
MASTER’S THESIS 2020

Continuous Delivery:
Challenges, Best Practices, and
Important Metrics
Anders Klint, Vilhelm Åkerström

ISSN 1650-2884
LU-CS-EX: 2020-22

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-22

Continuous Delivery: Challenges, Best
Practices, and Important Metrics

Anders Klint, Vilhelm Åkerström

Continuous Delivery: Challenges, Best
Practices, and Important Metrics

Anders Klint
dat15akl@student.lu.se

Vilhelm Åkerström
dat15vak@student.lu.se

June 18, 2020

Master’s thesis work carried out at Robert Bosch AB.

Supervisors: Lars Bendix, lars.bendix@cs.lth.se

Examiner: Elizabeth Bjarnason, elizabet.bjarnason@cs.lth.se

mailto:dat15akl@student.lu.se
mailto:dat15vak@student.lu.se
mailto:lars.bendix@cs.lth.se
mailto:elizabeth.bjarnason@cs.lth.se

Abstract

With the rise of agile methods in the software industry, automating the delivery
process using Continuous Delivery (CD) has become a desirable goal. However,
achieving a healthy CD-pipeline is not an easy task, let alone maintaining one.
This thesis aims to investigate what challenges are related to CD, best practices to
mitigate these, as well as to analyse which metrics could be important in mon-
itoring the performance of a CD-pipeline. In order to answer these questions
a combination of literature studies, interviews with developers, and an imple-
mentation of a proof of concept for displaying potentially useful metrics from
a chosen team’s pipeline was utilised. Additionally, some practitioners were in-
terviewed and surveyed in order to gather their opinion about which of these
metrics were useful for improving a CD-pipeline.

This resulted in a list of challenges and best practices in relation to CD, as
well as a list of metrics considered important when looking to improve the e�-
ciency of a CD-pipeline. These metrics were used to find two major bottlenecks
in a chosen team’s pipeline; one caused by limited licenses to a unit testing tool,
and one caused by generating documentation unnecessarily often. In terms of
challenges the majority of them were related to automation and human or or-
ganisational factors such as a lack of resources or discipline. Some of the impor-
tant best practices were having shared responsibility between developers of the
CD-pipeline, and utilising automation by making sure that it is a priority.

These challenges, best practises, and metrics could assist practitioners or fel-
low researchers in finding potential improvements of CD-pipelines, and the in-
vestigation of the chosen team could serve as an example where these findings
had a positive e�ect by finding bottlenecks of a team’s pipeline.

Keywords: Software Engineering, Continuous delivery, Continuous integration, Process
improvement, Delivery Pipeline Feedback

2

Acknowledgements

We would like to thank our supervisor Lars Bendix for his substantial support and valuable
feedback throughout the thesis. We would also like to thank our supervisors at Bosch, Axel
Franke and Peter Walls, for their engagement and helpful support of our thesis work, and
for facilitating the creation of this thesis. We would also like to thank Marek Pola Loethman
and Erik Stenlund for letting us work with their teams, and Jari Kuusisto for helping us with
implementing the proof of concept. Finally, we’d like to thank Flavius Gruian for providing
us with the LaTeX template used to create this report. The template was altered slightly to
account for the change of the cover photo to one which Anders Klint owns the full rights to.

Distribution of work
The work load was distributed evenly among the authors. Since Vilhelm Åkerström didn’t
have access to a computer connected to the case company’s intranet for the later stages of
the implementation, most of the coding and implementation was done by Anders Klint.
However, Åkerström dedicated this time to further research and planning the writing of this
report. Regarding the report writing, some sections were written cooperatively, and some
divided between the authors. Generally, Åkerström had a focus toward challenges and best
practices, as well as interviews, and Klint had a focus toward the implementation and its
result, as well as the survey and the topic of metric-based feedback.

3

4

Contents

1 Introduction 7
1.1 Problem Statement . 7
1.2 Research questions . 8

2 Background 9
2.1 Theory . 9

2.1.1 Continuous Integration . 9
2.1.2 Continuous Delivery . 11

2.2 Case Company . 13
2.3 The advantages of a fast feedback loop . 14

3 Method 17
3.1 Planned Method . 18

3.1.1 Literature study . 18
3.1.2 Interviews . 19
3.1.3 Deciding which metrics to gather 21
3.1.4 Gathering the Metrics . 22
3.1.5 Evaluating the e�ects of the metric-based feedback 22

3.2 Problems during thesis work . 22
3.2.1 Lack of suitable teams . 22
3.2.2 Working remotely due to covid-19 22
3.2.3 Lack of time to observe the e�ect of metric-based feedback 23

3.3 Changes to the method . 23
3.3.1 Split into interview and implementation 23
3.3.2 Gathering feedback from Developers 23
3.3.3 Survey about what metrics are useful for each role 24

4 Results 25
4.1 Challenges and best practices of CD (RQ1) 25

4.1.1 Literature studies . 25

5

CONTENTS

4.1.2 Interviews . 28
4.1.3 Results for challenges and best practices 30

4.2 Metrics for improving a CD process (RQ2) 32
4.2.1 Literature studies . 33
4.2.2 Interviews . 34
4.2.3 List of metrics used . 35

4.3 Proof-of-concept: implementation and analysis (RQ2) 36
4.3.1 Implementing metrics gathering and visualisation 36
4.3.2 Analysis of the gathered metrics . 38
4.3.3 Metrics for Optimising Lead Time 44

4.4 Feedback from developers (RQ3) . 45
4.4.1 Presentations to the teams . 45
4.4.2 Evaluation survey . 46
4.4.3 Results from interviews and survey 49

4.5 Summary of results . 50
4.5.1 Challenges of CD (RQ1) . 50
4.5.2 Best Practices of CD (RQ1) . 50
4.5.3 Important metrics for improving CD (RQ2) 51
4.5.4 The e�ect of giving developers metric-based feedback (RQ3) 51

5 Discussion & Related Work 53
5.1 Evaluation of method . 53
5.2 Discussion of results . 55

5.2.1 Threats to validity . 55
5.2.2 Generalisation of results . 57
5.2.3 Overall judgement of the results . 58

5.3 Related work . 58
5.3.1 Defining metrics relevant to CD 58
5.3.2 How and why metrics are used in the agile industry 61
5.3.3 Best practices, benefits and challenges of continuous delivery . . . 64
5.3.4 Adopting continuous delivery: problems, causes and solutions . . . 65

5.4 Future work . 66

6 Conclusion 67

References 69

Appendix A First Interview Questions 73

Appendix B Further interview with the E2 team 75

Appendix C Metrics from literature 77

Appendix D Informational document included in the Survey 79

6

Chapter 1

Introduction

Continuous delivery (CD) is an agile software practice used by teams wanting to cut down
on release cycle time, and get faster feedback on their changes [1]. This gives many software
projects an incentive to adopt the practice. However, the ways that this is done can di�er
a lot from project to project depending on the circumstances such as developer experience,
distribution of development resources, and management [2]. This can lead to sub-optimal
results consisting of half-hearted CD pipelines with little maintenance that eventually starts
to slow down development, or it can lead to teams successfully finding ways to work which
helps them the most [3]. In order to succeed with CD there are a lot of processes that need
to work together. Both internally in the team, but also when it comes to managers, product
owners, etc. On top of this if there is little experience in the team when it comes to working
with CD then there is a need to find good information about how to do it well, and what
the challenges along the way are [4]. In this thesis we set out to discover which things are
considered “best practices”, both in terms of research and in the industry that helps teams
to get the most out of working with CD. This will also include finding out what parts of
working with CD present challenges to teams, and how these best practices can help them
overcome these. On top of this we will also look at which metrics of the pipeline can be useful
for developers and practitioners to help them when working with CD. To do this there is a
need to look at what research already exists on the topic, as well as to find how people work
with CD in practice.

The report will start by giving a background on the topic of CD. Then the method will
be discussed followed by the results. Finally a discussion of the results and method as well as
potential future work and the conclusions of the thesis will be presented.

1.1 Problem Statement
With the aim to explore this topic there are two avenues of research. The first being, study-
ing literature on CD to discover what practices, challenges, and important metrics could be

7

1. Introduction

found based on earlier studies. The second being, performing interviews with developers
of di�erent levels of skill when it comes to CD, as well as working in di�erent projects at
a company in order to see how they work with CD and what parts of this work well. This
includes di�erent types of projects, both in terms of scope, work processes, and target plat-
forms. It also involves discussing what challenges they have had working in this way, and
what improvements they would like to make given the time and resources.

Additionally, there is also the question of how to determine if the way a team works with
CD is good or not. For this data is required. Modern tools used for developing software often
have a lot of data available for their users if they can find it. However, practitioners are not
always able to easily access this data, especially if it is scattered among multiple tools. Even
if they are willing to go looking for the data, it can often be hard to parse it since there is
so much of it, and the way the data is presented does not help with understanding it. There
is also the problem of the uncertainty what data is relevant to look at, and the reason for
looking at it can be misguided. Therefore, the second part of this thesis was to test a number
of metrics gathered from a project, that are displayed in a coherent and user friendly way in
order to see how helpful they can be to help developers in optimising their CD pipeline in
terms of lead time and general code quality.

1.2 Research questions
This problem statement leads to research questions regarding what constitutes best practices
for CD, what metrics are relevant for measuring the quality of a CD pipeline, and how these
metrics can help developers optimise their workflow.

• RQ1: What are the challenges and best practices for continuous delivery?

• RQ2: What important indicators and metrics are relevant when looking to improve
the continuous delivery process?

• RQ3: How can these indicators & metrics support developers to optimise for lead time
and code quality?

To study this, multiple methods were used. Apart from the literature studies and in-
terviews mentioned earlier, one additional method was used to help answer the second and
third research questions. This was a proof of concept that collects relevant metrics from var-
ious tools that are part of the CD pipeline in a team, and which also displays this data in
a way that can be easily interpreted by the developers. All of this was to help find ways to
evaluate the approach which di�erent teams take to achieve Continuous Delivery, and help
developers new to the process to avoid common pitfalls. Giving guidelines to what some best
practices are can both help evaluate existing CD processes and be helpful when creating new
ones. The proof of concept could help improve the e�ciency of the team that was used for
the implementation, and potentially be generalisable by giving the developers better feed-
back and clearer goals in a more focused process, in addition to eliminating or decreasing
bottlenecks in the pipeline, which can be done by noting where the developers get stuck in
the development process and trying to minimise this time.

8

Chapter 2

Background

What is Continuous Delivery? Since this concept is still rather new, and not something ev-
eryone is all that familiar with, this question can have a lot of answers. This makes it hard
when trying to discuss the concept. It is also hard to discuss challenges and best practices if
there is no clear definition. Therefore, this chapter will provide context for the thesis, as well
as an overview of the core concepts required to get the most out of this research. The chapter
will give the reader an overview of the context and important definitions that will make the
rest of the thesis much easier to follow. In the context part, the case company where the the-
sis was conducted will be discussed. In terms of core concepts, Continuous Integration (CI)
and Continuous Delivery (CD) will be described, and given definitions that will be useful
going forward. These are central to the research done and have varying definitions, so it is
important to describe what constitutes CI and CD in this thesis. On top of this the concept
of metrics in relation to these concepts will be discussed, and why they are considered useful.

2.1 Theory
For the purpose of preparing the reader for the concepts in this thesis this section will bring
up the fundamental ideas of Continuous Integration and Continuous Delivery, as well as
the definition of them used in this research. This includes describing these concepts, what
problems they help solve, and di�erentiating them, as well as showing how CD is an extension
of CI.

2.1.1 Continuous Integration
In many software projects it is common that the product is in a non-working state for ex-
tended periods of time during the development process. This is mostly the case for software
projects using more traditional development processes such as a waterfall approach to soft-
ware development [1]. When working like this it means that teams seldom integrate code,

9

2. Background

which could mean weeks or even months between each integration. Working in this way
leads, among other things, to a problem called the double maintenance problem, which is
when multiple identical copies of software is kept [5]. Keeping multiple copies of software
means that all these copies needs to be maintained. If for example a bug is found all copies
needs to be fixed. When developing these copies further in di�erent directions they will start
to di�er more and more. There will be di�erent bugs and features in each copy which means
that when these copies are integrated it will require a lot of e�ort to make sure that they work
together. And the longer they have been worked on separately the more they will di�er, and
the more work will be required when integrating them. Traditionally what has been done by
software companies is to avoid this integration for as long as possible, leaving as the final step
of developing software: a "big bang" integration. However, this leads to very long integration
times that can be unpredictable since there is no telling how many errors there will be or
where they will come from. Bugs from many di�erent copies can create headaches for the
people integrating since there is no telling which copy they came from, or if it is a new bug
created when integrating di�erent versions. This can lead to a software project being worked
on for years, and then taking months to integrate where it is not known how long it will take
to finish the integration [6].

An answer to this problem is Continuous integration, a concept that was first introduced
in 1999 in Kent Beck’s book "Extreme Programming Explained", as one of 12 core practices
for working with XP [7]. Out of these 12 CI is one of the more influential practices that
have been widely adopted, along with for example Test driven development (TDD) which
is the practice of creating tests before implementing a new feature or fixing a bug that tests
the behaviour that is desired by the new change. The book also brings up a concept that is
central to the practice of CI [7]:

"If it hurts do it more often."

Continuous integration aims to solve the issue of painful integration by integrating more
often - or actually all the time. The idea is that integrating small changes is often quick and
painless compared to taking weeks or even years’ worth of work and trying to integrate it
all at once. Therefore, integration should happen continuously - the developers work with
a local version of the software and integrate their changes to a version control system as
soon as they are done with them. There are several things that are required for CI to work
in a project. Some of these practices are now common among most software development
companies, such as having a single source repository. For CI to work properly it requires
more than just a single source repository though. It also requires that upon each integration
the entire application is built and tested with a comprehensive suite of automated tests, and
if these tests fail, fixing the issue should be a priority [1]. Additionally, these tests must be
of a reasonable length. If it takes too long to build and test the application, it will lead to
unnecessary wait times or the developers will not run the tests at all. Testing should be done
quickly, ideally within 5-10 minutes [1]. More time consuming tasks like building the entire
application and test that take longer to run can be run for example during the night. What
is considered a working state needs to be defined as well. This is something the whole team
needs to agree of. Usually this is when all the automated tests pass, and the application can
be run in a production like environment, although this can di�er slightly. Ideally tests should
be run in the production environment, but this can sometimes be hard to achieve if certain
hardware is required. CI also requires a high degree of automated tests, to make sure that

10

2.1 Theory

the quality of the software is kept up as new changes are added to it [6]. It is also important
for developers to keep the latest version of the software locally. This means that before they
can commit their changes they have to make sure that they have the latest version, and that
their changes are working with it [7]. It also means that everyone must make sure to commit
their new changes as often as they can, as soon as it is working it should be committed to
the mainline. Working in this way will create a situation where the software is in a constant
working state, which satisfies the goal of Continuous integration as stated by Jez Humble
and David Farley [1]:

"The goal of continuous integration is that the software is in a working state all
the time."

This is the definition of Continuous Integration we will use in the rest of this paper. If a team
can satisfy the requirement of keeping the software they are working with in a continuously
working state using automated builds and tests then they are practising CI. In order to satisfy
this definition the team needs to make sure that the software is working after each new change
has been committed. This requires that the application be built on each committed change
and a comprehensive set of automated tests are run to make sure that it is working.

There are many benefits to CI. Perhaps the biggest one is reduced risk of long integration
processes [6]. Continuously integrating means that there is no process near the end of devel-
opment when it is unclear if the software will be done, or if it is even going to work at all. It
also makes bugs easier to find, since the code is built and runs every day meaning that there
is never an insurmountable amount of new code to search through to discover the source of
the problem.

Although the benefits are evident, they come with a price. The developers need to stay
disciplined in maintaining a comprehensive test suite with suitable test coverage, otherwise
they cannot trust the validity of the tests run on each integration, and thus, not trust that the
software is in a working state. However, according to Humble and Farley, the teams that can
perform continuous integration e�ectively will not only encounter less bugs, but also deliver
software faster [1]. This does require the whole team to be on board, as well as management,
otherwise it can very easily break down if developers choose not to integrate as often as they
should, or management prioritises development of new features over creating tests to make
sure that everything is always working.

2.1.2 Continuous Delivery
Continuous Integration is about continuously integrating software and making sure it runs.
This gets rid of a lot of issues of software development, as mentioned in the previous section.
However, there are still problems with software development when using CI. Humble &
Farley explain that common shortcomings of CI include the following [1]:

• Operators waiting for documentation and fixes.

• Testers waiting for builds of the software that are worth testing.

• Teams receiving bug reports weeks after the context of the implemented code is fresh.

• Discovering late in the development process that the target environment will not sup-
port the implemented system’s requirements.

11

2. Background

These problems create a situation where the software take a long time to get into a production-
like environment and ready for release, and makes it buggy because of long feedback cycles
between developers, testers, and operators.

Continuous Delivery (CD) aim to eliminate these problems by automating the release
process. CD extends CI by not only making sure that the application is always in a working
state, but also that it is in a releasable state at all times. CD is the act of being able to deliver
software at will, i.e. the software should be in a deliverable state at any stage and time in
the development process [1][8]. Martin Fowler summarises the act of doing CD with the
following bullet points [9]:

• The software should deployable throughout its lifecycle.
• The team prioritises keeping the software deployable over working on new

features.
• Anybody can get fast, automated feedback on the production readiness of

their systems any time somebody makes a change to them.
• It is possible to perform push-button deployments of any version of the

software to any environment on demand.

