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Abstract

The purpose of this thesis is to study complex analysis, the Bergman space and
Korenblum’s conjecture. This is done in three parts. In the first part the proofs
that the conjecture is true are studied, giving lower bounds of Korenblum’s con-
stant. The first proof is explained in detail, to make it as accessible as possible
to more people. The main differences for a couple of later proofs that improved
the lower bound are presented briefly. In the second part the counter exam-
ples to the conjecture for larger radii are presented. The first counter examples
are explained briefly. The most recent, with the lowest known upper bound of
Korenblum’s constant, is presented in great detail. In the third part a couple
of attempts of improving the upper bound are discussed. In the first attempt
Blaschke products are used, to be able to place zeros of functions anywhere in
the unit disc. In the second attempt the upper bound is analyzed as a varia-
tional problem. An optimization algorithm is written to find counter examples
for as low radii as possible. The algorithm finds counter examples that are close
to the best known, but nothing that is better than what already exists.
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Sammanfattning

Syftet med denna uppsats är att studera komplex analys, Bergmanrummet och
Korenblums förmodan. Detta görs i tre delar. I den första delen studeras bevisen
för att förmodan stämmer, vilket resulterar i en nedre begränsning av Koren-
blums konstant. Det första beviset förklaras detaljerat, s̊a att det är s̊a åtkomligt
som möjligt för fler personer. De största skillnaderna för ett par senare bevis
som förbättrade den nedre begränsningen förklaras kortfattat. I den andra de-
len presenteras motexemplen för större radier. De första motexemplen förklaras
kortfattat. Det senaste, som ger den lägsta kända övre begränsningen av Koren-
blums konstant, presenteras mycket detaljerat. I den tredje delen diskuteras ett
par försök att förbättra den övre begränsningen. I det första försöket används
Blaschkeprodukter, s̊a att funktioners nollställen kan placeras var som helst i
enhetsskivan. I det andra försöket analyseras den övre begränsningen som ett
variationsproblem. En optimiseringsalgoritm skrivs för att hitta motexempe för
s̊a sm̊a radier som möjligt. Algoritmen hittar motexempel som är i närheten av
de bästa kända, men inget bättre än s̊a.
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Notations

C Set of all complex numbers
N Set of all natural numbers, including zero.
Z Set of all integers.
R Set of all real numbers.
A(r1, r2) The annulus between r1 and r2, {z ∈ C : r1 < |z| < r2}.
D(r) The disc of radius r, {z ∈ C : |z| < r}
D The unit disc in the complex plane, {z ∈ C : |z| < 1}
T The unit circle in the complex plane, {z ∈ C : |z| = 1}
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Chapter 1

Background

1.1 The Bergman space

In this thesis we will work in the Bergman space. The Bergman Space Ap(D)
is the set of all analytic functions f on D satisfying:

||f ||Ap(D) =

(
1

π

∫
D
|f(z)|pdA(z)

) 1
p

=

(
1

π

∫ 2π

0

∫ 1

0

|f(reiθ)|prdrdθ
) 1
p

<∞.

In this thesis we will assume p = 2. We can actually calculate the Bergman
norm immediately from the power series of the function f .

Theorem 1. If f(z) =
∑∞
k=0 akz

k then

||f ||2A2(D) =

∞∑
k=0

|ak|2

k + 1
.

Proof. We have

||f ||2A2(D) =
1

π

∫
D
f(z)f(z)dA(z)

=
1

π

∫ 2π

0

∫ 1

0

∞∑
k=0

akr
keiθk

∞∑
l=0

alr
le−iθlrdrdθ

=
1

π

∫ 2π

0

∫ 1

0

∞∑
k,l=0

akalr
k+leiθ(k−l)rdrdθ

=
1

π

∞∑
k,l=0

akal

∫ 2π

0

eiθ(k−l)dθ

∫ 1

0

rk+l+1dr.

The order of summation and integration can be swapped due to uniform con-
vergence on compact subsets of D. If k 6= l then∫ 2π

0

eiθ(k−l)dθ =

[
1

i(k − l)
eiθ(k−l)

]2π
0

= 0.
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Thus we only get non-zero terms when k = l, leaving

1

π

∞∑
k,l=0

akal

∫ 2π

0

eiθ(k−l)dθ

∫ 1

0

rk+l+1dr

=
1

π

∞∑
k=0

|ak|2
∫ 2π

0

dθ

∫ 1

0

r2k+1dr

=

∞∑
k=0

|ak|2

k + 1

From now, whenever we write || · || we mean || · ||A2(D).

1.2 Korenblum’s conjecture

In 1991 Boris Korenblum [8] conjectured that there exists a constant c, 0 <
c < 1 such that if |f(z)| ≤ |g(z)| in the annulus A(c, 1) then ||f || ≤ ||g||.
The conjecture was proved by Walter Kurt Hayman [6] in 1999 with c = 0.04.
We will look at Hayman’s proof in Chapter 2. Korenblum provided a counter
example when c > 1√

2
, that is f(z) = 1 + ε, g(z) =

√
2z. Thus there has to be

a sharp constant κ such that the conjecture is true for 0 < c < κ and false for
κ < c < 1. We call this number Korenblum’s constant. Both the upper and
lower bound of Korenblum’s constant have been improved many times over the
years, most recently both from below and above by Chunjie Wang [13, 14]. In
this thesis we will look at both these results.

The result might at first seem a bit weird. If we only demand that the
functions are continuous then f can be arbitrarily large for |z| < c, thus giving
an arbitrarily large norm. But the fact that we are working with analytic
functions restricts functions much more. For analytic functions we have the
maximum modulus principle:

Theorem 2. The modulus of an analytic function can not have a local maximum
in the interior of its domain.

For a proof, see for example Conway [4]. We try to replace the Bergman norm
with the infinity norm, ||f ||∞ = sup|z|<1 f(z), in Korenblum’s conjecture. If
|f(z)| < |g(z)| for c < |z| < 1 then by the maximum modulus principle

||f ||∞ = sup
z∈D
|f(z)| = lim

r→1−
sup
|z|=r

|f(z)| ≤ lim
r→1−

sup
|z|=r

|g(z)| = sup
z∈D
|g(z)| = ||g||∞

rendering the conjecture true for any c ∈ (0, 1).
We can also try the Hardy norm,

||f ||H2 = sup
0<r<1

(∫ 2π

0

|f(reiθ)|2dθ
) 1

2
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where f is analytic. This case is a little bit more tricky. But the conjecture is
still true for any c ∈ (0, 1). For this we need to use a theorem on subharmonic
functions. A twice continuously differentiable function φ is subharmonic if ∆φ ≥
0. For us the most important observation is that when f is analytic then |f |α
is subharmonic for any α > 0.

Theorem 3. For subharmonic functions φ the integral∫ 2π

0

φ(reit)dt

is increasing in r.

This is a part of Theorem 2.6.8 from Ransford [10].
Since |f(z)|2 is subharmonic we have

||f ||H2 = lim
r→1−

(∫ 2π

0

|f(reiθ)|2
) 1

2

.

If |f(z)| ≤ |g(z)| for all z ∈ A(c, 1) then the integral will be larger for g than for
f , and thus the Hardy norm is larger for g than for f .

