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Abstract

The separator is a machine with many applications, commonly used to separate liquids or

solids into components with different density. Each application demands its own unique

set of process parameters to achieve optimal results. Often the procedure of finding the

best process parameters is conducted empirically, which can be very time consuming. This

thesis aims to address this problem by providing a statistical model of separator processes,

which can be used to find the optimal process parameters more efficiently.

Different sensors are mounted on two separators used in regular production. The sensors

measure values of the inputs, outputs and process parameters. A Gaussian process is used

to model the regression relationships between the process parameters and outputs for two

separators. Bayesian optimization is then used to find optimal process parameters, which

are shown to be accurate in simulations. In four models, one for each output of the two

separators, the optimal process parameters are seen to improve the outputs. In the first

separator only small improvements can be seen, as the optimal process parameter is near

the middle of the data used to build the model. In the second separator large improvements

can be seen. Here, the optimal process parameter is at the upper endpoint of the interval,

implicating that a higher value of the process parameter could further improve the outputs.

Thus, further experiments with a higher value of the process parameter are needed in order

to draw conclusions on the optimal process parameter for the second separator.

These optimal process parameters will be used in the real separators to possibly improve

the separator performance. The data used in this thesis is supplied by the manufacturer

of the separators, Alfa Laval.
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A Statistical Approach to Separator Optimization

By using real data from regular

product production of two separa-

tors, it is shown that the statis-

tical model manages to create a

good model of the separation pro-

cess. Further, the results show that

the process parameters can be al-

tered in order to improve multiple

objectives of the separation process

simultaneously.

The separator is a machine with many

applications, commonly used to separate

liquids or solids into components with

different density. In order to improve

its performance, testing is often con-

ducted empirically, which can be costly

and time-consuming. Each application

demands its own unique set of process

parameters to achieve optimal results.

To find these process parameters deep

knowledge of the specific application is

needed. By using a statistical approach,

the optimal process parameters can be

found more efficiently with less specific

knowledge required.

In order to build a statistical model,

data is needed. This data is collected

by mounting many different sensors on

a separator. The sensors measure values

of the inputs, outputs and process pa-

rameters of the separator. It is easy to

understand that the outputs depend on

both what is put in the separator and the

settings of the separator, called process

parameters. Therefore, it is of interest

for the operator to find the best process

parameters, in order to achieve the best

possible outputs.

A statistical model which can be used

for most data, from financial applications

to industrial separation, is the Gaussian

process. It can be used to simulate the

real separation process. This allows for

quick testing of different settings and sce-

narios. These tests and simulations can

be used to shed light on possible improve-

ments of the process parameters.

In this work, two outputs of each separa-

tor were regulated with only one process

parameter. Four different Gaussian pro-

cess models, one for each output of the

two separators, were built. These models

were then used to find four different op-

timal process parameters. It was shown

that both outputs had almost exactly the

same optimal process parameter, which

means there is a single best setting for

both outputs of each separator.

This statistical approach is aimed to in-

crease the understanding of the separator

process, but more importantly lessen the

need of real testing. It is easy use for any

separator application and would be ideal

to help guide an inexperienced user.

Lund University, Master’s thesis
Title: A Statistical Approach to Separator optimization, Author: Tim Svensson
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List of Abbreviations

C The regulating valve controls the position of the disc stack. The disc decides the

position of the interface between LP and HP in the separator bowl.

C1 The regulating valve position of separation step 1.

C2 The regulating valve position of separation step 2.

HP The heavy phase is the liquid in the separator that has a higher density. In

this thesis the heavy phase is the cleaning medium.

HP1 The heavy phase of separation step 1.

HP2 The heavy phase of separation step 2.

IN The inlet of the separator is the feed that enters the separator in order to be

separated.

IN1 The inlet of separation step 1.

IN2 The inlet of separation step 2. Before LP1 is led to IN2 more of the cleaning

medium is added.

LP The light phase is the liquid in the separator that has a lower density. In this

thesis the light phase is the product.

LP1 The light phase of separation step 1.

LP2 The light phase of separation step 2.

T Seconds from last discharge. When the separator is discharging the separator

withdraws the disc stack to prevent product loss.

T1 Seconds from last discharge of separation step 1. This variable is not used in

any of the Gaussian process models. T1 is 10 minutes.

T2 Seconds from last discharge of separation step 2. T2 is 10 minutes.



Introduction

Separation of liquids or solids is an essential process in numerous industries all over

the world. The fields of application are diverse and include: food and beverage pro-

duction, oil and grease processing, fuel cleaning and biopharmaceutical production

to name a few. The separator is a machine that performs the tasks of separating liq-

uids of different densities or removing solids from liquids. The separators studied in

this thesis are separators in one of the above mentioned applications, manufactured

by Alfa Laval.

When cleaning and processing the product there are significant losses related to the

separation process. These losses occur when steps are taken to remove unwanted

solids in order to clean the product. It is possible to reduce the product losses by

adjusting and optimizing the separator’s process parameters.

Currently the separator’s process parameters are improved by long periods of em-

pirical testing and expert knowledge is key to improve the separation process. This

makes the procedure of running a separator without much experience a hard task.

The purpose of this thesis is to implement a statistical approach towards optimizing

the separation process, which does not require expert knowledge of the separation

process. The process parameter optimized is the regulating valve, which is a device

that regulates the area where the separation takes place. A Gaussian process is used

to model the separation activity and Bayesian optimization is used to determine an

optimal position for the regulating valve.

1.1 Related work

Herwin (2019) implemented a method for process parameter optimization of a Ma-

rine oil-water through the use of a Gaussian process combined with a basin hopper

optimizer. He did this in collaboration with Alfa Laval and Decerno. This thesis

is a continuation of Alfa Laval’s efforts to optimize separators with a statistical

approach.

The use of Gaussian processes in combination with Bayesian optimization for dif-

ferent time series and regression analysis has a wide range of applications. Two of
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many applications are shortly summarized.

Frazier P.I. (2016) used Gaussian process regression to simulate the results of dif-

ferent material design options. Bayesian optimization was then used to choose the

materials for real life experiments. The purpose of this approach was to reduce the

number of experiments, improving the efficiency of the design process.

Gonzalvez et al. (2019) implemented a Gaussian process in combination with Bayesian

optimization for two applications, yield curve modeling and construction of trend

following strategies. Gaussian processes did an equivalent job of predicting yield

curves when compared to traditional econometric methods. Further, the Gaussian

process with Bayesian optimization strategy showed improvements for trend follow-

ing strategies.

The Gaussian process and Bayesian optimization have been extended to include

multiple tasks with multiple objectives. Bonilla, Chai, and C. Williams (2008)

proposed a model where multiple output variables learn from the same covariance

function and only learn from each other when it improves the model performance.

Biswajit Paria (2019) implement a flexible framework where the practitioner can

choose the priorities of different objectives. This framework would be ideal for a

separator with many process parameters affecting multiples output variables.

1.2 Overview

In chapter 2 the basic function of a separator, the measured signals and the variables

prepared for the Gaussian process are described.

In chapter 3 the theory and implementation of the Gaussian process and Bayesian

optimization are explained. Firstly, a Gaussian process model of the separator

process is built. Secondly, this model is used to create an objective function, which is

then used to find the optimal regulating valve position with Bayesian optimization.

Finally, the procedure of evaluating how the regulating valve position affects the

outputs of the separators is described.

