison/bison-3.5.tar.gz
gettext 0.20 https://ftp.gnu.org/gnu/gettext/gettext-0.20.tar.gz
flex 2.6.4 https://github.com/westes/flex/files/981163/flex-2.

6.4.tar.gz
cmake 3.16.3 https://github.com/Kitware/CMake/releases/download/

v3.16.3/cmake-3.16.3.tar.gz

Table 13: Utility packages used in the local toolchain, version number, and source location. Note
the source locations may change over time in which case using the version number will be the way
to reproduce the system.

Package Version Source
make 4.3 https://ftp.gnu.org/gnu/make/make-4.3.tar.gz
file 5.38 ftp://ftp.astron.com/pub/file/file-5.38.tar.gz
curl 7.68.0 https://curl.haxx.se/download/curl-7.68.0.tar.gz
util-linux 2.35 https://mirrors.edge.kernel.org/pub/linux/utils/util-linux/

v2.35/util-linux-2.35.tar.xz
git 2.9.5 https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.

9.5.tar.gz
coreutils 8.31 https://ftp.gnu.org/gnu/coreutils/coreutils-8.31.tar.xz
gawk 5.0.1 https://ftp.gnu.org/gnu/gawk/gawk-5.0.1.tar.gz
grep 3.4 https://ftp.gnu.org/gnu/grep/grep-3.4.tar.xz
sed 4.8 https://ftp.gnu.org/gnu/sed/sed-4.8.tar.gz

Continued on next page

ftp://ftp.gnu.org/gnu/gcc/gcc-9.2.0/gcc-9.2.0.tar.gz 
ftp://ftp.gnu.org/gnu/gcc/gcc-9.2.0/gcc-9.2.0.tar.gz 
ftp://ftp.gnu.org/gnu/libtool/libtool-2.4.tar.gz 
https://pkg-config.freedesktop.org/releases/pkg-config-0.29.2.tar.gz 
https://pkg-config.freedesktop.org/releases/pkg-config-0.29.2.tar.gz 
https://www.zlib.net/zlib-1.2.11.tar.gz 
https://ftp.gnu.org/gnu/help2man/help2man-1.47.12.tar.xz 
https://ftp.gnu.org/gnu/help2man/help2man-1.47.12.tar.xz 
ftp://sourceware.org/pub/bzip2/bzip2-1.0.8.tar.gz 
https://tukaani.org/xz/xz-5.2.4.tar.gz 
ftp://ftp.gnu.org/gnu/readline/readline-8.0.tar.gz 
ftp://ftp.gnu.org/gnu/binutils/binutils-2.34.tar.xz 
https://ftp.gnu.org/gnu/bash/bash-5.0.tar.gz 
https://ftp.gnu.org/gnu/m4/m4-1.4.18.tar.gz 
https://ftp.gnu.org/gnu/texinfo/texinfo-6.7.tar.gz 
https://ftp.gnu.org/gnu/automake/automake-1.16.tar.gz 
https://ftp.gnu.org/gnu/automake/automake-1.16.tar.gz 
https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz 
https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz 
https://ftp.gnu.org/gnu/bison/bison-3.5.tar.gz 
https://ftp.gnu.org/gnu/gettext/gettext-0.20.tar.gz 
https://github.com/westes/flex/files/981163/flex-2.6.4.tar.gz 
https://github.com/westes/flex/files/981163/flex-2.6.4.tar.gz 
https://github.com/Kitware/CMake/releases/download/v3.16.3/cmake-3.16.3.tar.gz
https://github.com/Kitware/CMake/releases/download/v3.16.3/cmake-3.16.3.tar.gz
https://ftp.gnu.org/gnu/make/make-4.3.tar.gz 
ftp://ftp.astron.com/pub/file/file-5.38.tar.gz 
https://curl.haxx.se/download/curl-7.68.0.tar.gz 
https://mirrors.edge.kernel.org/pub/linux/utils/util-linux/v2.35/util-linux-2.35.tar.xz 
https://mirrors.edge.kernel.org/pub/linux/utils/util-linux/v2.35/util-linux-2.35.tar.xz 
https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.9.5.tar.gz 
https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.9.5.tar.gz 
https://ftp.gnu.org/gnu/coreutils/coreutils-8.31.tar.xz 
https://ftp.gnu.org/gnu/gawk/gawk-5.0.1.tar.gz 
https://ftp.gnu.org/gnu/grep/grep-3.4.tar.xz 
https://ftp.gnu.org/gnu/sed/sed-4.8.tar.gz 
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Table 13: Utility packages used in the local toolchain, version number, and source location. Note
the source locations may change over time in which case using the version number will be the way
to reproduce the system.

Package Version Source
gzip 1.10 https://ftp.gnu.org/gnu/gzip/gzip-1.10.tar.gz
zstd 1.4.4 https://github.com/facebook/zstd/releases/download/v1.4.4/

zstd-1.4.4.tar.gz
tar 1.32 ftp://ftp.gnu.org/gnu/tar/tar-1.32.tar.gz
wget 1.9 ftp://ftp.gnu.org/gnu/wget/wget-1.9.tar.gz
findutils 4.7.0 https://ftp.gnu.org/gnu/findutils/findutils-4.7.0.tar.xz
diffutils 3.7 https://ftp.gnu.org/gnu/diffutils/diffutils-3.7.tar.xz
less 5.51 http://www.greenwoodsoftware.com/less/less-551.tar.gz
which 2.21 ftp://ftp.gnu.org/gnu/which/which-2.21.tar.gz
psmisc 23.3 https://sourceforge.net/projects/psmisc/files/psmisc/

psmisc-23.3.tar.xz/download
elfutils 0.178 https://sourceware.org/ftp/elfutils/0.178/elfutils-0.178.

tar.bz2

Table 14: Compilers and their common libraries used in the local for compiling our configurations,
version number, and source location. For Clang, the package is downloaded from git directly using
the tag noted in the version number column. Note the source locations may change over time in
which case using the version number or tag will be the way to reproduce the system.

Package Version Source
mpc 1.1.0 https://ftp.gnu.org/gnu/mpc/mpc-1.1.0.tar.gz
mpfr 4.0.2 https://ftp.gnu.org/gnu/mpfr/mpfr-4.0.2.tar.gz
gmp 6.2.0 https://ftp.gnu.org/gnu/gmp/gmp-6.2.0.tar.xz
cloog 0.18.1 https://gcc.gnu.org/pub/gcc/infrastructure/cloog-0.18.