Theorem 3 will have some additional uses in Chapter 2.
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Chapter 2

The lower bound

2.1 Hayman’s Proof

In this section we will follow the first proof of Korenblum’s conjecture, published
by Hayman [6] 1999. Sometimes we will go quicker, and sometimes we will slow
down a bit and explain what he does. We start with some definitions. We put

ω(z) = f(z)
g(z) . By assumption we have |f(z)| ≤ |g(z)| for z ∈ A(c, 1), and thus

|ω(z)| ≤ 1 in that region. We also define ρ0 = 1
e and ω0 = sup|z|=ρ0 |ω(z)|. We

assume that c < ρ20. We will show that∫
A(ρ0,1)

(
|g(z)|2 − |f(z)|2

)
dA(z) ≥ A1I0 (2.1)

and ∫
D(c)

(
|f(z)|2 − |g(z)|2

)
dA(z) ≤ A2c

2I0, (2.2)

where

I0 = (1− ω2
0)

∫ 2π

0

|g(ρ
3/2
0 eit)|2dt,

and A1, A2 are constants. For the annulus A(c, ρ0), |g| is greater than |f |. Thus

with c =
√

A1

A2
we get ||f || ≤ ||g||.

We start by proving (2.1). For that we need Hadamard’s three circle theo-
rem.

Theorem 4. For a holomorphic function f on the annulus A(r1, r2), define
Mf (r) = sup|z|=r |f(z)|. Then for r1 < r < r2

log

(
r2
r1

)
log(Mf (r)) ≤ log

(r2
r

)
log(Mf (r1)) + log

(
r

r1

)
log(Mf (r2)).

For a proof, see Conway [4].
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We define λ such that ρλ0 = ω0. Note that λ ≥ 0 since 0 < ρ0, ω0 ≤ 1 Using
the above theorem we want to prove that |ω(z)| ≤ ρλ for ρ0 < ρ = |z| < 1. For ω
to be defined we need any zero for g to also be a zero for f with at least the same
multiplicity. But |f(z)| ≤ |g(z)|. Assume g has a zero at z0 of degree m and f a
zero of degree n, m > n. Then f(z) = f0(z)(z− z0)n and g(z) = g0(z)(z− z0)n,
with f0(z0) 6= 0 and g0(z0) = 0. Due to continuity there is a point z1 close
to z0 such that g0(z1) < f0(z1). But that gives g(z1) < f(z1), which is a
contradiction. Thus ω is a holomorphic function in A(c, 1). In Theorem 4 we
put r1 = ρ0, r2 = 1, r = ρ, f = ω. Then we get

log

(
1

ρ0

)
log(Mω(ρ)) ≤ log

(
1

ρ

)
log(Mω(ρ0)) + log

(
ρ

ρ0

)
log(Mω(1)).

Recall that ρ0 = 1
e , and the definitions of ω0 and λ to get

log(Mω(ρ)) ≤ log

(
1

ρ

)
log
(
ρλ0
)

+ log

(
ρ

ρ0

)
log(Mω(1)).

Since ρ > ρ0 and Mω(1) ≤ 1 the rightmost term is less than or equal to zero.
That gives

log(Mω(ρ)) ≤ λ log ρ.

From that we get
|ω(z)| ≤ ρλ. (2.3)

We have, using (2.3) in the first inequality and Theorem 3 in the second,

∫
A(ρ0,1)

(
|g(z)|2 − |f(z)|2

)
dA(z)

=

∫
A(ρ0,1)

|g(z)|2(1− |ω(z)|2) dA(z)

≥
∫ 1

ρ0

∫ 2π

0

|g(ρeiθ)|2(1− ρ2λ)ρ dθ dρ

≥
∫ 2π

0

|g(ρ
3
2
0 e

iθ)|2 dθ
∫ 1

ρ0

(1− ρ2λ)ρ dρ.

We now want to show that

1− ρ2λ ≥ (1− ω2
0)(1− ρ) (2.4)

for 0 < ρ < 1. If λ ≥ 1
2 the result is easy, since then 1 − ρ2λ ≥ 1 − ρ and

1 − ω2
0 < 1. For 0 < λ < 1

2 we first show that 1 − ρ2λ ≥ 2λ(1 − ρ). For that,
take h(ρ) = 1− ρ2λ − 2λ(1− ρ). Then h(1) = 0. Furthermore

h′(ρ) = −2λρ2λ−1 + 2λ = 2λ(1− ρ2λ−1) ≤ 0

since ρ, 2λ ≤ 1. Together this implies that h is positive on 0 < ρ < 1, and
thus 1 − ρ2λ ≥ 2λ(1 − ρ). Now all that remains is to show that 2λ ≥ 1 − ω2

0 .
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Remember the definition of λ as ρλ0 = ω0. That gives 2λ = log
(

1
ω2

0

)
. Note that

ω2
0 ≤ 1 and define q(x) = log

(
1
x

)
− (1− x). We have q(1) = 0 and

q′(x) = 1− 1

x
< 0

for 0 < x < 1. Thus q(x) ≥ 0. Substitute x = ω2
0 to get 2λ ≥ 1 − ω2

0 . Now we
have (2.4) for all values of λ. Then∫

A(ρ0,1)

(
|g(z)|2 − |f(z)|2

)
dA(z) ≥ I0

∫ 1

ρ0

(1− ρ)ρ dρ > 0.115.

Putting A1 = 0.115 gives (2.1). Hayman gets a little better result at A1 = 0.138

by also considering the integral between ρ
3/2
0 and ρ0, but this isn’t needed to

prove the conjecture.

Now we start proving (2.2). For ρ < ρ
3/2
0 we have∫ 2π

0

(
|f(ρeiθ)|2 − |g(ρeiθ)|2

)
dθ

≤
∫ 2π

0

(
|f(ρeiθ)|2 − ω2

0 |g(ρeiθ)|2
)
dθ

≤
∫ 2π

0

(
|f(ρeiθ)2 − ω2

0g(ρeiθ)2|
)
dθ

≤
(∫ 2π

0

(
|f(ρeiθ)− ω0g(ρeiθ)|2

)
dθ

∫ 2π

0

(
|f(ρeiθ) + ω0g(ρeiθ)|2

)
dθ

) 1
2

≤
(∫ 2π

0

(
|f(ρ

3/2
0 eiθ)− ω0g(ρ

3/2
0 eiθ)|2

)
dθ

∫ 2π

0

(
(|f(ρ

3/2
0 eiθ) + ω0g(ρ

3/2
0 eiθ)|2

)
dθ

) 1
2

.

