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Abstract

Some companies strive for the best quality in their releases. For some companies
the firmware quality can be "good enough" to be released. And others just want
to get new functionality out quick. No matter the case, with the high tempo in
the industry, with frequent releases and constantly having to be up to date, it is
hard to stop and evaluate the quality. If customers or users give feedback, the
companies have some idea of how the product is doing. However, this can only
be seen after the release, given that there is any feedback. Is it possible to gather
data from previous releases and predict the quality of the next release before it is
released? Is it possible to determine or identify issues earlier to avoid problems
when the customer is using the product? This thesis investigates how to create
a model that is able to predict the quality of a release. The help from this kind
of assessment would allow the company to measure how their firmware is doing
before a release. The end product of the work are three models that are able
to indicate the quality of a firmware release. Based on the data available before
release, it is able to give one or several metrics that can be used to predict how
well the release would fare if shipped out. We made a program for applying this
model, so that it can be used at Axis. The way we did it was by first doing a
literature study as well as an in-house research at the company, to find relevant
metrics and data to use. We then proceeded to extract the data we decided to
continue with. That data was based on said literature study and primarily on
discussions and interviews with relevant personnel. After that, by using linear
regression, we created several models where each model used di�erent metrics.
The models are in fact just functions where the metrics are unknown variables
and their values in-parameters. Based on the values of the metrics, the model will
predict a value corresponding to the quality. Lastly, the models were evaluated
by training them on all but one data point and then predicting on that missing
point. The three best were presented to the case company. They were satisfied
in the end. They realised that there was too little data to make a super model
of this kind, but will continue to use and further develop them to improve their
accuracy.
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Chapter 1

Introduction and Aim

he Currently many companies frequently make new releases and ship them to customers.
When that is done the development process seems finished. However, the question "how
good was the release?" is rarely asked, unless users give feedback which can be both good or
bad. Could information about the release help in decision making to improve the quality of
future releases or direct the work in a specific path? By gathering data from earlier releases
and internal products, is it possible to predict how the next one will be or determine and
identify issues earlier to avoid problems when the release is already in the customers hands?
Visualising data trends for example, has been shown to have a large impact in supporting
the daily work, branch merging and at release time in a case study done at Westermo Network
Technologies AB [31].

1.1 Case company
The case company sell cameras but do not build them in their main o�ce. Instead they
write the code which controls the cameras, called firmware there. There are several problems
that arise when releasing bad firmware. A major one being loosing time and resources to
unplanned and unexpected obstacles. If the firmware is bad then actions has to be taken to
improve it, which means resources has to be spent, resources that could be invested in more
important tasks. Resources could be manpower, or material amongst other things. Instead
of working on new projects and advancing the department or company, they have to slow
down and redo tasks that should already be finished. This can result in shorter deadlines
for the next release. It can result in customers being unsatisfied and a negative reputation
amongst other potential customers. Manpower and material also do not come free, which
could be avoided or at least be deployed on di�erent enterprises. For companies that seldom
make releases and tend to make them larger this problem potentially becomes a bigger issue
than for companies that make smaller but more frequent releases. This is because of two
reasons. Firstly, if a release is big it could potentially contain more flaws which requires more
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1. Introduction and Aim

resources to fix. Secondly, if the company waits long before the next release and the flaws are
major, customers will be unsatisfied with the waiting time before getting their new update.

1.2 Quality definitions

According to Nagappan et al. [20] estimates of software field quality in the industry are often
available too late to a�ordably guide corrective actions to the quality of the software. True
field quality cannot be measured before a product has been completed and delivered to an
internal or external customer. Here, the quality is measured using the number of failures
found by the customers and since this information is only available late in the process, cor-
rective actions tend to be expensive [20]. What Nagappan et al. says applies for Axis as well.
Developers, but also other personnel can benefit from an early warning regarding the quality
of their product.

The ISO/IEC 9126 defines quality of software products as "the totality of characteristics of an
entity that bear on its ability to satisfy stated and implied needs". Furthermore, the ISO/IEC
9126-1 specifies two distinct models for software quality. Internal and external quality is
modeled with the set of the following characteristics: functionality, reliability, usability, ef-
ficiency, maintainability and portability. Whereas quality in use characteristics are modeled
with four other characteristics: e�ectiveness, productivity, security and satisfaction [22].
The standard also says that evaluators, testers and developers will be able to evaluate exter-
nal software product quality and address quality issues. For higher positioned personnel, it
would be of interest in evaluating "quality in use" since they inform on the decision making
process. Quality in use is the combined e�ects of the six categories of software quality when
the product is used. The ISO/IEC 9126 defines it as the capability of the software prod-
uct to enable specified users to e�ectively, safety, satisfactory and with productivity, achieve
specified goals in a specified context of use [22]

1.3 Model

The main part of this thesis is the model which is intended to help Axis in decision making.
It takes a number of inputs(Qin) and produces an output depicting quality(Qout), as shown
in Figure 1.1. The model is in fact just a mathematical function where the metric’s values are
in-parameters. We found out there are many ways to design the model, each way explained
more in detail by Li [13]. The one we are interested in however, is using linear regression. These
modeling methods are ways to produce models using historical information on predictors
such that the resulting model can produce a prediction given the predictors values for a new
observation.
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1.4 Report structure

Figure 1.1: Model

For the model described in Figure 1.1 we need an input which we call Qin, also known as
predictors or independent variables in the literature. The input can be one or several metrics,
that are deemed significant enough to be input. For instance if there is a metric that never
changes then it will not matter for the model since it is always going to contribute with the
same result. The second part of the model is its output which we call Qout . This is known as
dependent variables in the literature. The output is mainly decided by what Axis wants since
it is supposed to give a prediction on their releases. There are di�erent ways of presenting
the output and it is also dependent on the input to the model. For instance if the probability
of something is desired as output, then the model should work with numbers as input to be
able to calculate a probability. If only a pass or fail is desired then boolean values might be
enough as input.

We made a program for applying this model, so that it can be used at Axis. The main method
of the thesis was a case study on the company to be able to create the model, more detailed
in Section 4.1. We started by doing a literature study as well as an in-house research at the
company, to find relevant metrics and data to use. We then proceeded to extract the data
we decided to continue with. That data was based on said literature study and primarily on
discussions and interviews with relevant personnel. By using linear regression, we created
several models where each model used di�erent metrics. Lastly, the models were evaluated
by training them on all but one data point and then predicting on that missing data point.
The three best models were presented to the case company.

1.4 Report structure
The first three chapters provide introduction, a glossary and background for the thesis. In
Chapter 4 our method and decisions are presented. Chapter 5 shows our results and Chapter
6 and 7 summarises the thesis with discussion, conclusion and future work.

1.5 Distribution of work
The work has been evenly distributed between the authors. Both have written on the report
continuously and done some programming. Both have also been present at all meetings and
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1. Introduction and Aim

other discussion sessions needed to move the research forward. Sven Andersen has focused
a little bit more on programming and calculations. Dragan Adzaip has focused on report
writing and keeping things structured to fit according to Axis standards, such as code stan-
dards, database queries and data formats, since he had some experience from the company
earlier. Towards the end we worked more and more together to streamline the work. We
pair-programmed, wrote the report and other documentations together and made sure the
handover of the code went smoothly.
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Chapter 2

Glossary

This glossary contains words and terms that are used in this report.

General terms:

• Feature: A feature is a functionality or ability of a camera that is included in a release.

• Main/Master branch: The branch that holds the latest firmware for the products. Since
the case company wants to make frequent releases the goal is to always have a stable
and clean master branch so that the release branches do not require too much e�ort to
fix if necessary.

• Metrics: A characteristic which is measurable or countable. Used to, for instance mea-
suring software performance, planning work items or measuring productivity.

• White noise: White noise is a term mostly used in signal processing, and is similar in
nature to grey noise. This term is used in our text to signify background interference
and inaccuracies in sample values.

Code terms:

• Assertion: A test condition in a test case, that is making sure that the software is
functioning as expected.

• CBO: Coupling between object classes. A count of the number of classes that are
coupled to a particular class, i.e. where the methods of one class call the methods or
access the variables of the other.

• DIT: Depth of inheritance tree. The maximum length of a path from a class to a root
class in the inheritance structure of a system. Measures how many super-classes can
a�ect a class.
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2. Glossary

• kLOC: Thousands of lines of code in the project.

• SLOC: Source lines of code. Lines of code in the source code.

• TLOC: Test lines of code. Lines of code regarding tests.

• WMC: Weighted methods per class. Measures the complexity of a class. For instance
by the cyclomatic complexities of the methods in the class. A high value indicates a
more complex class.

Axis terms:

• CST (Customer support ticket): There are two systems where the term CST is used.
The first is the customer support interface, where customers can get support with
problems, in this system the tickets are written by the customer. The second system is
the internal ticket system, where a ticket is composed by an employee. These tickets
can be based on tickets from the first system, and are then also CST tickets, as they
are indirectly written by a customer.

• Confluence: A software tool similar to Wikipedia where teams create, collaborate and
organize all their work in one place.

• External data: External data is similar to internal data, except that the cameras are
actually those that are run by customers. Customers have the option to automatically
send data from their cameras, this is the data which is known as external data.

• IDD (In-Device Diagnostics): Is a department and framework making it possible to
monitor embedded products. They monitors installed products and gather usage data
to:

– Know what is important for the customers.

– Tighten the development feedback loop.

– Detect issues before the customers do.

– Simplify troubleshooting.

• Internal data: Internal data is the data that is collected from cameras that are within
the grounds of the case company. This data is slightly di�erent from test data, since
there are no specific areas of function that are being tested. It is a way to run the
latest software under somewhat realistic conditions, without subjecting the customers
to possible faults.

• LTS (long term support): Are special releases that will be kept active for a long time.
This is done for several reasons, but one is the limitations of older hardware. The older
hardware might not be able to accommodate the newer features or firmware sizes, so
as a solution, every once in a while a release is chosen as LTS. The LTS will only be
upgraded with essential updates, such as security patches.

• Trouble API: Is an API used to communicate with the ticket system Trouble. From the
API it is possible to get various ticket information such as categories, departments,
packages, products and users amongst others, as well as whole tickets.

6



Our terms:

• Package changes: Refers to a the software packages that are the components of the
software that is being run on the cameras. By changes, we refer to both changes in the
code and version number.

• Pulled products: When a release is planned, it consists of several parts. One of these
parts is a list of products that are intended to be included. Later down the release pro-
cess, some of the products that were originally supposed to be part of the release, will
for some reason be excluded from the release. Or, in terms of set theory, it is the sym-
metric di�erence of the planned release products and the actually released products.

• final to final: Means the interval in time between one final release and the next final
release. The final comes last, i.e. after eventual alphas, betas, etc.
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Chapter 3

Background

What is truly a good release? The definition is ambiguous and may vary from company to
company. It may di�er even more if the companies work with di�erent sorts of end product.
This thesis is written for Axis Communications, which sells cameras, The performance of
the cameras is essential and it also becomes one way of measuring quality. For example, if
the memory usage and boottime is low for a camera, then one can perhaps say that it is good.
On the other hand, companies that do not work with cameras do not have the possibility to
measure quality in this way, but perhaps in some other way that Axis can not. In this the-
sis we have two aspects to how the theory applies. Things that only work for Axis, such as
specific metrics mentioned above, and general things that can be seen or used in all software
companies such as lines of code for example.

This chapter will look into the background, starting at a general level with previous sim-
ilar work. After that follows a section about linear regression which is used to create the
models. Two shorts sections about AHP and black box testing are included, where AHP is
a technique we used during the case study and black box testing is a similar strategy to our
model. The chapter ends with a section that brings up things that are more specific to our
case.

3.1 Quality models
The subject of quality prediction is not very prevalent in research, thus finding related work
proved a challenge. Furthermore, no company is identical and quality definitions di�er. Even
so, related work does exist. Nagappan et al. [20] did a very similar case study to this one where
they estimated software quality using in-process testing metrics . Earlier they had created a
metric suite called "Software Testing and Reliability Early Warning metric suite for Java"
(STREW-J) [19], which is applicable for development teams that write extensive automated
test cases. STREW-J leverages the utility of automated tests suites by providing a post-release
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3. Background

field quality estimate. The field quality estimate relative to historical data is calculated using
multiple linear regression analysis which is used to model the relationship between software
quality and selected software metrics. The metric suite consist of nine metric ratios which
are shown in Table 3.1.

1 nbr assertions / SLOC
2 nbr test cases / SLOC
3 nbr assertions / nbr test cases
4 (TLOC/SLOC) / (nbr classest est/nbrclassessource)
5
∑

cyclomaticcomplexityt est/
∑

cyclomaticcomplexitysource
6

∑
CBOt est/

∑
CBOsource

7
∑

DITt est/DITsource
8

∑
WMCt est/

∑
WMCsource

9 SLOC / min SLOC

Table 3.1: Table showing the nine metric ratios used in the metric suite by Nagap-
pan et al. [20].

Each metric makes an individual contribution towards estimation of the post-release field
quality, but works best when used together. Development teams record the values of these
metrics and the actual post-release field quality of projects. The historical values from prior
projects are then used to build a regression model that is used to estimate the post-release
field quality of the current project under development. The metrics are a bit hard to compare
with the ISO 9126 standard metrics described in Section 1 since the metric ratios are on a
lower level, i.e. more close to the code. However, some of them have a relation. For instance,
ratio 5, 6 and 8 talk about complexity. A parallel can be drawn with maintainability and
portability with the argument that the more complex the code is, the harder it is to maintain
and port to other systems. Furthermore, ratio 2 and 3 talk about tests. More tests does not
necessarily mean higher reliability and better functionality. It depends on the tests. But if the
tests are written right, it should contribute to reliability and functionality. The last metric
is a relative size adjustment factor. Size can always be discussed and defect density has been
shown to increase with class size [5]. There are also di�erent kind of sizes, for example lines
of code, class size and release size amongst others. Nagappan et al.[20] account for the dif-
ference in size in terms of lines of code for the projects used to build the STREW prediction
equation using the size adjustment factor .

When deciding what metrics to choose, they consulted Peng and Wallace [24] who listed
5 important characteristics for a good metric. These points were written in 1993 but are still
relevant to our study in the current year.

• Simple - definition and use of the metric is simple.

• Objective - di�erent people will give identical values. This allows for consistency, and
prevents individual bias.

• Easily collected - the cost and e�ort to obtain the measure is reasonable.

• Robust - metric is insensitive to irrelevant changes, allows for useful comparison.
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3.1 Quality models

• Valid - metric measures what it is supposed to, this promotes trustworthiness of the
measure.

The study was carried out in a junior/senior level software engineering course at a university
in the United States. The students developed an open source plug-in in Java that automated
the collection of static code metrics. A total of 22 projects were submitted and used in the
analysis. The size of the projects were measured in lines of code with the largest project
having 3631 SLOC and 2115 TLOC. The mean of all projects was 1996.9 SLOC and 688.7
TLOC respectively. The projects were evaluated using a set of 45 black-box [21] test cases.
The post-release field quality was calculated via the black-box test cases as the ratio failures
over kLOC and used as the dependant variable in a multiple linear regression analysis. The
metrics were used as predictors.

To determine the e�ciency of identifying high and low quality components correctly, a sta-
tistical normal lower confidence bound formula on the black box test failures was used. All
programs having a black box test ratio of failures per 1000 lines of code lower than the cal-
culated lower bound from the formula were of high quality and the remaining of low quality.
The point estimate of the percentage correct classification was 90.9%, which means that 20
of the 22 programs were correctly identified as high or low quality.