1.tar.gz
gcc 4.9.4 ftp://ftp.gnu.org/gnu/gcc/gcc-4.9.4/gcc-4.9.4.tar.gz
gcc 6.2.0 ftp://ftp.gnu.org/gnu/gcc/gcc-6.2.0/gcc-6.2.0.tar.gz
gcc 8.3.0 ftp://ftp.gnu.org/gnu/gcc/gcc-8.3.0/gcc-8.3.0.tar.xz
clang 10.0.0 https://github.com/llvm/llvm-project
icc (PMPE) 19.0.5.281 N/A

https://ftp.gnu.org/gnu/gzip/gzip-1.10.tar.gz 
https://github.com/facebook/zstd/releases/download/v1.4.4/zstd-1.4.4.tar.gz 
https://github.com/facebook/zstd/releases/download/v1.4.4/zstd-1.4.4.tar.gz 
ftp://ftp.gnu.org/gnu/tar/tar-1.32.tar.gz 
ftp://ftp.gnu.org/gnu/wget/wget-1.9.tar.gz 
https://ftp.gnu.org/gnu/findutils/findutils-4.7.0.tar.xz 
https://ftp.gnu.org/gnu/diffutils/diffutils-3.7.tar.xz 
http://www.greenwoodsoftware.com/less/less-551.tar.gz 
ftp://ftp.gnu.org/gnu/which/which-2.21.tar.gz 
https://sourceforge.net/projects/psmisc/files/psmisc/psmisc-23.3.tar.xz/download 
https://sourceforge.net/projects/psmisc/files/psmisc/psmisc-23.3.tar.xz/download 
https://sourceware.org/ftp/elfutils/0.178/elfutils-0.178.tar.bz2 
https://sourceware.org/ftp/elfutils/0.178/elfutils-0.178.tar.bz2 
https://ftp.gnu.org/gnu/mpc/mpc-1.1.0.tar.gz 
https://ftp.gnu.org/gnu/mpfr/mpfr-4.0.2.tar.gz 
https://ftp.gnu.org/gnu/gmp/gmp-6.2.0.tar.xz 
https://gcc.gnu.org/pub/gcc/infrastructure/cloog-0.18.1.tar.gz 
https://gcc.gnu.org/pub/gcc/infrastructure/cloog-0.18.1.tar.gz 
ftp://ftp.gnu.org/gnu/gcc/gcc-4.9.4/gcc-4.9.4.tar.gz 
ftp://ftp.gnu.org/gnu/gcc/gcc-6.2.0/gcc-6.2.0.tar.gz 
ftp://ftp.gnu.org/gnu/gcc/gcc-8.3.0/gcc-8.3.0.tar.xz 
https://github.com/llvm/llvm-project
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Table 15: Programming languages, interpreters and libraries used in the local toolchain, version
number, and source location. Note the source locations may change over time in which case using
the version number will be the way to reproduce the system.

Package Version Source
perl 5.30.1 https://www.cpan.org/src/5.0/perl-5.30.1.tar.gz
XML-Parser 2.46 https://cpan.metacpan.org/authors/id/T/TO/TODDR/

XML-Parser-2.46.tar.gz
python 3.8.1 https://www.python.org/ftp/python/3.8.1/Python-3.8.1.tar.

xz
libffi 3.3 https://github.com/libffi/libffi/releases/download/v3.3/

libffi-3.3.tar.gz
expat 2.2.9 https://github.com/libexpat/libexpat/releases/download/R_

2_2_9/expat-2.2.9.tar.gz
z3 4.8.7 https://github.com/Z3Prover/z3/archive/z3-4.8.7.tar.gz
root 6.18.04 https://root.cern/download/root_v6.18.04.source.tar.gz
audit 2.8.5 https://github.com/linux-audit/audit-userspace/archive/

v2.8.5.tar.gz
swig 4.0.1 https://downloads.sourceforge.net/swig/swig-4.0.1.tar.gz

https://www.cpan.org/src/5.0/perl-5.30.1.tar.gz 
https://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-2.46.tar.gz 
https://cpan.metacpan.org/authors/id/T/TO/TODDR/XML-Parser-2.46.tar.gz 
https://www.python.org/ftp/python/3.8.1/Python-3.8.1.tar.xz 
https://www.python.org/ftp/python/3.8.1/Python-3.8.1.tar.xz 
https://github.com/libffi/libffi/releases/download/v3.3/libffi-3.3.tar.gz 
https://github.com/libffi/libffi/releases/download/v3.3/libffi-3.3.tar.gz 
https://github.com/libexpat/libexpat/releases/download/R_2_2_9/expat-2.2.9.tar.gz 
https://github.com/libexpat/libexpat/releases/download/R_2_2_9/expat-2.2.9.tar.gz 
https://github.com/Z3Prover/z3/archive/z3-4.8.7.tar.gz 
https://root.cern/download/root_v6.18.04.source.tar.gz 
https://github.com/linux-audit/audit-userspace/archive/v2.8.5.tar.gz 
https://github.com/linux-audit/audit-userspace/archive/v2.8.5.tar.gz 
https://downloads.sourceforge.net/swig/swig-4.0.1.tar.gz
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D Supplementary data

Table 16: All measurements with ATLAS geometry on PMPE sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