In chapter 4 the performance of four Gaussian process models, one for each output

of the separators, is shown. Using these models, four optimal regulating valve can-

didates are presented. Lastly, the conclusions on how the regulating valve position

influences the separator performance are given.

2



In chapter 5 the data, the models and the optimization procedure are discussed, and

the final conclusions drawn in this thesis are presented.

3





Separation & Signals

In this chapter the basic function of a separator is described in section 2.1. Further

the setup of the separators used in this thesis are outlined in section 2.2 and a

summary of the data collected used in this the thesis is provided in section 2.3.

2.1 Separator

As mentioned in the introduction, the separator is a machine that separates liquids

of different densities or removes solids from liquids. The liquid of higher density is

called the heavy phase HP and the liquid of lower density is called light phase LP .

The separator’s capacity Q is the product of the centrifugal settling velocity Vc and

the settling area A:

Q = VcA (2.1)

The settling area is given by the separator disc stack. The disc stack consists of

a large number of discs (3) stacked upon each other, shown in figure 2.1. A short

distance between the discs allows particles to quickly separate. The centrifugal

settling velocity is given by Stoke’s law:

Vc =
d2(ρHP − ρLP )

18η
rω2 (2.2)

where d is the droplet diameter, ρHP is the density of HP , ρLP is the density of

LP , η is the continuous phase viscosity and rω2 is the centrifugal acceleration. All

variables in equation 2.2 except rω2 are properties of the liquids or solids being

separated. The centrifugal acceleration rω2 is decided by the separator’s radius r

and angular velocity ω2.

The separators investigated in this thesis are 3-phase separators. The 3 phases in

these separators are: HP , LP and unwanted solids. A 3-phase separator is illustrated

in figure 2.1 and described in the following paragraph.
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Figure 2.1: A 3-phase disc stack separator
by Alfa Laval (Alfa Laval, 2020).
1. Inlet; 2. Separator bowl; 3. Disc stack;
4. Top discs; 5. Heavy phase outlet; 6. Light
phase outlet; 7. Solids holding place;
8. Discharge ports; 9. Regulating valve.

Through the inlet (1) at the top of the

separator, the product enters the sep-

arator bowl (2). The separation takes

place in the disc stack (3), where cen-

trifugal force pushes the HP and solids

towards the periphery of the bowl, while

the LP moves to the centre of the bowl.

The HP is led over the top discs (4)

and exits at the top of the separator

through the heavy phase outlet (5). The

LP moves along the centre of the bowl

and exits at the top of the separator

through the light phase outlet (6). The

solids are collected at the solids hold-

ing place (7) and are discharged auto-

matically through the discharge port (8)

at regular pre-set time intervals. When

the solids are discharged, the regulating

valve (9) is adjusted to ensure that there

is no LP loss. The regulating valve is mounted at the top of the separator and de-

cides the position between LP and HP, called the interface, in the separator bowl.

2.2 Separator setup

In this thesis two 3-phase separators that work in sequence to clean the product are

studied. The separator setup and the signals measured are outlined in the piping

and instrumentation diagram in figure 2.2. In both separation steps the product is

the LP and a medium, called cleaning medium, is used to clean the product is the

HP . Since the product has a lower density than the cleaning medium, it is the LP

both separation steps.

In the first separation step, called step 1, cleaning medium is added to remove

unwanted solids from the product. Before the LP from separation step 1 enters

the second separation step, called step 2, more of the cleaning medium is added to

further clean the product from unwanted solids and fluids. On both separators the

regulating valve position is measured at the top of the separator.

6



Figure 2.2: Piping and instrumentation diagram of both separation steps working
in sequence to clean the product. The signals measured from separation step 1 are
denoted 1 and the signals measured from separation step 2 are denoted 2. IN is the
inlet sensor, LP is the heavy phase sensor, LP is the light phase sensor and C is the
regulating valve position.

2.3 Data

The signals measured from separation step 1 are denoted 1 and the signals measured

from separation step 2 are denoted 2 (see figure 2.2). The signals are subdivided into

two groups, X and Y. Where X is the input variable domain, comprised of the input

variables x: regulating valve position, inlet and seconds from last discharge. Only

the regulating valve position is adjustable while the rest of the input variables are

non-adjustable. Y is the output variable domain, comprised of the output variables

y: LP and HP . The signals measured, their mean, variance and abbreviations are

shown in table 2.1.

Table 2.1: Signals measured and their mean, variance and abbreviation.
The variables are normalized with equation 2.3. The positions of the dif-
ferent sensors are shown in figure 2.2.

Abbreviation Mean Variance Signal

X

C1 0,89 0,083 Regulating valve 1
C2 0.54 0.074 Regulating valve 2
IN1 0.38 0.083 Inlet 1
IN2 0.54 0.0062 Inlet 2
T1 0.45 0.096 Seconds from last discharges 1
T2 0.5 0.084 Seconds from last discharges 2

Y

LP1 0.45 0.034 Light phase 1
LP2 0.75 0.024 Light phase 2
HP1 0.63 0.0145 Heavy phase 1
HP2 0.37 0.037 Heavy phase 2

7



In this thesis a data set measured during 35 hours and 7 minutes of regular product

production is used. The signals are measured every second resulting in a data set

D = {(Xi,Yi)}Ni=1 of N = 126 400. The data during discharges is removed in order

to build a more accurate Gaussian process model. It is of interest to have a model

optimal for the separator activity where the regulating valve position is adjustable.

The reduction of D results in a decrease in data points of 10 % for the variables of

separator 1 and 3.33 % for the variables of separator 2.

There is a risk of numerical instability when using the variables in the methods of

this thesis. In order to reduce the risk of numerical instability the variables are

normalized with Min-Max feature scaling. Min-Max feature scaling brings all the

values of the variables into the range [0, 1] without distorting differences. This type

of scaling is used in order to avoid bias between the variables.

Dscaled =
D −Dmin
Dmax −Dmin

(2.3)

In sections 2.3.1 and 2.3.2 the signals and the variable preparation are described.

2.3.1 Regulating valve & Seconds from last discharge

Figure 2.3: The noisy measured regu-
lating valve position.

The regulating valve decides the position of

the interface between LP and HP in the sep-

arator bowl. Both separation steps have

a predetermined regulating valve position

deemed optimal. When the separator is

discharging unwanted solids, the regulating

valve is closed to prevent product loss, which

produces a step function signal. The reg-

ulating valve positions of both separators

have the same appearance and time during

discharge (1 minute), the only difference is

the time between discharges. Separator 1

has a time between discharges of 9 minutes

and separator 2 has a time between discharges of 29 minutes. Though the regulating

valve position is predetermined, the positioning mechanism is not exact and the disc

stack ends up with a slightly different regulating valve position after every discharge.
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As the regulating valve position measured is naturally noisy, the measured signal

does not correspond to the true regulating valve position. In figure 2.3 the measured

noisy regulating valve position is shown before the data during discharges has been

cleared.

Figure 2.4: The prepared regulat-
ing valve position C1 in blue and
seconds from last discharge T1 in
black.

The regulating valve position is prepared

as following: The regulating valve position

is assumed to be the average of all the

data points in between discharges. To im-

prove the Gaussian process model the sec-

onds from last discharge T is added to the

input variable space X. For both separa-

tors T1 and T2 move in the same repeating

pattern, since the time between discharges

is predetermined. The prepared regulating

valve position and the time between dis-

charge for separator 1 are shown in figure

2.4.