Another similar research was made by Li [13]. Terms used in literature and the industry
to describe software related problems include faults, errors, failures, bugs and defects. Faults
and errors are for example when software produce wrong results. Failures can be that tests
are failing or that the software fails to run. Bugs and defects is when something is wrong
with the code resulting in faults, errors and failures. Some studies or companies define these
terms di�erently. To avoid confusion, Li uses the term field problems to include all terms,
with the requirement that the software problem occurs in the field. The term field problems
is intended to be generic and to encompass all the terms used in the literature to describe
software related problems in the field [13].

Li divides models that predict field problems into two classes: time based models and metric
based models, by using an adapted classification scheme from Schneidewind [28] and Tian
[33]. In his research he analysed metric based models in detail.

3.1.1 Time based models
Software reliability assessment is important to evaluate and predict the reliability and per-
formance of software system. The models applicable to the assessment of software reliability
are called Software Reliability Growth Models (SRGM). An SRGM provides a mathematical
relationship between time span of testing or using the software and the cumulative number
of faults detected. It is used to assess the reliability of the software during testing and oper-
ational phases [30]

Both time based and metric based models are SRGMs. Time based models use the prob-
lem occurrence times or the number of problems in time intervals during testing to fit a
software reliability model. The number of field problems is estimated by calculating a num-
ber of problems in future time intervals using the reliability model. Time base models assume

11



3. Background

that the software system has some probability of failure during execution. Thus, a problem
occurrence is a random process in time according to Musa et al. [18]. The process is dictated
by the number of residual problems and the discovery process, for example the amount of
execution time. The idea is that every moment of execution has a chance of encountering
one of the problems remaining in the code. The more problems there are in the code, the
higher the probability that a problem will be encountered during execution. Assuming that
a problem is removed once it is discovered, the probability of encountering a problem during
the next execution decreases.

The main di�erence between di�erent time based models are the model structures of un-
derlying software reliability models. The important form of the software reliability models
is the failure intensity function defined by Lyu as the rate of problem occurrence at a cer-
tain time [15]. The number of field problems is estimated by integrating the failure intensity
function. The commonality between time based models is the use of time related problem
occurrence information to fit a reliability model and then predicting field problems using
the fitted model. There are many time based models and Farr discusses 17 di�erent ones in
[15].

3.1.2 Metric based models
The metric based models can predict field problems using metrics available before release
that capture various attributes of the software product, the development process, the de-
ployment and usage pattern, and the software and hardware configurations in use. Metric
based models use historical information on metrics available before release, which are called
predictors, and historical information on software field problems to fit a predictive model
[13]. The fitted model and predictors’ values for the current observation are used to predict
field problems for the current observation. Because of the use of metrics, e�ects of various
attributes on field problems can explicitly be accounted for in the models. The idea is that
certain characteristics make the presences of field problems more or less likely. Capturing
the relationship between characteristics and field problems using past observations, allows
field problems to be predicted for unforeseen observations. A di�erence from time based
models is that metrics based use historical information on predictors and the actual number
of field problems to construct the predictive model. Di�erent metrics based models use dif-
ferent modeling methods to model the relationship between predictors and field problems.
Since there is no assumption about the similarity between testing and field environments,
metrics based models are more robust against di�erences between how the software is tested
and how it is used in the field [13].

3.1.3 Metric based inputs
The inputs to metrics based models are metrics’ values. The metrics can be categorized and
Li does this by using a version of the categorization schemes used by Fenton and Neil [6],
Khoshgoftaar and Allen [11] and the IEEE standard for software quality metrics methodol-
ogy [4]. The categories are product metrics, development metrics, deployment and usage metrics
and software and hardware configurations metrics.
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Product metrics measure the attributes of any intermediate or final product of the software
development process [4]. Product metrics have been shown to be important predictors by
studies such as Khoshgoftaar et al. [12], Takahashi et al. [32], Jones et al. [10] and Shelby and
Porter [29]. According to our findings during the literature study of this thesis, these are the
most used metrics in studies. Many of the product metrics are highly correlated and measure
similar things, for example lines of code and source lines of code.

Development metrics measure attributes of the development process. These metrics are usu-
ally computed using information from version control systems and change management sys-
tems. The idea behind development metrics is that attributes of the development process,
that is how the product is implemented, is related to field problems. Areas where metrics can
be measured include problems prior to release, changes to the product, people in the process
and process e�ciency.

Deployment and usage metrics measure attributes of the deployment of the software sys-
tem and usage in the field. There have not been many studies examining deployment and
usage, furthermore no data source is consistently used. The amount of execution and the
kinds of execution during operation are related to field problems.

The last category, software and hardware configurations, measure attributes of the software
and hardware systems that interact with the software system in the field. Some field problems
can only be exposed by using specific configurations, therefore the software and hardware
configurations in use are related to field problems.

All of these metrics that are available before a release are potential predictors, which may
be used to predict field problems and usually computed using information in change man-
agement systems and defect tracking systems. This type of metrics include the number of
faults, bugs, errors and defects.

There is no right answer to which specific metrics to collect and in general there is an agree-
ment on the need for more metrics that capture di�erent attributes as stated in the IEEE
standard for software quality metrics methodology [4]. Prior work shows that in general,
collecting and using more metrics will result in more accurate field problem predictions. The
general approach is to collect all reasonable metrics that are consistent for all observations
within the study. Metrics which measure attributes that can be reasoned as being related to
field problems and are measured in the same manner for all observations are also good. There
are three ways of showing that a predictor is important. The first way is to show that there
is a high correlation between the predictor and field defects. For example one can select all
predictors that have a correlation higher than a certain number. The second way is to show
that the predictor is selected using a model selection method. Here a linear regression model
can be used to predict the number of errors for example. The p-value of the estimated pa-
rameter value can be used to select important predictors. If the p-value is low for a certain
predictor then it is likely to be a meaningful addition to the model because changes in the
predictors’ value are related to changes in the response variable. The third way is to show that
the accuracy of predictions improves with the predictor included in the prediction model.
An example of this way is shown in Jones et al. [10]. They construct two logistic models that
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classify modules as risky and not risky. One model uses only product metrics and the other
uses product metrics and a deployment and usage metric. The authors show that the model
with the deployment and usage metric has fewer errors of a certain type for the testing set
and argue that since identifying risky modules (i.e. not making those errors) is more impor-
tant, the model with the deployment and usage metric is better. Therefore, deployment and
usage metrics are important.

3.1.4 Model outputs
The output is what comes out of the metrics models. Depending on the result di�erent ac-
tions may be taken to reduce the cost and e�ect of field problems. According to Li, prior
work shows there are three levels of output [13]. A level 0 output is a relationship between
predictors and field problems. The research question addressed for a level 0 output is "what
predicts field problems?". Studies that produce level 1 or level 2 outputs automatically in-
clude level 0. Studies that only report level 0 output simply observe a correlation between
the predictors’ values and the values of the field problems metric. A level 1 output answers the
question if an observation will be risky or not. Prior work at level 1 establishes relationships
between predictors’ values and the class of the field problem metric using models, and then
uses the models to classify observations as either risky or not risky. The output is thus a clas-
sification. The primary purpose of a level 1 result is to focus testing e�orts on risky modules.
Level 2 output answers what the number of field problems is. Prior work establishes relation-
ships between predictors’ values and the value of the field problem metric using a model, and
then uses the model to quantify the risk. Results are predicted values of the field problem
metric. Some methods that give level 2 outputs are linear modeling (linear regression and
negative binomial regression), non-linear regression, trees and neural networks. Determin-
ing the number of field problems should be done meticulously. It may allow the appropriate
amount of maintenance resources to be allocated. The output can also be used to determine
where to focus testing by selecting a number of the observations. The most commonly used
measures of accuracy for the output are the average relative error (ARE), the average absolute
error (AAE) and the standard deviation of the absolute errors. The AAE measures the aver-
age error in predictions, that is how far o� a typical prediction will be. The ARE measures
the average percentage of error in the predictions, that is relative to the actual number of
field problems, how far o� a typical prediction will be.

3.1.5 Counter findings
There have been many studies in trying to predict post-release defects based on pre-release
data and it is important to take their lessons to heart. It is important not to take every point
as a matter of course, but to check every correlation, as shown by Fenton and Ohlsson [7], in
which the releases they examined showed several counter-intuitive notions. For example, it
showed that the modules that are fault-prone pre-release tended to not be the same modules
that were fault-prone post-release. It also showed that fault-proneness were not strongly cor-
related to size, contradicting the notion that more code equals more faults. These findings
by Fenton and Ohlsson do not discredit that there often are correlations on these metrics,
but it does show that di�erent system structures and release processes can show di�erent
correlations.
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A more recent paper by Pecorelli [23] also shows some findings that might be counter-intuitive.
"The main surprising outcome of our study is that most of the considered test-related factors are not able
to explain post-release defects." [23]. He actually found that the two terms "assertion roulette"
and "eager test", which are indicators of a bad test case, were the only test related factors that
had an impact. Furthermore they actually showed a negative correlation, indicating that a
test case a�ected by these negative symptoms gave fewer post-release faults.

3.1.6 Goal Question Metric
To decide Qin and Qout we found that a popular method was the Goal Question Metric
(GQM) approach [3]. The approach is based on the assumption that, for an organization to
measure in a purposeful way it must first specify the goals with the project. Then it traces
those goals to data that should define the goals operationally and provide a framework for
interpreting the data with respect to the stated goals.

There are three levels in the GQM approach: conceptual, operational, quantitative. Firstly, in
the conceptual (GOAL) level a goal is defined for an object. Objects of measurement can be
categorized into products, processes and resources. What counts as products are artifacts, deliv-
erables and documents that are produced during the system life cycle. Processes are software
related activities normally associated with time, for example, specifying, designing, testing
and interviewing. Resources are items used by processes in order to produce their outputs,
for example, personnel and hardware.

The second level is the operational (QUESTION) level. This is a set of questions used to
characterize the way that the assessment of a specific goal is going to be performed based on
some characterizing model. Questions try to characterize the object of measurement, one
of the four categories in the conceptual level, with respect to a selected quality issue and to
determine its quality from the selected viewpoint.

The third and last level is the quantitative (metric) level. A set of data is associated with
every question in order to answer it in a quantitative way. The data here can be either ob-
jective or subjective. If they depend only on the object that is being measured and not on
the viewpoint from which they are taken, it is objective, for example number of versions of
a document or size of a program. If they depend on both the object and the viewpoint, it is
subjective, for example level of user satisfaction. Some of the data here we call Axis specific
because it is produced by Axis. For example, data coming from their cameras.

3.2 Linear regression
If there exists an a and b such that y = ax+b, for every variation of x and y, then there would
be a perfect linear relationship. This means that if we ever lack the value of y, we can simply
look at the value of x, and calculate y. In general x is known as an independent variable, and
y as a dependant variable and another word for this relation is collinearity.
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Linear regression is a way of viewing the relation between two real variables, in a way that
is similar to a linear relationship. True linear relationships are rare in reality, but many re-
lationships can be simplified to fit such a relation. Especially if the range of x is short enough.

In reality, the sample points of x and y is not as clean as in the world of simple math. There
are always causes of errors, be it hidden variables, faulty sampling tools or rounding errors.
If there is enough data, it can be reasonably accurate linear relationship between the two
variables. See Figure 3.1 for an illustration. When performing linear regression, one only has
access to the sample data, and as such can only try to estimate the actual linear relationship.

In linear regression the observations, marked as green circles, are assumed to be the result of
random deviations, the red lines, from an underlying relationship, the straight line, between
a dependent variable y, and an independent variable x. The goal of simple linear regression
is to create a linear model that minimizes the sum of squares of the residuals, which are the
red lines in Figure 3.1

Figure 3.1: Simplified linear regression. The diagonal line represents the actual
relation between the two variables x and y. the circles are the sample data that
have been collected. The vertical lines are the amount of error that are included
in the sample data

It is generally as such that x is assumed to be the catalyst that causes the change in y, and
there thus is a cause and e�ect relationship between them. There is however no mathematical
restriction that says that such must be the case. There may well be a hidden variable Z that
has a direct linear e�ect on both x and y, and is the true cause of the change and linearity in
x and y.

This means that without white-box knowledge of the system in question, there is no guar-
antee that the relation is causal. Even if the sample data were to perfectly reflect a linear
relationship, it only does so for the given points of the data. If a new point of x were to be
introduced, that were far from the other points of the samples. It is possible that it is so
far from the other points that it has passed over a threshold where the relation is no longer
representable as linear, but rather exponential as illustrated in Figure 3.2.
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Figure 3.2: An illustration of how a non linear relation can be represented as a
linear regression. As long our data is within the selected area, the relation seems
linear. But if samples from the top right circle are included, our model gets thrown
of.

3.2.1 Multiple linear regression
The case of one independent variable is called simple linear regression. For more than one
independent variables, the process is called multiple linear regression. This can be seen
as a merger of several linear regression models, and results in something on the form of
y = Ax1 + Bx2 +C.

A multiple regression model is based on several assumptions. [2]

• There is a linear relationship between the dependent variables and the independent
variables.

• The independent variables are not too highly correlated with each other.

• The observations are selected independently and randomly from the population.

• The residuals should be normally distributed with a mean of 0.

3.2.2 Multicollinearity
Simple linear correlation is a linear relation between two variables. If we merge two simple
linear relations, we do not end up with only two relations. We also introduce a third relation
between the two independent variables. Indeed, every new independent variable we merge
into the multiple linear regression, creates a new relation to every other independent vari-
able. The total number of relations in the model is in fact n(n − 1)/2, where n is the number
of variables.

Imagine that we are making a multiple linear regression on commuting time. We have made
several simple linear regressions that have given good results, and its time to merge them.
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So we try to merge two of our regressions, called alpha and beta, into the regression omega.
Alpha showed a great correlation between distance in meters to commuting time, and beta
distance in kilometres to commuting time. And when we merge them into omega we find a
good model that predicts commuting time. The only problem is that the two variables are
measuring the same thing. Furthermore, the coe�cients of the multiple regression have al-
most an infinite number of variations that will fit the model. This means that any errors, as
shown in Figure 3.1, will have a great impact on the model produced, which results in drasti-
cally di�erent models based on slightly di�erent sample data. The number of relations that
can cause multicollinearity can be expressed by the same formula, except that n then stands
for the number of independent variables.

Figure 3.3: Multiple linear regression. The dotted lines are the relations that might
cause multicollinearity

Adding more independent variables creates more relationships among them. Not only
are the independent variables potentially related to the dependent variable, but also to each
other. When that happens, it is called multicollinearity. The idea for a good model is that
all of the independent variables are correlated with the dependent variable but not with
each other. One way to solve the potential multicollinearity problem is performing a PCA,
explained in the next section.
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3.2.3 PCA
PCA (Principal component analysis) is a way of grouping samples according to properties.
Often this is done because there are too many properties for it to be convenient or even pos-
sible to illustrate in a graph.

In practise the walls of di�erent properties are broken down and new properties are cre-
ated from the remnants. The new properties are denoted as PC1, PC2 and PC3 e.t.c., and
are designed as such that PC1 is the property that shown the greatest amount of di�erence
between the samples. The number of new variables that are created is the smallest of the num-
ber of samples and the number of variables, but generally one is only interested in the first
two or three. This is because just like how the first PC variable shows the greatest amount of
variance, the last one barely shows any at all.

