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Abstract

A common method for defining high-frequency detail on a 3D model is via
the use of texture mapping. Problems with this technique such as discontinu-
ities and seams appearing in the textured model has lead to the development
of different solutions. Mesh Colors, proposed by C.Yuksel (2010), presents a
solution where surface data is directly associated with the mesh in a topolog-
ically independent way, removing the need for a map and avoiding problems
inherent to the use of them.

The purpose of this study is to develop an image codec for mesh colors
data, data directly associated with the mesh. It focuses on compression of
color data but supports compression of other textures as well. The result is a
JPEG-like image codec with comparable compression ratios and image qual-
ity. Because of the similarities to the JPEG standard, arising compression
artifacts resemble those that appear in JPEG images.
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Chapter 1
Introduction

1.1 Background
The traditional way of adding color detail to a 3D model is by using texture mapping, a
technique that applies an image to a surface by mapping a 2D texture onto a 3D surface [2].
This can make a simple surface get the appearance of something more complex. Using a
map for the 3D surface onto a 2D texture has, however, inherent problems such asmapping-
discontinuities and limitations to editing of the 3D model after texturing.

Advantages of having a 2D texture as the source for detail are, to name a few, being
able to use existing image codecs to store the image in a compressed format, and being
supported by current graphics hardware.

Mesh colors [8] takes a different approach to providing detail to a geometric surface
and associates surface data directly with the mesh geometry. Each texel (i.e. data point in
the texture) has a hexagonal area of influence and is ordered in a hexagonal lattice. Because
of differences in data representation, compression of mesh colors data using existing image
codecs is not possible.

1.1.1 Related Work
The Mesh Colors technique is a different approach to providing detail to a geometric sur-
face by associating surface data directly with the mesh geometry. It can be seen as an
extension of vertex coloring, where color values are not only placed on vertices but also
on faces and edges. Color values are placed on grid nodes of a triangular grid, of which the
resolution can be set, resulting in each texel having a hexagonal area of influence (Figure
1.1).

Developed by the Joint Pictures Expert Group, JPEG is today one of the most widely
used image compression standards. It is a lossy compression technique belonging to a
family of techniques called "transform compression" where transformation of data into an-
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1. Introduction

Figure 1.1: Triangle with resolution 8 with colored vertex ele-
ments, edge elements and face elements (left-to-right).

other domain is an essential part of the codec [1][6]. The baseline JPEG codec transforms
data into the frequency domain using the discrete cosine transform (DCT), a lossless op-
eration, that returns coefficients representing different frequency functions. Because the
human visual system is less sensitive to high-frequency functions, corresponding trans-
form coefficients can be represented with less accuracy without the image losing much of
its perceptual quality.

The different steps of JPEG compression are illustrated by Figure 1.2. Decompression
is similar and applies the steps in reverse order where the inverse operation is applied in
each step. These are described in more detail in Chapter 2.

1.2 Problem Definition
In the mesh colors framework, surface data is stored in a linear array and ordered in a way
that removes the possibility to directly apply existing image codecs to achieve compres-
sion. Furthermore, the different structure and layout of data requires a custom image codec
that takes into account neighborhood conditions which differ between mesh colors texels
and regular texels. While regular texels have the shape of a square and are ordered in a
cartesian grid, mesh colors texels will have a hexagonal shape and be ordered in a hexag-
onal grid. In addition to this, the custom codec will also need to support compression of
mesh colors data where data associated with different triangles can have different resolu-
tions. Additionally, in video-game development, the use of MIP-levels (lower resolution
versions of the original texture) opens up possibilities traditional codecs aren’t developed
to take advantage of.

1.3 Purpose
Texturing of 3D models is an important step for achieving high fidelity renders. For in-
creasing resolutions of textures, compression becomes a necessity to store and transfer
data efficiently. This becomes even more important when data is stored on physical medi-
ums where storage space is limited. The aim of this thesis is to implement a Mesh Colors
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1.4 Scope

Figure 1.2: Baseline JPEG compression steps.

Codec (MCC), a JPEG-like image codec, for mesh colors data to enable effective storage
and transmission.

1.4 Scope
The presented solution is mesh colors data compatible and builds off the baseline JPEG.
It does not support options of, or improvements in later iterations of the technique. An
entropy coder was not developed for the developed codec, rather, an in-house arithmetic
coder was used. The focus of the codec lies on efficiency of compression, both in terms
of quality and compression rate, rather than computational efficiency.
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Chapter 2
Approach

In the mesh colors framework, surface data is associated directly with the mesh geometry.
A main feature of this technique is to enable having varying levels of detail for individual
faces and edges. This is accomplished by assigning each face a resolution which deter-
mines the number of data elements residing within it. The number of data elements P
assigned to faces and edges for a resolution of r is given by equation (2.1) and (2.2) respec-
tively. Vertices will always be represented with a single data element. Face data elements
are considered to make up a two-dimensional image with a triangular shape made up of
hexagonal texels. They are treated as hexagonal texels because each data element will have
a hexagonal area of influence. Edge data elements are treated as a one-dimensional signal
also with hexagonal texels. The developed MCC processes edge data elements and face
data elements separately, but uses results from compression/decompression of edge data
elements when processing face data elements to achieve a better compression ratio.

P f ace(r) =

r−2∑
k=1

k =
(r − 2) + 1

2
(r − 2) (2.1)

Pedge(r) = r − 1 (2.2)

2.1 YUV Transformation
The first step specified by the JPEG standard is the transformation of data elements in
color space. Data in RGB format is transformed to Y’CbCr format with equation (2.3)
where the Y’ component represents brightness and components Cb and Cr represent the
chrominance of the color element. The chroma components (Cb and Cr) have less effect on
the perceptual quality of the image than the luma component (Y’). This transformation is
applied to enable greater compression ratios by compressing less significant components
more heavily. A second outcome of this transformation is statistical decorrelation, which
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2. Approach

results in the entropy coder yielding a greater compression ratio. Since this procedure
is applied to individual texels the shape or structure of texels do not matter. The color
transformation is therefore applied to all data elements individually.