Traditionally, in addition to the shortcomings of CI mentioned at the start, there would
be a certain amount of time before a delivery dedicated to ensuring that the product was
ready, e.g. by performing extensive bug testing, integrating development branches to a re-
lease branch, excluding certain changes not yet ready for delivery, and making sure the soft-
ware runs on di�erent production environments. Teams could take days or even weeks to
test and build the release [1]. Furthermore, after a delivery new bugs could be found which
needed patching, and everything in the build process had to be done again, in the right way
and in the right order. In short, there would be many manual steps in the release process,
making it not only prone the human factor of making mistakes, but also making it very time
consuming and expensive. Additionally, the software would mostly not be tested on a pro-
duction like environment until it was time for release, since building the release and setting
up an environment would be too time consuming. Therefore, any environment specific fail-
ures would not be recorded until it was too late. [1]. This tedious release process would also
naturally tempt the product owners to release less frequently, but since releases often give
valuable customer feedback, frequent releases are desirable.

Thus, to counter these problems, Continuous delivery is used as an extension of Con-
tinuous integration [1] [8]. Again, while CI focuses on automating the development process,
CD focuses on automating the whole process, including the release process. Utilising CD
makes the release process quick and painless, which in turn makes it possible to release more
frequently and therefore get faster feedback from the release. In addition, since the release
process will be run more often, it will lower the risk of failures and that various bugs or envi-
ronment specific configurations might be setup incorrectly [1]. Lianping Chen demonstrates
how making the change to CD in their company had several benefits, including accelerated
time to market, improved productivity and e�ciency, reliable releases, improved product
quality, improved customer satisfaction, and ensuring the right product is built (due to fre-
quent releases which generates rapid feedback from the customers) [10].

In this context, it is important to distinguish between a deployment and a release/delivery.
While the definitions may vary, a common distinction is that deploying is the act of config-
uring and installing the software on a target environment, while a release is the act of making

12

2.2 Case Company

the product available to its entire audience. Due to these similarities, the definition of Con-
tinuous Delivery and Continuous Deployment should not be mixed together. As CD is an
extension of CI, Continuous Deployment is an extension of CD [8] [1], see Figure 2.1. Hum-
ble & Farley cleared this misconception up shortly after publishing their book [1] on CD in
an extended blog post on the o�cial website of the book [11]:

Continuous deployment is the practice of releasing every good build to users -
a more accurate name might have been "continuous release". [...] Implementing
continuous delivery means making sure your software is always production ready
throughout its entire lifecycle - that any build could potentially be released to
users at the touch of a button using a fully automated process in a matter of
seconds or minutes.

In short, the goal of Continuous Delivery is to always be able to release with a push of a
button, while the goal of Continuous Deployment is to automatically release every working
build [8] [1].

Continuous
Deployment

Continuous
Delivery (CD)

Continuous
Integration (CI)

Figure 2.1: Continuous Deployment extends Continuous Delivery,
which in turn extends Continuous Integration.

2.2 Case Company
The research was conducted at an o�ce focused on software development at the company
Robert Bosch AB, situated in Lund. Although Bosch is an old and well-established company,
they are primarily a hardware company, and software is something they started focusing on
in later years. It is also a very large company with around 400 000 employees worldwide,
and about 150 in Lund. The company is known for their diverse range of hardware: Washing
machines, refrigerators, power tools, etc. But they also have a large role as a supplier to the
automotive industry and have a lot of other products, both in terms of hardware and software.
In the Lund o�ce they develop software products mostly related to the automotive industry
and electric bikes (eBike). This takes the form of some embedded development when it comes
to both the automotive and eBike projects, as well as apps for the eBike system.

13

2. Background

The o�ce has several products that they are working on. Each product can have multiple
projects, and each project is split into teams. The teams usually work on di�erent parts of a
project, with varying amounts of overlap between teams. The teams work with the develop-
ment process called Scrum [12]. Each team has a Scrum master and there is regular contact
between scrum masters that are part of the same project, as well as "Scrum of Scrums" for
each product. In each team there are developers that also work with testing and tool main-
tenance, but no set roles other than a technical lead. Each project has other members such
as testers, requirements engineers, and a project lead. Some of these projects are confined
to Bosch Lund, but most interact with other teams at Bosch sites all over the world, and in
some cases have team members at other o�ces. In terms of deliveries, some projects develop
a sub-part of a bigger project and as such do internal releases, while others create products
that are released to actual customers. All the teams aim in some capacity to work with con-
tinuous delivery, and have progressed di�erent amounts when it comes to reaching this goal.
Their goal when it comes to working with CD is to reduce their “time to market” and improve
their code quality. However, this workflow varies from project to project, since each team are
independently hosting and maintaining the CD-tools of their choice, in addition to having
varied experience and time to invest in setting up a CD-pipeline. There are no internal rules
for exactly which tools or processes they must use in each project, so the approach they take
to CD can vary a lot between teams.

2.3 The advantages of a fast feedback loop
An important advantage of using CI/CD is the ability to gain feedback at any stage in the
pipeline. This means that as soon as something goes wrong, the change will be stopped and
cancelled at the current stage in the pipeline, and some sort of feedback will be presented
regarding what went wrong. Figure 2.2 shows a simple CD-pipeline with its feedback loop.
One metric that can be important to look at when it comes to CD is lead time. This is defined
as the time from when a change is first committed to when it is released [1].

Version
Control

CI

Build Unit Test

CD

Validation Deploy
Integration

Test

Feedback loop

Figure 2.2: An overview of a simple CD-pipeline, visualising the
feedback loop. If an error occurs at any stage, the pipeline stops
and gives appropriate feedback.

Once a problem in the pipeline is fixed, the change can go through the pipeline again,
starting at the first stage. This is usually referred to as a feedback cycle [1]. Additionally,

14

2.3 The advantages of a fast feedback loop

it is important to keep this feedback cycle as short as possible. The reason is that with a
shorter feedback cycle, the errors can be caught and dealt with while they are still fresh
in the developer’s head and the context has not changed. Optimally, most faults should be
detected in the automated test suite at the first stage of the pipeline, so that the feedback
can be given quickly. It is therefore important that this test suite does not take too long to
run. Humble & Farley recommend that this process should be shorter than 5 minutes, and in
order to achieve this only the most important tests that capture the most common faults in
the code should be run at this stage, and the other more time consuming or less critical test
should be moved to a later stage [1]. Additionally, they also argue why the fast feedback in
this stage is important for the developer:

Errors are easiest to fix if they are detected early, close to the point where they
were introduced. This is not only because they are fresh in the minds of those
who introduced them to the system, but also because the mechanics of discov-
ering the cause of the error are simpler.

However, as getting feedback from the pipeline is very important, it is equally important
to present the feedback such that the people involved can actively see it. So, the feedback loop
needs to be both short and visible. Additionally, actively presenting feedback and metrics
can have a positive influence on the performance of a project, for example, by motivating the
developers further and giving an increased ability to detect critical faults introduced to the
pipeline [1]. This feedback could, for example, be presented by a big display in the o�ce,
with big and easy to see indicators of various metrics. This method could create fast, visible
feedback that will motivate the developers to achieve the goal of the feedback, i.e. if code
coverage is seen on the screen, the developers would be motivated to write test such that the
code coverage does not decrease over time. Lehtonen et al. demonstrated how a team at their
case company, with the help of a big screen in the o�ce showing the status of the pipeline
jobs, could quickly identify a problem of a release and start working on the hot-fix as soon as
possible. They could also easily monitor the status of the hot-fix once it was in the pipeline.
This resulted in a critical fault in the release being patched within only a few hours [8].

Of course, metrics is not only interesting for the developers, but could also be interesting
for other roles in a team or company, such as operators, testers, product owners etc.

15

2. Background

16

Chapter 3

Method

In this chapter we will discuss the steps involved in the research done for the thesis, divided
into three sections. This includes an overview and motivation of the methods that were used,
such as literature studies and interviews. Section 3.1 discusses the planned methodology at the
outset of the study, Section 3.2 discusses the problems that were encountered in the planned
methodology, and Section 3.3 motivates how these problems were tackled, as well as how the
research was conducted instead to get around these problems. In the beginning of the project
the plan included the following steps:

• Getting an overview of how the teams worked with CD at Bosch in order to find teams
suitable for working with.

• Choosing two teams to study further to discover common problems and useful metrics
for CD in order to help answer RQ1&2. This includes deeper interviews and gathering
metrics from their CD-pipeline.

• Implementing a way to gather metrics about the CD-pipeline in these teams as a proof
of concept.

• Study how displaying these metrics to the developers could potentially help improve
code quality and time to market in order to help answer RQ2&3.

• Concluding and giving feedback about the findings to the teams.

However, this changed somewhat during the process due to several factors that will be dis-
cussed in this chapter. A general overview of the final method can be seen in Figure 3.1.

17

3. Method

Interview all
teams

Literature
study

Finding
potential
metrics

Deciding
which

metrics
to use

Further
interviews

with selected
teams

Implementing
metrics
gatherer

RQ3

Presenting
results for
the teams

Making and
sending out

Survey

RQ1

RQ2

Start

Figure 3.1: An overview of the final workflow throughout the study.

3.1 Planned Method
This section will discuss the overall methodology as planned at the start of the thesis in order
to give an overview of what the original plan was and how it would answer the research
questions.

3.1.1 Literature study
To get a firm understanding of the subject of CD, and to help answer the first two research
questions, a study of some kind was necessary. This could, for example, mean interviewing
developers at di�erent companies who have experience with CD and ask about challenges,
best practices, and what metrics are useful. However, this would require connections to
these people, as well as a lot of time, so while this could be a study on its own, it is not in
the scope of this thesis. Instead it was decided that a literature study would be conducted
at the start of the project. This would allow us to gather a lot of knowledge in a reasonable
amount of time from a lot of di�erent contexts. We prioritised peer reviewed literature, but
sometimes exceptions had to be made, where we in these cases were very critical about the
authors’ claims. Additionally, one other thesis with a similar scope to ours was analysed for
inspiration and comparison.

There were two topics that were focused on when filtering the literature, and which were
related to the research questions. Firstly, there was the topic of challenges and best practices
when it comes to working with CD (RQ1). Secondly there was the question of what metrics
were useful to aid in working with CD (RQ2). This could be both in terms of developer
feedback, as well as metrics that could help find bottlenecks in a CD-pipeline. For this we
used Google Scholar as well as Lund University’s LUB-search. We used a combination of the
keywords "Continuous delivery", "Continuous integration", "metrics", and "software" to find
interesting papers. These were then read in di�erent stages, and sorted out if they seemed

18

3.1 Planned Method

to not be relevant. These stages were: Read the title, then abstract, then introduction and
conclusion, and finally the whole paper. The literature analysed was also discussed between
the authors at two occasions. Initially, when just the abstract had been read, and finally when
the whole paper had been read. There was one source that was not found this way, and it was
the book called "Continuous Delivery: Reliable Software Releases Through Build, Test, and
Deployment Automation" [1] which was recommended from the start by all of our supervisors
and was provided to us by Bosch, since it is the foundational text for CD.

To find data that was relevant in each of the chosen texts both of us read through them
and took out data relevant to the study separately. Then these were compared and discussed
if there were any deviations between the two of us. These data summaries were used when
discussing the results of the literature studies in terms of challenges, best practices, and useful
metrics.

We did not document how many papers we actually found and considered reading, but
as for the ones we actually read further than the abstract there were a total of 20. Not all
these were used, since some turned out to be less interesting than we expected after reading
further.

3.1.2 Interviews
Interviews were used in two steps of the process. First, they were used as quick interviews
when we needed to get an overview of all the projects at Bosch, and establish contact with
members of each project who were knowledgeable about CD. Then they were used again
when doing deeper interviews of selected teams to discover what data could be extracted
from the pipeline, to help assist with answering RQ2.

Orienting interviews at Bosch
To see how the projects worked at Bosch and find teams that could be suitable to study
further, we needed a good way to get an overview. It was decided that in order to achieve these
goals interviews would be conducted with representatives for each project, and sometimes
multiple people in the same project who were knowledgeable about their team’s CD-pipeline.
It was decided to interview each project rather than each team since it would take a lot more
time to do it on a team level, and it was assumed that the teams within a project were working
in a similar way. Interviews were also used instead of for example a survey because it would,
in addition to gathering the data we needed, help us establish contacts with each project and
get a feeling for how willing they were to work with. In finding the right people to interview
we were supported by one of our company supervisors who had contacts in all the projects
and as such could point us to the right people to talk to. He gave us a list of people to contact,
and notified them in an email about us and what we wanted to do.

The interviews were discussion focused and had a number of questions, although addi-
tional questions were asked depending on what information the interviewee shared. They
were performed by having one researcher assigned as interviewer and the other taking notes,
backing up with more questions and discussion when needed. The interview questions used
for this can be found in Appendix A. Each interview took about thirty minutes.

After each interview, the notes taken during them were constructed into a text of about
one page summarising the key information gained from the interviewee. When all interviews

19

3. Method

had been concluded, the notes and summaries were analysed by both researchers, discussed,
and compared in order to find interesting correlations and key points. Thereafter, a summary
of the projects at the o�ce was made, discussing how they worked, problems they encoun-
tered and if there were any metrics that they thought were important for CD in some way.

From the interviews data was gathered about a total of ten teams, which covered all the
projects, and in the case of the two biggest projects in Lund more than one team from the
same project was interviewed. In order to determine which teams were suitable in terms of
how well they worked with CD we gathered some information about their CD-pipeline, such
as which tools they use, what processes they have in place, and how well they feel that they
are working with CD. There is also some other useful information that was gathered from
them such as how easy the teams were to contact, and how willing they were to work with us
that were important factors for picking the teams.

In-depth interviews
After the first round of interviews were done it was time to pick two teams that would be
studied further. There were several factors that were considered when picking the teams.
First there was the scope of the thesis; there was a time and resource limit on how many
teams we could study, and so it was at first decided that two teams would be about what
could be managed. There were a few other factors as well that were gathered from the earlier
interviews such as:

• How willing they were to work with us.

• The availability of a contact person in the team.

• How mature their CD-pipeline was.

• What kind of data was available from their CD-pipeline.

Since there was data about all these factors it was through discussion between us and our
supervisors that it was decided which teams would be studied. Using the four criteria men-
tioned in this section for what we were looking for in potential teams to study further, there
were four teams that were of interest. This was two of the teams that were doing CD, and
two others that were on their way, but not quite there yet. Three of these were teams working
on embedded projects, here referred to as E1, E2, and E3. Then there was one team working
on an app, referred to as A1. E1 and E2 were part of the same project so in order to cover
the most ground we wanted to have teams from di�erent projects. After discussing this at
length, both with our supervisors and between ourselves but it was decided that the best
thing would be to look at di�erent projects since this could give a broader range of problems
and solutions for CD. At first, we considered using the A1 team since their CD-pipeline was
the most mature. A less developed pipeline would already have some obvious improvements
that could be made since research how to build a developed pipeline has already been con-
cluded. Choosing a team with a well-maintained pipeline which does not have any obvious
room for improvement that has already been explored a lot makes for interesting research.
However, there were several problems with choosing this team though. The app team was
hard to reach, had a long process to acquire the necessary access rights, and a lot of the people
who knew the most about the CD-pipeline were not working in Lund. All of this was factors
that made us decide to not use the A1 team.

20

3.1 Planned Method

Sorting out A1 left the E teams. Both E1 and E2 were working very well with CI, and
in the case of E2, were making very good progress towards CD. For this case that meant
that they were automating some parts of the release process such as building and parts of
the test process, but not others like creating release notes. These teams were proven to be
very easy to work with since we from the previous interview with them knew that they were
easily contactable and very interested in our work. E3 did have a somewhat less mature CD-
pipeline but the contact person was very knowledgeable on the topic of CD. At first using E2
and E3 seemed like a good idea, but there was one issue that made us hesitant to use E3. The
person we had contacted in that team were about to leave the company, and since he was the
developer who had the most experience with their CD-pipeline by far it would mean that
we would need to re-establish contact with the team and hope that the next person knew
enough about the pipeline to be helpful for us. This risk was a factor when we decided to
not use E3, as well as the fact that they were using di�erent tools compared to the E1 and E2
teams which would mean a lot of extra work to extract data from two di�erent tools.

Having these issues with the other teams led us to decide that even though they were part
of the same project we would work with E1 and E2.

When the teams had been selected it was time to get further information from them. In
order to keep up contact with the teams, and to get the more in-depth information about
their CD-pipeline that we wanted it was decided to use interviews again. These interviews
were conducted in order to determine what data was available from the teams CD-pipeline,
as well as getting access to the tools of their CD-pipeline so that we could explore them as
well to see what data was possible to gather. The interviews gave us a deeper understanding
of their pipeline, as well as an opportunity to as for access rights in person to ensure that
we would get them as quickly as possible. At this point we also asked the developers if there
was any data that they were currently looking at regularly as indicators, how much they are
currently using metrics as part of their work, and which of the metrics we had found they
would be interested in. The questions used for these interviews can be found in Appendix B.

3.1.3 Deciding which metrics to gather

There had been some previous research on the topics of useful metrics when looking to im-
prove a CD workflow which we could make use of. From literature studies we found useful
sources that were directly discussing metrics useful for CD in some way. Using these, com-
bined with metrics that were recommended from experienced developers at Bosch during
our interviews, a list was created of metrics that were potential candidates to be extracted
from a CD-pipeline that can be found in Appendix C. These were all metrics that could po-
tentially be of use, but it was not certain if they were all available. They had to be metrics
that could currently be extracted from their pipeline, since implementing any new metrics
would mean that a certain amount of time would need to pass before there would be enough
data so that they could be studied, and this was not within the scope of this thesis. The in-
terviews in Section 3.1.2 were used here to filter out the metrics that were unavailable, which
narrowed down the list of metrics that could be extracted. When these had been filtered out
the remaining metrics were all gathered.