With this grouping it is then possible to see hidden patterns in the samples. If one of the
new properties is composed mainly by a single one of the original properties, it would indi-
cate that said property is not strongly correlated with any of the other properties. Similarly
if more than one of the original properties have a great impact on one of the new properties,
it would indicate that these original properties are highly correlated and should not be used
together.

3.2.4 Overfitting
Adding more independent variables to a multiple regression procedure does not necessarily
mean that the regression will be better or o�er better predictions. It could as well make it
worse. That is called overfitting. Adding more variables will explain more about the varia-
tion of the dependent variable but it can lead to many other problems that you want to avoid.
Instead of just adding more variables the idea is to pick the best ones for the model. Some
independent variables are better at predicting the dependent variable than others. Some
contribute nothing. Occam’s Razor, says that when using models and procedures, to use only
that which is necessary for the modeling but nothing more [9]. For example if a regression
model with 2 predictors is enough to explain the dependent variable, then no more then the
two predictors should be used. So overfitting is the use of models or procedures that include
more terms or more complicated approaches than are necessary.

According to Hawkins overfitting can be split into two types [9]. Using a model that is
more flexible than it needs to be, and using a model that includes irrelevant components.
An example of the first one is using a neural net able to accommodate some curvilinear re-
lationships, for a linear model. Since it is curvilinear it is more flexible than a simple linear
regression. However if used on a linear model, it adds complexity without any benefit in per-
formance. On the contrary, it can instead give worse performance than the simpler model.
The second type is what it sounds like, for example a multiple linear regression that contains
unnecessary predictors.

There are several reasons why overfitting is unwanted. Adding predictors that do not do
any useful function means that in the future when using the regression to make predictions,
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you will have to measure and record these predictors to be able to substitute their values
in the model. This does not only waste resources but also increases the possibilities for un-
detected errors in databases to lead to prediction mistakes. In a feature selection problem,
models that include predictors that are not really needed result in worse decisions. A mis-
taken decision to use a certain predictor in a model when this predictor is irrelevant leads
to wrongly ignoring other compounds based on the irrelevant predictor. This way valuable
leads can be lost. Adding irrelevant predictors can make predictions worse because the co-
e�cients fitted to them add a random variation to the following predictions. Lastly, models
impact portability. A linear regression model with one predictor that captures a relationship
is very portable. It can be applied by anyone, anywhere to their data simply by knowing the
two numbers, the values of the regression slope and the intercept. There are also models that
are not at all portable, which can only be reproduced by reusing the modeler’s software and
calibration data. In science, a vital requirement is that other people and scientists can use
your work or redo it in another location. With that said, more portable models are preferred
to less portable [9].

3.3 Analytic Hierarchy Process (AHP)
The idea behind AHP is to prioritise what ever metrics or attributes you have. You start by
comparing each metric with all other metrics and put a number of how much more impor-
tant the first metric is compared to the second. You then proceed by calculating averages of
the comparisons to get the weighted criteria. Lastly, a consistency check is made to make
sure the numbers put on the importance was not just random but actually had some thought.
A more detailed explanation follows.

First you create a matrix where each row and column is represented by a metric. This means
each cell is represented by two metrics. How AHP works is that you start by comparing two
metrics and simply put a number between 1 and 9 how much more important the first met-
ric is compared to the second metric. With one being equally important and nine being of
extreme higher importance. Then you continue by comparing the first metric with the third,
and so on for all. When the first metric has been compared to the rest, you move on to do the
same thing with the second metric. When comparing the second metric with the first metric
now, since you have already done it once, it will automatically get the inverted value to the
value you put when comparing the first metric with the second. For instance, say metric A is
strongly more important than metric B, you put a 5 in the cell that is in row A and column
B. When you later compare metric B to metric A, it will get 1/5 since we stated that metric
A was more important and already had a 5. You do this for all the metrics which means you
will complete a table, such as the one in Figure 3.4.

Figure 3.4: AHP matrix after prioritizing
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The next thing we want to do is get the weighted criteria. First you normalize the values
by computing the sum of a column, and divide the value in each cell, in that column by the
sum. This is to be done for all columns which gives a normalized matrix, see Figure 3.5 The
average of the values in each row in the normalized matrix represents the weighted criterion
for the metric at that row. So for the first metric, say A again, we take the average of all values
in the first row, and that average is the weighted criterion for the first metric.

Figure 3.5: Normalized matrix

Lastly we checked for consistency, that is, if the values put into the rankings were done with
some thought or just randomly. To do this we calculated a consistency index. To make it
easier to understand we are going to call our initial matrix without normalization C and the
weighted criteria vector is going to be called W . We multiply our initial matrix, Figure 3.4
with the weighted criteria vector to get a weight sums vector Ws: [C]{W } = {Ws}. With this
we can find the consistency vector Consis by taking the dot product of our weighted sum
vector and one divided by the weighted criteria vector: {Consis} = {Ws} · {

1
W }. Lastly, we

determine the average of the elements in the consistency vector and call that value λ. Now we
can calculate the consistency index CI as CI = (λ−n)

(n−1) where n is the number of criteria. There
is one last step to determine if the comparisons were consistent. We divide our consistency
index with a value called random consistency index to get a ratio: CR = CI

RI . For n = 7 which
is the size of our matrix, the RI is 1.32. If this ratio is less than 0.1, that is 10%, then we can
say that the evaluation is consistent.

3.4 Black box testing
In the language of Verification and Validation (VV), black-box testing is often used for vali-
dation, i.e. are we building the right software, and white-box testing is often used for verifi-
cation i.e. are we building the software right? [21].

With black-box testing the tester should not have access to the internal source code itself.
The focus is on the output generated by the "black box", which is the code, in response to
the selected inputs and execution conditions. The tester knows only that various data can
be input to the box and the box will send something out. This can be done based on re-
quirement specifications. Furthermore the tester knows what to expect as output from the
black box and tests to make sure what it sends out is correct [21]. Black-box testing is done
based on customers’ requirements, so any incomplete requirement can easily be found and
addressed later. Furthermore it is based on end user perspective. During black-box testing,
testers need to be involved from customers’ requirements gathering and analysis phase. In
the design phase test data and test scenarios need to be prepared [21].

21



3. Background

Our work is similar to black-box testing with a few di�erences. The most obvious is that
we are not really testing. However, similarly, in our case we have a model, an input to that
model, and it gives an output. There is no rule saying that Axis personnel cannot look in
the code but as in black-box testing they are more interested in the output. When deciding
inputs to the model we had discussions with our Axis supervisors who recommended some
metrics in addition to the ones we found by ourselves. The same goes for the metrics used in
the model to calculate the output. When evaluating the model we will use the output we get
for the newer releases and compare it with given data in hope that they will be close. So this
is the test to make sure it outputs what it should. In fact the comparison actually tells how
good the model is in predicting.

3.5 Case company specifics

3.5.1 Software-hardware
One of the specifics with the selected company is that their products are a combination of
software and hardware. Furthermore, each product in and of itself is a unique combination
of di�erent software and hardware components. This means that looking at just the soft-
ware side is a sure way of not getting an accurate view of the product. The software for the
cameras, is called firmware. This is a specific class of computer software that provides the
low-level control for a device’s specific hardware [1], where the devices are cameras. In other
words, the firmware is what controls the parts inside the camera. Most products have dif-
ferent firmware. However, it works in the same way, controlling the hardware, and often
di�erent firmwares are released at the same time.

There is little in the area of software-hardware metrics in the literature. Those that exist
are either specific to the area of their selected company, or they are largely not applicable to
our product area, as most of these examples are based on personal computers and therefore
use metrics such as operating system [16] [17].

3.5.2 Release branch
The current release procedure is that at predetermined points in time, a release branch is
forked from the main branch. That main branch is continuously tested and is the version
that produces most of the available test data. The release branch is also tested, but not as
regularly as the main branch. As such, there might be new defects found on the main branch,
while the release branch is still alive. These defaults may be present in the release branch, but
not necessarily. As new code is continuously added to the main branch, new defaults can be
introduced there.

At the branching point some high severity bugs receive a higher priority than others, as
in, the release will not happen unless they are fixed. Any fixes that are made on the release
branch is also applied on the main branch, and are thus relevant for subsequent releases as
well. The opposite can also occur, high severity bugs might be downgraded, because although
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a fault is severe, it might not a�ect the customer. However, if a new feature is implemented
on the main branch after the release branch is forked, it will not be included in that release.

What is released is mostly updated software for existing products. New features, upgrades
to performance and patches to remove defaults. New products and supporting software can
also be released simultaneously.

3.5.3 Testing
There are several layers of testing at the case company. There are the most expansive tests
that might span several releases. These are the most in-depth and take very long time to
complete. Then there are the pre-branch tests that are done before the release branch is
forked. These tests are more designed to test vital functionality without taking as much
time, as to be possible to run between releases. Lastly are the RC (release candidate) and
pre-RC tests that are run on the release branch. These are the fastest tests and are designed
to be fast. Depending on the development of the release, several of these test runs might be
run. There is no pilot or customer testing before release. The feedback that comes after a
release is then considered for the next release.

3.5.4 Release data
There is historical data for a total of 20 releases, this is a fairly low amount when creating
a complex model. Preferably, We also separate some of the releases for model confirmation,
further decreasing the number of available data sets. As such we must limit the amount of
metrics as to avoid overfitting, so that our model will not become volatile.

Like any software company, the workflow at our case company have changed over time. As
the company have expanded, there have been new products and departments introduced.
The workflow has been refined and standards have been introduced that were not there at
the start. Di�erent tools have been introduced and discarded, and some new tools have not
been used for very long. Data that were collected have been discontinued as it were even-
tually deemed problematic. Furthermore, some very useful data have begun collection very
recently. This all means that even if we have access to 20 releases, the information that is
available is highly varying. Some metrics that are logically highly interesting may only be
available in the last 3 or so releases. This means that showing a significant correlation will be
near impossible.
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Chapter 4

Method

This chapter is partitioned into 2 parts. The first section, Section 4.1, contains a presentation
of the thesis work in a temporal order. The second part, Section 4.2, provides a more in-depth
exploration of the choices and work that was done. It is also in this chapter that some of the
more complicated concepts are explored.

4.1 Research method
This section describes our entire work-procedure to create the models and evaluate them.
The overall method used was a case study [26]. We have organised subsections in the order
that they occurred. As a way to summarize the entire procedure, our workflow is further
moved into context here with Figure 4.1.

Figure 4.1: timeline of our workflow, and the structure of this section.

1. The literature study section gave us an understanding of the subject and a language to
use.

2. The interviews section gave us an understanding of the company and what metrics
could be available.

3. The gathering data section provided us with the data for both Qin and Qout .
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4. The producing Qout section is about generating a way to quantify quality, so that we
have a time-series to run our other metrics against. So the output of this stage was a
single time-series that described the quality of each release.

5. The finding correlation section divides what metrics we have into those that have a
significant correlation and those that do not.

6. In the Choosing a model section, a functioning model is produced.

7. In the final section, Validation and verification, there is an evaluation of the models
and the work that was done.

4.1.1 Literature study
We started our work by doing a literature study. This allowed us to learn more about the
subject and gain a common language to use within the subject. At first we only read ab-
stracts and skimmed through the found literature. The field of literature we searched in was
primarily software quality. Our top used words in search strings were software, release, metrics,
quality, development and delivery. We found approximately 50 articles and used half of them.
The title of the article, book or other paper was written to a document along with a link to
it, comments about it and a grade from one to five how relevant it is. We kept all references
in this document so we could easily access them when needed. When studying the literature
we tried to find metrics that other researches had used and methods of how to measure qual-
ity. As with the literature, the metrics found were collected and written down in a separate
document for future reference. To synchronise our work and be more aware of each other we
also wrote down the search strings to not do things twice. At this point we were only trying
to find literature and not really read it thoroughly. Later we would go on with reading the
most relevant ones, both of us.

4.1.2 Interviews
Interleaved with the later part of the literature study we began to have interview meetings
with personnel at the case company. Our supervisors at the case company are highly involved
with the release process and were thus able to get us into contact with various other depart-
ments also involved in the release process.

The interviews helped us to learn more about the respective departments, for example if
there are any in-house metrics we could use. We structured it as such that it would be mostly
a free-flow discussion. In each, we explained what the thesis is about, the goal, and what we
need. The personnel were all seniors that came from di�erent departments and have di�erent
roles. The departments were product management, QA, tools and data diagnostics manage-
ment. The roles were amongst others project leaders, test leaders and product specialists. In
the end we had held about 7 interviews with di�erent levels of formality. The results of these
interviews is the information that can be found in Section 3.5.

We had two main questions, which were: "what tasks are you performing?" and "what data do
you work with?". If the data seemed relevant for us we would also get access to it. The data
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could either count as Qin or Qout . Data from di�erent departments were stored in di�erent
places, for example di�erent Elasticsearch clusters, databases or other text documents. We
wrote down the bulletpoints and a few specifics from the meetings on paper and later also
on an internal wiki page on Confluence. Furthermore, the interviewed personnel sent emails
with links to the data as well as other persons of interest that might be able to help. Most
of the people directed us towards the "IDD" department which is supposed to have "external
data". We eventually did a final push to reach out to new departments and people to try
to find additional resources. We found that they only directed us to people we had already
talked to and resources we already had.
Once we found ourselves towards the end of the initial literature study phase and started on
the interview meeting phase, we ranked the metrics found in the literature study. We did this
firstly by both of us independently giving every metric that we had found a coloring in the
green-yellow-red spectra. The green spectra meaning "good and/or is likely to be available",
and the red representing the opposite. We then merged our two rankings by explaining our
individual reasoning. At this stage our understanding of the inner working of the case com-
pany were only starting to be fleshed out, so the rankings were left with several metrics that
we were hopeful they would be available, and if so, they would be interesting to look into.
Furthermore, all the metrics included in this ranking were metrics found in the literature
study.

When all interviews had been done and we were not directed to any new department or
personnel, we did a re-ranking of our metrics. This time we used the same colors, but with
slightly more distinct meanings. Furthermore, we had gained some in-house metrics from
the interviews that we did not have in the first ranking which was after the literature study.
Green were metrics that were either available or the product of processing available metrics.
Red were metrics that were not available and/or not noted as important. Yellow were metrics
that were deemed interesting but not directly available. These were metrics that we would
suggest to the case company that they should collect if they want to continue this line of work
as well as the metrics that we deemed possible to extract with a lot of work. It might be that
they have a good correlation, but as stated by Peng and Wallace [24], on the properties of a
good metric: "Easily collected - the cost and e�ort to obtain the measure is reasonable.". All the data
we extracted was done through python scripts. This required the data to be either in some
database that could be accessed through python, or readable files. If it wasn’t, then we would
not be able to extract the data fast enough with our limited time and resources.