The inequalities are due to in order ω0 ≤ 1, the triangle inequality, Cauchy–
Schwarz inequality and Theorem 3. We analyze these factors separately

|f(ρ
3/2
0 eiθ)−ω0g(ρ

3/2
0 eiθ)| = |(ω(ρ

3/2
0 eiθ)−ω0)g(ρ

3/2
0 eiθ)| ≤ A(1−ω2

0)|g(ρ
3/2
0 eiθ)|

|f(ρ
3/2
0 eiθ) + ω0g(ρ

3/2
0 eiθ)| = |(ω(ρ

3/2
0 eiθ) + ω0)g(ρ

3/2
0 eiθ)| ≤ 2|g(ρ

3/2
0 eiθ)|

where

A = sup
|z|=ρ3/20

|ω(z)− ω0|
1− ω2

0

Using these estimates we get∫ 2π

0

(|f(ρeiθ)|2 − |g(ρeiθ)|2) dθ ≤ 2A(1− ω2
0)

∫ 2π

0

|g(ρ
3/2
0 eiθ)|2 dθ

⇐⇒
∫ 2π

0

∫ c

0

(|f(ρeiθ)|2 − |g(ρeiθ)|2)ρ dρ dθ ≤ c2A(1− ω2
0)

∫ 2π

0

|g(ρ
3/2
0 eiθ)|2 dθ
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If we can find a constant A2 such that A ≤ A2 this gives (2.2). Unfortunately
it is quite obvious that there exists no such constant. For any ε > 0 take

g(z) = 1, f(z) = −1 + ε. This would give A = 1(1−ε)
ε . But this function is

no counterexample to Korenblum’s conjecture. We can actually find an upper
bound if we only allow rotations of ω such that ω0 = ω(ρ0) (two rotations,
multiplying z and ω by different eiθ). These rotations will affect neither the
absolute value nor the norm, and therefore not Korenblum’s conjecture.

We start by showing ∣∣∣∣ ω(z)− ω0

1− ω(z)ω0

∣∣∣∣ ≤ a < 1 (2.5)

for |z| = ρ
3
2
0 . Define φ(z) = ω(z)−ω0

1−ω(z)ω0
and note that φ(ρ0) = 0. We recognise

this as a Blaschke product of ω(z). We will discuss Blaschke products further
in Chapter 3.1. The important property is that a Blaschke product map D to
D. For ρ20 < |z| < 1 we have by definition |ω(z)| < 1 and thus |φ(z)| < 1. We
will now transform this to a different space. Define

ψ(Z) = φ

(
exp

(
−1− 4iZ

π

))
.

Then ψ is an analytic function, and |ψ(Z)| < 1 for −π4 < Im(Z) < π
4 . For

Zk = kπ2

2 , k ∈ Z we have ψ(Zk) = 0. We are now interested in

sup
0≤x≤π2

2

ψ(x− iπ

8
)

From Beardon and Minda [1] we define the hyperbolic distance on D as

d(w1, w2) =
1

2
ln
|1− w1w2|+ |w1 − w2|
|1− w1w2| − |w1 − w2|

.

For w2 = 0 this becomes

d(w1, 0) =
1

2
ln

1 + |w1|
1− |w1|

= tanh−1 |w1|. (2.6)

It is well known that the hyperbolic distance is invariant under conformal
mappings of D onto itself (see [1] for details). Then we can define the hyperbolic
distance on any other simply connected set by mapping the other set conformally
and bijectively onto D, and using this definition.

We map the strip −π4 < Im(Z) < π
4 to D by

w(Z) =
eZ − e−Z

eZ + e−Z
= tanh(Z)

getting
d(Z1, Z2) = d(w(Z1), w(Z2)).
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Note that we can map the strip onto itself by a translation in the real direction.
Thus

d(Z1, Z2) = d(Z1 − a, Z2 − a), a ∈ R. (2.7)

Define dk(Z) = d(Z,Zk), and put Z = x− iπ
8 for x ∈ [0, π

2

2 ].
From Lehto [9] we get the following generalization of Schwarz’ Lemma.

Theorem 5. Let f be analytic in D with |f | < 1 and f(0) = 0. If

f(z1) = f(z2) = ... = f(zn) = a

then

|a| ≤
n∏
i=1

|zi|.

We want to use this theorem with f = ψ ◦ tanh−1. Note that f is defined
on D, has modulus less than one, and that f(0) = 0. We put a = ψ(Z). Since

ψ has a period of π2

2 this gives

|ψ(Z)| ≤
∏
k

|tanh(Z − Zk)|

for any finite set of integers k. Using (2.6) and (2.7) we get

| tanh(Z − Zk)| = tanh tanh−1 | tanh(Z − Zk)|
= tanh(d(Z − Zk, 0)) = tanh(dk(Z)).

And thus
|ψ(Z)| ≤

∏
k

tanh(dk(Z)).

In particular we have |ψ(Z)| ≤ tanh(d0(Z)) tanh(d1(Z)). Note that as k goes
to positive or negative infinity, tanh(dk(Z)) goes to 1. If we differentiate
ln(tanh(x)) twice we get −( 1

sinh(x) + 1
cosh(x) ) < 0. Thus ln(tanh(x)) is concave,

and we have

ln tanh(d0(Z)) + ln tanh(d1(Z)) ≤ 2 ln tanh

(
d0(Z) + d1(Z)

2

)
⇐⇒

tanh(d0(Z)) tanh(d1(Z)) ≤ tanh2

(
d0(Z) + d1(Z)

2

)
Since tanh2 is an increasing function we will simply find an upper bound of
d0(Z) + d1(Z). By the triangle inequality

d0(Z) + d1(Z) ≤ d(Z0, x) + 2d(x, Z) + d(x, Z1)

Using (2.7) gives

d(Z0, x) + 2d(x, Z) + d(x, Z1) = d(x, 0) + 2d(− iπ
8
, 0) + d(

π2

2
− x, 0).
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Since w = tanh maps positive real numbers to positive real numbers we get

d(x, 0) = tanh−1 | tanh(x)| = x

and

d(
π2

2
− x, 0) =

π2

2
− x.

Finally∣∣∣∣w(− iπ8
)∣∣∣∣ =

∣∣∣∣∣e
iπ
4 − 1

e
iπ
4 + 1

∣∣∣∣∣ =

∣∣∣∣∣ (1−
√

2 + i)(1 +
√

2− i)
(1 +

√
2 + i)(1 +

√
2− i)

∣∣∣∣∣ =
2
√

2

4 + 2
√

2
=
√

2− 1

which gives

d(− iπ
8
, 0) =

1

2
ln

√
2

2−
√

2
.

Backtracking, we find

φ(z) ≤ tanh(d0) tanh(d1) ≤ tanh2

(
d0 + d1

2

)
≤ tanh2

(
π2

4
+

1

2
ln

√
2

2−
√

2

)
≤ 0.9882 = a

and thus (2.5) is true. Then we have

|ω(z)− ω0| ≤ a|1− ω(z)ω0|

and want to maximize the left hand side. Substitute b = ω(z)− ω0

|b| ≤ a|1− ω0(ω0 + b)| = a|1− ω2
0 − ω0b|.

For a given |b| the right hand side will be largest when b is real negative, since
1−ω2

0 > 0. Thus the largest possible value of |b| is when ω(z) is real and smaller
than ω0, and we have equality.

ω0 − ω(z) = a(1− ω(z)ω0)

In this case we have

ω(z) =
ω0 − a
1− aω0

and hence

ω0 − ω(z) =
a(1− ω2

0)

1− aω0

which is a maximum value for |ω0 − ω(z)|. Then

A ≤ a(1− ω2
0)

(1− aω0)(1− ω2
0)
≤ a

1− a
≤ 84 = A2.