2.3.2 Inlet, LP & HP

In this thesis the inlet, LP and HP from the separators are measured with two types

of sensors during two different time periods. The two types of sensors are denoted

sensor type A and sensor type B. During the time period when the Inlet, LP and

HP were measured with sensor B, the regulating valve position sensors were not

operational. Thus, the data from sensor B is only used for comparison with the

data from sensor A. Both sensors are uncalibrated, hence only the variance of the

signals is relevant.

The sampling frequency fs is the number of samples recorded per second. The

sampling frequency is 1 Hz for sensor type A and 0.2 Hz for sensor type B. The

signals from sensor type A were measured previously to the signals from sensor type

B. The time periods when the signals were measured with the two different sensor

types do not overlap. All 6 signals measured with sensor type A and sensor type B

are shown in figure 2.5, where the means of the signals have been shifted to improve

visibility. The data from sensor type A seen in the figures is a subset of D matching

the time scale of the data from sensor type B.

9



Figure 2.5: The signals from sensor type A are shown in blue and the signals from sensor
type B are shown in black.

The signals measured with sensor type A and type B exhibit the same structural

behaviors, but the signals measured with sensor type A are much nosier with worse

resolution. The noise is caused by temporal aliasing, which causes the sampled

signal to distort from the original continuous signal. Temporal aliasing can occur

when a continuous signal is sampled in time, giving a noisy signal.

In order to remove the noise and uncover a clearer signal, a low pass filter can be

used. The filter removes the higher frequencies of a signal above a cutoff frequency,

fc , while keeping the lower frequencies of the signal. In this thesis a cutoff frequency

of fc = 0, 01 Hz and a low pass filter of the 10th order is used. The filter used is

non-causal, which means it uses information that has not yet occurred to filter the

signal. Therefore this type of filter could not be used in a real time application to

filter a signal, it is limited to post analysis of signals. The filter is designed with

MATLAB (MATLAB 2018), a software primarily used for numerical programming.

The original signals for the entire data set D are shown in figures 2.6 and 2.7, the

filtered signals are shown in figures 2.8 and 2.9. The reason that there is less data

points for separator 1 (figures 2.6 and 2.8) than separator 2 (figures 2.7 and 2.9) is

that separator 1 discharges more often, causing more data to be removed from D.

10



Figure 2.6: The original IN1 , LP1 and
HP1 .

Figure 2.7: The original IN2 , LP2 and
HP2 .

Figure 2.8: The low pass filtered IN1 , LP1
and HP1 .

Figure 2.9: The low pass filtered IN2 , LP2
and HP2 .

In separation step 1 HP1 has a high variance. LP1 and IN1 have much smaller

variances and are correlated, shown in figure 2.10. Changes in all signals of separator

1 can be easily observed. In separation step 2 IN2 and LP2 are almost constant.

HP2 moves in an oscillating pattern with strong transients. The transients occur

when the separator is discharging, as shown in figure 2.11.

11



Figure 2.10: Scatter plot of the fraction of
the cleaning medium in LP1 and IN1 using the
same data as in figure 2.8.

Figure 2.11: C2 in black and HP2
in blue. The transients in HP2 oc-
cur when the separator is discharging,
which can be seen when C2 goes to zero
as the regulating valve is closed.
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Methods & Model

Regression is the statistical modeling of relationships between output and input

variables. It can be used for forecasting and prediction. The data set D is split

into a training Dtrain, a validation Dval and a testing set Dtest. The training set is

used to fit the regression model. The validation set is used to evaluate the model fit

and to estimate the optimal input variables. The testing set is used to evaluate the

estimated optimal input variables. The division of data is: 80 % for training, 10 %

for validation and 10 % for testing.

Figure 3.1: The partition of the data D and the task done with each data set.

In section 3.1 a Gaussian process is used for the regression modeling. The regres-

sion model is then used to create an objective function in a Bayesian optimizer to

determine optimal input parameters, as described in section 3.2. The results of the

optimization and the evaluation of optimal input candidates are given in section 3.3.

The Gaussian process is implemented with GPyTorch (Gardner et al., 2018), a

library built on Python, which can be found at gpytorch.ai. The Bayesian op-

timization is implemented with BoTorch (Balandat et al., 2019), a library built

on Python, which can be found at botorch.org. BoTorch works seamlessly with

models from GPyTorch.

3.1 Gaussian process

A Gaussian process is a family of random variables, where every finite collection of

them has a multivariate Gaussian distribution (Rasmussen and C. K. I. Williams,

2006a). Thus, it is assumed that all data used is Gaussian distributed. The Gaussian

process can be used to fit a function f to a set of data D. The approximation, f(x),

of the output y at input x is:

13
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f(x) ∼ GP(µ(x), k(x,x′)) (3.1)

The Gaussian process is fully defined by its mean function µ(x) and covariance

function k(x,x′), commonly referred to as the kernel function.

µ(x) = E[f(x)]

k(x,x′) = E[(f(x)− µ(x)(f(x′)− µ(x′)]
(3.2)

The mean function of the Gaussian process encodes the central tendency of the

underlying function, which is often assumed to be constant. The covariance function

encodes the shape and structure of the underlying function. The covariance function

must be symmetric and positive definite. The signals measured from the separators

are noisy. Therefore, the noisy observations is considered in the Gaussian process

inference:

y = f(x) + δ (3.3)

where f are the noise free observations and δ ∼ GP(0, σ2) is Gaussian zero-mean

noise. Gaussian process regression is often seen as a Bayesian inference problem with

a prior distribution p(y) and a posterior distribution p(y|D). The prior distribution

captures a prior belief of probable observations, y, before any data, D, has been

observed and the posterior distribution captures the updated belief of probable

observations after data has been observed. Given a finite set of input values X ∈
Rn×d, where n is the number of training inputs and d is the dimension, the Gaussian

process prior on the noisy observations y is:

p(y|X) = GP(µ(X), K(X,X)) (3.4)

where K(X,X) is the n × n covariance matrix. In order to make predictions for a

set of testing input values X∗ ∈ Rn∗×d, where n∗ is the number of testing inputs, the

joint distribution is considered. Given a Gaussian process with gaussian observation

noise, the joint distribution of training, y, and function values at the test inputs

values, f∗, is also Gaussian:

14



[
y

f∗

]
∼ GP

([
µ(X)

µ(X∗)

]
,

[
K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
(3.5)

here the covariance matrix consists of: the n∗ × n matrix K(X∗,X), the n∗ × n∗

matrix K(X,X∗) and the n∗ × n∗ matrix K(X∗,X∗). For a multivariate Gaussian

distribution conditional and marginal distributions are also Gaussian. By condi-

tioning the joint Gaussian prior distribution on X∗ and the training observations,

D = (X,y), the predictive posterior is obtained as:

p(f∗|D,X∗) =GP
(
µ(X∗) +K(X,X)V−1(y− µ(X),

K(X∗,X∗)−K(X∗,X)V−1K(X,X∗)
) (3.6)

where V = K(X,X) + σ2I. The Gaussian process defines the probability distri-

bution of the possible outcomes. In order to visualize this, the predictive posterior

distribution is calculated with equation 3.6, where the data set Dtrain is used for

fitting the model and an evenly spaced grid of test inputs, X∗, is used for predic-

tion. The procedure of training the model is given in the next section, where the

covariance function’s parameters are estimated to fit the underlying functions as

defined by the training data. In figure 3.2 the conditioned mean of the predictive

posterior distribution given the covariance function’s fitted parameters is shown.