21

3. Method

3.1.4 Gathering the Metrics
Once two candidate teams to gather metrics from were selected, and what metrics to priori-
tise had been discussed, it was time to implement a way to gather metrics from their pipelines.
Luckily, the case company had done something similar before for another team, leaving some
infrastructure for us to use. They had through trial and error, in addition to some expertise
and previous knowledge and experience, come up with a solution of gathering metrics from
that team’s pipeline. Thus, we decided to evaluate their solution and explore if we could use
parts of it for our own. This turned out to be true, and we could reuse some of the code to
setup the infrastructure more quickly.

The metrics gathered from this process were later analysed and used as one part in an-
swering RQ2.

3.1.5 Evaluating the effects of the metric-based feed-
back

The metrics gathering process had left us with a lot of data to analyse. Ideally, an interesting
study would be to experiment with showing this data to the teams as a form of feedback
and then keep on monitoring them to see if it would have a positive impact on the health of
their CD-pipeline. However, this was not possible in our case. Why this was the case will be
discussed in Section 3.2.

3.2 Problems during thesis work
Due to several circumstances the planned method was not the same as the final one. This
section will discuss how the problems encountered during the thesis work caused deviation
from the initial plan.

3.2.1 Lack of suitable teams
Out of the ten teams we interviewed there four that were at the outset considered suitable
for further studies because of the type of project that was intended. We looked at E1 and E2,
but E1 was just about to start up a new project and as such they did not have much data or
a fully functional CD-pipeline set up for the new project yet. This meant that only E2 was
suitable for implementing metrics in, and E1 would instead be used to do deeper interviews
with. This meant that some changes had to be made to the method, since the original plan
was to implement metrics in two teams.

3.2.2 Working remotely due to covid-19
During the 12th week of work on the thesis the Bosch o�ce in Lund was closed almost com-
pletely because of precautions taken due to the covid-19 virus. At this point we had decided
which teams to work with further, and had started doing interviews in order to determine

22

3.3 Changes to the method

what data was possible to gather from the team’s pipeline. This meant that all the imple-
mentation of the metrics gatherer, as well as some of the interviews had to be done remotely.
After about three weeks the o�ce started to open up at about 10% capacity again. However,
the major challenge was that after about two weeks of working remotely Bosch needed one
of the laptops that we were using back. This meant that after this point some work that
required the Bosch network could only be performed by one of us at a time.

3.2.3 Lack of time to observe the effect of metric-
based feedback

Due to the fact that the original interviews took longer than expected, and the extra work
transitioning to working at home with just one laptop, we did not have time to observe how
the metrics we had gathered could a�ect the performance of the team. We expected a gradual
change as these metrics were introduced, since the developers needed time to partly get used
to them, and partly fix any problems they might find due to them.

3.3 Changes to the method
While the early stages of the thesis were conducted as planned, the problems discussed in
Section 3.2 did change the methodology of the thesis somewhat. This section will discuss our
changes made to the method to deal with all the problems.

3.3.1 Split into interview and implementation
In order to still gather enough information it was decided that while we would only imple-
ment the proof of concept in E2, we would still do further interviews with E1. E1 were about
to change their pipeline and as such they would be asked what was good about their old
pipeline and where it could be improved. On top of this they were shown the results of the
E2 implementation as well in order to get some additional feedback. In this way we could still
gather data about RQ1 & RQ2 from E1 through interviews, and get some additional feedback
about our results from the E2.

3.3.2 Gathering feedback from Developers
Since there was not enough time for us to monitor the E2’s pipeline after we had given them
feedback about the result, we chose to interview them about the topic instead.

Once the findings from the gathering process were analysed and discussed, we wanted to
see if the target teams could give some valuable feedback on them, as well as sanity check that
everything seemed to be in accordance; if the target team would see some very unexpected
results, we could have a closer look at them and double check if a misunderstanding or bug
in the code could have caused it. This also gave opportunity for discussion with the teams, as
they might have some valuable thoughts about the result we could not think of.

This process was conducted by making a PowerPoint presentation showing the most im-
portant and interesting graphs, as well as some of our conclusions about them. This was done

23

3. Method

in a Skype meeting with some members of the team. Mainly it was our contact person in the
E2, who also was the person responsible for their pipeline, who discussed with us. A few more
team members listened in as well. We showed them a dashboard view of all the metrics, and
asked if this was something which was potentially useful for their team. Additionally, since
the two teams that were chosen were closely connected, we took the opportunity to show
our results to our contact person at the other team as well, since this could help expand our
results somewhat. He was very interested about the results and even agreed that our data
helped him see some issues with the pipeline which could easily be fixed.

The information gathered in this process was used to partly explore RQ3.

3.3.3 Survey about what metrics are useful for each
role

As another counter measure to not having enough time to observe how the metrics-based
feedback a�ected the target team, we needed something short and easy which still could give
some valuable data about the results, in addition to try to still answer parts of RQ3. Thus,
a short survey was constructed. This survey consisted of all the metrics we had gathered
accompanied with a graph displaying their result from the team, as well as a description of
what they were. These metrics including their graphs description as given on the survey sheet
can be found in Appendix D. Following were two simple questions:

• What role do you have in the company? (DevOps, developer, product owner etc.)

• Which of these metrics do you find most interesting for your role, and why?

This survey was sent out via email to personnel at the case company, as well as a description
to why their answers were interesting to us. The estimated time to answer the survey was 10
minutes.

24

Chapter 4

Results

To help answer the research questions we analysed the results of the study in this chapter.
This included presenting the data gathered from the study, then analysing and discussing it,
and finally presenting and motivating the results. This structure was used for each section.
First, our findings from the literature study and deeper interviews will be discussed to answer
our first research question regarding challenges and practices for CD (RQ1). These findings
will also be discussed further in Section 4.2 to help answer our second research questions
regarding relevant metrics for improving the CD process (RQ2), as well as to motivate which
metrics we decided to use for our proof of concept solution. Finally, to help answer our third
research question regarding how the metrics found in the second research question can aid
developers to optimise their CD process (RQ3), the feedback we got from developers on the
proof of concept will be discussed.

4.1 Challenges and best practices of CD (RQ1)
In order to answer RQ1, literature studies and interviews were conducted. However, this
was not the only reason for doing this, as will be discussed in the next section. This section
will present and discuss the results of the literature studies and interviews that are related to
RQ1, which will then be summarised in Section 4.1.3.

4.1.1 Literature studies
Many of the best practises and challenges of CD were presented in Humble & Farley’s book
on CD [1]. This book contained plenty useful information on how to succeed with CD - all
being well argued and motivated for, and backed up by the authors’ expertise and previous
experiences on the subject.

There are some best practices discussed in relation to CI that are also useful for CD, since
CD build on CI. This includes:

25

4. Results

• Test driven development (TDD).

• The importance of automation of tests and builds.

• Checking in regularly and never checking in on a broken build.

• If a broken build is checked in it should be fixed by the person who did it.

• Not to comment out failing tests.

• Keeping builds and test processes quick.

• Having a comprehensive automated test suite.

• Never going home on a broken build.

• Be prepared to revert to previous revision.

• Giving fast feedback to developers.

These were all considered essential practices for CI, and are also mentioned as essential for
CD. There were also some CD specific best practices, such as always deploying into a copy
of the production environment, doing smoke tests on deployment, that the whole team own
the CD pipeline and can make changes to it, and that each change should propagate thought
the CD-pipeline instantly, and if any part of it fails it should stop the pipeline.

When describing some of these practices there is also a discussion of the problems that
can arise if they are not followed. Without a comprehensive and fast test suite for example
there could be issues that get into the code that are not discovered. If the test suite is not fast
it could mean that developers lose a lot of time, start to integrate less often, or start ignoring
the tests. If someone checks in a broken build it should be fixed by the person who did it,
since they have the best chance of fixing it, and no one else should check in since this will
take much longer for it to be fixed since they no longer have a clear run at fixing the issue.
This could lead to the build being broken for a long time, and developers getting used to it
being broken. Not going home on a broken build is important because otherwise it could
mean that it is someone else who will have to fix it the next day, creating tensions and extra
work in the team.

While this book was a great source of information, there was still a need of di�erent
studies on the subject, to get di�erent perspectives on the topic [10][13]. The book was mostly
theoretical, therefore we deemed it important to get some practical information of CD being
implemented at a company.

Chen’s article discussing their success moving to CD in their company proved to help fill
this gap [10]. He discussed some challenges adapting a CD workflow, the biggest of them
being organisational challenges, e.g. gaining access rights or root access to certain resources.
Chen argued that this problem was partly solved once some organisational barriers were
broken. He also discussed about process challenges. An example of a process challenge might
be that a release must be approved by a board before being released, delaying it with days.
Finally, he argued that there is no robust out of the box solution for CD at the time of writing,
and every team/company/project must build their own pipeline. For this, many di�erent
tools might be used, and avoiding vendor lock-ins can be a challenge.

26

4.1 Challenges and best practices of CD (RQ1)

Furthermore, Neely & Stolt described their full journey towards CD in their company,
from eight-week time-boxed Scrum sprints to fully functional CD [13]. Most importantly,
they documented all their challenges and how they were solved during the process. From
this the biggest takeaways are that there are two very important practices when doing CD.
The first is automation, automate as much as possible in the build, test, and delivery. Au-
tomated tests should be "fast, solid, and reliable". The other important factor is diligence
from everyone involved in the development process. This includes making sure everyone is
committed to doing CD, educating developers on CD, making sure to keep the code tested by
writing new tests when writing code, that everyone has a responsibility for the CD-pipeline,
and respecting quality checks and gates when integrating and releasing. There were also some
practices that were considered important, such as frequent commits, feature toggles, and test
planning. Feature toggles is a method of building features behind a toggle so that they can
be turned on or o� at will for specific customers, giving the company more control of the
release features. Test planning is when developers sit down with QA to plan the test that will
be written for stories. According to the authors this can create a fuller understanding of the
automated test suite, which means that most of the manual regression testing is no longer
necessary.

In a master thesis project done at Malmö University the benefits, obstacles, and best
practices of CD were studied through interviews and a literature study [4]. There were three
categories of challenges that were discovered in this study:

• Lack of test automation - Tests that are hard to automate like interface tests, as well
as ambiguous test results and a time consuming testing process.

• Complex environment & technical challenges - Maintenance and configuration of for
example build scripts and other tools.

• Human, Organisational & resource problems - Lack of discipline, motivation, or ex-
perience among developers or management.

There were also five categories for best practices:

• Creating a reliable & repeatable process - Keep the merged code working at all times,
and make the process of releasing easy to repeat.

• Using automation - In order to avoid human error, and to speed up the process, au-
tomation is key.

• Using version control - keep all code in version control, so that every change is easy to
trace.

• Sharing responsibility & build in quality - Use test driven development to build quality
into the code, and make every team member responsible for all code.

• Releasing Frequently - Releasing often will mean that problems will be brought for-
ward early and can then be fixed.

There was also a paper by Laukkanen et al. describing a literature study of challenges,
causes, and solutions when adopting CD [2]. In this study they did a paper review and dis-
cussed problems, causes, and solutions (some of which could be considered best practices)

27

4. Results

when adopting CD. These were deemed relevant to our study as well. This included prob-
lems with integration, such as large commits, testing problems such time-consuming testing,
and problems with hardware and UI testing. It also brought up human and organisational
factors like insu�cient hardware resources, a lack of motivation or discipline, and lack of
experience with CD. Important best practices included: rejecting bad commits, test paral-
lelisation in order to avoid long test times, monitoring the build time to make sure that it
does not get too long, instituting social rules to make sure that developers have discipline,
and training developers on the practices of CD in order to make sure that they understood
why they were doing it and how they could do it best.

In a paper by Leppänen et al. benefits and obstacles of continuous deployment is dis-
cussed [14]. Since continuous deployment builds on continuous delivery it is relevant to look
at what some of these challenges were. They mention manual and non-functional testing,
test duration being too long, having di�erent development and product environments, and
developer trust and confidence as potential challenges that are also relevant to CD.

4.1.2 Interviews
At the outset, the quick interviews were not meant to do more than help us decide which
teams to work with. However, it was quickly discovered that there were some problems at
Bosch when it came to CD that seemed to be present in almost all the teams we interviewed.
Therefore, it was decided to include these in the results, as well as the results from the deeper
interviews.

Quick interviews
Having done the interviews there were important information for making the choice of teams
that we took away from these. Firstly, it was noted how few of the teams were actually fol-
lowing CD as outlined in section 2.1.2. Out of the ten teams that were interviewed, only three
were following (or in one case very close to following) CD. The team that was close to CD
had automated parts of their release process. However, there were some small parts that they
had not felt were worth focusing on at the moment that were done manually. Then there
were five teams that were not currently doing CD, but were doing CI in some capacity by
our definition. Another interesting thing that we took away was that a lot of the projects,
and teams in the same project, were using di�erent tools for example version control and
testing. Each team also had responsibility when it came to what tools they were using, and
were for the most case maintaining it themselves.

While the motivation for doing the quick interviews at the start was not to help answer
the research questions there were still some useful data that came out of them. In particular,
there were some trends that were noticed among the teams regarding common problems
they were having which is of use when answering RQ1. Since we were looking for common
problems of CD it was decided to use the information from these interviews as well. This
gave such a broad range of teams where a lot of them had the same problems. There were
three challenges that were brought up a lot during the interview, these were:

1. The team has to perform manual work which could be automated.

2. The team has non-su�cient test coverage.

28

4.1 Challenges and best practices of CD (RQ1)

3. The code review process takes a long time.

The reason for these issues could vary from team to team, and not all teams have these prob-
lems. The first of these problems was present in all teams. For some teams this was a big
problem, with manual steps that took a lot of time, while for others it was more of an an-
noyance. Many of the teams seem to waste time on a lot of manual work which can be auto-
mated. The reasons vary between having lack of experience in automation, to having limited
resources and time. All teams have at least basic build scripts so building the application is
not a problem. The problem mostly lies in specific time-consuming tasks that have not been
prioritised when it comes to automating tasks.

The second problem was brought up by five of the teams as something they were strug-
gling with. These teams reported that they had lacking test coverage, meaning that they could
not trust their test suite well enough to evaluate their code. How much of a problem this was
di�ered among the teams. Some were doing a fair amount of automated testing, but it was
not a priority in the team so there were falling behind on some of the code. Others had very
few tests at all since it had not been a priority and instead the focus was on creating new fea-
tures. On another note, one of the interviewees who had a lot of experience in CD faced the
problem of a very bare-bones automated test suite in a team they had been assigned to work-
ing with. The team had previously been assigned to work with a legacy system, lacking unit
tests. The interviewee’s response to this issue was: “At this stage it is hard to change things
even if someone was brought in (like a Unit test expert/QA person/Motivational speaker)
since a technical debt has already been built up” It should be noted that test coverage in itself
is not a good metric, since it can provide a false sense of code quality. As an example of this
the same team used to have more automated tests and better test coverage but this turned
out to be unit tests they had imported from a module they did not create. In other words,
useless unit tests had o�set the test coverage score.

As for the third problem this di�ers from team to team as well. Almost all teams agreed
that the way that they get notified about code reviews by email is annoying. Many people
add rules to filter these messages away to another folder, making them harder to notice. In
addition, most teams lack a review policy other than that everyone in the team should be
added as reviewers and that a commit should be looked at by two other developers. This
could mean that code reviews can take a very long time, as seen in a previous study of a team
at Bosch done partly by one of our supervisors that had an average review time of five days.
There were two teams that saw little to no problems with the code reviews. They used two
di�erent systems to solve this problem. These were the E1 and E2 teams. E1 had a system
where the one who wrote the code often sat down together with the reviewer to answer
any questions. This team found out that having the author of the code there solved a lot of
minor issues and sped up the review time considerably. E2 used a di�erent method, where
the commits were integrated after 24 hours if they had passed the automated tests even if
they had not been reviewed by two other developers. They found that this helped increase
productivity while not compromising quality in terms of more bugs or breaking the build
from what they could tell.

There were also one issue that was found in two teams and it was the problem of having
technical barriers to automation, such as a lack of proper hardware in the case of one team,
and issues of automating tests on the custom hardware in the other.

29

4. Results

In-depth interviews

As the E1 team was initiating a new project from scratch, we had through a discussion with
our supervisor decided it would be a good idea to interview this team about their process in
setting up a new CD-pipeline. Particularly interesting was which changes they would make
to this pipeline compared to their last one and why. Thus, two interviews with this team were
conducted. At the time of the first interview, the team had just gotten started implementing
a skeleton for their pipeline, and not much actual work had been done yet. Instead they
had discussed it, and had come up with a rough idea of what they wanted to implement.
Therefore, a few weeks later, another interview was conducted. At this time more of the
infrastructure was implemented and the team could show us some more details about their
implementation and strategy. First, we discussed the positives of the old pipeline. This was
the fact that it was simple so anyone in the team could change or add things as needed.
Everything in the pipeline was also defined as code, including for example Jenkins jobs, so
it was all version controlled and reviewed. Overall E1 was very happy with the old pipeline,
but there were some things that they wanted to improve. The biggest thing was that they
would have liked for there to be "more" of it. This includes adding static code analysis to each
commit, more automated tests (it was a bit too bare bones in the old project he felt, especially
application tests) and quality gates like memory use or time for a function to run. These were
not new problems, as they had been brought up in some sense in the quick interviews. One
important concept that was discussed was that of shared responsibility for the code. This was
very important to the main maintainer of E1’s CD-pipeline. Even though he did most of the
maintenance it was important that everyone understood it and could change it if necessary.