clang-SOfastNL 2.02(1) 17.3 2.07(1) 42.91(4) 0.19
gcc8-SOfastNL 2.07(1) 15.1 2.19(1) 42.92(4) 0.17
clang-SOfastN 2.09(1) 14.6 2.12(1) 42.87(5) 0.30
gcc8-SOfastN 2.10(1) 14.0 2.14(1) 42.93(4) 0.15
gcc4-SOfastN 2.10(1) 14.0 2.15(1) 42.98(4) 0.03
icc-SOfastN 2.12(1) 13.3 2.16(1) 42.93(4) 0.14
gcc4-SOfastNL 2.12(1) 13.1 2.16(1) 43.02(4) 0.05
gcc6-SOfastN 2.13(1) 12.9 2.13(1) 42.95(4) 0.11
clang-SOfastL 2.13(1) 12.8 2.21(1) 42.99(4) 0.00
clang-DOfastNL 2.13(1) 12.7 2.13(1) 43.07(4) 0.17
icc-SOfast 2.16(1) 11.8 2.20(1) 42.98(4) 0.02
gcc6-SOfastNL 2.17(1) 11.2 2.23(1) 42.96(4) 0.08
gcc8-SOfast 2.18(1) 10.8 2.21(1) 42.96(4) 0.09
gcc6-SOfast 2.18(1) 10.7 2.24(1) 42.94(4) 0.13
gcc8-SOfastL 2.19(1) 10.4 2.21(1) 43.05(4) 0.12
icc-SO2 2.19(1) 10.2 2.24(1) 42.97(4) 0.05
clang-SO2NL 2.20(1) 10.0 2.24(1) 43.04(4) 0.12
icc-SO3 2.20(1) 10.0 2.25(1) 42.97(4) 0.05
gcc6-SO3N 2.20(1) 9.9 2.22(1) 43.00(4) 0.01
gcc4-SO3N 2.21(1) 9.5 2.26(1) 43.07(4) 0.18
clang-DOfastL 2.21(1) 9.5 2.27(1) 42.87(4) 0.28
gcc4-SO2NL 2.22(1) 9.3 2.24(1) 42.93(4) 0.14
clang-SOfast 2.22(1) 9.3 2.24(1) 42.96(4) 0.09
icc-SOfastNL 2.22(1) 9.2 2.28(1) 42.94(4) 0.12
gcc8-SO2NL 2.22(1) 9.1 2.25(1) 43.01(4) 0.04
icc-SO2NL 2.22(1) 9.1 2.25(1) 42.91(4) 0.20
gcc4-SOfast 2.23(1) 8.8 2.24(1) 42.85(5) 0.34
gcc6-SOfastL 2.24(1) 8.4 2.26(1) 42.96(4) 0.08
gcc8-SO3N 2.24(1) 8.2 2.24(1) 42.97(4) 0.05
clang-SOsN 2.24(1) 8.2 2.28(1) 43.04(4) 0.12
clang-SO2L 2.24(1) 8.1 2.31(1) 43.04(4) 0.12
gcc6-SO2NL 2.25(1) 8.1 2.27(1) 42.96(4) 0.08
gcc4-SO2N 2.25(1) 8.0 2.30(1) 42.92(5) 0.18
gcc8-SO2N 2.25(1) 8.0 2.24(1) 43.04(4) 0.12
icc-SO2N 2.25(1) 8.0 2.32(1) 43.01(4) 0.04
gcc4-SO3 2.25(1) 7.9 2.29(1) 42.99(4) 0.00
clang-DOfastN 2.26(1) 7.7 2.24(1) 42.87(5) 0.30
gcc4-SOfastL 2.26(1) 7.5 2.23(1) 42.95(4) 0.10
gcc4-DOfastN 2.27(1) 7.1 2.27(1) 42.93(4) 0.15
gcc6-DOfastN 2.27(1) 7.0 2.28(1) 42.98(4) 0.04
gcc8-DOfastN 2.28(1) 6.8 2.31(1) 42.92(4) 0.18
clang-DO2NL 2.28(1) 6.8 2.32(1) 43.04(4) 0.12
gcc4-DOfastNL 2.28(1) 6.7 2.30(1) 42.92(4) 0.17
clang-DO3NL 2.28(1) 6.7 2.31(1) 43.04(4) 0.12
gcc8-SO3 2.28(1) 6.6 2.28(1) 42.99(4) 0.00

Continued on next page
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Table 16: All measurements with ATLAS geometry on PMPE sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc8-SO2 2.29(1) 6.4 2.35(1) 42.99(4) 0.00
gcc4-SO2L 2.29(1) 6.4 2.34(1) 42.99(4) 0.00
gcc8-DOfastNL 2.29(1) 6.3 2.27(1) 42.98(4) 0.03
gcc4-SO2 2.29(1) 6.1 2.34(1) 42.99(4) 0.00
gcc6-SO3 2.29(1) 6.1 2.31(1) 42.99(4) 0.00
gcc8-SO2L 2.30(1) 6.0 2.29(1) 42.99(4) 0.00
clang-SO3N 2.30(1) 5.9 2.34(1) 43.04(4) 0.12
clang-SOs 2.30(1) 5.8 2.35(1) 43.04(4) 0.12
gcc8-SO3NL 2.31(1) 5.6 2.37(1) 42.90(4) 0.21
clang-SO2N 2.31(1) 5.5 2.32(1) 43.04(4) 0.12
gcc6-SO2L 2.31(1) 5.4 2.33(1) 42.99(4) 0.00
icc-SO2L 2.31(1) 5.3 2.34(1) 42.97(4) 0.06
clang-DOfast 2.33(1) 4.8 2.38(1) 42.96(4) 0.09
gcc8-DOfast 2.33(1) 4.8 2.32(1) 42.88(4) 0.27
icc-SOfastL 2.33(1) 4.7 2.36(1) 42.94(4) 0.12
clang-SO3 2.33(1) 4.6 2.38(1) 43.04(4) 0.12
icc-SO3N 2.33(1) 4.6 2.34(1) 43.01(4) 0.04
icc-SO3NL 2.34(1) 4.4 2.31(1) 42.98(4) 0.03
clang-SO3NL 2.34(1) 4.3 2.28(1) 43.04(4) 0.12
gcc6-SO2N 2.35(1) 4.0 2.29(1) 42.90(4) 0.22
gcc6-DOfastNL 2.35(1) 3.9 2.34(1) 42.95(4) 0.10
clang-DO2L 2.35(1) 3.9 2.39(1) 43.04(4) 0.12
clang-SO3L 2.35(1) 3.8 2.39(1) 43.04(4) 0.12
gcc8-DO3N 2.35(1) 3.8 2.36(1) 42.94(4) 0.11
gcc4-DOfastL 2.35(1) 3.7 2.39(1) 42.93(4) 0.14
icc-DOfastNL 2.35(1) 3.7 2.35(1) 43.00(4) 0.01
gcc4-SO3NL 2.35(1) 3.7 2.33(1) 42.88(4) 0.27
gcc4-DOfast 2.35(1) 3.7 2.37(1) 42.98(4) 0.04
gcc6-SO2 2.36(1) 3.6 2.31(1) 42.99(4) 0.00
icc-SOsN 2.36(1) 3.6 2.39(1) 42.98(4) 0.03
gcc6-DO2NL 2.36(1) 3.6 2.41(1) 42.93(4) 0.15
gcc6-DO2N 2.36(1) 3.5 2.36(1) 42.98(5) 0.04
gcc4-DO2NL 2.36(1) 3.3 2.38(1) 42.92(4) 0.16
gcc8-DOfastL 2.36(1) 3.2 2.41(1) 43.03(4) 0.08
gcc8-SO3L 2.36(1) 3.2 2.42(1) 42.99(4) 0.00
gcc4-DO3NL 2.37(1) 3.2 2.35(1) 42.94(4) 0.13
clang-DO3L 2.37(1) 3.2 2.45(1) 43.04(4) 0.12
gcc6-DOfast 2.38(1) 2.8 2.35(1) 43.04(4) 0.11
gcc8-DO2N 2.38(1) 2.6 2.39(1) 42.84(4) 0.35
gcc4-SO3L 2.39(1) 2.4 2.43(1) 42.99(4) 0.00
gcc4-DO3N 2.39(1) 2.3 2.38(4) 42.94(4) 0.13
gcc8-DO2NL 2.39(1) 2.3 2.38(1) 42.99(4) 0.01
clang-DO3N 2.39(1) 2.1 2.44(1) 43.04(4) 0.12
icc-DOfast 2.39(1) 2.0 2.39(1) 43.01(4) 0.04
gcc6-DOfastL 2.39(1) 2.0 2.40(1) 42.92(4) 0.17
icc-DO3NL 2.40(1) 1.8 2.39(1) 43.00(4) 0.02
gcc6-DO3NL 2.40(1) 1.7 2.38(1) 42.93(4) 0.15