During decompression, the inverse transformation is applied to each data element in
order to transform color data from Y’CbCr space to RGB space. The inverse equation is
given by equation (2.4).

Y ′ = 0.299R + 0.587G + 0.114B
Cb = (B − Y )0.5643 + 128
Cr = (R − Y )0.7132 + 128

(2.3)

R = Y ′ + 1.402(Cr − 128)
G = Y ′ − 0.714(Cr − 128) − 0.334(Cb − 128)
B = Y ′ + 1.772(Cb − 128)

(2.4)

2.2 MIP-Maps
MIP-mapping is a textureminification technique used to reduce aliasing artifacts that occur
when textured 3D objects move away from the camera. These artifacts can be avoided
by using textures that are scaled down versions (in terms of resolution) when the object
passes certain thresholds for distance. A series of down-sampled versions of the texture is
therefore pre-calculated and stored. Each version of the texture is referred to as MIP-level
x, where higher values for x correspond to lower resolution versions of the texture. This
technique is supported by mesh colors for faces and edges that have a resolution equal to
some power of two. MIP levels are compressed and decompressed independently except
for when chroma sub-sampling is enabled.

2.3 Chroma Sub-Sampling
The JPEG standard supports chroma sub-sampling, which is the process of storing down-
sampled versions of the chroma components Cb and Cr. This has minimal effect on the
perceptual quality of the image on which accurate representation of the luma component
has a greater impact. The compression ratio achieved by chroma sub-sampling alone de-
pends on the coefficient of decimation. For a decimation coefficient of c, c-by-c neighbor-
ing data values are replaced by their mean value and the resulting compression ratio by
this oprration alone can be calculated as

compression_ratio =
3

1 + 1
c2 + 1

c2

=
3c2

c2 + 2
.
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2.3 Chroma Sub-Sampling

For example, a decimation coefficient of 2 results in a compression ratio of 2, achieved by
the chroma sub-sampling alone. During decompression, each c-by-c block of neighboring
elements (in the original size) will be assigned their mean value.

The developed MCC supports chroma sub-sampling for decimation coefficients equal
to powers of two. Because higher MIP-levels are by definition down-sampled versions of
the base texture, MIP-level 0, chroma components do not have to be decimated nor stored
as they are provided by the neighboring MIP-level. This is one of the reasons why only
decimation coefficients that are a power of two are supported.

During decompression, the chroma components of MIP-level 0 are recreated using the
chroma components of MIP-level 1. Each data element in MIP-1 has a corresponding data
element in MIP-0 with the same relative position in the triangle as illustrated by Figure
2.1 (this relationship holds true for any two neighboring MIP-levels). The rest of the data
elements will have exactly two of these elements as neighbors. Up-sampling of chroma
components is implemented by applying a linear interpolation of the two closest data ele-
ments from the higher MIP-level. Edges and faces are processed separately, where edges
are up-sampled before faces as up-sampling of face data elements are dependent on edge
data elements.

Figure 2.1: Elements in the large triangle (MIP-0) with positions
reappearing in the smaller triangle (MIP-1) are marked with grey.

2.3.1 Edges
As illustrated by Figure 2.2, edge data elements are divided into three categories where
elements of the first category, marked 1 in the figure, are assigned the value of the data
element in the higher MIP-level with the same relative position. Category 2 elements
are assigned the mean value of the two neighboring category 1 elements. Category 3
elements are assigned the mean value of the closest category 1 element and the closest
vertex element. The last category of data elements will, at most, have two members for
any resolution.
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2. Approach

Figure 2.2: Edgewith resolution 16where elements are numbered
after their category. The two outermost elements are vertex data
elements.

Figure 2.3: Each category two element is assigned the mean value
of its surrounding data values.

2.3.2 Faces
Face data elements are divided into four categories. Category 1 consists of elements as-
signed the value of the data element in the higher MIP-level with the same position. The
number of data elements in this group is equal to the number of face data elements of a
face with half the resolution. Category 2 data elements are assigned the mean value of two
neighboring face data elements belonging to category 1. They only appear if the down-
sampled face in MIP-1 has more than one element. The third category of elements are
those that are assigned the mean value of one face data value and one edge data value.
These elements appear only if the down-sampled MIP-level has face elements. Data el-
ements of the first three categories appear only in faces with a resolution greater than 4.
Each face for which chroma sub-subsampling is supported will also have three category 4
elements that are assigned the interpolated value of two closest edge data elements. These
data elements appear on the corners of the face and are not present for low resolutions.

Figure 2.4: Triangle with resolution 16 where face data elements
are numbered after their category.
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2.4 Block Partitioning

Data elements of category 3 and 4 are assigned the mean value of two data elements
where at least one of them is an edge data element. When an edge is shared by two faces
with different resolutions, one of the faces will have a different resolution than that of the
shared edge. If the resolution of the shared edge is greater than the resolution of the face
then the appropriate MIP-level of the edge is used for up-sampling. If the resolution of
the edge is lower than the resolution of the face, the edge is first up-sampled prior to using
elements for reconstruction of face elements.

2.4 Block Partitioning
In the JPEG standard, data elements are split into blocks before transformation to the fre-
quency domain. Triangles, in the MCC, are processed individually to not partition data
elements into blocks that transcend triangle boundaries. Having such blocks would intro-
duce a number of issues such as neighboring triangles having different resolutions, having
different spacial properties due to varying sizes and shapes, and having vastly different tex-
ture data. Edge and face data elements are processed separately and have their elements
partitioned into one-dimensional and two-dimensional blocks respectively.

2.4.1 Edges
Edge data elements are split into sequences of 8 elements in a one-dimensional fashion
as illustrated by Figure 2.5. This pattern of partitioning edge data elements will at most
result in a single block with less than 8 elements, which appears at the end of the sequence
of blocks.

Figure 2.5: Splitting of edge data elements into blocks. The un-
marked cells are vertex data elements.