This proves (2.2), and for c =
√

A1

A2
= 0.037... finalizes the proof of Korenblum’s

conjecture.
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2.2 Improvements by Hinkkanen and Wang

In the same year that Hayman proved Korenblum’s conjecture, Hinkkanen [7]
improved the bound to c = 0.15724. He uses very similar techniques. We will
not go through the proof in detail, but instead point out some similarities and
differences to what Hayman did. Hinkkanen still compares the integrals∫

A(ρ0,1)

(
|g(z)|2 − |f(z)|2

)
dA(z)

and ∫
D(c)

(
|f(z)|2 − |g(z)|2

)
dA(z)

for r < c < ρ. However he compares them directly instead of via I0. Hence he
gets a different relation, that is∫ 2π

0

|f(reiθ)|2 − |g(reiθ)|2dθ ≤ 2γ(ρ)

∫ 2π

0

|g(ρeiθ)|2 − |f(ρeiθ)|2dθ.

Here

γ(ρ) = sup
|z|=ρ

|ω(z)− ω0(ρ)|
1− |ω(z)|2

.

We define ω0(ρ) as the maximum modulus for each radius ρ, instead of only at
ρ0.

We put c < r1 < r2 < 1, and γ = supρ∈(r1,r2) γ(ρ). Integrating each side
first with respect to r from 0 to c and then to ρ from r1 to r2 gives∫

D(c)

|f(z)|2 − |g(z)|2dA(z) ≤ 2c2γ

r22 − r21

∫
A(r1,r2)

|g(z)|2 − |f(z)|2dA(z).

Now all that remains is to find constants r1, r2, c such that 2c2γ
r22−r21

≤ 1.

Just as Hayman did, Hinkkanen also finds an upper bound of γ by using

Theorem 5 and the expression
∣∣∣ ω(z)−ω0

1−ω0ω(z)

∣∣∣. Since we simultaneously have to

decide the values of r1, r2, c the calculations become much more complex.
Wang [14] further improves the lower bound to c = 0.28185. He does this

by first proving that f2 − g2 has at least two zeros (with multiplicity) in D(c).
Then he gets that∫ 1

c

ρ

γ(ρ)
∫ c
0

( r+c
ρ+ cr

ρ
)2rdr

∫
D(c)

|f(z)|2 − |g(z)|2dA(z)

≤
∫
A(r1,r2)

|g(z)|2 − |f(z)|2dA(z).

where

γ(ρ) = sup
|z|=ρ

|1− ω(z)|
1− |ω(z)|

After that the proof is the same as Hinkkanen’s proof. The same method
works to bound also this γ from above.
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Chapter 3

The upper bound

3.1 History of the upper bound

The upper bound is a very different problem than the lower bound. To improve
the upper bound it is enough to find functions f and g that contradicts Ko-
renblum’s conjecture for some value of c. Wang [11, 12, 13] has improved the
upper bound several times, first using singular inner functions, and later simple
Blaschke products. The singular inner functions are defined as

Sa(z) = exp

(
−a1 + z

1− z

)
.

For the first improvement to κ < 0.6947117, Wang [11] puts

f(z) = e−aSa(zn)

g(z) =
exp
(
− 2a

1+cn

)
c

z.

If we put a = − 1+cn

1−cn log c > 0 then

φ(r) = sup
|z|=r

∣∣∣∣f(z)

g(z)

∣∣∣∣ =
f(−r)
g(r)

.

since g is a monomial and f takes its maximum along a circle at the negative
real axis. We see that φ(c) = limr→1− φ(r) = 1. Then the maximum modulus
principle gives |f(z)| < |g(z)| for z ∈ A(c, 1). Further calculations show that if
n = 14 then we can choose c = 0.6947116...

In his second improvement Wang [12] instead puts

f(z) = Sa+b(z
n)

g(z) = zSb(z
n),

with the same definition of a. The exact same result holds for φ, and choosing
b, n correctly gives κ < c = 0.685086.
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3.2 Blaschke products and Wang’s function

Blaschke products are a family of analytic functions on the unit disc. A finite
Blaschke product of degree n is defined as

B(z) = γ

n∏
k=1

z − zk
1− zkz

where γ ∈ T and zk ∈ D. In an infinite Blascke product we have an infinite
product instead. In that case we also demand that

∑
k(1− |zk|) is finite, since

that means the infinite product converges on D as well.
The Blaschke functions are analytic on D. They have zeros at zk, and they

map D to itself exactly n times. What makes them extra useful for us is that
they map T to itself.

What we will look at in this thesis is actually quotients of Blaschke products,

B1(z)

B2(z)
=

n1∏
k=1

z − zk
1− zkz

n2∏
l=1

1− λlz
z − λl

.

We don’t care about the unimodular constant γ. We will not use B1 and B2

as f and g in Korenblum’s conjecture, but instead we will use the product of
numerators as f and the product of denominators as g. That is

f(z) =

n1∏
k=1

(z − zk)

n2∏
l=1

(1− λlz)

g(z) =

n1∏
k=1

(1− zkz)
n2∏
l=1

(z − λl).

This assures that |f(z)| = |g(z)| for |z| = 1. If we for some radius |z| = c < 1
have |f(z)| ≤ |g(z)|, and that g(z) has no zeros in c ≤ |z| ≤ 1 then by the
maximum modulus principle on f

g we have |f(z)| ≤ |g(z)| on the annulus A(c, 1).

Now what Wang [13] does is to look at quite simple Blaschke products. We put
B1(z) = a+zm

1+azm and B2(z) = z where a ∈ R, m ∈ Z,m ≥ 2. Here B1 is a
Blaschke product of degree m. Then f(z) = a + zm and g = z(1 + azm). We

want ||f ||2 = ||g||2. By Theorem 1 we have ||f ||2 = a2 + 1
m+1 , ||g||2 = 1

2 + a2

m+2 .

Solving ||f ||2 = ||g||2 for a gives

a =

√
(m+ 2)(m− 1)

2(m+ 1)2
.

Theorem 6. For 0 < r, a < 1 we have

sup
|z|=r

∣∣∣∣ a+ zm

z(1 + azm)

∣∣∣∣ =
a+ rm

r(1 + arm)

17



Proof. We show inequality in both directions. To get ≥ we just put z = r. The
other direction is more difficult. We have under the condition |z| = r

sup
|z|=r

∣∣∣∣ a+ zm

z(1 + azm)

∣∣∣∣ ≤ a+ rm

r(1 + arm)

⇐⇒ |a+ zm|(1 + arm) ≤ |1 + azm|(a+ rm)

⇐⇒ |a+ zm|2(1 + arm)2 ≤ |1 + azm|2(a+ rm)2

⇐⇒ (a2 + 2 Re(azm) + r2m)(1 + arm)2

≤ (1 + 2 Re(azm) + a2r2m)(a+ rm)2.

Now we substitute 2 Re(azm) as x, and |z| = r becomes |x| ≤ 2arm. We get

(a2 + x+ r2m)(1 + arm)2 ≤ (1 + x+ a2r2m)(a+ rm)2

⇐⇒ x
(
1 + a2r2m − a2 − r2m

)
≤ 2arm

(
1 + a2r2m − a2 − r2m

)
⇐⇒ 1 + a2r2m ≥ a2 + r2m

The last inequality follows from the rearrangement inequality, since a, r ≤ 1.