Continued on next page
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Table 16: All measurements with ATLAS geometry on PMPE sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

clang-DOsN 2.40(1) 1.7 2.39(1) 43.04(4) 0.12
gcc8-DO3NL 2.40(1) 1.6 2.35(1) 42.96(4) 0.08
gcc6-SO3NL 2.41(1) 1.4 2.43(1) 42.99(4) 0.00
icc-SO3L 2.41(1) 1.4 2.50(1) 42.97(4) 0.06
gcc4-DO2L 2.41(1) 1.3 2.45(1) 42.99(4) 0.00
gcc6-DO3N 2.41(1) 1.2 2.40(1) 42.99(4) 0.02
gcc8-DO3 2.42(1) 0.8 2.43(1) 42.99(4) 0.00
gcc6-DO2 2.43(1) 0.7 2.44(1) 42.99(4) 0.00
icc-DOfastL 2.43(1) 0.6 2.40(1) 42.95(5) 0.11
clang-DO2N 2.43(1) 0.6 2.48(1) 43.04(4) 0.12
clang-DOs 2.43(1) 0.5 2.46(1) 43.04(4) 0.12
gcc6-DO3 2.43(1) 0.4 2.44(1) 42.99(4) 0.00
clang-SO2 2.43(1) 0.4 2.43(1) 43.04(4) 0.12
gcc4-DO3 2.43(1) 0.4 2.43(1) 42.99(4) 0.00
icc-SOsNL 2.43(1) 0.4 2.40(1) 42.93(4) 0.15
gcc4-DO3L 2.44(1) 0.2 2.43(1) 42.99(4) 0.00
icc-DO2NL 2.44(1) 0.2 2.41(1) 42.99(4) 0.02
gcc4-DO2 2.44(1) 0.0 2.45(1) 42.99(4) 0.00
clang-DO3 2.45(1) −0.3 2.49(1) 43.04(4) 0.12
icc-SOs 2.45(1) −0.3 2.48(1) 42.97(4) 0.05
icc-SOsL 2.45(1) −0.3 2.48(1) 42.93(4) 0.14
gcc8-DO3L 2.45(1) −0.4 2.43(1) 42.99(4) 0.00
clang-DO2 2.47(1) −0.9 2.50(1) 43.04(4) 0.12
gcc4-DO2N 2.47(1) −1.0 2.35(1) 42.98(4) 0.04
gcc8-DO2 2.48(1) −1.5 2.48(1) 42.99(4) 0.00
icc-DO2 2.49(1) −1.9 2.46(1) 42.97(4) 0.05
icc-DO3L 2.49(1) −1.9 2.49(1) 42.94(4) 0.13
gcc6-DO2L 2.49(1) −2.0 2.44(1) 42.99(4) 0.00
gcc6-DO3L 2.50(1) −2.5 2.46(1) 42.99(4) 0.00
icc-DOfastN 2.51(1) −2.5 2.40(1) 43.00(4) 0.03
gcc6-SO3L 2.51(1) −2.7 2.47(1) 42.99(4) 0.00
icc-DO2L 2.52(1) −3.0 2.47(1) 42.94(4) 0.13
gcc8-SOsN 2.53(1) −3.7 2.55(1) 42.98(4) 0.03
icc-DO3 2.54(1) −3.8 2.42(1) 42.97(4) 0.05
gcc6-SOsN 2.54(1) −3.9 2.58(1) 43.01(4) 0.04
gcc4-SOsN 2.54(1) −4.1 2.62(1) 43.01(4) 0.04
icc-DO2N 2.56(1) −4.9 2.50(1) 42.90(4) 0.21
gcc8-DO2L 2.60(1) −6.4 2.44(1) 42.99(4) 0.00
icc-DO3N 2.62(1) −7.3 2.66(1) 42.96(4) 0.09
gcc4-SOs 2.64(1) −8.2 2.76(1) 43.03(4) 0.08
icc-DOsNL 2.64(1) −8.3 2.69(1) 42.99(4) 0.00
gcc8-SOs 2.65(1) −8.3 2.65(1) 43.03(4) 0.08
gcc6-SOs 2.65(1) −8.4 2.66(1) 42.99(4) 0.00
gcc8-SOsNL 2.67(1) −9.2 2.68(1) 42.91(4) 0.20
icc-DOsN 2.67(1) −9.3 2.62(1) 42.96(4) 0.08
gcc4-SOsNL 2.70(1) −10.6 2.70(1) 42.95(4) 0.10
gcc8-SOsL 2.73(1) −11.5 2.73(1) 42.99(4) 0.00
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Table 16: All measurements with ATLAS geometry on PMPE sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc8-DOsN 2.74(1) −12.0 2.74(1) 42.96(4) 0.08
gcc6-SOsNL 2.76(1) −12.9 2.70(1) 43.00(5) 0.01
gcc4-SOsL 2.77(1) −13.5 2.73(1) 42.99(4) 0.00
gcc6-DOsN 2.79(1) −14.3 2.77(1) 42.96(4) 0.08
gcc4-DOsN 2.79(1) −14.4 2.82(1) 42.95(4) 0.11
icc-DOs 2.80(1) −14.7 2.90(1) 42.97(4) 0.05
icc-DOsL 2.82(1) −15.6 2.75(1) 42.97(4) 0.05
gcc4-DOs 2.83(1) −16.0 2.83(1) 42.99(4) 0.00
gcc4-DOsNL 2.86(1) −17.1 2.88(1) 43.01(4) 0.03
gcc8-DOsNL 2.86(1) −17.1 2.88(1) 42.98(4) 0.04
gcc6-SOsL 2.86(1) −17.2 2.78(1) 42.99(4) 0.00
gcc8-DOs 2.87(1) −17.5 2.86(1) 42.99(4) 0.00
gcc4-DOsL 2.90(1) −18.6 2.92(1) 42.99(4) 0.00
gcc6-DOs 2.90(1) −18.8 2.86(1) 42.99(4) 0.00
gcc6-DOsL 2.91(1) −19.1 2.92(1) 42.99(4) 0.00
gcc8-DOsL 2.92(1) −19.4 2.86(1) 42.99(4) 0.00
gcc6-DOsNL 2.94(1) −20.1 2.84(1) 42.96(4) 0.09

