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Abstract

Recurrent neural networks (RNNs) have become a dominating player for
processing of sequential data such as speech and audio. The reason for this,
is the high accuracy that can be achieved with the more complex variants,
such as the gated recurrent unit (GRU). This makes them very attractive
in speech recognition systems for digital assistance and voice control ap-
plications. However, a high power consumption and the large amount of
memory required for these networks, make them less suitable for battery
powered devices. In this work, we have designed a system on a chip (SoC)
for efficient processing of GRU networks, that consists of an optimized digi-
tal signal processor (DSP) integrated with a hardware accelerator. To deal
with the large memory requirements and high power consumption, several
optimization techniques have been applied. A 75% reduction is achieved for
the required memory, while the system can process real-time speech data
with an energy consumption of 7.79 µJ per classification. In 28nm CMOS
technology the area is 0.686 mm2. The design is programmable and scalable,
which allows for execution of different network sizes.
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Popular Science Summary

New advancements in AI techniques and designs come into light everyday
but there are serious limitations that should be addressed before they can be
a part of the everyday life. In March 2016, Lee Sedol, who is a professional
top-ranking Go player with 18 world championship titles, lost a match to
an AI-based computer program called, AlphaGo. This victory (or defeat
depending on how you look at it) was a game changer and milestone for the
AI community in many ways. On the contrary, according to estimations, the
AlphaGo consumes 1 megawatt power whereas the human brain consumes
only 20 watts[1], which means the human brain is 50,000 times more efficient
than the famous computer program.

Another area where AI is becoming a main player is recognition tasks
such as image or speech recognition. Speech recognition systems are already
commonly used in daily life and many people have interacted with them
through "Apple Siri", "Google Home" or other kind of speech recognition
systems. Many of these systems are using machine learning methods in order
to classify the words spoken by humans. Machine learning methods focus
on developing computer programs that can learn on their own and deep
neural networks are a subset of machine learning. Deep neural networks
can be specialized in accomplishing tasks such as detecting the keywords in
a speech. Within deep learning, there are recurrent neural networks, which
are more appealing than the other techniques because of the high accuracy it
performs on speech recognition tasks. Yet, the high power consumption and
the huge amount of data necessary in order to complete the calculations are
restricting the usage of this technique. Many platforms that are used today
just do these calculations in the cloud, which means the data on the device
will be sent via the internet to large data centers where it is processed. This
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has many negative results such as extra power consumption, latency, cloud
dependency and concerns about the security.

In our thesis, we explore different design techniques in order to achieve
a low power, high efficiency and scalable design for speech recognition. The
reference model we use is based on gated recurrent unit (GRU) which is an
advanced recurrent neural network and it is used to detect a keyword that
is spoken such as "Hey Siri" or "Okay Google". In order to implement a
scalable yet highly efficient design, we optimized a Digital Signal Processor
based on an Xtensa processor by Cadence Design Systems and accelerated
the computation and optimized the memory usage with a hardware acceler-
ator.
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Chapter 1

Introduction

With the technology advancements in computer hardware, deep neural net-
works (DNNs) have become widely used in many applications, e.g., within
the areas of speech recognition, computer vision and robotics where DNNs
are used to achieve performance that in many cases exceeds human accuracy
[2]. The cost for the superior performance is high computational complexity,
which is why graphics processing units (GPUs) have been the natural choice
in many DNN applications [2]. While GPUs are very useful for the compu-
tation of extensive tasks, their power consumption is far beyond what most
battery powered devices can provide [3].

For many DNN systems behind well-known applications like the trigger
word detection systems Siri, Hey Google and Alexa, the data processing
takes place in the cloud. Recent studies have shown that due to latency,
cloud dependency, security and privacy [4], it would be more efficient for
many of the applications to perform the DNN processing directly on the edge,
that is the end-user devices and Internet of Things (IoT) [2]. A challenge
in implementing the technology in devices on the edge, is that many of
these devices typically have limited resources in terms of memory, power
supply and computational power [2]. As a result, there has been an increased
demand for efficient, adaptive and scalable hardware for DNNs that can
perform on such devices [2][5].

Two important DNN types are feedforward networks and recurrent net-
works. Only within the last few years, hardware acceleration for recurrent
networks has started to draw more attention in research [2].

In order to address the demand for efficient hardware to execute recurrent
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networks on the edge, this master’s thesis seeks to develop a scalable and
low-power digital signal processor (DSP) together with an accelerator, that is
optimized for the inference of recurrent networks. A DSP is programmable,
providing the opportunity for adaptation to a fast evolving area. An efficient
accelerator can be exploited for reducing the power consumption.

1 Scope of Thesis

The goal of this master’s thesis work is to design a low power and memory
efficient DSP and a hardware accelerator, for inference of recurrent neural
networks (RNNs) on the edge. Two popular forms of RNNs are the long
short-term memory (LSTM) and the gated recurrent unit (GRU). The LSTM
includes more parameters than the GRU, while a similar accuracy can be
achieved with the GRU in many cases [6]. A recent study has shown that the
GRU can outperform the LSTM when used in speech recognition systems
[7]. In that scope, the DSP is designed for RNNs based on the GRU with
focus on speech recognition system as the application.

In order to achieve a low power and memory efficient design, implemen-
tation of optimization techniques plays a significant role. This leads to the
following question that is addressed in this thesis work.

• How and which type of optimization techniques can be applied to
achieve a low power and memory efficient design, that involves a DSP
and a hardware accelerator?

2 Related Work

With the extensive computational intensity required by deep neural network
algorithms, many powerful hardware accelerator designs have been proposed
both in academia and from the industry [5][8][9]. Most of them focuses on
feedforward and convolutional neural networks, and little attention has been
given to RNNs. Some of the interesting work where the acceleration of RNNs
have been studied are presented below.

One example from industry is Google’s tensor processing unit (TPU)
that can accelerate both MLPs, CNNs and RNNs. However, with a power
consumption of 40 watts, this unit is not fitted for battery powered devices
and IoTs, as the battery would quickly be drained and heating would be a
problem.
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Verhelst M. et al. [5] proposes a programmable LSTM accelerator called
Laika which can be used for always-on keyword spotting systems(KWS) 1.
One remarkable feature of this design, is that the power consumption is only
5µW while it achieves 60 nJ per inference. It is also doing processing in
real time, which is defined as computing a feature vector with 39 features
per 32 ms in this paper. On the other hand, with 32 kilobytes of memory
only small to medium sized LSTM networks can be realized in Laika and it
does not allow high flexibility to the system such as being able to add layers
such as a batch normalization layer, before or after LSTM layers. In some
RNN networks, these modifications can be essential and have an impact on
achieving high accuracy.

The Deep neural network processing unit (DNPU) [8] is another example
from the academia which implements an energy efficient deep learning pro-
cessor for mobile platforms. The multicore architecture achieves 8.1 TOP-
S/W energy efficiency using 34.6 mW power for both CNNs and RNNs.
DNPU is very flexible but not specific for speech recognition applications
and only 10 kilobytes out of 290 kilobytes of SRAM, is dedicated to RNN
and MLP networks, which does not allow for inference of larger RNN models.
A trade-off for the higher level of flexibility and larger memory space, is an
increased power consumption. With 34.6 mW, the DNPU cannot compete
with a dedicated LSTM accelerator like Laika and it is less attractive for
mobile platforms where a low power consumption is important.

3 Thesis Organization and Outline

With the objective for the thesis defined, the steps taken to reach the goal
are outlined below.

1. Literature research and establishing the design specifications with re-
spect to commonly used speech recognition systems.

2. Decide on pre-trained RNN model that is based on GRUs. For extrac-
tion of model parameters and to be used as a reference model.

3. Creation of the reference RNN model in C programming language, for
execution and profiling on a state-of-the-art DSP, to identify potential
bottlenecks.

1Always-on keyword spotting systems (KWS) have the same functionalities as trigger
word detection systems
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4. Development of the fixed-point RNN model in MATLAB for optimiza-
tion and verification purposes.

5. Design of optimized DSP using Cadence Tensilica and optimization of
the C-code.

6. Creation of of hardware accelerator in high definition language.

7. Verification of DSP and accelerator by simulations.

8. Synthesis and Place and Route of the hardware accelerator.

The work of this thesis is detailed over eight chapters. In chapter 2, the
theory behind deep learning, RNNs and the GRU is explained. Chapter
3, analyzes the aspects considered in defining the hardware requirements
and specifications. Optimization techniques are discussed in chapter 4. The
hardware implementation of the processor is explained in chapter 5. The
designed hardware accelerator is described step by step in chapter 6. In
chapter 7 are the system verification and implementation results presented
and discussed. Lastly, the 8th chapter concludes this thesis and ideas for
future work are provided.
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Chapter 2

Deep Learning - A Brain Inspired

Approach

Artificial intelligence (AI), is the science and engineering of making intelli-
gent machines, especially intelligent computer programs, according to John
McCarthy, a computer scientist who is considered to be one of the founders
of AI.

An area of AI is neural networks that are designed to perform tasks by
learning from examples. They are inspired by the way it is believed the
human brain works and with the advancements in technology, they have
become a key player in many applications [2]. Within the area of neural
networks are deep neural networks (DNNs) also referred to as deep learning.
DNNs have one or more hidden layers in between the input and output layer
and are able to learn more complex tasks [10].

