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Abstract

As commodities are becoming more popular and accessible assets for speculative and
hedging purposes, the limited research regarding risk management for said asset-class
justifies further contribution to the deficient output. Many previous studies have high-
lighted the extraordinary high volatility, with non-linear and clustering characteristics
associated with commodities. Hence, incorporating volatility forecasts in risk manage-
ment seems warranted. As the standard risk measurements for market risk in the last
decades have been Value at Risk (VaR) and Expected Shortfall (ES), these metrics are
evaluated based on a Volatility Weighted Historical Simulation with volatility forecasts
provided by a GARCH(1,1) approach and a Recurrent Neural Network (LSTM) approach
for oil, gold and soybean. The data period spans from 1990 to 2019 and the results in-
dicate that both approaches work remarkably well in estimating both VaR and ES. In
general, the GARCH(1,1) approach displays somewhat more accurate VaR estimates ac-
cording to Kupiecs test. However, The LSTM approach does spread the violations more
adequate according to Christoffersen’s test. Both approaches display very well specified
ES estimates, with somewhat better test statistics for the GARCH(1,1) approach accord-
ing to the ”Testing ES directly”-test proposed by Acerbi & Szekely.

Keywords: Value-at-Risk, Expected Shortfall, Commodities, GARCH(1,1), ANN, LSTM,
Volatility forecasting, VWHS
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Abbreviations

• ANN - Artificial neural network(s)

• AR - Autoregressive

• ARCH - Autoregressive conditional heteroscedasticity

• ES - Expected shortfall

• FNN - Feedforward neural network(s)

• FRTB - Fundamental review of the trading book

• GARCH - Generalized autoregressive conditional heteroscedasticity

• LSTM - Long short-term memory

• MAD - Mean absolute deviation

• MAE - Mean absolute error

• MSE - Mean squared error

• ML - Maximum likelihood

• RNN - Recurrent neural network(s)

• SGD - Stochastic gradient decent

• SPGSCI - Standard & Poor’s Goldman Sachs commodity index

• VaR - Value at risk

• VWHS - Volatility weighted historical simulation
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Terminology

There are many technical terms used in conjunction with neural networks. Some keywords
are presented here that will be frequently used throughout the essay.

• (Artificial) neural network - A system or collection of artificial neurons, which
are loosely based on a human neuron, that learn to perform certain tasks without
being programmed with task specific rules.

• Input/Visible layer - Refers to the input variables.

• Hidden node/Neuron - Each artificial neuron is often referred to as a hidden node
or simply a neuron. They are called ’hidden’ as they are not directly observable.

• Hidden layers - A layer or multiple layers in between input layer and output
layer, where neurons take in a set of inputs and generate an output. The input can
come from the input layer or from a previous layer of hidden nodes. A graphical
representation of two hidden layers is shown in Figure 3 on page 12.

• Output layer - The last layer of the network, consisting of the output variables.

• Weight(s) - All inputs to an artificial neuron carries an associated weight, which
can be thought of as a way for the model to determine the importance of different
input variables. These weights represent the influence of each parameter and are
optimized when training a neural network.

• Hyperparameter - Parameter whose value is set before model training commences,
such as number of hidden layers, activation function and drop out rate. Input
weights are not hyperparameters as they are continuously fine tuned when training
the model.
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1 Introduction

The importance of risk management became fundamentally clear in the financial meltdown
of 2008. Value at Risk (VaR), the most widely adopted risk measurement at the time,
had experienced great criticism for its deficiency in accounting for tail events and its
lack of subaditivity1. Following the evident shortcomings, the Basel committee proposed
a transition from VaR to Expected Shortfall (ES) in their consultative document ”A
Fundamental Review of the Trading Book” (BIS, 2013). While there are stipulated criteria
that financial institutions have to meet, there are some discretion in the methodology
adopted when estimating the risk measures. This has opened up the scene for academics
to investigate different methodical approaches in estimating VaR and ES. In this area of
research, the most commonly investigated financial assets are stocks, bonds and exchange
rates.

Another investable asset class that has seen an immense increase in investing activity
lately is commodities. This has, according to Buyuksahin, Haigh, and Robe (2009), come
with a desire to investigate the characteristics of commodities in comparison to that of
the traditional financial assets. Utilizing dynamic correlation and recursive cointegration
methods on SP500 and SPGSCI (the first major investable commodity index, introduced
by Goldman Sachs), the authors find that the asset classes seem dis-synchronized. Fur-
ther, the relationship does not seem to have changed significantly in the past 15 years,
despite the increased trading activity and availability of instruments. Hence, they con-
clude that commodities continue to offer benefits in regards to portfolio diversification. In
addition to the seemingly absent correlation between commodities and stocks, Deaton and
Laroque (1992) propose in their paper ”On the Behaviour of Commodity Prices” evidence
of non-linear characteristics and ”extreme volatility” in the price mechanics of commodi-
ties. Many studies2 have since affirmed these findings of exceptionally high volatility and
further highlighted the well known phenomenon of volatility clustering to be present for
commodities.

One conventional way to deal with clustering and non-linear volatility is the General-
ized Autoregressive Conditional Heteroscedasticity (GARCH) model introduced indepen-
dently by Bollerslev (1986) and Taylor (1986). There are several different types of volatil-
ity models within the ARCH-family. Hansen and Lunde (2005) found that GARCH(1,1)
in general3 has the best performance out of all the different ARCH-models. The main
drawback in utilizing GARCH to model volatility with non-linear characteristics is that it
is not model free in that it forces an explicit relationship onto the data. This comes with

1Subadditivity is a condition for Coherency, see Appendix A for the definition of Coherency.
2See for instance OECD (1993), Giot and Laurent (2003), Vivian and Wohar (2012).
3While GARCH(1,1) was not the most optimal model for IBM returns, overall it was not outperformed

by more sophisticated models.
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great risk of mis-specifying the underlying volatility relationship. While Andersen and
Bollerslev (1998a) proved that GARCH(1,1) shows tremendous in-sample performance,
question marks have been raised regarding its deficient out of sample forecasting ability.
Andersen and Bollerslev (1998a) refuted the scepticism by showing that well specified
volatility models do in fact provide accurate forecasts.

Despite this, the fact that GARCH is not model-free encourages researchers to direct
their attention to more unconventional, yet proven approaches in mapping complex non-
linear relationships, such as Artificial Neural Networks (ANN).

ANN is a machine-leaning method inspired by the human brain in that it mimics the
organic neuron. These mirrored neurons can then be connected in different ways, allowing
the collection of neurons to find complex, non-linear patterns. The great benefit of neural
networks in comparison to GARCH is that they do not impose any restricting relationship
onto the data. However, this comes at a cost of drastically increased computational burden
and often with the requirement of a vast dataset to train on in order to be effective.

ANNs can be divided into two main categories, namely Feed Forward Neural Networks
(FNN) and Recurrent Neural Networks (RNN). The difference lies in how the data reallo-
cates within the network. RNN allows for loops of the data within the network, meaning
that the predictions at earlier stages impact decisions at later stages of the network. This
can be likened to an Autoregressive (AR) process. However, AR processes are linear
in nature and have a finite dynamic response, while RNNs are unbounded and have an
infinite dynamic response.

The Long short-term memory (LSTM) unit is a special type of RNN that has the
ability to remember long term patterns. The inherent characteristics of LSTM advocates
that it should be superior to FNN in predicting time series data. Nevertheless, FNN is
by far the most adopted model in financial studies. One reason behind this might be the
computational difficulties of LSTM, requiring more computational power than FNN.

Despite the growing interest in commodity investing and the proven ability of neural
networks in handling non-linearity exceptionally well, no previous paper has to our knowl-
edge investigated a neural network approach to volatility forecasting when estimating VaR
and ES for commodities.

Therefore, the purpose of this thesis is to evaluate and compare VaR and ES esti-
mates for different commodities based on a volatility weighted historical simulation, with
volatility forecasts provided by;

1. A conventional GARCH(1,1) approach

2. A neural network (LSTM) approach

2



The results of the thesis indicate that overall, both approaches manage to estimate
VaR and ES adequately. GARCH(1,1) deliver somewhat more accurate VaR estimates in
terms of the amount of violations, LSTM on the other hand seems better at spreading the
violations according to Christoffersen’s test. Finally, both models estimate well specified
ES estimates, with slightly better test statistics for the GARCH(1,1) approach.

The remainder of the thesis is structured as following: Section 2 presents a theoretical
overview of key risk measurement concepts and techniques as well as an introductory sec-
tion to neural networks. Section 3 introduces a historical background including previous
research relevant to the thesis. Section 4 motivated the choice of data and methodological
framework adopted in the thesis. Section 5 conducts the results which is then followed up
by a discussion of the results in Section 6. Section 7 then finally outlines the conclusions
of the thesis.

3



2 Theory

The theory section aims to give a theoretical background to the reader, with definitions
of the methods and models that will be used in the remainder of the thesis. It starts with
definitions of key risk measurements and different methods to estimating the measure-
ments, then it covers the approach to backtesting the models and lastly an introduction
to neural networks is conducted.

2.1 Losses

A loss ’L’ (stochastic) or ’`’ (realized) is simply defined as a negative gain. It is expressed
in monetary terms, and hence depend on the nominal currency and size of the investigated
asset or portfolio. The distribution of losses is then simply the reversed distribution of
gains, with the largest losses in the right tail of the distribution. With an initial investment
of X (set equal to 100 throughout this thesis) at the start of each trading day, the loss
for day t is defined as

`t = −Pt − Pt−1

Pt−1
X (1)

2.2 Value At Risk

VaR is a widely used risk measure, largely due to its simplicity and applicability to all
types of asset classes. It is defined as the smallest monetary loss, such that the probability
of a larger loss is less than or equal to 1−α, over some pre-specified holding period, usually
one or ten days, as following

V aRα = min{` : Pr(L > `) ≤ 1− α} (2)

Hence, VaR takes a holistic perspective on risk by focusing directly on the distribution of
the losses, and can be thought of as the cut-off point that leaves the (1− α) worst losses
in the tail. If the loss distribution is continuous, every loss is a VaR for some confidence
level and similarly every VaR is a loss, hence, the definition of VaR becomes equivalent
to the probability of a larger loss than VaR being exactly 1− α.

Following from the definition of VaR, it can also be interpreted as the α-quantile of
the loss distribution as following

V aRα = qα (3)

The main drawback of VaR is that it does not reveal anything about the potential
magnitude of a loss ending up in the tail. Hence it fails to capture extreme losses that
occur with very small probabilities, so called ’Black Swans’ (Taleb, 2007). Therefore VaR
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lacks the subadditive property of a coherent risk measure4, i.e. does not always encourage
diversification (Artzner et al., 1999).

2.3 Expected shortfall

ES builds on VaR but incorporates the entire tail of the loss distribution by taking the
average of the VaR’s (losses) larger than V aRα, and is defined as

ESα = 1
1− α

∫ 1

α
V aRxdx (4)

Again, because there is a VaR for every loss, and a loss for every VaR if the distribution
is continuous, ES can instead be defined as the conditional expected loss exceeding V aRα

as following
ESα = E[L | L > V aRα] (5)

The great advantage of ES is that it incorporates the entire tail of the loss distribution
and hence has all the desirable properties of a coherent risk measure5.

2.4 Holding period & confidence level

Both VaR and ES are functions of a pre-specified holding period and a confidence level,
α. The holding period is simply the number of days that losses are measured over. The
usual case, which is also adopted throughout this thesis, is to set the holding period to
one day, which is convenient in order to incorporate as many observations as possible
(Hull, 2015). The confidence level is the certainty level (probability) that for any given
holding period there will not be a loss larger than VaR. It should be clear that a higher
confidence level implies fewer but greater losses when they occur. Hence VaR and ES are
increasing functions in both the holding period and the confidence level.

