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Abstract

Dynamically typed programming languages such as PHP, JavaScript and Python
have recently started supporting gradual typing, where type annotations can be
added to part of the code. Tools that can perform type inference are therefore
becoming increasingly helpful as they could ease the labor intensive task of up-
dating legacy code for developers. However, for PHP, most static code analysis
tools have lacking or unsatisfactory type inference functionality.

In this thesis, we use deep learning to predict type annotations for parameters
in PHP. The neural network can, given a function or method, predict the type
annotations for the parameters based on their usage. The predictions are then
presented in the code comment. This approach builds upon the previous work,
code�vec, and is based on the idea of representing code as paths in its abstract
syntax tree.

After training the model with the ��,��� most popular PHP repositories
from Github, it was able to correctly predict type annotations with a top-� accu-
racy of 76.2 % and a top-� accuracy of 84.2 %. These results are better than the
current code analysis tool we tested for PHP. We conclude that deep learning
can successfully be used for type inference in PHP with great results.
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Chapter �

Introduction

Dynamically typed programming languages have become more and more popular in soft-
ware development. Python is heavily used in machine-learning projects, JavaScript is heavily
used in web development, and PHP is also used for web development, although PHP is over-
shadowed by JavaScript. Dynamically typed languages are less restrictive and less verbose
compared to statically typed languages, which is part of the reason why the dynamic lan-
guages are popular. One drawback with dynamically typed languages is that it is hard to
e�ciently debug a program. Gao et al. [�] found that around �� % of the bugs generated by
the public JavaScript repositories they tested could have been detected if a more statically
typed version of JavaScript, such as TypeScript, was used. Many of the dynamically typed
programming languages have started to support gradual typing for variables and functions.
Gradual typing is a type system where some variables and expressions may be given types
and analysed at compile time (like static typing), and some expressions may be left untyped
and checked at run-time (like dynamic typing). Python has a library called typing, PHP has
support for gradual typing within the language itself and supports several types using the
union type, PHP has variants such as Hack, JavaScript has variants such as TypeScript etc.
With the increased support for typing in the dynamic languages themselves, developers are
using more type annotations in their code.

With more developers wanting to use type annotations in their code, the refactorization
of legacy code becomes progressively cumbersome the longer it takes for the developer to
update the code. Since dynamically typed languages assign types to method parameters/vari-
ables during run time, it can be labor intensive to add type annotations to parameters/vari-
ables in legacy code. A tool that can be helpful in this situation is a static code analysis tool,
such as a linter or a code analyzer. However, di�erent languages have di�erent tools, and the
capabilities of the tools are varying. Currently, many of the code analysis tools for PHP lack
type inference functionality, and if any type inference can be done, it is not conveyed to the
user in a useful format or with satisfying results. For example, a tool that can do type infer-
ence, called Psalm, could only infer types on �.� % of the parameters, and with an accuracy of
��.� %. Studies have been done to see howmachine learning can be used instead of static code
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analysis, with many varying methodologies, and have seen varying amount of success. One
methodology that was not used for type inference, but for prediction of method names in
Java, was a deep learning neural network called code�vec [�] which represented code snippets
as code vectors, and can be used to �nd semantic properties in the code. In the paper by Alon
et al. [�], they list type inference as a possible usability case of their model, and we decided
that this was a good opportunity to test the model on type inference.

1.1 Goal and Purpose
In this thesis, we use a deep learning neural network to predict type annotations on param-
eters in PHP. The model used is based on the model used in code�vec, rewritten in Pytorch
with some modi�cation to �t our purpose. Before the code is sent into the model, the code
needs to be preprocessed, so that relevant information about the code can be extracted.

The goal of this thesis is to explore how type inference can be done in PHP using machine
learning, and compare how e�cient machine learning type inference is compared to type
inference using static analysis tools.

The main purpose for this thesis is to make debugging of legacy PHP code easier. For
dynamically typed programming languages, it is especially di�cult to debug code since vari-
ables and function parameters are not de�ned with a speci�c type. If type inference using
machine learning can replace type inference using static code analysis, or be used in addition
to code analysis tools, debugging could be done much more e�ciently, and the work�ow of
the developer could be improved.

1.2 Research Questions
The research questions for this thesis are the following:

�. How can type inference be done in PHP using machine learning?

�. How well can type inference be done in PHP using machine learning?

�. How does type inference done using machine learning compare to type inference done
with static code analysis?

We hope that this thesis will contribute to the scienti�c world by extending the knowledge on
how machine learning can be used for type inference, and show another use of the code�vec
model that might be useful for future use.

1.3 Results
The output of the model is the top k predictions from the model, based on how large k is.
The output of the model is inserted into the code as a PHPDoc, which can be seen in listing
�.�. With a dataset of ��,��� PHP repositories, the model manages to predict types with a
top-� accuracy of ��.� %, a top-� accuracy of ��.� %.
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Listing �.�: Example of predictions made by the neural network.
This function implements binary search, and our model has pre-
dicted the types array for �arr and int for �x. The certainty of the
predictions can be seen next to the predictions

� <?php
�
� /**
� * Predictions for $arr
� * 1. array 99.79 %
� * 2. bool 0.12 %
� * 3. int 0.07 %
� *
� * Predictions for $x
�� * 1. int 98.96 %
�� * 2. number 0.23 %
�� * 3. numeric 0.22 %
�� */
�� function binarySearch($arr, $x) {
�� if (count($arr) === 0) {
�� return false;
�� }
�� $low = 0;
�� $high = count($arr) - 1;
�� while ($low <= $high) {
�� $mid = floor(($low + $high) / 2);
�� if ($arr[$mid] == $x) {
�� return true;
�� }
�� if ($x < $arr[$mid]) {
�� $high = $mid - 1;
�� } else {
�� $low = $mid + 1;
�� }
�� }
�� return false;
�� }

��
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1.4 Overview
This thesis is split into � chapters. Chapter �: Introduction gives an overview of the thesis,
and de�nes the research questions and goals of the thesis. Chapter �: Background goes over
relevant background that is needed in order to understand our thesis better. Chapter �:
Model describes the theory behind the code�vec model, explains in more detail about how
the model works, and how we used the model. Chapter �: Implementation of data processing
and model describes how all the data processing was implemented. Chapter �: Evaluation
explains how the model was set up, what metrics were used, the results of the model, and
how it compares to other code analysis tools that exist for PHP. Chapter �: Discussion and
Future work contains discussion of the results, what improvements could be made to the
model, as well as presenting opportunities of future work. Chapter �: Related work will go
over similar types of studies, that have been using other approaches of deep learning in order
to do type inference. Chapter �: Conclusions presents our conclusions of the thesis.
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Background

In this chapter, we will cover the theory of di�erent concepts that are used in this thesis.
Section �.� describes what PHP is and some parts that are important to know in order to
understand this thesis. Section �.� gives a quick explanation of what machine learning is
and introduces neural networks. Section �.� explains what embeddings are, and why they
are useful. Section �.� describes context-free grammar, section �.� describes parse trees and
abstract syntax trees and Section �.� presents the code�vec paper, which is the paper this
thesis is based on.

2.1 PHP
PHP [�], which recursively stands for PHP: Hypertext Preprocessor, is a dynamically typed
scripting language that was originally created in ����. PHP is mostly used for web devel-
opment, can use many di�erent databases and can be embedded into HTML, among other
things. Compared to JavaScript, which normally runs client-side (Node.js runs on server-
side), PHP code is executed on a server, and outputs the results into HTML which is then
sent to the client.

PHP has four primary types: boolean, integer, float (aka double), and string.
There are also compound types, such as array or object; special types, such as the null
type; and pseudo-types, such as mixed, which allows the variable to have any type. Like other
object-oriented languages, PHP supports classes, which allows the developer to create more
speci�c types.

As PHP is a dynamically typed language, type on variables and function parameters are
set at runtime, which means that there is no need to put type annotations in the code. As of
PHP �.�+, whichwas released the ��November ���� [�], the language supports parameter type
annotations and return type annotations, which allows the developer to de�ne parameters
and function return types in a more static way. However, variable type annotations are not
supported until PHP �.�+, which was released the �� November ���� [�]. In this thesis, we
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will only look at parameter type annotations.
An example of php with and without type annotations can be seen in listing �.� and �.�.

Listing �.�: PHP
code example

� function factorial($n) {
� $factorial = 1;
� while ($n > 0) {
� $factorial =

$factorial * $n;
� $n--;
� }
� return $factorial;
� }

Listing �.�: Anno-
tated PHP example

� function factorial( int $n) {
� $factorial = 1;
� while ($n > 0) {
� $factorial =

$factorial * $n;
� $n--;
� }
� return $factorial;
� }

2.2 Machine Learning and Neural Networks
De�ning what machine learning is is hard, since the �eld of machine learning is very broad.
Generally, machine learning is a sub �eld of AI that uses algorithms with the capability of
learning from previous experiences. A machine learning model needs to be trained in order
to function, which can be done using sets of training data and test data. There are three
di�erent types of learning when it comes to machine learning models, which is supervised
learning, unsupervised learning, and semi-supervised learning [��, p. ���-���]. In supervised
learning, the model gets pairs of input and output, so that the model learns to map inputs
to a given output. In unsupervised learning, the model is only given input, and has to detect
potentially useful patterns in the input by itself. Semi-supervised learning is a mix of super-
vised learning and unsupervised learning, where the model uses the a supervised approach if
there is a corresponding output to an input, and an unsupervised approach if there is missing
feedback. In this thesis, we use supervised learning.

