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Abstract

The general Z2-violating two-Higgs-doublet model (2HDM) is analysed as an explanation
for the discrepancy between Standard Model predictions and experimental measurements
of the muon anomalous magnetic dipole moment ∆aµ, with the condition that it does not
provide an electron electric dipole moment |de| larger than experimental bounds. Several
point studies of individual 2HDM parameter space points are made to show large-scale
cancellation among Barr-Zee 2-loop contributions to |de| at large Yukawa lepton sector
magnitudes, as well as an approximately linear growth of total aµ contribution when those
magnitudes are rescaled by a common factor, reaching the same order as ∆aµ. These
point studies show that diagonally enhanced Yukawa couplings in the 2HDM could be an
explanation for ∆aµ without violating experimental bounds on |de|.



Populärvetenskaplig beskrivning

Standardmodellen (SM) är det närmaste vi kommit en theory of everything. Den beskriver
individuella partikelinteraktioner perfekt, gjorde vid dess formulering nya förutsägelser och
har konsekvent visats ha rätt.

Den är även usel.
Trots att SM perfekt beskriver individuella partikelinteraktioner s̊a stämmer model-

lens universella förutsägelser inte överens med verkligheten. Den kan inte förklara varför
det finns mer materia än antimateria och den är oförenlig med Einsteins allmänna re-
lativitetsteori. Av denna anledning studerar teoretiska partikelfysiker s̊a kallade bortom
SM-modeller, s̊asom tv̊a-Higgs-dublett-modellen (2HDM).

Säg att du är hemma och lagar tomats̊as. Du smakar p̊a s̊asen:
Den är god, men den kunde ha varit bättre. Hur reagerar du? Din
omedelbara reaktion hade antagligen inte varit att hälla s̊asen i vasken
och börja om fr̊an början, utan du skulle helt enkelt krydda till den. Det
är vad 2HDM är för SM — en minimal förlängning, där en lägger till
ett extra fält med samma struktur som det väletablerade Higgsfältet
som redan är en del av SM.

Men varför ett Higgsfält? Jo, som namnet minimal förlängning
föresl̊ar är Higgsfältet och dess tillhörande Higgsboson SMs enklaste delar. Det är ett
skalärfält, till skillnad fr̊an de andra, vilka är vektorfält — fysikspr̊ak, vilket betyder att
när det gäller ordspr̊aket, “En bild säger mer än tusen ord”, är Higgsfältet ett ord medan
de andra fälten är bilder. Fast orden är i det här fallet siffror. Andra fält rymmer massvis
med information, men Higgsfältet berättar bara om en partikels massa och position.

Genom att lägga till ett extra Higgsfält f̊ar vi d̊a nya interaktionstermer, vilket ocks̊a är
fysikspr̊ak och betyder ‘sätt olika partiklar kan göra saker med varandra’. SMs Higgsfält har
kopplingar till elektronfältet och genom att interagera med Higgsfältet blir elektronerna
massiva. Å andra sidan har Higgsfältet ingen koppling till fotonfältet, s̊a fotonerna förblir
masslösa.

När vi väl gjort matten s̊a ser vi att tillskottet av ett extra Higgsfält leder till inter-
aktionstermer som till̊ater CP-brytande interaktioner. Kort och gott hänvisar CP-brott
till mekanismer som kan skapa olika mängder materia och antimateria, s̊a 2HDM skulle
möjligtvis kunna lösa motsägelser ang̊aende universums utveckling.

Dessutom är 2HDM en nödvändig del av flera mer avancerade bortom SM-modeller,
s̊asom supersymmetri eller supersträngteori, vilka kräver att olika sorters partiklar f̊ar
massa fr̊an olika Higgsfält. Dessa kan ses som nya, mer avancerade recept du kan ta dig an
när du bemästrat tomats̊asen.

2HDM är för SM vad lite extra krydda är för matlagning: Det räddar inte en fasansfull
måltid, men det kan ge n̊agot gott, det där lilla extra. Modellen kan även bana vägen för
mer innovativa recept. Innan en prövar n̊agot helt nytt är det dock vettigt att ta sig s̊a l̊angt
som möjligt med det som finns till hands — varför g̊a till affären när du inte använt alla
ingredienser i skafferiet? Därför testar vi 2HDMs duglighet: I hopp om att lösa problemen
partikelfysiken st̊ar inför idag och sedan kunna hitta nya recept att testa framöver.
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1 Introduction

With the observation of a 125 GeV scalar particle in 2012 [1, 2] which has not shown
any deviation from the Higgs boson [3], the Standard Model of particle physics (SM) is
complete [4]. Almost fifty years after the initial predictions of the scalar sector [5–7], the
final piece of the SM was found.

Nevertheless, the SM has issues [8–11]. The full extent of these problems will not
be detailed here, but one example is the baryon asymmetry of the universe [12] which
necessitates e.g. extra sources of CP-symmetry violation. There is a need for beyond the
SM (BSM) physics. Although there are studies made into theories which would overthrow
the current paradigms of particle physics, such as M-theory (a unification of the five lowest-
dimensional supersymmetric string theories, seeking to unify quantum field theory and
general relativity [13]), it is often simpler to work with so-called minimal extensions to the
SM. Minimal BSM models, as the name suggests, make only minor additions to the SM
and analyse those in the hopes that they might explain some failures of the SM.

One such minimal BSM extension is the Two-Higgs-Doublet Model (2HDM). Whereas
the SM assumes the most basic possible structure for the scalar sector, a single SU(2)
doublet, the 2HDM extends this sector by adding another SU(2) doublet of identical
structure to the one in the SM [14]. Adding only a doublet is an arbitrary decision, and
there is an infinite set of more complicated options [14], but the restriction to the single
doublet addition lends itself to simplicity not offered by the more complex alternatives.

The 2HDM has the possibility for CP-violation, which could help explain the previously
mentioned baryon asymmetry [15]. Additional scalar doublets are also necessary in minimal
supersymmetric theories [16]. Despite lacking any experimental evidence, supersymmetry
remains a dream of large parts of the physics community, as it would provide an elegant
solution to several of the issues of the SM [17]. Extra scalar doublets also appear, for
example, in axion models [18], which try to explain the absence of CP-violation in the
strong interaction.

In addition to the far-ranging theoretical implications of the 2HDM, it would also
contribute to the anomalous magnetic moments of leptons, such as the muon anomalous
magnetic moment

(
1
2
(g − 2)µ = aµ

)
[19]. The discrepancy between current experimental

measurements of aµ and the SM prediction, ∆aµ, is 2.68× 10−9 or three and a half sigma
[20], which M. Davier et al. [21] describe as “an interesting but not conclusive discrep-
ancy”. Although inconclusive, this discrepancy does provide a benchmark for 2HDMs, as
they could serve to explain it should it remain with future, more sensitive measurements.
However, any CP-violating phase would also contribute to the electric dipole moment of
the electron (de) [22], which has an experimental bound of |de| < 1.1×10−29 e cm [23]. It is
not atypical for a CP-violating 2HDM to surpass this limit by several orders of magnitude.