2.5 Parametric and non-parametric approaches

The approaches in which to estimate VaR and ES from a dataset can be categorized into
either being parametric or non parametric. Parametric models imposes a distribution
to the losses, such as the normal distribution or the student t-distribution, while non-
parametric methods do not. The non-parametric approach rather ’lets the data speak’
and utilizes the empirical distribution portrayed by the data. The great advantage of
non-parametric approaches is that they do not impose any distributional restrictions such
as normality, which is often an unreasonable assumption for financial instruments. Even
when excess kurtosis are imposed in the form of a student t-distribution, it might not

4See Appendix A for definition of coherency.
5See Footnote 4.
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portray the actual distribution very well, leading to miss-specified VaR and ES estimates.
On the other hand, non-parametric approaches are generally highly dependant on the
data at hand and could be misleading if a too calm or too volatile period is examined.
Additionally, it might react slowly to changing market conditions, however, volatility- or
age-weighting the data can somewhat mitigate this problem.

2.5.1 Basic historical simulation

The Basic historical simulation (BHS) is a non-parametric approach to estimating VaR
and ES from a sample of losses of an asset or portfolio. The losses are sorted in descending
order, where VaR is simply the N(1 − α) + 1 largest loss and ES is the average of the
N(1− α) largest losses. Since losses are discrete, N(1− α) + 1 might not be an integer,
in which case one can either interpolate between the two losses capturing N(1 − α) + 1
to get the VaR estimate or pick the immediate smaller loss than N(1 − α) + 1, as the
probability of a larger loss in the sample will then be less than 1− α.

The usual procedure used to get individual estimates of VaR and ES for the next day
out of sample ( ̂V aRα,t+1, ̂ESα,t+1) is to conduct a so called rolling window. The rolling
window is a fixed amount of loss-observations used to estimate VaR and ES: `1, `2, ..., `t.
For every new day (t+ 1) the oldest loss observation (`1) is discarded and the most recent
one (`t+1) is incorporated in the new window that is then used to estimate ̂V aRα,t+2 and̂ESα,t+2, and so on.

2.5.2 Volatility Weighted Historical Simulation

One drawback of the BHS approach is that it reacts slowly to changing market conditions
such as changing volatility. Hull and White (1998) suggests a so called volatility weighted
historical simulation (VWHS) to mitigate this problem. In VWHS the expectation of the
volatility in the next period affects today’s estimations of VaR and ES for the next period.
All the losses in the sample are rescaled by the estimation of tomorrows volatility (σT+1)
according to the following formula

`Rt = σT+1

σt
`t (6)

As can be seen from the formula above, a high expected volatility in the next period
will increase the magnitude of all the losses in sample which will give a higher VaR
and ES estimate, and vice versa. After rescaling all the losses, BHS is applied to the
rescaled losses as described in the previous section. The only remaining question then
becomes how to estimate the volatility for all periods: σ1, σ2, ..., σT , σT+1. As touched
upon, one conventional time series model used when estimating clustering volatility is the
Generalized Autoregressive Conditional Hetroscedasticity (GARCH) model.
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2.5.3 GARCH(1,1) and Maximum Likelihood

As the name suggests, GARCH is used to model time series when allowing for clustering
and time varying (heteroscedastic) volatility. The term volatility clustering comes from
the fact that asset returns tend to see periods of higher- and lower volatility (Lux and
Marchesi, 2000). To model this, GARCH assumes that asset returns have an expected
part, µt, and an unexpected part, ηt, that captures the varying volatility as following:

rt = µt + ηt (7)

Further, ηt|Ωt−1 ∼ N(0, σ2
t ) which tells us that conditional on all the information of

past returns that are available at t− 1 (Ωt−1), ηt has a zero mean and conditional (time
varying) volatility σ2

t . In a GARCH(1,1), ηt is defined as

ηt = εt
√

(ω + αη2
t−1 + βσ2

t−1) (8)

where ω, α, β are parameters and εt ∼ N(0, 1) is a random shock. Here it becomes evident
where the (1,1) comes from in the GARCH(1,1). The current unexpected return depends
on one lagged unexpected return as well as one periods lagged conditional variance of the
return. By utilizing the fact that E[ηt]2 = 0, E[εt]2 = 0 and that the formula for variance
can be written as E[X2]− E[X]2, the conditional variance of ηt becomes

Et−1[η2
t ] = σ2

t = ω + αη2
t−1 + βσ2

t−1 (9)

The parameters µ, ω, α, β can then be estimated with Maximum Likelihood (ML). ML
finds the most probable values for the parameters ω, α and β given the data that is
observed. It can be though of as finding the parameters that have the highest probability
of resulting in the observed data. Technically, this is done by maximizing the following
likelihood function

ln L(µ, ω, α, β) =
T∑
t=1

(
−1

2 ln(2π)− 1
2 ln(σ2

t )−
η2
t

2σ2
t

)
(10)

Finally, it should be noted that the initial values of η0 and σ0 are often set to zero and
the standard deviation of the returns (losses) in sample, respectively.
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2.6 Backtesting VaR and ES

2.6.1 Kupiec test

The Kupiec (1995) test is the conventional test for backtesting the performance of VaR
estimates. It is a binomial test that follows from the definition of VaR by comparing the
observed number of violations (losses exceeding VaR) to the expected number of violations
given that the VaR-estimation is correct. The probability of obtaining less than or equal
to the amount of violations observed (if the model is correctly specified) is

Pr(X ≤ x) =
x∑
i=0

(
N

k

)
pi(1− p)N−i (11)

Where x is the amount of violations observed, p is the probability of a violation if the
model is correct and N is the sample size. Since the expected amount of violations is
N(1− α), the formula can be used directly to calculate the probability of the amount of
violations or an even more extreme outcome if less than expected violations are observed.
If the observed amount of violations exceeds the expected, 1−Pr(X ≤ x − 1) is used
to calculate the probability of receiving the outcome received or an even more extreme
outcome. This probability is then compared to the confidence level chosen and the VaR
estimate is rejected if the probability is less than the confidence level. Finally, a two-sided
test can be conducted by creating a confidence interval with the confidence level split
equally for the two tails.

2.6.2 Christoffersen’s test

Besides comparing the obtained and expected amounts of violations, one could also test
the independence of the violations. One such independence-test is the forecast evaluation
test introduced by Christoffersen (1998), known as the Christoffersens’s test. By the
definition of VaR the probability of a violation should be (1-α) for any given day. However,
heavy losses tend to come in clusters or high frequencies. Christoffersen’s test builds on
the fact that the probability of a violation today should be independent of the outcome
the day before. Therefore, loosely speaking, Christoffersen’s test could be though of as
evaluating how well a VaR model manages to adapt to changing market conditions. The
tests builds on a likelihood-ratio as following

LR = −2 log
 (1− π)n00+n10πn01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

 ∼ χ2(1) (12)

where

n00 - Amount of periods without a violation followed by a period without a violation
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n01 - Amount of periods without a violation followed by a period with a violation

n10 - Amount of periods with a violation followed by a period without a violation

n11 - Amount of periods with a violation followed by a period with a violation

π0 - Probability of a failure in period t, given that no failure occurred in period t-1

π1 - Probability of a failure in period t, given that a failure occurred in period t-1

π - The unconditional probability of a failure in period t

2.6.3 Backtesting Expected Shortfall

The area of backtesting ES has not been as researched empirically as that of backtesting
VaR. Following the decision of the Basel Committee to adopt ES in spite of VaR, Acerbi
and Szekely (2014) proposes three model free non-parametric methods to backtesting ES.
The second model, named ”Testing ES Directly”, has computational advantages as it only
required two estimations for each day; The ES estimate (ÊSα,t) and the magnitude of the
loss if a VaR violation occurs (LtIt) where It is an indicator function for a VaR violation
as following

It =

1 if Lt > V aRt

0 if Lt ≤ V aRt

(13)

The test statistic proposed by Acerbi and Szekely (2014) is then

z-value = − 1
T (1− α)

T∑
t=1

LtIt

ÊSα,t
+ 1 (14)

which can be shown to have an expected value of zero under the null hypothesis that
ÊSα,t is correct for each day t. The test is one-sided in that it only rejects models that
underestimate the ’actual’ ES. Therefore, the alternative hypothesis states that ÊSα,t
underestimates the actual ES for at least one day t. From the z-value above, it should be
clear that if ES is underestimated, then the average ratio in the sum will be greater than
one and the total z-value will be negative. Acerbi and Szekely (2014) find that the critical
value corresponding to a 5% confidence level displays remarkable stability across different
distribution types of around -0.7, and hence suggests using this value when backtesting
ES.
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2.7 Artificial Neural Networks

ANN is a special form of Machine learning where a collection of algorithms and functions
are designed to mimic the human brain (Haykin, 1998). This is achieved by constructing
so called artificial neurons which are then connected together. Just like a biological
neuron, the artificial neuron can communicate with other neurons in the network and if
the input signal is strong enough the artificial neuron will be triggered.

ANNs are excellent in finding patterns from large data sets and especially non linear
ones which conventional machine learning algorithms, such as support vector machines
or decision trees, often are unable to do satisfactory. ANN does this by breaking down
a complex problem into smaller and simpler subsets by combining multiple layers6 of
artificial neurons. Each layer performs a simple task and feeds it to the next, resulting in
a model capable of tackling complicated tasks.

Figure 1: Illustrates how an image is fed into a neural network where each layer performs
a simple task which results in a model being able to determine what object is presented
on the image. Image retrieved from Goodfellow, Bengio, and Courville (2016, p. 145).

Figure 1 shows how a simple neural network can from an image as an input determine
what object the picture portrays. The first hidden layer determines the orientation of the
edges, which is then fed to the second layer that outlines the corners and contours. The
third and last hidden layer then uses this to identify key object parts which in turn is fed
to the output layer which determines what object the image displays.

The greatest drawback of neural networks is that they are computationally expensive
compared to conventional machine learning algorithms and require a large set of data to be
useful. With computational power becoming cheaper and with the abundance of data in

6Refer to the Terminology section for some introductory terminology used.
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recent times, the disadvantages of neural networks are slowly disappearing (Goodfellow,
Bengio, and Courville, 2016). However, neural networks are, in general, much more
difficult to interpret. It is often difficult to assert what each hidden layer determines or
contributes. Most often, it is impossible to establish which parameters or patterns the
neural network attaches importance to.

2.7.1 The artificial neuron

Figure 2: The basic element of ANN, the artificial neuron. Each input variable, x, is fed
to the neuron with associated weights, ω. These are then summed up and a bias, b, is
added in order to fit the model to the desired outcome. The weighted summation, a, is
then fed through an activation function, ϕ, with the final output of the neuron being y.
Image retrieved from Ohlsson and Edén (2019).

Unlike human neurons which are limited to the five senses as input variables, an artificial
neuron can have as many input variables as desired as long as they can be numerically
represented. Figure 2 illustrates how a single neuron, takes multiple numerical inputs and
converts it to a potential output. Each input variable, x1 to xP , is fed to the artificial
neuron and multiplied with its associated weights ω1 to ωP and then summed up. The
neuron also has a so called bias, b, which is a value that either deflates or inflates the
summation, with the weighted summation of the neuron, a, then calculated as

a =
P∑
k=1

ωkxk + b (15)

a is then fed to the activation function ϕ() where

y = ϕ(a) (16)

In the most simplest form of a neural network consisting only of one single neuron, the
output, y, can be the final output of the network. However, neurons are often connected
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together to construct a larger network. The output from an artificial neuron is then
often fed to another artificial neuron as an input. The next artificial neuron conducts the
same operation, but with inputs now originating from other artificial neurons, as shown
in Figure 3 below.

Figure 3: An FNN illustrated with 4 input nodes in the input layer. There are 2 hidden
layers, with 5 hidden nodes in the first layer, 4 hidden nodes in the second layer with a
single output node in the output layer. Image retrieved from Ohlsson and Edén (2019).

The activation function is perhaps one of the most important aspects of the neural
network. It allows for the network to turn a linear function into a non-linear output
in a simple and convenient manner. There are multiple activation functions to choose
from, each with different advantages and disadvantages. The six most common ones are
presented below along with a graphical illustration (see Figure 4).