Table 17: All measurements with ATLAS geometry on Aurora sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

clang-SOfastNL 1.87(1) 16.1 1.85(1) 42.91(4) 0.19
gcc8-SOfastNL 1.89(1) 15.5 1.89(1) 42.92(4) 0.17
gcc6-SOfastN 1.93(1) 13.8 1.92(1) 42.97(4) 0.06
clang-SOfastL 1.93(1) 13.7 1.98(1) 42.99(4) 0.00
gcc4-SOfastN 1.93(1) 13.6 1.87(1) 42.86(5) 0.31
clang-SOfastN 1.93(1) 13.5 1.92(1) 42.87(5) 0.30
gcc8-SOfastN 1.94(1) 13.2 1.90(1) 42.93(4) 0.15
gcc4-SOfastNL 1.94(1) 13.2 1.92(1) 42.95(4) 0.09
gcc6-SO2N 1.94(1) 13.1 1.95(1) 42.90(4) 0.22
gcc6-SOfastNL 1.97(1) 12.0 1.93(1) 42.87(5) 0.28
gcc8-SOfastL 1.97(1) 11.7 1.93(1) 43.05(4) 0.12
clang-DOfastNL 1.98(1) 11.5 1.99(1) 43.07(4) 0.17
gcc6-SOfast 1.99(1) 11.0 2.20(1) 42.94(4) 0.13
gcc8-SOfast 1.99(1) 10.7 2.02(1) 42.96(4) 0.09
gcc8-SO3NL 2.00(1) 10.7 1.96(1) 42.90(4) 0.21
gcc8-SO3N 2.00(1) 10.4 2.06(1) 42.97(4) 0.05
gcc4-SO3NL 2.00(1) 10.4 1.99(1) 42.88(4) 0.27
gcc4-SO3N 2.01(1) 10.1 1.98(1) 43.07(4) 0.18
gcc6-SO2NL 2.01(1) 10.1 1.91(1) 42.96(4) 0.08
gcc4-SOfastL 2.01(1) 9.8 2.01(1) 42.91(4) 0.18
gcc8-SO2N 2.02(1) 9.6 2.05(1) 43.04(4) 0.12
gcc6-SO3NL 2.02(1) 9.5 2.05(1) 42.99(4) 0.00
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Table 17: All measurements with ATLAS geometry on Aurora sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc6-SO3N 2.02(1) 9.4 1.99(1) 43.00(4) 0.01
gcc4-SO2NL 2.03(1) 9.3 2.02(1) 42.93(4) 0.14
gcc6-SOfastL 2.03(1) 9.3 2.07(1) 42.96(4) 0.08
gcc8-SO2NL 2.04(1) 8.7 2.06(1) 43.01(4) 0.04
gcc4-SOfast 2.04(1) 8.5 2.07(1) 42.85(5) 0.34
clang-DOfastN 2.05(1) 8.4 2.06(1) 42.87(5) 0.30
gcc4-SO2 2.05(1) 8.2 2.12(1) 42.99(4) 0.00
gcc4-SO2N 2.05(1) 8.0 2.08(1) 42.92(5) 0.18
gcc6-DO2N 2.06(1) 7.8 1.98(1) 42.98(5) 0.04
gcc4-SO3 2.06(1) 7.6 2.07(1) 42.99(4) 0.00
clang-SOfast 2.07(1) 7.5 2.00(1) 42.96(4) 0.09
gcc4-SO3L 2.07(1) 7.3 2.18(1) 42.99(4) 0.00
clang-SO3NL 2.07(1) 7.2 2.03(1) 43.04(4) 0.12
gcc6-DO2NL 2.07(1) 7.1 2.02(1) 42.93(4) 0.15
gcc4-DOfastNL 2.08(1) 7.0 2.15(1) 42.91(4) 0.19
gcc8-DOfastN 2.08(1) 7.0 2.03(1) 42.92(4) 0.18
gcc6-SO3 2.08(1) 7.0 2.11(1) 42.99(4) 0.00
gcc6-DOfastN 2.08(1) 7.0 2.09(1) 42.89(5) 0.24
clang-SO2NL 2.08(1) 6.9 2.09(1) 43.04(4) 0.12
gcc8-SO3L 2.08(1) 6.9 2.06(1) 42.99(4) 0.00
gcc4-SO2L 2.08(1) 6.8 2.12(1) 42.99(4) 0.00
gcc8-SO2 2.09(1) 6.5 2.19(1) 42.99(4) 0.00
clang-SO2L 2.09(1) 6.4 2.17(1) 43.04(4) 0.12
clang-SOsN 2.10(1) 6.2 2.09(1) 43.04(4) 0.12
clang-SO2N 2.10(1) 6.1 2.16(1) 43.04(4) 0.12
gcc6-SO3L 2.11(1) 5.4 2.16(1) 42.99(4) 0.00
gcc8-DOfast 2.12(1) 5.2 2.16(1) 42.88(4) 0.27
gcc8-SO3 2.12(1) 4.9 2.09(1) 42.99(4) 0.00
clang-SO3L 2.12(1) 4.9 2.12(1) 43.04(4) 0.12
gcc8-SO2L 2.13(1) 4.7 2.11(1) 42.99(4) 0.00
gcc6-SO2 2.13(1) 4.6 2.15(1) 42.99(4) 0.00
clang-DO2NL 2.14(1) 4.3 2.15(1) 43.04(4) 0.12
gcc6-SO2L 2.14(1) 4.3 2.14(1) 42.99(4) 0.00
gcc8-DOfastNL 2.14(1) 4.3 2.14(1) 42.98(4) 0.03
clang-DO3NL 2.14(1) 4.3 2.17(1) 43.04(4) 0.12
gcc4-DOfastN 2.14(1) 4.1 2.12(1) 42.97(4) 0.05
clang-SO3 2.14(1) 4.1 2.18(1) 43.04(4) 0.12
gcc4-DO2NL 2.15(1) 3.9 2.23(1) 42.92(4) 0.16
clang-SOs 2.15(1) 3.8 2.20(1) 43.04(4) 0.12
gcc6-DOfast 2.15(1) 3.5 2.19(1) 43.04(4) 0.11