4.1.3 Gathering Data
As illustraded in Figure 4.1, we now began to extract data. Since the data, both Qin and Qout ,
was spread out and not directly usable from its source it had to be extracted and processed.
For this we wrote several scripts in python. Since the scripts did not have to be too advanced
we split the work, that is, we did not do pair programming. However, we shared repository
and used each other’s methods if needed. We used a script template defined earlier by Axis
and then added what ever our scripts were supposed to do. To extract the necessary data
we had three di�erent ways because of the data being spread out. The first way was writing
to an API which talks to the ticket-system holding all tickets. There were some problems
using the API. It did not always show, visually, the same results as the actual ticket-system
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which forced us to do cumbersome checks to make sure we had the right data. Furthermore,
the amount of tickets we wanted to extract was large which the API could not handle and
crashed. To solve this we had to make many more smaller searches and then sort these to not
overload the API. The data was returned in json format which then had to be processed and
written clean to files. The second way was by communicating with elasticsearch since some
data is stored in elasticsearch indices. Luckily python has good support for this. The data
here was also returned as json and had to be processed the same way. The last way was simply
by copying hard data from old reports.

4.1.4 Producing Qout

In order to do any correlation we needed to define our Qout . This was a long process de-
scribed in more detail in Section 4.2.3. We needed to reflect the quality of the releases using a
reliable oracle that was available for all the releases. We had preferred to ground the quality
in customer feedback or employee knowledge but it became apparent that this data was not
entirely suitable. We ended up using employee knowledge to decide the relative importance
of a selection of negative quality aspects. We did this with a second set of interviews. The
results of which can be found in Section 5.1. This meant that our Qout became an indicator
of bad quality release, as in a high Qout value indicates a bad release.

The data for each release was extracted in the same way, with a python script. The only
di�erence in the script between each release was the start date and end date in which the
data should be extracted from. When the data was extracted, the values were just put in the
Qout formula and we had a number.

4.1.5 Finding correlation
After acquiring a quality numbering of the past releases (Qout) with a quality method, we had
a proper pattern to use in our correlation modeling. We then did a structured correlation
checking between all the Qin we had in order to check correlation between the Qin and our
assigned Qout values. These values were computed through a python script and produced to
a spreadsheet that showed the correlation, as Pearson value, between each Qin and Qout . We
also had a critical value which is based on how many data points there were for that Qin,
a standard significance level of 0.05 and is the minimum that the Pearson value can be in
order to say that there is a correlation with significance. We used this as ground to start our
multiple linear regression correlation analysis.

At the time of the second status meeting for the thesis, we were at the position of having
gathered all the data that were available as either Qin or Qout . We had gone through the pro-
cess of gathering coe�cients for the Qout by way of a survey and AHP, and had produced
data points with said data. We had also tried to gather all of the Qin and categorised them
into one of three categories:

• Impossible or too inconvenient to extract

• Not enough data points available
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• Extracted

With the data that we had extracted we started to run correlation checks against our pro-
duced Quot , and were encountering some new problems. The main problem was what we
refer to as the "null problem", more in Section 4.2.2, which is actually a collection of similar
problems. Depending on the nature of the metric it is sometimes unclear if a zero signifies
the value zero or if it means that the data is not available.

After choosing to limit our scope in terms of data points as described in Section 4.2.2, we re-
calculated our correlations that we had done and continued to analyse our data as described
in Section 4.2.4. Once we were done with the things described in that section, we had a total
of 8 metrics that we felt had potential to be used in a final model. These are those metrics
that survived that procedure:

• Number of CST bugs

• Number of tickets with showstopper severity

• Number of packages from final to final with simple comparison (positive correlation
to Qout)

• Number of packages from final to final with simple comparison (negative correlation
to Qout)

• Memory available

• Boot-time

• CPU usage

• System ready time

We decided to use these as Qin for the final model.

4.1.6 Choosing a model
Since we only had 8 metrics that cleared the previous steps, it was not at all inconceivable
to test every model we could make and simply chose the one that showed the best numbers,
and in broad terms this is what we did. This is explained in greater detail in Section 4.2.5,
but in short we did the following:

We checked the ability of our models by removing 1 of the data points from the data and
training the model on the remaining data. We then used the Qins of the removed data point
to make a prediction of what the Qout value would be. As we also knew the actual Qout of the
removed data points beforehand, we could now compare the prediction with the real value
to confirm how good the prediction was. This was all done in a python script written by us,
that simply iterated through a table of data, where each row represented a release and each
column is a metric.

The result of this stage is a total of three di�erent models, each with their owns strengths.
The models all use di�erent combinations of the following 4 metrics:
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• Number of CST bugs

This is the number of customer support tickets reported as bugs to the master project,
i.e. what is supposed to be released. We measured this by counting all the tickets with
a bug tag in the time interval between two releases. For instance, as soon as release 1
has happened, and until release 2, those tickets belong to release 2.

• Number of tickets with showstopper severity

This is the number of tickets that has the severity tag showstopper. There are four
severity levels, where showstopper is the worst or more critical. These tickets don’t
have to come from customer support. We measured them in the same way as with the
bug tickets, in between two releases.

• Number of package changes from final to final with simple comparison (positive cor-
relation to Qout)

This is how many changes there has been in the packages from one final release to
another, just as in the case with the tickets. A package is a folder containing code files
to be used in the project. We measured this by iterating through a file for each release,
containing package names and versions, and counting di�erences from the previous
release. Simple comparison means that we just count every change as equally worth.
I.e. if there exists a package for release 1 but the same package does not exist in release
2, that is a package change. In the same way if it does not exist in release 1 but is added
to release 2, it is also a change. The last thing we count as a change is if it exists in both
releases, but has a di�erent version in each. This metric does only take into account
the changes in packages that had a high positive correlation with Qout .

• Number of packages from final to final with simple comparison (negative correlation
to Qout)

This is exactly the same as the one above, with the di�erence that this metric only
takes into account the changes in packages that had a high negative correlation with
Qout .

4.1.7 Validation and verifying
To validate the models, we ran them on the current release, which we had not used in any
of the previous work. This was done with a script that we wrote as part of the handover of
our work to the case company. The script was simply a merger of the bits of the code that
we had used to gather the metrics in the earlier steps. There is however one bit that was
di�erent with this script, which was that one of the systems that we communicated with had
been discontinued by this point. So we had to gather those metrics through the new system,
which it seems we managed to do in a way that is equivalent to the old one.

What we had wanted to do was to calculate the Qout for the release as well. However the
new release was rescheduled to be released some time after we left the case company. As
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such we could only look at the predictions and the work that had produced them when we
validated the results.

When it comes to the verification we once again wanted to ground it in the case company.
To do this we presented our findings to a focus group of the employees that might be sub-
jected to our work in the future. These are same ones we have had interviews and discussions
with before, i.e. project leaders and product specialists. We invited them all to a meeting to
get their opinions and thoughts. Specifically, we wanted to know if they had any use of the
models and if the results were good enough. We were also interested in whether our work
was something they could continue working on.

4.2 Design Choices

4.2.1 Metrics selection

Is size important?

The logical first thought is that of course the size of the release matters. The bigger the re-
lease is, the more things can go wrong, more bugs can be found, they might be larger ones.
Furthermore classes or modules depending on each other increase the risk of defects since
there probably are more of them in a bigger release. These are just some possible outcomes
with a bigger release. However, it does not necessary have to result in a bad release because
of that.

According to Ross [25], the size of the software system matters for development cost, sched-
ule and reliability . But our model only accounts for what is in the release and not the whole
system. The case may be that the size has greater significance when a group of specific met-
rics are chosen as Qin and less significance with other metrics. It remains to be seen what
importance the size of a release has for the model.

As for the literature, the finding of size as an estimator have been varied. Many, if not most
studies we have found have used size in one way or another and there are several subgroups
of metrics here, that are all rather correlated. Such as size of the whole software, size of dif-
ferent modules and size of changes. This includes metrics such as LOC (lines of code) and
code churn (changed lines of code). Then there are some very closely related "defects by size"
metrics such as defect density.

Di�erent sorts of projects, by di�erent companies, with di�erent practises, in di�erent stud-
ies, with di�erent objectives have shown di�erent results. Whilst most of them have shown
a positive and useful correlation, others have found them to not significantly impact the re-
sult. Graves et al. for instance mean that the size does not improve predictions, "In addition to
size, other variables that do not improve predictions are the number of di�erent developers who have
worked on a module and a measure of the extent to which a module is connected to other modules"[8].
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On the use of tickets
In 2005 Li et al. tried to find field defect predictors for open source software [14]. Open source
is software that is available to the general public, both for use and modifications. Anyone
can be a contributor and submit work, but only trusted people can authorise changes. Said
authorisation can be gained by showing continuous good quality contributions. They inves-
tigated a total of 139 di�erent predictors using 3 di�erent statistical method and found that
the best indicator was the activity of the mailing list of the technical department.

Tickets are a promising source of metrics for us as well. Finished tickets can be used in
several ways. The first is as a simple numerical counter. This can be further improved by the
fact that tickets are given a severity, which will provide a higher degree of nuance. They can
also be used to calculate a "Mean Time To Repair" (MTTR), which could be an indication
towards any of the following:

• The complexity of the code was high, so it took a lot of time to address the ticket.

• That the department was overworked and had little time to spend on the ticket, thus
indicating poor quality.

• That they spent a lot of time and e�ort to give a high quality solution.

Based on our literature study, the correlation is either positive or negative. Active tickets can
also be seen as a counter of open defects. With the aforementioned severity categorisation,
this should be a good indicator.

Quantifying quality
Finding values that are quantifying the quality of the releases can be hard. Before the release,
tests and measurements produce various results, for example CPU usage or number of tickets
amongst others. But after the release these metrics are not really measured. In fact they are,
but on the master branch. The problem here is that the master branch and the release branch
can di�er, which disables the option to just measure before and after, since the circumstances
are not fully the same and a�ects performance and quality.

So, even some time after a release, how do you quantify the goodness of it? The first con-
tender is customer feedback, but as previously stated in a plethora of literature, you only
get customer feedback when things go really wrong. However, it is something to work with
and one can see the situation as if there is no feedback, then obviously, the release was good.
The problem with this type of customer feedback is that it is in text format. This makes it
di�cult both to put a quality number to it, and to do so automatically.

As our model is supposed to be automatic, it can be di�cult to utilise the fairly non-standardised
customer feedback forms. This should not show itself too troublesome in our work, as it is
something that just needs to be done once per release. But if the work shall be continued by
the case company or future theses work, then any release that is added to the data-set will
require this work to be done manually.
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Another type of customer feedback that is a little easier to work with are bug reports. They
get in the system as tickets which can be tracked and easy to manage. Alas, the crucial infor-
mation is texted and it requires some additional work to extract the quality aspect of it.

The most promising source of data is from customers that have agreed to share statistics,
known as external data. The statistics are being measured after release and sent back to Axis
making it great to use as validation metrics. Currently Axis focuses heavily on memory avail-
able but other metrics can also be fetched if needed. A somewhat promising metric found
in literature is SWDPMH (Software Defects Per Million Hours). This might be possible to
estimate, since it is known how many cameras uses a certain software. The only problem is
that most sources only report hardware bugs. This is not because they cannot report software
problems but because hardware bugs are more frequent and dominant.

4.2.2 Null problem
An example of this problem can be a certain tag in the ticket system, that seems to have
fallen out of favour for a while. On our second data point, the tag was used 2 times, then
only appeared sporadically for the next 8 releases before coming into regular use after that.
Furthermore this is a tag used to di�erentiate a type of ticket, that we have confirmed with
the people involved, to have been used throughout all our data points. This means that we
cannot completely trust the values that we have extracted to contain the whole truth, espe-
cially if it is a zero.

Our metrics are collected from di�erent systems, and in turn, those systems have been used
for di�erent amounts of time. Meaning, our metrics have di�erent amounts of data points
available. We know for a fact that some of our metrics are not available before 2017, and thus
know that those zeroes before that definitely signifies null rather than zero.

Figure 4.2: Data availability, an illustration of when the di�erent metrics started
being collected and thus what we have available. The marked releases are those
that we had to manually alter the value of Qout for.

As our regression will need to have data points for all the metrics that it is comprised
from, we will need to either throw away data points or throw away metrics. The availability
of data is visualised in Figure 4.2. Since we already are low on metrics, we decided to throw
away data.

There are two additional factors that are to be taken into account in this choice. The first is
that practises change, the work flow of the case company have changed. This implies that the
older data points may describe a company and practises that are quite di�erent from that of
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the later data points. Which may well have a bad impact on the quality of our model. There
are also two releases that we have manually changed the Qout for. These releases were both
instances where there was a problem with the "pulled products" variable. The problem was
that the products that were pulled were not pulled due to low quality, rather there were other
mediating factors. This means that they did not imply a lack of quality in the release, and if
we did not manually correct these numbers they would heavily impact our Qout falsely for
these releases in a way that we knew was not real and true. At the same time, it is not sure
that completely removing them correctly mirrors the truth. Some of these products might
have been removed from the release either way, or would have resulted in several CST tickets.
As this variable got a very high impact based on our Qout coe�cients, this is an important
issue to raise. These are represented in Figure 4.2 as the orange releases.

We did not have many data points to start with, and now we have to contemplate whether to
remove the first half of them, as well as an additional two, depending on which of the metrics
we want to use.

As further described in Section 4.2.3, we ended up discarding the older releases. This de-
cision was made based on two main arguments. Firstly, the continued development of the
company is causing the system that is being modeled to change. As we are interested in the
current version of the case company, the older data might have become misleading. Secondly,
in constructing Qout we want to take as many aspects into consideration as we could.

4.2.3 Constructing Qout

When Modelling Qout our main source of data was CST tickets, i.e. customer support tool
tickets.

What is a CST ticket?
We had to define which tickets were actual CST tickets and which tickets were not. This
was a problem because of the di�erent result we got when using the web browser version of
trouble and when using the API.

When using the web browser version and searching for "CST" it made a smart search, giv-
ing results that had the letter combination "cst" in any field, irrespective of casing. These
ticket-groups are presented here in order of relevance.

• There are the results that have the CST tag, and the fact that we wanted these were
under no debate. These were very easy to decide on as the tags are standardised and
needed no interpretation.

• We also got results that had CST in the description, these were of a bit of a debate and
sub-categorisation. The large majority of the cst-in-description tickets were tickets
that should have had cst in tag, but the writer had forgotten to put it there. So we
want to include most of these.

• For some results, CST was included in some other fields, but after looking through the
tickets we found, it was clear that the vast majority of these tickets had CST in either
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the tag or description. So we came to the conclusion that looking at these other fields
separately gave no significant impact.

• The last group of results were a bit di�erent, these are the false results. As the search is
"smart", it also finds the letter combination inside of other words. This presented itself
in the form of finding results where a certain variable "ExecStart" was referenced. This
would be fine if they came under the same category as the previous results as well, but
these had nothing else to do with CST that the fact that they contained the "cst" letter
combination.

We used this web version when choosing what type of tickets we wanted to include, as it
came with a ready interface and gave consistent results. It also allowed us to make sure that
we did not have any bugs when we wrote our program that would work with the API of the
system.

As there was no smart searching in the API, there were some inconsistencies when we wrote
our program. We had to search for distinct results inside distinctive fields. We could of course
search for only CST-in-tag, but then we would lose the CST-in-description results. That
would not be good as this represented a respectable amount of tickets. We could also write
code that scanned the description field for di�erent combinations of the lettering "CST",
that would include the results that we wanted, and exclude most of the false results. The
only problem with this is the plethora of variations that people used to reference a cst ticket.
In the end we came up with the definition of either having "CST" in uppercase in the tag or
in the description, or having a link to a customer support ticket inside the definition.