In the brain the neuron is the main computational element [2]. As il-
lustrated in Figure 2.1, the neuron is essentially performing a computation
on input signals called dendrites and the output of the neuron is called an
axon. The axon branches out to become dendrites for other neurons. In
the synapse, where an axon becomes a dendrite, the signal is scaled with a
certain parameter or weight (W). The output of the neuron is defined as [2]

yj = f

(∑
i=1

Wixi + b

)
, (2.1)

where bis a bias and f(·) is a non-linear function, which allows for modelling
of non-linear systems. The bias is used to add a threshold i.e. it allows for
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Figure 2.1: Neuron as a computational element. Figure adapted from [2].

shifting the values.
Common used non-linear functions includes sigmoid (2.2), hyperbolic

tangent (2.3) and the rectified linear unit (ReLU) (2.4)1 [2] given as

σ(x) =
1

1 + e−x
, (2.2)

φh(x) =
ex − e−x

ex + e−x
, (2.3)

ReLU(x) = max
(
0, x
)
. (2.4)

A simple neural network that is inspired by the brain, is the multilayer
perceptron (MLP), also known as the fully connected layer (FC Layer), which
is a feedforward neural network. An example of this network is provided in
Figure 2.2. As seen, there is only one hidden layer, however most models
include many hidden layers. The computations are performed in a sequence,
where the output of a previous layer is the input to its following layer. By
applying equation (2.1), the network output y, is computed as follows:

y = f(U1h1 + U2h2 + U3h3 + b),

h1 = f(W11x1 +W21x2 +W31x3 + b1),

h2 = f(W12x1 +W22x2 +W32x3 + b2),

h3 = f(W13x1 +W23x2 +W33x3 + b3).

1A graphical representation for the three functions is found in Appendix B.
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Figure 2.2: Multilayer perceptron.

Feedforward neural networks or MLPs are efficient tools to do e.g. classi-
fications of items [11]. By increasing the number of hidden layers and the
neurons within, more complex tasks can be carried out. What is essential to
note about this type of network, is that for the input data no information
about possible dependencies in time are captured, meaning that an output
computed for a given input, is not affected by previous provided inputs to the
network. Another type of network is the recurrent neural network (RNN),
which is able to capture these short and long term dependencies in time in
the data. In the next section this type of network will be presented.

1 Recurrent Neural Network

A recurrent neural network is said to have internal memory by which it can
capture dependencies in a sequence of data. A feedback path is incorporated
to the network so the output is not only dependent on the current input but
also on the previous value of the network. A simple RNN with a feedback
path in the hidden layer is illustrated in Figure 2.3a.

As with the MLP, the network output y(t) is computed at each time
step t. A significant difference with RNN is the property of the hidden layer
which includes a feedback path. This feedback path causes the output of the

7



Figure 2.3: Simple RNN model (a) and the correspondent model unfolded in time (b).

hidden layer to become a non-linear function of not only the current input
x(t), but also on the previous value h(t-1) of the hidden layer, as shown in

h(t) = f
(
Wx(t) + Uh(t− 1) + bh

)
, (2.5)

where f is the non-linear function. The impact the previous value h(t-1) will
have on the next value, is determined by the parameter U. Looking at the
network unfolded in time, as illustrated above in part b of Figure 2.3, the
network output y(t) is computed for each time step as:

y(1) = f
(
V h(1) + bf

)
= f

(
V f
(
Wx(1) + Uh(0) + bh

)
+ bf

)
,

y(2) = f
(
V h(2) + bf

)
= f

(
V f
(
Wx(2) + Uh(1) + bh

)
+ bf

)
,

y(3) = f
(
V h(3) + bf

)
= f

(
V f
(
Wx(3) + Uh(2) + bh

)
+ bf

)
.

As the duration for input sequences lengthens, the simple RNN is not suc-
cessful in capturing the data dependencies, which leads to a drop in correct
predictions. This is an issue known as the vanishing gradient problem that
occurs during the training of the network, and it becomes more and more
apparent as the sequences grow with time, due to the large compositions of
functions. The vanishing gradient problem is discussed in more details in
the next section.
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2 Training of Neural Networks

Training of neural networks is important in order for a network to do the task
it is designed for, while keeping the difference between the network output
and what is expected at a minimum. Training a neural network means
determining the network parameters that minimizes this difference, which
is typically defined by an error function. A common approach is to first
define the error function and then minimize it by using gradient descent2

and back-propagate an error signal through the layers of the network, in
order to update the network parameters.

To train a simple RNN, as presented in the previous section, an input
data set and a target sequence are required and the error function must be
defined. By using gradient descent, the derivative (or gradient) of the error
function is computed with respect to each of the weights V, U and W (see
in Figure 2.3) as,

∂E

∂V
=
∑
t

∂Et

∂V
,

∂E

∂U
=
∑
t

∂Et

∂U
,

∂E

∂W
=
∑
t

∂Et

∂W
.

For V, the derivative is determined using the chain rule as,

∂Et

∂V
=

∂Et

∂y(t)

∂y(t)

∂V
.

For U and W, the derivative is determined in the same way, which for U is,

∂Et

∂U
=

∂Et

∂y(t)

∂y(t)

∂h(t)

∂h(t)

∂U
.

As seen in the unfolded network under part b in Figure 2.3, the term h(t-1)
depends on U from the current time step and back to the first time step.
The derivative of U is therefore the sum of all of the gradients,

∂Et

∂U
=

t∑
k=0

∂Et

∂y(t)

∂y(t)

∂h(t)

∂h(t)

∂h(k)

∂h(k)

∂U
. (2.6)

2Gradient descent is an iterative algorithm for finding the minimum of a differentiable
function.
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This method is called Back-propagation Through Time and is a common
way of training recurrent neural networks. However, for sequences with long
duration, the composition of functions evolves and consequently the longer
chain rule of derivatives, increasing the risk of the gradients becoming very
small or vanishing. Looking at equation 2.6, the derivative term ∂h(t)/∂h(k)
is a chain rule in itself and involves many multiplications of derivatives of
activation functions as the sequence duration increases. For example, for
t=3,

∂h(3)

∂h(0)
=
∂h(3)

∂h(2)

∂h(2)

∂h(1)

∂h(1)

∂h(0)
.

There is a high risk of multiplying small numbers, and the result of this
is referred to as the vanishing gradient problem. One way to deal with
this problem is to implement a more advanced hidden layer, like the gated
recurrent unit, which will be introduced in the next section.

3 Gated Recurrent Unit

The gated recurrent unit was first introduced by Kyunghyun Cho in 2014
[12]. It was motivated by the long short term memory (LSTM) unit, orig-
inally proposed by Graves and Schmidhuber [13]. An advantage with the
GRU is that it is less complex to compute and requires less parameters [12].
The central idea behind the LSTM and the GRU units is a memory cell that
can maintain its state over time and gating units for controlling the data
flow in and out of the memory cell [14]. This approach helps to overcome
the vanishing gradient problem.

Looking at the GRU, the three main components are referred to as the
update gating unit, reset gating unit and the memory cell as illustrated in
Figure 2.4. For readability x(t), h(t) and h(t-1) is denoted as xt, ht and ht-1.
The same notation is used for u, r and ĥ.

The output h(t) of the GRU unit is used both as a feedback for the
hidden layer itself and as an input for the next layer in the network.

The memory cell stores information used to capture long and short term
dependencies in the input sequence. The output of the cell ĥ(t), is a potential
candidate to become the new h(t), which is the GRU output. Whether it is
used or not is determined by the update gating unit. A hyperbolic tangent
function is utilized for the activation function. The memory cell is defined
as in [12]

ĥt = φh

([
Wcxt

]
+
[
Uc
(
rt � ht−1

)]
+ biasc

)
. (2.7)
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Figure 2.4: High-level diagram of a Gated Recurrent Unit. © denotes element-wise
multiplication and 1- refers to the subtraction of 1 by ut.

W and U are the weight matrices and the (c) denotes it belongs to the
memory cell. The size of matrix W is "number of hidden GRU layers" ×
"number of inputs", while the size of matrix U is "number of hidden GRU
layers" × "number of hidden GRU layers". xt and ht-1 are the respective
vectors for the input and the previously hidden layer. � denotes element-wise
multiplication.

The update gating unit is used to decide how much information of h(t-1)
will carry over to the new value of h(t). A sigmoid activation function is used
in generating the output value of unit, that is between zero and one. For a
value equal to one, all of h(t-1) will carry over to h(t) and the candidate for
the new h(t) will not be used, due to the subtraction by one in the output
stage. A gate value of zero, means no information from h(t-1) will be carried
over to h(t) and instead the output of the memory cell is used as the new
output value of the GRU. In that way it functions like a gate regulating the
flow of h(t-1) through the unit.