The sub �eld of machine learning that is used in this thesis, called deep learning, tries to
simulate learning bymimicking how a brain learns. Deep learning is a group ofmethodologies
which uses multiple levels of non-linear representations in order to represent more abstract
representations [��]. Deep learning is in practice implemented using large neural networks. As
a brain has neurons that are connected via synapses, a neural network has nodes, representing
the neurons, that are connected to each other using edges, representing the synapses. To
resemble how important a synapse is for a neuron, a neural network uses weights to give
values for the edges between each node, which can be tweaked, simulating learning in the
network.

A neural network is usually implemented as a series of nodes connected to each other via
edges. A small example of a neural network can be seen in �gure �.�.
Each edge connects a node i to a node j, and each node creates a weighted sum of the input
edges:

input
j

=

nX

i=0

w

i, jai

(�.�)

where w

i

is the weight of the edge and a

i

is the output from the activation function of node
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Figure �.�: Small example of a neural network. The content of a
node is also shown

i1

i2

i3

o1

o2

Hidden 
Layer

a1

a2

a3

∑ a

Input 
function

Activation 
function Output

g(input)
w1

w2

w3

i. The node then sends an output to its output edges if the activation function is triggered:

a

j

= g(input
j

) = g(

nX

i=0

w

i, jai

) (�.�)

The activation function g in each node is most often a hard threshold function, but can also
be a logistic function. An example of an activation function would be:

g

w

(x) = Threshold(w · x) =

8>><
>>:
1 if x � 0

0 otherwise
(�.�)

The input of a neural network is most often represented by either a matrix or a vector
containing numbers, which represents the features, or values, of the input. Each element in
the matrix/vector is passed to the corresponding input node. For the output, the shape can
be changed depending on how the output is constructed. It can be a single natural number,
which could represent a class in classi�cation, or a single real number in the case of regression,
or a vector of real numbers, or a vector or natural numbers etc. The output is dependent on
how the output layer is constructed, and can therefore vary in size.

According to Stuart Russel and Peter Norvig [��, p. ���] there are two fundamentally
distinct ways of structuring a network. The �rst one, a feed-forward network, only sends its
output in one direction, which means that each node only sends its output to nodes further
down in the network. Since there are no loops in a feed-forward network, the nodes do not
have to store an internal state, and can fully rely on the weights from its input. The other
network structure, a recurrent neural network, sends its own output into its input, therefore
creating loops. Since the output from a node can be in�uenced by its previous output, the
nodes have to store an internal state, which allows a recurrent neural network to support
short-term memory.

For feed-forward networks, the nodes are often sectioned into layers, so that nodes in a
layer can only receive input from nodes in previous layers. Layers between the input layer
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and the output layer are often referred to as hidden layers, since the weights of the nodes in
the layer can not be directly observed. A feed-forward network can therefore be visualized
like in �gure �.�.

Figure �.�: Example of a feed-forward network

2.2.1 Learning In Networks
In order for a neural network to learn, the network needs to be able to know the error of
its output so it can change its weights. This is done by using a loss function. There are many
di�erent loss functions, such as the absolute error loss, mean square loss, or the cross entropy
loss:

CrossEntropy(x) = �
nX

i=0

y

i

log(a

i

)

In neural networks, these loss functions are used in algorithms called optimizers, which
are algorithms for using the loss and changing the weights of the nodes in the network by a
process called back propagation. There are many optimizers, and one of the most common
ones is the Adam optimizer. We will not go into more detail on the back propagation, but if
you are interested in the topic, we would recommend Artificial Intelligence: AModern Approach
by Stuart Russel and Peter Norvig [��] and Adam: A Method for Stochastic Optimization by
Diederik P. Kingma and Jimmy Ba [��].

2.3 Embeddings
Since machine learning models use numbers to represent features in its input, the text has to
be converted into numbers. But simply hashing the text into a number is not enough, as the
risk of collisions for the hash function becomes very large. Using a single number for a word
would also hide all the similarities the word has to other words, such as small and smallest.
Instead, a vector of numbers is generated for each word in the text. These vectors, called
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embeddings, are then continuously changed by the back propagation of the machine learning
mode, in order for the model to learn how each word is related to each other. A common way
of creating embeddings for words in machine learning is to use word�vec [��]. With embed-
dings for each word, similar words get similar embeddings, which makes it easier to connect
similar words to each other. With embeddings, similar words can be found using simple
arithmetic, e.g., vector("King") � vector("Man") + vector("Woman") ⇡ vector("Queen"), which in
turn makes it easier for the machine learning model to learn relations between words.

2.4 Context-Free Grammar
In order for a parser to be able to read code, it needs to follow a set of rules. These rules
describe the structure of the language that the code is written in, like how there are gram-
matical rules for a real world language, e.g., English. For compilers, these rules are called
context-free grammars. AndrewW. Appel and Jens Palsberg [�, p. ��-��] has a good de�nition
of what context-free grammar is and it can be summarized as this:
For any language, a context-free grammar describes the language as a set of productions of
the form

symbol �! symbol symbol . . . symbol

where the amount of symbols on the right hand side is zero or more. The symbols can either
be terminals or nonterminals, where a terminal symbol is a token from the alphabet de�ned
by the language, and a nonterminal symbol is a symbol that appears on the left-hand side of
any production. A terminal symbol can never appear on the left-hand side of a production,
and at least one of the nonterminal symbols must be distinguished as the start symbol of the
grammar.

Using a context-free grammar, the parser can check if a sentence is part of a language, by
starting from the designated start symbol, and repeatedly applying the appropriate produc-
tion rules until the given sentence is derived.

2.5 Parse Trees and Abstract Syntax Trees
A parse tree is a tree representation of source code written in a programming language ac-
cording to some context-free grammar [�, p. ��]. Parse trees are made by connecting symbols
of a derivation to the symbol that it was derived from. If the grammar is constructed well
enough, the parser can derive the structure without ambiguity, which means that the parser
can not create two di�erent parse trees from the same code. An example of a parse tree can
be seen in �gure �.�, which is based on the code in listing �.�.

Each node in a parse tree represents nonterminals in the context-free grammar (e.g., for-
loop, if-statement, variable declarations etc.). Each leaf in the tree represents a terminal (e.g.,
integer, boolean, string etc.). For example, an if-statement can be represented by a node with
two children, where one child contains the boolean expression, and the other child contains
the block of the if-statement.

A sibling to the parse tree is the abstract syntax tree (AST) [�, p. ��-��], which looks
similar to the parse tree, but there are a few key di�erences. An AST removes all inessential
punctuation and delimiters such as parentheses, braces, semicolon etc. This means that e.g.,
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Figure �.�: Simpli�ed example of a parse tree. In this tree the values
of the leaves are shown in the grey boxes, and the leaves themselves
are parents to the values.

an if-statement only consists of the content of the statement, and not of the parentheses or
braces. An AST also only consists of essential nodes, so the tree itself is much smaller than
the parse tree, which makes it easier to work with. Normally, a compiler uses ASTs instead
of parse trees in order to operate more e�ciently.

2.6 Path-Based Code Representation
In April ���� Alon et al. presented a new approach, which uses a path-based code repre-
sentation, for predicting properties and attributes within source code [�]. This approach is
based on the idea of representing code snippets as a set of paths in its abstract syntax tree
as opposed to representing it as a sequence of characters or tokens. These paths between
nodes in the abstract syntax tree are then used as input features when training a model to
predict program properties. The theory behind this approach is that an abstract syntax tree
will capture the syntactic structures of source code in a better way for a learning model to
take advantage of.

To evaluate their approach of using paths in the abstract syntax tree as features they tested
it for three di�erent tasks and in a few di�erent languages (JavaScript, Java, Python and C#).
Those tasks were prediction of variable names, prediction of method names and prediction
of data types for expressions. Each task was then tested and evaluated with two di�erent
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models, one that was based on conditional random �elds (CRF) and one that was based on
Word�Vec.

With their best model they achieved an accuracy of around �� % for all tested languages
for the variable name prediction task. For the method name prediction task they achieved
an accuracy of around �� % for all tested languages. The task of predicting data types for
expressions was only tested for Java for which they achieved an accuracy of ��.� %.