2.4.2 Faces
Face data elements are split into 8-by-8 blocks as illustrated by Figure 2.6. Resulting
blocks have a shape resembling a quadrilateral with 64 hexagonally shaped data elements.
Because of the triangular shape of the face, blocks closest to the right edge will have miss-
ing diagonals of data elements. In the example below, blocks 1, 2, and 5 are "full" blocks
consisting of 64 elements, blocks 3, 6, and 8 are blocks with a single missing diagonal (63
elements each), and blocks 4, 7, 9, and 10 are blocks with 9 missing diagonals each (21
elements).

13



2. Approach

Figure 2.6: Splitting of face (resolution = 32) data elements into
blocks.

2.5 Discrete Cosine Transform
The type-II Discrete Cosine Transform, DCT-II (referred to as DCT), is an essential part of
the JPEG standard. Applied to blocks of YUV-transformed texels, it transforms each block
from the spatial domain to the frequency domain. Resulting data elements are amplitudes
of the basis functions of the transform matrix, which is dependent on the dimensions of
the DCT matrix (which in turn is dependent on the block dimensions). The transform is
separable and therefore applied to rows and columns of the block separately, where the
order in which they are applied does not matter.

For transformation of data elements, the MCC uses a modified version of the DCT,
where transform coefficients are given by

Xk =

N−1∑
n=0

xn cos
[
π

N

(
n +

1
2

)
k
]

k = 0, . . . ,N − 1. (2.5)

Equation (2.5) multiplies X0 by 1/N, where N is the number of elements in the dataset
(either a row or column of data elements). For inverse transformation, a modified version

14



2.5 Discrete Cosine Transform

Figure 2.7: Transform directions defined by the JPEG standard in
an 8-by-8 block.

Figure 2.8: Transform directions for a quadrilateral block.

of DCT-III is used (equation 2.6) (from now on referred to as IDCT or inverse DCT),
where x0 is multiplied by N to reflect the modification in equation (2.5).

Xk =
1
2

x0 +

N−1∑
n=1

xn cos
[
π

N
n
(
k +

1
2

)]
k = 0, . . . ,N − 1 (2.6)

2.5.1 Faces
Transformation of blocks is done in the directions illustrated by Figure 2.8, where the
first transform direction is horizontal and the second one is parallel to the left edge of the
triangle. These transform directions are similar to the transformation directions defined
by the JPEG standard for 8-by-8 blocks of data elements in a Cartesian grid (Figure 2.7).

Blocks with missing diagonals are transformed using the same transformation direc-
tions used for full 8-by-8 blocks, but will include transformations of datasets with varying
lengths. Resulting coefficients of the first transformation are combined with coefficients of
the same index in the second transformation (2.9). This approach of transforming blocks
has similarities to certain aspects of the Directional Discrete Cosine Transform (DDCT)
[9]. Like the DDCT, the MCC combines, in the second transformation, coefficients be-
longing to data sequences of different lengths, and takes care to pair those with the same
index. That is, DC coefficients of the first transformation are transformed separately from
first-order AC coefficients and so on. Transformation directions for the diagonal down-
right mode of the DDCT are illustrated by Figure 2.11.

The modification made to the type-II DCT (equation 2.5) results in X0 being equal to
the mean value rather than the sum. Color data close in proximity generally have similar

15



2. Approach

Figure 2.9: 8-by-8 block with 5 missing diagonals of data ele-
ments (left), transform direction one (middle) and transform di-
rection two (right).

Figure 2.10: 8-by-8 block with 10 missing diagonals of data el-
ements (left), transform direction one (middle) and transform di-
rection two (right).

Figure 2.11: Transformation directions of the diagonal down-
right mode as defined by the DDCT. The first transformation di-
rection (left) is diagonal and the second one (right) is constructed
to make sure coefficients of the same index are combined.
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2.6 Quantization

Figure 2.12: Transform direction for a one-dimensional block of
edge data elements.

content, thus, by normalizing with the number of data points, X0 coefficients will have
similar magnitudes as well, making them good estimates of close-by X0 coefficients even
when they belong to blocks of different sizes. This fact will be taken advantage of during
coding of DC coefficients (i.e. X0 coefficients) in Section 2.7.

Inverse transformation of blocks is analogous to forward transformation where the
modified IDCT (equation 2.6) is first applied along transform direction two (i.e. verti-
cally), and then along transform direction one.

2.5.2 Edges
Blocks of edge data elements are transformed in the only dimension available (Figure 2.12)
using equation (2.5) and (2.6) for forward and inverse transformation respectively. As was
the case with face elements, using the modified type-II DCT will yield DC coefficients
of comparable size even when block sizes differ, as they will equal the mean value of the
block rather than the sum.

2.6 Quantization
Quantization is a procedure used by codecs to compress a range of values into a single
one, with the aim of reducing the alphabet size (the number of unique values in a data
collection) and make the data stream more compressible when deploying an entropy coder
later in the process. Forward quantization is achieved by rounding off pixel values divided
by a quantization step:

qi, j = round
( pi, j

s

)
=

⌊ pi, j + s
2

s

⌋
.

Inverse quantization is analogous to forward quantization and is done by multiplying
the quantized value with the quantization step:

p̂i, j = qi, j · s.

JPEG codecs implement a uniform scalar quantizer which is applied on elements in
the frequency domain, i.e. the resulting coefficients of the modified DCT transformation.
The standard defines a quantization matrix for the luma component as

17
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16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


(2.7)

, and defines a single quantization matrix for both of the chroma components as

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99


. (2.8)

Each coefficient in a transformed block is quantized with the corresponding quanti-
zation step in the appropriate matrix. Coefficients representing higher frequencies are
quantized with a greater quantization step. This is done to take advantage of the fact that
humans are not as good at distinguishing the exact strength of a high-frequency brightness
variation as it is at detecting small differences in brightness over a relatively large area (i.e.
low-frequency variations).

The MCC uses the quantization tables defined by the JPEG standard and achieves a
greater/lesser compression ratio by multiplying each of the quantization steps by an ad-
justable quantization factor.