The update gating unit is defined as [12]

ut = σ
([

Wuxt

]
+
[
Uuht−1

]
+ biasu

)
. (2.8)

The reset gating unit determines how relevant h(t-1) is for the compu-
tation of ĥ(t) in the memory cell. A sigmoid activation function is utilized
in the unit. An output value of one indicates a high relevance while a value
of zero means that h(t-1) is currently not relevant and by that it will not be
used for the computation in the memory cell. In that case, only the current
input x(t) is impacting the computation in the memory cell, and the reset
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gating unit is said to be "resetting" the memory cell for previous stored val-
ues or dependencies. The reset gating unit is similar to the update gating
unit, though the weights are different. It is defined as in [12]

rt = σ
([

Wrxt

]
+
[
Urht−1

]
+ biasr

)
. (2.9)

The output stage is defined by [12]

ht =
(
1− ut

)
ĥt +

(
utht−1

)
. (2.10)

A GRU layer will usually consists of many recurrent layers. In that case
W and U are the respective weight matrices in the equations (2.7) to (2.9)
while x and h are vectors. As each hidden layer has separate reset and
update gating units, each hidden layer will learn to capture dependencies
over different time scales. Those units that learn to capture short-term
dependencies tends to have a reset gating unit that is frequently active, while
those that capture longer-term dependencies will have an update gating unit
that is mostly active [12].

In the next chapter, we will discuss the aspects of speech recognition
systems, that will have an impact on the system design.
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Chapter 3

System Design Aspects

In this chapter, speech recognition systems are discussed in order to un-
derstand its impact on establishing the hardware requirements. In the first
section, speech recognition systems are explained in more details. Then in
section two, the hardware requirements are defined. In the last section, the
RNN model that is used as a reference model is presented.

1 Speech Recognition Systems

A computer’s ability to identify and respond to sounds or words in the hu-
man language is referred to as speech recognition. The applications of speech
recognition are many, from trigger word detection and interactive voice re-
sponse systems to machine translation1 and transcription. Within the area of
speech recognition are acoustic and language modelling. Acoustic modelling
is applied to an audio signal in order to create a probability distribution over
which phoneme is most likely to represent the given sound. Phonemes are
the sounds used to pronounce the words in the human language. Language
modeling is the task of assigning a probability to sentences in a language.
[. . . ] Besides assigning a probability to each sequence of words, the language
models also assigns a probability for the likelihood of a given word (or a
sequence of words) to follow a sequence of words [15].

The fast paced technological developments within speech recognition,

1Machine translation is the field of which a computer is used to translate text or speech
from one language to another.
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which involves deep learning, have surpassed previous popular methods such
as Hidden Markov Models2 (HMM). Today, recurrent neural networks that
is based on either the LSTM or the GRU, is the preferred method for speech
recognition systems.

In acoustic modeling the raw input data (audio signal) is first sampled
and then decomposed into its respective frequency components. A method
for this, is to represent the input data by the Mel-Frequency Cepstral Co-
efficients (MFCCs). The MFCCs are computed from an audio signal where
the complete collection of coefficients, represents a part of the audio signal.
Several MFCC methods have been developed through the years with varying
sample rates and number of output coefficients. Most commonly is to use a
sampling rate of either 8,000 or 16,000 samples per second is used. From the
sampled data, frames are created that contains, typically between 20 - 40 ms
of data, with an overlap of 10 ms. This means that for a sampling rate of
16,000 samples per second and a frame length of 20 ms, each frame is gen-
erated from 320 samples. The MFCC output coefficients are then computed
from each frame, resulting in 20 - 40 coefficients, depending on the MFCC
method [17]. Another approach is to use a convolutional neural network
(CNN) for generating the input to the acoustic model. Here the audio data
is sampled at a rate of 44,100 samples per second and frames containing 7.3
ms of data are created. This will typically result in larger input vectors for
the RNN model [18][19], up to 256 inputs per vector. The advantages and
drawbacks of the different approaches are not considered to be within the
scope of this thesis.

In language modeling, the written words are converted into a numerical
representation, that can be processed by the RNN. The numerical representa-
tion is also referred to as word embeddings. In the area of language modeling,
a well-known method for creating word embeddings is the word2vec3 toolkit,
developed by a team of researchers at Google in 2013. The word embeddings
created by word2vec is a one-dimentional vector containing features related
to the word. The length of the vector can range from 20 and up to several
hundreds [20].

For this work to be feasible within the time frame of the thesis’s, the
focus will be on acoustic modeling, thus language models will not used in
the verification of the hardware design. Although, the hardware will be able
to process language modeling that utilize one-dimentional word embedding
vectors.

2A detailed explanation of Hidden Markov Models can be found in [16].
3https://code.google.com/archive/p/word2vec/
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2 Hardware requirements

The hardware requirements are derived from the previous mentioned aspects
related to speech recognition systems. The requirements are detailed below
and include the architecture of the RNN, the need for programmable and
scalable hardware and the required processing speed.

Architecture: For inference of a complete RNN, the hardware is re-
quired to do process the GRU and an FC layer. The GRU is the hidden
layer while the FC layer is commonly used as an output layer.

Programmability and scalability: To accommodate the inference of
RNN models utilizing different input forms (MFCC and CNN) on the same
system on a chip (SoC) design, the hardware is required to process RNNs
with various number of inputs, number of hidden layers and number of GRU
layers. Also, as the research for a good balance between model accuracy and
complexity is ongoing, a hardware implementation should be scalable and
reconfigurable [5]. With an increasing number of inputs and layers, the need
for memory storage also increases, thus a maximum is set to 256 inputs, 128
hidden layers and 2 GRU layers. The maximum sized RNN then contains a
total of 247,681 parameters and when represented in floating point, requires
991 kilo bytes of memory storage.

Processing speed: For real-time processing, the hardware is required
to do one classification every 20 ms for MFCC represented inputs and within
7.3 ms for other types of input representations.

3 Reference Recurrent Neural Network

A reference RNN model is needed for verification of the hardware architec-
ture. As the focus of this thesis is not to develop and train a DNN model,
a pre-trained GRU-based RNN4 is used. The application of the model is
trigger word detection. This model as illustrated in Figure 3.1, takes 256
inputs per time step, includes two GRU layers, batch normalization and a
fully connected (FC) layer. Batch normalization is usually added to a model
after a CNN, RNN or a FC layer to normalize the output value. The effect
of this, can be an significant increase in learning rate [21]. Training of the
model is carried out in Keras, which is a high-level application programming

4The model is a part of the Sequence Learning module found on the online learning
platform Coursera (https://www.coursera.org).

15



Figure 3.1: Reference model.

interface (API) running on top of TensorFlow. A dataset consisting of 4,000
examples is used for training the model. For evaluation of the inference
model, a dataset containing 25 examples is available. Each example has a
size of 1,375×256 (time steps × inputs). Evaluating the model on the 25
available examples results in an accuracy of 95%. There are in total 247,681
parameters, all represented in 32-bit floating point.

3.1 Trigger Word Detection

Trigger word detection systems are systems that detects pre-defined key-
words, typically from a user, which then "wakes up" or activates other func-
tions or hardware units. Examples of this includes the Amazon Echo with
the wake up word "Alexa", Apple Siri can be woken up by "Hey Siri" and
Google Home having the keyword "Okay Google". However, these systems
does not work without an Internet connection. An RNN speech recognition
system can be trained to identify any keyword. An output of such system is
given in Figure 3.2. It is a binary output, as any word spoken is either the
correct wake up word or not. Since trigger word systems are always on, low
power consumption is of great importance. Other models can learn to detect
more than one keywords, however this thesis’s focus is one trigger word.

Figure 3.2: Output of the trigger word detection systems detecting one keyword.
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Chapter 4

Optimization Techniques

The goal of this thesis is to design a DSP that is integrated with an ac-
celerator, for real-time inference of GRU based RNNs, which has low power
consumption and is memory efficient (minimizing the memory storage needed
for the application).

Power and energy consumption are important factors in hardware design.
Power consumption has an impact on e.g. the size of the power supply and
the dimensioning of the interconnecting wires within the silicon chip. Energy
consumption is the power consumed over a specified time interval. It has an
impact on e.g. the lifetime of a battery. Thus, it is important to minimize
the power and energy consumption, when designing hardware for hand-held
devices. A more in-depth explanation of power consumption and methods
for reducing it, is detailed in the first section.

Reducing the required memory capacity is desirable for reasons such as
smaller area in silicon and also for a reduced the power consumption. A
memory efficient design is obtained by reducing the word length, that is
the number of bits used in representing the data. For this, converting the
data type from floating point to fixed point number representation and word
length quantization are exploited. This process is detailed in section two and
three.

Activation functions are known to be computationally heavy functions,
and a reduction in execution time can be obtained by doing approximations
of these. This is detailed further in section four.
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1 Design for Low Power Consumption

When designing hardware for low power, it is important to look at the com-
ponents that make up the total power consumption. The total power con-
sumption can be express as the sum of the dynamic, static and direct path
power consumption and is given in by [22]

Ptotal = Pdyn + Pstat + Pdp . (4.1)

The static power consumption is caused by a leakage current within the tran-
sistor (CMOS technology), when there is no switching activity. It is given
by Pstat = IstatVdd [22]. Besides the supply voltage, the leakage current is
impacted by the threshold voltage of the device. Using a process technology
with higher threshold voltage, results in a lower leakage current [22]. How-
ever, a higher threshold voltage reduces the performance of the transistor i.e.
how fast it can switch from zero to one, which is why considerations should
be taken when designing hardware.