Figure 3.2: The predictive posterior is shown as the colored
surface andDtrain is shown as the black dots. Three different
variables are used in the visualization: HP2 from the output
space and C2 and T2 from the input space.
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3.1.1 Covariance functions

The covariance function (3.2) measures similarities between two values of a function

evaluated at the input pair x and x′. There is a wide range of covariance functions

to choose from depending on the characteristics of the underlying function. The two

main categories of covariance functions are stationary and non-stationary covariance

functions. A stationary covariance function depends only on the relative position of

the input pair, while a non-stationary covariance function depends on the absolute

position of the input pair. A short summary of commonly used covariance functions

follows.

Exponential results a non-differentiable process, which makes it ill suited for smooth

underlying functions. It is stationary and has two parameters, the length scale `

and the output variance σ2.

kExp(x, x′) = σ2 exp

(
−(x− x′)

`

)
(3.7)

` determines how rapidly the function varies. A small ` means that function values

change quickly and large ` means that function values change slowly. σ2 is the

average distance and variation of the function values from their mean, this parameter

is shared for all covariance functions. A small σ means that function values stay

close to the mean, larger σ means that function values are allowed more variation

from the mean. The exponential covariance function is not used for the models in

this thesis, but included for completeness.

Squared Exponential, commonly referred to as the the radial basis function, is uni-

versal and can be used for most underlying functions. Squared exponential is used

as the default covariance function in many Gaussian process applications. It is

stationary and has two parameters, the length scale ` and the output variance σ2.

kSE(x, x′) = σ2 exp

(
−(x− x′)2

2`2

)
(3.8)

` is the length scale, same as for exponential. σ2 is the average distance and variation

to the function mean, which is the same as for all covariance functions. Squared

exponential gives a (infinitely) differentiable process, in contrast to the exponential

covariance function. Hence, it is good for smooth underlying functions.

Rational Quadratic is equivalent to adding multiple Squared exponential with dif-
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ferent length scales. This allows the function’s structure to vary. It is stationary

and has three parameters, `, σ and η.

kRQ(x, x′) = σ2

(
1 +

(x− x′)2

2η`2

)−η
(3.9)

` is the length scale, σ2 is the average distance and variation to the function mean

and η is the relative weighting of variations, determining how smooth the functions

is. The rational quadratic is equal to squared exponential when η →∞.

Matérn is stationary and has three parameters. The average distance and variation

to the function mean σ2, the length scale parameter ` and the smoothness parameter

ν. Γ is a gamma function and Kν is a modified Bessel function of the second kind.

kMatérn(x, x′) = σ2 21−ν

Γ(ν)

(√
2ν(x− x′)

`

)ν

Kν

(√
2ν(x− x′)

`

)
(3.10)

Matérn is equal to squared exponential when ν →∞. For computational efficiency

ν is commonly chosen as 1
2
, 3

2
or 5

2
. For half integers the Matérn covariance function

simplifies to a polynomial (of degree ν = 1
2
) multiplied by an exponential function

avoiding the Bessel function. Smaller ν is used to decrease the smoothness and

bigger ν is used to increase the smoothness. When ν = 1
2

the Matérn is equal to

the exponential covariance function. Matérn is once differentiable when ν = 3
2

and

is twice differentiable when ν = 5
2
. In this thesis only ν = 3

2
is considered.

Linear is the only non-stationary covariance function tested. It has two parameters,

c and σ. c is the offset, which determines the input coordinate x where all the lines

of the posterior go though. σ2 is the average distance and variation to the function

mean, same as for all the previous covariance functions.

kLinear(x, x
′) = σ2(x− c)(x′ − c) (3.11)

A linear covariance function is equivalent to including a simple linear regression in

the mean structure
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Combining covariance functions

Covariance functions can be combined to sums or products of multiple covariance

functions. This is useful when the data exhibits different features, for example, both

a stationary and a non-stationary behaviour. The additive structure and product

structure of two covariance functions ka(x, x′) and kb(x, x′) is simply given as:

kAdditive(x, x
′) = ka(x, x′) + kb(x, x′) (3.12)

kProduct(x, x
′) = ka(x, x′)× kb(x, x′) (3.13)

The additive covariance function can be thought of as an OR operation, it will

have a high value if any of the covariance functions has a high value. The product

covariance function on the other hand can be thought of as an AND operation, it

will only have a high value if all the covariance functions have a high value.

Anisotropic covariance functions

The stationary covariance functions previously discussed are isotropic, which means

that they are equal for all directions. Therefore, the length scales of all the variables

in the Gaussian process are equal using an isotropic covariance function.

When there is a large number of input variables they can vary at different scales,

some might even impact the model negatively. Thus, the the scaling and choice of

input variables becomes very important to ensure a good Gaussian process model.

One way to account for different scaling and handle the potential negative impact

from one of the input variables in high dimensional problems is automatic relevance

determination (Neal, 1996). Automatic relevance determination gives each input

variable a separate length scale, making the covariance functions anisotropic. The

scaling is used to reduce the relevance of input variables that affect the model

negatively. As can be seen in equations 3.8, 3.9 and 3.10 the inverse of the length

scale determines the influence of an input on the predictions. If a length scale has

a high value for one of the inputs, the resulting covariance will be close to zero

between the two points with similar input values. The zero covariance implies that

the input variable will not affect predictions, making that input irrelevant.
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3.1.2 Training the Gaussian process model

Every covariance function has a set of parameters, which means that the prior dis-

tribution (3.4) itself has parameters, these parameters are called hyperparameters.

By using knowledge gained from the training data they can be adjusted in order to

better fit the Gaussian process model.

In order to find the best values for the hyperparameters, denoted θ, iterative learning

is used. The output of the Gaussian process model is computed over a number N of

training iterations i. In each training iteration the log marginal likelihood, denoted

L(θ), is used to decide the next iteration’s hyperparameter values. L(θ) measures

how well θ fits the model by marginalization over the observed noisy output values,

y. L(θ) is given as:

L(θ) = −log p(y|X, θ) = −1

2
(y− µ)>V−1(y− µ)− 1

2
log |V| − N

2
log 2π (3.14)

where V is given in equation 3.6 and µ is given in equation 3.2. The first term

measures the fit of the data, the second term penalizes complexity of the model and

the third term is a normalizing constant. The log determinant in the second term is

computed using, Cholesky factorisation (Rasmussen and C. K. I. Williams, 2006b).

Instead of inverting the matrix to compute the quadratic expression the first term

the Cholesky decomposition is used. This is numerically more stable and faster. The

time complexity for training the Gaussian process model of n data points is O(n3)

and the time complexity of computing the predictive poster in equation 3.6 is O(n),

since V−1 can be precomputed from the training data. Thus, the computational

expenses to perform Gaussian process inference increase rapidly with n.

One group of iterative optimization methods generally used for tuning the hyperpa-

rameters of the Gaussian process model is stochastic gradient descent optimization
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algorithms, the basic outline of which is shown in algorithm 1.