Later the same year Alon et al. published code�vec [�], where they presented an advance-
ment of their previous approach. In this new and improved approach they present a model
that can aggregate a collection of paths from an abstract syntax tree into a �xed-length code
vector. The idea is that a code snippet can be represented using code embeddings. How their
model accomplished this will be described in more detail in chapter � as this is the approach
we took in our thesis for the task of predicting parameter types in PHP.

When Alon et al. evaluated this improved approach on the task of predicting method
names in Java they achieved a precision of ��.� %, a recall of ��.� % and a F�-score of ��.� %.
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Chapter �

Model

In this chapter we will describe how the model used in code�vec [�] works, and how we
applied it to the problem of type inference in PHP. An overview of the model can be seen
in �gure �.� and each part of it will be described in detail in its own section of this chapter.
Section �.� describes how to represent code using AST paths, and how those paths were
�ltered to be used in our approach. Section �.� describes how embeddings are used to convert
the input into vectors. Section �.� describes how the fully connected layer of themodel works.
Section �.� describes the attention mechanism and section �.� describes how the predictions
are made.

Figure �.�: Overview of the model

3.1 Representing Code as AST Paths
The main contribution from the work of Alon et al. [�], which our thesis is built upon, is the
idea of representing code using paths from its AST. The �rst step is therefore to convert the
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code into syntax trees and to extract these paths. Alon et al. has a clear de�nition of what an
AST-path is in their paper, but in short, it is a sequence of connected nodes in the AST, where
each node is combined with a direction in the tree (UP or DOWN). Only paths between leaf
nodes in the tree are extracted and considered in this implementation and every such path
is then combined with the actual tokens corresponding to the leaf nodes it connects. This
combination of a start token, a path and an end token form a path-context. An example of
such a path-context can be seen in �gure �.�. The same path-context in its textual formwould
be:

Figure �.�: Example of a path-context in a subtree of an AST

$factorial = $factorial * $n

�factorial, (VarName UP; Eq UP; Eq DOWN; Asterisk DOWN; VarName DOWN), �n

Where �factorial is the token corresponding to one of the leaf nodes, and �n is the token
corresponding to the other leaf node.

While Alon et al. uses code�vec to predict the name of methods in Java, we want to adapt
the same approach andmodel and use it to predict type annotations for method and function
parameters in PHP. This means that we need to adjust the selection of the path-contexts to
better suit our purposes. Since Alon et al. aimed to predict the name ofmethods, they wanted
to use path-contexts that captured as much of the syntactical structure and information as
possible. This was done by extracting all the path-contexts that could possibly be found in the
AST for amethod. These path-contexts would then hopefully contain enough information to
be able to summarize themethod into a single method name. We on the other hand only want
to capture the usage of the parameter in order to summarize it with a single type annotation.
This was done by only extracting the path-contexts that satis�ed the following two rules for
the given parameter:

• The path-context’s start or end token has to be the name of the parameter

• The path-context’s start and end token has to begin with �, a letter, or a digit

These rules will �lter out the path-contexts that are relevant for the purpose of predicting
the type annotation for the parameter. By only including path-contexts that start or end with
the parameters name we can focus on the path-contexts that capture how the parameter
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is used. Since each parameter is checked independently, this will also make sure that two
parameters for the same method are distinguishable as they will result in di�erent sets of
path-contexts. The second rule is then enforced to avoid paths that lead to uninformative
tokens such as parentheses and semicolons.

3.2 Embeddings
The next step is to transform the extracted path-contexts into a format that can be under-
stood and handled by the neural network. This is done with the help of two separate embed-
dings, one that is used for the start and end tokens and one that is used for the paths. The
dimensionality of the embedding spaces for both of these embeddings are set to ���, which
was the dimensionality that worked the best for code�vec. This means that that every input
value to the network, i.e., start token, path and end token, will be embedded into a vector in
R128. Thus, every path-context will be embedded as three vectors.

The two embeddings are initially assigned with random normally distributed numbers
as weights which are then learned while training the network. The goal here is for the em-
bedding to learn the “meaning” of the tokens and paths and distribute that meaning across
the ��� vector components in a way such that tokens or paths with similar meaning will be
embedded into similar vectors.

3.3 Fully Connected Layer
Once each part of the path-contexts in the input has been embedded into vectors they will
be joined into context vectors representing each of the path-contexts. This is done by simply
concatenating the corresponding embeddings for each of the three parts of the path-context
which will result in a new vector with a dimension of ���. This new vector, called a context
vector, is then sent through a fully connected layer.

The purpose of this fully connected layer is for the network to learn how to combine the
di�erent components of the context vector in the best way possible. This is necessary since
some tokens might have a bigger e�ect on the output when seen in combination with certain
tokens and paths than with others. By allowing the fully connected layer to learn this it will
be able to attend di�erent combinations of tokens and path di�erently later on.

The activation function of the fully connected layer is the hyperbolic tangent function,
which means that the fully connected layer can be described as:

ĉ = tanh(W · c) =
e

W ·c � e

�(W ·c)

e

W ·c + e

�(W ·c)

(�.�)

Where c is the context vector, W is the learned weights in the layer and ĉ is the output, the
combined context vector.

3.4 Attention Mechanism
One di�culty when dealing with problems that generate large sets or bags of features is the
selection of which of the features to use as input for themodel. Including all of themwould be
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one solution, but that could easily lead to over�tting [��, p. ���]. Selecting only some of them
would be problematic as well, as it can be di�cult to knowwhich of the features to use. There
is even a possibility that some features might be important to make the correct prediction
for some input, while some completely di�erent features might be more important to make
the correct prediction for a di�erent input.

When given a large set of path-contexts as input, the network will therefore have to select
which of the path-contexts to use. This is done by the attentionmechanismwhich is the main
component of this path-attention network which was originally proposed by Alon et al. This
way, it is possible to feed all extracted path-contexts to the network and then let the attention
mechanism decide which of the path-contexts to pay attention to. The attention mechanism
takes the combined context vectors as input and uses soft attention to decide howmuch focus
each of them should be given. Soft attention heremeans that the network will consider all the
combined context vectors and combine them using a weighted sum where more important
vectors will be given more weight. This can be compared to hard attention which instead
only would consider the single most important vector and use that one.

Given a set of combined context vectors, the attentions mechanism will therefore com-
bine them into a single, �xed length vector as:

v =

nX

i=1

↵
i

· c
i

(�.�)

Where ↵
i

is the attention weight corresponding to the combined context vector c

i

. These
attention weights are calculated as the softmax of the dot product of the combined context
vectors, c

i

, and the global attention vector a:

↵
i

=
exp (c

i

· a)

P
n

j=1

exp (c

j

· a)

(�.�)

Similar to the embeddings, the global attention vector a is initialized as a vector of ran-
dom normally distributed values and learned when training the neural network.

The output of the attention mechanism is the code vector, v, which represents all the
path-contexts in the input, and therefore also the usage of the function or method parameter,
as a single vector.

3.5 Predictions
The last step is to predict the type annotation for the given parameter which is done using the
resulting code vector from the attention mechanism. The logits, or raw predictions, are �rst
computed as the dot product between the code vector and each of the embeddings for the type
annotations, which are learned while training the network. These logits are then normalized
with the softmax function to get the probability distribution over all the type annotations.
The �nal prediction will then be the type annotation with the highest probability.
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Implementation of Data Processing

Before any tests or evaluations could be performed we needed data in order to train the
model. In this chapter we will describe how this data was gathered and processed, all the way
from raw source code until data that could be used as input to the model. An overview of the
entire data processing can be seen in �gure �.� and each part of it will be described in further
detail in this chapter. Section �.� explains how the data was gathered. Section �.� describes
how the raw source code was preprocessed. Section �.� describes how the path-contexts were
extracted and section �.� describes the �nal preprocessing of these extracted path-contexts.

Figure �.�: Overview of the data processing
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4.1 Data Gathering
In order to train a model to predict type annotations in PHP we �rst needed data for it
to learn from. We therefore had to gather a large quantity of PHP code with existing type
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annotations. This was done by collecting projects fromGithub that predominantly consisted
of PHP code. Since we assumed that more popular projects were more likely to be better
documented and use type annotations to a greater extent, as well as containing more code,
we decided to sort the repositories by star count. The number of projects in our dataset grew
over time, but ultimately, a dataset consisting of the top ��,��� repositories, sorted by most
stars, was used.

4.2 Data Processing
Before any path-contexts could be extracted from the collected data, it had to be prepro-
cessed. This was done for several reasons. The main three reasons were to perform some
basic lemmatization of the type annotations, to save storage space, and to move type annota-
tions from PHPDoc comments to the function ormethod headers. Most of this preprocessing
was done using PHP-Parser [��], a tool which allowed us to generate an AST for each PHP
�le and then traverse the tree while performing some modi�cations to it.