1. Linear:

ϕ(x) = x

2. Threshold function:

ϕ(x) =

0 if x < 0

1 if x ≥ 0

3. Logistic function:

ϕ(x) = 1
1+ex

4. Hyperbolic tangent:

ϕ(x) = tanh x

5. Rectified linnear unit (ReLU):

ϕ(x) =

0 if x < 0

x if x ≥ 0

6. Softplus:

ϕ(x) = log(1 + ex)

12



Figure 4: The activation functions illustrated. Image retrieved from Ohlsson and Edén
(2019).

The most appropriate activation function depends heavily on the task the neural net-
work or node is assigned to perform and the complexity of the network. More complex
networks often require more primitive activation functions to reduce computational bur-
den. Activation functions where the output range is limited, such as the threshold, logistic
and hyperbolic tangent functions, are most suitable for classification tasks while Softplus,
ReLU and linear are often used for regression type tasks.

The weights, bias and activation function will all play a role in optimizing the network.
The goal is for the output of the activation function to be as close to the true correct
value as possible, which will be further explained in section 2.7.3.

2.7.2 Recurrent neural network

The single artificial neuron can be linked in different ways with other artificial neurons to
produce a certain type of architecture. The quality of the output is closely linked to the
architecture of the network. RNN have feedback connections which are used to capture
long term and short term temporal dependencies in the data (see Figure 5). This makes
RNNs particularly useful when analyzing sequential data7. However, as noted by Bengio,
Simard, and Frasconi (1994), ordinary RNNs have a hard time remembering long term
dependencies in data as they suffer from the vanishing gradients problem8. While one may
choose to develop a more intricate learning algorithm to capture long term dependencies,
a more common approach is to use a more sophisticated architecture.

7In the interest of this paper, only recurrent networks will be discussed and their mechanisms. Good-
fellow, Bengio, and Courville (2016) gives detailed and in depth descriptions of multiple different archi-
tectures such as feedforward and convolutional networks.

8Vanishing and exploding gradients problem will be further discussed in section 2.7.3.
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Figure 5: An RNN illustrated with 2 input nodes in the input layer. There is 1 hidden
layer with 3 nodes and 1 output node. Each hidden node has a feedback connection to
all other nodes in the hidden layer, including itself. Each input at time t (left) gets fed
to each hidden neuron where U is the product of the input values and the weights for the
first input layer, V is the product of the output from the hidden layer and the weights
for the output layer. W takes the same output of the hidden layer but multiplies it with
another set of weights which is then fed back to the hidden layer at the next time step
t+ 1 (right). Image retrieved from Ohlsson and Edén (2019).

2.7.2.1 Long short-term memory

The LSTM is a special type of RNN architecture which was initially proposed by Hochre-
iter and Schmidhuber (1997). Since then, minor changes and improvements have been
made over the years with the implementation that Graves, Mohamed, and G. Hinton
(2013) used being the one most widely recognized and the one utilized in this paper.

Unlike a regular RNN which simply calculates the weighted sum of each input, an
LSTM network conduct a more sophisticated operation. Each LSTM-unit has a so called
’memory cell’ that can maintain information over long time periods with the help of ’gates’.
Each LSTM-unit has multiple gates called output-, forget- and input gates. These gates
can be seen as regulators which dictate the flow of information inside the LSTM-unit.
The output gate modulates the amount of memory content exposure, the input and forget
gates updates the memory cell by partially forgetting and adding new memory content as
shown in Figure 6. Unlike the simple RNN unit which overwrites its content at every time
step, an LSTM unit decides whether to keep the existing memory or partially overwrite
the memory using the introduced gates. This gives LSTM networks the ability to detect
important features and carry them over a long period of time9. The long term memory

9This paper only aims to give the reader an intuitive understanding of LSTM networks. The output of
the LSTM unit is more complicated than the simple neuron shown in section 2.7.1. A full mathematical
description of an LSTM is provided by Graves, Mohamed, and G. Hinton (2013).
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characteristics have made LSTM one of the most popular architectures in deep learning,
with many of the famous artificial intelligence systems having an LSTM architecture, such
as Alphastar (Stanford, 2019) and OpenAI (Rodriguez, 2018).

Figure 6: Illustration of an LSTM unit. i, f and o are input-, forget- and output gates
respectively. c and c̃ denote the memory cell and the new memory cell content. Figure
retrieved from Chung et al. (2014).

2.7.3 Optimizing a neural network

Goodfellow, Bengio, and Courville (2016) refers to three ingredients that are quintessen-
tial for neural networks and other machine learning algorithms, with the three being:
experience, task and the performance measure. The task can be anything from classifica-
tion, to regressions or imputation of missing values. The experience is often referred to
the data set available. The performance measure is the evaluation of how well the neural
network performs the task with the available experience. However, evaluating how well
a model performs is often difficult and subjective. It is therefore easier to measure how
incorrect the model is by using an error measure, often referred to as cost function.

When training a neural network, the algorithms attempt to find the optimal weights
attached to each input variable. To identify the most optimal weights the model must
know the magnitude of the errors. Therefore it is necessary to construct a relevant error
function depending on what data is being dealt with. For regressions the two most
common error function utilized are the mean squared error (MSE) and mean absolute
error (MAE) given as

EMSE(ω) = 1
2N

N∑
n=1

(dn − y(xn))2 (17)

EMAE(ω) = 1
2N

N∑
n=1
|dn − y(xn)| (18)
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where N is the number of data points, dn is the target output value and y(xn) is the
output of the model. While the two cost functions are very similar, MSE puts more weight
on large deviations due to the squared term. This means that MSE should be preferred
if large errors are particularly undesirable.

The aim is to find a vector consisting of weights ω for each input that minimizes
the error function. This can be achieved by using an iterative procedure called gradient
descent learning. Gradient descent achieves this by the following steps:

1. Initiate all weights, ωk, with small random numbers

2. Define a learning rate, η.

3. Compute the output, yn = y(xn) and the difference, δn = 1
N

(dn − yn) for each data
point, n.

4. Update the weights according to: ωk → ωk + η
∑
n δnxnk

5. repeat step 3 and 4 until convergence.

This means that the change in weights can be expressed as10:

∆ωk = −η 1
N

N∑
n=1

∂En
∂ωk

(19)

meaning that the change in weights occurs in the opposite direction of the gradient and
the size of the change is proportional to the partial derivative and the learning rate. A
smaller learning rate gives a smoother trajectory towards the minimum point but may
come at the cost of excessive computational time. On the other hand, if the learning rate
is set too high the model might overshoot the minimum point (Haykin, 1998). However, it
is impossible to know if the minimum point the model identifies is the local or the global
minimum. It is therefore sensible to intentionally overshoot the initial minimum in effort
to determine whether or not the minimum identified is the global minimum or not (see
Figure 7).

In addition, gradient descent has to run through the entire training set for a parameter
in a particular iteration. Thus, if the training sample is large, which it has to be for ANN
to be effective, then gradient descent is extremely time inefficient as running one single
iteration will take too long. Therefore, stochastic gradient descent (SGD) is often utilized
instead. Unlike regular gradient descent, SGD only iterates over a subset of the training
data to update the parameter. Typically, the training set is divided into 10-50 smaller
subsets, usually referred to as minibatches. Every time a minibatch has been used to
update the weights, an iteration has been performed. After all minibatches have been

10See Appendix B for derivation.
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(a) Larger learning rate (b) Small learning rate

Figure 7: Figure 7a shows a model that intentionally overshoots the minima in order to
find the global minimum. Figure 7b shows when a learning rate is set too small and the
model gets ’stuck’ at the first local minimum. Image retrieved from Peltarion (2020).

iterated, a so called epoch has been completed. After an epoch, new random partitioning
usually occurs until convergence is reached. This drastically reduces the computational
burden at the cost of a slightly lower convergence rate.

While SGD is an improvement upon regular gradient descent, it imposes a common
learning rate for all parameters. For models with large number of parameters, this can be
inefficient. The Adam optimizer11 (the name is derived from adaptive moments) builds
on SGD but also incorporates a dynamic learning rate and momentum. In layman terms,
if the optimizer realises that the current weights are far off from the optimal weights, it
will move more aggressively towards the optimum weights (Kingma and Ba, 2014).

If a neural network has a complex structure or is very large, then one often has to deal
with the problem of vanishing or exploding gradients. This occurs when the weight up-
dates either approaches zero or becomes very large in equation 19, which can happen if for
example the utilized activation function is hyperbolic tangent. In an n-layered network,
the small or very large gradients12 gets multiplied, meaning the gradient will decrease or
increase exponentially with n. While there may lack any direct solutions one can incorpo-
rate other activation functions that suffer far less from the vanishing/exploding gradient
problem. Activation functions such as linear and ReLU always has a fixed derivative and
therefore will neither vanish nor explode.

11The adam optimizer is far more mathematically advanced compared to SGD since it combines two
relatively complex optimization methods, RMSprop and AdaGrad. For the full mathematical derivation
and a full theoretical background of the combined methods, see Kingma and Ba (2014).

12The gradient is represented by the partial derivative in equation 19. If this partial derivative is very
small in a multilayered network, it will decrease exponentially due to the chain rule when differentiating
composite functions.
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2.7.4 Regularization

A central problem in machine learning is to construct a model that performs well not only
on the training data, but also on new, previously unseen data. A model with such ability
is said to be able to generalize. However, overfitting the model on the training data often
prevents models to be able to generalize (see Figure 8). The process of decreasing the
errors on new data by tweaking the learning algorithm is referred to as regularization.

Most network regularization methods from conventional machine learning algorithms
are applicable on neural networks, such as L1 regularization (often referred to as LASSO).
However, in deep learning there are also additional approaches to regularization that
conventional machine learning algorithms do not have, due to the distinct features of
neural networks.

(a) Overfit (b) Generalized

Figure 8: Figure 8a shows a model that fits very well to the trained data but with poor
generalization performance. Figure 8b shows a much better generalized model at the cost
of increased training errors. Image retrieved from Ohlsson and Edén (2019).

2.7.4.1 L1 and L2 regularization

The two most known regularization methods, commonly referred as L1 and L2, modifies
the cost function according to

Ẽ(ω) = E(ω) + αW (20)

where Ẽ is the adjusted cost function, W is the regularization term and α controls the
amount of regularization. For both approaches, α needs to be fine tuned which adds
an additional undesired computational burden. Nevertheless, L1 and L2 are easy to
implement and often increase generalization performance.

L2 often increases generalization performance by setting the regularization term as
follows

W = 1
2
∑
i

(ωi/ω0)2

1 + (ωi/ω0)2 (21)

where ω0 is a new parameter introduced, that needs to be fine tuned in the same manner
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as α from equation 20. L2 normalization forces large weights towards zero while keeping
necessary weights to a non-zero value. However, L2 is unlikely to completely remove
parameters as weights are extremely unlikely to ever reach zero13. This is something that
L1 regularization accomplishes by setting the regularization term to

W = 1
2
∑
i

|ωi| (22)

The main difference between L1 and L2 is that the gradient of L1 is constant and does
not approach zero as the weights approaches zero. Meaning that small weights can be
forced to zero and therefore LASSO can be used as a feature selection method (Tibshirani,
1995).

2.7.4.2 Early stopping

Another approach to improving generalization performance is the early stopping-approach.
This method achieves generalization by restricting the complexity of the model. It does
this by dividing data into two sets, a training set which the model gets to observe and a
validation set that is unknown to the model which is used to estimate the generalization
error. During an iteration the model trains on the training set and fine tunes its parame-
ters then valuates the performance on the validation data. The typical behaviour during
the minimization process is shown in Figure 9. The early stop method stops iterating
once generalization errors starts to increase (Goodfellow, Bengio, and Courville, 2016).
Early stopping is computationally cheap and easy to implement which makes it a popular
regularization method. However, the validation error rarely exhibit a nicely uniform u-
shape form during the minimization process. Hoffer, Hubara, and Soudry (2017) showed
that it is often a good idea to continue training for 20-50 epochs as validation errors tend
to increase temporarily before decreasing again.