To use Theorem 6 we need to show that a < 1. But for m ≥ 1 we have
2(m+ 1) > m+ 2 and m+ 1 > m− 1, giving a < 1. Now we only need to find r
such that a+rm

r(1+arm) = 1. Then we can change a by an arbitrarily small ε to get a

counterexample to Korenblum’s conjecture for any c > r. When we numerically
solve the polynomial equation a+ rm = r(1 + arm) for different m up to 15 we
find the smallest solution in the range (0, 1) is for m = 10, r = 0.679501.... For
m > 15 we have

r > r
1− rm−1

1− rm+1
= a =

√
(m+ 2)(m− 1)

2(m+ 1)2
≥

√
(15 + 2)(15− 1)

2(15 + 1)2
= 0.68179...

The last inequality is proved by calculating d
dma

2 = d
dm

(m+2)(m−1)
2(m+1)2 = m+5

2(m+1)3 ,

and thus a is increasing in m. This r is an upper bound of Korenblum’s con-
stant. In Figure 3.1 we can see the graph of the function |f(z)| − |g(z)|. We
can see the ten zeros of f close to the unit circle, and the single zero of g at the
origin. We want the graph to be smaller than zero outside of the red circle.

3.3 Pressing the result slightly with a modifying
function

In this section we will follow Wang [13] and push the upper bound slightly
lower. The idea is to multiply f and g by another analytic function h. That
won’t affect when |f(z)| < |g(z)|, but it will change the norms. In that way we

18



Figure 3.1: The function |f(z)| − |g(z)|. The red circle is at radius 0.68.

can chose a slightly different value of a and thus get a different value of r. So
we redefine

f(z) = (zm + a)h(z)

g(z) = z(1 + azm)h(z)

where a ∈ R, m ≥ 3 ∈ Z First we will prove that if a ≤
√

m−2
2m−2 then ||f || ≤ ||g||

for any analytic function h. Further equality will only occur if a =
√

m−2
2m−2 or

if h ≡ 0. After that we find h such that ||f || = ||g|| for a =
√

m−2
2m−2 .

Define

h(z) =

∞∑
k=0

ckz
k

Then we get

f(z) =

∞∑
k=0

ackz
k +

∞∑
k=0

ckz
k+m

g(z) =

∞∑
k=0

ckz
k+1 +

∞∑
k=0

ackz
k+m+1
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Using Theorem 1 we get

||f || − ||g|| =
∞∑
k=0

|ck|2
(

a2

k + 1
+

1

k +m+ 1
− 1

k + 2
− a2

k +m+ 2

)

+

∞∑
k=0

(
2aRe(ckck+m)

k +m+ 1
− 2aRe(ckck+m)

k +m+ 2

)

=

∞∑
k=0

(
|ck|2

(
a2(m+ 1)

(k + 1)(k +m+ 2)
− m− 1

(k + 2)(k +m+ 1)

)
+

2aRe(ckck+m)

(k +m+ 1)(k +m+ 2)

)
(3.1)

By the AM-GM inequality we have for b > 0

2aRe(ckck+m) ≤ 2a|ckck+m| ≤ ab
k + 2m

k +m
|ck|2 +

a(k +m)

b(k + 2m)
|ck+m|2. (3.2)

That gives

∞∑
k=0

2aRe(ckck+m)

(k +m+ 1)(k +m+ 2)

≤
∞∑
k=0

ab(k + 2m)

(k +m)(k +m+ 1)(k +m+ 2)
|ck|2

+

∞∑
k=m

ak

b(k +m)(k + 1)(k + 2)
|ck|2

≤
∞∑
k=0

|ck|2
(

ab(k + 2m)

(k +m)(k +m+ 1)(k +m+ 2)
+

ak

b(k +m)(k + 1)(k + 2)

)
.

(3.3)

Using this we continue

||f || − ||g||

≤
∞∑
k=0

|ck|2
(

a2(m+ 1)

(k + 1)(k +m+ 2)
− m− 1

(k + 2)(k +m+ 1)

+
ab(k + 2m)

(k +m)(k +m+ 1)(k +m+ 2)
+

ak

b(k +m)(k + 1)(k + 2)

)
=

∞∑
k=0

|ck|2

(k + 1)(k +m+ 2)

(
a2(m+ 1)− (m− 1)(k + 1)(k +m+ 2)

(k + 2)(k +m+ 1)

+
ab(k + 2m)(k + 1)

(k +m)(k +m+ 1)
+

ak(k +m+ 2)

b(k +m)(k + 2)

)
.
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Remember that a ≤
√

m−2
2m−2 . Define b =

√
2

(m−1)(m−2) . Then ab ≤
1

m−1 ,
a
b ≤

m−2
2 .

||f || − ||g||

≤
∞∑
k=0

|ck|2

(k + 1)(k +m+ 2)

(
(m+ 1)(m− 2)

2m− 2
− (m− 1)(k + 1)(k +m+ 2)

(k + 2)(k +m+ 1)

(3.4)

+
(k + 2m)(k + 1)

(m− 1)(k +m)(k +m+ 1)
+

(m− 2)k(k +m+ 2)

2(k +m)(k + 2)

)
=
∞∑
k=0

|ck|2

(k + 1)(k +m+ 2)

(
m2 −m− 2

2m− 2
− (m− 1)

(
1− m

(k + 2)(k +m+ 1)

)
+

1

m− 1

(
1− m2 −m

(k +m)(k +m+ 1)

)
+
m− 2

2

(
1− 2m

(k +m)(k + 2)

))
=

∞∑
k=0

|ck|2

(k + 1)(k +m+ 2)

(
m2 −m− 2− 2(m− 1)2 + 2 +m2 − 3m+ 2

2m− 2

+
m(m− 1)(k +m)−m(k + 2)−m(m− 2)(k +m+ 1)

(k + 2)(k +m)(k +m+ 1)

)
= 0

and thus ||f || ≤ ||g||. Now we want to find nontrivial h such that we have

equality for a =
√

m−2
2m−2 . Wang [13] just propose h(z) = 1

(1−bzm)2 , but we can

derive why it has to be exactly this function. For (3.4) to be equal we simply

need a =
√

m−2
2m−2 . For (3.3) to be equal we need

m−1∑
k=1

|ck|2
ak

b(k +m)(k + 1)(k + 2)
= 0 ⇐⇒ ck = 0, 1 ≤ k ≤ m− 1.

Finally for (3.2) to be equal we need |ck+m| = |ck|bk+2m
k+m . This gives ck 6=

0 ⇐⇒ m|k. By induction |cmn| = c0b
n(n+ 1) for n ∈ N, and otherwise ck = 0.

If we put ck = |ck| we recognise this as the Maclaurin expansion of

h(z) =
c0

2(1− bzm)2
.

The constant c0
2 will not affect the sign of ||f || − ||g||, or where |f | ≤ |g|. Note

that from (3.1) we get that ||f ||−||g|| is an increasing function of a. So if we pick

a slightly larger than
√

m−2
2m−2 Then we get a counter example to Korenblum’s

conjecture for the real solution to the equation a + rm = r + arm+1 on the
interval (0, 1). The same methods as without the modifying function h gives a
minimum for m = 10. Then we have r = 0.6778994.
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Chapter 4

Numerical methods

4.1 Blaschke products

Inspired by the success of Blaschke products thus far we try some new ones.
When f = a + zm it has m evenly spaced zeros at the circle |z| = m

√
a. When

m = 10, a =
√

m−2
2m−2 we have m

√
a ≈ 0.96. With the Blaschke products we can

place the zeros for f and g wherever we want. We just have to be careful to see
that the norms of f and g are the same.