One of the objectives for the preprocessing was to lemmatize and combine some of the
type annotations. During the collection of the data we noticed that some type annotations
were written di�erently in di�erent repositories since PHP allows for several spelling varia-
tions of them. For example, some projects used int and bool as type annotations while other
projects used integer and boolean. To prevent the model from trying to learn how to dis-
tinguish between these type annotation we therefore replaced all integer and boolean
type annotations with int and bool. Similarly, all the capitalized scalar type annotations
were replaced by their lowercase versions. E.g., replacing String and Array with string
and array.

Another objective of the preprocessing was to generalize the code slightly and prevent
the model from learning from speci�c values in the code, such as string and int literals. We
don’t want the model to treat an addition with �, for instance, di�erent from an addition
with �, since the speci�c value is unlikely to matter for the prediction of the type annotation.
Neither do we want it to treat a string concatenation with “Hello” di�erent from a string
concatenation with “World” etc. While traversing the AST using PHP-Parser, we therefore
replaced all integer literals with the value �, �oat literals with the value �.�, string literals
with the string “s“ and inline HTML blocks with an empty HTML block.

The preprocessing was also used to standardize the placement of type annotations across
the dataset. Since di�erent projects used di�erent conventions, some projects placed the
type annotations in the documentation comment while other projects placed them directly
in the header of the function or method. This standardization was done by moving all type
annotations found in documentation comments to the header. A placement that wouldmake
them easier to access when extracting the path-contexts and creating the data samples for the
model to learn from.

To prevent code duplication in the dataset, the preprocessing was also responsible for
removing all folders named vendor as these folders contain the code dependencies. By re-
moving these folders we could prevent cases where several repositories had a mutual depen-
dency. Thus, eliminating duplicated code. Removing these folders, as well as removing any
�les that were not PHP �les, also saved storage space as it drastically reduced the size of the
repositories in the dataset.
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4.3 Extraction of Path-Contexts
Once all the repositories were preprocessed, the next step of the data processingwas to extract
the path-contexts. This was done using astminer, a library for mining path-based represen-
tations of code [��]. However, several modi�cations of astminer were necessary in order to
adapt the tool for our purposes and to extract the path-contexts in the desired format.

The main modi�cation we had to make was to add support for parsing PHP �les. This
could be done by either implementing a PHP parser from scratch or by generating a parser us-
ing an ANTLR grammar �le and only implementing a wrapper around the generated parser.
As writing your own parser can be a complex and time consuming project we decided to
generate a parser using a prede�ned grammar �le.

Unfortunately, the generated parser was only able to convert code into parse trees, and
not into abstract syntax trees. While a parse tree is a more detailed representation of the
syntactic structure of the code, anAST ismore compact while still containing all the essential
information. This means that by extracting the path-contexts from an AST, the use of a
parameter could be represented in a more compact and concentrated way since fewer path-
contexts would be needed to represent the same amount of information. For this reason we
had to modify astminer further in order to treat the generated parse tree more like an AST.

One suchmodi�cationwas to�lter out and ignore path-contexts with a start or end token
that would have been omitted in an AST. This way, path-contexts containing uninformative
tokens such as parentheses, semicolons and braces could be disregarded.

Another modi�cation that was done was to change how unary and binary expressions
were represented in the parse tree and to make these parts of the tree more similar to an
AST. In a parse tree, an addition, for instance, is represented as a binary expression node
with three children, one for the operator and one for each operand. This means that we
would need two path-contexts to cover both of the operands and the operator. By changing
it and representing expressions in a way that is more similar to an AST, an addition would
instead be represented as an addition node with two children, one for each operand. This
makes it possible to cover both of the operands and the operator with a single path-context.

Once all of the necessary modi�cations had been done to astminer, it could be used to
extract the path-contexts. This was done by giving the repositories in the dataset, one at the
time, as input to astminer. Each PHP �le in a given repository was then parsed and all path-
contexts representing the use of a parameter with a known type annotation were extracted.
These were then written to a separate line of a �le together with the type annotation of the
corresponding parameter. Thus, producing a �le with one data sample per line. To prevent
this �le from being excessively large, the path of each path-context was �rst hashed and only
the hash value was written to the �le, making each path-context more compact.

The result of this step of the data processing was therefore ��,��� �les, one per repository,
containing data samples for the model to learn from. These �les could then be split into a
training dataset and a testing dataset.

4.4 Final Preprocessing
In order for the model to be able to handle any input, it needed to know what input values
it could expect and which type annotations it could chose between when making the predic-
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tions. In other words, it needed vocabularies containing all the possible values for the tokens,
paths and type annotations.

These vocabularies could be created in di�erent ways. One option would have been to
include every value that could be found in the training dataset. However, that would also
include values that only appeared a handful of times. Since it would be di�cult to detect any
patterns and learn anything useful from these values we decided to omit them. Instead we
created histograms representing the value frequencies and introduced a threshold such that
only values with a frequency above the selected threshold were added to the vocabulary. This
way we could prevent the model from trying to learn anything from the most uncommon
values. Several di�erent threshold values were tested, but ultimately it was set to �� as this
seemed to give the best results.

The�nal preprocessing stepwas also responsible for limiting the number of path-contexts
per sample to amaximum of ���. For any sample exceeding this limit, a selection of ��� path-
contexts would be kept while the rest would be discarded. To prevent any path-contexts with
valuable information to be discarded, priority would be given to those where the path and
tokens were part of the vocabulary. The value ��� for the limit was selected since this was
the value that had worked the best for Alon et al. in their work of code�vec [�].

Once the �nal preprocessing was done, the data could be used to start training the model.
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Evaluation

In this chapter, we will present the results of the model, as well as evaluating the model and
comparing it with current code analysis tools in PHP. Section �.� will go over the setup for
the model. Section �.� covers the metrics used for the evaluation. Section �.� presents the
results for the model. Section �.� contains a qualitative evaluation of the model, that looks
at how the model works on repositories that have not been seen in the training data. Section
�.� compares the model with current PHP code analysis tools and section �.� covers code
analysis tools that were tested but were not used for comparisons with the model.

5.1 Experimental Setup
The preprocessing was done on Intel®Core™ i�-����HCPU@ �.��GHz ◊ �� processor. For
a dataset of ��,��� repositories, the preprocessing took ⇠�� hours, depending on the path
depth astminer was con�gured with. The neural network was trained on a Nvidia Tesla T�
with � epochs per model. Each epoch for the dataset took ⇠�� min, which resulted in a
training time of ⇠� hours.

5.2 Metrics
To evaluate the model, we used k-fold cross validation [��, p. ���] in order to get a result
that can be generalized better, since splitting the data into only one training set and one test
set might give a poor estimate of the general performance of the model. The evaluation was
done with k = ��, which means that the dataset of all repositories, R, was �rst split into ten
disjoint subsets T�, T�, ... ,T��. Each subset Ti was then used as the test set in an independent
round of training using the training set R \ Ti. Once all ten rounds of training were done,
the result was calculated as the average for each metric between the ten rounds. The metrics
used were the top-k accuracy, precision, recall and F�-score.
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The top-k accuracy of the model is de�ned as:

Top-k accuracy =
C

D

WhereC is the number of predictions where the correct type is within the top k predictions,
and D is the total number of data samples in the test set.

The precision for a speci�c type annotation is de�ned as:

Precisiontype =
Ctype

Ptype

Where Ctype is the number of correct predictions for the speci�c type annotation, and Ptype

is the total number of times the model predicted the type annotation.
The recall for a speci�c type annotation is de�ned as:

Recalltype =
Ctype

Dtype

Where Ctype is the number of correct predictions for the speci�c type annotation, and Dtype
is the total number of data samples of the type annotation.

The F�-score for a speci�c type annotation is de�ned as:

F�-scoretype = 2 ·
Precisiontype · Recalltype
Precisiontype + Recalltype

In other words, the F�-score for a type annotation measures the harmonic mean between the
precision and the recall for that speci�c type annotation.

The overall precision, recall and F�-score for the model after a round of training was then
calculated as the weighted average for these metrics for each type annotation. Each of these
values, as well as the top-k accuracy, was then averaged over the ten rounds of training to
obtain the �nal evaluation measurements for the model.

5.3 Results
After training the model with the ten di�erent splits of the data, we got an average top-�
accuracy of ��.� %, and an average top-� accuracy of ��.� %. An overview of the results can
be seen in table �.�.

Table �.�: Evaluation metrics for di�erent models

Path-contexts used Top-�
accuracy

Top-�
accuracy Precision Recall F�

Only local contexts ��.� ��.� ��.� ��.� ��.�
Local + whole �le contexts ��.� ��.� ��.� ��.� ��.�

To get a better understanding of how the model performs for larger functions and meth-
ods in comparison to smaller ones, we created a plot visualizing how the accuracy depends
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on the number of path-context in the samples. The assumption was that fewer path-contexts
could be extracted from smaller functions and methods, giving the model less information
to base its prediction on. Thus, resulting in a worse accuracy for these samples. As can be
seen in �gure �.�a, the assumption seems to be correct as the accuracy appears to be slightly
worse for samples with a number of path-context below ��.