The contribution to the direct path power consumption comes from the
direct path that occurs between the voltage supply and ground during switch-
ing of the transistors (NMOS and PMOS). It will not be addressed in this
thesis.

The dynamic power consumption comes from the switching activity when
the system is in operation and is given by [23]

Pdyn = α CL Vdd
2 f, (4.2)

where α is the switching activity, CL is the load capacitance, VDD is the sup-
ply voltage and f is the system clock frequency. It is noted that reducing the
supply voltage has a quadratic effect on the power consumption. However,
there is usually a lower limit for the supply voltage which is set by external
factors [22]. Another approach is to exploit parallelism in the design and by
that reduce the clock frequency. In [23] it is stated that parallel execution is
effective for improving the energy efficiency, as the operations are processed
in less time, allowing for a lower clock frequency. By executing a number of
operations in parallel, the dynamic power consumption can be reduced by a
factor β as given by [23]

P p
dyn =

Pdyn

β
, (4.3)

where β is the number of operation to execute in parallel and P p
dyn is the dy-

namic power consumption after parallelism. The trade-off for this approach
is an increased area in silicon.
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The energy dissipation is the power consumed over a specified time pe-
riod, as given in [23]

E(t) =

∫ t2

t1
P (t) dt. (4.4)

Lowering the power consumption by parallel execution will also have a pos-
itive impact on the energy dissipation.

Parallelism can be efficiently exploited by moving large amounts of se-
quential operations from the DSP into an accelerator, that is optimized for
parallel executions. In the next section it is discussed how these critical parts
of the design are identified.

1.1 Identifying Critical Parts by Model Profiling

When designing an efficient accelerator it is critical to know which parts of
the design, that would benefit the most from applying optimization. These
parts which are potential bottlenecks in the design, could be computational
heavy parts of an algorithm and many sequential operations. To identify the
potential bottlenecks of the GRU algorithm and the RNN model, a C-code
is developed for execution in a state-of-the art DSP. For this thesis, Tensilica
by Cadence Design Systems is made available. Tensilica is a tool used to
design and customize processors. The developed C-code is executed on an
Xtensa Fusion F11 processor. The Fusion F1 DSP is the industry leader
for voice-trigger/ wake-on-voice applications [24]. The profiling results are
presented in Table 4.1.

Table 4.1: Result of profiling the full sized RNN model on the Xtensa Fusion F1 DSP.

Function name Clock cycles Time spent(%)
GRU 752,684 88.01
∗ Gating unit U and R 252,125 (33.49)
∗ Memory cell 197,672 (26.28)
∗ tanh 298,788 (39.69)
∗ Output stage 4,099 (0.54)

Batch Normalization 99,366 11.61
Fully Connected 527 0.06
Sigmoid function 2,703 0.32

1The Fusion F1 is an Xtensa LX7 processor optimized for low power and includes e.g.
execution units and instruction sets for floating point operations.
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Firstly, it is observed that the most time is spent on processing the GRU unit,
which accounts for 88% of the total processing time. Within the GRU, the
hyperbolic tangent function takes up most of the processing time followed by
the two gating units (U and R) and then the memory cell. Also it is noted,
that for the Fusion F1 to do real-time processing of a full sized RNN model,
it would need to operate at a rate of 200 million cycles per second.

In order to reduce the processing time, it is decided to design the hard-
ware accelerator for execution of the memory cell, which includes the hy-
perbolic tangent function and the two gating units, U and R. In this way
data level parallelism can be exploited in order to reduce the system fre-
quency and the power consumption. The trade-off for introducing parallel
execution is extra hardware, which increases the area in silicon. The batch
normalization, fully connected layer, sigmoid function and the output stage
of the GRU will be executed in Xtensa processor, that is optimized by adding
instructions tailored for the respective functions.

In the next section it is discussed how changing the number representa-
tion, is an efficient method for not only reducing the model size, but also
reducing the power consumption.

2 Floating point to fixed point conversion

Converting the data type from floating-point to fixed-point representation is
an efficient methods for reducing the word length. Significant improvements
may be achieved in terms of reduced area and power consumption and higher
performance. For example, a reduction of the cycle count by 75% and of
the energy consumption by 76% has been reported for an MPEG-2 video
compression algorithm [23]. The conversion is a trade-off between model
accuracy2 and implementation costs like area and power consumption. It
is therefore necessary to analyze the loss in accuracy versus the parameters
used for the fixed point conversion, that is the word length and the position
of fractional point [23].

However, for binary classification and with data sets having a significant
disparity between positive and negative labels, the accuracy can be a mis-
leading metric. Take e.g. the output of the FC layer for a single example
of the data set, as presented in Figure 4.1. Here the accuracy for the fixed
point model is calculated to 95%. But in the case where the probability is
zero for all 1,375 time steps, the accuracy would still be above 90% while two

2See Appendix A for definition and more details about accuracy
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Figure 4.1: Output of fully connected layer followed by a sigmoid function.

positive predictions/trigger words are missed. As a result, when converting
into fixed-point representation, the following parameters for a floating-point
and a fixed-point model will be compared.

• TP: True Positives - (model predicted correct, positive ’1’)

• TN: True Negatives3 - (model predicted correct, negative ’0’)

• FP: False Positives - (model predicted positive, but reality is negative)

• FN: False Negatives - (model predicted negative, but reality is positive)

Two models are created in MATLAB, a reference model using floating-
point numbers and a fixed-point model. In fixed-point the numbers are
represented in two’s complement using 16-bit (2 integer bits and 13 fractional
bits). The comparison of the two models is presented in Table 4.2. As

Table 4.2: Model predictions.

Floating point Fixed point

TP 20 20
TN N/A N/A
FP 1 1
FN 27 27

floating-point numbers are represented with 32-bit, the model size can be
reduced with 50% by converting into 16-bit fixed point numbers. This is

3The number of true negatives is not available from the validation dataset.
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while keeping a prediction rate that is the same as for floating-point data
types. Another method to further reduce the word length is quantization.
The use of this is discussed in the next section.

3 Quantization

Recurrent neural networks operates with a large amount of parameters. The
reference model used for this thesis includes two GRU layers, which in total
accounts for 246,528 parameters. It would require 987 kilobytes of mem-
ory to stored every parameter as floating-point and 494 kilobytes for 16-bit
fixed-point numbers. Being able to reduce the number of bits necessary for
each parameter, without affecting the number of correct detections, would
have a positive impact on the area and power consumption. Quantization
is a method for reducing the word length. According to previous studies
[25] [26], quantization can be applied to the RNN parameters in order to re-
duce the word length down to 8-bit. This is without causing a considerable
decrease in the accuracy and without retraining the model or using other
techniques such as quantization aware training [26]. On the other hand, ap-
plying quantization for reducing the word length to e.g. 4-bit would require
retraining of the model or the use of quantization-aware training which is
not under the scope of this thesis.

Quantization can be explained as mapping a large number of inputs into a
smaller set of values. In Figure 4.2, a floating-point number is first converted
into a 4-bit fixed-point number and then it is quantized using 2 bits. Some
of the original information is lost in the process, which is referred to as the
quantization error and it should be taken into consideration when applying
quantization.

Figure 4.2: Quantization of a 4-bit fixed-point number into 2-bit word.
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All of the 246,528 GRU parameters currently represented by 16-bit fixed-
point numbers are quantized into 8-bit and the prediction rate obtained from
the MATLAB model is equal to those presented in table 4.2. By applying
quantization the required memory storage has been further decreased to 246
kilobytes resulting in a total reduction of 75%.

In the next section, the approximations of activation function will be
detailed.

4 Activation Functions

Activation functions are computationally heavy functions. The sigmoid and
the hyperbolic tangent, as defined in equation (2.2) and (2.3), requires divi-
sion and exponentiation, that are not practical for implementing in hardware
[27]. In addition, as it was observed during profiling of the network, the hy-
perbolic tangent function occupies the largest amount of the processing time.
In this section it is discussed how the hyperbolic tangent and the sigmoid
functions are approximated for efficient hardware implementation.

4.1 Hyperbolic Tangent Approximation

The hyperbolic tangent is the activation function used in the memory cell of
the GRU layer. Common approaches used for hardware implementation in-
cludes piecewise linear approximation and look-up tables (LUTs) [27]. LUTs
are faster but take up more area in silicon while piecewise linear approxi-
mations are slower but they utilizes a smaller in area [27]. An optimized
approach based on the LUT, is the range addressable lookup table or RA-
LUT. It is faster than a LUT and consumes less area [28]. In a LUT, every
stored table value corresponds to a single input. For a RALUT, every stored
table value corresponds to a range of inputs. This approach allows for a
great reduction in the number of required table values, especially if the table
values are similar over a range of inputs, which is the case for the hyperbolic
tangent function [28].