gcc4-DO3N 2.16(1) 3.4 2.19(3) 42.94(4) 0.13
gcc6-DOfastL 2.16(1) 3.3 2.21(1) 42.92(4) 0.17
gcc8-DO2N 2.16(1) 3.2 2.18(1) 42.84(4) 0.35
gcc8-DO3NL 2.16(1) 3.1 2.18(1) 42.96(4) 0.08
gcc4-DOfast 2.16(1) 3.1 2.19(1) 42.98(4) 0.04
gcc8-DO3N 2.17(1) 2.9 2.18(1) 42.94(4) 0.11
gcc8-DOfastL 2.17(1) 2.8 2.19(1) 43.03(4) 0.08
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Table 17: All measurements with ATLAS geometry on Aurora sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc4-DOfastL 2.18(1) 2.4 2.19(1) 42.93(4) 0.14
clang-DOfast 2.18(1) 2.4 2.23(1) 42.96(4) 0.09
gcc4-DO3NL 2.19(1) 2.1 2.16(1) 42.94(4) 0.13
clang-SO3N 2.19(1) 2.0 2.26(1) 43.04(4) 0.12
clang-DO2L 2.19(1) 1.8 2.22(1) 43.04(4) 0.12
clang-DOsN 2.19(1) 1.8 2.24(1) 43.04(4) 0.12
clang-DOfastL 2.21(1) 1.0 2.23(1) 42.87(4) 0.28
gcc4-DO3L 2.21(1) 0.9 2.24(1) 42.99(4) 0.00
gcc6-DO3N 2.22(1) 0.6 2.20(1) 42.99(4) 0.02
gcc6-DO3NL 2.22(1) 0.4 2.22(1) 42.93(4) 0.15
clang-DO2N 2.23(1) 0.1 2.27(1) 43.04(4) 0.12
gcc4-DO2N 2.23(1) 0.0 2.24(1) 42.98(4) 0.04
gcc8-DO3L 2.23(1) 0.0 2.22(1) 42.99(4) 0.00
gcc4-DO2 2.23(1) 0.0 2.22(1) 42.99(4) 0.00
gcc6-DO3 2.23(1) 0.0 2.23(1) 42.99(4) 0.00
clang-DO3L 2.24(1) −0.2 2.25(1) 43.04(4) 0.12
gcc8-DO2 2.24(1) −0.2 2.25(1) 42.99(4) 0.00
clang-DO3N 2.24(1) −0.3 2.25(1) 43.04(4) 0.12
clang-SO2 2.24(1) −0.5 2.21(1) 43.04(4) 0.12
gcc4-DO3 2.25(1) −0.6 2.25(1) 42.99(4) 0.00
clang-DOs 2.26(1) −1.1 2.29(1) 43.04(4) 0.12
gcc6-DO2L 2.27(1) −1.6 2.26(1) 42.99(4) 0.00
clang-DO3 2.29(1) −2.5 2.32(1) 43.04(4) 0.12
gcc6-DO3L 2.30(1) −2.9 2.29(1) 42.99(4) 0.00
gcc4-DO2L 2.30(1) −3.1 2.28(1) 42.99(4) 0.00
gcc6-SOsN 2.31(1) −3.2 2.39(1) 43.01(4) 0.04
clang-DO2 2.31(1) −3.6 2.29(1) 43.04(4) 0.12
gcc8-DO2L 2.32(1) −3.9 2.21(1) 42.99(4) 0.00
gcc8-SOsN 2.32(1) −3.9 2.34(1) 42.98(4) 0.03
gcc6-DOfastNL 2.38(1) −6.4 2.39(1) 42.93(5) 0.15
gcc4-SOsN 2.39(1) −6.8 2.35(1) 43.01(4) 0.04
gcc8-SOs 2.40(1) −7.5 2.42(1) 43.03(4) 0.08
gcc6-DO2 2.41(1) −7.8 2.27(1) 42.99(4) 0.00
gcc6-SOs 2.43(1) −8.9 2.45(1) 42.99(4) 0.00
gcc8-DO2NL 2.43(1) −9.0 2.44(1) 42.99(4) 0.01
gcc8-SOsNL 2.45(1) −9.6 2.42(1) 42.91(4) 0.20
gcc4-SOs 2.45(1) −9.8 2.53(1) 43.03(4) 0.08
gcc4-SOsNL 2.48(1) −10.8 2.42(1) 42.95(4) 0.10
gcc8-DOsN 2.51(1) −12.3 2.46(1) 42.96(4) 0.08
gcc4-SOsL 2.51(1) −12.3 2.49(1) 42.99(4) 0.00
gcc8-SOsL 2.51(1) −12.4 2.49(1) 42.99(4) 0.00
gcc8-DO3 2.53(1) −13.3 2.48(1) 42.99(4) 0.00
gcc4-DOsN 2.54(1) −13.6 2.47(1) 42.95(4) 0.11
gcc6-SOsL 2.54(1) −13.9 2.55(1) 42.99(4) 0.00
gcc6-DOsN 2.55(1) −14.3 2.53(1) 42.96(4) 0.08
gcc6-SOsNL 2.56(1) −14.5 2.50(1) 43.00(5) 0.01
gcc8-DOs 2.57(1) −15.2 2.54(1) 42.99(4) 0.00
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Table 17: All measurements with ATLAS geometry on Aurora sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc8-DOsNL 2.59(1) −16.0 2.52(1) 42.98(4) 0.04
gcc4-DOs 2.60(1) −16.6 2.56(1) 42.99(4) 0.00
gcc6-DOsNL 2.64(1) −18.2 2.58(1) 42.96(4) 0.09
gcc8-DOsL 2.65(1) −18.8 2.60(1) 42.99(4) 0.00
gcc6-DOsL 2.68(1) −20.0 2.64(1) 42.99(4) 0.00
gcc6-DOs 2.70(1) −21.0 2.57(1) 42.99(4) 0.00
gcc4-DOsL 2.76(1) −23.6 2.58(1) 42.99(4) 0.00
gcc4-DOsNL 2.99(1) −33.8 2.83(1) 43.01(4) 0.03