There was also an interview done with E2 which gave a deeper understanding of their
CD-pipeline, such as what tools they were using and why. While the early interview with E2
had shown some of the problem they were having this interview also showed that they were
using some of the best practices that were found during the literature study. This included
using automation tools to build for commit and release, and testing in a production like
environment. They also had a robust automated test suite, and a shared responsibility for
the tools they were using.

4.1.3 Results for challenges and best practices

There were a number of challenges and best practices that were brought up, both in the litera-
ture study and in the interviews. Some of these returned multiple times, both in the literature
and when discussing CD with developers at Bosch. Here the most important takeaways will
be summarised to give an answer to RQ1.

30

4.1 Challenges and best practices of CD (RQ1)

Challenges of CD

Table 4.1: Overview of challenges of CD by source

Source Issues related to automation Issues related to human and organisational factors Issues related to lack of experience Technical challenges
Interviews x x x x
Humble & Farley [1] x x x x
Chen L. [10] x x
Neely & Stolt [13] x x x
Hansson B. [4] x x x x
Laukkanen et al. [2] x x x
Leppänen et al. [14] x x x

In terms of challenges there are a some that are strictly related to CD while others are chal-
lenges for CI as well. There are two challenges which are brought up directly or indirectly in
every paper and interview: Lack of automation, and the problem of not committing fully to
CD. In table 4.1 the sources are summarised based on which challenges they included. The
challenges have been boiled down to four essential categories that all smaller challenges can
be categorised in.

The first challenge, which is brought up over and over as a common problem the teams
were having at Bosch, was that automation was not always prioritised. As previously dis-
cussed, it is essential to automate as much as possible to e�ectively be able to integrate or
deliver continuously. When it comes to automation it should be considered essential for CD,
and that is true for all stages of the pipeline such as testing, building, and delivering.

The other challenge consists of a lot of smaller problems. For example, a challenge could
be developers not having enough knowledge to do CD properly as is described as one of the
early problems in the paper by Neely & Stolt [13]. Or it could be management not wanting
to commit enough resources, which could lead to the first problem again. It could also be
developers not looking at the feedback that they get from the pipeline, ignoring warnings, or
bypassing quality gates.

Then there were some smaller challenges that were not present in every paper or inter-
view, but were still found to be important. For the interviews at Bosch this was the code
review process taking a long time. This meant that integration could take a long time, and
that new changes pile up. There were some teams that had found ways around this, as was
discussed above, but it can be a problem if it is not handled well. Then there are technical
challenges as described by Hansson [4], and by some of the teams at Bosch. Problems with
testing on certain hardware, or doing for example interface testing can slow down the work
of automating tests, or if there is not enough experience in a team it could hinder them from
doing CD altogether. The speed of the automated tests can also be a technical challenge. As
discussed earlier, at commit the test suite take no more than ten minutes to run, preferably
shorter. To keep this down some technical solution might be necessary.

31

4. Results

Best practices of CD

Table 4.2: Overview of best practices of CD by source

Source Committing to doing CD Utilising Automation Shared responsibility of the CD-pipeline Test driven development
Interviews x x x
Humble & Farley [1] x x x x
Chen L. [10] x x
Neely & Stolt [13] x x
Hansson B. [4] x x x x
Laukkanen et al. [2] x x
Leppänen et al. [14] x

A lot of the best practices could help avoid or solve the problems discussed above. In table
4.2 each source and what best practices they recommend can be seen. Overall, making sure
that everyone is on the same page when it comes to wanting to do CD is essential to making
sure that it will work, as discussed in [13][10][4][2]. This is a part of a solution to many
problems, such as lack of automation, and a lack of discipline. There are other important
best practices as well such as keeping and maintaining comprehensive test suite. One way
to do this though test planning was described, and while it has not been brought up in any
other literature that was used it does seem like an interesting concept that could be studied
further. In order to keep everything running smoothly it is important to make sure that
automation is prioritised. Test driven development is seen as a given and essential practice
in order to keep automation up to date by all the sources we looked at, and all the teams
doing CI and CD at Bosch were practising TDD. Having shared responsibility for the CD-
pipeline is also an important practice, since it empowers developers to make changes and fix
problems themselves according to the interviews we had with E1. This is also brought up in
two of the papers [13][4], and in the Continuous delivery book [1]. One more thing that every
source agrees on is to never commit broken code, or remove failing tests. Making sure that
quality gates are respected in order to make sure that the quality of the code stays high is
essential to doing CD well. The importance of fast feedback to developers is also discussed as
an essential practice in the CD book, and is touched on in the papers, but not as an essential
factor. This is also true for always deploying into a copy of the production environment,
and smoke testing deployments. Two ways of helping with cutting down on code reviews
were found during the interviews, and this is not something that is discussed in the articles,
partly because code reviews are not considered an essential practice for CD. However if code
reviews are a part of the CD process, as it is at Bosch, then some ways to help shorten these
could be useful. How well these work could be a potential topic for further study.

4.2 Metrics for improving a CD process (RQ2)
To determine metrics that could be useful for improving the performance of a CD-pipeline a
literature study and multiple interviews were conducted. Doing this was a way of answering
RQ2, which was concerning relevant metrics of improving a CD process. Thereafter, a solu-
tion for gathering and displaying data for these metrics form an industry team was explored.
This backed up the findings regarding RQ2, and later aided in answering RQ3, which was
addressing how the metrics found in RQ2 could support developers to optimise their CD
process. This section will discuss all of these steps in detail.

32

4.2 Metrics for improving a CD process (RQ2)

4.2.1 Literature studies
Although a bit limited, some previous research about useful metrics in the context of CD
had been performed. Following is a summary of information gathered from studying three
di�erent sources: a study by Lehtonen et al. [8], a discussion from Humble & Farley’s book
on CD [1], and finally a systematic literature review performed by Kupiainen et al. [15].

Lehtonen et al. conducted a study where they defined a number of metrics which could be
useful for improving the performance of a CD-pipeline [8]. Their findings were the following:

• Development time: the time taken to develop a new feature.

• Deployment time: the time it takes to deploy a new feature once its implementation
is complete.

• Activation time: the time it takes for a user to activate the new feature after deploy-
ment.

• Oldest done feature: the time a feature has been developed, but not yet deployed to a
production environment.

• Features Per Month: the number of new features released per month.

• Releases Per Month: the number of releases per month.

• Fastest Possible Feature Lead Time: the amount of time a feature spends in the build
and test phase.

The usefulness of these metrics were backed up by both a literature study of various papers
related to the topic, as well as a practical single case study at a company. Therefore, their
validity seemed high enough for us to include them among desirable metrics to monitor.

Humble & Farley suggested the following useful metrics in their book on CD [1]:

• Cycle time.

• Test coverage.

• Amount of duplicated code.

• Cyclomatic complexity.

• A�erent and e�erent coupling.

• Number of warnings.

• Number of defects.

• Number of commits/builds/build failures per day.

• Duration of build, including automated tests.

33

4. Results

The authors argued well and motivated for how these metrics are important in a CD context.
These augmentations and motivations were well in line with optimising a CD workflow.
Additionally, the authors have a vast amount of real-world experience on the topic, and while
this does not mean we should trust them blindly, we should at least consider their claims with
the fact that they are based on experience. The key here is that the motivation for using these
metrics makes sense, therefore we should consider using them.

Kupiainen et al. performed an extensive systematic literature review (SLR) on the topic
of how metrics are used in the industry [15]. This resulted in the following representation of
categories for metrics used in an industrial agile software context:

• Iteration Planning: metrics which helps to choose which tasks to prioritise for the next
iteration.

• Iteration Tracking: metrics used for tracking the status of the selected tasks during an
iteration.

• Motivating and Improving: metrics used for motivating people and improving prac-
tices and performance on a team level.

• Identifying Process Problems: metrics used to spot problems in processes and work-
flows.

• Pre-release Quality: metrics used to assure and evaluate the quality of the software
before it has been released.

• Post-release Quality: metrics used to assure and evaluate the quality of the software
after it has been released.

• Changes in processes or Tools: how applying metrics led to changes in the processes
and tools used.

In their SLR they put high demands on the fact that the literature should contain findings
from actual industry examples with empirical findings, as well as why and how they use them.
Although the scope was not CD, but agile software development in general. However, since
CD requires agile software development, these findings should be at least somewhat useful
in CD.

4.2.2 Interviews
There were some metrics that were recommended to us by experienced developers at Bosch.
This happened during the quick interviews at the start, and during the deeper interviews
following. At this occasion, we didn’t present any of the metrics we found in the literature
study to the developers. These metrics were recommended by them without any directions
from our side, except us asking them if their pipeline currently presented some metrics they
found useful. From the quick interviews we were recommended the following metrics:

• Mean time to restore

• Delivery lead time

34

4.2 Metrics for improving a CD process (RQ2)

• Delivery frequency

• Review Times

• change failure rate

• Which reviews have waited the longest

• Intermittent errors (number of failed builds/number of builds)

And from the deeper interviews there were a few more that were suggested:

• Cyclomatic complexity

• Split errors into environment/compilation errors

• Test pyramid- Where are the errors found in the pipeline

While the importance of these metrics only were opinions from developers experienced in the
field, their experience is not to be taken lightly. Together with the fact that that these people
find these metrics useful, and that for example cyclomatic complexity were found in the
literature as well, must mean that these metrics have at least some significance. While some
of these metrics might be highly personal, some of them might also be very general regarding
the context of personnel involved in the CD-pipeline. For this reason, we put some trust in
these peoples experience in the field and considered these metrics as potentially useful.

4.2.3 List of metrics used
The literature study and interviews resulted in a list of potentially useful metrics which could
be used for improving a CD-pipeline. This list can be found in Appendix C. These metrics
can be regarded as a partial answer to RQ2. However, to separate the potentially important
ones and the actual important ones, we considered it necessary to do further studies. Im-
plementing monitoring of these metrics on E2’s pipeline, followed by evaluating the result,
served as a way to explore the importance of these metrics. If the metrics proved to be im-
portant for this team, it might also be important for other teams. However, as mentioned
in Section 3.1.3, the metrics had to be possible to gather from E2’s pipeline. This meant that
some of the metrics were not usable for this study. This narrowed down the original list to a
total of 11 di�erent metrics, all of which were implemented. There were a number of reasons
that the other metrics were removed, such that they have fixed two week sprint so metrics
like delivery frequency is almost always the same, and that some metrics were not available
such as cyclomatic complexity. Ultimately, metrics related to code quality were either very
hard to implement or unavailable. This resulted in the chosen metrics being solely focused
on lead time and not code quality. Thus, the final list of metrics used were the following:

• Number of commits per day

• Number of successful builds per day

• Number of failed builds per day

• Build on commit time (as well as sub-build time)

35

4. Results

• Intermittent error ratio (number of failed builds / number of builds)

• Review time (uploaded change -> approved code review)

• Merge time (uploaded change -> merged), also known as Development lead time

• Delivery time (merged -> delivered)

• Oldest done feature

• Mean time to restore

• Features Per Month

4.3 Proof-of-concept: implementation and
analysis (RQ2)

When the potentially useful metrics from the literature study and interviews had been es-
tablished, we wanted to implement them on a team to work as a proof of concept on how
use these metrics to improve an existing pipeline. This process along with it’s result will be
discussed in this section.

4.3.1 Implementing metrics gathering and visualisa-
tion

Employees at the case company had performed a pilot study gathering metrics from a team
before. Their idea was simple and straight forward. A limitation was that they did not want to
disturb the performance of the team they were monitoring, either by touching their code base
to implement metrics gathering directly in their software, or by a�ecting the performance of
their CI/CD-pipeline. With this in mind, their implementation had become a simple Python
script which contacted the APIs of the pipeline tools, and gathered metrics over time as a job
in Jenkins. In turn, this script saved its result to a MySQL database, which was connected as
a data source to an open source application called Grafana. Grafana was used to visualise the
data graphically.

Since we had the same limitation regarding a�ecting the performance of the monitored
team (i.e. by not touching their code-base or throttling their pipeline tools), in addition to
a lot of the infrastructure already being set up and ready to be reused, we chose to adopt a
similar approach to theirs. That is why we used their Python script as a starting point. After
extending this script a bit for gathering some of our specified metrics, in addition to getting
it to work with our target team, the visualisation process was yet to be implemented. For
this, we reused the MySQL and Grafana server instance setup by the previous project. Figure
4.1 shows an overview of the gathering process: relevant data from Git, Gerrit and Jenkins
are processed in the local machine and then uploaded to MySQL, which in turn is used by
Grafana to visualise the metrics. As a starting point, a new database was setup in the MySQL
instance. In addition, SQL-scripts to make and populate the tables were created and ready to

36

4.3 Proof-of-concept: implementation and analysis (RQ2)

be reused. Since this was only a small-scale scripting project, there was no need to contem-
plate an advanced optimal structure for the SQL-tables. At this point, there were two types
of structures of data to gather: data on a per-day basis and data on a per-change basis. Thus,
two simple tables were created for each of these data structures. Both these tables mainly
consisted of various timestamps of events happening in Jenkins and Gerrit. The timestamps
were chosen in accordance to extracting the desired metrics. These timestamps were later
synthesised in the SQL-queries to form durational data for the metrics, i.e. the di�erence
between two timestamps gives the duration of a process; e.g. for review time, this would be
the di�erence between the change was uploaded until it was reviewed. Unfortunately, there
was no data to see when a developer started doing a review, but only when they finished the
review by giving the change a score (+2 for accepted). Therefore, the idle time, being the time
between a change was uploaded until someone started to review it, could not be excluded.
This left the review time being the idle time plus the time spent on reviewing.

Once the tables were set up, the Python script was modified to output a text file con-
taining the data for each table. These text files could then easily be loaded into the tables
in MySQL. The reason we used text files instead of directly connection to a MySQL cursor
via Python was because the server machine the MySQL and Grafana instances were running
on had some limitations. Firstly, since the server was not owned by us, and the employees
at the target company were using it frequently for various tasks, we could not install the re-
quired Python version on it to run our script. Secondly, the server did not allow connection
remotely to the MySQL instance on it. Therefore, we had to manually copy the table data to
this server using SCP, and locally populate the tables with it.

Figure 4.1: An overview of the metrics gathering process.

Once the tables were populated, the MySQL database was connected to Grafana, where
each graph was querying the database for specific data, as well as being configured to our
liking. The configuration of the graphs included choosing how the data should be visually
represented, for example as a bar or line graph, or if multiple Y-axis should be used etc.
Grafana proved to be very straight forward and easy to use, and the process of adding a new
graph was simply to make a query to the database and then tinker around with the settings in
the application until the visual representation of the data was, in our eyes, easy to interpret
and gave a good overview.

After this Python-MySQL-Grafana workflow had been set up, it was time to extend the

37

4. Results

functionality by implementing more metrics to be gathered. This was done by extending
the Python script to find and output more data. The script then updated the tables in the
database, and finally configured Grafana to show the new metrics, in our opinion, in a pleas-
ing way. Once all the desired metrics had been implemented, two Cron-jobs were created to
update the database with new data each day. One job running on the server with the MySQL
instance, and one job running the Python script on a machine owned by us. The Cron-job
on our local machine simply ran the Python script and saved the result to files. The job on
the server machine ran the SCP command to copy the results from the Python script, and
then opened a connection to MySQL and updated the tables. This script was run each night
at 2:00 am and gathered the data from the previous day.

Finally, when everything was set up, it was time to analyse and evaluate the results by
looking at the various graphs visualised in Grafana. However, we quickly noticed that we
needed to have a deeper understanding of the Build Time metric, which measured the time
taken for all the Jenkins jobs to run at commit. The reason behind this being that the metric
did not give us enough information; if one of the jobs accumulated in this metric were causing
a bottleneck, we would not be able to track it down to this specific job. To solve this issue,
we created a new table in the MySQL database with each of these jobs and their timestamps
for start and end time as unique elements. In this way, we could create a graph for each job
displaying their duration taken, and had e�ectively split the Build Time metric into smaller
parts.

When everything was set up, and all desired metrics to monitor were implemented we
knew there was no need to monitor the metrics at a daily basis and wait for result, because
all the data needed for the metrics was already there. This meant that we did not have to
wait for results, as they were already available. Instead, we could get metrics from when the
project was first started until today. We decided that gathering metrics 7 months back until
today would su�ce, therefore we gathered data from 2019-10-01 until present (2020-05-01).
A longer time period could introduce variation in the team’s workflow - for example, they
could have changed a few team members or introduced or tried a new workflow strategy. On
the contrary, a too small time period would limit the amount of data that could be found,
and eliminate the chance to see an overall trend in it. We deemed about 7 months was a
su�cient time period for this team. This amount of time would include a good amount of
releases while still being small enough to limit some risk with variations of the team’s process.

At last, we analysed the results by looking at various trends in the graphs in addition to
comparing certain metrics to others to see if there were any correlations. We explain our
findings further in Section 4.3.2 below.

4.3.2 Analysis of the gathered metrics
With the metrics gathering process complete, the graphs and data could finally be analysed.
As recommended by Humble & Farley [1], as well as one of our supervisors at the target
company who had years of experience with this field of work, the best way to find bottleneck
in a CD-pipeline is to first look at the overall cycle time to see which part is throttling. When
we had an overview, we could have closer look at smaller parts. This method would be used
as opposed to having a closer look at all the parts, and thus save a lot of time. With this in
mind, an overview of the E2 team’s pipeline was made, where each step showing its average
time taken, or for the case of Nightly builds and Release, estimated time taken (see Figure

38

4.3 Proof-of-concept: implementation and analysis (RQ2)

4.2).
The reason Nightly build time was only estimated was that the team did not report any

problem with nightly builds running too long, and the time spent gathering data from all
nightly builds in order to get an average was not worth it. After all, since they are run in
the night when no one is working, if they are completed until morning there is no need
to optimise them for e�ciency. Instead, a few nightly builds were manually looked at to
estimate an average.