2.6.1 Faces
DCT coefficients in blocks of face data elements are quantized with the quantization steps
presented in equation (2.7) and (2.8) with corresponding positions in the appropriate quan-
tization matrix. Blocks with missing diagonals will only quantize existing elements and
will not make use of the entire matrix.

2.6.2 Edges
As edge data elements are partitioned into one-dimensional "blocks", the JPEG quantiza-
tion matrix is not directly applicable. For quantization of these elements, the first 8 steps
of the quantization matrices along the zig-zag pattern (Figure 2.16) are used. The quan-
tization steps presented in equation (2.9) are used for the luma component, and the ones
in equation (2.10) are used for the chroma components. Because edge data elements are
only transformed in a single direction, which makes them less prone to quantization, steps
are further modified by a factor 0.1. As with blocks of face data elements, blocks of edge
elements with N missing elements will only use the first 8-N quantization steps.

18



2.7 Differential Coding of DC Coefficients

0.1
(
16 11 12 14 12 10 16 14

)
(2.9)

0.1
(
17 18 18 24 21 24 47 26

)
(2.10)

2.7 Differential Coding of DC Coefficients
The JPEG standard encodes DC coefficients with a differential encoder. By using the
DC coefficient of a nearby block as an estimation, DC coefficients are encoded as the
difference between the estimate and the absolute value. This feature is supported by the
MCC and is the reason for the modification of the X0 coefficient in equation (2.5). With the
modification, the number of data elements in blocks, which can vary, becomes irrelevant
as the DC coefficients will be equal to the mean value of elements rather than the sum.

2.7.1 Faces
Depending on the position of the block within the triangle, either DC coefficients from
nearby edges or a DC coefficient from a nearby face data block will be used. The top-left
block will use as estimation the mean value of the two closest DC coefficients from the
two neighboring edges. Remaining blocks will either refer to blocks to the left or to the
top for DC coefficient estimates (see Figure 2.13).

2.7.2 Edges
The DC coefficient of the first block of edge elements is estimated with the closest ver-
tex data value. Data values positioned at vertices are part part of the 3D mesh and are
not compressed by the MCC and therefore never processed. They are therefore YUV-
transformed and quantized before being used as estimates. Transformation of vertex data
values with equation (2.5) is not necessary, as application of the formula for a single data
point leaves it unaltered. Remaining DC coefficients are estimated with the DC coefficient
of the preceding block, as illustrated by Figure 2.14.

2.8 Run-Length Coding
Due to the frequency functions that make up AC coefficients (equation 2.5) and the greater
quantization steps used, the probability of them being equal to zero is greater. This is
especially true for two-dimensional blocks of face data elements, as quantization steps in
the quantization matrices (equation 2.7 and 2.8) increase in amplitude towards the lower
right corner.

Like the JPEG standard, the MCC supports zero run-length encoding of AC coeffi-
cients. It is a lossless data compression technique applied on linear arrays and is suitable
for streams of data elements with sub-sequent zero values. Because zero values become
increasingly probable towards the lower right corner of a block, the data elements are iter-
ated over by the run-length encoder in a zig-zag pattern as specified by the JPEG standard
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2. Approach

Figure 2.13: The arrows point to the DC coefficient used as esti-
mation by the DC coefficient the arrow originates from.

Figure 2.14: Estimation directions for DC coefficients in blocks
of edge data elements.
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2.8 Run-Length Coding

Figure 2.15: Zig-zag pattern defined by the JPEG standard for 8-
by-8 blocks. The first data element in the pattern located at the
top-left corner of the block is not processed by the zero run-length
encoder.

Figure 2.16: Zig-zag pattern defined for 8-by-8 blocks of face data
elements. The first data element in the pattern, located at the top-
right corner of the block, is not processed by the zero run-length
encoder.

(2.15). Similar to zero run-length coding in JPEG codecs, the MCC encodes all non-zero
values as a pair of values consisting of a run-length and an amplitude. The run-length is
the number of zeroes since the last non-zero data value (limited to 255). The amplitude is
the non-zero value that is at the end of the sequence of zeroes. This differs slightly from
how the JPEG standard specifies encoding of the run-length and amplitude.

2.8.1 Faces
The zig-zag pattern used for run-length encoding of face data elements is illustrated in
Figure 2.16. This pattern is used for blocks with missing diagonals as well, in which case
the zig-zag pattern will end prematurely. It is possible to do so, as blocks with less than
the maximum number of data elements are always missing full diagonals closest to the
bottom right corner of the block. Because the maximum run-length allowed (255) exceeds
the number of AC coefficients in a block, a single pair of [run-length, amplitude] can be
made to encapsulate coefficients from up to five blocks. Depending on the resolution of
the triangle, a single pair can also encapsulate AC coefficients from several blocks.
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2. Approach

Figure 2.17: Zig-zag pattern defined for a block of face data ele-
ments with 5 missing diagonals. The first data element in the pat-
tern, located at the top-right corner of the block, is not processed
by the zero run-length encoder.

2.8.2 Edges
The zero run-length encoder iterates through coefficients in one-dimensional blocks of
edge elements from left to right. As in the case of face elements, AC coefficients from
several blocks can be combined into a single data pair of [run-length, amplitude].

2.9 Entropy Coding
The next step after differential coding of DC coefficients and run-length coding of AC co-
efficients is, as defined by the JPEG standard, entropy coding of the obtained data. Though
the standard supports both Huffman coding and Arithmetic coding, the latter one is rarely
implemented by codecs due to historical reasons concerning patents. Entropy coding of-
fers lossless compression and may either be responsible for most of the compression or
complement the compression obtained in the previous steps [7]. The MCC uses an exist-
ing arithmetic coder to encode DC and AC coefficients. Since independent and identically
distributed sources provide better compression ratios when using arithmetic coders [7],
the data is split into a total of 18 contexts as described by Table 2.1.