One idea is to put the zeros of g just inside the zeros of f . Then it is
reasonable that outside the rings of zeros we are closer to the zeros of f and
thus |f(z)| is smaller than |g(z)|. We try to put f(z) = (a+ zm)(1 + bzm) and
g(z) = (b+ zm)(1 + azm). If we put ||f || = ||g|| then by Theorem 1 we get

|a|2 +
|ab+ 1|2

m+ 1
+
|b|2

2m+ 1
= |b|2 +

|ab+ 1|2

m+ 1
+
|a|2

2m+ 1
⇐⇒ |a| = |b|.

Unfortunately this means for a, b ∈ R+ that f = g, which is a trivial and not
interesting case.

But what if we add m more zeros for f? We put f(z) = (a+ z2m)(1 + bzm)
and g(z) = (b + zm)(1 + az2m). Suppose that a, b ∈ R+ Then by putting
||f || = ||g|| we get

a2 +
a2b2

m+ 1
+

1

2m+ 1
+

b2

3m+ 1
= b2 +

1

m+ 1
+

a2b2

2m+ 1
+

a2

3m+ 1

Solving for b2 we get

b2 =

3ma2

3m+1 −
m

(m+1)(2m+1)

3m
3m+1 −

ma2

(m+1)(2m+1)

We try for m = 5. Then we find that b is defined and the radius of the zeros
for g, m

√
b, is less than 0.68 when a2 is between approximately 0.081 and 0.102.

None of these values are promising when we graph the function. An example for
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Figure 4.1: The function |f(z)| − |g(z)| for a2 = 0.09.

a2 = 0.09 can be seen in Figure 4.1. We can’t even see the red circle at radius
0.68.

It hurts a bit that we can not force the radius of the zeros of both f and g.
But what if we force the radius of the zeros of g and the zeros of f that are at
the same angles, thus letting the other zeros of f vary such that the norms are
the same. We put

f(z) = (a+ zm)(1 + bzm)(c− zm),

g(z) = (1 + azm)(b+ zm)(1− czm).

Assuming ||f || = ||g|| gives

a2c2 +
(c(1 + ab)− a)2

m+ 1
+

(cb− (ab+ 1))2

2m+ 1
+

b2

3m+ 1

= b2 +
(cb− (ab+ 1))2

m+ 1
+

(c(1 + ab)− a)2

2m+ 1
+

a2c2

3m+ 1
.

Writing this as a polynomial in c we get

c2
(
a23m

3m+ 1
+
(
(a+ ab)2 − b2

) m

(m+ 1)(2m+ 1)

)
+c

(
2m(b− a)(ab+ 1)

(m+ 1)(2m+ 1)

)
+

(
m(a2 − (ab+ 1)2)

(m+ 1)(2m+ 1)
− 3mb2

3m+ 1

)
= 0

The graph of one of these pairs of functions is shown in Figure 4.2. We can
see only parts of the important red line at radius 0.68.

Unfortunately none of these attempts lead to anything better than the best
known results. The reader is invited to try different parameters and functions.
The matlab code is found in Appedix A.
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Figure 4.2: The function |f(z)| − |g(z)|. The zeros of g are at radius 0.5 and
the zeros of f at the same angles are at radius 0.7. The remaining zeros of f
are at radius 0.9924

4.2 Optimization algorithm

Inspired by Chakraborty [3, p. 50] we consider Korenblum’s conjecture as a
variational problem as follows.

For 0 < c < 1 find

F (c) = inf
f,g∈T

sup
z∈A(c,1)

∣∣∣∣f(z)

g(z)

∣∣∣∣
where T = {f ∈ A2(D) : ||f || = 1}.

It is clear that F (c) ≤ 1, since we can choose f = g. Furthermore, iff c > κ
then F (c) < 1. We will develop an optimization method where we can try
classes of polynomials. It would be quite time consuming to search the whole
annulus for the optimal value. But the maximum modulus principle gives us
better methods. If we assume that g has no zeros in the annulus, then the

function ω(z) = f(z)
g(z) is analytic. The function ω will take its maximum at

either |z| = c or |z| = 1. Unfortunately it is difficult to find the maximum
of a rational function along a circle, since the modulus of a rational function
can change arbitrarily quickly close to poles and zeros. But what we are really
interested in is whether there exists functions such that F (c) < 1. But that is
equivalent to supz∈A(c,1) |f(z)|2 − |g(z)|2 < 0. It is also enough to examine this
expression at the two circles. If we only allow f and g to be polynomials of
degree n then |f(z)|2 − |g(z)|2 = f(z)f(z) − g(z)g(z) along the unit circle is a
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function on the form

h(θ) =

n∑
k=−n

ake
ikθ.

Along the circle with radius c this instead becomes

h(θ) =

n∑
k=−n

akc
keikθ

which by incorporating ck into ak becomes exactly the same problem. Now this
problem is close to what is presented by Green [5]. The difference is that our
function can have negative values, while he only maximizes |f(z)|2. He solves
this using Stečkin’s lemma:

Theorem 7. Suppose we have a real valued polynomial on the form

h(θ) =

n∑
k=−n

ake
ikθ

If h(θ0) = ||h||∞ then h(θ0 + s) ≥ h(θ0) cos(ns) for |s| ≤ π
n .

Green observes that if h is a positive function then by using Theorem 7
we get that if h(θ) takes its maximum in the interval [θk − s, θk + s] then
h(θk) ≥ ||h||∞ cos(ns). We divide [0, 2π] into k intervals with width s, and
calculate h at the midpoint of each. We denote the maximum of these values
by h̃. Then h̃ ≤ ||h||∞ ≤ h̃ sec(ns). This leads to the algorithm

Set s = π/m, for m > 2n.
Divide [0, 2π] into m intervals Ik each of width 2s
while h̃(sec(ns)− 1) > ε do

Calculate h at the midpoints θk of Ik.
Set h̃ to the max of these values.
Reject Ik with h(θk) < h̃ cos(ns).
Divide the remaining intervals in half.
Halve s.

end

return h̃
Algorithm 1: Greens algorithm

We can change |f(z)|2 − |g(z)|2 by simply adding a constant so that it is
positive, or at least the function has its maximum modulus at a positive point.
Suppose that the maximum modulus is at a negative point. Then by applying
Theorem 7 and the previous discussion on |g(z)|2−|f(z)|2 we get a lower bound
on |f(z)|2 − |g(z)|2 by h̃ sec(ns). Adding this number can be done in the first
iteration of the while-loop in the algorithm. To add a too large number would
make h̃ larger and thus the stopping criterion harder. This would make the
algorithm unnecessarily slow.