13The gradient of the regularization parameter close to ωi = 0 is almost zero, suffering from the
vanishing gradient problem.
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Figure 9: The training error and the validation error during the minimization process.
The early stop method halts the training when validation errors has reached a minimum.
Image retrieved from Gençay and Qi (2001).

2.7.4.3 Dropout regularization

The dropout method, first introduced by G. E. Hinton et al. (2012), temporarily removes
nodes from a neural network to prevent overtraining. Each node, has a probability p of
getting removed from the model. When a node is removed, all the weights fed in and
out from the node are temporarily removed along with the node. The dropout method
is an easy and efficient method to generalize a network which works on a broad range of
architectures in deep learning. Unlike L1 and L2 regularization, no additional parameter
needs to be fine tuned.

Figure 10: (Left) A network with 2 hidden layers. (Right) The same network but with
a few hidden nodes temporarily removed along with the associated weights due to the
dropout regularization method. Image retrieved from Ohlsson and Edén (2019).
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3 Background and previous research

This section introduces a brief historical background as well as previous research relevant
to the thesis. It starts with introductions to commodities and VaR & ES, followed by
empirical research in volatility forecasting, and lastly, an overview of the research in the
area of ANN is conducted.

3.1 Commodities

Commodities have been traded for thousands of years, as they are natural resources
extracted from the earth, which can be refined, used in production or consumed in one
way or another. In order to hedge the price risk of a certain commodity, companies
can buy futures, which are contracts with pre-specified transaction terms for a future
transaction date (Hull, 2015). There are evidence that futures trading can be dated back
to transactions on rice in China over 6000 years ago. However, the first institution with
the sole purpose of commodities futures trading was the Chicago Board of Trade (CBOT),
introduced in 1848 (Nasdaq, 2017).

The digital technology has immensely increased the availability of commodity invest-
ments to the broader public, besides futures and other derivatives, there is also a growing
appetite for so called exchange traded funds (ETFs) that tracks individual commodities
or commodity indices. According to Buyuksahin, Haigh, and Robe (2009), the sums in-
vested in ETFs and other vehicles tracking SPGSCI has gone from 5 billion USD in 1999
to 140 billion USD in 2008. The authors investigate SP500 and SPGSCI with dynamic
correlation and recursive cointegration methods, with the results indicating that the asset
classes are dis-synchronized. Further, the immensely increased trading activity in com-
modities does not seem to have altered this relationship significantly in the previous 15
years. Hence, a conclusion is that commodities are still attractive as diversification means
for equity investors.

Regardless of the upsurged interest for commodity investments, not too much research
has been conducted regarding risk management in the area, especially concerning ES.
However, Giot and Laurent (2003) examines VaR on metal- energy- and cocoa-futures
with RiskMetrics, skewed student APARCH and skewed student ARCH models. The
authors investigate both long and short positions in the futures markets. The results
indicate that the skewed student APARCH14 model performs the best in all cases. Hung,
Lee, and Liub (2008) investigated VaR on energy commodities utilizing a GARCH-HT15

14The skewed Student APARCH approach is a parametric approach. The VaR estimate is the product
of the forecasted volatility from an APARCH (Which is an alternation of GARCH but with a leverage
effect) and the adequate quantile from the skewed student distribution. For more information, please
refer to the work of Giot and Laurent (2003).

15Heavy Tail distribution proposed by Politis (2004).
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as well as the conventional GARCH-N and GARCH-t. The empirical results suggest that
the VaR estimates based on the HT distribution has good forecasting power and further
indicates that fat tailed distributions are more suitable than Normal and Student-t for
energy commodities. While VaR has been somewhat investigated, especially on energy
commodities, ES is yet to be evaluated as a serviceable risk measure for commodities.

Apart from the somewhat deficient output of risk-management research in the area,
the general price and volatility characteristics of commodities has been investigated by
Deaton and Laroque (1992) in their study ”On the Behaviour of Commodity Prices”. A
central finding in the study is non-linearity in predicted commodity prices due to the fact
that the market as a whole cannot carry negative inventory. In addition, the authors
acknowledge the fact that commodities exhibit extraordinary high volatility. The findings
of vast, and clustering, volatility as well as heavy tailed distributions of commodities is also
confirmed in the study ”Commodity Price Variability: Its Nature and Cause” conducted
by OECD (1993). Due to the void in risk-management research output, in combination
with the volatility characteristics of commodities and the increased investment interest,
conducting further research in the area of VaR and ES is warranted.

3.2 Introduction to VaR and ES

Since the introduction of VaR in the late 1980’s, the adoption quickly spread across several
industries following the financial crisis of 1987 (Linsmeier and Pearson, 1996). However,
It was not until 1996 that the Basel Committee introduced a capital charge for market risk
based on VaR. The Basel committee, is an international banking supervisory authority,
founded in 1973 by the central banks of the so called G10-countries16. It has gradually
expanded over time and now includes 45 member states with the aim of streamlining bank-
ing standards worldwide (BIS, 2020). The 1996-amendments implemented a standardized
approach to set capital requirements for banks, which was based on the calculation of VaR
over a 10 day horizon on a 99% confidence level (Hull, 2018).

The swift adoption of VaR as a universal risk measure, even outside of regulatory pur-
poses, was largely attributed to its ease of implementation and interpretation (Linsmeier
and Pearson, 1996). However, many researchers, such as Embrechts (2000), criticised
VaR as a complete risk measure and claimed that the popularity lies to a great extent
in its simplicity and applicability to any financial instrument. In addition, Artzner et al.
(1999) proves in numerous ways that VaR is in general not subadditive17 and provides
no information regarding tail events and the potential magnitude of such events. As a
response to these shortcomings, the authors introduced the idea behind a desirable prop-

16The Group of Ten is made up of eleven industrial countries (Belgium, Canada, France, Germany,
Italy, Japan, the Netherlands, Sweden, Switzerland, the United Kingdom and the United States) which
consult and co-operate on economic, monetary and financial matters (BIS, 2020).

17Subadditivity is one of the conditions for Coherency, see Appendix A for definition of Coherency.
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erty of a risk measure called ’Coherency’18. The lack of subaditivity is concerning since
the risk of a portfolio could be far greater than the individual risks of the constituents
when VaR is applied. Acerbi and Tasche (2002) claim that subadditivity is crucial to
capital adequacy requirements in banking supervision by the analogy of the total risk of
a bank being adequate in relation to the summed risks of its branches. Tasche (2002)
further criticises VaR for its deficiency in rewarding diversification.

The limitations to the prevailing capital requirement model built upon VaR became
painfully evident during the financial crisis of 2007-2008. As the capital held by the banks
was far too low in relation to the undertaken risk, it became clear that the current capital
requirements were insufficient. In response to the meltdown of 2008, and to ensure the
regulation, supervision and risk management of banks, the Basel III accords were released
in 2010. Along with the accords, the committee also issued a consultative document
known as ”A Fundamental Review of the Trading Book” in 2012 (BIS, 2020). One of the
major changes imposed by FRTB, in order to assure adequate measurement of tail risk,
was the adoption of ES on a 97.5% confidence level in spite of the prevailing 99% VaR
in measuring the capital charge for market risk (Hull, 2018). The reasoning behind the
change of confidence level is that VaR0.99 and ES0.975 are approximately equal if returns are
normally distributed (Hull, 2018). However, many empirical studies reject normality for
returns of financial assets. Hagerman (1978), Bollerslev (1987) and Fama (1965) display
in their respective studies evidence of a non-normal and leptokurtic behaviour of stock
returns. Modeling the right tail of the loss distribution becomes crucial as tail events
are a threat to the solvency of financial institutions and subsequently the stability of the
global economy (BIS, 2013). Even though many studies agreed on the superiority of ES
over VaR, some were concerned with the issue of backtesting ES. As a response, Acerbi
and Szekely (2014) proposed three approaches, that according to the authors "introduce
no conceptual limitations nor computational difficulties of any sort".

While the new accords have introduced stricter rule sets for risk management such as
strengthen capital requirements and further liquidity requirements, the financial institu-
tions may still to some extent implement their own approach to volatility forecasting and
the estimation of ES.

3.3 Volatility Forecasting

Forecasting the volatility of financial assets is incorporated in many aspects of the econ-
omy. The applications range from monetary policy, fiscal policy and the risk management
of banks to derivatives pricing, investment strategies and speculation (Poon and Granger,
2003). Like most forecasting practices, volatility forecasting often incorporate previous
observations in order to forecast future ones. Empirically, volatility has to a large extent

18See Appendix A for the four axioms that a coherent risk measure needs to fulfill.
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been forecasted using random walks, simple averages or weighted moving averages (Poon
and Granger, 2003). However, these approaches make use of the sample standard devia-
tion, assuming that the volatility within the sample is the same. Mandelbrot (1963) found
that volatility tends to cluster and noted in regards to asset prices that ”large changes tend
to be followed by large changes, of either sign, and small changes tend to be followed by
small changes”. Mandelbrots findings gave rise to a pursuit of more sophisticated models
that could account for the volatility clustering.

This eventually gave birth to the family of autoregressive conditional heteroscedas-
ticity (ARCH) models, introduced by Engle (1982). A few years later, Bollerslev (1986)
and Taylor (1986) generalized on Engles work in introducing GARCH-models, where the
volatility today is explicitly a function of yesterdays deviation from expectations as well
as yesterdays volatility. The conditional variance incorporated in these models were con-
siderably better at capturing volatility clustering than simple standard deviation models.

However, Nelson (1991) criticises GARCH for neglecting the well established finding
that asset returns are negatively correlated with the volatility. The criticism stems from
the fact that negative and positive returns impact the forecasted volatility the same
way in GARCH. Different models were then introduced to account for the asymmetric
properties of asset returns, including the E-GARCH model introduced by Nelson (1991)
and the GJR-GARCH proposed by Glosten, Jagannathan, and Runkle (1993). Despite
the emergence of more sophisticated GARCH models, Hansen and Lunde (2005) showed
that GARCH(1,1) still performs well on most asset classes.

A fundamental disadvantage with conventional volatility models is that they are not
model free, meaning that they impose an explicit relationship onto the data. As stated
by Zhang, Patuwo, and M. Hu (1998), formulating a non-linear model to a data set is a
challenging task due to vast number of possible non-linear relationships. Therefore, it may
cause some heavy misspecification if the underlying conjunction is particularly complex.
In addition, X. Chen, Lai, and Yen (2009) have noted that with capital markets being
increasingly globalized, it is becoming increasingly difficult to capture and model market
risk, which further exacerbates the risk of model mis-specification. These shortcomings
incentives the search for a volatility forecasting approach that is model free and adaptable
to the most complex non-linear relationships, such as neural networks.

3.4 Artificial Neural Networks

The first early model of the human brain was introduced by McCulloch and Pitts (1943)
and is commonly regarded as the inception of artificial neural networks. Not long after,
Rosenblatt (1958) published about the perceptron19, the first model through supervised
learning to be able to automatically set weights. Rosenblatt’s discovery gave rise to new

19The perceptron is a basic artificial neuron which was discussed in section 2.7.1.
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architectures such as the multilayered perceptron and other FNNs. However, RNNs would
rarely be considered until Hochreiter and Schmidhuber (1997) introduced the LSTM unit.

Consequently, most previous research with an ANN approach on financial data have
not been conducted using RNNs. Donaldson and Kamstra (1997) and M. Y. Hu and
Tsoukalas (1999) separately compared an ANN approach to forecasting conditional volatil-
ity. Both studies combined volatility forecasts made by conventional GARCH approaches
with forecasts made by FNNs and found that forecasts that incorporated neural networks
had greater predictive power compared to the forecasts that excluded the FNN contri-
bution. However, neither of the studies used an RNN architecture. Within the field of
commodities, Kohzadi et al. (1996) compared an ANN approach against conventional time
series models for predicting commodity prices and found that ANN outperformed con-
ventional approaches. However, as before, the authors utilized an FNN approach rather
than RNN. In more recent times, Kulkarni and Haidar (2009) forecasted the direction
of crude oil prices by using oil futures as predictors, with the results showing that the
FNN managed to predict both the direction of the price change and the price with great
accuracy.