2.9.1 DC Coefficients
DC coefficients encoded with a differential encoder are split into three data contexts de-
pending on which component (Y’, Cb, Cr) they belong to. Furthermore, coefficients are
split into an additional two contexts for face and edge data elements. The reason for this
separation is due to the use of different quantization steps, and the difference in transforma-
tion. While DC coefficients of edge elements express the mean value in a one-dimensional
direction, those of face elements do so for a two-dimensional area.
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2.9 Entropy Coding

Table 2.1: Data split into contexts.

data context
DCY’,face coefficients 1
DCCb,face coefficients 2
DCCr,face coefficients 3
Run-lengthsY’,face 4
Run-lengthsCb,face 5
Run-lengthsCr,face 6
AmplitudesY’,face 7
AmplitudesCb,face 8
AmplitudesCr,face 9

DCY’,edge coefficients 10
DCCb,edge coefficients 11
DCCr,edge coefficients 12
Run-lengthsY’,edge 13
Run-lengthsCb,edge 14
Run-lengthsCr,edge 15
AmplitudesY’,edge 16
AmplitudesCb,edge 17
AmplitudesCr,edge 18

2.9.2 AC Coefficients
The same arguments are valid for AC coefficients, which is why run-lengths and ampli-
tudes of edge data elements and face data elements are encoded using different contexts.
This results in a total of 12 contexts used for AC coefficients.
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Chapter 3
Results

The purpose of image codecs is to compress data while maintaining an acceptable visual
fidelity. Compression ratio in this report refers to compression of color data only and is
defined as the ratio between size of uncompressed color data and that of compressed color
data. The quality of the reconstructed data is characterized by the Peak signal-to-noise
ratio (PSNR) defined as

PSNR = 10 log10

(
2552/Ena

)
,

where 255 is the maximal pixel value of 8-bit words. It is calculated using the average
quantization noise defined as

Ena =
1
N

N∑
i=0

(pi − p̂i)2 ,

where pi denotes a texel value of the image component (Y’, Cb or Cr), p̂i the reconstructed
texel value of the component, and N the number of color data elements. Higher PSNR
values correspond to greater image quality of decompressed images. The degree of com-
pression ratio is affected by the chroma sub-sampling option and the quantization factor,
both of which allow for an adjustable trade-off between compression ratio and visual qual-
ity. Two 3D models with their accompanying mesh colors data were used for gathering
results.
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3. Results

Figure 3.1: Model 1 textured with uncompressed mesh colors
data. Each face has a resolution of 32.

3.1 Model 1
Figure 3.1 presents the first 3D model used for measurements. The same model with faces
of higher resolution is presented in Figure 3.2. Disk size of uncompressed mesh colors
data of different resolutions is presented in Table 3.1. They were generated from the source
file in Figure 3.3.

Table 3.1: Sizes of color data in kB for uncompressedmesh colors
data with different resolutions.

resolution size
32 627 kB
64 2,413 kB
128 9,464 kB

3.1.1 Full Chroma Resolution
A comparison of the model rendered with uncompressed data and compressed data can
be seen in Figure 3.4. The mesh colors were compressed without chroma sub-sampling
and with a low quantization factor, resulting in a compression ratio of 6.47. The resulting
PSNR values were 51.56, 54.18, and 53.46 for components Y’, Cb and Cr respectively.
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3.1 Model 1

Figure 3.2: Model 1 textured with uncompressed mesh colors
data. Each face has a resolution of 128.

Figure 3.3: Source texture file that the mesh colors data was gen-
erated from.

27



3. Results

Figure 3.4: Rendering with MCC-compressed texture (left) and
uncompressed texture (right). Faces in both models have a reso-
lution of 64. Compression ratio: 6.4517.

For a rough comparison, one can consider compression of the source texture file with
JPEG.Without chroma sub-sampling and adjusted to result in a compression ratio of 6.72,
the resulting PSNR values were 49.94, 51.13, and 50.49 for components Y’, Cb, and Cr.
These values are, when compared to the MCC for a similar compression ratio, 1.62, 3.05,
and 2.97 lower for components Y’, Cb, and Cr respectively. Renders of the model with
decompressed mesh colors data with greater compression rates can be be seen in Figure
3.5.

While high compression ratios are desirable, the visual quality of the reconstructed
image must be taken into consideration. Figure 3.6 illustrates how the PSNR values of
components Y’, Cb and Cr are affected for increasing compressing ratios. The dashed line
represents the PSNR for the source texture file compressed with a JPEG codec, and the
solid line represents the PSNR of the compressed mesh colors data.

It can be observed that, in terms of PSNR, the MCC compares differently to the JPEG
codec depending on the component (Y’, Cb, or Cr). For compression of the luma com-
ponent with ratios between 5 and 33, the MCC exhibits greater PSNR values. The same
comparison for the chroma components, Cb and Cr, puts the MCC ahead for compression
ratios up to 13 and 14 respectively. Figure 3.6 shows that PSNR values of the mesh colors
data that was compressed with the MCC deteriorate quicker for increasing compression
ratios.

28



3.1 Model 1

Figure 3.5: Rendering of model textured with decompressed
mesh colors data with compression ratios of 9.54 (top), 14.62
(middle) and 23.43 (bottom).
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3. Results

0 10 20 30 40 50 60 70 80
30

35

40

45

50

55

60

0 10 20 30 40 50 60 70 80
30

35

40

45

50

55

60

0 10 20 30 40 50 60 70 80
30

35

40

45

50

55

60

Figure 3.6: PSNR of model 1 texture components Y’ (top), Cb
(middle), and Cr (bottom), when chroma sub-sampling is disabled,
plotted as a function of compression ratio. The solid lines repre-
sent the quality of the compressedmesh colors data and the dashed
lines represent the quality of the JPEG-compressed source data.
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3.1 Model 1

Figure 3.7: Renders with compressed mesh colors data (left-
column) and uncompressed mesh colors data (right-column).