Defining a number from tickets
When we started the work of collecting all the varying sources of Qout that we had, we ran
into the problem of turning the tickets into data points. The simplest way to use the CST-
tickets to give a numbering would be to simply count them, but that would ignore a lot of
the data available. Only tickets coming to the master branch, that were not fixed yet, were
looked at. The tickets are divided to several criteria, being type, severity and priority. Type is
divided into three di�erent categories: Bug, Feature and Change Request. Severity and priority
are divided into 4 di�erent levels. For severity they are: Showstopper, Serious, Medium and
Small. For priority: High, Medium, Low, Incoming. There is also the aforementioned e�ect of
pulling products from the release scope and how time has an e�ect on the amount of CST
tickets?

We gathered the data into a spreadsheet and made some Qout graphs, making observations
on what happened if di�erent factors were changed. We gathered a greater understanding of
the collected metrics and started to question certain aspects of them. Such as:

• White noise

• To what release does a ticket belong?.

• The divide between Qin and Qout
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White noise would be the tickets that do not belong to the release under whose time period
that they appear. For instance, that the ticket in question concerns a release which is two
or three iterations back, rather than the intended release. The logical distribution of release
ticket arrivals would be an early spike with a never ending exponential tail. Even if all the
problems of a release are eventually mended, there could still be new CST tickets if customers
upgrade their supporting software or platform, meaning that tickets could come even years
later.

The time period, second point, intersects with the white noise part, as this reflects how these
ticket arrival distributions could intersect. If two releases are close enough, then many of the
tickets that belong to the first release will arrive after the second release has been shipped,
essentially making the first release look better and the second worse than it is. There is also
the bit where the white noise will provide a constant negative quality indication, that will
accumulate more the longer a release interval is open. Meaning that a good release that is
open for a long time can accumulate enough white noise tickets that it would get a worse
score than a release that is actually much worse, but was only out for a little bit.

To combat these problems we started looking into ways to model the chance that a ticket
belongs to a certain release. We looked at what happened to the data when we used di�erent
constant length intervals after release. We also started to work on finding the distribution
shape of these intervals and ways to use probability coe�cients to allocate problematic tick-
ets to two releases. Luckily a large amount of these problems were solved at the beginning
of the interviews of the long-term personnel occurring in Section 4.2.3, the results of which
are found in Section 5.1. During the first interview we came across the subject and were
informed that customer support was only o�ered to the current version and the LTS(long
term support) versions. This does not completely remove the e�ects of the LTS originating
tickets which can still interfere with the regular release tickets. However as we are able to
filter on tickets that show up on the main branch, all the tickets we receive are relevant to
some degree. The exception to this could be the tickets that are found on the LTS version
but are deemed to also be of relevance to the main branch. These tickets would not be found
on the release of interest, but the underlying problems that caused the ticket are still present
in the release.

As for the case of release 1 tickets showing up in release 2, most of these are also fixed by
supporting only the current and LTS versions. There is still a case that a CST ticket reported
late in release 1 goes slowly through the customer support procedures and arrives into the
internal ticket system after release 2 have been released.

The divide between Qin and Qout is, of course, also interleaved with the two other points.
But simultaneously, it reflects how the data is actually continuous while the releases are more
discrete in nature. Making the distinction of whether a certain variable is Qout for release 1
or whether it is Qin for release 2 is a highly complicated question. An example is the CST
tickets that are marked as bugs. These were found by customers on the product of release
1, but are fixed between release 1 and 2. This means that this metric could be used as Qout
for release 1 or Qin for release 2. Another example is pulled products. Depending on when
the model is used, pulled products can be used as both Qin and Qout . If the model is used
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before the decision to pull any products then it obviously can not be used as Qin and the
value for pulled products will be lower. However it can still be used as Qout since one can see
after release how many products were pulled which a�ects the quality. If the model is used
after the decision to pull products, then it can be used as Qin and will presumably give better
results since it will match with the Qout .

Pulled products

As seen in Figure 4.3, there is a case for using a "pulled products" metric when calculating the
final quality for a release.

The scenario is, there are several problems during the release phase. Several of the prod-
ucts are deemed so unreliable that it is decided that they shall not be released. On release
day, only a fourth of the original product releases are actually made available to the customer.
The customers receive the good products that are reliable and they encounters few faults with
their products.

!

Figure 4.3: A figure Illustrating why using a "pulled products" metric might be a
good Idea. It show 4 di�erent products(P) within a release. P3 and P4 are deemed
good and are released according to plan. P2 is deemed so bad that it is not released.
P1 is also bad, but is quickly patched together and released a week later.

In this scenario, most of the Qin will be foreboding of a bad release. But because appro-
priate actions were taken, there will not be a large amount of negative customer feedback.
Despite the released products having a good quality, every metrics from within the company
would be showing a bad result. It could even be argued that it was a bad release, even if the
customer knew nothing of it.
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Determining quality coefficients
We now had values for all the metrics that could make up the Qout . We started making graphs
and possible Qouts by applying simple math to the metrics, such as adding the values together,
multiplying with factors representing significance and occasionally dividing with di�erent
types of sizes. We started to individually process the data we had available, to find di�erent
ways to assign quality numbers to releases. We did this as to not influence each other and
thus possibly find more options.

It was hard to decide on the final version of Qout . There is no predefined quality formula
or theorem so we had to figure it out on our own. We finally came up with the Qout being the
sum of the metrics. In addition, the di�erent metrics and sub-metrics were to be multiplied
by coe�cients, as follows: Qout = C1x1 + C2x2 + C3x3 + C4x4 + C5x5 + C6x6, where the xi
represents one of the metrics below and the ci representing the coe�cient to multiply with:

• Products planned for the release
This is how many products (cameras) were planned to included in the release.

• Number of pulled products
With pulled products means the products that were planned to be included in the
release but in the end were not included.

• Delay
Some releases are past their due date. This metric counts how big the delay is in days.

• Number of bug tickets
This is the number of tickets that have the bug tag on them. Tickets can have di�erent
tags to help categorize them.

• Number of tickets by priority
Similar to the number of bug tickets, but this metric counts the number of tickets by
the priority tags instead. There are four priorities: incoming, low, medium, high.

• Number of tickets by severity
Counts the number of tickets by severity, juts like with priority. Severity also has four
severities: small, medium, serious and showstopper.

Initially there was also the metric "total number of tickets", but we realised that we were over
representing tickets as a contributor, and total tickets was the one that gave the least amount
of insight. That is why said metric is listed in the survey but not here.

When it Comes to the data collection scope of the metrics here, most of them are simply
statical properties of the release, such as delays. But for the counting over time metrics such
as bug-tickets, we mirrored the logic of Qin, counting all occurances until the following re-
lease.

We wanted to let people at the case company be the input for the coe�cients, as they know
best what metrics that are more important than others. In order to be objective and system-
atic, a structured way of collecting these coe�cients was needed. Our answer to this was a
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method called analytic hierarchy process (AHP)[27]. This is described in more detail in Section
3.3. We proceeded to holding meetings with members of the case company where we tried to
gather knowledge that could further help us decide on a Qout calculation. One of the ideas of
the meetings was to get professional and subjective input on the quality of the past releases.
When we had done this, we could accumulate the results from the meetings, derive what Qout
metrics are important, and give a good quality numbering to each of the past releases. The
interviews had 3 di�erent parts:

• Free discussion

• Going through the old releases

• A survey

We structured it as such that it would be mostly a free-flow discussion. In each, we would
reiterate what the thesis was about, the goal, and what we need. In order to bring structure to
the interview, we would go through the releases whenever the conversation stagnated. This al-
lowed us to take notes on specific releases as well as getting a broader context to their answers.
We asked about their opinions and comments for each release and wrote down what was said
and looked for things that were mentioned by everyone or specific opinions that stood out.
The personnel came from di�erent departments and had di�erent roles. The personnel we
had interviews with consisted of project leaders, test leaders and product specialists, just like
the interviews at the start of the thesis. In total we had four separate interviews. The results
of these interviews can be found in Section 5.1.

As we somewhat expected, people have forgotten the earlier releases, it varied between people
and there was a trend of people that are working closer to the release-context remembering
more releases. But from the people outside platform management, we barely got any clear
answers for more than 3-4 releases back in time, as well as one of the older releases that were
unusually bad. Our main gain from the semi controlled discussion was confirmation that the
old bad release was bad, as well as context on the latest releases.

The more concrete data was gained through the surveys. These allowed the participants to
take their time and think about the releases in general, rather than specific memories from
any release. We ended the interviews by giving the participants our survey. We gave them
some time to think and fill out the survey in their own pace. We still went through the poll
to explain the various concepts and give context to the di�erent questions, so that all par-
ticipants understood the structure of the survey. The survey was based on the Qout metrics
that we had found, and was about the comparison between them. The answers of this was
supposed to be interpreted through AHP, as described in Section 3.3. The basic structure of
the poll was a pairwise comparison between each metric. We implemented this as a slider
between each metric, as to make it as simple as possible for the participants. The poll itself
can be found in the appendix.

AHP was applied on the results from the polls and collected. Based on the priority and
consistency ratings that were produced, we then created a single unified priority rating and
used that as the coe�cients. When merging the di�erent poll results we used the following
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formula:

P =
∑ Pi

C2
i

(4.1)

This formula is of our own devising and is primarily based on the bad consistency ratings
we got from the surveys. Here, Pi and Ci stands for the individual priority and consistency
rating. When deciding on how to merge the poll results, we faced a dilemma:

• Most of the consistency ratings were far worse than what is expected.

• There is not enough data to discard any of it.

As to keep all the data, the less reliable data had to have a much lower impact on the final
result than the data that was good. We came up with the solution of squaring the critical
value divisor.

Once we had merged the poll results we normalised the resulting prioritisation so that they
added up to a hundred. This was as to make the numbers more understandable and be con-
sistent with the original AHP prioritisation, which adds up to a hundred.
Another way of defining Qout that we had in mind was some sort of a boolean saying just
good or bad, or high or low. The question would be what to base the prediction on. We did
not feel like there was any reliable metrics that could be used to accurately tell if a release is
good or bad. A tweak to this idea is to first compute a number like we decided on and then
say if it is good or bad. But what would be the threshold, what number does the sum has to
exceed to be good or bad? That is also something that we would have do determine ourselves.
An idea is to compare it to previous releases and see if it was better or worse. But that does
not necessarily tell if it still is good or bad.

We did not do any division by size for Qout . Firstly, size can be anything, remember that
we are talking about releases. What is the size of a release? Is it the number of products,
lines of code, number of files, packages, the list could go on. Instead we decided to use size
as input, not as a metric itself but as package changes and number of tickets. Furthermore,
when calculating the Qout we included number of products in the sum. It is the quality for a
release that we are after and not the quality per products or any other ratio.

4.2.4 Constructing Qin

Product metrics
There are statistics relevant to cameras that are pertinent to many embedded systems, such
as various resource usages and booting times amongst others.

• Memory available

• Boottime

• CPU Usage
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• System ready time

One of the most voiced metrics at the case company is memory usage, which is understand-
able as memory is one of the most expensive hardware components. Embedded systems are
out in the field, and supposed to run by themselves for a long time on limited hardware.
Thus, memory leakage would be a highly detrimental bug. It is however highly questionable
if memory usage would have a high impact in our model. It is an important metric that must
be tested. But, unless there are faults found that are so severe that bug tickets or customer
complaints are submitted, it can be hard to rationally correlate this to the release quality.

One of the metrics that we found to already be extensively collected is boottime. There
are di�erent kinds of boot times. For example after a hard or soft reset. It is also a metric
valued highly by Axis. The goal is of course to have no downtime but should it happen then
the boot time hopefully keeps it for as short as possible. The metric we use is after a hard
reset, on suggestion from Axis.

CPU usage might not be as important as the other two metrics for Axis cameras but there is
much data of it and easy to use and test in our model.

As with CPU usage, system ready time is not the most important stat. However, it is a metric
that customers prioritise being high. As such it can not be ignored. Furthermore, the case
company is tracked the metric, it has relatively good data history and very easy to extract.

Development metrics
Development metrics measure attributes of the development process. These metrics can be
computed using information in version control systems and change management systems.

We had a lot of discussions with our Axis supervisors about which metrics would be use-
ful to use within this category. For example, the number of commits might be considered as
a development metric. But after the discussions we figured that the number of commits does
not really say much about the quality. A metric that our supervisors strongly liked was how
the packages change from one point in time to another. The points in time of interest in our
case will be explained in the next section.

• Release blockers

• Number of bugs

• Number of showstopper tickets

• Package changes

Release blockers is beforehand perhaps one of the most reliable metrics, in the way that if
there are a lot of release blockers then you have on paper that something is not right. This
of course requires that the personnel categorizing the tickets do not put a release blocker on
every single ticket but only on the ones actually causing harm. Even without our model, the
company is not releasing when there are release blockers, clearly showing that this metric is
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relevant to include.

Number of bugs is similar to release blockers because it tells that something is not completely
right. Logically reasoning, more bugs will result in a worse release, given that it would be re-
leased without fixing them. Some bugs can be release blockers, but it is not always the case.
However, counting bugs is probably a good way of self checking the situation.

Number of tickets can roughly be translated to number of problems. A ticket does not have
to be a bug in the code but could be any kind of problem. However, as with bugs and release
blockers, it somehow tells that something is not right if there are a lot of tickets getting in.

The most important metric among development metrics, along with release blockers, was
package changes. Packages are software components that are used in the products. Some
products use di�erent packages, some use di�erent versions of the same package, it depends
on the product. The interesting aspect of package changes is that they have a big area of
e�ect. A change in one package will a�ect many products and as such also a�ect the release.
Some packages are more important than others. For instance, a package can have many other
packages depending or inheriting from it. Thus, changing that one will perhaps require a
change in the other ones. Furthermore all package changes have the risk of increasing the
risk of something going wrong which can decrease the quality of the release for the moment.
Since the opposite is not the case, i.e. if you change in a package it will definitely improve
quality, is not the case, one can see it more as a warning flag. In other words, if changing
certain packages then it is likely that something will go wrong.

Package-Change Metrics

Figure 4.4: An illustration of the branch and test structure. The arrow-blocks are
the main branch and two release branches. The darker blocks are various testing
phases, where di�erent tests are run. The B-circles represent the point in time
when the release branch is born, and the F-circles is when they are released. Note
that the F-circles only exists on the release branch and not on the main.

When looking at package changes, there are various time-frames that might be of interest,
as shown in Figure 4.4. These are intervals that can be used when viewing the data where B
stands for branch point and F for final release:

• B1-B2, bb

• F1-F2, �
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• F1-B2, �

• B1-F1, bf

As mentioned in Section 3.5.2, fixes are added to the release branch and main branch but
new features are only added to main.

bb means that looking at the changes from B1 to B2 would show the changes to the main
branch, and these changes include both features and fixes. This would mostly indicate the
evolution of the software over time, as it includes all changes. It might however not reflect
the quality of the release, as the actual release F2 is some time after the branch point B2.

Looking at � would show the changes that were made between two releases. This would
directly include the changes that take place on the main branch from F1 to B2, as well as the
fixes on the release branch from B2 to F2. In addition it would also indirectly include both the
main branch and the release branch from B1 to F1, as B1 is the point where the two programs
split up. This means that looking at F1 to F2 would include looking back in time to some
extent. Thus, this is the case that should show the biggest amount of change between versions.

As for �, it is of little interest. This is basically the same interval as F1 to F2, except that
it is only a part of it. It su�ers from the same e�ect, in that it goes back to B1 in order to find
an intersection point for both programs.