Whenever we evaluate |f(z)|2 − |g(z)|2 we first check whether g(z) has any
zeros in A(c, 1). If there are zeros we return a large value, so that the algorithm
knows that it should stop searching here.
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So now we can evaluate if a pair of functions contradicts Korenblum’s con-
jecture for a given radius c. The next issue is how to find good candidates of
functions f and g. We do this by considering the variational problem as a multi-
dimensional optimization problem in the polynomial’s non constant coefficients.
To do this we need to try a specific pair of polynomials at a time, for example

f(z) = a1z
2 + a2z + a3, g(z) = a4z

2 + a5z + a6, ai ∈ R.

We want both polynomials to have the same norm. For a given set of values
of a1, a2, a4, a5 we can use Theorem 1 to calculate a3 and a6 such that both
f and g have norm one. Thus we can get supz∈A(c,1) |f(z)|2 − |g(z)|2 as a
function of these coefficients. Unfortunately we know very little about how this
function behaves. We don’t know its derivatives, and we have no idea about
the number of local minima. But we can still try to solve this using a simple
optimization algorithm. For this the cyclic coordinate algorithm [2] is used.
That means we optimize, or line search, for one coefficient at a time, keeping
the others constant. We continue cycling through all coefficients until there is
no improvement for any coefficient. When line searching we simply start with
a small step (10−6) and double it until the value no longer decreases. This is
a variant of Armijo’s rule [2]. Then we try many random starting values. If
we have complex coefficients we simply treat the real and imaginary parts as
two different optimization dimensions. We can always assume that the constant
coefficients are real, since we can always get that by multiplying the whole
polynomial by a number ξ ∈ T without affecting the absolute value.

Instead of trying the algorithm for different radii c manually we can incor-
porate this in the code as well. Whenever we find a combination of functions
and radius that contradict Korenblum’s conjecture we decrease c by a tiny step
(10−4). We continue using the same constants, because it is likely that they will
work for many radii in a row. We terminate the algorithm when we have tried
200 starting values for the final radius. The matlab code for all the different
parts of the algorithm is found in Appendix B. A new value function has to be
written to try each new class of function pairs f and g.

4.2.1 Discussion on the step size

If we want the algorithm to have an precision of 10−5, then what is an appropri-
ate step size? From Theorem 1 the value of a coefficient of degree n is at most√
n+ 1 if the norms are 1. Then a change in the coefficient with absolute value

ε will affect the norm by at most 2ε√
n+1

+O(ε2). To adjust for this change the

constant coefficient have to change at most
√

2ε√
n+1

+ O(ε). Since |z| ≤ 1 this

means that the value of f or g will change by at most
√

2ε√
n+1

+O(ε) and thus

f2 or g2 by at most 2ε√
n+1

+O(ε
√
ε). Thus 10−6 is a good minimum step size.
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4.2.2 Results

The algorithm has been run for many different combinations of polynomials. For
example when run for the optimal Blaschke products from Chapter 3.1, that is
f(z) = a1z

10 +a2, g(z) = a3z
11 +a4z, we find counterexamples to Korenblum’s

conjecture for c = 0.6799. This is very close to the result we got in Chapter
3.1. More results for different functions are shown in Table 4.1. An interesting
result is that the algorithm finds worse results for the second pair of functions
f(z) = a1z

10 +a2z
5 +a3 and g(z) = a4z

11 +a5z
6 +a6z, despite we could always

get the same result by putting a2 = a5 = 0. We conclude that the algorithm
suffers heavily from more variables to optimize for.

The functions f and g Best radius c. Time to run
f(z) = a1z

10 + a2
g(z) = a3z

11 + a4z c = 0.6799 258 s.

f(z) = a1z
10 + a2z

5 + a3
g(z) = a4z

11 + a5z
6 + a6z c = 0.6900 900 s.

f(z) = a1z
20 + a2z

10 + a3
g(z) = a4z

21 + a5z
11 + a6z c = 0.6798 1623 s.

f(z) = a1z
4 + a2z

3 + a3z
2 + a4z + a5

g(z) = a6z
4 + a7z

3 + a8z
2 + a9z + a10 c = 0.7075 2454 s.

f(z) = a1z + a2
g(z) = a3z + a4 c = 0.7072 14 s.

f(z) = a1z
2 + a2z + a3

g(z) = a4z
2 + a5z + a6 c = 0.7072 2003 s.

f(z) = a1z
12 + a2z

10 + a3z
8 + a4z

6 + a5z
4 + a6z

2 + a7
g(z) = a8z

13 + a9z
11 + a10z

9 + a11z
7 + a12z

5 + a13z
3 + a14z c = 0.7047 12829 s.

f(z) = a1z
15 + a2z

5 + a3
g(z) = a4z

16 + a5z
6 + a6z c = 0.6854 2286 s.

f(z) = a1z
42 + a2z

28 + a3z
14 + a4

g(z) =
√

2z c = 0.6989 10843 s.

f(z) = a1z
40 + a2z

30 + a3z
20 + a4z

10 + a5
g(z) =

√
2z c = 0.7018 24951 s.

Table 4.1: Radius for different families of polynomials f and g. Each function is
run until 200 iterations of the algorithm does not improve the radius. Compare
these to the best known counter example c = 0.6778994 and 1√

2
≈ 0.707107
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Appendix A

Visualisation of Blaschke
products

1 m = 5 ;
2 a = 0.7ˆm
3 b = 0.5ˆm
4 d iv id e = aˆ2∗3∗m/(3∗m+1) + ((1 + a∗b) ˆ2 − bˆ2) ∗m/((m+1)

∗(2∗m+1) ) ;
5

6 p = 2∗(b−a ) ∗( a∗b+1)∗m/((m+1)∗(2∗m+1) ) / d iv id e ;
7 q = ( ( aˆ2−(a∗b+1)ˆ2) ∗m/((m+1)∗(2∗m+1) ) − bˆ2∗3∗m/(3∗m+1) )

/ d iv id e ;
8 c = −p/2 + sqrt (pˆ2/4−q )
9 cm = nthroot ( c , m)

10 f = @( z ) abs ( ( a + z . ˆm) .∗ ( 1 + b∗z . ˆm) . ∗ ( c − z . ˆm) ) ;
11 g = @( z ) abs ( ( b + z . ˆm) .∗ ( 1 + a∗z . ˆm) .∗ ( 1 − c∗z . ˆm) ) ;
12 f igure
13 [R, Phi ] = meshgrid ( 0 : 0 . 0 1 : 1 , 0 : 0 . 0 2 : 2 ∗ pi ) ;
14 X = R.∗ cos ( Phi ) ;
15 Y = R.∗ sin ( Phi ) ;
16 Z = f (X + 1 i ∗Y) − g (X +1 i ∗Y) ;
17

18 mesh(X,Y, Z)
19 hold on
20 phi = 0 : 0 . 0 1 : 2 ∗ pi ;
21 plot3 (0 . 68∗ sin ( phi ) , 0 .68∗ cos ( phi ) , 0∗phi , ’ r ’ )
22

23 %% Check t h a t the norms are the same
24 aˆ2∗ c ˆ2 + ( a∗b∗c+c−a ) ˆ2/(m+1) + (b∗c − a∗b − 1) ˆ2/(2∗m +

1) + bˆ2/(3∗m+1)
25 aˆ2∗ c ˆ2/(3∗m+1) + ( a∗b∗c+c−a ) ˆ2/(2∗m+1) + (b∗c − a∗b − 1)
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ˆ2/(m + 1) + bˆ2
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Appendix B