3.1.2 Chroma Sub-Sampling
Results in this section were gathered with the chroma sub-sampling option activated in the
MCC. Renders of themodel textured with compressed and uncompressedmesh colors data
can be seen in Figure 3.7. The decompressed data used for texturing in both the top and
bottom images in the figure was compressed with a compression ratio of 8.41, resulting in
PSNR ratings of 51.42, 48.3, and 46.38 for components Y’, Cb, and Cr respectively. Com-
pression of the source image with a JPEG codec with a compression ratio of 7.92 resulted
in PSNR values of 51.27, 46.42, and 44.77 for components Y’, Cb and Cr respectively.

Figure 3.8 presents results of compression with greater quantization factors. The mesh
colors data was compressed with compression ratios of 12.00, 17.87, and 27.74 respec-
tively.

Plots of the PSNR values of components Y’, Cb, and Cr of both the mesh colors data
and the source file are presented in Figure 3.9. The dashed line plots the PSNR of the
source data (compressed with a JPEG codec) for different compression ratios.

Enabling chroma sub-sampling has minimal effect on the shape of the PSNR plot of
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3. Results

Figure 3.8: Renders of the model textured using mesh colors data
with compression ratios of 12.00 (top), 17.87 (middle) and 27.74
(bottom).
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3.1 Model 1

component Y’, as is made clear by comparing the top graph in Figure 3.9 with the corre-
sponding graph in Figure 3.6. PSNR values of chroma components, in contrast, exhibit an
initial drop when chroma sub-sampling is enabled though this trend changes as compres-
sion ratio increases. For high enough compression ratios, chroma sub-sampling has a posi-
tive effect on PSNR values. Comparing chroma components of the source file (compressed
with a JPEG codec) and the mesh colors data (compressed with the developed codec), it
can be observed that JPEG starts performing better than the MCC for compression ratios
of 25 and higher for both chroma components (3.9). In contrast, the corresponding values
when chroma sub-sampling is disabled is 13 and 14 for components Cb and Cr respectively
(3.6). Thus, with chroma sub-sampling enabled, the MCC maintains its lead over JPEG
for even greater compression ratios. The faster deterioration of quality in reconstructed
images for increasing compression ratios is, however, still present.
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Figure 3.9: PSNR of model 1 texture components Y’ (top), Cb
(middle), and Cr (bottom), when chroma sub-sampling is enabled,
plotted as a function of compression ratio. The solid lines repre-
sent the quality of the compressedmesh colors data and the dashed
lines represent the quality of the JPEG-compressed source data.
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3.2 Model 2

Figure 3.10: Model of a building textured with mesh color data.
Each face has a resolution of 128.

3.2 Model 2
The second model used for measurements is presented in Figure 3.10, textured with mesh
colors data generated from the image in Figure 3.11.

3.2.1 Full Chroma Resolution
Figure 3.12 presents the changes in PSNR of the Y’, Cb, and Cr components for increasing
compression ratios. The solid line in each graph represents the quality of mesh colors data
compressed with the MCC, and the dashed lines represent the quality of the source data
compressed with a JPEG codec. Similar to the results in Figure 3.6, the MCC performs
better than JPEG in compression of component Y’ for certain compression ratios, but is
otherwise close to the performance of JPEG in terms of quality. Compression of chroma
components also behave as expected, where the measured quality of decompressed mesh
colors data diminishes quicker than that of the source data for increasing compression
ratios. As in Figure 3.6, the MCC outperforms JPEG up to a certain compression ratio but
starts to perform worse after that.

3.2.2 Chroma Sub-Sampling
Figure 3.13 plots PSNR values of the YUV-transformed image components as a function
of compression ratio. The biggest change when enabling chroma sub-sampling is the drop
in quality of chroma components. Similar to the results in 3.9, the MCC performs better
than JPEG in the compression of chroma components up to certain compression ratios.
As in the case for model 1, enabling chroma sub-sampling results in the MCC performing
better than JPEG for even greater compression ratios.
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3. Results

Figure 3.11: Source texture file that the mesh colors data for
model 2 was generated from.
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3.2 Model 2
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Figure 3.12: PSNR of model 2 texture components Y’ (top), Cb
(middle), and Cr (bottom), when chroma sub-sampling is disabled,
plotted as a function of compression ratio. The solid lines repre-
sent the quality of the compressedmesh colors data and the dashed
lines represent the quality of the JPEG-compressed source data.
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Figure 3.13: PSNR of model 2 texture components Y’ (top), Cb
(middle), and Cr (bottom), when chroma sub-sampling is enabled,
plotted as a function of compression ratio. The solid lines repre-
sent the quality of the compressedmesh colors data and the dashed
lines represent the quality of the JPEG-compressed source data.
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3.3 Compression Artifacts

Figure 3.14: Close-up of model 1, rendered with highly com-
pressed mesh colors data.

3.3 Compression Artifacts
Below are the most common compression artifacts that can be found in mesh colors tex-
tures compressed with the MCC, and 2D textures compressed with JPEG.

3.3.1 Blocking
A common compression artifact found in compressed images and videos is blocking (illus-
trated by Figure 3.14). Blocking in mesh colors data appear as quadrilaterals, with shapes
depending on the stretching of the triangle, and not squares as they usually do in JPEG
files. The model in 3.14 is textured with decompressed mesh colors data with a compres-
sion ratio of 42.8069. This artifact is also visible in images compressed with a JPEG codec
(3.15). As the compression ratio increases, the blocks become more visible.

3.3.2 Ringing
Another compression artifact that can appear in JPEG images (and compressed mesh col-
ors data) is ringing. These artifacts appear near edges in the image and resemble them
in shape. Figure 3.16 illustrates ringing artifacts around a brightly colored area appear-
ing in compressed mesh colors data. Figure 3.17 illustrates ringing artifacts found in the
JPEG-compressed 2D source file.
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3. Results

Figure 3.15: JPEG compression of the source file for model 1
with compression ratios of 1.7687 (left) and 39.0244 (right).

Figure 3.16: Close-up of model 1 textured with mesh colors data
compressed with a ratio of 42.8069.
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3.3 Compression Artifacts

Figure 3.17: Ringing artifacts near an edge in the JPEG com-
pressed source image. The images have a compression ratio of
21.7687 (top), and 39.0244 (bottom).