This thesis analyses the parameter space of the 2HDM based on first and second order
|de| and aµ contributions to test whether a 2HDM could simultaneously give ∆aµ on the
order of the one seen in current experimental data, while giving rise to a |de| within
experimental bounds. Previous studies into this have put emphasis on softly broken Z2

symmetries — see Section 2.4 for details. More general cases are treated here, such as
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2HDMs with softly Z2-violating potentials but generally aligned Yukawa sectors, softly
Z2-violating potentials with undiagonalisable Yukawa sectors, and 2HDMs with hard Z2-
violating potentials and undiagonalisable Yukawa sectors. Regions of cancellation among
the 2-loop de contributions are shown to exist at individual magnitude points for all regions,
and for extended intervals of the Yukawa lepton sector magnitude in the hard Z2-violating
potential case.

This thesis is divided into five main sections, starting with this introduction. Sections
2 and 3 detail the 2HDM, the former with regards to its formulation and previous studies
into the subject as well as some details on |de| and aµ, and the latter with regards to its
implementation for the purposes of this project, as well as describing the more practical
software developments performed. Section 4 describes and showcases the results of the
point studies performed in analysing aµ and |de| contributions of generalised 2HDMs. These
results are discussed more extensively in Section 5, which is the conclusion of this thesis.
Along with the main text, there are also three appendices: Appendix A is a short summary
of the work towards attaining an analytic expression for the generalised 1-loop contributions
to aµ and |de|, Appendix B is an instruction manual for the 2HDME extensions developed
for this project, and Appendix C contains any extra figures not shown in the main text.

2 The two-Higgs-doublet model

An extensive review of the 2HDM is available in reference [24], but this section will serve
as an introduction to the model, its contributions to measurables, and its implementation
in the context of this project.

2.1 Scalar doublet extensions of the Standard Model

Although the scalar sector of the SM has only been experimentally studied recently, leaving
a more extensive scalar sector possible but unproven, there are certain constraints on what
shape it may take. One particular limitation in SU(2)×U(1) gauge theory is the parameter
ρ, which in general is given by [25]

ρ =

∑
i [Ii(Ii + 1)− Y 2

i /4] |vi|2∑
i Y

2
i |vi|2/2

(1)

at tree-level. Here Ii, Yi, and vi are the weak isospin, weak hypercharge, and vacuum
expectation value (VEV) of all scalar multiplets Φi included in the theory respectively.
The SM predicts ρ to be exactly 1 at tree-level, and current experimental measurements
put it at ρ = 1.00039 ± 0.00019 [20]. This puts stringent requirements on any theories
which extend the scalar sector, but any multiplet with Ii(Ii + 1) = 3

4
Y 2
i will maintain

ρ = 1, making SU(2) singlets with Yi = 0 and SU(2) doublets with Yi = ±1 prime
candidates for scalar extensions [24].

Adding another scalar doublet, Φ2, gives the potential (in the most general form) [24]:
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V2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −

(
m2

12Φ
†
1Φ2 + h. c.

)
+
λ1
2

(
Φ†1Φ1

)2
+
λ2
2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[
λ5
2

(
Φ†1Φ2

)2
+ λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ h. c.

]
,

(2)

where h. c. denotes Hermitian conjugates. The parameters m2
11, m

2
22, and λi for i ∈

{1, 2, 3, 4} must be real, but m2
12 and λi for i ∈ {5, 6, 7} may be complex [24]. This

yields 14 degrees of freedom, although three are removed by the tadpole (one-legged 1-loop
diagrams) equations (the condition that the potential is minimised), and another one can
be removed by re-phasing one of the Higgs fields [26].

After a gauge transformation, the VEVs in this generic basis can be written as

〈Φ1〉 =
1√
2

(
0
v1

)
=

v√
2

(
0
cβ

)
, 〈Φ2〉 =

1√
2

(
0

v2e
iξ

)
=

v√
2

(
0

sβe
iξ

)
, (3)

with v1 and v2 the VEVs of the respective scalar doublets and v =
√
v21 + v22, cβ = cos β,

sβ = sin β, and tan β =
v2
v1

. The W and Z boson masses squared, m2
W and m2

Z , receive

additive contributions from each v2i , meaning v here corresponds to the SM VEV [27],
v ≈ 246 GeV. Another convenient basis to work with, however, is the Higgs basis, in which
only one doublet acquires a VEV [27]. A change of basis between the generic and Higgs
bases can be performed by defining the unitary transformation matrix

Û =

(
v̂∗1 v̂∗2
ŵ∗1 ŵ∗2

)
=

(
cβ e−iξsβ
−eiξsβ cβ

)
, (4)

where v̂i are unit vectors in Higgs flavour space normalised such that v̂∗av̂a = 1, and
ŵi ≡ −εij v̂∗j (with εij being the Levi-Civita tensor) [28]. This gives the fields in the Higgs

basis as Ha = ÛabΦb (with inverse Φb = Û †baHa), giving the Higgs basis fields [26, 29]

H1 =

(
G±

1√
2

(v + ϕ0
1 + iG0)

)
, H2 =

(
H±

1√
2

(ϕ0
2 + ia0)

)
. (5)

G± and G0 are Goldstone bosons “eaten by W± and Z” after electroweak symmetry
breaking, H± is a charged scalar field giving rise to charged scalar bosons, and ϕ0

1,2 and a0
mix together into three neutral Higgs particles, h0k. The scalar potential retains the form
from the generic basis and will not be explicitly typeset, but can be found in references
[26, 27, 29]. The Yukawa sector, however, will be presented in the Higgs basis, in which it
reads (assuming massless neutrinos)
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−LY = QLH̃1κ
UUR +QLH1κ

D†DR + LLH1κ
L†ER

+QLH̃2ρ
UUR +QLH2ρ

D†DR + LLH2ρ
L†ER + h. c. .

(6)

Here, QL is the weak isospin quark doublet, LL the weak isospin lepton doublet, and
UR, DR, and ER the corresponding weak isospin singlets. H̃i ≡ iσ2H

∗
i , and κF and ρF are

the Yukawa matrices in the Higgs basis. Particularly, the κF matrices are by construction
diagonalisable with a biunitary transformation of the fermion fields [28], and are in fact
the diagonal mass matrices [26]:

κU =

√
2

v
diag(mu,mc,mt),

κD =

√
2

v
diag(md,ms,mb),

κL =

√
2

v
diag(me,mµ,mτ ).

(7)

The ρF matrices are not as simple to deal with. It is not typically possible to diagonalise
both the κF and ρF matrices simultaneously, leaving the latter as arbitrary complex 3× 3
matrices [28]. These potential off-diagonal elements leave flavour-changing neutral currents
(FCNCs) possible, which will be discussed in more detail later. The ρF -matrices can be
parametrised according to the Cheng-Sher ansatz [30]:

ρF ≡ λFij

√
2mimj

v
, (8)

which allows for mass-supressed FCNCs when the λFij are of similar size. Reference [31]
details upper limits on the off-diagonal elements λFi 6=j in the quark sector based on neutral
meson oscillations, and reference [32] gives similar restrictions for the lepton sector. These
are all of the order |λFi 6=j| . 10−1.