As for the bf case, we would not be looking at the main branch at all. This would simply
be looking at the release branch and thus the fixes that are introduced there. This should be
the one that show the least amount of change, but the changes that it does show should be
the most volatile for release quality.

When deciding how to store package changes as a result, we had several ideas. We did not
only want to count the number of changes, but also how big they were. First of all, there are
three ways a package can change between releases. It can get a new version, it can be added as
a new package, or it can be completely removed. This gave ground for 3 version comparison
methods:

• Added: Only count when a new package is added.

• Removed: only count when a package is no longer included.

• Simple: Count any change.

The tricky part was how big the change was. All versions were not in the same format
which gave us trouble because we could not operate on the version numbers the same way for
all packages. However, there was a clear majority of one format, which was x.x.x, for instance
3.2.1. This is Axis standard where the first number counts as a major change, the second
number a medium change and the third number is a minor change. With this information
we created some additional comparison methods:

• Basic: Just count the greatest number to be changed, and multiply the change di�er-
ence with a respective coe�cient.
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• Complex: Count the di�erence in each position and multiply each with a respective
coe�cient.

• Pos1-3: Only count when changes are made to the respective position.

As for the coe�cients, we ended up simply using 3,2 and 1. This was a result of apparent
inconsistencies in when, how and why the versioning were changed.

As we completed our first o�cial correlation testing, there was little correlation for any
of the time series that were based on all the packages viewed together. None of these time
series gave us a correlation value over 0.5. So it was decided that we should look into individ-
ual packages, something that was easy to do as as we had already written the code to do so.
We ran the correlations between each individual package and Qout and singled out the time
series that gave a correlation greater or equal to the critical value. The critical value is based
on the number of data points and a standard significance level of 0.05. This gave us a subset
of packages that, in one or more of our comparison methods, gave a significant correlation.
What we would like to extract from this subset is which comparison methods are the most
useful and what packages those are useful for.

We then analysed the composition of these time series. As we were searching for packages
with strong correlation, either positive or negative, we separated the packages into groups
based on the correlation orientation. Keeping positive and negative correlation separate, we
found that the comparison method simple compare was dominant. This was true for both the
positive and the negative groups as seen in Figure 4.5. We can also see that there is almost no
di�erence in the prevalence of � and bb, whereas bf is barely represented.

We then proceeded to look at only the packages that were present as either simple-compare
�, or as simple-compare bb, in order to see whether � or bb is the more profitable comparison
method. This meant that we ran our package comparison program on only the packages that
were present in the subset as one of the above. We wanted to use the same comparison method
for both groups, in order to be concise. The results showed that for the negative group, both
� and bb showed the same correlation down to two decimals. In the positive group however,
the � comparison had a correlation that was about 12% greater than that of bb.

Finally, we went back to the original subset and singled out the packages present in simple-
compare � and used those to make the final subsets of packages: those with positive cor-
relation and those with negative correlation. When looking at these two subsets with the
simple-compare �, both showed a great correlation factor of approximately 0.82.

Internal data
When looking at some of the Qin such as the tests being run in-house, with results such as
boot time, we ran into the problem of how to define and divide the data. Many of the people
involved, ourselves, supervisors and personnel at the case company, were in agreement that
it was change in the values that would be important, rather than just the value itself. As
such we needed to transform the data to a format that told us more than just one value for
each day. For many of these data, there were more than 20 results for each day. As such we
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Figure 4.5: Initial results of looking at packages individually. This data represent
the time series that cleared the critical correlation value, and is a breakdown of
their composition.

computed the mean and variance for each day. The variance not only tells us the unity of the
values of the day in question, but looking at the changes of variance can give an indication of
that stability over time. As such, we treated mean and variance with equal importance and
computed the following for both of them.

• Average of the value over the last x days

• Average of the last x days compared to the last y days

• The nth derivative

The reasoning of all three is simple, that a single day of good or bad values tells us less
than a week, or a month. This means that it makes more sense to look a the averages, rather
than the individual days. As such, we compute the average value of the last x days, where x is
anything in the interval 0 to 30. We chose 30 as an arbitrary endpoint, since we want to look
at the current version of the program.

The second statistic is a continuation of the first, where we try to find the change, by com-
paring the more recent statistics to the slightly older ones.

The n:th derivative is a bit of exploratory testing. It is derived from the fact that we are
interested in the change, and also that it is sometimes used in signal processing. By taking
a higher derivative, we consume more values into a single one. So our basic idea is that it is
similar in nature to average in that way, but we are unsure of what it actually says. In the end
we could not draw any conclusions from this which made us just not use any of it.
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As we started to look over the values over several days, we came across the problem that
some days lacked test values. So we tried some methods to fill in the gaps.

• Inserting the last known value

• Inserting a halfway value between the last value and the upcoming value

• A gradual connection of the values before and after.

All three ways have various arguments in their favor, but in terms of statistics they all
have one fatal flaw. because they all base their value on the once around them, those values
gets over-represented when we calculate things such as averages. We then looked into the
possibility of simply removing those empty days from the data.

After analysing what dates and weekdays were without data, we found the following:

• Most of the missing days were weekends, but not all weekend days were missing.

• There were several other weekdays missing, mostly but not completely comprised of
red days.

With this information in hand, we decided a strategy for dealing with these. We decided
on using what we felt was the logic of the scenario: "If the model was used on that day, what
would be of interest?". As such we would be interested in all the data that were available, so
the weekend days with data were kept. But other than that, weekends are non-working days
and as such, little changes in the software would be made, so we would not count weekend
days without values. We are only interested in the data that is factual and real, so we will
ignore any attempt to fill in the gaps in the data. We are only interested in recent data. So
in terms of relative dates, we will count all the week days, even if they are without value. But
when counting average, we will only count days with values.

Once we had come this far, there were still quite a number of strange days that threw our
di�erent values of. Upon closer inspection of these, it turned out that in some cases we had
outliers. One or two values that threw the mean of course on some certain days. So then we
had to address the question of whether to dispose of the outliers or not. Most of the outliers
that we had noticed were either 0% or 10000% of the surrounding values. And the problem is
that we do not know what causes these outliers. It could be a fault in the product that causes
a fatal exception, if so, we are interested in those values. It could also be a fault in the test
rather the product being tested, if so, we might want to ignore it. Because of this, we decided
to test both cases.

This ended up giving us a near infinite number of time-series, calculated in di�erent ways,
that we needed to weed out. Once we had written our correlation program we ran all these
series against Qout , and analysed the result. We did this by separating every series whose
correlation was greater than the critical value. The series were separated by positive and neg-
ative correlations as well as their respective natures, much like how we did with the packages
in Section 4.2.4. The di�erence only being that an average was needed to be calculated for
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each calculation method. Each original statistic was then scrutinized individually, and a cal-
culation method was chosen for each. The final selection were the same for each statistic,
with less than 3 days di�erence in their averages. This finding was good, as it meant that
we could be concise when using the di�erent statistics. What was not as good was the cal-
culation method that our analysis had selected. The calculation that was selected was: "The
average mean of the last 11 days compared to the last 23 days, as calculated 25 days before branch
date". This is not a selection that we can defend logically, even if it was good statistically. At
this point we wanted to remove these metrics from our data set. However, as we had derived
them correctly, we decided that we would keep them and hope that they would improve any
of the good models at the later stages.

Tickets
With tickets, we have a very simple way of counting them, "how many came in since the last
release". But this hides much information that we early on came to understand might be im-
portant, such as relative numbers when close to branch or release. As such we were interested
in processing this data source similarly to how we did with the internal data in Section 4.2.4.
At that point, we already had the code for it. We modified the software we had written so
that it would work for tickets and the oddities that came with them. One such oddity was
that a day without incoming tickets is still a valid data point. This is unlike how it was with
internal data, where we either had test results or not. However with the tickets we had to
keep every single day when calculating, even if tickets on weekends were very few in number.

The outcome of this turned out somewhat disappointing, as the time series that passed the
critical value test were few in number and had no clear structure. We spent a bit of time try-
ing to see if there were anything in the data that was dominant and we could use, but in the
end none of these series made the final selection. Thus all the ticket Qin metrics we have are
based on indiscriminately counting the tickets in the time frame since the previous release.

The demise of metrics
We ended up having a large amount metrics after the study and interviews, i.e. metrics that
could be used as input to the model. Decisions had to be made about which of them to use.
A draft of the metrics we had ranked as described in Section 4.1.2 can be found in the ap-
pendix. There were some metrics that even though they were included late, the supervisors
from Axis deemed important and wanted us to include. The metrics were package changes and
release blockers and were easiest to make a decision about. For all of the other metrics found
we had to make our own decision. There are too many to go through each one of them in
detail so we will try to summarize. Also in the appendix can be found another matrix that
shows the final version of which metrics were used and which ones were not. In the second
matrix there is one di�erence to the colouring compared to Section 4.1.2. Only the ones ac-
tually used in the final input are now green. Those that were green before but that we did
not use are now yellow. Those that were yellow are red, and the red ones are still red.

The final metrics used are:

• Package changes
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• Release blockers

• Boottime

• CPU usage

• Memory available

• System ready time

• Number of bugs

• Number of showstopper tickets

It seems that code metrics will not be a useful entity to our model. We talked to several of the
people involved in the RD departments at the case company, and we got to the understanding
that it would be very hard to gather the data needed to insert metrics into our model. Fur-
thermore, the structure of the software is that of modules that are coupled together. Which
means that it is not the complexity or fault proneness of the code in isolation that causes
problems, but rather when modules are connected. As such it seems that most of the code
metrics will neither be easily collected nor robust, as defined by Peng and Wallace [24], on
what a good metric is.

When we looked deeper into the API of the ticket system and had written some programs
to extract certain information, we came to the realization that every ticket had but a single
timestamp. This was the timestamp of when the ticket was created, meaning that this was
the only piece of history we could find for the tickets. We can only see the final values for
the tickets and when they were created. This finding put a stop for a great amount of our
potential metrics. It meant that it was impossible to see what the status was for the tickets
at the time of release. The fact that we only have one timestamp per ticket also means that
we cannot extract when the ticket was solved or accepted, putting a stop to all the metrics
that require a status of the ticket at release such as:

• Service request time

• Mean time to repair

• Number of bug fixes compared to history

• Open defects

• Critical problems prior to release

When we started to work on the gathering of the test data it quickly became apparent that
there was not a lot of history available. The data that was possible to extract only represented
about a year in real time, representing only about 4 releases. We quickly realised that there
would not be enough data to use for our model and stopped working on trying to extract
information from that system. This finding set stop to the following metrics:

• Test failures
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• Number of tests

• Number of passing tests

• Defect density (defects/size of the software)

• Reproducibility

• QA test data

It should be noted that the internal data is a separate system from the QA test system, so this
finding did not impact metrics such as "CPU Usage" and "Boot time".

Now there are some metrics that we marked as green in the start, which means we thought
of them as relevant and useful, but in the end did not use and are not included in the bullet
lists above. They are:

• Flash usage

Flash usage is an internal metric like boottime, CPU usage, memory available and sys-
tem ready time. It can be argued that none of these metrics a�ect the release. However,
with the flash usage case, it is even lesser important for a product and thus leading to
the reasoning that it simply does not seem relevant for how good a release is. For mem-
ory available, to compare with something, if the memory available for a product is bad
then there is a risk it will break if shipped, the code is probably written bad and it
contributes towards a bad release. Of course no single product will make a release bad.
Looking at flash usage the same way, it does not contribute as much.

• Response time

Because of the same reasons as flash usage above, we decided to not include response
time either.

• Master prio

Master prio is a category tag that tickets can get. Same as release blockers for instance.
The reason for not including the number of master prios is mainly because we already
have release blockers. The two are in principle the same thing, only release blockers is
more crucial. A release blocker will do what its name suggests. A master prio will not
block a release but it is prioritized on the master branch. Often master prios become
release blockers when branching, but a release blocker can also be downgraded to a
master prio if it shows that a release still can be made without fixing the issue.

• Defect find rate

This would be defects per time-unit, or possibly how the current defect per time-unit
is compared to the usual one. In the structure of our case company that corresponds
to bug tickets. As such it was set aside along with some similar ticket related things in
the procedures described in Section 4.2.4

49



4. Method

• Number of commits

The number of commits is an interesting metric, to see if a lot of commits a�ect release
quality. It could be seen as a size metric. We wanted to include this one as input but
unfortunately it was simply too hard to extract. The company uses gerrit to commit
code but we could not process the information and count commits in a smooth way.

• Number of firmware images

A firmware image is all the software that goes into the product as a file. A product
can not have more than one of these. It essentially contribute the same as the number
of products does since almost every product have a di�erent firmware image, result-
ing in almost the same number. Furthermore, the number of products is used in Qout
which is why we decided to not include it

4.2.5 Constructing models
When looking at the di�erent models we could produce and which was best we used two
main methods.

• PCA(Principal component analysis)

• Stability Comparisons

PCA was used to check for complications between the Qin metrics, as explained in-depth
in Section 3.2.3. PCA is able to group metrics together to create artificial metrics, based on
variation similarities of the metrics. We used this to combat multicollinearity. The stability
comparisons is something we made ourselves, and is just as the name implies, a way to check
the stability of the model. The procedure of this is as follows.

Once the metrics are selected, remove one of the data points and train the model on the
rest. This will produce a regression with unique coe�cients for each metric as well as a
unique remainder. This regression is then used to predict the removed data point. Then it is
possible to compare the predicted value and the real value and thus get a quantifiable error.
This represents one set of training results, where the product is an error, a remainder and
coe�cients. It is possible to construct one of these sets for every data point.

By looking at these sets, it is then possible to see both how big the errors are and how volatile
the coe�cients are. By volatility we refer to the idea that these sets preferably have the same
values for the coe�cients, so that they can be merged into one single model with one set of
coe�cients. If the coe�cients are too varied it would mean that the model is too dependant
on specific data points and that it can not be trusted. Putting these together, we are look-
ing for a set of Qin that gives a stable model, that produces a low error margin and shows a
low level of compability problems in PCA. We had an assumption of what Qin combinations
would be useful for the model, but we wanted hard data. So we wrote a program that would
produce the stability comparison results for every set of of the Qins that had cleared the pre-
vious tests of correlation with Qout .

50



4.2 Design Choices

When finally looking at all the models produced, we mainly looked at the 3 properties aver-
age coe�cient di�erence, average error and max error. The average coe�cient di�erence is the
average size di�erence between the highest and lowest occurrence of each coe�cient and re-
mainder. In addition to these three, we also took number of metrics and source of metrics
into account when scrutinizing the models.

The general structure of the results were that the best models had few metrics, and none
of the internal data metrics. The best model was one that contained only the metric "posi-
tive package changes", so objectively we had to choose that one. There was also one model
that used all 4 of the non-internal data metrics, that stood out as it was much better that
any other 3+ metrics model. There was only a single property that was bad on it, max error,
but when compared to it’s average error it was clear that it was a special case for one of the
data-points and the rest was quite good. The third model we chose was a 3 metric one that
was only slightly worse than the first one, despite having so many metrics.