Looking at �gure �.�b, which shows how the samples are distributed across the number
of path-contexts they consist of, we can see that a lot of the samples have rather few path-
contexts. This means that the majority of the samples falls within the range with a slightly
weaker accuracy. The spike at ��� in the graph occurs due to the threshold set for the maxi-
mum number of path-contexts per sample.

To remedy this problem we made an attempt at increasing the number of path-contexts
in each sample. This was done by considering entire �les when extracting path-contexts as
opposed to looking at each function or method independently. Since we assume that several
methods within the same class might share a parameter, we could extract more path-context
by looking at how parameters with the same name are used in other methods. With this
approach we obtained a top-� accuracy of ��.� %, and a top-� accuracy of ��.� %. However, as
can be seen in table �.�, this approach did not make much of an improvement to the results,
which indicates that our assumption might have been wrong.

Figure �.�: Graphs surrounding samples

(a) Accuracies depending on amount of path-
contexts in a sample (b) Distribution of samples in test data

In �gure �.�a, we can see that the accuracy for the training data keep improving the
longer we train the model. The accuracy for the test set on the other hand seems to stabilize
at around �� % after approximately six epochs. Similarly, by looking at �gure �.�b, we can see
that training loss keeps decreasing the longer the model is trained while the test loss reaches
a minimum after about �ve epochs before it starts to increase. This reveals that the model
will start to over�t to the training data if it is trained for too many epochs. It also suggests
that �ve or six epochs might have been better than the eight epochs we decided to train for.
However, these graphs only show the accuracy and loss for one individual round of training.
After performing all ten rounds of training it turned out that eight epochs gave the best
results.
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Figure �.�: Graphs surrounding training and test data

(a) Accuracies of training and test data over
epochs

(b) Cross entropy loss of training and test data
over epochs

We also looked at how the model performs when predicting the type annotation for pa-
rameters whose names had not been observed during training. This way we would get an
understanding of how dependent the model is on good parameter names in order to make
accurate predictions. Since every path-context extracted contained the parameter name as
either the start token or end token we could evaluate this by modifying the data in the test
set. By changing all tokens containing a parameters name to a new, previously unseen token,
we could create a new test set which simulates samples for parameters with unknown names.

On this test set the model was able to predict type annotations with a top-� accuracy of
��.� % and a top-� accuracy of ��.� %, as can be seen in table �.�. These results are signi�cantly
worse than the results we obtained with the normal test set, which indicates that the model is
dependent on good and descriptive parameter names in order to make accurate predictions.

Table �.�: Metrics for di�erent models based on path-context struc-
ture

Path-context structure Top-�
accuracy

Top-�
accuracy Precision Recall F�

Full path-context ��.� ��.� ��.� ��.� ��.�
Unknown parameter name ��.� ��.� ��.� ��.� ��.�

Another aspect we looked at was how the model performs at di�erent certainty thresh-
olds, where the model has to reach a certain certainty on the prediction in order for the
prediction to be valid. As can be seen in table �.�, the higher the threshold is the fewer pre-
dictions will be made. With a certainty threshold of �� %, for instance, it will only be able to
make a prediction for approximately half of the samples. However, it will have an accuracy
of �� % on those predictions. With a threshold of �� % on the other hand, it will be able to
make a prediction for as many as ��.� % of the samples, but with a lower accuracy.
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Table �.�: Accuracy of the model depending on certainty threshold

Threshold Accuracy Samples
predicted

Percentage of
samples predicted

�� % ��.� ���,��� ��.�
�� % ��.� ���,��� ��.�
�� % ��.� ���,��� ��.�

5.4 Qualitative Evaluation

To analyse the usefulness of the model in a developer scenario, we used the model to predict
types on a repository that has not been seen in the training data, and manually checked if the
predictions were useful. An useful prediction would be a prediction which is either correct,
has the correct type annotation within the top-� predictions, or has a type annotation within
the top-� predictions which is close enough to the correct type annotation. We checked ���
functions, and classi�ed the correctness into three categories: correct prediction, useful pre-
diction, and wrong prediction. A correct prediction was a prediction where the correct type
annotation of the parameter was the top-� prediction. A useful prediction was a prediction
where the type annotation was not the top-� prediction, but was in the top-� prediction
or was close enough to the correct type annotation that it could give some clues. A wrong
prediction was a prediction where the type annotation was not within the top-� prediction.
From the manual testing, we found that ��� predictions were correct, �� predictions were
useful, and �� predictions were wrong, which would give an usefulness percentage of ��.� %.

To show what the model actually outputs, we want to show some examples of where
the model has correctly predicted the type annotations and some cases where it predicts the
wrong type annotation. All code examples were taken from an older version of Axis PHP
code, and the type annotations in the functions are kept in order to check if the model is
correct or not. The types that are left in the parameter declaration and in the comments are
not used in the predictions themselves.

Our �rst example, which can be seen in listing �.�, shows a small function, where the
model predicted the correct type on the parameter $audioInputId. All the predictions
the model makes is inserted into the PHPDoc comment of the function, instead of directly
into the function. This lets the developer decide what type annotation that should be there,
instead of letting the model insert a type annotation that might be wrong. We also insert the
certainty of the prediction, so that the developer can get more information of what the model
thinks, in order to make better decisions. In this example, the model correctly predicts that
the parameter $audioInputId should be a string with a certainty of ��.�� %.
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Listing �.�: Small code example where the model predicted the right
type

� /**
� * Determines if the user is authorized to update an audio input
� *
� * @param string $audioInputId The id of the audio input.
� * @return bool - True if user is authorized, False otherwise.
� *
� * Predictions for $audioInputId
� * 1. string 99.59 %
� * 2. mixed 0.07 %
�� * 3. array 0.05 %
�� */
�� public function updateRule(string $audioInputId) : bool
�� {
�� $explodedAudioInputId = explode(’-’, $audioInputId);
�� $deviceId = $explodedAudioInputId[0];
�� return $this->permissionChecker->verifyDeviceACE($deviceId, ’

DEV_MANAGE_AUDIO’);
�� }

The second example, shown in listing �.�, shows a larger example with several parameters,
many with di�ering type annotations. The model correctly predicts the type annotations on
all the parameters, and each prediction is done in the order that the parameter is imple-
mented. The prediction is also inserted in the order the parameters are presented, to easily
see which prediction corresponds to which parameter.
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Listing �.�: Large code example where the model predicted the right
type on all parameters

� /**
� * Builds a LIMIT/OFFSET clause.
� *
� * @param array $params Reference to the parameters for the

prepared statement which is populated with the values.
� * @param array $types Reference to the types for the prepared

statement which is populated with the types of each value.
� * @param int $limit Max number of results
� * @param int $offset Offset from first match
� * @return string SQL clause or empty string if $limit and

$offset is null.
� * @throws InvalidArgumentException if $limit is null while

$offset is not null.
�� *
�� * Predictions for $params
�� * 1. array 99.99 %
�� * 2. string_arr 0.01 %
�� * 3. array_null 0.0 %
�� *
�� * Predictions for $types
�� * 1. array 99.8 %
�� * 2. string_arr 0.15 %
�� * 3. array_null 0.01 %
�� *
�� * Predictions for $limit
�� * 1. int 77.61 %
�� * 2. int_null 11.69 %
�� * 3. string 6.54 %
�� *
�� * Predictions for $offset
�� * 1. int 99.6 %
�� * 2. int_null 0.16 %
�� * 3. string 0.1 %
�� */
�� public function buildLimitOffset(array &$params, array &$types,

$limit = null, $offset = null)
�� {
�� if (null === $limit && null !== $offset) {
�� throw new \InvalidArgumentException(’Offset�requires�a�

limit’);
�� }
�� $sql = ’’;
�� if (null !== $limit) {
�� $sql .= ’LIMIT�?’;
�� $params[’limit’] = $limit;
�� $types[] = ’i’;
�� if (null !== $offset) {
�� $sql .= ’�OFFSET�?’;
�� $params[’offset’] = $offset;
�� $types[] = ’i’;
�� }
�� }
�� return $sql;
�� }
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But our model is not always correct. Our third example, which can be seen in listing �.�,
shows a small function where the model predicted the wrong type annotation with a high
certainty. An explanation to why the model predicts the wrong type annotation might be
that the model has seen �siteId or something similar before, but the variable has mostly been
used with integers instead of strings.