2.2 Theoretical limitations

There are several theoretical constraints on any scalar extension in BSM theories. Three of
the most important ones are perturbativity, unitarity, and stability, which will be detailed
here.

Perturbativity refers to the potential breakdown of perturbation theory in the quartic
couplings of the scalar fields. The magnitudes of the generic basis parameters λi may not
grow too large upon renormalisation, typically imposed as an upper limit |λi| < 4π for every
individual λi [33]. For quartic scalar couplings, perturbation theory may actually break
down at smaller coupling values than this, but they will definitely run fast for |λi| > 4π,
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making this limit an approximation for the scale where a Landau pole is encountered [33,
34].

The unitarity condition refers to unitarity of the Higgs-Higgs scattering matrices, which
at high enough energies contain only s-wave amplitudes at tree level [35]. These tree-level
scattering matrices ΛY σ (with Y total hypercharge and σ weak isospin) are worked out
in reference [35], and hold exclusively elements λi. The unitarity constraint forces the
eigenvalues of these matrices |ΛY σ| to be less than (8π)−1, putting additional limitations
on the λi parameters. Note that the scattering matrices in reference [35] only apply for
large scattering energies

√
s, and that more careful attention may have to be taken at lower

energies to further constrain the parameter space [36], although these restrictions are not
applied in this project.

Tree-level scalar potential stability, or stability for short, is the condition that the
scalar potential is bounded from below, i.e. that it has a global minimum. References [37,
38] develop a Minkowskian formalism of the general 2HDM. In this formalism, the scalar
potential can be written with a tensor Λµν constructed using the λi parameters, with the
requirement that “the tensor Λµν is positive definite on the future light-cone” [37]. This is
equivalent with Λµν being diagonalisable by an SO(1, 3) transformation, with four linearly
independent eigenvectors associated with four eigenvalues, the largest of which must be
timelike and larger than zero. Reference [39] shows that parameter regions ruled out by
tree-level stability conditions may be saved by 1-loop corrections, but these corrections are
excluded in this project.

2.3 Magnetic and electric dipole moments of leptons

The spin magnetic moment µ of charged spin-1
2

point particle is given by µ = ge
2m

S, where e
is the electron charge, m is the particle mass, S is the spin angular momentum, and g is the
so-called g-factor [40]. At tree-level, g is predicted to be identically 2 for all such particles,
but higher order corrections from loops predicts a slight deviation, called the anomalous
magnetic dipole moment (AMM) a = 1

2
(g − 2). The SM prediction for the electron AMM

is approximately ae ≈ 1.16×10−3, differing from current experimental results by 1 in 1012,
or about 2 σ [41].

The muon AMM, aµ, is not as well-known. The difference between experimental mea-
surements and the SM prediction, ∆aµ = aexpµ − athµ , is 268(76) × 10−11 [20], a difference
of 3.5 σ. This deviation is not sizable enough to say anything definitive, but until more
precise experimental and theoretical results are obtained it can be used as one way to
characterise BSM models, as new Feynman diagrams resulting from any BSM extensions
may contribute to aµ, and could thus explain ∆aµ (should it survive future experiments).
In the case of the 2HDM, some of these contributions have been studied in reference [42],
among others.

Due to how spin transforms under parity and time reflection, a non-zero electric dipole
moment (EDM) of a fundamental particle would indicate some sort of CP-violation [43],
and although the CP-violating terms in the SM do predict a non-zero electron EDM |de| .
8.6 × 10−38 e cm [44], this is several orders of magnitude smaller than the current upper
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experimental bound of 1.1 × 10−29 e cm [23]. The 2HDM contributions to de have been
studied extensively [45–48], and can generally be of orders of 10−30 to 10−26 [49]. Thus
possible 2HDMs can be ruled out by analysis of their de contributions.

2.4 Hard and soft Z2-violation

One possible issue with the 2HDM is the existence of tree-level flavour-changing neutral
currents (FCNCs), interactions in which fermions change flavour without changing electric
charge. These are a direct result of the inability to diagonalise the ρF -matrices in eq. 6,
as off-diagonal elements imply flavour-changing Feynman diagram vertices. Experimen-
tal limits on any such interactions are stringent [20], making the suppression of them a
key aspect of BSM models. In the 2HDM, FCNCs can be avoided through alignment
of the flavour space-representations Yukawa matrices [50], i.e. restricting the model to
the case when the κF - and ρF -matrices are simultaneously diagonalisable and mutually
proportional, ρF = aFκF for some alignment parameter aF ∈ C.

Another, more robust, way to achieve this is to impose a so-called Z2 symmetry. The
set of nth roots of unity, Zn, is a group under multiplication. A Z2 symmetry is then a
discrete multiplicative two-charge symmetry, with even (+1) and odd (−1) charges. By
restricting the model to the case when the Higgs doublets have opposite charges and each
right handed fermion doublet has a specific charge, the model reduces to exactly four
different types of aligned 2HDMs (A2HDMs) [51], as shown in Table 1. Fixing the generic
potential in eq. 2 to the Z2 symmetry obviously requires m2

12 = λ6 = λ7 = 0, and the
basis-dependent parameter tan β attains physical significance as a proper parameter.

Table 1: The four Z2-symmetric 2HDM types. Φ1 is odd (−1) and Φ2 is even (+1), and
the Yukawa matrices are aligned such that ρF = aFκF .

Type UR DR LR aU aD aL

I + + + cot β cot β cot β
II + − − cot β − tan β − tan β
X + + − cot β cot β − tan β
Y + − + cot β − tan β cot β

A 2HDM with an exact Z2 symmetry is CP-conserving, as the only remaining complex
parameter, λ5, can be made real with a rephasing transformation [26, 51]. It is possible to
add a so-called soft Z2-violation by dropping the restriction that m2

12 = 0, but retaining
the conditions λ6 = λ7 = 0. Although this allows for mixing between the Φ1 and Φ2 fields,
the Z2 symmetry is respected at small distances for all orders of perturbation, meaning
any Φ1 ←→ Φ2 transitions disappear as virtuality q2 → ∞ [51]. This soft Z2-violation
allows CP-violation to enter the model while maintaining the benefits of the Z2 symmetry.
The general 2HDM potential, with quartic couplings λ6 and λ7 not identically zero, is
considered the hard Z2-violating case, as it has the Z2 symmetry broken at large and small
distances alike [51].
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2HDMs with softly broken Z2 symmetries have been studied extensively [24], particu-
larly the Type II models, as they correspond to the scalar sector of minimal supersymmet-
ric SM extensions [52] (which need up- and down-type quarks to couple to different scalar
fields). Certain parameter space regions of these “softly Z2-symmetric” models have been
shown to not be excluded by experimental data, but do not contribute remarkably to ∆aµ
[53]. Hence, if ∆aµ is not eradicated with future experimental data, a softly Z2-symmetric
2HDMs would also necessitate some additional new physics to explain this discrepancy.
For this reason, no “proper” Z2 symmetry is assumed for the purposes of this project.