The reason behind the release time being estimated was that it was partly a manual pro-
cess with the manual release note creation as a bottleneck, so the information about how long
this took was taken from the interviews with the team.

However, the time a change spends in Gerrit (mainly deduced by time it takes to code
review), as well as the time a change spends being built in Jenkins are actual averages of the
data gathered.

Developers Code-review

Gerrit

Jenkins

gcc linux
green-

hill

Doxygen + MISRA Compliance +
Opengades

Vectorcast
tests

Manual
release

note
creation

Git

Ta
g

an
d

bu
ild

 o
n

re
le

as
e

Avg. 36 h

Avg. 50 min

~2-3 h~3 h

Nightly
builds

Release
9 days

etc...

Figure 4.2: An overview of the pipeline of the E2 team, including
duration taken for each stage.

Now, having an overview of how much time each stage in the pipeline takes on average, it
was time to find a bottleneck. We began looking at the stages taking the longest time. First,
since this team are doing Continuous Delivery and not Continuous Deployment, delivering
once every fortnight, the average release time of 9 days should not be optimised. Simply
because the team nor their customers want to release more frequently. Following in longest
duration taken is the time spent in Gerrit. This is the time between a change being uploaded
until being merged to master, thus including the review time. There are three requirements
for merging a change to master:

1. The build must be successful.

2. It must have been given a +2 in code review.

3. Someone must press the "merge" button once the previous two requirements are ful-
filled.

The graph in Figure 4.3 shows the average time taken between a change was uploaded until
given +2 in Gerrit, in this case 1.369 days, or 33.504 hours. The graph in Figure 4.4 shows the
review time in addition to how long it took for it to be merged, in this case 1.499 days, or
35.976 hours (idle time included). Since a change cannot be merged until it has been given +2

39

4. Results

in Gerrit and the build has passed, the average time of both processes should be subtracted
to the merge time of 35.967 hours. This in order to find out how long it takes for the change
to be merged once it can be merged. With an average build time of 50 min, and a review time
of 33.504 hours, this leaves us with an e�ective merge time of 35.967 hours - 33.504 hours - 50
min = 1.629 hours. In other words, it takes on average 1.629 hours for a change to be merged
once it can be merged. However, coming this far, is this something worth to optimise? It
could be very possible that this average is greatly a�ected by the idle time a developer stays
at home, e.g. imagine the scenario where developer A uploads a new change. After passing the
build process, developer B reviews their code and gives it a +2. However, this might be at the
end of the day and developer A might already have gone home for the day. This means that
developer A will not merge the change until the next day, causing the e�ective merge time to
take hours. These instances are very likely to happen since the personnel at the case company
has flexible working hours, and might therefore have a big e�ect on the average value of the
e�ective merge time. Furthermore, one could argue that there is little room for improvement
for the average merge time being 35.967 hours. This time is both skewed by developers not
actually being at work, and longer lasting holidays and weekends. Additionally, when asked
about it the target team agreed that they did not have any problems with changes taking too
long to review and merge.

Figure 4.3: A graph showing the time taken from a change was up-
loaded in Gerrit until it was approved in a review.

As mentioned previously, optimising the nightly build would not be necessary either,
since they all ran in the night and it did not a�ect the e�ciency of the pipeline. Furthermore,
the release time was mostly manual, and the team did not have any interest in automating it
at the moment.

This left the built time of 50 min to be optimised. As remembered from the literature
study, Humble & Farley recommend a build time lower than 5 minutes [1]. This is because it
is important for the developers to get feedback as soon as possible, which was argued for in
Section 2.3. Looking at Figure 4.5, a clear correlation between failed builds and an increased
number of patch sets could be seen. We argue that this might mean that when a build fails, the
developer uploads a new patch set, and with more failures, more patch sets will be uploaded.
This would cause a developer to have to wait for each build to complete before they know if
their new patch set will pass the build process or not. In some cases, it could take multiple
failed patch sets until the fault was fixed. Additionally, having an average build success ratio

40

4.3 Proof-of-concept: implementation and analysis (RQ2)

Figure 4.4: A graph showing the time taken from a change was up-
loaded in Gerrit until it was merged to master.

of 60% (see Figure 4.6), mean that the build fails 40% of the time. Of course, it might also be
the other way around, i.e. more patch sets cause load on the building process which causes it
to fail. We were open for discussion about this topic and decided to ask the E2 team if this is
something they have noticed developers doing. Details and conclusions about this meeting
will be discussed in Section 4.4.1.

Figure 4.5: A graph comparing the build fail ratio (left Y-axis) with
the amount of patch sets per day (right Y-axis).

To optimise the build time, we decided to sort the sub jobs of the build in terms of
total time taken. The reason for this would be that the builds with the longest total time,
would have the biggest e�ect on the average time taken, since they either are run often or
take a long time to run, or both. Figure 4.7 shows a graph highlighting the two sub-builds
which had the longest total time; Opengades and Vectorcast. Opengades is used to generate
documentation, and Vectorcast is used to run unit tests. Looking closer at these two sub
builds, the issue with them were not apparent. We therefore decided to discuss this with the
E2 team while presenting the data to them. This is discussed further in Section 4.4.1.

41

4. Results

Figure 4.6: A graph showing how long it took to run the on commit
build process for each change.

We chose to limit ourselves to two sub builds due to time limitations, both from our side
and the team’s. If we wanted to analyse more sub builds, we would have to either go deep
in their toolchain and do some time-consuming detective work, or interview the team about
them. Since we could not bother the team too much, as they had a lot of work to do and
deadline to meet, we chose to limit the study to two sub-builds.

Figure 4.7: A Graph highlighting the two sub-build with the high-
est amount of total time taken. The table shown is sorted on total
amount of time taken.

Another interesting find was a correlation between the number of patch sets per day and
build time. As seen in Figure 4.8, which plots the amount of patch sets per day against the
average build time, there is a correlation where the average build time increases with the
number of patch sets. This means that the build times increase with more load to the system.
This possibly mean that there is an idle time in the process where a job waits for access to

42

4.3 Proof-of-concept: implementation and analysis (RQ2)

a resource. Again, this is something we deemed necessary to discuss with the team. The
conclusions from this discussion will be explored in Section 4.4.1.

Figure 4.8: A graph showing the correlation between build on com-
mit times, patch sets per day, and amount of new changes uploaded
per day.

Outliers in graphs
There are two graphs with some clear outliers in them; Review time (Figure 4.3) and Build
time (Figure 4.6). As for Review time, it is not always apparent what these outliers could be.
Some of them might be caused by developers uploading unfinished changes to later continue
work on them, while others might be caused by national holidays. Other possible reasons
could be caused by the team having a high workload, and some of them might just be general
outliers. However, there are two cases where we know that most of the or all the employees at
the case company are having holiday. The first occurrence is around Christmas - we can see
that barely any changes have been uploaded around the end of December, in addition to a big
spike in review time for the ones that very uploaded right before people went on vacation.
Another known holiday is around Easter, where many employees utilises their vacation days
in addition to the already work free days. Thus, the same spike around Christmas can be seen
around Easter (in the beginning of April), but smaller. As for the other outliers, there is not
enough data for us to draw any conclusion.

However, it is apparent that from the beginning of April and onward, there are a lot
more spikes in review time compared with before. One explanation is that the developers
started working from home in March in accordance to preventing the spread of the Covid-19
virus. Working from home might have limited their communication capabilities, since they
no longer worked at the same o�ce and had to communicate digitally. This in turn can make
it harder for them to make their colleagues notice when they want their code reviewed. While
working at the o�ce, they were seated closely together, and it is possible they could, for ex-
ample, just nag a bit on the developer sitting next to them to review their code. Working
remotely like this naturally becomes a bit harder, unless they have a tin can telephone con-
nected to their friendly neighbourhood developer, which is quite unlikely considering the
outdated technology. However, when we confronted the team about this, they said that they
had recently hired 6 new consultants as developers. This meant that the prolonged review

43

4. Results

times was because these new employees had yet to get acquainted with their code-base and
coding style.

The other graph showing outliers, Build time (Figure 4.6), may have a more apparent
reason as of why. Most of these outliers can be cross references to Figure 4.7, showing the two
most critical sub-builds. However, these sub-builds do not take nearly enough time to justify
the big 5h+ spikes of the Build time. This is an indication that there are more bottlenecks
in the building process, and more sub-builds must be analysed to find them. Unfortunately,
analysing this further would take some time as we would need to discuss more sub-builds with
the E2 team, since we do not have enough information to draw any conclusions about them,
and there simply was not enough time for more interviews to be made. Another possibility
may be unrecorded idle time. Though, this is unlikely since we use timestamps to record the
build and sub-build times, so the idle time would be included in the duration between two
timestamps.

4.3.3 Metrics for Optimising Lead Time
To answer RQ2, the metrics to be regarded as important as of our study on the teams would
arguably be the metrics used for finding and recording the bottlenecks. First, all the metrics
used for narrowing the point of optimisation of the pipeline down to the Build time should be
regarded as useful. These were the metrics which gave an overview of all stages of the pipeline,
and helped us understand which of these stages needed optimisation the most. Simply put,
they are useful because they helped us find the bottlenecks. These metrics would therefore be
the ones covered by Development lead time and Deployment time. Additionally, Sub-build
time should also be regarded as important, as it was used to find bottlenecks in the Build
time. This left us with the following list of important metrics gathered from the practical
part of the study:

• Development lead time

– Duration of build, including automated tests

– Sub-build time

– Review time

• Deployment time

– Nightly build time

– Release time

To strengthen this result, these metrics can be correlated to a study by Kupiainen et al.
[15] discussed in Section 4.2.1, where they explored which metrics are actually used in the
industry by doing a systematic literature review, resulting in a seven categories of metrics
actually used in the industry. Among these categories, one of the categories is related to the
above metrics, being:

• Identifying Process Problems: metrics used to spot problems in processes and work-
flows.

44

4.4 Feedback from developers (RQ3)

All the metrics above should belong to the Identifying Process Problems category, as they
can be used to spot problems in processes wan workflows, e.g. if the Duration of build or
Nightly build time metrics are too high, there is a problem with the building process, and if
the Release time is too high, there is a problem in the delivery process.

Finally, to answer RQ2, these metrics above proved to be relevant in improving a CD
process by our case study. The metrics gathered from the literature study, shown in Appendix
C, may also be relevant in improving a CD process.

On another note, how the metrics gathered in the metrics gathering process were used in
aid of answering RQ3 will be discussed in Section 4.4.

4.4 Feedback from developers (RQ3)
When the metrics had been gathered and analysed it was originally planned to show the E2
team the gathered metrics, and use them to give the team feedback from the CD-pipeline.
Thereafter, how this metric-based feedback a�ected them would be observed. This would
aid in answering RQ3, regarding how the metrics found in RQ2 can support developers to
optimise a CD process. However, due to time limitations this was not possible. Instead, a
presentation of the findings held for the team, as well as a survey was conducted to record
opinions about usefulness of the metrics. Additionally, these interviews gave some further
insight of the sub-build bottlenecks, which were relevant to answer RQ2.

4.4.1 Presentations to the teams
As mentioned in Section 3.3.2, the results and conclusions from the metrics gathered from
the E2 team was presented at two occasions. Firstly, to the E2 team themselves, and secondly
to the E1 team closely connected to the E2 team.

At the presentation with the E2 team, we proposed the idea that their build time might
need to be optimised. We motivated this with the following two reasons, previously argued
for in Section 4.3.2:

1. Increased patch sets cause higher build failure (or the other way around).

2. The average build on commit time of 50 minutes is too long.

Regarding the first reason, the spokesperson (who also is the main maintainer of their
CD-pipeline) agreed that there is a correlation that build failures causes more patch sets.
After all, this is very logical since a build failure indicates that something has gone wrong,
and a way to fix this is to patch the code by uploading a new patch set and build again. He
also agreed that it is pretty common that developers have had failing build which had caused
them to upload new patch sets over and over again until it was fixed, each time waiting for
the build to finish. He agreed that a lower average build time was desirable when we backed
this claim up with the second argument.

Now agreeing that the build time should be optimised, we gave the team a closer look
at the build process by showing the two sub builds (Jenkins jobs) which had run for the
longest total time. One of them was a job generating documentation with Opengades. The
other one was a unit test job, running test with the Vectorcast software. Unfortunately, there

45

4. Results

was not much discussion about the Opengades job, so no valuable information was gained
regarding it. However, the Vectorcast job was discussed thoroughly. It turned out that they
only had one licence for the Vectorcast software, which resulted in only one job at a time
being able to use it. This caused a bottleneck where jobs were constantly in queue waiting
to get access to the resource, which in turn naturally increased the average time for this job.
The job itself did not take too much time to run, it was the waiting process which increased
its duration significantly. It is important to remember that we did not record the time taken
for a process in our metric gathering process, but instead recorded the timestamps from
between a job was initialised until it was done, in other words the duration of the job. With
this technique, we also recorded the idle time of the job, i.e. the time it had to wait until
it was ready for processing. If we had used this method, we would never have noticed the
bottleneck caused by this Vectorcast job having to wait in "queue". Therefore, it seems like
recording the whole duration was a fruitful decision. Otherwise there would be gaps in the
pipeline with unrecorded data. Nevertheless, the spokesperson from the team admitted he
was aware of this limitation, but he did not know it had this big of an impact as shown by
our results. Therefore, he said he would be considering a proposal to get more licenses for
the Vectorcast product.

The shorter version of the presentation was also given at a later occasion to our contact
person in the E1 team (who was responsible for his team’s pipeline). He reacted to the Open-
gades build, which had barely been discussed at the presentation for the E2 team, and said
he was surprised it took so much time to run. When thinking further about the issue, he
exclaimed that he could not think of a reason why it would be necessary to generate this doc-
umentation with Opengades on each build. Instead, it would probably su�ce to do it on the
nightly builds instead, as it was highly unlikely somebody would require the documentation
the same day it had been implemented.

4.4.2 Evaluation survey
While interviewing the teams was a good way to get quick and valuable feedback, we still had
a lot of gathered data and graphs of which we had not gotten any feedback on. The Survey we
sent out had the goal to fill these gaps. However, getting answers from the developers seemed
troublesome. We had initially only sent the Survey out to a more specific range of people,
estimated to be around 20, but after more than two week we had only gotten 4 replies. We
thought that our explanation of the Survey which was sent in the initial email might be a
bit too much to read. Therefore, we rearranged it to be a lot more concise and not get too
much into details. Additionally, we thought the developers might be too busy to answer, and
they might think this Survey would take a long time to answer. To counter this, we simply
included in the explanatory email that the survey would only take about 5 to 10 minutes.
Furthermore, this time the survey was sent to the whole o�ce in Lund.

As a result, an additional 4 answers were given. However, these answers ranged a bit in
quality, as two of the recipients had misunderstood the context of the survey. They answered
in the context of general software development improvement, instead of metrics to improve
a CD-workflow. This misunderstanding was caused be the vague description given in the
survey this time. While the description in the first send-out had seemed to be too detailed,
this description seemed to have too few details making the recipients confused.

While these 8 answers may seem somewhat unsatisfactory, it is important to mention

46

4.4 Feedback from developers (RQ3)

that there is a big limitation of people who understand the topic of CD well enough to give
answers. It is highly possible that a lot of people did not answer because it was not in their skill
set, and they felt like they could not give any useful answer. Nevertheless, some interesting
opinions were given to us through the survey. Which metrics were useful for each role will
be summarised on a per person and role basis. Each unique answer is marked with their role
and a counting number if there are more than one. The following results show their answer
to which metrics they find most useful for their role, including a motivation (in most cases):

DevOps 1:

• Build on commit time: in order to optimise for build and test time, and to find out if
di�erent stages need optimisation.

• Review time: to ensure developers does not get stalled too much.

• Build success ratio per day: may hint that more testing should be done on the client
side.

DevOps 2:

• Development lead time (time between the first patch set was uploaded until it was
merged): to give an overview; if this time is good enough there is no need for optimi-
sation, otherwise bottleneck should be presented by ore more metrics we presented.

• Deployment time (time between a change was merged until it was released): same as
above.

Scrum Master:

• Wants to see trends overall, e.g. if the review time increases day by day, they want to
find the root cause of this.

Group Manager:

• Same as the Scrum master, wants to see trends.

Software Architect:

• Build success ratio per day

• Build on commit time (including automated tests, with filtered outliers)

• Review time

• Development lead time

• Deployment time

• Features per week

• Feedback of recent review e�ciency

The Software Architect above unfortunately did not motivate their answer further than to
say that they found the listed metrics useful.

Team Leader:

47

4. Results

• New changes per day (Number of patch set 1 uploaded per day): important.

• Patch sets per day: important, but not as important as new changes per day.

• Failed builds per day: indicates Jenkins trouble.

• Build success ratio per day: same as above.

• Build on commit time (including automated tests): very useful, indicates equipment
suitability.

• Review time (time between the first patch set was uploaded until given +2 in Gerrit):
useful, indicates team internal communication and spirit.

• Features Per Month (a completed feature = a change that has been merged): important.

• Feedback of recent review e�ciency: Yes, useful. An alarm should be set for 24h.

Developer:

• Build on commit time (including automated tests): although arguing that if this time
takes more than 30 min they tend to work on other issues instead.

Architect and Team Leader:

• Build success ratio per day: if this is low the developers needs better feedback loop in
the local development environment.

• Build on commit time (including automated tests, with filtered outliers): E�ciency of
the CI feedback loop.

• Review time (time between the first patch set was uploaded until given +2 in Gerrit):
Review e�ciency.

• Deployment time (time between a change was merged until it was released): E�ciency
of the “customer” feedback loop.

• Average time to restore (time it takes from when a once successful build fails until it is
successful again): How easy it is to understand and correct the given CI feedback. (Do
you need to read long log files etc.).