Listing �.�: Example where the model predicted the wrong type
� /**
� * Verifies if a user is authorized to a site.
� *
� * @param string $siteId The id of the site.
� * @return bool True if user is authorized and site found, False

otherwise.
� *
� * Predictions for $siteId
� * 1. int 99.56 %
� * 2. string 0.35 %
�� * 3. null 0.02 %
�� */
�� public function verifyUserAuthorizedToSite(string $siteId) :

bool
�� {
�� $siteIds = $this->getSiteIdsThatUserIsAuthorizedFor();
�� if (in_array($siteId, $siteIds)) {
�� return true;
�� }
�� return false;
�� }

Our last example, which can be seen in listing �.�, shows a function where the model
predicted the wrong type, but the prediction is close enough to the correct type annotation.
In this example, the type AbstractProperty does not exist in the vocabulary of the model,
but from the variable name and how it is used, it predicts type annotations that are similar to
the correct type annotation. This can be useful for the developer in cases such as this, since it
can help the developer decide the type annotation if there is a custom type annotation that
is similar to the predicted type annotations.
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Listing �.�: Example where the model predicted a type similar to the
correct type

� /**
� * Add a property.
� *
� * @param AbstractProperty $property
� * @throws InvalidArgumentException if property name already

exists in the JSON Schema.
� *
� * Predictions for $property
� * 1. Property 77.94 %
� * 2. PhpProperty 13.86 %
�� * 3. \ReflectionProperty 0.84 %
�� */
�� public function addProperty(AbstractProperty $property)
�� {
�� if ($this->inJsonSchema($property->getName())) {
�� throw new InvalidArgumentException("Invalid�argument,�

property�with�name�’{$property->getName()}’�already�
exists.");

�� }
�� $this->properties[] = $property;
�� }

5.5 Comparison With Static Code Analysis
Tools

Currently, there is a decent amount of code analysis tools for PHP [�]. Many of them are
more niche than general purpose, like tools that �nd uses of non-standard libraries, tools
that �nd security �aws in code, tools that �nd copy/pasted code etc. There is a large amount
of linters that can scan the code and report �aws, but many of the tools are very small, and
can not do type inference. Of the code-analysis tools that exists for PHP, some the most
popular static code-analysis tools: PHPStan, Psalm, and Phan; and a dynamic code-analysis
tool called phpweaver, were selected for testing.

The tool that was tested themost, Psalm [��], is di�erent to the other tools due to the fact
that it can modify code if it �nds some �aws, e.g., missing parameter types. Psalm can infer
type annotations from functions by looking how a function is called and the function’s con-
tent, but it does not always work. In listing �.�, Psalm can infer that function g should have
a parameter that is a string, but it cannot infer type annotations on some simpler examples,
such as the code seen in listing �.�.
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Listing �.�: An even simpler php example
� <?php
�
� class Test {
� public static function f($s) {
� print($s);
� }
� }
�
� f("Hello");

However, Psalm can infer return types for functions and methods, which the other tools
could not do. Since Psalm can change code, we decided to test the limits of Psalms type
inference.

When testing Psalmwith the top ��,��� rated PHP projects on github where we removed
all type annotations from both the PHPdoc comments and function signatures, Psalm could
infer type annotations on �.� % of all parameters. If we are only looking at parameters that
were annotated to begin with, Psalm could infer type annotations correctly on around �.� %
of the parameters. If we are looking at each type annotation by itself, the numbers are a bit
di�erent. Psalm could infer ��.� % for booleans, ��.� % for integers, ��.� % for arrays, ��.� %
for strings, and �.�� % for �oats. An overview of the evaluation can be seen in table �.� and
�.�.

Table �.�: Results of evaluating Psalm

Amount of
typed

parameters

Total amount
of parameters

Percentage
typed

parameters
Developer typed

types ������� ������� ��.� %

Psalm inferred
types ������ ������� �.� %

Correctly inferred
precision ������ ������ ��.� %

Correctly inferred
recall ������ ������� �.� %

Table �.�: Results of individual types

Type
Amount of

typed
parameters

Total amount
of parameters

Percentage
typed

parameters
String ������ ������� ��.� %
Array ����� ������ ��.� %
Integer ����� ������ ��.� %
Boolean ����� ������ ��.� %
Float ���� ����� �.� %

��



�.� O���� C��� A������� T����

We believe that the numbers are higher in reality, since we have some limitations. We are
only accepting the cases where Psalm inferred the exact same type as the type the parame-
ter had before we removed all type annotations in the code. In some cases Psalm can infer
correctly, e.g., a parameter that has the type string|null while Psalm inferred string, or
that the parameter was typed with string and Psalm inferred string|null. However one
would have to manually examine and verify that the inferred type annotation actually works.
Another possibility is that Psalm believes that a parameter can get null while in reality the
parameter should not be able to be null. We are also not accepting types from external pack-
ages where Psalm could infer correctly, but not in the exact same way as it was annotated in
the beginning. There are also cases where the developer gave the parameter the mixed type
annotation while Psalm infers a more speci�c type annotation, e.g., int|string. There can
also be cases where the developer gave a parameter the wrong type annotation while Psalm
inferred the realistically correct type.

We are not taking into account how well Psalm can infer type annotations on parameters
that did not have a type annotation to begin with, since it is di�cult to actually verify that
the inferred type annotation is correct without executing the program. Even if the inferred
type is correct, the code would have to be manually tested and reviewed to see if the inferred
type actually is a good �t in the code. In a lot of cases it might be very simple functions
that Psalm infers the type on, but since there is no simple way to automatize the veri�cation
process for the code, we have decided to not take it into account.

If we are only looking at raw numbers from Psalm and our model, the machine learning
model outperforms Psalm. With a top-� accuracy of ��.�%, there are improvements compared
to Psalm’s accuracy of ��.� % on type annotations it actually inferred, and �.� % on all the
parameters in its dataset. However, there are some important distinctions between how
Psalm and the machine learning model infer type annotations. Psalm will not infer a type
on a parameter unless the program is absolutely sure that the inferred type is correct, while
the machine learning model will guess the type annotation on the parameter no matter what.
When evaluating Psalm, we could only count exact matches, so even though Psalm might
have inferred a type annotation that is correct but in a di�erent order compared to what the
developer typed, e.g., int|string instead of string|int, it will count as a failure. If a
more fair evaluation could be done for Psalm, the numbers for the accuracy of Psalm would
most likely be higher.

If the developer is looking for suggestions to type annotations instead of what is actually
correct, the machine learning model would be better than Psalm. But if the developer wants
to automatically change code, Psalm would be better, since the type annotations inferred by
Psalm will work, while the type annotations inferred by the machine learning model might
not be correct.

5.6 Other Code Analysis Tools
Although we tested other code analysis tools than Psalm, they did not �ll certain function-
alities that we were looking for, or had other problems. Here, we would like to present the
other tools.
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5.6.1 PHPStan
PHPStan [��] is a code analyser that can check for many code �aws such as incorrect function
or method calls, too few parameters in a function call, wrong type annotations, return types
etc. A functionality that we found was missing was the ability to infer type annotations.
PHPStan can �nd �aws such as the lack of type annotations for function parameters or that
parameters sent to a function call were of thewrong type, but it can not infer type annotations
based on the content of the function or how a parameter is used. Let us look at the example
in listing �.�.

Listing �.�: A simple php example
� <?php
�
� class Example {
� public function f(): void {
� $this->g("Hello�World");
� }
�
� public function g($s): void {
� print($s);
�� }
�� }

Method Example::g() has parameter $s with no typehint specified.

PHPStan can see that the variable �s is missing a type annotation, but it can not say
what type annotation. A developer would have instantly seen that the variable �s should
be a string, but PHPStan can not infer it at all, since it does not analyse the content of the
function. We also found that PHPStan has no ability to alter �les, and can only analyse the
�les. This means that the tool can only give hints on what might be problems within the
code, but can in no way aid the developer in how to solve the problems. Since we could not
actually change the code with PHPStan or extract the tools internal type inference (if it has
one), we decided to not test the tool further.

5.6.2 Phan
Phan [��] was the least useful tool that was tested, since it does not give any errors around
type annotations or return types (even if return types is not as useful as type annotating in
this case). In order to do some kind of inference, the tool needs to be able to �nd types by
itself or output some kind of marker (i.e., an error) which can then be used to �nd the places
in the code where type inference is needed. It might be Phan’s "minimize false-positives"
approach that might be the problem, since it might not want to do type inference since it
does not know what type the variable/function might be. Since Phan gives no feedback on
type annotations and can not infer types, we decided to not test the program further.

5.6.3 Phpweaver
Phpweaver [��] is a tool that combines static and dynamic code-analysis. This tool uses xde-
bug, an extension to PHP, in order to dynamically analyse function calls and see what types
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all the arguments for the called functions actually had during execution. Phpweaver then uses
the output from xdebug to generate PHPdoc comments for all the functions which contain
type annotations with the types that was seen during the dynamic code-analysis.

This tool works well for code bases where one can be sure that exactly all code is executed
with all possible inputs, which means that it works well for projects with ��� % test coverage.
However, it was infeasible to execute all code and evaluate phpweaver as many repositories
did not have any tests. We also thought such an evaluation would only measure the test
coverage of the repositories rather than the usefulness of the tool. We therefore decided to
not test phpweaver any further. However, this might have been a mistake, since an evaluation
of phpweaver would have strengthened the comparison of existing tools with the model.
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Discussion and Future work

In this chapter we will discuss the model, its practical applications, some design choices and
what future work there is to be done. Section �.� contains the discussion of the model in its
entirety and section �.� lists some suggestions on future work that can be done.