Since the idea is that Axis will continue using the model/models, and we have such few data
points, the final models will be trained on all data points available. Thus the validation data
will not be exactly extracted with the final models.
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Chapter 5

Results

5.1 Interviews - Coefficients and Old Re-
leases

There were a total of 4 separate occasions for these interviews. The first two interviews were
with members of Product Management. One of these had been directly involved with the re-
lease process for the last 3 years, and had additionally been in charge of several of them. This
was the most giving discussion, as this person had a lot of experience and could remember the
most distinct releases. The releases that this person remembered as especially troublesome
were releases 11, 13, 17 and 19. They noted especially release 19 as strange. It had seemed like
the best release so far, but when released there was a new hidden error that was found. For
release 13, the problem was not that it was especially bad, but rather that it was planned to
be an LTS. Once it was released some problems were found, this caused the creation of the
LTS to be pushed onto the next release.

The other person in the interview was one of our two supervisors, and had been directly
been involved in Product Management for less than two years. They also mentioned the
recent release 19 as being a hidden bad release. Otherwise they could remember few di�er-
ences between the releases they had wored on. Another point made was that unique products
tended to generate more problems than those that were similar to other products. This was
also the first time we found out that the only release to be given support is the current one
and LTS versions.

The Third interview was a double interview with two members of the QA department. The
first of these members was the leader of the department. The second interviewee was one
of their direct subordinates. The results regarding previous releases quality were sparse. The
only distinct release quality information they could provide was a repetition of the release
19 information. Furthermore it was made clear that the QA apartment had slightly di�erent

53



5. Results

priorities from the rest. Because they only work to increase quality, they were in fact positive
to release delays, as this allowed them more time to run tests. It was also confirmed that
problems that are found late tended to make a greater impact than the rest.

The fourth interview was with one of the product specialists. In this interview there were
results for releases 13,17 and 19. For releases 13 and 19, there was no new information. For
release 17 there had been an update in one of the supporting soft wares, causing some prod-
ucts to be pulled irrespective of quality. In this interview it was also confirmed that the only
releases to be given support were the current one and the LTS versions.

The final priority rating ended up as shown in Figure 5.1. These numbers were then used
directly as coe�cients for the equation described at the start Section 4.2.3.

Figure 5.1: Final Qout coe�cients. These are used in a simple C1x1+C2x2 +C3x3
equation to produce Qout . Priority and Severity are characteristics of tickets and
are represented both as a whole and as their sub-categories. For priority the sub-
categories are High, Medium, Low and Incoming. For severity the subcategories
are Showstopper, Serious, Medium and Small.

5.2 Models
In the end, we had 8 input metrics. By doing combinations, i.e. using the di�erent metrics
together in all possible ways, we could make 255 di�erent models. The models are in fact just
equations, based on linear regression, that use a set of metrics. The values for the metrics used
corresponds to the models Qin and the prediction itself is the Qout . In this section we will
present the three models that we chose as well as their prediction results, errors and stability.

In the equations for all of the models we define the following:
x1 = number of package changes with positive correlation to Qout
x2 = number of showstopper tickets
x3 = number of package changes with negative correlation to Qout
x4 = number of bug tickets
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5.2.1 Model 1
• Metrics: Package changes (positive correlation)

• Equation: 5, 77x1 + 493

• Prediction: 614

Model 1 uses only one metric, package changes with positive correlation to Qout . This is a
measurement of how many changes there has been in all packages between one release and
another. This was measured by iterating through a file for each release, containing name and
version for packages used in that release, and then counting changes. For instance, if there
exists a package for release 1 but the same package does not exist in release 2, that is a package
change. In the same way if it does not exist in release 1 but is added in release 2, it is also a
change. The last thing we count as a change is if it exists in both releases, but has a di�erent
version in each.

The equation for all models are auto generated from the available data. In this case the co-
e�cient is very high. This means that each package change has a high negative impact on
the quality, since our Qout has an inverted scale, i.e. the lower number the better quality as
described in Section 4.2.3.

The prediction was what the model predicted on the last release or data point that we had
available, after being trained on all the rest. The number of these predictions can not unfor-
tunately give a definite answer on if the quality is good or bad. Instead they can be compared
to each other. This means that if the prediction is 614 for the latest release and it predicts
lower than that on the next one, then the next is better, else it is worse. But as the validation
results show 5.3, the models predictions are not 100% accurate.

5.2.2 Model 2
• Metrics: Package changes (positive correlation), showstopper tickets, package changes

(negative correlation)

• Equation: 3, 22x1 + 0, 57x2 − 1, 82x3 + 548

• Prediction: 622

Model 2 uses three metrics. The first metric, package changes is the same one as in the first
model. The other two are new. Tickets can have di�erent tags to easier keep track of them.
One of those tags is a severity tag. There are four levels of severity, where showstopper is the
most severe one. This metric counts the amount of tickets that have the showstopper severity
tag in between two releases.
The second metric is package changes with negative correlation to Qout . This works the same
as package changes with positive correlation. Even if the correlation is negative, if it is highly
negative, it means that it has an impact on Qout .
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The equation shows that package changes with positive correlation still has the highest neg-
ative impact. An interesting thing is that package changes with negative correlation has a
negative coe�cient. This means that the higher the value for that metric is, the better qual-
ity will be predicted by the model.

The prediction on the last release was 622, which is higher than what model 1 predicted.
This means that according to model 2 the release will be a little bit worse than what model
1 predicted. They did not di�er much, only 8, and the models are not 100% accurate. That
is a reason we choose to show three models. We believe it gives a better feedback to the case
company.

5.2.3 Model 3
• Metrics: Package changes (positive correlation), showstopper tickets, package changes

(negative correlation), bug tickets

• Equation: 2, 38x1 + 0, 73x2 − 1, 78x3 − 3, 63x4 + 598

• Prediction: -561

Model 3 uses four metrics, which is the most of the three models. In addition to the other
three metrics which are used in the other two models as well, model 3 includes bug tickets.
Bug is a tag that tickets can have to easier identify what kind of ticket it is and to keep track.
Thus, this metric is a count of how many tickets are categorized as bugs between two releases.

The equation of model 3 keeps lowering the coe�cient of package changes with positive
correlation. The two coe�cients for showstopper tickets and package changes with negative
correlation are approximately the same. For bug tickets it is −3, 63 which is relatively high
negative compared to the others.

The prediction for model 3 was -561. This suggests that according to this model, the release
should be extremely much better than the others.

5.3 Validation results
Table 5.1 shows an overview of the results after the validation process. Average error is the
average error from the corresponding tables below, where the error is the di�erence between
the predicted Qout by the model and the real Qout . Average coe�cient di�erence is how much
the coe�cients di�er in every equation you get from the training changes.

The Tables 5.2a, 5.2b and 5.2c show how well each model predicted earlier releases. From the
tables we can see that the error interval for the first model is (8, 147), for the second model it
is (17, 142) and for the third model the error interval is (2, 532). The predictions for all of the
models are roughly in the same interval, approximately between 500 and 800. One model
that stands out a little bit more than the other two is model 3. It has the lowest minimum
error of 2 but also the highest maximum error of 532, of the three models. Furthermore, it is
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model metrics used
average
error

average
coe�cient di�erence

1 Package changes (pos) 64 26

2
Package changes (pos)
Showstopper tickets

Package changes (neg)
64 29

3
Package changes (pos)

Showstopper tickets, Bug tickets
Package changes (neg)

90 30

Table 5.1: Overview of the three best metric combinations.

the only model that has predicted a negative value for one of the releases.

After presenting and discussing the results, the relevant personnel to our project agreed that
the predictions looked good and were satisfied with the error margin. Since there is no pre-
vious work or numbers to relate to and compare, it was a little hard to make any conclusions.
We presented all the results that we had worked with, training data as well as current re-
lease. This allowed them to compare di�erent releases and although the absolute numbers
of our computed quality are vague and means little by themselves, when put together with
other releases they could make sense of them. According to the validating data and their own
experience with the releases it seemed good. The presenting of the results can be seen as in-
formal interviews which were most free discussion. However, we asked them two important
questions directly, which were if the results look good and if it is something they can consider
keeping and work further on. On both questions the answer was yes.

The metrics that were used is something that we have had discussions about during the whole
process of constructing Qin and Qout . Thus, they were satisfied with them and positive to the
metrics having some theoretical weight as well as logical. Package changes in Qin and pulled
products used in Qout were two metrics that should stand out a little more than the other
according to the personnel. This was also the case in the models, except for one case where
bug tickets were included.
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Model 1
Release Prediction Error

r11 557 48
r12 525 19
r13 558 97
r14 565 147
r15 554 24
r16 536 152
r17 594 29
r18 802 58
r19 781 41
r20 560 77
r21 650 8

(a)
Model
1 vali-
dation
results

Model 2
Release Prediction Error

r11 546 59
r12 523 17
r13 581 74
r14 570 142
r15 549 19
r16 509 125
r17 658 35
r18 800 56
r19 799 59
r20 548 65
r21 592 50

(b)
Model
2 vali-
dation
results

Model 3
Release Prediction Error

r11 631 26
r12 530 24
r13 611 44
r14 622 91
r15 400 130
r16 -148 532
r17 656 33
r18 746 2
r19 748 8
r20 576 93
r21 648 6

(c)
Model
3 vali-
dation
results
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Chapter 6

Discussion

6.1 Models
We define a model as a composition of the metrics used and the equation it got. As such we
will not only discuss the result values but also dwell into the metrics. A di�cult thing about
the results is that we can not really relate or compare them to anything other than each other
in order to get some better understanding.

6.1.1 Metrics used
We got three models in the end, each with a di�erent number of metrics. They did not di�er
much. Only one noticeable thing was that the average error of the third model which uses
most metrics, exceeds the other two models with approximately 30% and 50% respectively.
Other than that, the average coe�cient di�erence is roughly the same and the prediction
interval as well. In each of the models, we can see that package changes with a positive cor-
relation is included. For the other two, showstopper tickets as well as package changes with
negative correlation is included. In the last one bug tickets is included, with a negative cor-
relation, as well.

Beforehand, package changes is something that we assumed would have some significance.
The reasoning behind package changes made sense. If no code is touched then obviously the
next release will not change much either. It is not known beforehand if changes in a package
will have negative or positive e�ects, but what is known is that it will have some impact,
which makes it a good metric to use and not really a surprise it is included in all the mod-
els. We have two types of package changes. Those that have a high positive correlation with
Qout and those that have a high negative correlation with Qout . What is important here is
that both types have an impact on Qout , only in opposite directions. Showstopper tickets
and bug tickets are also metrics that are reasonable to be included. A first thought is that
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showstopper tickets and bug tickets directly a�ects the quality negatively, which is the case
for showstopper tickets, but not for bug tickets, as can be seen in the equations for model 2
and model 3. We will discuss this more in Section 6.1.2.

Metrics that are not included in the models are the so called hardware metrics, memory avail-
able, boottime, CPU usage and system ready time. This was not too surprising. First of all they
showed low correlation. Furthermore, individually these metrics do not reasonably have a
big impact on the quality of a release. If they all show good values, a product can be said
to be good, but the release itself does not necessarily have to be better because of that. Fur-
thermore, when we are looking at the values we are lumping all products together. It is very
possible that the merger of metrics from di�erent products is impairing these metrics. If
a deeper analysis of these metrics were to be done, where products or product groups are
observed individually, then the result might be very di�erent.

6.1.2 Model equations
The equations produced come directly from the linear regression. What is interesting is how
the di�erent coe�cients varies. For instance, positive package changes becomes less and less
significant as more metrics are included. Showstopper tickets and negative package changes
on the other hand do not change that much between the models they are included in. One
might assume all the coe�cients to be positive except for negative package changes. How-
ever, as mentioned above, this is not the case. Bugs for instance have a negative coe�cient,
indicating that much like a rainbow after rain, a good release comes after a bad one. The rea-
son for this is debatable, but one hypothesis is that when there are many bugs, the developers
are more careful with what they merge into the project, resulting in a better release.

A kind of verification is that negative package changes have a negative coe�cient for both
models it is included in. This is expected since when correlating the metrics individually
against Qout , negative package changes got a negative correlation, hence the name. This
means that when negative package changes is increasing, Qout is decreasing, and vice versa.

There is not much to say anything about the intercept value. Why they are so high prob-
ably is because of how the Qout is calculated. For the model’s predictions to be able to get
up to the Qout values a high intercept is needed. The real Qout values trained on are approxi-
mately in between 300 to 700 with an average of 600. The intercept of the equations di�ers
with approximately 100 from the first model to the third one. Why it is increasing perhaps
depends on the number of metrics. In the first model there is only one but with the highest
coe�cient of all. In the third model there are four but with somewhat lower coe�cients.

6.1.3 Prediction results
The prediction results were a little bit mixed. Two of the models predicted slightly above
their averages whereas model 3 predicted -561. This might seem strange but when analysing
the inputs it becomes clear. As explained in Section 6.1.2, bug tickets has a high negative
coe�cient. This combined with approximately 350 bugs tickets between the two releases of
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course gives a very negative prediction. As for the positive coe�cient metrics, positive pack-
age changes had a value of 9 and showstopper tickets had 41 which cannot really measure
with the number of bug tickets. This makes model 3 special in the case that if there are many
bug tickets then it probably will predict a negative value, which is something that the users
of the main script should be aware of.

The validation results at a first glance look somewhat similar. The only model that stands
out is the third model. It is the only one with a negative prediction, which is the lowest of
them all. Overall, the third model has the lowest average prediction of 547, whereas model 1
and model 2 averages 607 and 606 respectively. The reason for model 3 predicting low, points
to it having two negative metric coe�cients in package changes (negative) and bug tickets.
Especially bug tickets, with the highest (negative) coe�cient seems to contribute much to
this. The only di�erence between model 2 and 3 is bug tickets. Why bug tickets have this
e�ect depends on the model produced from the linear regression. But something that should
be considered is that bug tickets is used both as Qin and in the Qout . Another thing is that
for the releases where model 3 predicts much lower than the other two models, it can simply
be so that there were a lot of bugs which the other models can’t include. Taking it one step
further, a reason to many bugs could be that a firmware was released, and only afterwards
it was found out to have bugs. These bug reports will then count as Qin for the next release
prediction but as Qout for the released firmware. The predictions follow roughly the same
patterns. For r18 and r19 they all predict higher and for the rest it is more concise. Whether
the predictions are good or bad is hard to tell. All we know is that the lower they are, the
better the quality of the release. By only judging the validation results, 400-550 would seem
good.

6.1.4 Prediction errors
We saw that the errors are widely spread. That is not a good sign regarding the models. It
means that they are inconsistent or unreliable when it comes to accuracy. However, Table
5.1 shows us that for model 1 and model 2 the average error is 64. The same two models on
average predicted 607 and 606. This approximates to a 10% error margin which we believe
is good enough. For model 3 it is a little bigger. By categorizing the error in intervals of
size 10, i.e. 0-9, 10-19, 20-29 up to 140-149 and 150 or above, we get that the interval with
most occurrences was 50-59 with 5. The second most occurring was a tie between 0-9 and
20-29 both with 4 occurrences. This tells us that the predictions were not that far o� which
is good. The reason for using the interval size 10 is because of how the values look and it
enough comfortable and manageable.

6.2 Validation with the case company
One thing that they noticed quickly was some of the predictions from model 3 that deviated
from the rest. This is a thing they were concerned about. But they understood the results
after explaining why model 3 behaves as it does. This is however something that they will
have to be aware of in the future. If a release should have a very higher amount of bug tickets
compared to package changes and showstopper tickets, then they should expect the predic-
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tion to be very negative from model 3.