• Development lead time (time between the first patch set was uploaded until it was
merged): Interesting, but more information would be necessary since there might be
many causes of a long development lead time.

• Oldest done feature (the feature which have been done the longest amount of time but
not yet included in a release): Same as for Development lead time, as there might be
many reasons of why a change has been uploaded.

48

4.4 Feedback from developers (RQ3)

With this data, it is unfortunately hard to draw any hard conclusions. However, the data
is still enough to open up for discussion.

Overall, it seems like Build on commit time is an interesting metric for most roles, being
directly present in 5 answers. This is followed by Review time and Build success ratio per
day; both being directly mentioned in 4 answers. The reason of the popularity of the Build on
commit time, might be that it has an a�ecting presence in most roles. Developers are directly
a�ected since they must wait for the build to complete to get feedback, and Operators are
a�ected since they may use it to monitor the health and status of the pipeline. Likewise,
Review time is also noticeable for the Developers since they are directly involved in the review
process - faster feedback is of course desirable for them because they can then get done with
their feature quicker and move on. Additionally, this is an interesting metrics for Operators
and Architects, since it plays a big part in the cycle time, i.e. the general e�ciency of the
pipeline. Furthermore, build success ratio per day might also be deemed useful due to the
same reason as Build on Commit Time; more failing builds will mean more waiting for the
Developers, in addition to a less e�ective pipeline.

Furthermore, both Deployment time and Development lead time is regarded as impor-
tant in 3 answers, present in both Architect roles and by one of the DevOps roles. Although
there was not much argumentation why the metrics were interesting in most roles, one De-
vOps role claimed that these metrics can be used to get an overview of the status of the
pipeline. This DevOps person gave the motivation that if deployment and development lead
times are good enough there is no need to optimise the pipeline.

Additional useful information gathered from the survey might be some responses to the
Feedback of review e�ciency metric. Specifically, the Team Leader, who suggested that an
alarm would go of if something has not been review within 24 hours. This might be a viable
policy which can be used to decrease long review times.

Conclusively, these finding can once again be strengthened by the study about which met-
rics are being used in agile teams in the industry, performed by Kupiainen et al. [15]. Already
discussed in Section 4.3.3, the metrics related to Development lead time and Deployment
time, being Duration of Build, Sub-build time, Review time, and Nightly build time, could
all be related to the Identifying Process Problems category find in the study. Additionally,
the Build success ratio metric found useful by some in the survey, can also be placed in this
category, since it could be used to identify process problems; if the ratio is low, many builds
are failing, therefore there might be a problem with the building process. Furthermore, the
Feedback of review e�ciency metric can be placed in the Motivating and Improving category,
since it might be used to motivate developers to keep the review time low.

4.4.3 Results from interviews and survey
While RQ3 could not be answered explicitly, the interviews and survey gave some insight
into it. The interviews suggested that the Build time and Sub-build time metrics were useful
to the E2 team, since these metrics actually made the team aware of the degree their limited
license for Vectorcast throttled the pipeline, as well as making them aware of how much time
the generation of documentation with Opengades accounted for. This might cause them to
get more licenses for Vectorcast, and reconsider to move the Opengades job to a later stage
in the pipeline (maybe in the nightly builds). To summarise, these metrics supported the
developers in optimising their pipeline by opening their eyes to how big of an e�ect the

49

4. Results

limited license of Vectorcast and documentation generation with Opengades had on their
Build time.

Additionally, the survey also gave some insight about what metrics are important. Al-
though the answers were limited, they were still valuable since they came from people with
knowledge and experience about CD (as an assumption, since many of the roles were con-
nected to CD, and all teams in the case company are working, or at least trying to work with
CD). The survey showed that metrics like Build time, Review time and Build success ratio
were important in their context. To summarise, these metrics were regarded by a few em-
ployees related to CD to optimise for lead time and code quality. Additionally, the survey
also yielded that using the Review time metric to give feedback to the developers (the metric
called Feedback on review e�ciency in the survey), was desirable.

4.5 Summary of results
This section summarises our most important findings, as well as answers to the research
questions.

4.5.1 Challenges of CD (RQ1)
To summarise, the following can be considered challenges of CD:

1. Issues related to automation - This can be a lack of automation in any sector like test,
build or release, or it could be technical issues when for example automating certain
tests. Included here is also the problem of having automated tasks that run too slow,
and as such lose their meaning.

2. Issues related to human and organisational factors - This is some part of the organisa-
tion not committing to doing CD, this could be developers not following the correct
guidelines or management prioritising work on new functionality rather than main-
taining a good CD pipeline. It can also lead to other problems like a lack of automation.
Included here is also the issue of long review times that was found at Bosch, but is of
course a problem that can only come up if the organisation is doing code reviews.

3. Lack of experience - This is related to the second issue, but deserves a mention since it
can be crucial. Not having enough experience means that developers might not know
why they are doing the things they are doing, and without meaning it is easy to start
ignoring important tasks.

4. Technical challenges - This was found in two interviews, as well as in the paper by
Hansson [4]. It can be problems with setting up automation in a complicated environ-
ment, or hardware limitations.

4.5.2 Best Practices of CD (RQ1)
To summarise, the following can be considered best practices of CD:

50

4.5 Summary of results

1. Committing to doing CD - Having a commitment from everyone involved in the devel-
opment process is crucial to making sure that practices that are used will be followed,
such as not checking in a broken build or not removing out failing tests.

2. Utilising Automation - Automation is key to CD, having manual processes introduce
human errors, and take a lot of time. This is something that every source agrees on, as
well as everyone that was interviewed.

3. Shared responsibility of the CD-pipeline - Sharing responsibility will make sure that
everyone is on broad with CD, and that there is a constant exchange of knowledge
between developers. This also includes having social rules to make sure that everyone
agrees on what is expected of them.

4. Test driven development - Working with TDD makes sure that new code is always
tested, and is a good way to make sure that the necessary automation of testing is
done.

4.5.3 Important metrics for improving CD (RQ2)
A list of potentially useful metrics derived from literature is presented in Appendix C.

Out of these metrics, the ones related to lead time were explored in a proof-of-concept,
which proved the following metrics in the categories of Development lead time and Deploy-
ment time to be important for this study:

• Development lead time

– Duration of build, including automated tests

– Sub-build time

– Review time

• Deployment time

– Nightly build time

– Release time

4.5.4 The effect of giving developers metric-based
feedback (RQ3)

Unfortunately, the e�ect of giving developers metric-based real time feedback couldn’t be
fully explored due to time limitations. However, a few interviews and a survey gave some
insight to this which noted the following metrics as important:

• Build on commit time

• Build success ratio per day

• Review time

51

4. Results

• Deployment time

• Development lead time

• Feedback of review e�ciency

Additionally, by exposing the monitored team to our findings in the proof-of-concept,
they became aware of tasks in their build on commit process which took longer to run than
they were aware of, and which was also bottle-necking their pipeline. One of these tasks was
a bottleneck since it had too few licenses and couldn’t be parallelised due to this, and the
other task was a documentation job which could be run more seldom.

52

Chapter 5

Discussion & Related Work

In this chapter we will discuss our method, what worked well and what did not, and why. We
will also discuss our results, and compare this study to related work. Then we will discuss
the potential for future work that has come out of the research done in this thesis. This is to
evaluate the thesis method and result, and point out potential weaknesses in order to learn
from the mistakes made. We will also help put the thesis in context to relevant work.

5.1 Evaluation of method
To evaluate how we worked in this thesis, this section will discuss which parts of the thesis
work went well, which did not, and why. It will also give some further discussion on why we
made the changes to the method that we did, and possible alternate solutions.

At the outset of the thesis the plan was clear, and there where good reasons for each step
we were going to take. However, there were some problems early on that could have been
mitigated somewhat. Doing interviews with each project for example took more time than
anticipated. The reason behind this was mostly because of getting in contact with all the
correct people and booking all of them at times that worked for the interviewee was an issue
as it was often not seen as a priority from their side. Additionally, most interviews were
booked via e-mail, and despite great support from our supervisors the impersonal touch of
an e-mail might get the developer to overlook it. There were some people we wanted to
interview that took a lot of e�ort to get a hold of, so sometimes we found out where in the
building they worked and introduced ourselves in person. Asking these people in person
should perhaps have been done sooner, since it could have sped up the process somewhat.
However, it was still considered worthwhile to do the interviews in person instead of using
other methods. This was because it gave us a good indication of how willing they were to
work with us, as well as some additional results when it came to common problems they
were having with CD that might not have been brought up in another type of data gathering.
Considering these benefits using interviews for this step was a good choice. It also helped

53

5. Discussion & Related Work

that the literature studies could be done in the downtime so that the work was still e�ective.
Another issue was the lack of suitable teams to work with. At the outset we wanted two

teams to implement the proof of concept in order to help answer RQ3. Having conducted
the quick interviews it was clear that choosing teams to work with would be di�cult. A lot
of the teams did not have a mature enough pipeline that it would be worth doing our type of
study on them, while other were in the middle of intensive periods of work that made them
hard to contact and work with. On top of this the fact that the o�ce shut down due to the
Covid-19 pandemic, meant that we needed teams that were easy to contact online. This was
another problem with the app team since the person we had contact with there was using
a di�erent network for his work and as such rarely checked his emails. Had the Covid-19
pandemic not led to this shutdown it is possible that the app team could have been used and
more of the original plan could have been executed since we would have had access to the
team physically. However, this was not a problem that was possible to see coming, and as
such we had to adapt in the moment. This led to making some changes to our process. It was
important to try and keep the project on track, and try to answer the research questions as
well as we possibly could with the change of method. This led to us deciding to implement
the proof of concept in one team while using another for further interviews, as well as doing
a survey at the end. In this way we could still gather metrics and ask developers and other
employees which metrics they found useful, while also getting some more data to answer RQ1
in a better way. Since the teams were closely related it was also useful to ask for feedback on
the metrics from both teams which was useful for RQ2.

However, there is a shortcoming in doing a survey, as it might not be an optimal way
of getting information about useful metrics. The reason behind this is that which metrics
are important and useful for which role is highly personal and project dependant. Thus,
to get more accurate and interesting results, a more discussion-based approach, like doing
interviews, would be preferable. In this way, we could adapt the discussion based on the
interviewee, as well as ask about potential uncertainties in answers. Additionally, we could
go further into detail as we would not have to keep the interview as short as the survey.
Keep in mind that the survey had to be kept short and concise in order to get more people
interested in answering; if it would take too long, few people might have the time or energy
to answer it properly.

Therefore, doing interviews instead would lead to more developed answers. However,
this would take a lot of time, since booking interviews with a satisfying amount of people is
a much longer administrative process than simply sending out a survey. Additionally, since
doing an interview would require more time of the interview than answering a survey, it is
possible less people would be eligible to this. Therefore, we concluded that doing a survey
would be the best thing regarding our limited time, as well as getting more answers.

However, we had one big shortcoming when sending out the survey. This was that we
initially made a too long description of the survey, as well as failing to mention that the
survey would only take a short amount of time to answer. Consequently, we sent out a new,
shorter description a few weeks later, as well as sending it out to more people. This time
we mentioned that the survey would be quick to answer, but unfortunately the description
proved to be a bit too vague this time, making a lot of recipients confused about how to
answer the survey. In retrospect, we should have spent more time making a carefully crafted
description of the survey, both being short and getting the point across without possible
misunderstandings.

54

5.2 Discussion of results

Another possible shortcoming of this study was that the Review time metrics could be
misleading. The measurement of the duration of Review time was from the first patch set
was uploaded until it was approved. However, this does not take account for possible reviews
not approving the patch set prior to being approved. For example, a developer could upload
a patch set, get feedback on it, change the code in accordance to the feedback, upload another
patch set, get feedback again, and so on. Finally, when there is no more feedback to give and
the reviewer(s) are happy with the change, it gets approved. There could be a lot of variance
from change to change of how many of these feedback cycles would have to be done. In some
cases, the change can get approved right away, and in some after several patches.

The Review time used in this study includes all these patch sets up until the change was
approved. While this still might be an interesting metrics to analyse review e�ciency, the
name given to it can be somewhat misleading. Review time could be interpreted as the time
taken for a developer to do a review, and not the time taken for a change to be approved. Ad-
ditionally, there might be interesting data found in looking at the time taken for all reviews
in a single change, to greater understand if longer time to get a change approved might be
because of reviewer’s taking a long time before starting to do a review, or if the uploader is
writing code which needs a lot of feedback from reviews.

Therefore, it would be interesting to have a metric for the actual review time too, and
not only the time taken to get a change approved. However, our limited experience made us
miss this issue at the time of implementation.

Overall, while there were some problems encountered during the thesis work they were
considered to be handled by the best of our ability. Especially the ones we could not have
foreseen such as Covid-19 shutting down the o�ce, together with most of the world. In
hindsight there were some problems that could have been handled better with the experience
we have now, but on the whole we are happy with how we tackled the method.

5.2 Discussion of results
Some of the results might have needed some stronger data to strengthen the conclusions
about them, as well as make the finding more generally applicable. However, this was not
always possible due to the limited scope of the study. This section will analyse the method
and results in terms of validity, as well as how general they could be considered.

5.2.1 Threats to validity
Due to certain limitations, regarding time, resources, and experience, the validity of the re-
sults might not be entirely trustworthy. Challenges threatening this validity will be discussed
in this section.

Quick interview scope change
The original plan for the quick interviews was to merely get an overview of all the projects
to pick teams that could be used for further studies. However, since there were some issues
that were brought up during the interviews related to challenges and best practices for CD
(RQ1), it was decided to use these findings as well when helping to answer what challenges

55

5. Discussion & Related Work

exists when doing CD. Since this was not planed from the start it was not as structured as it
could have been. This could mean that there were teams that were having the same problems
that we only found out about in one or two teams. However, to make sure that the results
were trustworthy we only used the problems that were found in most of the teams, or were
backed it up by our literature studies.

Lacklustre data to answer RQ3
Due to the fact that some changes had to be made to the method it gave some problems
when answering how the metrics found in RQ2 could assist developers to optimise their CD
workflow (RQ3), since there was not enough hard data to support any solid conclusions.
There are some things that can be said about it, as described in Chapter 4, but in order to
answer if the metrics can actually help optimise for lead time and quality there would be
a need to look at these values over a longer period of time as was originally planned. This
meant that we just had some indications to help answer RQ3 in the form of answers to the
survey, but no hard data as in actual measurements.

The metrics were only gathered from one team
While the literature studies served as a good way to find potentially useful metrics, the gather-
ing of these metrics and analysis of the result served to empirically determine which metrics
were useful. However, the scope of this was only a single team (E2), limiting some of the
results for being specific for only this team. Although, it helped that we also discussed the
result with the E1 team as well. Additionally, many of these metrics could not be gathered due
to certain limitations in their pipeline, as well as in our workflow regarding time, resources,
and interference with the team.

On top of this, since only 8 people answered the survey, the conclusions drawn based on
these answers are not very robust. In many cases there were only one person giving answers
per role. Optimally, this survey would be extended to a lot more people to see some trends in
the results. However, as it is now it may serve as an indication to which metrics are desirable
for which roles.

The E2 team had manual steps in their delivery process
The analysis of the delivery part in the E2 team’s pipeline was very limited. There was a
manual part in this process; the creation of release notes, and the other parts of the release
was done by a manually executed script. This script froze some changes in Git, and copied the
ones who had passed the nightly build to their internal customers repository. Considering
this it would have been hard to gather data about the releases without interfering with the
productivity of the team too much. Therefore, we simply asked the employee responsible for
the releases to estimate how long this process took and settled with that.

Ultimately, this made us focus a bit more on the CI part of the pipeline, and a lot of
potential findings which could have been explored was it that more data would be available
from the delivery part of their pipeline, would have to be omitted.

56

5.2 Discussion of results

Limited deeper analysis of the Build time
Since only two of the sub-builds in the build on commit time were analysed, it is possible
there were more causes to the high build time. Although the result of these two sub-builds
was promising, this might merely be a smaller portion of a bigger part. If more sub-builds
were analysed, there is a possibility that a few more problems with the build time would have
been highlighted. In other words, it is possible we only found a smaller part of the bigger
problem.

5.2.2 Generalisation of results
The study was limited to only one company, and we only worked closely with two teams at
this company. This might have caused some specific findings which may only be relevant to
the case company or the targeted teams. On the contrary, there might be some similarities
with the target company and teams, which could motivate for some results being relevant in
a more general context. Which of these results that can be used for a more general case will
be discussed in this section.

General challenges and best practices
There were a lot of challenges and best practices found to answer RQ1 that could be con-
sidered general since they were found in most literature studies and interviews at the case
company. The importance of automation is one of these that is brought up repeatedly as a
best practice, and that a lack of automation leads to a lot of problems when trying to do CD.
Human and organisational issues are also mentioned a lot and that it can be solved by com-
mitting fully to CD, by training developers, setting up rules that can be agreed on, having a
shared responsibility for the CD-pipeline, and keeping CD as a priority.

Measuring idle time could be very important
One of the bottlenecks found in the E2 team’s pipeline was that jobs had to wait in queue
in order to get access to the unit test tool Vectorcast, since the team had a limited amount
of licenses to it. Meanwhile, once a job got access to Vectorcast, the unit tests did not take
long to run. If only the actual time spent doing the job, and not the idle time spent waiting
for the resource would be measured, this bottleneck would not have been found. Therefore,
measuring the idle time proved to have a big positive e�ect on finding bottlenecks in a CD-
pipeline. This conclusion could be generalised on all kinds of measurements since idle time
could be found almost anywhere in a similar way to this example.