Most established research on financial data implementing ANN seem to have omitted
RNN altogether and only just recently has LSTM architectures been implemented. The
majority of published articles investigate LSTM networks capabilities in equity price fore-
casting. In a study by K. Chen, Zhou, and Dai (2015), the authors utilized an LSTM
network to forecast stock returns on Chinese stocks and found that LSTM outperformed
in terms of forecast accuracy compared to a random prediction approach. Fischer and
Krauss (2018) compared the LSTM performance on stock indices against other machine
learning algorithms such as random forest, logistical classifier and even an FNN, and
found that LSTM again outperformed the other approaches. Min (2020) also found that
LSTM compared better than other existing recurring network architectures in forecasting
financial data.

Still, there seems to be a research void left on LSTM networks ability to forecast
volatility. Recently published papers seem to investigate if volatility forecasts can be
improved upon by using a hybrid model20 which incorporates both GARCH and ANN
models. However, none of these utilizes an LSTM network in the hybrid model nor
evaluates an LSTM networks ability to forecast volatility. On top of that, there appears
to be a complete lack of LSTM network approaches made on commodities, whether it
be predicting returns or volatility. General consensus from previous research seem to
indicate that neural networks might be better at forecasting both prices and volatility
than conventional approaches. However, whether or not this is case with commodities
remains to be seen. It is also unclear if the increased forecasting accuracy will translate

20See Kristjanpoller, Fadic, and Minutolo (2014), Kristjanpoller and Minutolo (2015) and Tseng et al.
(2008)
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into improved VaR and ES estimations.
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4 Data and Methodology

The data and methodology section outlines and motivates the choise of data as well as
the adopted approach in this thesis. It starts with a delimitation section, followed by
explaining the choice, and preparation, of the data as well as a short summary of each
index. After that, the data preparation for LSTM as well as the motivation behind the hy-
perparameters are presented. Lastly, sections on estimating the GARCH(1,1) parameters
with ML and the approach to estimating and backtesting VaR and ES are conducted.

4.1 Delimitations

Due to the time-frame of this thesis, some delimitations are necessary. The number of
commodities investigated is set to three due to long training sessions for LSTM. The data
available imposed further limitations. The data is only extracted from 1990 and onwards
due to the start date of the oil index. In order to keep consistency across commodities,
the other commodities are also sampled for the same time-period. This results in about
7500 daily observations, which might be a sufficient data set for GARCH, but on the
small end of the spectrum with respect to LSTM.

A potential remedy to this could be to use more predictors for LSTM in order to
increase the robustness of the model which is not an option in this case. This is due to
the fact that artificial neural networks requires a substantial amount of computing power.
Due to the limited computing and memory resources available21, the model complexity is
needed to be kept low in order to complete training sessions. This means that other than
historical volatility, no other predictors are used for forecasting volatility in the LSTM
model. However, this does make for a more fair comparison of LSTM and GARCH as
they utilize the same set of input-data.

4.2 Data

The data examined in this thesis is daily price data of three indices that track the prices
of individual commodities, namely

• SPGSCLTR - Crude Oil Total Return Index

• SPGSGC - Gold Spot Index

• SPGSSO - Soybean Spot Index

The three indices are sub-indices to the Standard & Poor’s Goldman Sachs Commodity
Index (SPGSCI), which is the first major investable commodity index, and according to

21All model training was performed on a Dell XPS 13’ 9360 with 8 GB of LPDDR3 2.133 MHz RAM
and an Intel I5-7200U CPU with a base clock speed of 2.50 GHz.
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Goldman Sachs (2020) ”Provides investors with a representative and realistic picture of
realizable returns attainable in the commodities markets”.

The motivation behind the choice of commodities is that they represent three of the
most traded commodities within their respective sectors (energy, metals and agricultural)
based on futures trading in 2017 with figures from the Futures Industry Association (IG,
2018). While gold is not the most traded metal according to the numbers, it has been
considered to be one of the most important hedge assets to the stock market22 and was
the first ever commodity to be securitized in an ETF (Mukul, Kumar, and Ray, 2012).

Three SPGS indices are published: Excess Return, Total Return and Spot Return.
The Excess Return index measures the returns from investing in uncollateralized23 com-
modity futures, the Total Return index measures the returns from investing in fully-
collateralized24 commodity futures, and the Spot index measures the level of commodity
spot prices. In sampling the data, Bloomberg did not provide the same index type for
all three commodities. The Crude oil index was not available as Spot, the soybean index
was not available as Total Return and so on. However, the gold index was available as
both Spot and Total Return, and after comparing the two, it was deemed that they were
highly similar, and hence, the fact that the indices vary in types should not in any way
impact the remainder of the analysis.

The constituents of the indices are weighted by world production and the main re-
quirements for a commodity futures contract to be included can be summarized intro
three main categories25, as following

• General Eligibility - Included contracts must have a specified expiration date, be
denominated in USD and be traded on a trading facility that has its principal place
in an OECD country.

• Volume and Weight - Included contracts must meet total dollar value trading
requirements and reference percentage dollar weight requirements.

• Number of Contracts - Further requirements for the total amount of contracts
and the number of contracts for each commodity applies.

The dataset is downloaded via Bloomberg in April 2020 for the period 1990-01-01 to
2019-12-31. The reasoning behind the choice of timespan is that the crude oil index was
introduced just a few years prior (1987), and for consistency, the same timespan was kept
for all three commodities. Even though 30 years of data (7827 daily observations) per

22See for instance ”Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold” by Baur
and Lucey (2010).

23Uncollateralized simply means that the collateral is not invested elsewhere, and hence it measures
only the return of the futures contracts.

24Fully-collateralized refers to the collateral being invested in a risk-free T-bill, the return is hence the
excess return plus the risk free return.

25For more info: https://us.spindices.com/documents/methodologies/methodology-sp-gsci.pdf.
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index should be considered a long enough timespan to evaluate VaR and ES sufficiently
for GARCH(1,1), it is on the small side for LSTM, as elaborated on in section 4.1. After
downloading the data, it was noted that 260 datapoints had the same index value as
the previous day for all the commodities. According to SP Dow Jones Indices26 there are
certain extraordinary events that would lead to ’Unexpected Exchange Closures’ resulting
in the same index value for two consecutive days. After converting the index to returns,
these ’zero-returns’ were then excluded in order not to bias the volatility estimates of
GARCH(1,1) and LSTM. The descriptive statistics of the loss series is presented in Table
1 below.

Table 1: Descriptive statistics of the loss series for the three commodities.

Loss series N Min Max Mean Std Kurtosis Skewness
Oil 7565 -14.6 31.9 -0.034 2.2 12.2 0.37
Gold 7565 -9.2 9.3 -0.023 1.0 11.0 0.09
Soybean 7565 -6.9 7.1 -0.017 1.4 5.5 0.09

26For more info: https://www.spindices.com/documents/index-policies/methodology-sp-options-
indices-policies-practices.pdf.
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4.2.1 SPGSCLTR - Oil

The oil index SPGSCL was first launched in 1991, with a staring index value on December
31, 1986. According to S&P Global, the index ”provides investors with a reliable and
publicly available benchmark for investment performance in the crude oil market.”.

Figure 11: The evolution of the oil total return index SPGSCLTR (upper panel) and the
corresponding losses (lower panel). Both plots are over the time period 1990-2019.

As can be seen from Figure 11, the oil price had a strong increasing trend leading
up to the financial crisis of 2008. This was largely attributed to soaring tension in the
middle east, increased demand in China and India, as well as a deteriorating value of
the USD (Huntington, 1998). In the recession of 2008, the demand of oil collapsed and
the price went from 147 USD/barrel of crude oil on NYMEX at its peak in July 2008
to a low of 30 USD/barrel in December the same year. Since the collapse, the oil price
was consolidating for a few years before having another deep dive in the beginning of
2016 when USA drastically increased its output. Further, oil has experienced the highest
volatility out of the examined commodities, as can be seen from the standard deviations
(Std) in Table 1. This is in line with previous research that indicates that oil is one of the
most volatile commodities (Regnier, 2007). The high volatility that oil has experienced
throughout the years is also clear from examining the the loss chart, with a noticeable
32% daily decline on the 16th of January 1991. Furthermore, as can be seen from Table 1,
the kurtosis and skewness is higher than for the other commodities, indicating that large
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losses occur rather frequently. This is also one of the reasons behind the modest price
increase from the ending of 2019 as compared to 30 years prior.

4.2.2 SPGSGC - Gold

The gold index SPGSGC was first launched in 1991 with a starting index value on De-
cember 30, 1977. According to S&P Global, the index "provides investors with a reliable
and publicly available benchmark tracking the COMEX gold future".

Figure 12: The evolution of the Gold spot index SPGSGC (upper panel) and the corre-
sponding losses (lower panel). Both plots are over the time period 1990-2019.

Figure 12 displays the daily spot price of gold and the daily losses. It is quite evident
that gold has had a far less erratic price growth compared to oil, with the largest daily
loss being just below 10%. Despite having the lowest standard deviation as can be seen in
Table 1, the high kurtosis is attributed to the rather large amount of outliers. Regardless,
the price of gold lays almost dormant for the first 15 years with an expansive increase in
value between 2005 to 2012 followed up by a period of turmoil. This could to some extent
be explained by crises such as the 9/11 attacks, the dot-com-bubble bursting in the early
2000’s and this financial crisis of 2008, which would support the idea that investors turn
to gold as a mean to hedge themselves against a volatile stock market27.

27Which is the conclusion by Baur and Lucey (2010), in their study ”Is Gold a Hedge or a Safe Haven?
An Analysis of Stocks, Bonds and Gold”.
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4.2.3 SPGSSO - Soybean

The soybean index SPGSSO was first launched in 1991 with a starting index value on
December 31, 1969. According to S&P Global, the index "provides investors with a reliable
and publicly available benchmark for investment performance in the soybean commodity
market".

Figure 13: The evolution of the Soybean spot index SPGSSO and the corresponding losses
(lower panel). Both plots are over the time period 1990-2019.

The progression of the price of soybean is quite different from that of oil and gold. Soy-
bean has displayed a more consistent volatility pattern throughout the entire time period
as can be seen from the losses in Figure 13. The ’thick’ pattern of the losses that indicates
a period of relatively high volatility is much closer and more evenly spread than for gold
and oil. The losses also show a seasonality pattern, with clustering seemingly forming in
regular intervals. This could be explained by the fact that the price of soybeans are heav-
ily influenced by the season of the year, weather and harvest yield (Introduction to Grains
and Oilseeds - Understanding Seasonality in Grains, 2020). However, the individual daily
losses and gains are smaller in magnitude in comparison to the other commodities. This is
further supported by comparing the standard deviation and kurtosis of Soybean and Gold
in Table 1. Soybean displays a higher standard deviation while exhibiting lower kurtosis,
which clearly indicates a generally more volatile pattern but with less severe outliers.

A strong upwards trend, much like gold and oil is evident for the first one and a half
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decade of the 21th century. This is probably a combination of increased demand for soy
produced animal food in China (which is the worlds largest importer accounting for 60%
of global imports), increased popularity for soy based human food products as well as
increased usage of soybean oil in food products, biodiesel and bioheat.28

4.3 LSTM data preparation

In general, most academic studies in machine learning agrees that data should be divided
into three sample sets, namely a training set which will be available for the model to
train on, a validation set which will be used to prevent overfitting and a testing set which
consists of new unseen data to evaluate the model on. However, there seems to be lack
of consensus around how to partition the three different sets in the most suitable way.
This is due to the fact that each data set being trained on is unique and depending on
the task at hand. In general, the data is divided somewhere between 70%/15%/15% to
60%/20%/20% into training, validation and testing set respectively.

The data in this thesis is split 70%/10%/20/% for the categories (see Table 2). The
reason for a slightly lowered allocation to the validation set is due to the fact that the
size of the data set is on the smaller end of the spectrum. Since the validation set is only
there to prevent overtraining, it is often customary to allocate a smaller weight to the
validation set.