Algorithm 1: Stochastic gradient based optimization
Choose a number of training iterations N

Choose a learning rate α

for i← 1 to N do
Compute the gradient of the log marginal likelihood ∇θL(θ)

Update the hyperparameters θ w.r.t ∇θL(θ)

(Update rule for ADAM is shown in equation 3.17)

Increment i until ∇θL(θ) is close to 0

end

return the solution θopt

The hyperparameters are updated in the direction of the gradient ∇θL(θ), until the

gradient is close to 0. The learning rate α determines each iteration’s i step size in

order to reach the minimum of L(θ).

Stochastic gradient descent can be viewed as the stochastic approximation of stan-

dard gradient descent optimization. Instead of using the entire data set to calculate

the gradient, the gradient is estimated separately for every value in Dtrain. This

allows redundant updates of θ with similar values to be excluded, which reduces the

computational burden.

An overview of the most commonly used gradient descent optimization algorithms

is given by Ruder (2016). Ruder concludes that the Adaptive Moment Estimation

(ADAM) is a good overall choice for sparse data sets, such as signal measurements, as

it converges very fast with easy initialization. However, ADAM tends to over adap-

tion, which means it generalizes worse than the slower but more robust stochastic

gradient descent optimizer.

ADAM, proposed by Kingma and Ba (2014), stores exponentially decaying average

of past gradients mi and past squared gradients vi. The first moment mi (mean)

and the second moment vi (variance) have a tendency towards zero, therefore the

bias-corrected moments are computed:

m̂i =
β1mi−1 + (1− β1)∇L(θ)

1− βi1
(3.15)

v̂i =
β2vi−1 + (1− β2)∇2L(θ)

1− βi2
(3.16)

where i is the current training iteration, i− 1 is the previous training iteration, β1,
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β2 ∈ [0, 1) are decay rates for the moment estimates and βi1, βi2 are the decay rates

to the power of i. Using the bias-corrected moments yields ADAM’s update rule for

the next iteration’s, i+ 1, hyperparameter values.

θi+1 = θi −
α√
v̂i + ε

m̂i (3.17)

In this thesis the values α = 0.001, ε = 10−8, β1 = 0.9 and β2 = 0.999 suggested by

the authors of ADAM, P. Kingma and Ba are used.

3.1.3 Gaussian process selection

To evaluate the predictive performance of the Gaussian process models using differ-

ent covariance functions, the error measurement root mean squared error (RMSE)

is used:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2 (3.18)

where yi is the validation set output variable and ŷi is the predicted output, from

the Gaussian process model. RMSE can be compared with another popular error

measurement, mean absolute error. Mean absolute error scales each error linearly,

a single error of 10 only contributes twice as much to the total error as single error

of 5. RMSE in contrast scales quadratically, which means each single outlier error

weights more for the total error than for MAE.

By using the posterior mean and variance (equation 3.6) of every predictive obser-

vation, ŷi, 95 % confidence intervals can be computed as:

µf∗|D,X∗ ± 1, 96 ·
√
Kf∗|D,X∗ (3.19)

As a measure of model performance, the portion of validation data Dval within the

confidence is also computed for the models. If 95 % of the validation data is inside

the 95 % confidence interval, it indicates a good model. If the validation data inside

the 95 % confidence interval is above or below 95 %, either the variance is wrongly

estimated or the assumed distribution is incorrect.
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The signal to noise ratio (SNR) is calculated by utilizing the signal variance, σ2
K

(section 3.1.1), relative to the noise variance σ2 (equation 3.3):

SNR =
σ2
K

σ2
(3.20)

If the SNR is high, the Gaussian process model will fit more variations, rather than

explaining them as noise. If the SNR is low the prediction will be flat with constant

variances.

3.2 Bayesian optimization

Bayesian optimization is a global optimization technique that is effective when the

objective function, g(c) =
∑

Dval
f ∗(c, IN∗C′ , T

∗
C′), is not explicitly known or ex-

pensive to evaluate (Frazier, 2018). A second Gaussian process model is used as a

surrogate model for g(c) in Bayesian optimization. To evaluate the Gaussian process

model, an acquisition function is used to decide where on the posterior distribution

to draw samples. This utility function draws samples sequentially for a number of

iterations, N , in order to find the global optimum, while considering the trade-off

between exploration and exploitation. Exploration means that samples are drawn

where the uncertainty of the prediction is high and exploitation means that samples

are drawn where the acquisition function predicts a gain in the objective function.

The basic outline of Bayesian optimization is shown in algorithm 2:

Algorithm 2: Bayesian optimization

Place a Gaussian prior on g(c)

n initial observations are observed on g(c)

for i← 1 to N do
Compute the posterior distribution of g(c) using all samples

Choose the next query point ci based on the acquisition function

Obtain a value of the objective function g(ci)

Increment i
end

return optimal candidate copt = argmaxc g(c)

As the optimization of the acquisition function is non-convex, and since the training

of the Gaussian process model is not entirely deterministic, there might be relatively

small variations found in copt. To ensure that the global optimum is found, algorithm

2 is restarted 10 times in this thesis. If the variation in copt is smaller than 0.01 it
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is considered a valid candidate for the global optimum.

The objective function used to find copt is the total amount of cleaning medium in

the output of the data set Dval. Using the Gaussian process models built with Dtrain,

LP and HP are simulated for 1000 values of C , denoted C[0,1], on an evenly spaced

interval [0,1]. The actual value of C in Dval is replaced with C[0,1] while keeping the

rest of the input variables in the simulations unchanged. Since D is normalized with

Min-Max feature scaling, the smallest value of C is zero and the biggest is one.

To compute the total amount of cleaning medium during the simulation, the com-

posite trapezoidal rule is used, which approximates the integral of discrete values.

The integral is equal to the total amount of cleaning medium in the predictions,

L̂P and ĤP , during the entire simulation. For each value in C[0,1], there is a corre-

sponding value of the total amount of cleaning medium during the simulation. Thus,

the objective function as a function of C[0,1] and the unchanged input variables, is

created.

g(c) is used as the objective function to find the optimal regulating valve position

with Bayesian optimization, denoted CBO. Thus, a second Gaussian process model

is built to surrogate g(c).

3.2.1 Acquisition functions

Acquisition functions have different properties where the effectiveness depends on

the compatibility with the objective function f(x). The Gaussian process used to

surrogate f(x) has normally distributed posterior mean µf and variance σ2
f . A

short summary of the acquisition functions, upper confidence bound and expected

improvement, used to find the optimum of f(x) follows:

Upper confidence bound (UCB) combines the posterior mean and the posterior vari-

ance. The exploitation-exploration trade-off factor β is the only input parameter

(Auer, 2002). A high β favors exploration, while a low β favors exploitation. In this

thesis β is chosen as 0.2, which is recommended in (Balandat et al., 2019).

UCB(x, β) = µf (x) +
√
βσ2

f (x) (3.21)

Expected improvement (EI) considers how much it is possible to improve the ob-
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jective. The evaluation of f(x) is based on the previously best observed value f ∗,

which is usually chosen as the highest value of the data used to train the model.

Expected improvement is given as:

EI(x) = max(∆(x), 0) + σf (x)φ

(
∆(x)

σf (x)

)
− |∆(x)|Φ

(
∆(x)

σf (x)

)
(3.22)

where ∆(x) = µf (x) − f ∗, φ is the cumulative distribution function and Φ is the

probability distribution function. Expected improvement favors exploitation when

max(∆(x), 0) is high and exploration when σf is high. Noise free observations are

assumed in expected improvement (Mockus, Tiesis, and Zilinskas, 2014).