In this thesis, the hyperbolic tangent function is approximated by using
the RALUT approach. A fixed-point model easily adaptable for hardware
implementation was created in MATLAB. By exploiting the symmetrical
behavior of the function, the approximated output is determined based on
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the input divided into three segments, given by:

tanhapprox(x) =


x : 0 ≤ x < 0.26 (Seg.1)
x− ralutout(x) : 0.26 ≤ x < 2.30 (Seg.2)
1 : x ≥ 2.30 (Seg.3)

For the second segment, the table values stored in the RALUT, are calculated
as:

ralutout(x) =

{
x− tanh(x) : 0.26 ≤ x < 1.00
1− tanh(x) : 1.00 ≤ x < 2.30

By using 92 table values, each represented by 11 bits, a maximum error of
0.006 is obtained for segment one and two and 0.02 for the third segment. In
Figure 4.3 is the error presented for an input vector containing the numbers
from 0 to 3 with a step size of 0.001. A total of 1,012 bits are required for
the RALUT. According to [27] this approach can provide an output in 2.12
ns, meaning it can complete in one cycle when the operation frequency is
less than 470 MHz. A great performance improvement is gained but the
trade-off is an increased area in silicon, required for the logic used to store
the 92 table values.

Figure 4.3: Difference between MATLAB tanh and RALUT approximation.

4.2 Sigmoid Approximation

A sigmoid function is utilized as the activation function in the GRU and
for the two gating units update and reset, as detailed in chapter 2. For
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the reference model that was developed in Keras, the sigmoid function is
approximated using a hard sigmoid, given by:

hardsigmoid(x) =


0 : x < −2.5
1 : x > 2.5
0.2× x+ 0.5 : −2.5 ≤ x ≤ 2.5

A hard sigmoid is more suitable for hardware implementation as it does
not include division and exponentiation. As for the reference model, a hard
sigmoid will be utilized for the two gating units in the hardware accelerator.

The FC layer also includes a sigmoid activation function. As the FC
layer will be executed in the DSP, the sigmoid function is implemented by
a piece-wise polynomial approximation as proposed in [29]. This approach
is simple to implement in the processor and it is faster than the sigmoid
function. Also, it is better suited for a fixed-point representation that is
based on integer data types. The piece-wise polynomial approximation is
designed to have a maximum error of 0.021, as illustrated in Figure 4.4 and
it is defined as [29]:

polyapprox(x) =


0 : x ≤ −4

0.5× (1− |0.25× x|)2 : −4 < x < 0
1− 0.5× (1− 0.25× x)2 : 0 ≤ x < 4
1 : x ≥ 4

Figure 4.4: Comparison of the sigmoid function and the piece-wise polynomial approxi-
mation.

In the next chapter follows a detailed description of the design and con-
figuration of the DSP.
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Chapter 5

DSP Design and Implementation

To design a DSP, the software tool Tensilica by Cadence is made available for
this thesis. From this tool, the Tensilica processor Xtensa LX7 together with
the data book is used as a framework for designing an optimized DSP. The
Xtensa LX7 is a 32-bit RISC processor based on the Harvard architecture1.
It is configurable and extensible2 allowing processor designers to tailor the
architecture to specific applications. Changing the processor’s instruction
set, memories, and interfaces can make a significant difference in its effi-
ciency and performance, particularly for the data-intensive applications that
represent the “heavy-lifting” of many embedded systems [31].

A high level diagram of the DSP and the hardware accelerator design is
presented in Figure 5.1. As illustrated the main functionality for the DSP,
is the execution of the output stage of the GRU, the batch normalization
layer as well as the FC layer including the sigmoid approximation. For a
low power design it is important to keep the number of cycles needed in
processing these functions at a minimum. It is also required that the DSP
can process data that is represented in fixed-point notation. For this to be
feasible, all unnecessary units in the Xtensa LX7 configuration is taken out,
while application specific instructions, special registers, interface ports and
software are designed. By adding tailored instructions to the instruction set
architecture of the DSP, the processor executes the target application code

1This term is used today to apply to machines with a single main memory but with
separate instruction and data caches [30].

2Extensibility’s goal is to allow features to be added or adapted in any form that
optimizes the processor’s cost, power consumption, and application performance [31]
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in fewer cycles. This allows for running the DSP at a lower clock frequency
and possibly also at a lower supply voltage, which in turn reduces the power
dissipation and the energy consumption.

Figure 5.1: High level block diagram of the system architecture.

First-In First-Out (FIFO) storage units are utilized for transferring data
from the hardware accelerator to the DSP. Only a small FIFO is necessary as
just one 16-bit word is transferred at a time. When a FIFO read is initiated
from the software, the processor will stall the pipeline and enter a low power
mode until a ready signal is given from the FIFO, indicating that new data
is available. If the processor is required to work on other tasks while waiting
for the accelerator, an interrupt would have to be configured. However this
would also increase the power consumption.

A memory unit is used to provide data from the DSP to the accelerator.
This allows for the DSP to upload the next input data, while the accelerator
is processing data. To avoid unnecessary data flow between these two units,
a direct connection is made between the accelerator and the memory units
containing the network parameters.

The changes made to the configuration, creation of application specific
instructions and the software are discussed in the following sections.
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1 DSP Configuration

The modifications made to the configuration has led to the DSP architecture
as illustrated in Figure 5.2. The physical area is 0.106 mm2 including 2
kilobytes of instruction RAM and 8 kilobytes of data RAM. The estimated
power consumption is 184 µW for an operation frequency at 1.5 MHz. The
operation frequency can be scaled up to 430 MHz, with an estimated power
consumption at 18.75 mW.

Figure 5.2: Block diagram of DSP architecture.

Local storage units for the data and the instructions can be configured
in several different ways using ROM, RAM and/or caches. According to
[31], using instruction RAM and data RAM is more power efficient than
using instruction and data caches of a similar size, as there are no tag arrays
and no tag comparisons to determine a cache hit or miss. For this design
one instruction memory (SRAM) and two data memory units (SRAM) are
configured.

The pipeline length is configurable for either five or seven stages. A
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length of five is configured to match the access latency for the memory units
used in this design. A seven stage pipeline, includes an extra memory stage
which provides an extra clock cycle for slower memory units.

The register file is configured with 32 general purpose registers (GPR).
There is an option to extend the size to 64 registers. Some applications will
executed faster3 with more registers. The drawback is that more gates are
used to implement the extra registers. Based on the results from the software
profiling, it was not found necessary to add more GPRs. Three application
specific registers at respectively 1x64-bit and 2x128-bit are designed as tem-
porary storage for data that are to be written to the memory units containing
the GRU parameters (64-bit) and for the memory unit storing the inputs for
the accelerator (128-bit).

A secondary load/store unit is added to the configuration to match the
two data memories and it allows for two memory operation at the same time.

External ports are created for interfacing the processor to the FIFO’s,
the hardware accelerator (control and status signals) and for the input and
output data of the RNN.

An AXI-bus is added for access to off-chip memory. Assuming new net-
work parameters can be downloaded in this way, although this functionality
is not within the scope of this thesis.

New functional units are automatically inferred into the pipeline by the
software, when creating application specific instructions that involves compu-
tations. In the next section are the application specific instructions detailed.

1.1 Application Specific Instructions

Application specific instructions are designed in order to reduce the num-
ber of cycles needed for the computations in the the output stage of the
GRU algorithm, the batch normalization, the fully connected layer and for
processing 16-bit fixed point computations.

Three instructions are designed to perform the computations that are
executed in the output layer of the GRU algorithm. The algorithm was
detailed in chapter 2, equation (2.10) and repeated here for simplicity:

ht =
(
1− ut

)
ĥt +

(
ut ht−1

)
.

3If the number of registers required exceeds the number of physical register, excess
registers will be moved to memory, which is more time consuming.
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One instruction is performing the element-wise multiplication of the two
vectors, ut and ht−1. They are both 1-dimensional vectors with "the num-
ber of hidden GRU layers" elements. The second instruction is performing
the subtraction, 1 − ut. While the last instruction is doing the remaining
multiplication and addition.

The batch normalization was introduced together with the reference
model in chapter 3, section 3. It is given by

output =
(input−mean)√
variance+ ε

× γ + β , ε = 0.001 (5.1)

where mean, variance, gamma and beta are parameters obtained from train-
ing the model.

Three mathematical operations including square root and division can
be avoided, by reducing the expression into

output = (input−mean)× factor + β (5.2)

and calculate the value for factor off-line. This will have a significant impact
on the speed up of the batch normalization layer. One instruction is created
to perform the batch normalization as given by (5.2).

For the FC layer, which is given by

output =
n∑

t=1

input(t)× weight(t) + output(t− 1), (5.3)

an instruction is created to do the multiply and accumulate operation. The
fixed-point representation has been extended with two integer bits to avoid
overflow.

Finally, an instruction is created to perform the piece-wise polynomial
approximation of the sigmoid function as described in chapter 4, section 4.2.
This instruction generates an 16-bit output, to keep the word length of the
network output, the same as the initial network input.