Matlab code for the
optimization algorithm

1 %Change the v a l u e f u n c t i o n to t e s t o th er f a m i l i e s o f
f u n c t i o n s

2 %f ( z ) = a 1z ˆ10 + a 2z ˆ5 + a 3 , g ( z ) = a 4z ˆ11 + a 5z ˆ6 +
a 6z

3 Value = @( const , c ) Blaschke5 10Value ( const , c ) ;
4

5 %The number o f c o e f f i c i e n t s to op t im ize f o r . Number o f
c o e f f i c i e n t s in

6 %t o t a l minus two .
7 l en = 4 ;
8 %The square roo t o f the h i g e s t degree c o e f f i c i e n t p l u s

one .
9 l a r g e s t C o e f f i c i e n t = sqrt (12) ;

10

11 c = 0 . 7 2 ;
12

13 e p s i l o n = 1e−6;
14

15 bestTota l = 1 e10 ;
16 b e s t C o e f f i c i e n t s = 0 ;
17 k = 0
18 t ic
19 while k < 200
20

21 c o e f f i c i e n t s = l a r g e s t C o e f f i c i e n t ∗rand (1 , l en ) ;
22 while ( Value ( c o e f f i c i e n t s , c ) > 1e9 )
23 c o e f f i c i e n t s = l a r g e s t C o e f f i c i e n t ∗rand (1 , l en ) ;
24 end

32



25 k = k+1
26 c ;
27 stop = 0 ;
28 while stop == 0
29 stop = 1 ;
30 for j = 1 : l en
31 d = zeros (1 , l en ) ;
32 d( j ) = 1 ;
33 best = Value ( c o e f f i c i e n t s , c ) ;
34 %Modif ied Armijo ’ s r u l e
35 i f Value ( c o e f f i c i e n t s + d∗ eps i l on , c ) < best
36 stop = 0 ;
37 pot = 1 ;
38 next = Value ( c o e f f i c i e n t s + d∗pot∗ eps i l on

, c ) ;
39 while next < best
40 best = next ;
41 pot = 2∗pot ;
42 next = Value ( c o e f f i c i e n t s + d∗pot∗

eps i l on , c ) ;
43 end
44 c o e f f i c i e n t s = c o e f f i c i e n t s + d∗pot∗

e p s i l o n /2 ;
45 e l s e i f Value ( c o e f f i c i e n t s − d∗ eps i l on , c ) <

best
46 stop = 0 ;
47 pot = 1 ;
48 next = Value ( c o e f f i c i e n t s − d∗pot∗ eps i l on

, c ) ;
49 while next < best
50 best = next ;
51 pot = 2∗pot ;
52 next = Value ( c o e f f i c i e n t s − d∗pot∗

eps i l on , c ) ;
53 end
54 c o e f f i c i e n t s = c o e f f i c i e n t s − d∗pot∗

e p s i l o n /2 ;
55 end
56 while best < −1e−5
57 c = c − 0 .0001
58 bestTota l = best ;
59 b e s t C o e f f i c i e n t s = c o e f f i c i e n t s ;
60 best = Value ( c o e f f i c i e n t s , c ) ;
61 k = 0 ;
62 stop = 0 ;
63 end
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64 end
65 end
66 end
67 c = c + 0.0001
68 bestTota l
69 b e s t C o e f f i c i e n t s
70 toc

1 function va l = Blaschke5 10Value ( c o e f f i c i e n t s , c )
2 %VALUE f o r the f u n c t i o n s f ( z ) = a 1z ˆ10 + a 2z ˆ5 + a 3 , g

( z ) = z ( a 4z ˆ10 + a 5z ˆ5 + a 6 )
3 % D e t a i l e d e x p l a n a t i o n goes here
4

5 const1 = 1 − c o e f f i c i e n t s (1 ) ˆ2/11 − c o e f f i c i e n t s (2 ) ˆ2/6 ;
6 const2 = 1 − c o e f f i c i e n t s (3 ) ˆ2/12 − c o e f f i c i e n t s (4 ) ˆ2/7 ;
7

8 i f const1 < 0 | | const2 < 0
9 va l = 1 e10 ;

10 return
11 end
12 const1 = sqrt ( const1 ) ;
13 const2 = sqrt (2∗ const2 ) ;
14

15 f = [ 0 c o e f f i c i e n t s (1 ) , 0 , 0 , 0 , 0 , c o e f f i c i e n t s (2 ) , 0 ,
0 , 0 , 0 , const1 ] ;

16 g = [ c o e f f i c i e n t s (3 ) , 0 , 0 , 0 , 0 , c o e f f i c i e n t s (4 ) , 0 , 0 ,
0 , 0 , const2 , 0 ] ;

17

18 r = roots ( g ) ;
19 i f any(abs ( r ) >= c & abs ( r ) <= 1)
20 va l = 1 e10 ;
21 else
22 va l = max( Greene ( f , g , c ) , Greene ( f , g , 1) ) ;
23

24 end
25

26 end

1 function Max = Greene ( f , g , c )
2 %Greene Takes two complex po lynomia l s as vec tor s , and
3 %r e t u r n s the maximum modulus o f | f |ˆ2 − | g |ˆ2 at r a d i u s c
4 N = length ( f ) ;
5 for i = 0 :N−1
6 f (N−i ) = f (N−i ) ∗( cˆ i ) ;
7 g (N−i ) = g (N−i ) ∗( cˆ i ) ;
8 end
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9 con = conj ( f ) ;
10 q = conv ( f , f l i p ( con ) ) ;
11 con = conj ( g ) ;
12 q = q − conv ( g , f l i p ( con ) ) ;
13

14 M = 2∗N+5;
15 h = pi/M;
16

17 T = 2∗h ∗ ( 1 :M)−h ;
18

19 q v a l s = EvalPoly (q , T, N) ;
20 q min = min( q v a l s ) ;
21 remember = 0 ;
22 i f ( q min < 0)
23 q min = q min∗sec (N∗h) ;
24 q (N) = q (N) − q min ;
25 remember = 1 ;
26 end
27

28 while t rue
29 q v a l s = EvalPoly (q , T, N) ;
30 q max = max( q v a l s ) ;
31 i f abs ( q max∗( sec (N∗h) − 1) ) < 1e−5
32 break
33 end
34 T = [T( q v a l s >= q max∗cos (N∗h) ) − h/2 , T( q v a l s

>= q max∗cos (N∗h) ) + h / 2 ] ;
35 h = h /2 ;
36 end
37 i f remember
38 q max = q max + q min ;
39 end
40 Max = q max ;
41

42 end

1 function va l = EvalPoly (q , T, N)
2 %EVALPOLY Eva lua tes the po lynomia l q at e ˆ( i t ) .
3 %q on the form a 1e ˆ iNt + a 2e ˆ i (N−1) t + . . . + a N + . . .

a 2Neˆ−iNt
4

5 va l = zeros ( s ize (T) ) ;
6 for i = 1 :2∗N−1
7 va l = va l + q ( i ) ∗exp(1 i ∗T∗(N−i ) ) ;
8 end
9 %The v a l u e shou ld be r e a l a l r e a d y .
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10 va l = real ( va l ) ;
11 end
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