3.3 Multiple objectives & Evaluation

During the separation process there are two objectives, to minimize the cleaning

medium in LP and to maximize the cleaning medium in HP . Both objectives are

optimized by finding the optimal C . As the input parameter C regulates both ob-

jectives there might be cases where improving one objective worsens the other.

All the values of C , where one of the objectives cannot be improved without wors-

ening the other, are called Pareto optimal values. All the values of C where both

objectives can be improved simultaneously are called Pareto dominated values. The

set of all Pareto optimal values are called the Pareto frontier. The Pareto frontier

does not tell what the optimal value of C is, but makes the trade-off between the

two objectives clear.

First, a regression model was built using the Gaussian process and Dtrain. With the

trained model the objective function, cleaning medium in output during the entire

simulation of Dval, was created. This objective function was surrogated with a new

Gaussian process model, in order to find the optimal candidate CBO with Bayesian

optimization. After that CBO is evaluated, which is done by additionally simulating

1000 values on an evenly spaced interval [0,1] using Dtest, while keeping the rest of

the input variables unchanged. The amount of cleaning medium is computed with

the trapezoidal rule and used to evaluate the impact of C , and to find the Pareto

frontier of LP and HP .

The predictions, L̂P and ĤP , with the original C are compared with the simulations
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using CBO and C[0,1]. By comparing the total amount of cleaning medium during

the simulations in Dtest, the following questions can be answered in section 4.4

1. Whether L̂P (CBO) and ĤP (CBO) provide better results than L̂P and ĤP .

2. Whether L̂P (CBO) and ĤP (CBO) manage to provide the best possible results,

by comparing them to L̂P (C[0,1]) and ĤP (C[0,1]).

3. What the trade-off is between minimizing the amount of cleaning medium in

LP and maximizing the amount of cleaning medium in HP , by analyzing the

Pareto frontier.
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Results

The Gaussian process predictive performance is presented in section 4.1. Using the

best covariance functions, the optimal values for C1 and C2 , found with Bayesian

optimization are given in section 4.2. The optimal values are analyzed through

simulation in section 4.3 and the optimal values and conclusions are finally given

in section 4.4. Since D is normalized all variables shown in the figures are in the

interval [0,1].

For the variables investigated in this thesis, Anisotropic covariance functions (section

3.1.1) neither manages to remove the impact of irrelevant variables nor provide

better models. Several different models were tested, but only the 4 best models are

presented. For each model only the best combination of input variables is shown.
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4.1 Gaussian process predictive performance

The 4 models were tried with all the covariance functions and all possible additive

and product combinations. The models were trained with Dtrain and validated with

Dval. The RMSE values are presented in table 4.1.

Using solely the linear covariance function results in a clearly higher RMSE than

for all other combinations of covariance functions. The predictions using the best

covariance function for each respective model are shown in figures 4.1 to 4.4.
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Table 4.1: The RMSE using different covariance functions (section 3.1.1). The lowest RMSE
for each model is marked in bold.

RMSE
Covariance function m-LP1 m-HP1 m-LP2 m-HP2

Rational Quadratic 0.0309 0.1122 0.0605 0.1021
Squared Exponential 0.0462 0.1225 0.0560 0.0898
Linear 0.1379 0.4223 0.1216 0.2401
Matérn 0.0422 0.1073 0.0591 0.1232

Rational Quadratic + Squared Exponential 0.0447 0.1124 0.0615 0.1001
Rational Quadratic + Linear 0.0312 0.1122 0.0615 0.1009
Rational Quadratic + Matérn 0.0426 0.1069 0.0601 0.1120
Linear + Squared Exponential 0.0469 0.1212 0.0577 0.0884
Linear + Matérn 0.0398 0.1071 0.0603 0.1175
Squared Exponential + Matérn 0.0374 0.1074 0.0560 0.1139

Rational Quadratic · Squared Exponential 0.0523 0.1102 0.0599 0.1347
Rational Quadratic · Linear 0.0326 0.1196 0.0712 0.0904
Rational Quadratic · Matérn 0.0501 0.1059 0.0584 0.1421
Linear · Squared Exponential 0.0505 0.1230 0.0669 0.0769
Linear · Matérn 0.0279 0.1140 0.0694 0.1048
Squared Exponential · Matérn 0.0452 0.1064 0.0582 0.1525

Figure 4.1: The Prediction of LP1 is yel-
low using the input variables C1 and IN1
in model m-LP1. The covariance function
used is the product of linear and Matérn.
The actual LP1 of Dval is red and the pre-

dictive 95%̇ confidence interval is gray.

Figure 4.2: The prediction of HP1 is blue
using the input variables C1 and IN2 in
model m-HP1. The covariance function
used is the product of rational quadratic
and Matérn. The actual HP1 of Dval is red
and the predictive 95%̇ confidence interval
is gray.

In figure 4.1 the prediction of LP1 follows the linear downward trend while still

capturing small variations. The validation data is completely within the confidence

interval and the SNR is 2.6. In figure 4.2 the prediction of HP2 is generally noisy

and only 33.8 % of the validation data is inside the confidence interval. Considering

that the mean of HP1 is 0.64 in Dtrain, the prediction with a mean of 0.82 still

manages to somewhat capture the actual mean of HP1 in Dval, which is 0.91. The

SNR is 3.2.
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Figure 4.3: The prediction of LP2 is yel-
low using the input variables C2 and IN2
in model m-LP2. The covariance function
used is the squared exponential. The actual

LP2 of Dval is red and the predictive 95%̇
confidence interval is gray.

Figure 4.4: The prediction of HP2 is
blue using the input variables C2 , T2 , HP1
and IN2 in model m-HP2. The covariance
function used is the product of linear and
squared exponential. The actual HP2 of

Dval is red and the predictive 95%̇ confi-
dence interval is gray.

In figure 4.3 the mean of LP2 is captured well and captures the downward shift

in LP2 at 165 minutes. The prediction of LP2 does not manage to capture the

downward large spike at minute 107. The confidence interval contains 82 % of the

validation data and the SNR is 0.11. In figure 4.4 the oscillating pattern of HP2

with strong transients is captured quite well until minute 165, where the predictions

are unable to follow the upwards shift. In general the upward part of the transient is

captured better than the downward spike. 99.4 % of the validation data confidence

interval and the SNR is 0.43.

The Gaussian process models, i.e. combination of input variables and covariance

functions, which provide the lowest RMSE for each respective model are used for

finding the optimal values of C1 and C2 in the next section.

4.2 Application of Bayesian optimization

The optimal regulating valve position for LP is the position that minimizes the

amount of cleaning medium, and for HP it is the position that maximizes the amount

of cleaning medium. For the separators investigated in this thesis the regulating

valve position has a predetermined fixed value deemed optimal. This means that

the regulating valve position is not varied during the separation process. C was not

optimized in relation to the other input variables for the Gaussian process model, as

a single fixed value of C could be seen optimizing the output variables. For example,

for every value of IN1 there might have been a specific C1 that optimized LP1.
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CBO is determined with both the acquisition functions upper confidence bound and

expected improvement. A Gaussian process model with the squared exponential

covariance function is used as a surrogate for the objective function, the total amount

of cleaning medium during simulations of Dval. Four different objective functions

are created, one for each model. The optimal regulating valve positions acquired

with Bayesian optimization, denoted C1BO and C2BO, are presented in table 4.2.