1.2 Software Implementation

The functionality of the software developed for the DSP, is illustrated in
Listing 5.1. The code makes use of the application specific instructions
described in the previous section.
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int main ( )
for ( counter <= number_of_GRU_layers )

while ( counter < number_of_hidden_layers )
read new value from FIFO gate u
c a l c u l a t e Gate_u ∗ h( t−1)
c a l c u l a t e 1 − Gate_u
counter + 1

while ( counter < number_of_hidden_layers )
read new value from FIFO memory c e l l
counter + 1

while ( counter < number_of_hidden_layers )
h( t ) = mult ip ly and add
bn_out = batch norma l i za t i on
i f (1 l a y e r GRU a r ch i t e c t u r e )

update r eg i s t e r_ht with h( t )
perform f u l l y connected c a l c u l a t i o n
when ( counter modulo 8 == 0)

wr i t e r eg i s t e r_ht to memory
else // 2 l a y e r GRU ar c h i t e c t u r e

i f (GRU lay e r 1)
update r e g i s t e r_xt with bn_out
update r eg i s t e r_ht with h( t )_layer_2
when ( counter modulo 8 == 0)

wr i t e r eg i s t e r_ht to memory
wr i t e r e g i s t e r_xt to memory

else // GRU lay e r 2
update r eg i s t e r_ht with h( t )_layer_1
perform f u l l y connected c a l c u l a t i o n
when ( counter modulo 8 == 0)

wr i t e r eg i s t e r_ht to memory
counter + 1

Sigmoid func t i on
return 0 ;

Listing 5.1: Pseudo code developed for the DSP software.
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1.3 Profiling

The C-code running on the optimized processor was profiled to obtain the
number of clock cycles required for each function. The result is presented in
Table 5.1.

Table 5.1: Result of profiling DSP optimized for the GRU.

Function name Fusion F1 Optimized Speed Up
GRU Output stage 4,099 1,293 x3,17
Batch Normalization 99,366 3,712 x26.76
Fully Connected 526 896 x0.41
Sigmoid function 2,703 35 x77.22
Total 106,694 5,936 x17.97

In general improvements are achieved for the optimized processor and as
expected, with the largest gain achieved for the optimized batch normaliza-
tion and the approximated sigmoid. An interesting result is that no speed
up was achieve for the FC layer. However, the higher amount of cycles (370)
used for the FC layer, has little impact on the total speed up achieved. The
time spent on improving the C-code for the FC layer, should be considered
with respect to how much extra speed up can be gained.

In the next chapter, the design and implementation of the hardware
accelerator is explained.
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Chapter 6

Accelerator Design and Implementation

This section focuses on illustrating the implementation of the GRU layer
as a generic hardware accelerator. First, the level of applying parallelism
is discussed. Then the general architecture of the design is given including
the signals received from outside. Secondly, main modules are explained in
detail. Lastly, the memory organization is given in order to complete the
general understanding of the hardware accelerator as a whole and provide a
better grasp of how many memory units are used and where.
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1 Level of parallelism in Accelerator

The purpose of the accelerator is to reduce the system operation rate1 in or-
der to obtain a lower power consumption. The idea is to execute arithmetic
operations in parallel instead of having sequential operations at a higher
speed. From the profiling results, it was found that the two gating units
and the memory cell contains many sequential operations and in addition,
the memory cell also includes the computational heavy hyperbolic tangent
function. For a maximum sized RNN, there are in total 147,968 sequential
arithmetic operations (multiplications and additions), not counting the ac-
tivation functions. The equations making up these three units, as defined in
chapter 2, are listed here:

ut = σ
([

Wuxt
]

+
[
Uuht−1

]
+ biasu

)
,

rt = σ
([

Wrxt
]

+
[
Urht−1

]
+ biasr

)
,

ĥt = φh

([
Wcxt

]
+
[
Uc
(
rt � ht−1

)]
+ biasc

)
.

From the equations, it is observed that the two gating units, U and R, are
completely independent and can be executed in parallel, while the memory
cell is dependent on the output from the reset gating unit. Although, by
starting the computations of W multiplied by x(t), the execution of the
memory cell can be started together with the gating units. In that way, only
the second part of the equation remains to be computed, which is Uc

(
rt �

ht−1

)
. Also memory access is reduced in this way. The total number of

sequential operations are now reduced to: the number of operations required
for the reset gating unit plus the number of operations needed for the second
part of the memory cell. For a maximum sized RNN this is 66,176 operations
and 49,792 operations for 128 inputs while for 40 inputs (which is the number
of inputs for a complete set of MFCC) it is 38,528 operations.

In column two of Table 6.1, the number of arithmetic operations required
by the accelerator are presented, when extending the parallelism to include
processing of more than one input at a time. The total number of arithmetic
operations required for processing the complete RNN for one time step is
found in the third column. For this calculation it is assumed that the LUT
used for the hyperbolic tangent approximation, takes one cycle per look up.
The hard sigmoid function is assumed to take two cycles per input. The
number of hidden layers is assumed to be 128. In the last column is rate of

1This is the system operating frequency.
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which the system is required to operate at, to finish the computations in 7.3
ms.

Table 6.1: Impact on system operation rate for different levels of parallelism with 256
inputs.

Level of Arithmetic Operations System

parallelism Accelerator Full RNN operation rate
1 66,176 127,430 17.5 MHz
4 16,800 41,052 5.7 MHz
8 8,528 26,726 3.7 MHz

The same data for 40 inputs are presented in Table 6.2. It is noted that
by continuing to increase the number of parallel executions, the computa-
tional bottleneck is moved from the accelerator and into the DSP. For a full
sized RNN and processing of eight input in parallel, the total number of op-
erations for the accelerator is 14,940 and 11,786 for the DSP. This provides
for balance system with respect to the computational workload. It is decided
to design the accelerator for computing eight inputs in parallel and also the
two gating units and the memory cell in parallel. The trade-off for intro-
ducing parallelism, is an increased area in silicon due to the extra hardware
required for the accelerator.

Table 6.2: Impact on system operation rate for different levels of parallelism with 40
inputs.

Level of Arithmetic Operations System

parallelism Accelerator Full RNN operation rate
1 38,016 99,270 5 MHz
4 9,600 33,862 1.7 MHz
8 4,864 22,998 1.2 MHz
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2 General Architecture

The hardware accelerator is designed to perform parallel execution of the two
gates, update and reset, and the memory cell. The input and output ports
of the top module of the accelerator and the three main modules included
can be seen in Figure 6.1. The design is scalable which allows for changing
the number of inputs and hidden layers. This is controlled from the DSP
which also provides information about which GRU layer is to be processed
and starts the accelerator.

Figure 6.1: General architecture of the hardware accelerator

Within each module are eight inputs computed in parallel and the ac-
tivation function is also applied, which is illustrated in the more detailed
diagram of the hardware accelerator in Figure 6.2. Each module has direct
access to memory units, containing the respective weights. Initialization of
these memory units is handled by the DSP.

The update gate (update gating unit) and the reset gate (reset gating
unit) will be detailed in the following section, since they are very much alike.
After the gates are explained, the next section talks about the memory cell
and how it is connected to the other modules. The last section in this chapter
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explains how the control modules (Input Control Unit(CU) and reset gate
output(Rr) Memory Bank) is organized. In addition, the organization of the
other memories that are necessary for the design, such as the memories for
the weights, are explained.

Figure 6.2: Detailed architecture of the hardware accelerator
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3 Gate U and R

The update and reset gates are built in a similar way, as the only difference
between them is that they read the weights from different memory units.
For that reason the architecture and functionality will be detailed step by
step, with respect to the reset gate.

After a start signal is given by the DSP, then for every clock cycle, eight
inputs and eight weights are read from the respective memory units. As
illustrated in Figure 6.3, they are multiplied in parallel and added together.
The output of the last adder is stored in a register, to be accumulated with

Figure 6.3: Optimized tree architecture for the multiplication and addition

the next value. The number of accumulations depends on the number of in-
puts and hidden layers. For a full sized model, there are a total of 256 inputs
(x(t)) + 128 recurrent inputs (h(t-1)), resulting in 384 inputs. Because of
the eight parallel multiplications, a total of 48 (384/8) values are accumu-
lated. Then the bias is added to obtain a valid input for the sigmoid unit.
As stated in Chapter 4, section 4.2, the sigmoid function is approximated as
a hard sigmoid to reduce the computational complexity and the processing
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time. After the sigmoid unit, the outputs of the reset and update gates are
ready and a valid signal is sent to other parts of the design.

There are also registers in between all the multipliers and adders in order
to decrease the critical path between units and introduce pipelines.

For the update gate the outputs are stored in a FIFO, from where it
is read by the DSP for further processing of the GRU output stage. The
outputs of the reset gate are stored in a scratchpad memory as they will be
multiplied with h(t-1) and used in the memory cell. Since the memory that
stores h(t-1) values has a bandwidth for 8 values, the outputs of the reset
gate are stored in the same manner and read from the memory 8 by 8 for
using in the memory cell. The bandwidth of this memory unit is thus 128-bit
and it has 16 addresses for storing 128 16-bit values.

4 Memory Cell

In the memory cell, the first part where the x(t) inputs are multiplied with
the weights, is the same as the other two gates. However, instead of using
h(t-1) for the rest of the weights, the outputs of the reset gate are multiplied
by h(t-1) and used. Since the outputs of the reset gate that should be used for
this multiplication is not ready instantaneously, the memory cell is kept idle
when the other gates are multiplying h(t-1) with the corresponding weights.
This makes the design of the memory cell different from the other two gates.