Table 2: The number of observations in each data subset, with start dates and end dates.

Data subset Start date End date Days %
Training 1990-01-01 2010-12-28 5296 70%
Validation 2010-12-29 2013-12-23 756 10%
Test 2013-12-27 2019-12-31 1514 20%

Before the raw data can be fed to the network it has to be modified. As the task of the
LSTM is to forecast future volatility, in combination with the fact that it is a supervised
learning29 approach there has to be a sequence of target volatility for the network to
analyze and train on in order to come up with its predictions. Realized volatility (RV) is
used as the volatility estimator since it is a model-free, ex-post estimator of volatility30.
Realized volatility is given as

RVi,t =
√
R2
i,t (23)

28Visit https://ncsoy.org/media-resources/uses-of-soybeans/ for more info.
29Supervised learning refers to there being a desired outcome where the network has to infer a pattern

to match the target outcome. Whereas unsupervised learning allows the network to discover features of
the input letting the neural network decide for itself what the outcome should be.

30Andersen and Bollerslev (1998b) found that realized volatility, while a noisy indicator, is unbiased
for daily volatility given sufficient sampling frequency. Unfortunately the data is only sampled once per
day which may give rise to a biased estimation of realized volatility.
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where Ri,t is the return of commodity i at time t. The input data for LSTM is kept
univariate, i.e. historical realized volatility is the only predictor utilized in order to
predict one step ahead volatility. This is done in order to keep the results from the
LSTM-network and GARCH(1,1) comparable and to limit the computational burden as
elaborated on in section 4.1.

The sequence of the data is preserved and not randomly partitioned, in order to
preserve long term dependencies. The data series is not normalized between [0,1]. As the
data fed to the neural network is univariate there is no need to normalize the data, as
normalization is often done in order to be able to compare multiple different parameters
that might have different scaling. Normalization is also sometimes done in order to reduce
the chances of vanishing or exploding gradients. However, after many iterations, it was
deemed that normalization did not improve the results.

4.4 Setting hyperparameters for LSTM

There are no optimal settings of hyperparameters as each data set is unique and there-
fore the most optimal hyperparameters have to be found manually, often by trial error
(Goodfellow, Bengio, and Courville, 2016). A few hyperparameters remain unchanged
throughout the process due to the very nature of the task with further elaborations pre-
sented below. These are:

• Cost function: The cost function chosen is mean squared error (MSE). It is often
the preferred error function when used in regression problems as it punishes large
deviations. As the goal is to forecast the volatility in order to estimate VaR and
ES, large deviations becomes particularly undesirable. This cost function is used to
evaluate training, validation and test samples.

• Optimizer function: The optimizer used is the Adam optimizer as it is has been
shown to have the best performance for recurring networks (Kingma and Ba, 2014).

• Sequence length: The sequence length refers to the number of observations the
network should use in order to forecast the desired outputs. Since LSTM should
have long term memory there is little reason to have a long sequence length. Harmon
and Klabjan (2018) and Chong, Han, and Park (2017) used a sequence of 10 days
while K. Chen, Zhou, and Dai (2015) used 30 days, suggesting that the sequence
length could be anywhere between 10-30. In order to reduce computational burden,
a sequence length of 10 is chosen.

• Number of hidden layers: Two hidden layers is chosen in order to increase the neural
networks capacity.
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• Dropout rate: Dropout rate is left at 0.25, i.e. a 25% chance that a node and its
associated nodes randomly get removed.

• Activation function: Linear activation is preferred due to the nature of the task
being a regression problem and that the data is not being normalized.

The remaining hyperparameters are manually found by iterating over multiple different
configurations, slightly changing the hyperparameters between iterations to improve the
models accuracy. The progress of each hyperparameter is presented below:

• Number of hidden nodes: In effort to simplify the process, the same number of nodes
are always present in both hidden layers. First order of business is to determine
whether the complexity of the model needs to be increased or decreased by changing
the number of hidden nodes by steps of 25 and then gradually lower the step sizes
in order to determine the optimal number of hidden nodes.

• Batch size: Initially, a larger batch size of 512 is chosen in order to speed up each
epoch and thereby achieving preliminary results quicker. Thereafter, batch sizes
are gradually reduced to 256 and lastly 128 in order to get more accurate results.
Smaller batch sizes results in weights being updated more frequently for each epoch.

• Epochs: The number of epochs influences the accuracy of the model. Ideally, the
model should stop running once the validation errors starts to increase in order to
prevent overfitting. However, this is not always possible due to the increasing mem-
ory usage of the model, hence, an upper limit of how many epochs to run through
must be chosen. Therefore, 500 epochs are performed unless signs of overfitting
occurs earlier.

• Learning rate: The learning rate is initially set significantly smaller than usual
(η = 0.00001) due to the non normalized data. It is then slowly decreased for each
run in order to refine the model. According to Goodfellow, Bengio, and Courville
(2016), the learning rate is arguably the most important hyperparameter and it is
crucial to set correctly. Therefore, it is the last hyperparameter adjusted as the
other hyperparameters needed to be as well specified as possible before tweaking
the learning rate.

The hyperparameters are kept the same for each commodity as there turned out to be little
variation in performance between each commodity given the same hyperparameters. The
finalized hyperparameters are presented in Table 3. All LSTM-related implementation is
performed in Python 3.7 with the Keras library package and a Tensorflow backend.
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Table 3: The finalized hyperparameters for the LSTM network. These hyperparameters
are used for all commodities.

Hyperparameter Value
Hidden layers 2
Hidden nodes per layer 75
Learning rate 0.000007
Epochs 500

4.5 Estimating GARCH(1,1) parameters with ML

When estimating the volatility series with GARCH(1,1), there are some considerations to
the estimation frequency of the ML parameters (µ, ω, α, β). Ideally one would like the
parameters to portray the actual relationship of the data which may or may not change
over time. Note again, that this may lead to poor forecasts all together if the parameters
does in fact not describe the actual relationship well. The two extreme cases would be to
either only estimate the parameters once and use the estimations for the entire test-data,
or to reestimate the parameters for every step of the rolling window.

The disadvantages of the first approach is that it may be to dependant on the actual
observations in the training data and could perform poorly on new data or if the underly-
ing relationships change. The second approach is adaptable to changes in the underlying
parameters, however, it is computationally exhaustive and might overinterpret the signif-
icance of temporary prevailing market conditions. The approach in this thesis is however
the first alternative. This is to keep GARCH and LSTM as comparable as possible, in
the sense that both models get the same data to ’train’ on (or estimate parameters in the
case of GARCH). Since GARCH is not a machine learning approach, there is no concept
of overfitting, and therefore the validation set becomes redundant. Hence, the training
data and validation data (80% of the total dataset) are combined and used to estimate
the parameters.

4.6 Estimating & backtesting VaR and ES

There are different approaches to estimating and backtesting VaR and ES. The methodol-
ogy in this thesis is to utilize a non-parametric, VWHS approach. The motivation behind
the decision is to the extent possible avoid an explicit distributional assumption, as is the
case for parametric approaches. Since the major advantage of ANN is its efficiency in
mapping complex non-linear functions, it would not allow for its true capacity if distribu-
tional assumptions were imposed. Further, one of the most critical issues with historical
approaches is that they are slow in reacting to changing market conditions, which is largely
mitigated with a volatility weighting. According to Hull and White (1998), rescaling the
losses with volatility weighting comes with significant improvement to simply conducting
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BHS.
The most common for historical simulations like VWHS is to incorporate a rolling

window with a fixed number of observations in order to estimate ̂V aRα,t+1 and ̂ESα,t+1,
i.e. for the very next day following the window. All the losses in the rolling window
are rescaled according to the procedure in section 2.5.2, and then ̂V aRα,t+1 and ̂ESα,t+1

are the α-quantile and the average above the α-quantile respectively, according to the
procedure in section 2.5.1. After estimating ̂V aRα,t+1 and ̂ESα,t+1 the window moves
one day and the estimates are evaluated against the realized loss of that day (`t+1). The
oldest observation in the window is then discarded while the new one (`t+1) is included in
the next window. This new window is then used to estimate ̂V aRα,t+2 and ̂ESα,t+2, and
this procedure continues until the window has ’walked’ through the entire sample.

The size of the rolling window is another important aspect to consider. A long enough
rolling window to incorporate turbulent periods is desirable, but a too long window might
include observations that are of minor relevance for the economic state ’tomorrow’. While
Hull (2015) promotes the computational convenience of using a window with 501 days
(500 returns), a window of 1001 days (1000 returns) is adopted in this thesis to keep a
longer memory of approximately 4 trading years.

Since LSTM only produces volatility forecasts for the test set, the same test period is
utilized for GARCH. This results in 1514 VaR and ES estimated for GARCH and 1504
estimated for LSTM31 for the timeperiod 2013-12-27 to 2019-12-31. The estimations are
then backtested according to the procedures outlined in section 2.6.1, 2.6.2 and 2.6.3. All
tests are evaluated according to the following critical values:

* Significant on a 10% level

** Significant on a 5% level

*** Significant on a 1% level

31The difference in number of volatility estimations is down to the fact that the LSTM model set up has
a sequence length of 10 days before making a forecast. The difference in number of volatility estimations
reflects the sequence length of the LSTM network.
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5 Empirical results

Section 5 outlines the results from the thesis. It starts with displaying the results of the
GARCH(1,1) approach, followed by the outcome from the LSTM approach, divided by
the different commodities.

5.1 Oil

Table 4: Results from running a VWHS with volatility estimates from GARCH(1,1) on
oil for 1513 consecutive days (20% of the sample-size) ending on Dec 31, 2019. α is the
confidence level for VaR and ES, Violations are the amount of losses exceeding VaR, CI
95% is a confidence interval for the Kupiec test with 2.5% in each tail, Kupiec p-value,
Christ. p-value and ES z-value are the test statistic for the three different tests. The
optimized GARCH parameters are µ = 0.0006, ω = 0.0000, α = 0.0620, β = 0.9322

GARCH(1,1) Oil

α Violations CI 95% Kupiec p-value Christ. p-value ES z-value
95.0% 85 [ 59 , 93 ] 0.15 0.13 -0.14
97.5% 42 [ 26 , 50 ] 0.27 0.87 -0.14
99.0% 20 [ 8 , 23 ] 0.13 0.46 -0.34

As can be seen from Table 4, the GARCH(1,1) approach works well in estimating VaR
and ES for oil. Regardless of confidence level, the model delivers a VaR estimate where
the violations are within the confidence interval for the Kupiec test on a 95% certainty
level. Further, Christoffersen’s test shows p-values ranging from 0.13 to 0.87, indicating
that the violations are adequately spread and not too clustered together. It should be
noted that the model performs the best for the 97.5% confidence level, where the highest
p-values for Kupiec and Christoffersen’s test are displayed of 0.27 and 0.87 respectively.
There is no clear cut difference in which out of the remaining confidence levels the model
performes the best on in terms of VaR. The 95% confidence level performs slightly better
according to Kupiecs test and the 99% level has a higher p-value for Christoffersen’s test.

When it comes to ES, GARCH(1,1) again delivers solid results, with no violations of
the proposed z-value of -0.7. However, it should be noted from the negative z-values that
it consistently slightly underestimates the actual ES, meaning that it predicts on average
the loss exceeding VaR slightly lower than the actual loss exceeding VaR. While the 97.5%
and 95% confidence levels are close to a perfect zero z-value (-0.14), it is slightly worse
for the 99% confidence level (-0.34).

In conclusion, GARCH(1,1) is not rejected for either VaR nor ES for any of the
confidence levels. Additionally, the VaR violations are satisfactory spread over the test
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period according to Christoffersen’s test. The model seems to be the most suitable for
the 97.5% confidence level, with some ambiguity for the remaning confidence levels.

Table 5: Results from running a VWHS with volatility estimates from LSTM on oil for
1504 consecutive days (20% of the sample-size) ending on Dec 31, 2019. α is the confidence
level for VaR and ES, Violations are the amount of losses exceeding VaR, CI 95% is a
confidence interval for the Kupiec test with 2.5% in each tail, Kupiec p-value, Christ.
p-value and ES z-value are the test statistic for the three different tests.