Throughout the whole project, the case company has been very keen to see the results. What
the models look like and what they predict. After all, what they want is to see is the quality
of a firmware release in numbers. However, the whole methodology is also something that
they were interested in. We have not only just created three di�erent prediction models, but
also showed them how it can be done. With that said, the company can in the future add
other metrics they find fitting and create new and maybe better models. Furthermore, it was
nice to hear that they came up with ideas how future master’s theses could be followed up on
our. To sum up, they would start by using our numbers and in the future look more into our
work to customize the models.

The personnel that were going to be using our result, were very interested in the Qout . Much
like us they have been having problems with quantifying the quality of a release. As they had
been part in the AHP surveys, they were versed in how we calculated the Qout . In fact, the
final coe�cients that were used after the merger of the surveys were very close to the indi-
vidual answers that they had given. Because of this the Qouts were very similar to how they
felt about the releases. The only exception being a recent release that had been problematic.
The problem with that release was a bug in an area that was arguably outside the scope of the
release work. As such it did not have a large influence on our model, but of course it’s large
impact on the work in the case company. So they were interested in manually correcting
certain releases.

6.3 Newer findings concerning packages
As we were writing the program that implemented the models we had produced, we came
across some slightly disturbing findings. We found that our package metrics were less preva-
lent then previously. Upon some investigation, we found that not only were there very little
change in the version numbers of our selected packages, but also a few of them were sim-
ply not included anymore. This raises some interesting questions on the usage of specific
packages as metrics. Some of our most reasonable hypothesis are:

• The packages were concerning functionality that gave rise to problems, but those func-
tionalities are now implemented in full. Thus the packages are now mostly stable.

• The packages are only used in discontinued products, and are thus currently only in-
cluded in the LTS’s.

• The packages have been renamed or the entire code areas that the packages were part
of have been entirely rewritten.

Independant of the actual reason, it is clear that using these metrics will require continued
work. Analysing what sort of packages it was that gave positive and negative correlation
respectably. What was it about these packages that made them correspond to our Qout? Are
there any factors that are common amongst them? These are some of the potential answers
that we are thinking of:
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• Hub-packages that connect functionalities?

• Hugely complicated niche functionality that might not be worth the trouble?

• Important core functionality that everything depends on?

• Clusters of low code standards?

• Seldom used packages that are barely tested?

Whatever it might be, if there is any strong trend shown amongst these packages it should
be possible to use that knowledge to better the development of the software.

6.4 Changing systems and loosing data

6.4.1 Quantifying quality in a large and undefined
area

This area of work is very large and we have been forced to make many assumptions and sim-
plifications. What di�ers our work from what we found in literature is the level that we look
at. A lot of papers in our literature study focused on the code at di�erent levels. We found
some that only gathered softer metrics, i.e. metrics that have looser definitions or that can
be open to subjective bias. We also found some that only just gathered and presented the
metrics. What is di�erent for us is that we are working at a higher level in the company.
We are interested in all aspects that might conceivably have an impact on the release quality.
With that broad spectrum comes the important question of what quality is. When looking
just at code level, it is a bit easier as there are quality metrics such as actual bugs found as
well as a more concise history, as everything is digital. However, with a scope as wide and a
level so high as ours we cannot take code quality as our quality indicator. Although bad code
metrics and quality might work on a lower level case study. When looking at company level,
it is not useful for giving quality to a release. When looking at quality at our level we almost
have to look at more subjective quality, both from the customers’ and the personnel’s sides.

What would have been nice is if customers filled in a small questionnaire each time they up-
graded their software, about possible problems they’ve experienced with their current ver-
sion. And possibly do the same for personnel at the company, because as is, no one could
really remember what they experienced during the earlier releases. This would give more
solid ground to the Qout and thus the entirety of the models. As it is we had to resort to
what was available, and we are not completely happy with what the results of that. We had
a slight insight into the customer response in that we had access to the CST-tickets, but we
do not know what might have been cleaned away in the CST-ticket procedures. As for the
other Qout components, they are more related to the end of the release rather than what is
delivered. Thus they are an insight into the status inside the company during the release,
which we reason also is a part of the quality of a release.
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6.4.2 Low amount of data points
A well known approach to improve models such as this and for machine learning models is
to increase the data points which can be trained on. We unfortunately had to remove almost
half of the data points we intended to use from the beginning because there was no data so far
back in time. We ended up with 11 data points which is very little. As our model is predicting
the quality of a firmware release, it is understandable that the case company simply cannot
create new data points now and then, but only after each new release. What is important here
is to keep all data to be able to train on as many points as possible in the future. Another
problem we encountered was that we had to exclude metrics because of this. Metrics that
perhaps could have made the model better.

6.5 Threats to validity
We have attempted to address threats to validity in the corresponding parts of the report,
but here is a more general discussion on the subject.

Some of the information gathered manually comes from manually composed reports over re-
leases. Depending on who wrote them, and at what time, both formats and standards di�er.
We have consulted the people that are currently doing the corresponding work to determine
how to interpret various uncertainties, but this is still a possible source of errors.

We have been collecting information from documents and been storing them in spreadsheets
for analysis. It is possible that said information have been slightly altered in this step. We
have been thoroughly double checking information so that this sort of problem shall be elim-
inated, but the possibility exists. One example of this is the "." vs "," in numbers problem,
where python and the American numbering systems use dots, but the Swedish system uses
the comma. And whenever we initialize a new document it started with Swedish by default.

The problem with using the APIs, mostly trouble is validating the data. First of all, the
API and the web interface do not work the same regarding dates. We used the API to get
the tickets, sorted by dates. For instance, if we wrote "2019-10-25..2019-11-25", it would give
us all the tickets from 2019-10-25 to 2019-10-24. So the last day is not included. In the web
interface this was not the case, there the last day was included. This made it cumbersome
when making sure that the results from the API were correct, which we had to do manually.
The biggest problem however, was that the API could not take large queries. To solve this
we had to make many more smaller queries and then check that each one of these were correct.

For good and bad, one of the authors have been doing work at the case company previ-
ously. This could incur that there is some unconscious bias, such that certain aspects being
ignored because of previous experience. This can be good if the context of the experience
and our thesis is similar, as it could speed up the work. However, if the context is di�erent
then important details could be swept away before they have been noticed. Luckily we are
two authors and we hope that the insistent questioning and inquiring of the other half have
minimized this as a problem.
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In the research and gathering of data in this thesis we wrote scripts in python. As in every
project involving programming, there might be bugs in the code. We did not use any testing
frameworks to test our code. Instead, we simply ran the scripts several times with di�erent
inputs and checked it with print outs and visually against the systems from where the data
came. One thing that could possibly increase the chance of bugs, even if we do not think it
did, is that we had to write the code in such a way that was fitting for the case company and
their code standard and templates which we were not used to. In the end, the scripts were
not that big and most of them focused only on one thing. As such we do not believe there
were any bugs.

As this is a case study for the top layer of the release process, which is a single department,
there is a definite possibility of bias. The case company was not the best prepared for this
master thesis. The idea was good but many things were not clear from the start. Several
definitions were missing, for instance, what quality actually is and what data is available.
Throughout the project we got a lot of free hands so to speak. In other words, there were not
many involved from the case company at the start, regarding both programming and deter-
mining metrics. As the project neared its end, the personnel became more and more involved
in choosing models that we had developed and reviewing our code.

Throughout the master thesis we used proven methods and theories to aid us on the way,
such as AHP, PCA and in the correlations. These methods often include various threshold
values. We have not been scrutinizing these values and have used the base values that we have
found. In case there are several values we have used what have been referred to as the standard
value, see critical value for the Pearson correlation for an example. Using other values than
the ones we used might give di�erent results.

We have mentioned that we had to make definitions of our own. For instance when using the
metric package changes. What a package change actually is, perhaps depends on who you ask.
A comment for instance is a change in the file but it does not a�ect the code or the firmware
at all. As explained in Section 4.2.4 and 4.2.4 we tested and defined it in our way which of
course is a threat to validity. These definitions were made solely on our own knowledge and
intuition, as well as discussions with our supervisors from the case company, and not on any
literature, theory or other practice. This threat applies not only to package changes but all
the definitions we had to make up ourselves. That includes for example our definition of
quality (Qout) as well. As we have been stating in the rest of the report, our distinct results
are entirely dependant on Qout . And there is a distinct possibility that with another Qout
the results would be di�erent, positively or negatively. During this thesis We have done our
utmost to be as objective and personally unbiased as possible. According to the project lead-
ers, the procedure and results were possitive, as such we can only hope that the result is sound.

Most of our data is gathered from objective systems that are largely trustworthy, but oth-
ers are subjective opinions based on peoples faulty memories. It became apparent that using
peoples distinct memories was not a fruit-full endeavour. So we only used it sparingly, only
as a source of inspiration and understanding. We did have to use the subjective opinions in,
for example, the Qout coe�cients. We hope that opinions such as these are more trustworthy,
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as these are subjects that are continuously reinforced during their work.
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Chapter 7

Conclusions and Future Work

Through our work we have tried to answer the question of whether it is possible to predict
the quality of a release by creating models which can do just that. The models are auto gener-
ated equations based on linear regression, that use a set of metrics as the equations unknown
variables. The values of the metrics have been extracted from the case company. On the ques-
tion of whether this helps the case company, the answer is yes. It becomes an extra input to
the decision making about the release, based on facts, instead of just their gut feeling. There
have been problems throughout the work but it was still manageable to succeed with our goal
to create a prediction model. However, to do this again or continuing on it, the points bellow
are of importance.

There needs to be a clear definition of "release quality", which is quantifiable. The work
is, in essence, trying to find variables that oscillate in unison with the quality of the releases.
Without clear numerical data on the quality of the releases, it is simply not possible to make
any good predictions.

More data points are better than few. To make a reliable model, many data points are needed
to better train the model. In our case a data point corresponds to a release. This means that
new ones are not added too frequently. However, our case company is smart and plans to
increase the release frequency.

Changing systems and practises presents a problem for this sort of work. It makes relat-
ing data points to each other di�cult, making some metrics inconsistent and unusable, and
in some cases making the entire data point unusable. This also seems to be a theme in soft-
ware companies to keep up to date and change with the time, meaning that they are relatively
often changing systems. This could be mitigated if it is possible to merge the results from
older and newer systems into a continuous line. This would require good knowledge of both
systems, so that it is assured that it is exactly the same metrics that are extracted. Further-
more, the releases that are in the transition period are not to be as trusted, as it takes time for
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people to adapt to the new system and the values will be o� during this period. Due to prob-
lems such as these, it seems to be really di�cult to gather compatible continuous data points.

To continue this line of work, all data points after each release should be saved. This is
important to improve the models by enlarging the training data. It is also a good idea to try
and look forward in time if some metric looks interesting to be added to the model. This
requires that there is available data for it which means the data should be extracted some
time before to be able to train on it. Regarding metrics it is important to chose those that
have continuous data. If a metric is stopped being used, or it has no data, then it should be
removed, else the model will be trained falsely.

The supervisors at the case company, which were responsible for the thesis, explained they
had ideas of future theses based on this one. For instance, analyse more in detail how package
changes a�ect the release in di�erent ways. Some positive and some negative. It should be
possible to analyse what sort of packages that a�ect release quality when changed. This is
outside the scope of our thesis work, but we saw that the potential was there.

This thesis is something that could surely be done with machine learning. We created our
model by a simple multiple linear regression. By applying machine learning it might be pos-
sible to learn what metrics give more accurate predictions.
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Appendix A

Popular Science Summary

Mjukvaruföretag har ofta som mål att bara leverera ny programvara till kunder. När det
är gjort känner man sig nöjd och sen börjar man på nästa programvara. Men hur bra den
föregående faktiskt var vet man inte om inte kunden ger några synpunkter eller respons och
även det är lite information. Kan man på något sätt stanna upp lite och ta reda på hur bra
en programvara var på ett sätt som ändå gynnar företaget.

Vid släpp av programvara så sammankommer uppdateringar från en uppsjö av avdelningar.
Varje avdelning har sina egna tester och diverse data, som ger dem en känsla av hur bra deras
egna artiklar är. Men det finns inget smidigt sätt att kolla på data från flera avdelningar för
att få en bild av kvaliteten på programvaran. Vidare finns det inga konkreta definitioner på
vad en kvalitativ programvara är. Till exempel, finns det kodmått eller mätvärden som måste
vara med och väger vissa mer än andra?
Detta examensarbete undersöker hur man genomför en kvalitetsmätning av programvara
inom Axis Communications. Syftet är att skapa en modell för att automatiskt estimera pro-
gramvarukvalitet. Med hjälp av data som finns tillgänglig innan man slappt programvaran så
ska modellen ge indikationer på hur den kommer bete sig i fält.
Personal ansvariga för utsläpp av programvara är beroende av data för att göra beslut. De-
ras beslut påverkar direkt kundens upplevelse och därmed hela företagets levnadsbröd. Med
tillförlitlig data så kan man ge kunden en stabilare produkt. Det blir även enklare för före-
taget/avdelningen att planera arbetet framöver då de ser var de ligger och eventuellt vilka
åtgärder som behöver tas. Det finns även en möjlighet att förkorta processen av utsläppet.
Med en bra modell så kan man ta snabbare och säkrare beslut.
Med våra resultat så behöver de inte fatta besluten helt på egen magkänsla utan kan falla
tillbaka på hård data. Dessutom så kommer modellerna med tiden, allteftersom de får fler
datapunkter, tränas bättre och ge mer precisa estimeringar av kvaliteten.
Vår metod bestod i princip av tre stora steg. Först gjordes en undersökning av litteratur om
vilka mätvärden som kan vara relevanta att ha med, samt en undersökning inom företaget
om vilka mätvärden och data som finns tillgängliga.

75



A. Popular Science Summary

Det andra steget var att extrahera datan på ett sätt som gör att vi kan använda den i vår mod-
ell. Datan som vi valde att gå vidare med baserade vi främst på diskussioner och intervjuer vi
haft med relevant personal på företaget, samt litteratur vi hade hittat.
Till sist så skapade vi flera modeller med olika kombinationer av datan. Till exempel så an-
vände en modell bara ett kodmått, en annan modell använde tre o.s.v. Dessa evaluerade vi
genom att träna upp modellerna på alla utom en datapunkt och sedan estimera på den bort-
tagna datapunkten. De tre bästa presenterades för företaget.
För att skapa modellerna så behövdes definitioner fastställas, bl.a. vad kvalitet är. Linjär
regression användes för att hitta samband mellan de tillgängliga mätvärdena. Från detta ska-
pades modeller som baserat på indatan svarar på frågan hur bra programvaran är.
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Which is more important?
Metric A <<<< <<< << < 0 > >> >>> >>>> Metric B

number of products pulled products

number of products delay

number of products total tickets

number of products bug tickets

number of products priority

number of products severity

pulled products delay

pulled products total tickets

pulled products bug tickets

pulled products priority

pulled products severity

delay total tickets

delay bug tickets

delay priority

delay severity

total tickets bug tickets

total tickets priority

total tickets severity

bug tickets priority

bug tickets severity

priority severity

Severity <<<< <<< << < 0 > >> >>> >>>>

showstopper severe

showstopper medium

showstopper small

severe medium

severe small

medium small

Priority <<<< <<< << < 0 > >> >>> >>>>

high medium

high low

high incoming

medium low

medium incoming

low incoming
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