3.3.3 Noise
Noise is a typical compression artifact that is found in JPEG images, even for lower com-
pression ratios. These artifacts are not as easy to spot on a 3D render due to the filtering in-
volved. Figure 3.18 illustrates noise introduced by compression for different compression
ratios. When rendered with more heavily compressed mesh colors data, noise becomes
more apparent near detail in the texture.

An alternative way of presenting a triangle with its associated mesh colors data is
presented in 3.19. The triangle is transformed into a right-angled triangle to assume the
form of a matrix with missing diagonals. In this form, the noise that appears in compressed
data is more visible.

3.3.4 Loss of Color Detail
As can be seen in Figure 3.7, compression of mesh colors data with sub-sampled chroma
components result in loss of color quality, even when compression ratios are minimal.
Loss of color detail near edges where two areas with different color tones meet can be
observed in the top row of images in the figure (e.g. the top-left edge of the white square).
Loss of color information can also be observed in the bottom row of images where orange
detail that can be found in the uncompressed data is not present in the decompressed data.

Similar loss of color details can also be observed in JPEG files with chroma sub-
sampling enabled. Color details concentrated to a few pixels either diminishes or is absent
(Figure 3.20).
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3. Results

Figure 3.18: Models textured with compressed mesh colors data
with compression ratios of 16.2321 (top) and 25.8704 (bottom).
Noise can be observed close to the colored detail.
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3.3 Compression Artifacts

Figure 3.19: Transformed surface data for a single triangle with
compression ratios of 16.2321 (top) and 25.8704 (bottom). Noise
appears near detail, most notably around the details near the top-
left and top-right corners of the triangle.
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3. Results

Figure 3.20: Close-up of the uncompressed source data (left) and
compressed source data with a compression ratio of 5.67 (right).
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Chapter 4
Discussion

When comparing the quality of MCC-compressed mesh colors textures with the quality
of JPEG-compressed 2D textures, results are comparable, and for some configurations,
favorable for the MCC. Generally, the MCC outperforms JPEG for lower compression
ratios as illustrated by Figure 3.6, 3.9, 3.12, and 3.13. Because of a faster decay in quality
for increasing compression ratios, however, JPEG outperforms the MCC after a certain
threshold in compression ratio has been passed. Such high compression ratios, however,
are unlikely to be used due to the poor quality of reconstructed images (3.8, 3.5).

The only option available, other than chroma sub-sampling, to alter compression ratio
is the quantization factor. A faster decay thus suggests that the MCC handles increasing
quantization factors less efficiently than regular JPEG codecs. The root cause of this is sus-
pected to be quantization of edges. A one-dimensional transformation will not decouple
high-frequency information from low-frequency information as well as a two-dimensional
transformation. Thus, smaller quantization steps will need to be applied to coefficients of
edge elements to achieve equal PSNR values (when compared to quantization of face el-
ements), or conversely, for the same quantization factor, edge elements will yield lower
PSNR values.

Illustrations of compression artifacts in compressed mesh colors textures in Section 3.3
are presented with their JPEG counterparts. Because of the similarities between JPEG
and the MCC, similarities in compression artifacts are inevitable.

Because triangles are transformed into different triangular shapes depending on the
3D model, blocking artifacts can assume different shapes. For instance, blocks can appear
skewed and elongated if the triangle is shaped as such. Partitioning of face data elements
into blocks is another factor affecting the shape of compression artifacts. As can be seen in
Figure 2.6, blocks with full sets of data elements originate from the top-left vertex of the
triangle. Had a different vertex been chosen as a reference point at creation of the mesh
colors data, partitioning would have resulted in blocks that looked different. Because of
this, two triangles with identical shape and orientation (even color data) can display block-
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4. Discussion

ing artifacts aligned differently. This is in contrast to JPEG, where all blocking artifacts
are aligned with the x- and y-axis.

As can be seen in Figure 3.16 and 3.17, ringing artifacts appear in the same area in
the compressed mesh colors texture, as it does in the compressed source images. As in
the case for blocking artifacts, ringing artifacts may appear differently depending on the
partitioning of face data elements into blocks. This explains why the ringing artifacts
appear to be oriented differently in Figure 3.16.

Sub-sampling of chroma components is, as stated earlier, a procedure with often min-
imal effects on the perceptual quality of the image. It does, however, become apparent
in areas of the image where color detail is confined to very small areas. Because of the
down-sampling during generation of MIP-levels, and up-sampling during decompression,
fine color detail will either be absent or blurred in the reconstructed image. Color detail
spanning over larger areas however appear to be unaffected by this procedure.

There are two notable effects of chroma sub-sampling in terms of measured quality. When
comparing Figure 3.6 with 3.9, and Figure 3.12 with 3.13, it can be noted that the quality
of chroma components experience a drop in PSNR for low compression ratios when sub-
sampling is enabled. As the compression ratio increases, however, sub-sampled chroma
components yield higher PSNR ratings than their counterparts that are not sub-sampled.
This behavior indicates that low compression ratios are best accomplished with small
quantization factors alone, rather than with chroma sub-sampling, and that increasing
compression ratios are best achieved with the addition of chroma sub-sampling, as high
quantization factors alone prove to be too destructive.

Plots of PSNR as a function of compression ratio also shows that the threshold at which
JPEG starts outperforming the MCC is affected by the chroma sub-sampling option. For
instance, Figure 3.6 shows that compression with JPEG doesn’t start yielding better qual-
ity than the MCC until compression ratios of 13.8 and 14.4 are reached for components
Cb and Cr respectively. Enabling chroma sub-sampling, however, results in these values
increasing to 22.2 and 24.4, as can be seen in 3.9. For model 2, these values increase from
18.0 and 19.7, to 35.2 and 46.3 respectively. This behavior is most likely due to the fact
that all chroma data elements are sub-sampled in JPEG, while only those in the highest
resolution version of the texture, MIP-level 0, are sub-sampled by the MCC. Because the
chroma components of higher MIP-levels are kept in their original resolution, they retain
the same quality as when chroma sub-sampling is disabled, thus influencing the overall
quality of the compressed texture.
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Chapter 5
Conclusion

Obtained results show that measured quality of textures compressed with the developed
MCC is similar to the quality of 2D textures compressed with JPEG. The MCC tends to
yield better quality for lower compression ratios than JPEG but has a more rapid decay in
quality for increasing compression ratios. Such high compression ratios are suspected to be
irrelevant for most cases, however, as the reconstructed images display great compression
artifacts.