LSTM Oil

α Violations CI 95% Kupiec p-value Christ. p-value ES z-value
95.0% 86 [ 59 , 92 ] 0.11 0.65 -0.15
97.5% 42 [ 26 , 50 ] 0.25 0.87 -0.15
99.0% 20 [ 8 , 23 ] 0.13 0.46 -0.35

The results from LSTM in Table 5 reveals somewhat similar results to those obtained
by the GARCH(1,1). The model sufficiently produce VaR estimates that are within
acceptable ranges for the Kupiec test, again with the confidence interval 97.5% being the
most adequate. The amount of violations are very much in line with those obtained by
GARCH(1,1), with slightly lower p-values for the 95% and 97.5% confidence levels. In
terms of the independence of the violations, Christoffersen’s test is passed with a wide
margin for all the specifications and reveal highly similar p-values to GARCH(1,1) with
the exception of a much higher p-value for the 95% confidence level.

The ES estimates are well within acceptable ranges but similarly to GARCH(1,1)
slightly underestimates the actual average VaR violation (i.e ES). The z-values are again
very close to the ones obtained by GARCH(1,1).

In conclusion, even though the performance is very similar, GARCH(1,1) seems slightly
more accurate in its VaR estimates in terms of violations, while LSTM seems better at
spreading them according to the improved p-value for the 95% confidence level. The z-
values for ES are almost identical, and the methods seems interchangeable in estimating
ES for oil.
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5.2 Gold

Table 6: Results from running a VWHS with volatility estimates from a GARCH(1,1) on
gold for 1513 consecutive days (20% of the sample-size) ending on Dec 31, 2019. α is the
confidence level for VaR and ES, Violations are the amount of losses exceeding VaR, CI
95% is a confidence interval for the Kupiec test with 2.5% in each tail, Kupiec p-value,
Christ. p-value and ES z-value are the test statistic for the three different tests. The
optimized GARCH(1,1) parameters are µ = 0.0000, ω = 0.0000, α = 0.0429, β = 0.9591

GARCH(1,1) Gold

α Violations CI 95% Kupiec p-value Christ. p-value ES z-value
95.0% 73 [ 59 , 93 ] 0.41 0.10* 0.09
97.5% 37 [ 26 , 50 ] 0.49 0.92 0.11
99.0% 11 [ 8 , 23 ] 0.17 0.07* 0.37

From Table 6, it is quite evident that a GARCH(1,1) approach works well on gold
for estimating both VaR and ES. The number of violations sits almost perfectly in the
middle of the confidence interval with the exception of the 99% confidence level, where
the number of violations are close to being too few. For the 95% confidence level and
97.5% confidence level, the amount of violations are very close to the expected amounts
of 75.7 and 37.8 respectively. The performance for the Kupiecs test on gold is improved
in comparison to oil, with the same pattern for the confidence levels with the 97.5% level
being the most accurate, followed by 95% and lastly 99%.

However, GARCH(1,1) drops in performance when it comes to the Christoffersen’s
test. With p-values of 0.10 and 0.07 for the 95% and 99% confidence levels respectively,
resulting in both being rejected at the 10% significance level32. This indicates that the
violations of the aforementioned confidence levels are not adequately spread. The perfor-
mance is however inconsistent, and the 97.5% confidence level displays an almost perfect
score of 0.92.

When it comes to ES, The positive z-value obtained suggests that the estimated ES
is, in general, somewhat overestimated33 for gold. This could partially be explained by
the fact that the test period (2013-12-27 to 2019-12-31) is a somewhat calmer period than
the training period. Regardless, the models are not rejected as they are close to zero, and
the Acerbi Szekely test only rejects models that underestimate ES.

In conclusion, GARCH(1,1) works well for gold. The VaR estimates are well within the
confidence intervals, with extraordinary p-values for the 95% and 97.5% levels. Christof-
fersens test shows ambiguity as it displays a very high p-value for the 97.5% confidence

32The p-value of the 95% confidence level is 0.09938, which rounds to 0.10
33It should be mentioned that since there is no suggested critical value for the positive region, it is

somewhat problematic to claim an ’overestimation’, however the term in this context refers to the positive
z-values.
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level and much lower values for the remaining confidence levels, resulting in rejections.
The ES estimates are satisfactory far from the rejection region, but with somewhat over-
estimations of the ’actual’ ES.

Table 7: Results from running a VWHS with volatility estimates from LSTM on gold
for 1504 consecutive days (20% of the sample-size) ending on Dec 31, 2019. α is the
confidence level for VaR and ES, Violations are the amount of losses exceeding VaR, CI
95% is a confidence interval for the Kupiec test with 2.5% in each tail, Kupiec p-value,
Christ. p-value and ES z-value are the test statistic for the three different tests.

LSTM Gold

α Violations CI 95% Kupiec p-value Christ. p-value ES z-value
95.0% 58 [ 59 , 92 ] 0.02** 0.34 0.24
97.5% 33 [ 26 , 50 ] 0.25 0.75 0.18
99.0% 10 [ 8 , 23 ] 0.12 0.71 0.37

As can be seen from Table 7, LSTM seems to consistently overestimate VaR, with ac-
tual number of violations systematically being on the lower end of the confidence interval.
The Kupiec test is even failed at the 95% confidence level with a p-value of 0.02. When
compared to GARCH(1,1), it is evident that GARCH(1,1) does not overestimate in the
same fashion for the 95% and 97.5% confidence levels, as the amount of violations are
very close to expectations.

Interestingly, the somewhat lower performing VaR estimates does not translate into
poor results for Christoffersen’s test. The p-values are higher for both the 95% and 99%
confidence level in comparison to GARCH(1,1). However, this fact might be explained by
the lower amount of violations, which everything equal should result in a lower probability
of violation-clustering.

When it comes to ES, LSTM is very much in line with GARCH(1,1) in that it is
far from the rejection region, and instead somewhat overestimates the ’actual’ ES. The
z-values are however slightly further from zero, indicating that GARCH(1,1) works some-
what better in this regard.

All in all, both GARCH(1,1) and LSTM perform satisfactory results for VaR on gold,
with the exception being LSTM on the 95% level and GARCH(1,1) on the 95- and 99% lev-
els where the Kupiecs test and Christoffersens tests respectively are rejected. GARCH(1,1)
displays more accurate VaR estimates than LSTM in regards to the high Kupiec p-values.
LSTM does however produce more well spread violations than GARCH(1,1) for the 95%
and 99% levels, as can be seen from the higher p-values of Christoffersen’s test. Lastly, ES
is also far from rejection for both models at all confidence levels. However, GARCH(1,1)
is somewhat more accurate (with z-values closer to zero), and it should be noted that
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opposite to the results of oil, ES is consistently overestimated34.

5.3 Soybean

Table 8: Results from running a VWHS with volatility estimates from GARCH(1,1) on
Soybean for 1513 consecutive days (20% of the sample-size) ending on Dec 31, 2019. α is
the confidence level for VaR and ES, Violations are the amount of losses exceeding VaR,
CI 95% is a confidence interval for the Kupiec test with 2.5% in each tail, Kupiec p-value,
Christ. p-value and ES z-value are the test statistic for the three different tests. The
optimized GARCH(1,1) parameters are µ = 0.0003, ω = 0.0000, α = 0.0687, β = 0.9191

GARCH(1,1) Soybean

α Violations CI 95% Kupiec p-value Christ. p-value ES z-value
95.0% 69 [ 59 , 93 ] 0.24 0.13 0.11
97.5% 32 [ 26 , 50 ] 0.19 0.18 0.17
99.0% 11 [ 8 , 23 ] 0.17 0.69 0.25

The results from the GARCH(1,1) approach on soybean displayed in Table 8 portrays
yet again satisfactory results. The VaR violations are within the confidence intervals,
however, VaR is slightly overestimated in comparison to e.g. gold, resulting in lower p-
values of Kupiec’s test. Quite interestingly, the confidence level that portrays the best
results in terms of VaR violations (95% level) has the most clustered violations according
to Christophersen’s test and vice versa for the lowest performer in Kupiecs test (99%
level). Regardless, the model is not rejected for either of the VaR tests on any of the
confidence levels.

When it comes to the ES estimates, they are on average very close to the average loss
exceeding VaR, with z-values close to zero. The same pattern as for gold can be seen with
a slight overestimation of ES for all the confidence levels. This time its somewhat more
ambiguous as to why since the level of volatility cannot be distinctly separated between
the training set and test set from an ocular inspection of 13. Even though the differences
in performances on ES are slim for the different confidence levels, it should be noted that
the estimates are somewhat better the lower the confidence level.

In conclusion it is evident that GARCH(1,1) manages to estimate VaR and ES well
even for soybean. The VaR estimates are somewhat less accurate than the ones delivered
for gold in terms of the amount of violations being further from the expected. Christof-
fersen’s test and the z-value are also outside the rejection region and when compared to
oil and gold, it performs better for some confidence levels and worse for some.

34It should be mentioned that since there is no suggested critical value for the positive region, it is
somewhat problematic to claim an ’overestimation’. However, the term in this context refers to the
positive z-values.
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Table 9: Results from running a VWHS with volatility estimates from LSTM on soybean
for 1504 consecutive days (20% of the sample-size) ending on Dec 31, 2019. α is the
confidence level for VaR and ES, Violations are the amount of losses exceeding VaR, CI
95% is a confidence interval for the Kupiec test with 2.5% in each tail, Kupiec p-value,
Christ. p-value and ES z-value are the test statistic for the three different tests.

LSTM Soybean

α Violations CI 95% Kupiec p-value Christ. p-value ES z-value
95.0% 67 [ 59 , 92 ] 0.18 0.26 0.13
97.5% 31 [ 26 , 50 ] 0.16 0.67 0.18
99.0% 13 [ 8 , 23 ] 0.34 0.63 0.12

As can be seen from Table 9, the VaR estimate based on LSTM delivers violations
that are quite similar to GARCH(1,1) for the 95% and 97.5% level, with the 99% level
being closer to the expected amount of violations, resulting in a high p-Value of 0.34.
Christoffersen’s test is also passed with a wide margin for all confidence levels, with
higher p-values than GARCH(1,1) for the 95% and 97.5% confidence levels.

When it comes to the ES estimates, they are well specified, with p-values close to zero.
The p-values for the 95% and 97.5% confidence levels are just very slightly higher than
those obtained by GARCH(1,1), while the 99% confidence level is somewhat improved.

In summary, one can see that both approaches perform well for soybean, just like for
the other two commodities. LSTM displays improved results for Kupiec’s test and ES for
the 99% confidence level and Christoffersens test for the remaining two confidence levels.
The remaining test/confidence-level combinations are very similar between the models.
Therefore it is not clear cut which model works the best overall on soybean, even if the
improvements for the 99% confidence level of LSTM are the most compelling.

43



6 Discussion

The results indicate that VaR and ES estimates based on volatility forecasted by GARCH(1,1)
works exceptionally well for the three commodities investigated, passing almost35 all tests
for the examined commodities on all confidence levels. For oil, the number of VaR viola-
tions are consequently slightly higher than expected on all confidence levels. The opposite
behaviour is found for soybean with the number of VaR violations sitting in the lower
part of the confidence interval. For said commodities, the VaR estimates provided by
LSTM yield highly similar amount of violations. Furthermore, the same relationship is
present in that the number of observations are above expected for oil and below expected
for soybean. This strongly indicates that oil is a far more volatile commodity compared
to soybean since both approaches results in more violations than expected. This is in line
with previous research, which has shown that crude oil is one of the most, if not the most,
volatile commodity (Regnier, 2007).