2.5 The Two-Higgs-Doublet Model Evolver

The Two-Higgs-Doublet Model Evolver (2HDME) is a C++11 API by Oredsson [34, 54],
developed for studying renormalisation group equation (RGE) evolution of the general
2HDM. Although the primary scope of 2HDME is to solve the RGEs, it also has functionality
for treating 2HDMs in general. The EDM class is an object which can be used to calculate
de contributions from a given 2HDM, and will be used for this exact purpose. For a full
description of 2HDME, the manual is available in reference [34].

2HDME has its main utility in the THDM class, which is an object representing a general
2HDM. It must be initialised with a SM, in the form of a SM object, which sets gauge
couplings and the VEV, defined at themZ scale. To define the 2HDM, the generic (although
other bases are defined as well) scalar potential parameters λi and |m2

12|, and tan β, need
to be set (m2

11, m
2
22, the phase of m2

12, and the VEV phase ξ are all set by the tadpole
equations), as well as the Yukawa sector. The Yukawa sector can be defined using one of
the four Z2-symmetric types detailed in Section 2.4, three alignment parameters aF for an
A2HDM, or three general complex 3× 3 ρF -matrices.

EDM class objects are initialised using a THDM type object, and calculate the 2HDM
contributions to de using the Barr-Zee 2-loop diagrams (described in Section 3.2), with the
couplings in each individual loop defined at the energy scale of the heaviest participating
particle (with the THDM object evolved using the API’s own renormalisation group function-
ality). The program can then return a vector containing all the individual contributions,
as well as a sum of these as the total de contribution.

However, 2HDME does not include 1-loop contributions to de (although these are typically
dominated by the Barr-Zee diagrams [42]), nor can it calculate aµ contributions. For
this project, the program needs to be extended to treat these. While the 1-loop integral
must be done from scratch, Oredsson and Rathsman [49] remark that the Barr-Zee aµ
contributions are effectively the same as the de contributions, except with the real parts of
the Yukawa couplings instead of the imaginary, making modifications to account for 2-loop
aµ contributions simple.
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3 Practical and analytic developments

3.1 Flavour-mixing 1-loop diagrams

(a) Neutral boson loop. (b) Charged boson loop.

Figure 1: 1-loop Feynman diagrams contributing to lepton AMMs and EDMs for a general
2HDM with FCNCs.

Although the 1-loop Feynman diagrams arising in 2HDMs have been analysed pre-
viously, descriptions have typically been limited to aligned-type models [42, 53]. Any
non-zero off-diagonal elements in the leptonic part of the Yukawa sector, i.e. a non-
diagonalisable ρL, will give rise to first order loops of the form shown in Figure 1, with
` 6= `′. The A2HDM loops, corresponding to the Yukawa matrix diagonals, correspond to
` = `′, so a general implementation of the 1-loop also includes these. A short note on how
these generic analytic expression were acquired is available in Appendix A.

The generalised d` and a` neutral Higgs 1-loop contributions are found to be

a1-loop` =
m`

8π2

n∑
`′,k=1

∫ 1

0

dx

∫ x

0

dy
(y − 1)

(
yRe

((
Y
h0k
``′

)∗
Y
h0k
`′`

)
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(
Y
h0k
``′ Y

h0k
`′`

)
m`′

)
m2
` [y(y − x) + (1− y)] +m2

h0k
y

, (9)

d1-loop` =
e

16π2

n∑
`′,k=1

∫ 1

0

dx

∫ x

0
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(y − 1)

(
y Im

((
Y
h0k
``′

)∗
Y
h0k
`′`

)
m` + Im

(
Y
h0k
``′ Y

h0k
`′`

)
m`′

)
m2
` [y(y − x) + (1− y)] +m2

h0k
y

.

(10)

Here, Y
h0k
``′ is the scalar boson h0k’s coupling for the transition `→ `′, mi is the mass of a

particle i, the sum `′ is over all accessible neutral flavour changing vertices, and the sum k
is over the neutral scalar bosons that can mediate the interaction. The lepton mass terms
m2
` in the denominators are four-momentum terms, which do not depend on m`′ , meaning

any m`′ terms are exclusively in the numerators. The charged Higgs vertices are excluded,
based on the assumption that neutrinos do not couple to either Higgs doublet.

Should the EDMs and AMMs for quarks be desired, these integrals could be reapplied to
the quark sector by exchanging each lepton index with a correspond quark index, although
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the charged Higgs vertices would then instead be a quark-type exchange between the up-
and down-families.

3.2 Barr-Zee 2-loop diagrams

Figure 2: The general structure of Barr-Zee two-loop diagrams, where V is a vector boson
and S is a scalar boson, and the loop particle l in general is any massive fermion or boson.

The 2-loop Barr-Zee digrams [55], illustrated in Figure 2 and first calculated for 2HDM
in reference [56], generate the dominant contributions to the EDMs [57] and AMMs [42] of
light fermions in 2HDMs. They are characterised by the couplings of one vector boson V ,
one scalar boson S, and one loop particle l (making up the central loop in the figure). Just
as for the 1-loop, these have typically been studied in the context of soft Z2-violation, but
analytic expressions for de contributions in the general 2HDM are available in reference
[49], and as C++ code in 2HDME [34]. The AMM contributions can be calculated with similar
expressions to those in [49], but with the real parts of the Yukawa couplings rather than
the imaginary. For this project, the extant implementation of Barr-Zee de contribution cal-
culations in the 2HDME API could be repurposed to calculate the Barr-Zee aµ contributions
with only minor modifications, by comparison with reference [42].

3.3 Modifications to 2HDME

3.3.1 1-loop integrals

As mentioned in Section 2.5, 2HDME does not have tools for calculating any 1-loop diagram
contributions, nor does it calculate the Barr-Zee diagram contributions to aµ, necessitating
modifications for the purposes of this project. Details on how to extend 2HDME with these
additions are available in Appendix B.

Numerical implementation of eqs. 9 and 10 were done using the two-dimensional trape-
zoidal rule by defining the inner integral argument as functions f(x, y) and performing the
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trapezoidal approximation of the two integrals sequentially, resulting in the general expres-
sion for the integral

∫ 1

0

dx

∫ x

0

f(x, y)dy ≈

1

m

[
f(0, 0)

2
+
f(0, 0) + f(1, 1)

n
+

1

n

{
n∑
j=1

(
f

(
j

n
,
j

n

)
+

m∑
i=1

f

(
j

n
,
ij

mn

))}]
.

(11)

The programmed implementation is slightly more involved, using an adaptive upper
limit for the inner sum so as to maintain consistent resolution for each step of the outer
sum, but this is a simple condition that m = kj for some positive integer k ∈ Z+.