The MCC also achieves a greater compression ratio with chroma sub-sampling com-
pared to JPEG. This is partly due to sub-sampled versions already being available in the
MIP-hierarchy. This leads to the MCC outperforming JPEG for increasing compression
ratios when compared to the luma component.

While compression artifacts in textures compressed with the MCC are similar to those
observed in images compressed with JPEG, they tend to differ in shape and orientation.
This is because triangles in meshes are transformed in various ways.

Though computational performance has not been the focus of this thesis, it is of impor-
tance when mesh colors are used in time-critical applications such as video games. If
importance of compression is secondary to that of load times, the MCC must be able to
work within a limited time-window. If it were to take too long to decompress data, it might
prove to be more beneficial to loading times to skip compression, and store uncompressed
data instead. An advantage the MCC has over JPEG in this regard is the likelihood of
graphics hardware being present. Because compression and decompression of mesh col-
ors data is highly parallelizable, if such hardware is present, it could be adapted to run in
parallel computing platforms such as CUDA [5] to increase efficiency.

A possible improvement to the MCC could be implemented by taking further advantage
of the MIP-hierarchy. Each MIP-level of the texture, except the highest one (MIP-0), has a
corresponding version of lower resolution. Instead of compressing absolute color values,
differences between MIP-levels and up-sampled versions of their lower resolution coun-
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5. Conclusion

terparts could be compressed. This is similar to DC coefficient encoding using estimates.
As these differences are more likely to be similar than absolute values between faces and
edges, this could result in greater compression ratios achieved with entropy coding.

The DDCT improves compression of blocks that contain directional edges not aligned with
the vertical or horizontal axes by using transformation directions that align more closely
with them [9]. Because of the hexagonal shapes of texels in the mesh colors framework,
each texel will have 6 neighbors whereas a square texel has 4. This means transform direc-
tions can assume three different directions, as opposed to 2 in the case of square texels, that
do not require turns or shifts as those seen in various modes of the DDCT (e.g. diagonal
down-right mode as shown in Figure 2.11). Using this fact, some of the gains provided
by the DDCT should be possible to reproduce for mesh colors data by choosing different
reference vertices.

The developed MCC compresses edge and face data elements but is not concerned with
compression of vertex data as single data elements are not affected by the DCT. To ensure
compression of all color data, and further increase the compression ratio, it is possible to
pair the MCC with various compression techniques developed for vertex color data. Such
techniques include, among others, prediction-based methods or methods achieving com-
pression via use of mapping tables [4].

Because of its similarity to JPEG, the MCC could be improved with various techniques
aimed at improving the former codec. For instance, the DC separation and ∆DC method
could be incorporated to the MCC to improve the quality of the reconstructed data [3].
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Mesh Colors är en alternativ textureringmetod för texturering av 3D modeller som
undviker problem som sömmar och diskontinuiteter genom att associera data direkt
med enskilda trianglar. I detta arbete har en kodek för komprimering av Mesh Colors
texturer utvecklats.

Mesh colors tilldelar varje hörn, kant och yta av
trianglar ett antal element som bestäms av den
upplösning som anges triangeln. Till skillnad från
traditionella texturer lagras dock mesh colors data
endimensionellt.

JPEG är ett välkänt och ett ofta använt for-
mat för kompression av bilder. Formatet är en
standard för destruktiv komprimering, dvs. där
den dekomprimerade bilden har en försämrad bild-
kvalitet. Detta görs dock i enighet med det män-
skliga synsystemets egenskaper vilket resulterar i,
beroende på kompressionsgrad, återskapade bilder
som uppfattas ha minimal förlorad kvalitet. Bild-
data partitioneras till block av data som trans-
formeras till frekvensdomänen med diskret cos-
inustransform. Transformerad data kvantiseras,
dvs. lagras med mindre precision, där koefficienter
som representerar lägre frekvenser lagras med hö-
gre precision. Det faktum att det mänskliga syn-
systemet är mindre känsligt för förvrängningar av
högfrekventa egenskaper i bilder än lågfrekventa
gör att detta steg inte får den återskapade bilden
att se särskilt förvrängd ut.
Den utvecklade mesh colors-kodeken är lik

JPEG-standarden, dock med vissa avvikelser. El-
ement i mesh colors textureringsalgoritmen som
associeras med hörn är en del av 3D-modellen och

behöver inte lagras med resterande data. De el-
ement som positioneras på kanter och ytor kom-
primeras i två separata pass där kantelement bear-
betas först. Dessa partitioneras in till längder
av element och transformeras endimensionellt in-
nan kvantisering. Element som positioneras på
ytor partitioneras in till tvådimensionella block
och transformeras tvådimensionellt för att sedan
kvantiseras. På grund av den triangulära formen
av ytor resulterar partitionering av associerade el-
ement i block där diagonaler av element eventuellt
kan saknas.
Den implementerade mesh colors-kodeken up-

pnår en grad av kompression jämförbar med
JPEG. Då man jämför den uppmätta kvaliteten
för dekomprimerad mesh colors-data och textur-
fil i JPEG där båda är genererade från samma
källa kan det observeras att mesh colors kodeken
presterar marginellt bättre upp till en viss kom-
pressionsgrad men även att kvaliteten för mesh
colors-data minskar snabbare än JPEG-filer för
ökande kompressionsgrader. Dessa resultat visar
att det går att uppnå JPEG-grad av kompression
för mesh colors-data och att dess otraditionella
struktur inte är ett hinder för att nå relativt goda
kompressionsresultat.
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