6.1 Discussion
There are a couple of di�erent subjects we would like to discuss here. Not only the results
of the model and how well it works, but also some practical applications of it and how the
model can be used in a real-world setting. We will also discuss a few improvements that we
believe would work, but which we did not have time to actually implement. Lastly, we will
also discuss a few limitations of the model.

6.1.1 Does the Approach Work?
Our results show that deep learning successfully can be used for type inference, and compared
to the static analysis tools that are currently available for PHP, it might even be better in some
cases. However, it all depends on how the model is used. Even with a ��.� % top-� accuracy
and a ��.� % top-� accuracy, there is still a large margin of error. This means that predictions
made by the model never can be blindly trusted to be correct as that most certainly would
introduce errors into the code. If the predictions made by the model only were to be viewed
as suggestions instead, where the developer ultimately makes the �nal decision, we believe
that the model could serve as a helpful and convenient tool.

Looking at how the model performs when predicting type annotations for parameters
with previously unseen names, we could see a signi�cant drop in the accuracy. This does not
only suggest that the model is highly dependent on good and descriptive parameter names
to make accurate predictions. It also suggests that the approach actually works and that the
model is learning something. It learns that certain parameter names usually correspond to
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certain type annotations. At the same time, the accuracy is still high enough to suggest that
the model is not randomly guessing. In other words, it also appears to learn how to correlate
the usage of parameters with their type annotations.

Overall we would say that our results indicate that the approach works very well, but in
the end it depends on how the model is used. In the following section we will discuss a few
practical applications of the model.

6.1.2 Practical Applications of the Model

In this thesis we added all the predictions of themodel to the documentation comments of the
correspondingmethods or functions. This was solely done for demonstration purposes and to
make it clear which prediction belongs to which parameter while evaluating the model. From
a practical point of view this wouldmost likely just annoy the developers as it clutters the code
comments with many unnecessary predictions as well. However, there are still several ways
in which this model can be used in a real-world setting to enhance the developer work�ow.

One possibility would be to implement the model as a web service. In other words, giving
it a web interface where developers can submit code for themodel to predict type annotations
in. This would also make it possible for the model to improve over time by learning from
that submitted code and extend its vocabulary. Allowing the model to continuously learn in
such a web service imposes a risk of over�tting though. If a developer repeatedly submits the
same code or code from a single project or company, the model might start to over�t to that
particular data.

Another possibility would be to integrate themodel into a continuous integration system,
such as jenkins, so that the model can be used in automated testing. This could also make it
easier for companies to start using it as they might already have a tool stack in place which
allows for easy integration of new testing tools. Including the model into the feedback loop
of the project might be helpful to the developers if its used in the right way. As mentioned
previously, the predictions made by the model are merely guesses and may be wrong. The
predictions from the model should therefore not be used in critical tests that may cause a
system build to break. However, if the model is used in the right setting and its predictions
are treated the right way, we believe that the model can be of great use to a developer.

The model could also be implemented as a plugin for an IDE that gives the predictions
as suggestions directly in the editor. By making a plugin, the model would be much easier to
use, and if implemented in a similar style to a linter it would not clutter the code comments
unless the developer decides that it should.

The fact that the model performs signi�cantly worse when predicting type annotations
for parameters with previously unseen names also opens up the door for another possible
application of the model. That is to evaluate how good and descriptive the parameter names
in a project are. Since the model is trained on the most popular PHP repositories on github,
which we assume use good names and follows naming conventions, we can use the models
dependency on good parameter names to our advantage. In other words, if the model strug-
gles to predict type annotations in a certain project and obtains a low accuracy one might
suspect that the parameter names are not good and descriptive enough.
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6.1.3 Using ASTs Instead of Parse Trees
In the works of Alon et al. they extracted the path-contexts from ASTs [�, �], but in this
thesis we extracted them from parse trees instead. This might have been a mistake.

Astminer [��], which we used to extract the path-contexts, is capable of creating and
mining ASTs, which can be seen when looking at the examples in the paper by Kovalenko
et al. However, the trees we generated for PHP were more akin to parse trees than ASTs.
The reason for this was that we decided to generate and use a parser based on a prede�ned
ANTLR grammar �le, and this particular parser could only transform code into parse trees.
Since an AST is more compact with its information concentrated to fewer nodes it might
have been bene�cial to utilize ASTs instead of parse trees. The fact that the generated parser
we used created parse trees instead of ASTs was unfortunately not discovered until it was
too late to replace it. If we wanted to use a parser that created and mined ASTs instead we
would have had to implement the parser ourselves. Either from scratch or by modifying an
existing parser. Even though both of these options would have been too time consuming we
did make an e�ort to alter the parse trees slightly once they were created to make themmore
similar to ASTs. This modi�cation led to a small improvement of the results which leads us
to believe that our results can be improved further by fully utilizing ASTs.

6.1.4 Limitations
One limitation of the model is that it is con�ned to its vocabulary when making predictions.
This prevents the model from ever correctly predicting the type annotation of a parameter
whose correct type annotation is not part of the vocabulary. Even though this is expected as
it is di�cult for a model to guess something it has never seen before, it can limit the usability
of the model in certain cases. Particularly when it is used in a project that uses a lot of custom
in-house classes and objects with names unique to that project. If these in-house objects are
commonly used as parameters, the overall accuracy of the model will su�er as the model will
fail to predict the type annotations for these parameters.

Another limitation of the model is that it is only capable of predicting type annotations
for parameters. One could possibly argue and say that it also works for local variables since
path-contexts for these can be extracted similarly to how we extracted path-contexts for the
parameters. However, this would presumably result in a lower accuracy since we believe that
local variables generally have less descriptive names than parameters. Return expressions
on the other hand is something that the model is completely incapable of predicting type
annotations for. Since a return expression might consist of several variables, literals, function
calls, operators etc, we can not simply treat it the same way as a parameter. The fact that one
function or method can have multiple return expressions might also be problematic as these
expressions might look vastly di�erent. We can therefore not see any obvious ways to use this
model to predict type annotations for return expressions.

6.2 Future work
Throughout this thesis we thought of several ways to improve either the performance or the
usability of the model. Unfortunately we did not have time to implement all of them. Instead
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we will leave some of them as future work. Here follows a few of those ideas we had:

Gather more paths by checking how the method or function is invoked. Considering entire �les
when extracting path-contexts did not result in an increase of the accuracy. However, we still
believe that considering other functions ormethods could improve the accuracy of themodel.
A solution that we did not have time to implement and test is to check how the parameter
that is analysed is used in the context of the function or method call that the parameter is
part of. By looking at how a parameter is used in a function or method call, we gather more
context from how it is used.

Use code�seq instead of code�vec. Alon et al. developed another model after their code�vec
model, called code�seq [�]. The code�seq model represents the paths in a path-contexts as a
series of nodes instead of a single entity. This allows paths that share a majority of nodes with
other paths to bemore similar to those path embeddings. The use of thismodel could increase
the accuracy of type inference, and we believe that it would be a good idea to compare how
the code�seq model performs compared to the code�vec model.

Combine the model with a static code analysis tool. Instead of using the model by itself, you
could combine the model with a static code analysis tool. This would strengthen the code
analysis tool when it is unsure on what it should infer, while reducing the probability of the
model inferring the wrong type annotation when the code analysis tool is con�dent in it’s
inference.

Implement the model as a service. Implementing the model as a service would allow devel-
opers to quickly test small snippets of code without having to train a model beforehand. It
would be interesting to see what challenges there are in implementing such a solution.

Handle out of vocabulary type annotations in a better way. For obvious reasons the model is
unable to predict the type annotation for parameters whose correct type annotation is not
part of the vocabulary. However, for these parameters we noticed that the model frequently
predicted type annotations that were similar to the correct annotation. This leads us to
believe that further research could be done to �nd a way to predict these out of vocabulary
type annotations more accurately.

Use a proper AST instead of a parse tree. Since we unfortunately did not use a proper AST,
we could not utilize all the bene�ts of an AST. Alon et al. [�] used ASTs in their solution,
and we believe that higher accuracy can be achieved when utilizing an AST.
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Related Work

Using machine learning to infer data types or to predict properties and attributes within
source code is something that has been done before. In this chapter we will present a couple
of previous attempts at type inference using machine learning.

7.1 Token-Based Code Representation
One approach which have been tried is to take advantage of an aligned corpus of tokens and
data types and use this to teach a deep learning model which types normally correspond to
certain tokens and in certain contexts. This is the approachHellendoorn et al. tookwhen they
created DeepTyper [�], a machine learning tool that provides type suggestions in JavaScript.