As 2HDME has built-in functionality for calculating the Barr-Zee de contributions, much
of the original code could be repurposed for aµ contribution calculation. Comparisons with
reference [42] were made to verify the analytic expressions. All inherent functionality for
the de contributions was remade to support the aµ contributions. Besides the ability to
calculate individual diagram and total contributions, this also includes the ability to print
contributions to the console, or to save them as SLHA blocks that can be saved to datafiles
using 2HDME itself.

3.3.2 Software discussion

For the purposes of this project, four different tools were developed to help with the analysis
of 2HDMs: A modified EDM class (based on the one included in the 2HDME API), to support
aµ contribution calculation; as well as three programs, called 2hdmSearcher, phaseTester,
and magTester. The discussion here will be focused on their purpose and what extensions
could be made to increase their applicability. Instruction manuals on where to acquire
them and how to apply them practically are available in Appendix B.

The main development, and the core of the three programs used in the parameter study
performed for this project, is the aµ calculation extension of the 2HDME API, making the
possible analysis of 2HDMs using 2HDME more extensive than previously. With the aµ
calculation implemented, modification for calculation of the AMM contributions to other
fermions would also be simple, which could allow for more extensive restrictions on analysed
2HDMs by e.g. checking that electron AMM contributions would not become too large.

2hdmSearcher is a tool made for the purpose of randomly searching for 2HDMs based on
maximal |de| and a minimum aµ contributions. It is built to initialise the ρF -matrices with
all diagonal λFii factors (under the Cheng-Sher ansatz) equal for each individual fermion-
type F , but the off-diagonal elements are allowed to run free. Although this project has
strictly used real ρF -matrices, 2hdmSearcher does allow for a complex Yukawa sector by
adding a random phase to the ρF -matrix elements. This program could potentially be
used for generating a large amount of random 2HDMs in order to collect aggregate data
for larger parts of the parameter space, although further checks may be needed to the
program based on desired properties of parameter points.
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The two programs used for analysis are phaseTester and magTester. The former takes
an input 2HDM with a softly Z2-violating potential and an arbitrary real ρL-matrix and
varies the phase of λ5 around the unit circle, to show how |de| and aµ contributions vary
with the amount of CP-violation allowed in the potential. magTester, on the other hand,
calculates the |de| and aµ contributions for an arbitrary 2HDM potential as functions of
the magnitude of the ρL-matrix, by multiplying either the entirety or only the diagonal
of an arbitrary input real ρL-matrix with a real magnification factor M , over a user-input
interval. Both programs assume that ρU and ρD are aligned, with aU = aD = 1, but could
easily be extended to take user input parameters for these matrices as well.

4 Parameter study

This section details the parameter spaces which have been scanned, as split into three
different regions depending on scalar potentials and Yukawa sectors. Some point studies
are made for each of these regions to detail how they develop with Yukawa sector magnitude
(in the form of enhanced Higgs basis ρL-matrices) to show how they could or could not
simultaneously explain ∆aµ while giving a |de| within experimental bounds. Note that no
Z2 symmetry is applied to the Yukawa sector.

Although the lepton part of the Yukawa sector will be varied for these parameter scans,
the quark sector is assumed to be aligned with alignment factor 1, i.e. κU = ρU and
κD = ρD. Ilisie [42] shows that variation in the quark alignment factors will have little
effect on aµ, and although untested this should also apply to de contributions (assuming a
real alignment factor). The Yukawa sector will also be assumed to be entirely real. As in
[49], the scalar potential will be restricted to the region:

|λi| ≤ 2, |λj| ≤ 0.5, |m2
12| ∈ [102, 2× 105], tan β ∈ [1, 50], (12)

for i ∈ {1, 2, 3, 4, 5} and j ∈ {6, 7}. The phase of m2
12 is fixed from the tadpole equations,

and any other phases randomly generated.
Under these assumptions, three different parameter regions are studied:

Region I: Softly Z2-violating potential with aligned Yukawa sector.
This parameter region is defined with the potential parameter region as in eq. 12, with

the restriction λ6 = λ7 = 0, and all ρF -matrices diagonalisable and proportional to the
diagonal mass-matrices. Although similar to the Z2-symmetric models, the independence
of parameters in the Yukawa sector in these models could provide regions of interest not
found in the Z2-symmetric ones.

Region II: Softly Z2-violating potential with undiagonalisable Yukawa sector.
For this region, the scalar potential is set identically as in region I, but the ρF -matrices

— particularly, the ρL-matrix — are allowed to be more general (albeit still real) matrices.
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Using the Cheng-Sher parametrisation (eq. 8), two particular cases are studied and com-
pared: An enhanced semi-aligned ρL-matrix, in which ρL is first defined with the diagonal
elements λLii = 1, and λLij ∈ [10−2, 10−1] for i 6= j, and the entire matrix is then enhanced
by a real magnification factor M ∈ [1, 50], equivalent with a redefinition of λLij → MλLij;
and a diagonally enhanced semi-aligned ρL-matrix, in which ρL is initialised as in the reg-
ular enhanced case for M = 1, but the enhancement is applied only to the diagonal, a
redefinition λLii →MλLii and λLij → λLij for i 6= j. As mentioned in Section 2.1, experimental
bounds on FCNCs puts restrictions on off-diagonal elements at |λLi 6=j| . 10−1, meaning
the fully enhanced case is viable only for small magnification factors, M ≤ 10. For larger
values of M it does still provide a comparison for the diagonally enhanced case, however,
but should not be viewed as proper candidates for parameter spaces.

Region III: Hard Z2 violation with undiagonalisable Yukawa sector.
This is an almost fully generalised region. The restrictions on λ6,7 are dropped, and the

Yukawa sector is parametrised identically to region II, with focus on an enhanced semi-
aligned and an enhanced diagonal semi-aligned lepton sector.

Certain restrictions are made as to what parameter points are studied. Any 2HDM for
which the lightest neutral scalar boson is dissimilar to the SM one and the one discovered in
2012 is discarded (enforced with mass comparison, requiring the lightest neutral boson to
be in the range mh1 ∈ [120, 130] GeV). Said 2HDM must then survive RGE evolution up to
the mass of the heaviest scalar boson, should it be larger than the top quark mass, and must
also fulfill the theoretical conditions detailed in Section 2.2. Moreover, parameter points
which give a sizeable ∆aµ (of order 10−9) while giving rise to an experimentally bounded
electron EDM, |de| ≤ 10−29, are studied extensively. Due to the rare nature of such points
(only some hundred having been found after searching tens of millions of parameter points),
no aggregate data study of these will be performed. Instead, point studies will be provided
to prove their existence and to showcase the nature such candidates may have.

4.1 Region I

A real aligned Yukawa sector, or any model with simultaneously diagonalisable real κF -
and ρF -matrices in general, will not generate any 1-loop de contributions at the electroweak
scale. Any analysis of them will be left to regions II and III. However, 1-loop aµ contri-
butions do exist. They can for larger alignment factors become sizeable, and will thus be
studied.