Table 18: All measurements with CMS geometry on PMPE sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

icc-SOfastN 1.062(4) 18.9 1.077(4) 42.98(4) 0.02
icc-SOfast 1.095(4) 16.4 1.114(4) 42.95(4) 0.05
icc-SO2 1.115(4) 14.9 1.116(4) 42.98(4) 0.00
icc-SO2N 1.126(4) 14.1 1.138(4) 42.97(4) 0.00
gcc6-SOfastN 1.133(4) 13.5 1.168(4) 42.99(4) 0.04
gcc8-SOfastN 1.134(4) 13.4 1.141(4) 43.03(4) 0.12
icc-SO3 1.136(4) 13.3 1.150(4) 42.98(4) 0.00
gcc4-SOfastNL 1.137(4) 13.2 1.142(4) 42.96(4) 0.03
gcc8-SOfastNL 1.138(4) 13.2 1.161(4) 43.00(4) 0.05
gcc4-SOfastN 1.143(4) 12.7 1.135(4) 42.96(4) 0.04
icc-SO3N 1.144(4) 12.7 1.143(4) 42.97(4) 0.00
gcc6-SOfastNL 1.163(4) 11.3 1.177(4) 42.99(4) 0.03
gcc4-SOfast 1.163(4) 11.2 1.178(4) 42.89(4) 0.21
gcc8-SOfastL 1.167(4) 10.9 1.188(4) 42.99(4) 0.03
gcc6-SOfast 1.169(4) 10.8 1.207(4) 42.93(4) 0.10
gcc8-SOfast 1.173(4) 10.5 1.187(4) 42.89(4) 0.19
gcc4-SO3N 1.173(4) 10.5 1.183(4) 42.92(4) 0.12
icc-DOfastN 1.173(4) 10.4 1.191(4) 42.96(4) 0.05
gcc6-SO3N 1.177(4) 10.2 1.173(4) 42.93(4) 0.10
gcc8-SO2NL 1.178(4) 10.1 1.186(4) 42.92(4) 0.13
clang-SO2NL 1.183(4) 9.7 1.152(4) 42.96(4) 0.05
clang-SO3NL 1.184(4) 9.6 1.160(4) 42.96(4) 0.05
gcc8-SO3N 1.185(4) 9.6 1.184(4) 42.93(4) 0.11
clang-SO3L 1.186(4) 9.5 1.198(4) 42.96(4) 0.05
clang-SO2L 1.190(4) 9.2 1.172(4) 42.96(4) 0.05
gcc8-SO2N 1.192(4) 9.0 1.183(5) 42.91(4) 0.15
gcc6-SOfastL 1.192(4) 9.0 1.200(4) 42.97(4) 0.02
gcc4-SO2NL 1.193(4) 9.0 1.195(4) 42.96(4) 0.04
icc-SOsN 1.195(5) 8.8 1.199(5) 42.93(4) 0.11
clang-SOfastNL 1.199(5) 8.5 1.192(5) 42.92(4) 0.13
clang-SOs 1.199(4) 8.5 1.216(4) 42.96(4) 0.05
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Table 18: All measurements with CMS geometry on PMPE sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc8-SO2 1.200(4) 8.4 1.241(4) 42.98(4) 0.00
gcc6-SO2NL 1.200(4) 8.4 1.197(4) 42.98(4) 0.00
gcc4-SO2N 1.201(4) 8.4 1.214(4) 42.94(4) 0.09
gcc6-SO3 1.201(4) 8.3 1.216(4) 42.98(4) 0.00
gcc4-SO3 1.202(4) 8.2 1.208(4) 42.98(4) 0.00
clang-SOsN 1.202(4) 8.2 1.183(4) 42.96(4) 0.05
clang-SO3 1.203(4) 8.2 1.219(4) 42.96(4) 0.05
gcc4-SOfastL 1.206(4) 8.0 1.177(4) 43.03(4) 0.12
clang-SO3N 1.208(4) 7.8 1.184(4) 42.96(4) 0.05
gcc8-SO2L 1.212(4) 7.5 1.207(4) 42.98(4) 0.00
gcc4-SO2L 1.213(4) 7.4 1.241(4) 42.98(4) 0.00
clang-DO3NL 1.216(4) 7.2 1.198(4) 42.96(4) 0.05
gcc8-SO3 1.216(4) 7.2 1.213(4) 42.98(4) 0.00
clang-SO2N 1.221(4) 6.8 1.181(4) 42.96(4) 0.05
gcc8-DOfastNL 1.221(4) 6.8 1.243(4) 42.97(4) 0.00
gcc4-SO2 1.221(4) 6.8 1.233(4) 42.98(4) 0.00
clang-DO2NL 1.227(4) 6.4 1.219(4) 42.96(4) 0.05
gcc6-SO2L 1.230(4) 6.1 1.233(4) 42.98(4) 0.00
gcc8-DOfastN 1.231(4) 6.1 1.259(4) 42.86(4) 0.27
clang-DO3L 1.232(4) 6.0 1.231(4) 42.96(4) 0.05
clang-SOfastN 1.233(5) 5.9 1.226(5) 42.95(4) 0.05
gcc4-DOfastNL 1.234(4) 5.8 1.265(4) 43.00(4) 0.07
gcc8-SO3NL 1.238(4) 5.5 1.301(4) 42.91(4) 0.15
icc-SOs 1.239(5) 5.4 1.244(5) 42.98(4) 0.00
clang-SO2 1.241(4) 5.3 1.238(4) 42.96(4) 0.05
gcc4-DOfastN 1.243(4) 5.1 1.234(4) 42.95(4) 0.05
gcc4-SO3NL 1.245(4) 5.0 1.237(4) 43.00(4) 0.06
icc-DO2N 1.247(4) 4.8 1.247(4) 42.98(4) 0.00
gcc6-SO2 1.249(4) 4.7 1.222(4) 42.98(4) 0.00
clang-SOfastL 1.252(5) 4.5 1.264(6) 42.95(4) 0.06
gcc6-DOfastN 1.253(4) 4.4 1.259(4) 42.91(4) 0.15
gcc8-DOfast 1.253(4) 4.4 1.253(4) 42.96(4) 0.04
gcc6-SO2N 1.254(4) 4.3 1.200(4) 42.94(4) 0.07
clang-DO2L 1.259(4) 3.9 1.224(4) 42.96(4) 0.05
gcc4-DOfast 1.259(4) 3.9 1.267(4) 42.95(4) 0.07
icc-DO2 1.261(5) 3.8 1.214(4) 42.98(4) 0.00
gcc8-DO3N 1.263(4) 3.6 1.260(4) 42.98(4) 0.02
gcc8-DO2N 1.264(4) 3.5 1.253(4) 43.07(4) 0.22
clang-DOsN 1.264(4) 3.5 1.263(4) 42.96(4) 0.05
gcc6-DO2N 1.267(4) 3.3 1.302(4) 42.94(4) 0.09
clang-DO3N 1.268(4) 3.2 1.266(4) 42.96(4) 0.05
clang-DO3 1.270(4) 3.0 1.284(4) 42.96(4) 0.05
gcc4-SO3L 1.271(4) 3.0 1.281(4) 42.98(4) 0.00
gcc4-DO2N 1.271(4) 3.0 1.254(4) 42.98(4) 0.01
gcc8-DO3NL 1.272(4) 2.9 1.266(4) 42.96(4) 0.04
clang-DOfastNL 1.272(5) 2.9 1.250(5) 43.00(4) 0.05
icc-DOfast 1.272(5) 2.9 1.244(4) 43.03(4) 0.14
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Table 18: All measurements with CMS geometry on PMPE sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc4-DO3NL 1.272(4) 2.9 1.278(4) 42.97(4) 0.00
gcc4-DOfastL 1.272(5) 2.9 1.286(4) 43.01(4) 0.08
gcc4-DO3N 1.273(4) 2.8 1.253(4) 42.97(4) 0.01
gcc8-DOfastL 1.273(4) 2.8 1.288(4) 42.94(4) 0.09
clang-DOs 1.274(4) 2.7 1.287(4) 42.96(4) 0.05
clang-DO2 1.276(4) 2.6 1.297(5) 42.96(4) 0.05
clang-DO2N 1.276(5) 2.6 1.266(4) 42.96(4) 0.05
clang-SOfast 1.278(6) 2.5 1.290(6) 42.97(4) 0.01
gcc6-SO3NL 1.278(4) 2.5 1.319(4) 42.96(4) 0.04
gcc6-DOfast 1.279(4) 2.4 1.266(4) 42.90(4) 0.18
gcc4-DO2NL 1.282(4) 2.2 1.261(4) 43.03(4) 0.13
gcc6-DOfastNL 1.284(4) 2.0 1.261(4) 42.95(4) 0.05
gcc8-DO2NL 1.284(4) 2.0 1.268(4) 42.98(4) 0.02
gcc6-DO3N 1.284(4) 2.0 1.317(4) 42.99(4) 0.02
gcc6-DO2NL 1.285(5) 1.9 1.287(4) 42.93(4) 0.10
gcc8-SO3L 1.291(4) 1.4 1.295(4) 42.98(4) 0.00
gcc8-DO3 1.293(4) 1.3 1.304(5) 42.98(4) 0.00
gcc4-DO3 1.295(4) 1.2 1.302(5) 42.98(4) 0.00
gcc8-DO3L 1.296(4) 1.1 1.290(5) 42.98(4) 0.00
gcc4-DO2L 1.296(4) 1.1 1.307(5) 42.98(4) 0.00
gcc6-DO2 1.301(4) 0.7 1.326(5) 42.98(4) 0.00
gcc4-DO3L 1.301(4) 0.7 1.307(5) 42.98(4) 0.00
icc-DO3 1.306(5) 0.3 1.286(5) 42.98(4) 0.00
gcc8-SOsN 1.308(5) 0.2 1.343(5) 42.94(4) 0.08
clang-DOfastN 1.309(6) 0.1 1.298(5) 42.95(4) 0.05
gcc4-DO2 1.310(4) 0.0 1.308(5) 42.98(4) 0.00
gcc6-DOfastL 1.310(4) 0.0 1.290(4) 42.92(4) 0.14
gcc6-DO3 1.311(4) 0.0 1.313(5) 42.98(4) 0.00
gcc8-DO2L 1.313(5) −0.2 1.336(5) 42.98(4) 0.00
icc-SOsNL 1.313(5) −0.2 1.282(5) 42.96(4) 0.05
gcc8-DO2 1.314(4) −0.3 1.300(5) 42.98(4) 0.00
gcc6-DO3NL 1.316(40) −0.4 1.283(4) 42.99(4) 0.03
gcc6-DO2L 1.316(5) −0.4 1.306(5) 42.98(4) 0.00
gcc6-DO3L 1.323(5) −1.0 1.325(5) 42.98(4) 0.00
clang-DOfastL 1.323(6) −1.0 1.332(6) 43.04(4) 0.14
gcc6-SOsN 1.334(5) −1.8 1.338(5) 43.05(4) 0.16
gcc4-SOsN 1.351(5) −3.1 1.341(5) 43.04(4) 0.15
icc-SOsL 1.356(48) −3.5 1.391(49) 42.96(4) 0.04
clang-DOfast 1.357(6) −3.6 1.367(6) 42.97(4) 0.01
gcc6-SO3L 1.357(4) −3.6 1.323(5) 42.98(4) 0.00
icc-DOsNL 1.366(5) −4.3 1.353(5) 42.89(4) 0.19
gcc8-SOs 1.373(5) −4.8 1.382(5) 42.98(4) 0.00
gcc4-SOs 1.376(5) −5.0 1.419(5) 42.98(4) 0.00
icc-DO3N 1.378(5) −5.1 1.347(5) 42.92(4) 0.13
icc-DOsN 1.378(5) −5.2 1.412(5) 42.94(4) 0.08
gcc8-SOsNL 1.387(5) −5.9 1.415(6) 42.95(4) 0.06
gcc6-SOs 1.389(5) −6.0 1.386(5) 42.98(4) 0.00