The first 256 inputs that are coming from the input memory are still
needed for the memory cell. In order to use the inputs that are already
read for the update and reset gates, the inputs are given to memory cell at
the same time with the other gates and multiplied with the corresponding
weights. This benefits the design by decreasing the number of memory reads
and decreasing the number of clock cycles necessary to complete the memory
cell. After 32 clock cycles (256/8=32), all the x(t) inputs are multiplied with
corresponding weights, the memory cell is put into idle mode. The reset and
update gates computes multiplications of 128 h(t-1) inputs and weights in
128/8=16 clock cycles. When the first row is ready (after 32+16=48 clock
cycles) and accumulated, the output is written into a memory to be stored.
This process where the multipliers are used to multiply inputs with weights
and idling the multipliers is done 128 times. At the end of each 48 clock
cycles, an incomplete accumulated value is obtained and written into the
memory. This is the first part.
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When the reset gate is completed fully, all the values are ready in the
scratchpad memory and read 8 by 8 for usage in the memory cell. The h(t-1)
values are also read from the input memory by the help of "Input Control
Unit". The outputs of the reset gate and h(t-1) values are multiplied 8 by
8. The weights for this second part is read from the weight memories. Since
there are 128 values, it takes 16 clock cycles to finish the calculation for the
first row. All the values are accumulated and they are added to the stored
outputs of the first part and the bias for the corresponding row. When a
row is completed, the accumulated output is given to tanh module which is
implemented as a RALUT (which is explained in chapter 4, section 4.1). The
output of the tanh function is the valid output coming from the memory cell
and it is given to the processor with a valid signal. In total of 128 outputs
are given.
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5 Memory Organization

In general, data movement in deep neural networks designs, dominates the
energy consumption and in order to decrease the energy consumption, the
key element is to have an efficient memory hierarchy and a well-built dataflow
[32]. In order to accomplish this, several techniques are applied as it will be
explained in this chapter. There are two memory control units in the design,
to handle the flow and timing for reading data from the input memory and
the scratchpad memory. Before explaining how these control units work,
let’s look at the organization of the memory units. A general architecture
for all of the memories and how they are connected in the system is given in
Figure 6.4.

Figure 6.4: General Memory Architecture

For a full sized RNN model, there are 384×128 = 49,152 weights to be
stored in both of the update and reset gate and in the memory cell. In order
to create an efficient memory architecture, several smaller memory units is
used instead of larger units. The memories used have 16-bit storage per
address. In each address are stored two weights represented by 8-bit each.
To accommodate the parallel execution of eight inputs, four memory units
are wrapped together to obtain 64 bit bandwidth, see Figure 6.5. As a result,
there are in total 4×3=12 memory units for the first GRU layer and another
12 for the second GRU layer.

43



Figure 6.5: Memory allocation for the weights in the design

A similar approach is taken for the memory units used for the accelerator
inputs (x(t) and h(t-1)). In order to read eight inputs that are 16-bit at a
time, the memory has a bandwidth of 128-bit and 48 addresses. New data
is written from and handled by the DSP. For the biases, three memory units
with 16-bit bandwidth and 128 address spaces, are used. Biases for the
update and reset gate are stored together and one memory unit is used for
each GRU layer. For the memory cell the biases for both GRU layers are
stored in one memory.

Input Control Unit: This unit is responsible for reading all the 384-
inputs consecutively until it has read "the number of hidden units in the
design" times. After this is done, it waits for a control signal to be received
from the memory unit and it reads the h(t-1) inputs again with the same
number of times. After these calculations are done, the memory is rewritten
by the processor to be ready for the next calculation.

Reset Output Unit: This unit is responsible for storing the valid reset
outputs and reading them 8 by 8 when the memory cell gives a signal. This
signal is aligned with the one for the Input Control Unit which reads the
h(t-1) for the second time since they are multiplied before being used as a
input to the memory cell.

This concludes the explanation part of designing the hardware accelerator
and the next section presents the results of this implementation. Discussions
about the results are also included in the next section.
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Chapter 7

Implementation Results and Discussions

In this chapter the functional simulation and the outcome is discussed. Then
the design is evaluated in terms of area, performance, the power and energy
consumption. A layout is presented afterwards. Finally the design is com-
pared to other systems.

1 Functional simulations

Functional simulations are carried out in order to verify, that the functional-
ity of the developed hardware correspond to the fixed-point model in MAT-
LAB. This ensures that the same number of correct predictions are achieved
in hardware as with the fixed-point model. Due to complications with the
Tensilica tool, no synthesis are performed for the DSP. A consequent of
this, is that no simulations are performed for the complete system, as it is
illustrated in Figure 5.1. Instead, the functionality of the DSP and the ac-
celerator are simulated independently and the outputs are compared to the
fixed-point model. Also, the cycles used for each unit are counted. All sim-
ulations are performed on a maximum sized network containing 256 inputs,
128 hidden layers and 2 GRU layers.

1.1 DSP

To verify the functionality of the DSP, the Tensilica tool is used. The func-
tionality to be verified is summarized here,

1. Read data from the two FIFOs, GRU layer 1
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2. Compute output stage of the GRU and store result in memory

3. Compute batch normalization

4. Read data from the two FIFOs, GRU layer 2

5. Compute output stage of the GRU and store result in memory

6. Compute batch normalization

7. Compute FC layer and sigmoid

Reading data from the two FIFOs are simulated by reading data from files.
The files containing the input data, Γu and ĥ(t), are generated in MATLAB
using the fixed point model and a validation data with 1375 time steps.
After processing of the data, the output h(t) is writing to a file, simulating
a memory write operation. The outputs of the GRU layers and the batch
normalization functions are compared to the fixed point model in MATLAB.
A simulation is started at time step one with the outputs of time step two
presented in Figure 7.1 to Figure 7.4. The simulation showed a 100% equality
for all time steps. For the memory write operation, the address and the

Figure 7.1: GRU Layer 1 Figure 7.2: Batch normalization 1

corresponding data are written to a file. The address is an 8-bit value and
the data, which is h(t-1) and for GRU layer 2 also x(t), consists of eight 16-
bit values that forms one 128-bit word. The address and data are validated
with MATLAB.

The output of the FC-layer for time steps one and two, matches the fixed
point model.

Time step 1 Time step 2
Fixed point model: -3.188 -3.529
DSP: -3.181 -3.517
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Figure 7.3: GRU Layer 2 Figure 7.4: Batch normalization 2

The sigmoid approximation implemented in the DSP is tested in the
range from -4.2 to 4.2 with a step size of 0.02. The output is compared to a
fixed point model created in MATLAB. A maximum difference of 0.12×10−3

was found, as illustrated in Figure 7.5.

Figure 7.5: Verification of implemented sigmoid approximation in DSP versus MATLAB
model.

1.2 Hyperbolic Tangent

The approximation for the hyperbolic tangent function, that is implemented
as a RALUT, is verified by an input vector containing the numbers from
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-3 to 3 with a step size of 0.004. The output of the RALUT is compared
to the MATLAB tanh1 function. As presented in Figure 7.6, a maximum
error of 0.06 was found for segment one and two, while for the third segment
the maximum error is 0.02. This is within the maximum specified error,
that was defined for the look up table implementation. In Figure 7.7 is the
output of the RALUT compared to the MATLAB tanh function. From the
simulation, it was found that it takes one clock cycle to retrieve an output
from the RALUT.

Figure 7.6: Difference between RALUT
implementation and MATLAB tanh.

Figure 7.7: RALUT output vs. MATLAB
tanh output.

1.3 Hardware accelerator

The verification of the hardware accelerator is done by generating a test
bench for the top module and simulating results in Questasim Advanced
Simulator by Mentor Graphics.

Table 7.1: Accelerator cycle count.

Function name Clock cycles
Gate U and R 6,159
Memory cell 8,216
tanh 1

1tanh is the built-in hyperbolic tangent function in MATLAB.
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2 Area, Power and Performance Evalutaion

In this section the design is evaluated in terms of the area, performance and
the power and energy consumption.

2.1 Area

The area was obtained from synthesis of the design using the ST Micro-
electronics 28nm FD-SOI technology at a frequency of 430 MHz and supply
voltage at 0.9V. For real-time processing of speech data, the frequency can
be scaled down to either 3.7 or 1.2 MHz. However, it is shown that the
system can also perform at higher frequencies if required by an application.
The longest path (most timing critical) in the design, has a timing slack at
832 ps, which is equal to 35% of the clock period. The synthesis results are
provided in Table 7.2. As mentioned in the previous section, the DSP was
not synthesized, however an estimation of the area is obtained from Tensil-
ica.

Table 7.2: Area obtained from the synthesis results.

Unit Area [mm2] % of total area
DSP (incl. iram & dram) 0.106 15.5
Accelerator 0.022 3.2
∗ (RALUT) 0.313×10−3 -

Memory units 0.558 81.3
Total 0.686 100

Although the required memory storage was reduced with more than 75%
by optimization techniques, it is expected with 256 kilobytes of memory in
the design, that the memory units accounts for the largest part of the area,
which is 81.3% of the total area. The DSP takes up 15.5% of the total area
and is five times larger than the accelerator, taking up 3.2%. It should be
noted that the DSP has 4 kilobytes or available memory, allowing for added
functionality. For the RALUT implementation of the hyperbolic tangent
function, the area is 313 µm2.

2.2 Performance

To evaluate the performance of the design, the execution time is calculated
for each functional unit together with the total execution time for the full
RNN model. For this calculation the number of clock cycles is obtained from

49



the simulation and an operation frequency at 3.7 MHz (≈ 0.27 µs) is used.
The results are presented in Table 7.3

Table 7.3: Performance for DSP with accelerator at 3.7 MHz.