Licenses of certain tools might cause bottlenecks
One of the conclusions draw from analysing the pipeline of the E2 team was that the limited
license for the unit test tool Vectorcast throttled the build time. While teams in the industry
using Vectorcast may be limited, this finding should not be limited to just this. Instead, the
exact software used can be omitted, and the conclusion generalised to licensing limitations
in any software used in a pipeline. Vectorcast’s requirement was that only one instance of
the software per license can be run at the same time. However, this could be generalised to

57

5. Discussion & Related Work

any software with the same requirement. Licensed software should be handled with care in a
CD-pipeline, as they might very well be a bottleneck if too few licenses are bought.

5.2.3 Overall judgement of the results
The literature study presented a list of potentially useful metrics, which should be an inter-
esting look for anyone trying to measure the performance of a CD-pipeline, as well as a good
starting point for future researchers. Furthermore, some of these metrics proved to be useful
monitoring the E2 team’s pipeline by not only giving an overview of the general status of the
pipeline, but also finding two major bottlenecks.

With these findings we are satisfied with the results, and are happy we could help the
target team to improve their pipeline. The generalisation factor of the results discussed above
also indicates that more teams in the industry, as well as curious researchers, might regard
our findings as helpful. The only part of the result that is considered a flaw is the survey, and
the lack of hard data to answer RQ3.

5.3 Related work
During our literature study there were many papers that were relevant to our thesis. Here we
have picked four pieces of related work determined to be relevant for this thesis that will be
discussed in relation to our thesis. They gave an overview of the current landscape of research
into CD and metrics, and were used as a part of the literature study as well.

5.3.1 Defining metrics relevant to CD
Lehtonen et al. defined metrics which could be useful for CD in their paper "Defining Metrics
for Continuous Delivery and Deployment Pipeline" [8]. A summary to this paper followed
by a discussion, as well as this paper’s relation to this thesis follows.

Summary
The motivation of the research was to explore the importance of measuring the performance
of the CD-pipeline, and what metrics gathered from the already automatically created data
from the tool chain can be useful for this. Despite this topic being researched before (in 2010),
the implementation of the Lean principles has already undergone major changes (as of 2015),
which motivates further research. Additionally, the authors motivate their study further by
arguing that Lean creates an environment where every step in the pipeline can easily be traced,
and therefore measured in a way which was not possible with more traditional methods. They
also argue that since a CD-pipeline is continuously improving, valuable metrics on it will be
the first step of improving it further, as the first step of improvement is identifying the fault.
Metrics allow for this. They also back up these claims with various related work. Thus, they
justify performing a contemporary analysis of what should be tracked in a CD-pipeline. The
research questions are the following:

• RQ1: Which relevant data for practical metrics are automatically created when using
a state-of-the-art deployment pipeline?

58

5.3 Related work

• RQ2: How should the pipeline or associated process be modified to support the metrics
that escape the data that is presently available?

• RQ3: What kind of new metrics based on automatically generated data could produce
valuable information to the development team?

The study was performed on a project at a mid-size Finish software company. The project
in question was a website responsible for handling municipal authorisations and permissions.
As a first step, the authors analysed research about metrics in Lean methods in manufactur-
ing. The motivation being that lean methods originates from just manufacturing. With this
information they converted these metrics to be applied in a CD-context. Additionally, they
also conducted the previous research from 2010. As a result, they proposed metrics divided
into two categories: Metrics on the Implementation Level, and Metrics on the Pipeline Level. The
former are metrics dependant on how the pipeline was implemented; what tool-set and prac-
tices were used. The latter are metrics independent of the implementation of the pipeline.

The metrics on the implementation level were the following:

• Development time: the time taken to develop a new feature.

• Deployment time: the time it takes to deploy a new feature once its implementation
is complete.

• Activation time: the time it takes for a user to activate the new feature after deploy-
ment.

• Oldest done feature: the time a feature has been developed, but not yet deployed to a
production environment.

The metrics on the pipeline level were the following:

• Features Per Month: the number of new features released per month,

• Releases Per Month: the number of releases per month.

• Fastest Possible Feature Lead Time: the amount of time a feature spends in the build
and test phase.

Particularly, the oldest done feature metric was deemed as the most useful metric by the
team.

Following are the authors’ conclusion to the research questions:

• RQ1: Both development and deployment time data can be gathered from the toolchain.
However, it is dependent on what tools are used. As for activation time it is a lot less
clear, since there are many di�erent features and what can be regarded as activating
them might depend heavily on the context. For visual elements maybe the first time a
user looks at the app, or for a feature that can be activated, the first time of activation.

• RQ2: While metrics for the development processes are automatically stored in the
version control system, metrics for the end user are not. It was concluded that more
work on an improved toolchain must be done to regard for this. However, they also
argue that this might not even be in the scope of Lean process management.

59

5. Discussion & Related Work

• RQ3: Metrics based on similar research (from manufacturing) was proposed, as well as
metrics based on old research about the same subject.

The authors argue that the results should be mostly generalisable. The metrics on the
pipeline level could be applied to other CD-projects, since they are not dependant on what
tools are used. The metrics on the development level, however, are tool specific, but it is
highly possible most modern tools would support at least most of these metrics, otherwise
this might be solved with workarounds or add-ons.

Discussion
As motivated by the authors, the significance of the research problem was that the practice
for implementing a CD-pipeline is constantly changing and being modernised, and since the
last research on this subject was performed back in 2010, where the concept of CD still was
pretty young in the industry, further research in 2015 was deemed necessary. These claims
were well argued for and had reasonable data backing them up, making the reason of the
study apparent. The paper should be a valuable read for anyone related to lean principles,
and particularly interesting for anyone doing research about metrics in lean practices. Fur-
thermore, not only is the importance of metrics motivated well by the authors, but the result
of the research is also valuable for anyone trying to improve their CD-pipeline. Therefore, it
is highly relevant to our thesis study.

In addition of taking claims from related research an applying them to lean principles in
CD, they also evaluated new and unique information in the shape of new metrics. However,
what is somewhat lacking is data backed up proof that these metrics work. For the metrics
taken from manufacturing, their claim is that because they work in lean methods in manu-
facturing, they should also work in lean methods in computer science. Although the metrics
are generalisable enough for some readers to obviously be transferable, there might still be
subtle di�erences in a CD-pipeline compared to a lean manufacturing one. Furthermore, the
authors also claim:

Based on discussions with the team [...], visualising the data regarding features
on the pipeline was found very useful, and exposing developers to it actually led
to faster deployment and to less uncompleted work in the pipeline.

Empirical data of showing how much this sped up the deployment time and how much less
uncompleted work it caused, would be very interesting.

Additionally, the research was only performed at one single team working with one
project, vastly limiting the generalisation factor of the results. However, we counter this in
some regard in our thesis by using some of the metrics on additionally one team and getting
feedback on it.

Relation to the thesis
This study was found very useful when looking for interesting metrics to monitor. Several of
the metrics resulting from the paper were implemented while monitoring the E2 team. These
metrics were Development time, Deployment time, Feature per month, and Oldest done
feature. Both Development time and Deployment time helped with locating the bottlenecks
of the pipeline and proved valuable in our study, as well as being prominent in the survey’s

60

5.3 Related work

answers. Features per month also showed some popularity in the survey. As for Oldest done
feature, one of the roles in the survey argued that they would find it useful, as long as it
could be split up in smaller parts in order to locate more specific error, as there may be many
reasons as of why a feature has not been merged.

As for the other metrics found in the paper, as well as the ones we implemented, they all
were marked as potentially useful by our literature study.

5.3.2 How and why metrics are used in the agile in-
dustry

Kupiainen et al. explored metrics used in agile teams in the software industry in their paper
"Why Are Industrial Agile Teams Using Metrics and How Do They Use Them?" [15]. A
summary to this paper followed by a discussion, as well as this paper’s relation to this thesis
follows.

Summary
The authors list several examples of literature reviews which have been published studying
software metrics. However, they argue that all these examples have been written from an
academic viewpoint, and to their knowledge there has been no systematic literature review
on metrics used in the actual software industry. Furthermore, they claim that agile software
development is increasing in popularity and that the use of metrics in more traditional soft-
ware development methods cannot be directly transferred to agile methods. This motivates
them to perform a study on agile software development metrics to find out which metrics are
used, in addition to why they are used and what actions the use of these metrics can trigger.

The study was performed by doing a systematic literature review (SLR) on relevant liter-
ature on the topic of agile software metrics. As a first step, the authors familiarise themselves
with the concept of SLR by reading literature on the topic and using a guide on how to make
an SLR as a basis. Additionally, they iterated the protocol in weekly meetings, as well as
making a pilot study on the topic. Once familiar with the concept, the SLR was performed
in the following steps:

1. Search and Selection Process: papers were selected in accordance with the main selec-
tion criteria, being: “papers that present empirical findings on the industrial use and
experiences of metrics in agile context”, in addition to other criteria such as quality
of results and agile and industrial context. With these criteria in mind the selection
process was conducted in the following stages:

(a) All literature relevant to the topic was found using automated search methods.
Specifically, certain search strings with relevant keywords and synonyms to agile
software development and metrics were used to find the first batch of literature.
In this way 774 papers were found.

(b) Papers were filtered based on their title and abstract by one of the authors, leav-
ing 163 papers. The validity of this selection was then analysed by letting another
author filter a random selection of 26 papers, which resulted in the level of agree-
ment being substantial.

61

5. Discussion & Related Work

(c) Papers were filtered based on their full text, leaving 29 papers. Again, the selec-
tion process was quality assessed by another author, reading 7 randomly selected
papers.

2. Data extraction: Integrated coding was used as a data extraction strategy. This made
it possible to make a sample list of the following code categories: “Why is the metric
used?”, “How is the metric used?” and “Metrics”. The code was built by the first author
marking interesting quotes in the full texts, and then letting a second author review
the code regarding them. Throughout weekly meetings, the authors built the following
rule set for data extraction:

• Collect a metric only if the team or company uses it.

• Do not collect metrics that are only used for the comparison and selection of
development methods.

• Do not collect metrics that are primarily used to compare teams.

• Collect metric only if something is said about why it is used or what actions it
causes.

3. Data synthesis: in order to make higher level categories for the codes, each code was
first described on a higher level, then grouped by similar codes, and lastly these groups
were given a high level code in the form of a category.

These steps resulted in the following representation of categories for metrics used in an
industrial agile software context:

• Iteration Planning: metrics which helps to choose which tasks to prioritise for the next
iteration.

• Iteration Tracking: metrics used for tracking the status of the selected tasks during an
iteration.

• Motivating and Improving: metrics used for motivating people and improving prac-
tices and performance on a team level.

• Identifying Process Problems: metrics used to spot problems in processes and work-
flows.

• Pre-release Quality: metrics used to assure and evaluate the quality of the software
before it has been released.

• Post-release Quality: metrics used to assure and evaluate the quality of the software
after it has been released.

• Changes in processes or Tools: how applying metrics led to changes in the processes
and tools used.

For each of these topics, the authors explained specific cases extracted from the papers
and how they correlated to the category. In addition, the authors portrayed the validity of
the data by showing the distribution of agile methods, the distribution of domains (fields of

62

5.3 Related work

work), and a distribution of the publishers of the primary studies. Furthermore, the authors
claim that this paper will help give future researchers and practitioners an overview of the
metrics used in agile software development, as well as documented reasoning behind the use
of them.

Discussion

The authors argue that a solely literature-based study is satisfactory for their desired result
since there’s already existing literature that could be synthesised. However, this might not
be entirely true, as it comes with two major drawbacks which are showcased in the study.
The first one being that the researchers are not able to control the scope of the study, i.e.
they have limited control of which type of companies and which type of agile methods they
want to include in it. This is specifically proven by the distribution of domains presented in
the result section, showing a clear bias towards the telecom industry. The second drawback
is that, in addition to making the research biased to a certain domain, it could also make it
biased to a certain company. In this case, the study was biased towards Ericsson, since they
had published many papers on the topic. While both drawbacks mentioned are explained
in the limitations section, the authors do not provide a solution to eliminate them, or what
they could have done di�erently to eliminate them. This bias is somewhat of a threat to our
thesis, since our case company was not in the telecom industry. However, it is still only a
bias, and there might very possibly be some overlap where this bias is not important, as all
software development in the study was based on agile methods.

When presenting the results, the authors truncate some data by categorising it by “other”.
This occurs both in the distribution of domains, and the distribution of methods. In both
distributions they only showcase the three most popular domains/methods and label all the
other domains/methods as “other”. This causes a loss of valuable information which could be
useful for future researchers. Specifically, for our case we wanted to know how many of these
agile methods were using CD, but since it was a minority it had been truncated to "other".
This makes us unaware of if no study using CD was accounted for in the result, or if a few or
one was accounted for.

Relation to the thesis

Despite not knowing if any on the agile methods reviewed in the study were using CD or not,
as well as the bias towards the telecom industry, the generalisation factor of agile methods
should be great enough to at least consider these findings useful for CD; agile methods in the
telecom industry might not di�er that much to agile methods elsewhere, and findings from
agile methods in general might nullify their appliance to CD.

Additionally, in our study we regarded some metrics as useful or potentially useful by our
findings from implementing them on the E2 team’s pipeline, as well as from our findings in
the survey. However, as the validity of these metrics were not as strong as we desire, they were
strengthened by correlating them to the categories found in this study, e�ectively binding
our results to a more industrial and practical context.

63

5. Discussion & Related Work

5.3.3 Best practices, benefits and challenges of con-
tinuous delivery

Hansson studied challenges causes and solutions in his paper "Best Practices, Benefits and
Obstacles When Conducting Continuous Delivery in Software-Intensive Projects" [4]. A
summary to this paper followed by a discussion of this paper’s relation to this thesis follows.

Summary
This is a thesis from Malmö University that addresses the “stairway to heaven” software
project model, and the obstacles to reach the continuous delivery (CD) step, which is the
fourth step. This model consists of five steps starting at traditional development and ascend-
ing to R&D as an experiment system with di�erent levels of continuous activities in between.
The thesis also explores benefits and best practices of CD. This is to build on earlier research
into these topics which left some questions about further obstacles to reach the CD step in
the stairway to heaven, and beyond. The goal is to summarise and extend previous research
into the topic of benefits, obstacles, and best practices of CD. This is done by connecting the
literature on CD with industry knowledge. To do this a study combining literature reviews
on the topic, as well as multiple case studies of four di�erent companies were conducted.
The intent is to put the problems of the companies into the theoretical framework from the
literature that was studied before.

Literature was found using google scholar and Malmö University Libsearch with several
keywords such as “continuous delivery”. The case studies were done in the form of semi-
structured interviews that included a list of questions with room for discussion with repre-
sentative developers from the four companies. These interviews were done either in person or
over the phone depending on what was most convenient, and if the authors could get permis-
sion they were also recorded. On top of this some field work was conducted at one company
to better understand their workflow and try to improve it. From the literature studies they
concluded that there are many benefits to CD, and that these are fairly well documented
already so there are no obvious gaps in this research. The largest and most general obstacles
were lack of automation and complex development environments, but there were others and
it depended on the company and the type of work they were doing. To fix these the au-
thors gave some examples of best practices which di�ers from organisation to organisation,
depending on their needs. Test driven development (and extreme programming practices
in general) as well as finding easier tools for the CD pipeline were two that were important.
The problems of the di�erent companies were addressed separately, but parallels were drawn
in an e�ort to see which problems were general and had generalisable solutions and which
required more specific solutions such as the issues of custom hardware and UI testing.

Discussion
This thesis was very relevant to ours, since it brought up challenges and best practices of CD.
Overall, there were some similar results between this thesis and ours, and it was used as a
source during the literature study. In terms of challenges many of the same ones were found,
such as a lack of automation and problems related to the human and organisational elements.
It also discussed complex environments which were also a problem found in our literature

64

5.3 Related work

study, and in some teams at Bosch. It does not bring up long review times as an issue, which is
a problem that we found at Bosch. Therefore, it is possible that this is not a general problem.

There were also many of the same best practices discussed. Using automation is a big
one that comes up a lot in our and their thesis, as well as shared responsibility for the CD-
pipeline. Their thesis does bring up some other topics which were not mentioned much in
ours, such as using version control, but this is considered to be such a basic step of CD that
it was not included as a best practice since it should be assumed. The same can be said for
releasing frequently, as it is brought up in the background of this thesis.

5.3.4 Adopting continuous delivery: problems, causes
and solutions

Laukkanen et al. studied challenges causes and solutions in their paper "Problems, causes
and solutions when adopting continuous delivery — A systematic literature review" [2]. A
summary to this paper followed by a discussion of this paper’s relation to this thesis follows.

Summary
This paper addresses the lack of adoption in the industry when it comes to Continuous De-
velopment (CD). Although instructions on how to adopt CD have existed for a long time,
it is not yet widely adopted and those who have adopted it have found numerous challenges
according to the authors. To ease the adoption process, this paper tries to find the problems,
causes, and solutions of adopting CD. The hope is to gather data that can be used to help the
adoption of CD, showing on which problems can come up, as well as their causes and solu-
tions. This is specifically on the topic of adopting CD and does not deal with what problems
can arise once a team has adopted it and are working with CD. It can also help the reader
understand the benefits and limitations of CD to evaluate if it is a worthwhile practice for
them. It also fills a niche since there was some previous research on the problems of CD, but
not on adoption problems. To get this data a systematic literature review was conducted. It
included only empirical studies from major bibliographic databases. Since there was not a lot
of literature on the topic of CD specifically in the context that the authors were looking for
they did not use a strict definition of CD, and as such included articles mentioning continu-
ous integration (CI) and continuous deployment as well. They used several filtering criteria
to find the articles that were related to the subject, which at the end of this process was a
total of 30 articles. These were then read in full and problems, causes, and solutions were ex-
tracted from the text. In total there were 40 problems, 28 causes, and 29 solutions. Problems
and solutions were then categorised into themes (7 problem themes and 6 solution themes).
Of these problem themes the most frequent were build design, system design and testing. In
studying these problem themes, it was also shown how they were interconnected, and that
the solutions to some problems were a step towards solving others, where for example system
design solutions could help solve testing problems as well.