Continued on next page



D SUPPLEMENTARY DATA 65

Table 18: All measurements with CMS geometry on PMPE sorted by ∆tb

Configuration µtb ∆tb µtv µE ∆E
(s) (%) (s) (GeV) (%)

gcc4-SOsNL 1.407(5) −7.4 1.403(5) 42.87(4) 0.25
gcc6-SOsNL 1.407(5) −7.4 1.412(5) 42.92(4) 0.13
icc-DOs 1.423(5) −8.6 1.421(5) 42.98(4) 0.00
gcc8-SOsL 1.428(5) −9.0 1.439(5) 42.98(4) 0.00
gcc4-SOsL 1.431(5) −9.2 1.427(5) 42.98(4) 0.00
icc-DOsL 1.439(5) −9.8 1.410(5) 42.98(4) 0.00
gcc6-DOsN 1.477(5) −12.7 1.493(5) 42.89(4) 0.19
gcc8-DOsN 1.479(5) −12.9 1.485(5) 42.92(4) 0.13
gcc6-SOsL 1.485(5) −13.3 1.426(5) 42.98(4) 0.00
gcc4-DOsNL 1.500(5) −14.5 1.516(5) 43.00(4) 0.06
gcc8-DOsNL 1.505(5) −14.9 1.487(5) 43.03(4) 0.12
gcc8-DOs 1.515(5) −15.7 1.519(5) 42.98(4) 0.00
gcc4-DOsN 1.520(5) −16.0 1.488(5) 42.93(4) 0.11
gcc4-DOs 1.521(5) −16.1 1.486(5) 42.98(4) 0.00
gcc6-DOsL 1.522(5) −16.2 1.585(6) 42.98(4) 0.00
gcc6-DOs 1.529(5) −16.7 1.531(5) 42.98(4) 0.00
gcc8-DOsL 1.534(5) −17.1 1.512(5) 42.98(4) 0.00
gcc6-DOsNL 1.536(5) −17.2 1.497(5) 42.99(4) 0.03
gcc4-DOsL 1.585(5) −20.9 1.557(5) 42.98(4) 0.00
icc-SOfastNL 1.843(12) −40.7 1.840(13) 42.92(4) 0.14
icc-SO2NL 1.857(12) −41.7 1.871(13) 42.98(4) 0.00
icc-SO2L 1.899(13) −44.9 1.890(13) 43.00(4) 0.05
icc-SO3NL 1.906(13) −45.5 1.888(13) 42.99(4) 0.03
icc-SOfastL 1.926(13) −47.0 1.899(13) 42.89(4) 0.19
icc-SO3L 1.933(13) −47.5 1.951(13) 43.00(4) 0.05
icc-DO2NL 1.987(14) −51.6 2.016(14) 43.03(4) 0.12
icc-DOfastNL 2.000(14) −52.6 1.985(13) 43.02(4) 0.10
icc-DO3NL 2.028(14) −54.8 2.001(14) 43.03(4) 0.12
icc-DOfastL 2.028(13) −54.8 2.006(13) 42.96(4) 0.05
icc-DO3L 2.047(14) −56.2 2.050(14) 43.01(4) 0.08
icc-DO2L 2.069(14) −57.9 2.020(14) 43.01(4) 0.08
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