The two approaches diverges in results when it comes to gold, with the VaR estimates
based on the LSTM-network systematically generating too few violations, resulting in the
Kupiec’s test being rejected at a 5% level for the 95% confidence level. The GARCH(1,1)
approach on the other hand yields an almost ideal amount of violations for the same
confidence level as well as the 97.5% confidence level. ANNs somewhat lower performance
in this aspect could perhaps partly be explained by how the training och test samples
are divided. From the lower panel in Figure 12 one can observe that gold in general has
seen a relatively calm period from 2015 and forward (testing period being between 2013-
12-27 to 2019-12-31). Since ANNs are extremely dependent on the training data it is no
surprise that the LSTM forecasts yields a much more conservative estimation of VaR, as
the training data has been more volatile than the test data.

Quite interestingly, the fact that the GARCH(1,1) approach seems superior to LSTM
in estimating VaR, as shown by a higher p-value for eight out of nine of the Kupiec tests,
does not translate into better performance for Christoffersen’s test. This is most evident
by the rejection of the test at the 10% level for the 95% and 99% confidence levels on
gold as compared to the LSTM p-values of 0.34 and 0.71 respectively. While one may
argue that a rejection at a 10% level is not very significant, the GARCH(1,1) approach
to estimating VaR appears to systematically yield lower p-values for Christoffersens test
compared to the LSTM approach. This is somewhat worrying as it indicates that the
GARCH(1,1) approach to estimating VaR might not be as adequate in handling changing
and clustering volatility, which commodities are known to exhibit. Multiple consecutive
VaR violations could leave a potential investor or bank insolvent. This means that from
a regulators perspective, such as the Basel committee, an LSTM approach to estimating

35With the exception of Christoffersen’s test on a 10% level for the 95% and 99% confidence levels for
gold
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VaR could be preferred in this regard.
However, under the current Basel regulations, capital requirements for market risk

are no longer set by VaR but is now determined by ES. None of the z-values from the
Acerby and Szekely tests suggests that ES is underestimated for any of the commodities,
regardless of forecasting approach. For oil, the results are practically identical between
the two approaches, gold displays that GARCH(1,1) results in z-values closer to zero for
all of the confidence levels and soybean reveals mixed results in which approach yields the
most accurate ES estimates. These findings indicate that given the same circumstances,
both a GARCH(1,1)- and an LSTM approach works adequately in estimating ES. Conse-
quently, a GARCH(1,1) might be favored as it produces slightly more accurate estimates
overall, and does so without the same need of computing power and large data sets that
an LSTM approach requires. Nonetheless, the Acerby and Szekely test accounts only for
the magnitude of the violation and the total number of violations while completely disre-
garding the frequency of the violations (how closely the violations occur). Since frequent
violations are a serious threat to the solvency of financial institutions, the incorporation
by regulators of an independence test like Christoffersen’s could be warranted. Keeping
this in mind, one should be cautious in claiming that the GARCH(1,1) approach performs
better in respect to ES.

The superiority of GARCH(1,1) for Kupiecs test and the Acerby and Szekely test
are, to some extent, surprising. Hansen and Lunde (2005) did show that a GARCH(1,1)
performs very well. Be that as it may, Table 10 (in Appendix D) shows that an LSTM
approach results in both smaller mean squared errors and mean absolute errors com-
pared to GARCH(1,1) for all three commodities investigated. Despite this, the improved
accuracy of volatility forecasts fails to translate into superior VaR and ES estimates. Pos-
sibly suggesting that a VWHS does not capitalize on the improved accuracy. However,
it should be noted that both models delivers satisfactory results with rather similar out-
puts. Therefore, the potential gain of slightly more accurate volatility forecasts might be
limited.

With the results being somewhat similar and not clear cut, further research to com-
modities seems warranted. The commodities examined, being from different sub-categories,
showed different characteristics and varying test results. While GARCH(1,1) and LSTM
performed highly similar for oil and soybean, the real divergence is displayed for gold.
Here it becomes evident that LSTM overestimates VaR in that it consistently produces
less than expected violations. However, Christoffersen’s test show high p-values that out-
performes GARCH(1,1) for the highest and lowest confidence levels. The overestimation
displayed by LSTM is likely to some extent an implication of what data ends up in the
training- / test sets as touched upon before. Despite this, one can not rule out the pos-
sibility of gold, and other precious metals, having volatility characteristics that may be
difficult for GARCH and LSTM to model. These metals are often used to diversify risk
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and therefore historical returns are unlikely to be suitable predictors. This could partly
explain LSTMs failure to adequately estimate VaR and GARCHs inability to compensate
for the volatility clustering.

The volatility pattern of soybean differs from the other commodities investigated, in
its periodic pattern, with large losses appearing almost in regular intervals. Since LSTM
networks should have the ability to remember long term behaviour, an LSTM approach
should be better suited in handling (given sufficient complexity) periodic volatility. This
behaviour might also be found in other similar agricultural commodities since most agri-
cultural products should share some type of seasonality in the pricing mechanisms. How-
ever, this does not translate into superior results for the LSTM conducted in this thesis.
This is majorly attributed to the low complexity of the LSTM network adopted in this
thesis.

As aforementioned, the rather primitive architecture is due to the lack of computing
power. The LSTM results can hence be seen as a ’floor’, i.e. with a more sophisticated
neural network the volatility forecasts can only be improved upon. While the LSTM-
network did show improved volatility forecasts, its failure to translate this into more
improved VaR and ES estimates could be down to the improved accuracy not being
significant enough, and the fact that GARCH(1,1) approach already performs satisfactory.
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7 Conclusion

The purpose of the thesis was to evaluate and compare VaR and ES estimates for three
different commodities based on volatility forecast provided by GARCH(1,1) and an LSTM
network.

In general, the results indicate that both models deliver satisfactory VaR and ES
estimates, and none of the approaches can immediately be deemed superior to the other.
The GARCH(1,1) approach displays an amount of VaR violations that are closer to the
expected according to the Kupiec test, while LSTM approach provides less clustering
of the violations according to Christoffersen’s test. Further, both methods deliver well
specified ES estimates, without rejections for any of the commodities and confidence
levels, with slightly better z-values displayed by the GARCH(1,1) approach.

Due to the fact that current regulations incorporates ES and that GARCH(1,1) per-
forms slightly better in this regard, the computational burden and time consumption of
adopting an LSTM approach cannot be justified. Despite this, some concerns are raised
in regards to the frequency of the violations displayed by the GARCH(1,1) approach.
Whether or not this is a problem that only commodities or a certain type of sub-class
of commodities exhibits is unclear. Therefore we encourage researchers to investigate
whether or not the behaviour is present in, not only other commodities, but also in larger
investment portfolios where commodities are included. If GARCH(1,1) fails to account
for clustered losses, more sophisticated neural networks may be warranted despite the
increased complexity and computing power required.
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A Coherency

Coherency is introduced by Artzner et al. (1999) as a desirable property of a risk measure,
fullfilling four axioms. ES is always coherent while VaR is not. The properties of coherency
are listed below:

1. Monotonic: La ≥ Lb ⇒ Risk(La) ≥ Risk(Lb)

2. Positive Homogeneous: h > 0⇒ Risk(hL) = Risk(L) · h

3. Subadditive: Risk(La+b) ≤ Risk(La) +Risk(Lb)

4. Translation Invariant: Risk(L− c) = Risk(L)− c

B Gradient descent

From Figure 2 it can be established that the signal fed to the activation function ϕ is

a =
P∑
k=1

ωkxk + ω0 (24)

where the bias, b, has been denoted as ω0 instead. This means that the output function
can be rewritten into:

y(a) = y(x,w) = ϕ(
K∑
k=1

ωkxk + ω0) (25)

In a regression task, the error function subject to minimization is

E(ω) = 1
2N

N∑
n=1

(dn − y(xn))2 = 1
2N

N∑
n=1

E(n) (26)

Differentiating equation 26 with respect to the weights, ω, gives the following relationship:

∂E(ω)
∂ωk

= 1
2N

N∑
n=1

∂E(n)
∂y(n)

∂y(n)
∂ωk

(27)

where the right hand side has been extended with ∂y(n)
∂y(n) . Solving for each partial differ-

entiation gives
∂E(n)
∂y(n) = 2(y(xn)− dn) (28)

∂y(n)
∂ωk

= ϕ′(
K∑
k=1

ωkxk + ω0) + xnkϕ(
K∑
k=1

ωkxk + ω0) (29)
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Under the assumption that the activation function is a linear activation function and
that bias is zero (typical for regression tasks) then equation 29 becomes

∂y(n)
∂ωk

= xnk (30)

Equation 27 then becomes:

∂E(ω)
∂ωk

= 2
2N

N∑
n=1

(y(xn)− dn)xnk = 1
N

N∑
n=1

(−δn)xnk (31)

The weight updates after each iteration can therefore be rewritten as:

∆ωk = −η∂E(ω)
∂ωk

(32)
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C Figures

C.1 Oil

Figure 14: Training error and validation error during the optimization process for oil.

Figure 15: Realized volatility (green dotted line) of oil alongside the LSTM- (red dash
dotted line) and GARCH(1,1) (blue dashed line) forecasts.
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Figure 16: VaR and ES estimations for α = 0.975 based on LSTM (top) and GARCH(1,1)
(bottom) volatility forecasts for oil. The VaR and ES estimates are based on a VWHS
with a rolling window of 1000 losses.

Figure 17: VaR and ES estimations for α = 0.975 based on LSTM (top) and GARCH(1,1)
(bottom) volatility forecasts for oil. The VaR and ES estimates are based on a VWHS
with a rolling window of 1000 losses.
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Figure 18: VaR and ES estimations for α = 0.990 based on LSTM (top) and GARCH(1,1)
(bottom) volatility forecasts for oil. The VaR and ES estimates are based on a VWHS
with a rolling window of 1000 losses.

C.2 Gold

Figure 19: Training error and validation error during the optimization process for gold.
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Figure 20: Realized volatility (green dotted line) of gold alongside the LSTM- (red dash
dotted line) and GARCH(1,1) (blue dashed line) forecasts.

Figure 21: VaR and ES estimations for α = 0.950 based on LSTM- (top) and GARCH(1,1)
(bottom) volatility forecasts for gold. The VaR and ES estimates are based on a VWHS
with a rolling window of 1000 losses.

59



Figure 22: VaR and ES estimations for α = 0.975 based on LSTM- (top) and GARCH(1,1)
(bottom) volatility forecasts for gold. The VaR and ES estimates are based on a VWHS
with a rolling window of 1000 losses.

Figure 23: VaR and ES estimations for α = 0.990 based on LSTM- (top) and GARCH(1,1)
(bottom) volatility forecasts for gold. The VaR and ES estimates are based on a VWHS
with a rolling window of 1000 losses.
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C.3 Soybean

Figure 24: Training error and validation error during the optimization process for soybean.

Figure 25: Realized volatility (green dotted line) of soybean alongside the LSTM (red
dash dotted line) and GARCH(1,1) (blue dashed line) forecasts.
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Figure 26: VaR and ES estimations for α = 0.950 based on LSTM (top) and GARCH(1,1)
(bottom) volatility forecasts for gold. The VaR and ES estimates are based on a VWHS
with a rolling window of 1000 losses.

Figure 27: VaR and ES estimations for α = 0.975 based on LSTM (top) and GARCH(1,1)
(bottom) volatility forecasts for gold. The VaR and ES estimates are based on a VWHS
with a rolling window of 1000 losses.

62



Figure 28: VaR and ES estimations for α = 0.990 based on LSTM (top) and GARCH(1,1)
(bottom) volatility forecasts for gold. The VaR and ES estimates are based on a VWHS
with a rolling window of 1000 losses.

D Tables

Table 10: Mean squared error (MSE) and mean absolute errors (MAE) from the realized
variance of each commodity for the two different approaches on the test data set.

Oil Gold Soybean

Model Test MSE Test MAE Test MSE Test MAE Test MSE Test MAE
LSTM 2.085E-04 0.0105 3.335E-05 0.0044 6.254E-05 0.0059
GARCH(1,1) 2.360E-04 0.0120 3.947E-05 0.0052 7.232E-05 0.0068

E Code and scripts

All code utilized can be provided upon request. Everything related to neural networks
were conducted in Python, with graphing and the tests conducted in Matlab.
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