Discussion
Some of the problems and solutions in this article can be considered challenges or best prac-
tices of CD, while others are less clear, or are part of what we consider to be the same problem.

65

5. Discussion & Related Work

This paper also focused on adoption problems of CD, which means that some of the problems
and solutions brought up was not relevant to our work, such as system design problems like
unsuitable architecture. There were many problems that were relevant since they had been
found in our other studies, or were related to CD both at adoption time and when main-
taining a CD-pipeline. These included build and test automation issues, hardware and UI
testing problems, and lack of experience or motivation in the organisation for doing CD. It
also brought up some best practices that helped strengthen our results. This included test par-
allelisation to cut down on test times, training, and social rules on CD for developers to help
mitigate developer-related challenges, and monitoring build length. There were some things
that were not brought up explicitly such as automation of tests, Test driven development,
and having a shared responsibility of the CD-pipeline. However, automation is touched on
when testing problems but is not brought forward as heavily as we have in this thesis.

5.4 Future work
As the subject of CD is relatively new in the software development market, there is to our
knowledge still a lot of research which could be done. Interesting topics we would have liked
to explore but was out of scope of our time limited and resource limited research will be
discussed following, as well as other interesting topics concluded from our results.

First there is the gap left in this research. As discussed in section 5.2.1 there was a lack of
hard data to answer RQ3. This could be a topic for further studies, as there is an opportunity
for researchers to pick up where we left of by observing what e�ects actively presenting the
implemented metrics could have on the E2 team, maybe in the form of a dashboard displayed
on a big screen in the o�ce. In this way, RQ3 would be explored further, and thus be given a
more solid answer. Furthermore, since a number of the metrics seemed promising from our
results, a topic for a future study could be to implement these and visualise them for a team
so that they can easily keep track of them in a similar way to our proof of concept, an then
looking at di�erent performance metrics over a period of time to see what happens to these.

It could also be interesting to look at some of the metrics we did not have the resources
to look at. This could be by implementing them in a team, or find a team that already have
them available through some tool, and then do a similar study to see if these metrics can help
improve the performance based on some criteria. This could be trying to see if the metrics
improve over time, such as cyclomatic complexity decreasing, test coverage increasing, or
review times decreasing. Of course, this should be with the added perspective of looking at
why these metrics change. Test coverage increase does not mean that the tests are quality test,
and review times decreasing should cut down on the time before someone looks at the review,
not on the time spent reviewing which could mean that the reviewer misses something.

There could also be an opportunity for further understanding by interviewing teams at
other companies that are working with CD. This could strengthen or contradict the results
of this thesis in terms of how general challenges and best practices are, as well as what metrics
are considered important in di�erent fields of software engineering. It could also help answer
if the duration of each review could be an important metric to look at.

66

Chapter 6

Conclusion

Creating and maintaining an e�cient CD pipeline can be a very di�cult task, but if done
correctly it can also be very rewarding. We set out to explore how this can be achieved by
finding challenges and best practices of CD, as well as with a proof-of-concept demonstrating
how metrics can be gathered and analysed from an existing pipeline in order to make it more
e�cient.

The challenges and best practices were found through doing literature studies and inter-
view with experienced practitioners and developers. Some common challenges were lack of
automation and human and organisational factors. Some best practices were automating as
much as possible, and sharing responsibility of the CD-pipeline.

Additionally, through a literature study, a list of potentially useful metrics was created.
Among these metrics, a few were implemented on a targeted team’s project. This resulted
in us finding two major bottlenecks in their pipeline: one dependant on limited licenses
to a unit testing tool running on each uploaded change, and one dependant on generating
documentation too often.

Furthermore, this also led to an unexpectedly useful finding: while monitoring a pipeline
with metrics, it is important to include idle times between processes. In our case, the bottle-
neck regarding licenses would never have been found if this idle time wasn’t measured.

Finally, we wanted to observe the e�ects of giving metric-based feedback to the team.
However, our time limitation did not make this possible. Interviews with practitioners as
well a survey gave some insight to this, but not enough to draw any strong conclusions. There-
fore, we determined that this would be an interesting topic to study further.

Overall, we are satisfied with our findings. The case company can use our proof-of-
concept to monitor more teams in the future in order to e�ectivise their pipeline. Further-
more, practitioners of CD and future researchers can use our challenges and best practices
while looking to improve a CD-pipeline.

67

6. Conclusion

68

References

[1] J. Farley, D. Humble, Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Addison-Wesley, 2010.

[2] J. I. E. Laukkanen and C. Lassenius, “Problems, causes and solutions when adopting con-
tinuous delivery—a systematic literature review,” in Information and Software Technology,
vol. 82, pp. 55–79, 2017.

[3] S. Bellomo, N. Ernst, R. Nord, and R. Kazman, “Toward design decisions to enable de-
ployability: Empirical study of three projects reaching for the continuous delivery holy
grail,” in 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pp. 702–707, 2014.

[4] B. Hansson, “Best practices, benefits and obstacles when conducting continuous delivery
in software-intensive projects,” 2017. Master thesis, Malmö University.

[5] W. Babich, Software Configuration Management - Coordination for Team Productivity.
Addison-Wesley, 1986.

[6] M. Fowler, “Continuous integration.” https://martinfowler.com/articles/
continuousIntegration.html, 5 2006. Accessed: 2020-06-15.

[7] C. Beck, K. Andres, Extreme Programming Explained: Embrace Change. Addison-Wesley,
2004.

[8] T. Lehtonen, S. Suonsyrjä, T. Kilamo, and T. Mikkonen, “Defining metrics for continu-
ous delivery and deployment pipeline,” in Proceedings of the 14th Symposium on Program-
ming Languages and Software Tools, CEUR Workshop Proceedings, pp. 16–30, 2015.

[9] M. Fowler, “Continuous delivery.” https://martinfowler.com/bliki/
ContinuousDelivery.html, 5 2013. Accessed: 2020-06-15.

[10] L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE Software, vol. 32,
03 2015.

69

https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/ContinuousDelivery.html

REFERENCES

[11] Jez Humble & David Farley, “Continuous delivery vs continu-
ous deployment.” https://continuousdelivery.com/2010/08/
continuous-delivery-vs-continuous-deployment, 2010. Accessed: 2020-06-
15.

[12] M. Fowler, “What is scrum.” https://www.scrum.org/resources/
what-is-scrum, 5 2020. Accessed: 2020-06-15.

[13] S. Neely and S. Stolt, “Continuous delivery? easy! just change everything (well, maybe
it is not that easy),” in 2013 Agile Conference, pp. 121–128, 2013.

[14] M. Leppänen, S. Mäkinen, M. Pagels, V. Eloranta, J. Itkonen, M. V. Mäntylä, and T. Män-
nistö, “The highways and country roads to continuous deployment,” IEEE Software,
vol. 32, no. 2, pp. 64–72, 2015.

[15] E. Kupiainen, M. V. Mäntylä, and J. Itkonen, “Why are industrial agile teams using met-
rics and how do they use them?,” in Proceedings of the 5th International Workshop on Emerg-
ing Trends in Software Metrics, WETSoM 2014, (New York, NY, USA), p. 23–29, Associa-
tion for Computing Machinery, 2014.

70

https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment
https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum

Appendices

71

Appendix A

First Interview Questions

1. What’s the name of your team? How many people work in it? What do you do?

2. Do you have any documents or a wiki about your development process?

3. Do you have any experience with CD?

4. Are you following CD as far as you know?

5. What tools are you using for code management / CD (Gerrit, jenkins)

6. How do you work with code reviews? Policy?

7. How long does it normally take before getting your code reviewed?

8. Do you have automated build scripts?

9. Do you use commit hooks?

10. How often do you build?

11. How often do you do a release?

12. How do you test your code? Automated tests, manual tests, GUI tests, smoke tests?

13. Do you have metrics for test coverage, code analysis, build duration or number of fail-
ures etc.? (Sonar cube)

14. How often do you release and what’s your release process? Automated delivery?

15. Where do you deliver code? Customer, company, internally?

16. Are there any steps in the code management process you feel takes too much time or
could be improved?

73

A. First Interview Questions

17. What are the parts that work best in your CD pipeline according to you?

18. Anything else you would like to add?

74

Appendix B

Further interview with the E2 team

1. Can you give us an overview of your pipeline from commit to release-build. Processes,
tools, etc.

2. How do you handle built binaries?

3. Are there any rules / guidelines for your processes such as code reviews, commit mes-
sages etc.? If not, is this something you want?

4. What kind of feedback do you currently receive from your pipeline?

5. How do you get access to this feedback (di�erent tools, spread out/assembled)?

6. How do you use the feedback you receive now?

7. Is all the feedback you receive now useful? Which metrics do you use most often? Why?

8. Is there any metric you feel you are missing at the moment? Why?

9. What do your tests look like, which ones do you perform as a team and which are
passed on to others?

10. Which tests have you automated and which are manual? Can the manual be auto-
mated? Why / why not?

11. How confident do you feel about the code quality when your automated tests have
run?

12. Do you run smoke tests? When in that case? Why / Why not?

13. Do you run integration tests? When in that case?

14. Who is responsible for your CD-pipeline? (team / person / DevOps teams / di�erent
for di�erent parts)

75

B. Further interview with the E2 team

15. How much experience does the team as a whole have of CD?

16. Do you build the system the same way it is tested as it does for release? If not, why not?

17. Are there any manual steps in your release process? Can they be automated?

18. How long does a release take?

19. Do you have the opportunity to roll back a release?

20. Which parts work best / worst in your pipeline?

76

Appendix C

Metrics from literature

The metrics recommended by the book Continuous Delivery:

• Cycle time.

• Test coverage.

• Amount of duplicated code.

• Cyclomatic complexity.

• A�erent and e�erent coupling.

• Number of warnings.

• Number of defects.

• Number of commits/builds/build failures per day.

• Duration of build, including automated tests.

The metrics recommended by experienced Operations developers at Bosch:

• Intermittent errors (number of failed builds/number of builds).

• Jenkins job status.

• Review times

• Which reviews have waited the longest.

• Change failure rate.

• Mean time to restore.

77

C. Metrics from literature

• Delivery lead time.

• Delivery frequency.

• Mean time between failures.

• Mean time to recovery.

Metrics from the research of Lethonen et al.:

• Development time: the time taken to develop a new feature.

• Deployment time: the time it takes to deploy a new feature once it’s implementation
is complete.

• Activation time: the time it takes for a user to activate the new feature after deploy-
ment.

• Oldest done feature: the time a feature has been developed, but not yet deployed to a
production environment.

• Features Per Month: the number of new features released per month.

• Releases Per Month: the number of releases per month.

• Fastest Possible Feature Lead Time: the amount of time a feature spends in the build
and test phase.

Categories of metrics defined by a systematic literature review performed by Kupiainen
et al.[15]:

• Iteration Planning: metrics which helps to choose which tasks to prioritise for the next
iteration.

• Iteration Tracking: metrics used for tracking the status of the selected tasks during an
iteration.

• Motivating and Improving: metrics used for motivating people and improving prac-
tices and performance on a team level.

• Identifying Process Problems: metrics used to spot problems in processes and work-
flows.

• Pre-release Quality: metrics used to assure and evaluate the quality of the software
before it has been released.

• Post-release Quality: metrics used to assure and evaluate the quality of the software
after it has been released.

• Changes in processes or Tools: how applying metrics led to changes in the processes
and tools used.

78

Appendix D

Informational document included in the Sur-
vey

79

Timespan: 2019-10-01 – 2020-04-22
Please also have a look at the aggregated data in the tables of each graph, for
example “avg”, “current” etc.

New changes per day (Number of patch set 1 uploaded per day)

Patch sets per day

Successful builds per day

Failed builds per day

Build success ratio per day

Build on commit time (including automated tests)

Build on commit time (including automated tests, with filtered outliers)

Review time (time between the first patch set was uploaded until given +2 in
Gerrit)

Development lead time (time between the first patch set was uploaded until it
was merged)

Deployment time (time between a change was merged until it was released)

Note: the data for releases after March 10th is currently missing.

Oldest done feature (the feature which have been done the longest amount of
time but not yet included in a release)

Note: the features shown here are in a test branch and should actually be excluded from the data. This graph is
only for demonstration purposes.

Average time to restore (time it takes from when a once successful build fails
until it's successful again.)

Features Per Month (a completed feature = a change that has been merged)

Features per week

Feedback of recent review efficiency

Summary of shown metrics

 New changes per day (Number of patch set 1 uploaded per day)

 Patch sets per day

 Successful builds per day

 Failed builds per day

 Build success ratio per day

 Build on commit time (including automated tests)

 Build on commit time (including automated tests, with filtered outliers)

 Review time (time between the first patch set was uploaded until given +2 in Gerrit)

 Development lead time (time between the first patch set was uploaded until it was merged)

 Deployment time (time between a change was merged until it was released)

 Oldest done feature (the feature which have been done the longest amount of time but not yet included in
a release)

 Average time to restore (time it takes from when a once successful build fails until it's successful again.)

 Features Per Month (a completed feature = a change that has been merged)

 Features per week

 Feedback of recent review efficiency

DEPARTMENT OF COMPUTER SCIENCE | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-06-11

EXAMENSARBETE Continuous Delivery: Challenges, Best Practices, and Important Metrics
STUDENTER Anders Klint, Vilhelm Åkerström
HANDLEDARE Lars Bendix (LTH), Axel Franke (Bosch), Peter Walls (Bosch)
EXAMINATOR Elizabeth Bjarnason (LTH)

Challenges, Best Practices, and
Important metrics for Continuous
Delivery of Software

POPULAR SCIENCE SUMMARY Anders Klint, Vilhelm Åkerström

Software teams being able to frequently and painlessly deliver new updates of their
software to their customers has many benefits, however accomplishing this is not
always easy. We have explored challenges and best practises of this type of workflow,
as well as which metrics are valuable when evaluating the effectiveness of the process.

Releasing software can often be a tedious process
requiring many work hours and quality checks re-
quired for a satisfactory result. Continuous De-
livery (CD) is a software development workflow
which aims to eliminate the tediousness of this
process, and which has become very popular in
recent years. To achieve this, the goal of CD is
to automate steps such as building, testing, and
releasing the software such that quality software
can be released with a push of a button at any
time in the development process.
However, with CD still being a new way of work-

ing there is a lot of uncertainty of how to do it
well. The change to CD from other software de-
velopment methods can not be done in just a day
or a week. This is a gradual process which faces
many different challenges. We performed a study
to discover what these challenges are, in addition
to some best practices to aim for when looking to
achieve this workflow.
Some of the common challenges were keeping up

with automation, due to technical challenges such
as tests taking too long to run, or a lack of com-
mitment to automate from developers or managers
wanting to focus on developing new features. In

order to combat this, it is important for everyone
involved to be on board with the processes and
work necessary to do CD, in addition to sharing
responsibility for the CD-pipeline, as well as mak-
ing sure that the team has proper experience of
CD through training and hands-on experience.
Additionally, some metrics gathered from litera-

ture were used to monitor a team having achieved
CD at the case company. This resulted in three
major findings: Firstly, that limited licenses to
software tools used to quality check newly written
code can throttle the process if the number of in-
stances of the software is limited by the number
of licenses. Secondly, that a tool used to generate
documentation on each code change took longer to
run than anticipated, and could thus be run less
frequently. Thirdly, that when measuring dura-
tion, it is important to not only measure the time
taken for each process to run, but also the idle
time between processes.
These findings of the monitored team could in-

spire other teams working with CD of how to im-
prove their workflow. Additionally, the challenges,
best practices, and important metrics found could
be useful for practitioners and future researchers.

	Introduction
	Problem Statement
	Research questions

	Background
	Theory
	Continuous Integration
	Continuous Delivery

	Case Company
	The advantages of a fast feedback loop

	Method
	Planned Method
	Literature study
	Interviews
	Deciding which metrics to gather
	Gathering the Metrics
	Evaluating the effects of the metric-based feedback

	Problems during thesis work
	Lack of suitable teams
	Working remotely due to covid-19
	Lack of time to observe the effect of metric-based feedback

	Changes to the method
	Split into interview and implementation
	Gathering feedback from Developers
	Survey about what metrics are useful for each role

	Results
	Challenges and best practices of CD (RQ1)
	Literature studies
	Interviews
	Results for challenges and best practices

	Metrics for improving a CD process (RQ2)
	Literature studies
	Interviews
	List of metrics used

	Proof-of-concept: implementation and analysis (RQ2)
	Implementing metrics gathering and visualisation
	Analysis of the gathered metrics
	Metrics for Optimising Lead Time

	Feedback from developers (RQ3)
	Presentations to the teams
	Evaluation survey
	Results from interviews and survey

	Summary of results
	Challenges of CD (RQ1)
	Best Practices of CD (RQ1)
	Important metrics for improving CD (RQ2)
	The effect of giving developers metric-based feedback (RQ3)

	Discussion & Related Work
	Evaluation of method
	Discussion of results
	Threats to validity
	Generalisation of results
	Overall judgement of the results

	Related work
	Defining metrics relevant to CD
	How and why metrics are used in the agile industry
	 Best practices, benefits and challenges of continuous delivery
	Adopting continuous delivery: problems, causes and solutions

	Future work

	Conclusion
	References
	Appendix First Interview Questions
	Appendix Further interview with the E2 team
	Appendix Metrics from literature
	Appendix Informational document included in the Survey