The inspiration for this approach comes from the well known part-of-speech tagging
problem where the goal is to assign a part-of-speech tag, such as adjective, adverb or deter-
miner, to every word in a given text corpus. Since source code can be tokenized into a se-
quence of tokens, analogous to how text can be tokenized into a sequence of words, it makes
it possible to treat type inference as a part-of-speech tagging problem. However, instead of
tagging words with a part-of-speech tag, tokens has to be tagged with a data type.

When Hellendoorn et al. created DeepTyper they utilized the similarities between
JavaScript and TypeScript to train their model. Since TypeScript is a strict syntactical super-
set of JavaScript, with the additional support of static typing, they were able to create their
datasets based on source code written in TypeScript. By �rst compiling the TypeScript code
they could obtain a sequence of data types for all the identi�ers in the code. By then removing
all static type annotations they obtained code that resembled JavaScript code. This code was
then tokenized and aligned with the sequence of data types inferred by the compiler in order
to produce the training data. This data, both tokens and data types, was then vectorized and
fed as input to the deep learning model. In their approach they used a bidirectional GRU,
which is a type of recurrent neural network which is proven to work well with sequence data
such as natural language.
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After training and evaluating their model with a dataset consisting of code from ���
TypeScript projects they achieved a top-� accuracy of ��.� % and a top-� accuracy of ��.� %.

Using a token-based code representation is an approach we considered going for before
starting this thesis. However, there are issues whichmakes it infeasible to apply this approach
for type inference in PHP. One such issue is that this approach requires a fully type annotated
dataset to learn from. Not only would the function and method parameters need to be type
annotated but also the local variables as the neural network is unable to di�erentiate between
these. The problem with this is that type annotations for local variables were not supported
in PHP until version �.�. This makes it di�cult to �nd enough training data which makes
use of these type annotations for local variables. The only reason Hellendoorn et al. were
able to use this approach for JavaScript was that they could utilize the similarities between
JavaScript and TypeScript to obtain training data. In a similar way we considered creating
training data from code written in Hack, which in a sense is to PHP what TypeScript is to
JavaScript. However, we were unable to �nd enough code written inHack to be able to create
a su�cient amount of training data.

7.2 Exploiting Natural Language Features
Another approach which has been tried is to take advantage of the natural language features
in source code which normally gets neglected by the traditional type inference algorithms
commonly found in static analyzers. This includes features extracted from comments, func-
tion names and parameter names.

Malik et al. used this approach when they created NL�Type [��], a machine learning tool
to predict type annotations for functions in JavaScript. In their approach they �rst extract
the function name, parameter names, parameter types, return type and comments associated
with the function, parameters and return value. The obtained natural language information
is then �ltered such that prepositions, determiners, punctuation and other uninformative
words and characters are removed. The remaining words are then converted into vectors
using two learnt word embeddings based onWord�vec [��]. One embedding was used for the
words in the comments and another embedding was used for the words in the function name
and parameter names. These vectors are then chained into a sequence, padded or truncated
to a speci�c length and used as input to the neural network, which in their approach was a
bidirectional LSTM-based recurrent neural network.

After training and evaluating their model on a dataset consisting of ���,��� data points,
where each data point represents either a return type or a parameter type, they achieved a
precision of ��.� %, a recall of ��.� % and a F�-score of ��.� %.

This approachwas also used by Boone et al. when they createdDLTPy [�], a tool similar to
NL�Type, but for predicting types in Python instead. In their approach they took advantage
of natural language context in a similar way, but with the exception that they also included
the docstring of the function and a list of the return expressions. The extracted data was then
lemmatized and preprocessed in a similar way to NL�Type before it was vectorized and used
as input to their neural networks. Three di�erent models were implemented, however all
three of them were variations of the LSTM-based recurrent neural network which was used
in the work of Malik et al.

After training and evaluating the models with �ve di�erent datasets they managed to
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achieve a precision of ��.� %, a recall of ��.� % and a F�-score of ��.� % on their best model
and with the best dataset.

By simply looking at these numbers it might seem like an approach that exploits the
natural language features in source code is slightly superior to the approach we explored
in this thesis. However, we can’t really compare the results of these approaches and give a
de�nite answer to which one is better. Since NL�Type and DLTPy performs type inference
in other languages we can not know for sure if their results are generalizable to PHP. They
both also use di�erent methods for evaluation. In the case of DLTPy, for instance, they
achieved their best results using a dataset where all natural language features were present
for all data points. In other words, all their data points were created from functions that had
a comment associated to itself, to its return value and to each parameter. As a matter of fact,
their model performs signi�cantly worse for data that are missing any of these features. We
therefore cannot say whether the approach we explored in this thesis is better or worse than
the approach used by NL�Type or DLTPy.
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Conclusions

This thesis examines if a deep learningmodel based on code�vec can be used for type inference
in PHP. Since the original model used in code�vec was created for predicting method names,
our model had to be modi�ed in order to predict type annotations for parameters. This was
done by adjusting the selection of path-contexts to better suit our purpose. By restricting
the path-context to require a parameter as a start or end token, the model can learn patterns
speci�cally regarding the parameters, instead of looking at path-contexts that have nothing
to do with the parameter.

After training the model with the top ��,��� PHP repositories from github, the model
can predict type annotations with a top-� accuracy of ��.� % and a top-� accuracy of ��.� %.
When comparing these results with the static code analysis tool Psalm, which could infer type
annotations on �.�% of the dataset with an accuracy of ��.�%, the improvement is substantial.
However, since the predictions made by the model are merely guesses, a developer cannot
blindly trust the model in the same way as they can trust Psalm. The general usefulness of
the model therefore greatly depends on how it is used. Several practical applications of the
model were discussed. Everything from implementing it as a web service, to integrating it
into a continuous integration system or using it in a plugin for an IDE.

A dependency on good parameter names also seemed to reveal that the model works as
intended. At the same time it opened up for possibilities to evaluate how good and descriptive
the parameter names in a project are.

Overall, this thesis shows promising results for future usage of machine learning for type
inference. We conclude that the machine learning approach explored in this thesis works as
intended and that it works with great results. However, its usefulness strongly depends on
how the model is used.
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Kan maskininlärning användas för
typinferens?

POPULÄRVETENSKAPLIG SAMMANFATTNING Samuel Klingström, Pontus Olsson

Stöd för typannoteringar i dynamiska programmeringsspråk blir allt vanligare, men
att uppdatera äldre kod med typannoteringar kan vara ett väldigt tidskrävande jobb.
Detta arbete använder maskininlärning för att gissa typer på funktioner och metoder.

Dynamiska programmeringsspråk som t.ex PHP,
Python, och JavaScript har under de senaste åren
börjat stödja typannoteringar likt statiskt typade
programmeringsspråk som t.ex Java och C++.
För tillfället finns det många verktyg som kan
analysera kod för att hitta fel, men för PHP är det
få av verktygen som klarar av att inferera typer.

I vårt examensarbete har vi skapat ett verktyg
som använder maskininlärning för att gissa typer
på parametrar i funktioner och metoder för PHP.
Maskininlärningsmodellen kan, givet en funktion
eller metod, gissa vilka typer som hade passat
varje parameter baserat på hur den används. För
varje parameter rapporterar verktyget sina tre
bästa gissningarna direkt i kodkommentaren, samt
hur säker modellen är på varje gissning. Ett ex-
empel visas figuren där nätverket gissar typen int
för parametern $n.

Genom att ge förslag på typannoteringar till
utvecklare, blir det mycket enklare för utvecklare
att uppdatera kod som inte har typannoteringar.
Att uppdatera gammal kod som saknar typan-
noteringar är en väldigt tidskrävande process, då
utvecklare måste sätta sig in i hur koden fungerar
för att kunna uppdatera koden korrekt. Ett verk-
tyg som detta underlättar processen, och utveck-
lare kan istället spendera mer tid på att skapa ny
funktionalitet.

1 /**

2 * Predictions for $n

3 * 1. int 99.92 %

4 * 2. float 0.07 %

5 * 3. double 0.0 %

6 */

7 function factorial($n) {

8 $factorial = 1;

9 while ($n > 0) {

10 $factorial = $factorial * $n;

11 $n--;

12 }

13 return $factorial;

14 }

För att modellen ska kunna göra gissningar på
kod, måste koden representeras på ett sätt som
modellen förstår. För varje fil som ska användas
läses koden in och omvandlas till ett träd, där
varje nod i trädet representerar en del av struk-
turen hos koden. Utifrån trädet kan sen informa-
tion kring koden fås genom att titta på hur de
olika noderna i trädet är kopplade till varandra.

Efter att modellen tränats med de 10 000 mest
populära PHP-projekten på Github, kunde den
gissa typannoteringar med en korrekthet på 76 %
om den fick en gissning, och 84 % om den fick
tre gissningar. Dessa resultat är betydligt bät-
tre än vad nuvarande statiska kodanalysverktyg
presterar. Att använda maskininlärning för typin-
ferens ser därför ut att vara väldigt lovande.