Two parameter points, P1 and P2 (as defined in Table 2) are analysed (with figures
depicting analysis of P2 available in Appendix C), where P1 was able to generate a sizeable
∆aµ ≈ 2× 10−9 while generating a |de| ≈ 10−30 e cm, while P2 is an arbitrary point that
was discarded during the search for points like P1, due to providing too large a total
contribution to |de| . The effects of variation of arg(λ5) and alignment factor aL are
henceforth detailed.

Figure 3 depicts the variation of P1 scalar boson masses with arg(λ5). For arg(λ5) ≈ π,
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Table 2: The two parameter points studied for region I. The phase of λ5 and the alignment
factor aL are allowed to vary freely, while aU = aD = 1.

P1 P2

tan β 1.3440 7.422
|m2

12| 64586.3 78834.5
λ1 0.86236 1.8870
λ2 0.98722 0.18113
λ3 1.2431 0.90683
λ4 −1.1061 1.4829
|λ5| 0.64660 1.2448

P1 gives a lightest neutral mostly CP-even (the CP-odd component of the eigenvector
being of order 10−2) Higgs boson at 126.7 GeV, making it similar to the one discovered in
2012. In Figures 4 and 5, the dependence of |de| and aµ on aL and arg(λ5) are detailed. The
former shows cancellation among individual de contributions for all phase values, resulting
in parameter regions where aµ contributions can be of the order of ∆aµ, as seen in Figure
5, while total 2-loop de contributions are orders of magnitude smaller than experimental
bounds without explicitly requiring a mostly real λ5. As only the absolute value of the total
de contribution has been studied, it is possible that the black curve in Figure 4 correspond
to a sign change for de contributions.

Unlike |de|, aµ is largely unaffected by the phase variation: Its maximum changes in
magnitude by a third, and Figure 6 shows that the 1-loop contribution also differs very
little with arg(λ5). Although largely insignificant at small aL, Figure 6 also shows that
the 1-loop contribution can account for upwards of 10% of total aµ contributions for large
magnitudes of aL. Overall, however, total aµ contributions reach the same order as ∆aµ
for large magnitudes of the Yukawa lepton couplings, 30 ≤ aL.

4.2 Region II

For this region, ρL is initialised with the Cheng-Sher ansatz such that λLii = 1, and off-
diagonal elements λij ∈ [10−2, 10−1] for i 6= j. This results in tree-level FCNCs at the
electroweak scale, and gives rise to 1-loop de contributions. One particular 2HDM called
P3, detailed in Table 3, will be considered, as well as an undiagonalisable extension of P1

described in Table 2, called P∗1, which is also described in Table 3.
In this section, P3 will be analysed in detail, whereas for P∗1 magnitude analysis is

shown in Figure C.4. A phase portrait of P3 is available in Figure 7. Studies into the
magnitude effects on de and aµ are made at two values of arg(λ5): The |de| maximum at
arg(λ5) = 0.613, and close to the second zero, arg(λ5) = π − 10−3. At the latter phase,
the mass of the lightest Higgs boson is 126.26 GeV, and it is almost exclusively made up
of CP-even constituents (with CP-odd component of the eigenvector being of order 10−4),
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Figure 3: Variation of scalar boson masses with arg(λ5) for the 2HDM defined at P1 in
Table 2 hi denotes a neutral boson, while H± denotes a charged boson.

Figure 4: Variation of |de| with aL and arg(λ5) at P1, as defined in Table 2. The dip
in |de| for arg(λ5) ≈ π at aL = 47.25 (more clearly visible in figure C.3, due to the
difference in orders of magnitude) gives a lightest neutral Higgs boson mass of 126.7 GeV
and ∆aµ = 1.95× 10−9.
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Figure 5: Variation of aµ contributions with aL and arg(λ5) at P1 as in Table 2. Variation
of arg(λ5) results in a slight shift of the aµ contribution at a given aL.

Figure 6: The 1-loop contribution to aµ for the 2HDM defined at P1 in Table 2 as
functions of arg(λ5) and aL. Although insignificant at small aL, the 1-loop contribution to
aµ constitutes upwards of 10% of the total contribution for large aL.
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Table 3: The two parameter points studied for region II. The phase of λ5 and the magni-
fication factor M of the ρL matrix are allowed to run free, while the quark sector is aligned
with aU = aD = 1. The diagonal λii elements are equal to 1.

P∗1 P3

tan β 1.3440 1.94809
|m2

12| 64586.3 20728.3
λ1 0.86236 0.38645
λ2 0.98722 0.3466
λ3 1.2431 1.79558
λ4 −1.1061 −1.1219
|λ5| 0.64660 0.57216
λLeµ 0.1 0.03303

λLeτ 0.1 0.07375
λLµe 0.1 0.01427

λLµτ 0.1 0.04320

λLτe 0.1 0.01668
λLτµ 0.1 0.08134

making it similar to the scalar boson discovered in 2012. Figure 7a shows a maximum
for aµ as a function of the potential phase at arg(λ5) ≈ 1, meaning aµ is not a strictly
increasing or decreasing function of arg(λ5) in the interval [0, π].

The effects of enhancing the entirety of and the diagonal of ρL for P3 are displayed
in Figure 8. In Figure 8b, the fully and diagonally enhanced values for |de| are indistin-
guishable at the resolution of the figure. For the minimal |de| phase shown in Figure 8a,
the variation is comparatively larger, being a factor 10−2 smaller than the magnitudes.
Compare this to Figure C.4 depicting P∗1, where the position of the |de| minimum is visibly
offset along the M -axis for the different enhancement cases. Notable here is how variation
of arg(λ5) seems to put a possible |de| contribution zero point (or sign change) far outside
the studied magnitude region, as Figure 8b shows total |de| contributions growing almost
linearly with with M for P3 at arg(λ5) = 0.613.

The 1-loop contributions to aµ and |de| can be seen in Figure 9. The aµ contribution
follows a similar evolution for all four cases, although the fully enhanced and diagonally
enhanced cases differ by a factor 2 consistently for sufficiently large values of the magnifi-
cation factor M . 1-loop contributions to |de| show more variation in behaviour: The fully
enhanced cases are similar in form, but the diagonally enhanced case shows close to no
dependence on M for P3 at arg(λ5) = 0.613, but in the arg(λ5) ≈ π case it decreases with
increasing M . Whether this is a case of cancellation from different loops or a decrease in
magnitude of individual loops has not been studied.
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(a) |de| and aµ variation.

(b) Scalar boson mass variation. hi denotes a charge neutral boson, while
H± denotes a charged boson.

Figure 7: Variation of |de| and aµ (7a) and scalar boson masses (7b) with arg(λ5) for the
2HDM defined at P3 in Table 3 with diagonal elements of ρL defined with the Cheng-Sher
ansatz as λii = 1.
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(a) arg(λ5) = π − 10−3.

(b) arg(λ5) = 0.613.

Figure 8: Variation of |de| and aµ as functions of ρL magnification factor M acting on
the diagonal of or the entirety of the matrix for P3 defined in Table 3, at a minimum (8a)
and a maximum (8b) of |de| as a function of arg(λ5).
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(a) de.

(b) aµ.