Table 4.2: C1BO and C2BO for the different models acquired with the
acquisition functions upper confidence bound and expected improvement
(section 3.2.1).

m-LP1 m-HP1 m-LP2 m-HP2

C1BO|LP C1BO|HP C2BO|LP C2BO|HP

Upper Confidence Bound 0.45 0.41 1.0 1.0
Expected Improvement ∗ 0.41 ∗ 1.0

∗ There are very large variations in the solutions using the acquisition function.

C2BO|LP and C2BO|HP are denoted C2BO as they share the same optimal value 1.0,

except for the inconclusive result of C2BO|LP using expected improvement. The

solutions using expected improvement varies randomly over the entire interval of

possible solutions [0,1]. Thus, the solutions using expected improvement are incon-

clusive when minimizing the objective function, i.e. for both LP1 and LP2 .

4.3 Simulation & Evaluation

To investigate how the regulating valve position affects LP and HP , 1000 different

values denoted C1[0,1] and C2[0,1] on an evenly spaced interval [0,1] are used in

simulations. The endpoints of the interval [0,1] are the minimal and maximal values

of C in the complete data set D.

For LP a lower amount of cleaning medium is better, as it implies more product.

Thus, if L̂P (CBO) (green) is below L̂P it means that CBO manages to improve the

results. If L̂P (CBO) (green) is at the bottom of L̂P (C[0,1]) (gray), it means that

given the interval [0,1], CBO minimizes the possible amount of cleaning medium

in LP . For HP a higher amount of cleaning medium is better. Thus, if ĤP (CBO)

(green) is above ĤP it means that CBO manages to improve the results. If ĤP (CBO)

(green) is at the top of ĤP (C[0,1]) (gray), it means that given the interval [0,1], CBO

maximizes the possible amount of cleaning medium in LP .

In figures 4.5 to 4.8 the predictions using the unchanged input variables L̂P and ĤP
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are shown. They are compared with the predictions using the 1000 different regu-

lating valve positions on the interval L̂P (C[0,1]) and ĤP (C[0,1]) and the predictions

using C1BO|LP, C1BO|HP and C2BO.

Figure 4.5: ˆLP1 in yellow is the
prediction using the original input vari-
ables. ˆLP1(C1[0,1]) in gray are the sim-
ulations using the evenly spaced interval.

ˆLP1(C1BO|LP) in green is the simulated
ˆLP1 using C1BO|LP. ˆLP1(C1BO|HP) in red

is the simulated ˆLP1 using C1BO|HP.

Figure 4.6: ˆHP1 in blue is the pre-
diction using the original input variables.

ˆHP1(C1[0,1]) in gray are the simula-
tions using the evenly spaced interval.

ˆLP1(C1BO|LP) in green is the simulated
ˆLP1 using C1BO|LP. ˆLP1(C1BO|HP) in red

is the simulated ˆLP1 using C1BO|HP.

In figure 4.5 it can be seen that both C1BO|LP and C1BO|HP are close to minimizing

the ˆLP1 in the entire simulation. In figure 4.6 it can be seen that C1BO|HP does not

maximize ˆHP1 during the simulation. However, it can be seen that C1BO|LP almost

maximizes ˆHP1 during the simulation. In figures 4.7 and 4.8 it can be seen that

C2BO is close to minimizing ˆLP2 and close to maximizing ˆHP2.

Figure 4.7: ˆLP2 in yellow is the pre-
diction using the original input variables.

ˆLP2(C2[0,1]) in gray are the simulations us-

ing the evenly spaced grid. ˆLP2(C2BO) in

green is the simulated ˆLP2 using C2BO.

Figure 4.8: ˆHP2 in blue is the pre-
diction using the original input variables.

ˆHP2(C2[0,1]) in gray are the simula-
tions using using the evenly spaced grid.

ˆHP2(C2BO) in green is the simulated ˆHP2
using C2BO.
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Using the composite trapezoidal rule, the total amount of cleaning medium in the

simulation of LP and HP is calculated. The total amount of cleaning medium in

the predictions using C[0,1] is shown in figures 4.9 and 4.11. Further, the Pareto

frontier of total amount of cleaning medium in the predictions using C[0,1] is shown

in figures 4.10 and 4.12. In the figures with the Pareto frontier the ”Product in LP”

is computed as: 1 - cleaning medium, since it is the amount of cleaning medium

that is measured. For the Pareto frontier the amount of cleaning medium in HP

increases higher up in the figure, and the amount of product increases further right

in the figure. This means that the Pareto optimal points will be in the top right

corner of the figure.

Figure 4.9: The total amount of cleaning
medium in ˆLP1 and ˆHP1 for C1[0,1].

Figure 4.10: The total amount of prod-
uct in ˆLP1 and the total amount of clean-
ing medium in ˆHP1. The Pareto optimal
points are found in the top right corner of
the Pareto frontier.

In figure 4.9 it can be seen that the Pareto optimal points are close to maximizing

ˆHP1 while simultaneously minimizing ˆLP1. This means that there is a very small

trade-off between the two objectives of minimizing LP1 and maximizing HP1 . In

figure 4.10 it can seen that using the unchanged C1 is a Pareto dominated value.

C1BO|LP is close to minimizing ˆLP1. C1BO|HP does not maximize ˆHP1, but still

manages to slightly increase the amount of cleaning medium in ˆHP1 by 1.48 %

compared to using the unchanged input variables. The maximum increase of clean-

ing medium achievable in ˆHP1 is 2.4 %.
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Figure 4.11: The total amount of cleaning
medium in ˆLP2 and ˆHP2 for the C2 on the
grid [0,1].

Figure 4.12: The total amount of prod-
uct in ˆLP2 and the total amount of clean-
ing medium in ˆHP2. The Pareto optimal
points are found in the top right corner of
the Pareto frontier.

In figure 4.11 it can be seen that the Pareto optimal point maximizes ˆHP2 while

simultaneously minimizing ˆLP2, which means that there is no trade off between the

two objectives of minimizing LP2 and maximizing HP2 . C2BO finds the global min-

imum of ˆLP2 and the global maximum of ˆHP2. The fact that the global optimum

is at C2 = 1.0 indicates that that there is a value of C2 bigger than 1.0 that would

further improve ˆLP2 and ˆHP2. In figure 4.12 it can seen that using the unchanged

C2 is a Pareto dominated value.

4.4 Optimal regulating valve position

The conclusions to questions asked in section 3.3 can now be drawn:

1. CBO clearly provides better results for ˆLP1, ˆLP2 and ˆHP2. For ˆHP1, CBO

provides only a slight improvement.

2. CBO finds the optimum for ˆLP2 and ˆHP2 and is close to the finding the

optimum for ˆLP1. CBO does not find the optimum for ˆHP1.

3. For ˆLP2 and ˆHP2 there is only one Pareto optimal point (C2 = 1.0) which

also optimizes both outputs simultaneously. For ˆLP1 and ˆHP1 the Pareto

frontier is in the interval C1 ∈ [0.43, 0.46]. There is a small trade-off between

the objectives as the optimums of ˆLP1 and ˆHP1 are very close.
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The optimal C1 is chosen in the middle of the interval [0.43, 0.46] (Pareto frontier)

as C1Optimal = 0.445. The optimal C2 is chosen as C2Optimal = 1.0, since it is the

only Pareto optimal point. The two regulating valve positions of the entire data

set D, the mean of the regulating valve positions and the optimal regulating valve

positions are shown in figures 4.13 and 4.14

Figure 4.13: C1 from D compared with
the average and optimal C1 .