Function name Clock cycles Exe Time [ms]
GRU 256 inputs 9,510 2.57
∗ Gate U and R 6,159 1.66
∗ Memory cell 8,216 2.22
∗ RALUT 1 0.27×10−6

∗ Output stage 1,293 0.35
GRU 128 inputs 6,224 1.68
Batch Normalization 3,712 1.00
Fully Connected 896 0.24
Sigmoid function 35 9.45×10−3

Full sized model 24,089 6.50

For the full sized model the total execution time (for one classification)
is 6.5 ms, which allows for real-time processing of 256 inputs. This provides
a throughput of 153 classifications per second. Also, it is noted that there
is a balanced workload between the DSP and the accelerator, with 43.1% of
the time used in the DSP and 56.9% in the accelerator.

By scaling down the frequency to 1.5 MHz, the total execution time is
16.92 ms, which is fast enough for real-time processing of 40 inputs, which
accounts for a complete set of MFCC coefficients.

2.3 Power and Energy Consumption

For the DSP, where synthesis was not possible, the estimated power con-
sumption is obtained from Tensilica. This value is not an accurate estima-
tion, as it does not reflect the real switching activity nor the power con-
sumption caused by the parasitic capacitance and resistance in the design.
However, to get an indication of how much the DSP and the accelerator
contributes to the total power consumption, the value obtained in Tensilica
is compared to the estimated power consumption for the accelerator. This
estimation is obtained from the synthesis data and is also lacking the real
switching activity2 and the parasitic element. The numbers are presented
in Table 7.4. As it is observed, the DSP accounts for more than half of the

2In the synthesis tool a switching activity of 0.02 toggle/ns is used.
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Table 7.4: Power estimation with 0.9 VDD and 430 MHz.

Pleak [mW] Pdyn [mW] Ptot [mW]
DSP (incl. iram and dram) N/A N/A 18.75
Accelerator 0.39 15.64 16.03
Total system power - - 34.78

total power consumption. In order to obtain a more accurate estimation,
the switching activity as well as data for the parasitic elements, must be
included.

For input data represented by the MFCC, the frequency can be scaled
down to 1.5 Mhz and the supply voltage to 0.7 V. This results in a reduced
the power consumption, as presented in Table 7.5. It is noted that the

Table 7.5: Power estimation when scaling VDD to 0.7 V and the frequency to 1.5 MHz.

Pleak [mW] Pdyn [mW] Ptot [mW]
DSP (incl. iram and dram) N/A N/A 0.184
Accelerator 0.302 0.033 0.335
Total system power - - 0.519

leakage power is now dominating part of the total power consumption. As
the synthesis was carried out using low voltage threshold (LVT) devices,
decreasing the leakage power can be attempted, by configuring the synthesis
tool to use regular threshold voltage devices and only apply low threshold
voltage devices in timing critical paths.

For an operating frequency at 3.7 MHz and with a supply voltage at
0.7 V, the total power consumption is estimated to 636 µW. Lastly, the
estimated energy consumption per classification is calculated to:

Eper class ≈ 4.13 µJ/class @ 3.7MHz

Eper class ≈ 8.78 µJ/class @ 1.5MHz
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3 Design Comparison

Table 7.6 summarizes important metrics for this and related work.

Table 7.6: Performance comparison.

This Xtensa DNPU [8] Laika [5]
Work Fusion F1

Technology 28nm 28nm 65nm 65nm
Algorithm GRU GRU CNN & RNN LSTM
Processor Opt. DSP DSP RISC -
Real-time
processing Yes Yes - Yes
On-chip
memory [kB] 252 252 290 32
Area [mm2] 0.686 0.730 16 1.035
Voltage [V] 0.7 0.9 0.77 0.575
Frequency [MHz] 3.7 200 50 0.250
Power [mW] 0.636 9.42 34.6 0.005
Energy per
Classification [µJ] 6.33 68.77 - 0.06

As the area and power consumption are estimated values for our work
and the Xtensa Fusion F1, it is valid to do a comparison of these systems.
It is seen that by introducing parallel execution we were able to reduce
the frequency and supply voltage and by that achieve a lower power and
energy consumption. A smaller area is also obtained. By scaling up the
frequency our design is able to also process GRU models that requires higher
performance.

The DNPU [8] has a high level of programmability, and can do inference
of both CNN and RNN networks. The trade-off for this is a large area at 16
mm2 and a high power consumption at 34.6 mW.

In Laika [5] they were able to achieve a very low power consumption at
5µW. This was possible due to a pure ASIC design that operates at 250 kHz
and a low supply voltage at 0.575 V, while a 0.7 V supply is used for the
SRAM units. [5]. Also, the design is limited to a maximum frequency at 8
MHz and with 32 kilobytes, the memory space does not allow for inference
of larger networks. The level of reconfigurable options is limited.
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Chapter 8

Conclusion

With the ongoing technological advancement within the area of machine
learning together with the increasing number of handheld devices and IoT
implementing this technology, the need for programmable hardware that is
power and memory efficient is larger than ever.

In this thesis we sought to exploit optimization techniques in order to de-
sign a scalable and programmable low power hardware unit, for the inference
of recurrent neural networks that are based on the GRU.

We have proposed an architecture consisting of a DSP integrated with
an accelerator. A high level of programmability is obtained by including a
DSP in the design. The DSP is optimized for low power consumption and
we reduce the processing time, by creating application specific instructions.
With the accelerator, parallelism is exploited to get rid of the computational
bottlenecks within the GRU. This allows for lowering the clock frequency
and by that a lower power consumption is achieved. Also, by implementing
parallel computing of algorithms where the same input is used, the memory
access is reduced. This helps reducing the power consumption of the memory
units.

To deal with the high memory space required of the gated recurrent units,
we make use of fixed point number representation together with quantization
of the GRU parameters. This allows us to store the parameters using 8-bit.

The GRU includes the computational heavy activation functions sigmoid
and hyperbolic tangent. To reduce the computation time of these, a polyno-
mial approximation is used for the sigmoid while a RALUT is implemented
for hyperbolic tangent.
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In conclusion, a 75% reduction of the required memory space is achieved
with an energy consumption of 4.13 µJ per classification, for real time pro-
cessing of inputs sampled at a rate of 16,000 samples per second. In 28nm
technology, the area is 0.686 mm2. The operation frequency can be scaled
up to 430 MHz, which also allows for the inference of GRU models that
demands a higher performance.

Due to software complications, we were not able to retrieve the RTL files
for the DSP. As a result, synthesis and layout of the complete system was
not carried out. Resolving this issue as part of future work, would allow for
a more accurate estimation of power consumption, by including the data of
the parasitic components and also the switching activity for real data input.
Also, by configuring the synthesis tool to implement high threshold voltage
devices in paths that are not timing critical, a lower leakage voltage can
potentially be achieved.

Through our study we have identified several methods that can be fur-
ther researched for potentially reducing the required memory space. The
quantization of weights can be exploited to obtained an even smaller word
length e.g. 4-bit. However retraining of the network is then required. An-
other method is pruning, where redundant weights can be removed from the
network [2]. Also, we see the technique called quantization aware training,
as an interesting method to further explore. With this method the weights
are quantized during network training.

Although, the reference RNN model used in this thesis, utilize a hard
sigmoid function, other models might benefit from a lower error rate than
what is obtained with the hard sigmoid approximation. A solution can be
to implement a RALUT for the sigmoid function.

Lastly, for a more complete SoC design, the possibility for implementing
the computations of the MFCCs into the DSP, can be explored.
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Chapter A

Accuracy and class-imbalanced data set

Accuracy is a metric for evaluating classification models and is defined as
follows [33],

Accuracy =
Numberofcorrectpredictions

Totalnumberofpredictions

For binary classification, accuracy can also be calculated in terms of positives
and negatives as follows [33],

Accuracy =
TP + TN

TP + TN + FP + FN

TP: True Positives - (model predicted correct, positive/1)
TN: True Negatives - (model predicted correct, negative/0)
FP: False Positives - (model predicted positive, but reality is negative)
FN: False Negatives - (model predicted negative, but reality is positive)

However, accuracy alone doesn’t tell the full story when you’re working with
a class-imbalanced data set, where there is a significant disparity between
the number of positive and negative labels [33].
Two metrics better suited for evaluating class-imbalanced data set are pre-
cision and recall.

Precision attempts to answer the following question:
What proportion of positive identifications was actually correct [33].

Precision =
TP

TP + FP
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Recall attempts to answer the following question: What proportion of actual
positives was identified correctly [33].

Recall =
TP

TP + FN

To fully evaluate the effectiveness of a model, you must examine both pre-
cision and recall. Unfortunately, precision and recall are often in tension.
That is, improving precision typically reduces recall and vice versa.
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Chapter B

Graphical Representation of Activation

Functions

Graphical representation of the activation functions discussed. Figure B.1
Sigmoid, Figure B.2 hyperbolic tangent, Figure B.3 ReLU.

Figure B.1: Sigmoid function.

61



Figure B.2: Hyperbolic Tangent function.

Figure B.3: ReLU function.
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