Figure 9: Variation of 1-loop contributions to |de| and aµ as functions of ρL magnification
factor M acting on the diagonal of or the entirety of the matrix for P3 defined in Table 3,
at a maximum (arg(λ5) = 0.613) and a minimum (arg(λ5) = π−10−3) of |de| as a function
of arg(λ5).
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4.3 Region III

As there are three independent free complex phases in the scalar potential in this region,
phase variation will not be performed here. A two- or three-dimensional parameter study of
the effects of phase variation in the potential could be done with an interesting parameter
point, such as P5 (which will soon be detailed), but has not been implemented here.
Instead, only the effects of ρL magnification, full and diagonal, will be explored. Three
2HDMs, as detailed in Table 4, will be considered. P4 and P5 were chosen for providing
a sizeable ∆aµ while generating |de| within experimental bounds, but P5 also showed
behaviour unseen in any other studied parameter point. P6 is an arbitrary comparison
point. P4, P5 and P6 have ordered neutral scalar boson masses (121, 241, 367) GeV,
(127, 616, 650) GeV, and (125, 581, 659) GeV; and charged scalar boson masses 212 GeV,
654 GeV and 587 GeV respectively.

Table 4: The three parameter points studied for region III. The magnification factor M of
the ρL matrix is allowed to vary freely, while the quark sector is aligned with aU = aD = 1.
The diagonal λii elements are equal to 1.

P4 P5 P6

tan β 4.5063 1.1192 2.5273
|m2

12| 15616.8 173462 109409
λ1 0.78562 1.5414 1.9812
λ2 0.35432 1.5526 0.50552
λ3 1.4554 1.7128 0.91587
λ4 1.3952 −1.9812 1.2537
λ5 −0.96919− 1.2518i −0.43759− 0.45544i −1.2354 + 1.2791i
λ6 0.20632 + 0.12962i −0.06836 + 0.13857i −0.24194 + 0.16732i
λ7 0.15496 + 0.13415i −0.08957 + 0.26120i −0.21459 + 0.01036i
λLeµ 0.06101 0.1 0.03657

λLeτ 0.03278 0.1 0.08586
λLµe 0.07280 0.1 0.02384

λLµτ 0.01930 0.1 0.05016

λLτe 0.01330 0.1 0.03053
λLτµ 0.08430 0.1 0.02281

P4 has behaviour largely identical to the points of interest in regions I and II, with de
cancellation occurring only at an isolated point along the M -axis, as seen in Figure 10a.
Just as for P∗1 in Region II, there is an offset of the |de| contribution minima between the
fully and diagonally enhanced cases.

Although initially discovered as one of a handful of A2HDMs with a hard Z2-breaking
potential which provided a sizeable ∆aµ while yielding |de| within experimental bounds,
P5 also showed |de| cancellation for a longer stretch of the M -axis than previously seen
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(a) P4.

(b) P5.

Figure 10: Dependence of |de| and aµ on magnification factor for P4 (10a) and P5 as
defined in Table 4. The magnification factor is a real number M multiplying either the
entire ρL matrix or just its diagonal elements. P5 has noticeable de cancellation for a large
region of the M -interval, unlike P4 and most other points studied, for which large scale
cancellations occur only at isolated points.
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in any parameter point upon further study. It was extended to region III by the addition
of off-diagonal elements as detailed in Table 4, and de cancellation for a long magnitude
range remained as Figure 10b shows. Just as P∗1 evolves identically to P1 at the resolution
and interval provided in the diagonally enhanced case, the diagonally enhanced P5 evolves
identically to the original A2HDM parameter point: If the original parameter point was
included in Figure 10b, it would be indistinguishable from the diagonally enhanced P5.
Unlike most points shown, P5 shows a region of large difference between the diagonally
and entirely enhanced cases, where |de| has what appears to be a global minimum in the
fully enhanced case while it has local maximum in the diagonally enhanced case.

As Figure C.5 shows, P6 does not have any points or regions de cancellation in the
interval M ∈ [0, 50]. However, it does show a downwards trend as M gets large, suggesting
there may be some point of cancellation for 50 < M for both the fully and diagonally
enhanced cases.

4.4 Remarks

Although not depicted in any figures, the overall linear nature of aµ continues to the region
of the ρL magnification factor M ∈ [−50, 0]. All points studied here give positive values
for aµ at M = 1 and have consequently given negative aµ contributions for the majority
of this region. Although unstudied, it may follow that parameter points that give rise to
negative aµ contributions at M = 1 would provide remarkable, positive aµ contributions
for large, negative values of M .

A randomly chosen comparison point for region III was discarded, due to exhibiting
behaviour similar to P4, having a point of major de cancellation in the interval M ∈ [0, 50].
The M -evolution of P6 is shown in Figure C.5, and it shows a downwards trend for large
M . This suggests isolated points of major 2-loop de cancellation, or possibly a sign change,
somewhere along the M -axis may be common.

The 1-loop contribution to |de| has largely been left out of any figures, as it consistently
provides no more than 10−4 of the total contribution to |de|, and typically several orders
of magnitude less. At large magnification factors M it may contribute as much as 10−32 e
cm, as Figure 9 shows, but in these regions the total contribution is typically several orders
of magnitude larger than the experimental limit.

5 Conclusions

The 1-loop contributions have usually been ignored in studies of |de| and aµ contributions
for the 2HDM, as they are subdominant to the Barr-Zee diagram contributions [42]. For
the 1-loop de contribution, this does seem to hold true even for very large magnitudes
of the ρL-matrix. However, in such regions the 1-loop aµ contributions can account for
upwards of 10% of the total aµ contribution of a given 2HDM. Given that 2HDMs in these
regions are capable of explaining ∆aµ by themselves, the 1-loop contributions need to be
accounted for when examining the 2HDM as a source of ∆aµ. In studies of unenhanced
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or only slightly enhanced Yukawa sectors (for the region M ≤ 10), however, the 1-loop aµ
contribution can be safely ignored as well.

A 2HDM with a strongly enhanced Yukawa lepton sector could explain the discrepancy
between experimental measurements and SM predictions for aµ. Despite |de| contributions
growing large in such parameter regions, it has been shown that there may be points or
extended regions of the magnification axis where individual 2-loop contributions to |de|may
cancel out in the sum, predicting a value for |de| several orders of magnitude smaller than
current experimental limitations while generating an aµ of the same order of magnitude
as ∆aµ. However, these points may still have larger |de| contributions from higher order
corrections — they may simply be points where the total 2-loop contribution changes sign,
which would say very little about the general nature of higher order contributions there —
making further analysis necessary.

Potentials with both soft and hard Z2-violation have been shown to possibly have
isolated 2-loop |de| minima where large cancellations may occur — the former even in the
case of large values for Im(λ5) — but the latter have also been shown to possibly have
extended magnitude regions with small total de contributions. There is insufficient data
provided by this project to say anything about how common intervals of smaller total |de|
contributions are, making them an object of possible future studies. One possible area of
future study could be 2HDMs with hard Z2-violating potentials, but Z2 symmetry applied
to the Yukawa sector; such models would eliminate FCNCs at the electroweak scale while
limiting the number of free parameters severely.