Figure 4.14: C2 from D compared with
the average and optimal C2 .

The difference in the appearance of the regulating valve positions C1 and C2 stems

for the difference in seconds from last discharge T1 and T2 . In figure 4.13 it can

be seen that C1optimal is very close to the mean. In figure 4.14 it can be seen that

C2optimal is at the maximum of the measured values in D, which indicates that LP2

and HP2 can be further improved by increasing C2 .
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Discussion

In the discussion the results of this thesis are reviewed and the method limitations

and possible improvements are discussed. The data and variables are discussed in

section 5.1, the model in section 5.2 and the optimization and simulations in section

5.3. The main points of this thesis are summarized in section 5.4.

5.1 Data review

The quality of the data is the foundation of any statistical model. Without good

data it is also impossible to build a good model. The removal of noise from the

regulating valve signal, IN , LP and HP was done in order to create better data.

The Gaussian process predictive performance improves with less noisy data, even

though the predictive posterior (equation 3.6) has a noise component. Further,

the structural patterns of the data become easier to see and the differences and

similarities of the predictive posterior and validation data become clearer.

The amount of data used when building the models was restricted by the high time

complexity O(n3) of the Gaussian process model. Using better hardware with GPU-

acceleration, as suggested by Gardner et al. (2018), probably would have allowed

the models to include much longer time intervals. Sometimes, it is desirable to use

longer time periods in the models in order to mimic longer experiments in real life,

which can last weeks.

The non-causal filter used to remove the high frequency noise is limited to historical

analysis, since it uses information about the future to filter the signal. A causal

filter would be needed if the Gaussian process model with Bayesian optimization

were to be implemented in a real time system.

There are possibilities to improve the Gaussian process models in this thesis by

including more variables in the models. Measuring pressure at different locations

such as the inlet, the light phase outlet and the heavy phase outlet could be a good

predictive indicator of bigger changes in the separation process. For example, the

drastic change in the cleaning medium in HP2 , seen in figure 4.4 at minute 165, could

potentially have been predicted better with pressure measurements. Temperature

measurements and flow volumes could fill a similar role of better predicting big
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changes in the separation process.

In the results it is concluded that the trade-off between LP and HP is almost

negligible. In future modeling of the separation process a ratio of LP and HP could

be used for simultaneous modeling.

Further testing using different regulating valve positions is of utmost interest. The

major limitation in this thesis was the limited variability in the regulating valve

position. For C1 this is of less relevance since the C1optimal is found near the middle

of the interval [0,1]. However, since the variability in C1 is still quite limited there

are no guaranties that this is the global optimum. For C2 , on the other hand,

further testing with a bigger variability in C2 is crucial. Given that the optimal

value was found at the boundary of the variable space, and the trend seen in figure

4.11, it is highly likely that the optimal value is larger than 1.

5.2 Model review

As can be seen from the summary of the predictive performance in table 4.1, using

only the linear covariance function always gives worse performance than any other

covariance function. In figure 2.10 it can be seen IN1 and LP1 are correlated.

However, for the linear covariance function to work well, all the input variables need

to be linearly correlated with the output variable. For the models in this thesis the

linear covariance function proves useful in the product structure, where it provides

the best models for m-LP1 and m-HP2.

Additive covariance functions neither produce any of the best results for the 4 mod-

els, nor manages to outperform the use of single covariance functions. The product

structure provides some of the best results and gives the best results for 3 of the

cases. This is logical considering the difference in that the additive structure works

like an OR operation while the product structure works like an AND operation.

Restricting the choice covariance functions to one metric, RMSE, has limitations.

For example looking at m-HP2, one covariance function might be very good at

predicting the mean of HP2 , but worse at predicting the strong transients. In this

case a covariance function which catches the transients better but the mean worse,

might be a better fit for m-HP2. Preferably the plots of all the predictions of the

models using all covariance functions should have been investigated.

The variations of the predictions of LP1 and HP1 are bigger than variations in the
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validation data. This occurs since the signal variance is much bigger than the noise

variance in the Gaussian process model (SNR = 2.6 & 3.2), which causes the model

to fit the variations of the input data rather than explain them as noise. When

the SNR is low (0.11), as in the prediction of LP2 , the Gaussian process model

explains the variations as noise. The amount of validation data inside the 95 %

confidence intervals should be 95 %. None of the models manage to come close to

this percentage, which likely occurs since the variance estimations of the predictions

are incorrect.

For the separator processes analyzed in this thesis anisotropic covariance functions

did not manage to reduce the negative impact from irrelevant input variables. This

makes the Gaussian process impractical to implement since very noisy data, data

with inconsistencies and uncorrelated input variables have to be avoided. It is very

time consuming for the practitioner to find the best combination, due to the high

number of possible choices, considering the presence of 4 models and 10 variables,

as well as the usage of different data sets.

If the management of the irrelevant input variables was improved, a multi-task Gaus-

sian process, as suggested by Bonilla, Chai, and C. Williams (2008), with multiple

output variables could have been incorporated. It is an intuitive way to model the

separation process, multiple input variables affect multiple output variables. Us-

ing this multi-task Gaussian process speeds up testing, but is limited due to the

possibility of only choosing one covariance function for all output variables.

5.3 Optimization & Simulation review

The quality of the Bayesian optimization depends on the quality of the Gaussian

process regression model. If the model is not good, the result of the Bayesian

optimizing is inconclusive. This can be seen in m-HP1, which is arguably a worse

model, where C1BO|HP does not maximize the cleaning medium in the simulation as

shown in figure 4.6.

The restriction of using the interval [0,1] for CBO was based on two reasons: Firstly,

since the regulating valve position has not been measured outside this interval, there

is no knowledge how the separation process looks like outside the interval. Secondly,

the Gaussian process model learns by recognizing similarities between data points.

With no previous data, there are no data points the model can learn from. This can

be seen in figure 4.4 where the 95 % confidence interval increases drastically when
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HP2 changes appearance after minute 165.

During the simulations the amount of cleaning medium drastically changes with

varying C for all the models. It is not realistic to expect these kinds of changes in

the output variables when conducting real life experiments. The Gaussian process

model drastically overestimates the importance of the input variable C in all mod-

els, highlighting the need of using better data and complimenting it with real life

experiments.

Bayesian optimization is primarily used when the objective function is very expen-

sive to evaluate. The objective function in this thesis, the total amount of cleaning

medium in LP and HP , is very easy to evaluate. However, if the model extends

to multiple input variables being parameters in the objective function, it quickly

becomes very expensive to evaluate and Bayesian optimization would serve an im-

portant role.

Multi-objective Bayesian optimization, as suggested by Biswajit Paria (2019), could

be used when multiple output variables need to be optimized simultaneously. This

could prove very useful when extending the model to optimizing more than 3 vari-

ables, since with more than 3 input variables it becomes impossible to visually draw

conclusions. For example, it is possible to add energy consumption and sound level

as output variables.

5.4 Conclusion

The results of this thesis showed that models of LP and HP for both separation

steps can be created. Bayesian optimization managed to find the optimums for 3

of the 4 models. The results showed that the two objectives of maximizing the

cleaning medium in HP and minimizing the cleaning medium in LP have close to

no trade-off, meaning that there is one perfect regulating valve position for both

separator steps. The optimal regulating valve position candidates discovered in this

thesis will be tested in real life experiments.
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