In the case of 2HDMs with a softly Z2-violating potential, it is possible to minimise
|de| while still allowing for some level of CP-violation by requiring a very small, non-zero
phase for λ5 (while setting the phase of m2

12 with the tadpole equations). However, larger
amounts of CP-violation are possibly obtained in 2HDMs with a large λ5 phase at points
of 2-loop de cancellation, for which higher order contributions have to be analysed. The
same conclusions can be said about the potential with hard Z2-violation, but the phases
of λ5,6,7 must then all be minimised simultaneously.

However, this does not necessarily mean that a 2HDM with a strongly enhanced Yukawa
lepton sector is actually viable. Flavour constraints have been kept in mind by treating
the enhancement of the entire ρL-matrix and only its diagonal separately, as the former
quickly reaches regions where FCNCs would be outside of experimental bounds, but other
experimental limits have not been considered. Branching ratios and cross sections of the
new Higgs bosons may be within experimentally restricted areas for these enhanced regions.
The oblique parameters S, T , and U have not been given any consideration either.

It remains to be seen whether analysis of further parameter space restrictions such as
those mentioned and others disregarded leave any enhanced Yukawa lepton sector 2HDMs
viable. Should they do, the 2HDM is one possibility for explaining ∆aµ and for providing
an extra source of CP-violation, which could help solve the problem of baryogenesis. Nev-
ertheless, nothing conclusive can yet be said, but the 2HDM remains a relevant candidate
for BSM physics.
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A 1-loop calculations

As no sources detailing the 1-loop aµ and de contributions of the fully generalised 2HDM
were found, these were calculated in the early stages of this project. A FORM program [58],
based on one made to calculate the SM Higgs contribution to aµ, was used to determine
the vertex terms in Figure 1a. These were in turn used to arrive at the analytic terms for
the 1-loop contributions in eq. 9 and 10, which were then compared with references [42,
53] to make sure they reduced to the previously studied results in the A2HDM case.

B Instruction manuals

All three programs detailed are built using the 2HDME API, available with an installation
manual in reference [34]. The source code for this project is available at https://github.
com/zenwet/2hdmSearcher. Add the src folder available there to the 2HDME repository
and overwrite EDM.cpp and EDM.h. Add PROG=2hdmSearcher phaseTester magTester to
the Makefile before compiling in order to install the programs.

At this time, the programs are largely undocumented and uncommented, and may be
difficult to parse. Effort will be put into remedying this in the near future. They are also
error prone, and expect very specific inputs. The modularity is also low.

Functionally, all three programs are very similar. They take take 2HDM potentials
and Yukawa sectors (ρF -matrices in the Higgs basis) as inputs, and output results in .dat

format files in the /output/data directory.

B.1 2hdmSearcher

When run, 2hdmSearcher will ask whether you want to search for Z2-symmetric, aligned,
or general 2HDMs. In all cases, intervals for tan β and generic potential λi and |m2

12| are
taken as inputs, with generic potential |λi| assumed to range from 0 to an input maximum
whereas the full interval is taken as input for the other two parameters as well as any
complex phases. In the case of aligned 2HDMs, an interval for the alignment parameters
aF is also taken as input, with magnitude and phase intervals taken separately. For a
fully general 2HDM search, diagonal and off-diagonal Cheng-Sher parametrisation λFij are
given separate intervals (although the diagonal λFii elements will be equal for individual
ρF -matrices in each 2HDM). A maximum value for |de| and a minimum value for aµ need
to be input, as well as the number of random datapoints that are to be searched.

The program outputs two .dat format files: One contains all initialised parameter
points with lightest neutral scalar boson mass in the region [120, 130] GeV/c, and the
other contains the subset of this list which yield |de| lower than the input maximum value
and aµ larger than the input minimum value (note the lack of absolute value for aµ).
The outputs contain the potential information for all 2HDMs; their respective λLij for the
case of Z2 symmetry, alignment parameters aF for the aligned case, or all Cheng-Sher
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ansatz λFij parameters for the general case; the Higgs boson masses, as well as |de| and aµ
contributions.

Extending 2hdmSearcher based on the results of this thesis could include searching
randomly 2HDMs over a ρL magnitude region, rather than just at isolated points, as this
could increase the odds of finding isolated cancellation magnitude points such as those
shown e.g. in Figure C.2.

B.2 phaseTester

phaseTester takes a generic basis softly Z2-violating 2HDM potential, as well as a Higgs
basis ρL-matrix (in the form of the λLij parameters in the Cheng-Sher ansatz) and varies
the phase of λ5 over the interval [0, π], checking total and 1-loop de and aµ at each step
and outputting the results into a .dat format file, along with the defining information of
the given 2HDM. phaseTester currently assumes that the Yukawa quark sector is aligned,
with alignment factors aU = aD = 1, as well as a real ρL-matrix (although this only applies
to the input function — the actual phase-testing function can take arbitrary complex 3×3
matrices as input).

B.3 magTester

magTester takes a general generic basis 2HDM potential, as well as a Higgs basis ρL-matrix
(in the form of the λLij parameters in the Cheng-Sher ansatz), and varies the magnitude
of either the entire or just the diagonal of the ρL-matrix over a (real) user input interval,
checking total and 1-loop de and aµ at each step and outputting the results into a .dat

format file, along with the defining information of the given 2HDM. magTester currently
assumes that the Yukawa quark sector is aligned, with alignment factors aU = aD = 1,
as well as a real ρL-matrix (although this only applies to the input function — the actual
phase-testing function can take arbitrary complex 3× 3 matrices as input).
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C Extra figures

C.1 Region I

(a) |de| and aµ variation.

(b) Scalar boson mass variation. hi denotes a charge neutral boson,
while H± denotes a charged boson.

Figure C.1: Variation of |de| and aµ (C.1a) and scalar boson masses (C.1b) with arg(λ5)
for the 2HDM defined at P2 in Table 2 with aL = 1.
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Figure C.2: Variation of |de| and aµ contributions with aL at P2 as in Table 2 for the
minima and maxima of |de| in figure C.1a.

Figure C.3: Variation of |de| contributions with aL at P1 as in Table 2 for arg(λ5) ≈ 0,
arg(λ5) = 1.34, and arg(λ5) ≈ π. Approximately here denotes a deviation of order 10−2.
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C.2 Region II

(a) de.
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(b) aµ.

Figure C.4: Evolution of de (C.4a) and aµ (C.4b) with the magnitude factor acting on
ρL for P∗1 as defined in Table 3. The magnitude factor is a real number M multiplying
either the entire ρL matrix or just its diagonal elements. Here, approximately denotes a
deviation of order 10−3.
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C.3 Region III

Figure C.5: Evolution of aµ and |de| contributions as functions of magnification factor
M acting on the ρL-matrix for P6 as defined in Table 4. M is a real number multiplied
with either the entirety of or only the diagonal elements of the ρL-matrix.
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