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Abstract

We develop a program to perform a principal component analysis of flow fluctuations
using simulations of nuclear collisions produced by the PYTHIA/Angantyr event
generator. We consider both p+p and p+Pb collision events and study the leading
and subleading modes of the second flow harmonic. The analysis is carried out
using two different definitions of the flow matrix which differ in their sensitivity to
multiplicity fluctuations. We also study the effect on the flow fluctuations of two
collective mechanisms modeled by Angantyr: string shoving and colour reconnection.



Popular Science Abstract

At the two particle accelerators located in New York and Switzerland, the Relativis-
tic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), respectively,
experiments are conducted in which atomic nuclei are collided at ultra-relativistic
velocities. The aim of these experiments is to study nuclear matter under extreme
conditions, i.e. extreme high temperatures and energy densities, similar to the con-
ditions of our Universe shortly after its birth.

A particularly interesting result of these experiments is the observation of a
collective, fluid-like motion known as flow [13][16][29]. The two colliding nuclei
can each be thought of as a thin disk, and they can collide in such a way that the
overlapping area forms an almond-like shape rather than a full circle. A consequence
of this geometry is that the density gradients are larger along the short axis of the
“almond” than the long axis. This means that particles emitted along the short
axis are “pushed” with greater force than particles travelling along the almond’s
long axis, leading to more momentum being produced in the former direction than
in the latter. This phenomenon can be observed using particle detectors and is
known as anisotropic flow.

Flow is conventionally interpreted as the signature of a quark-gluon plasma
(QGP), an extremely hot and dense state of matter, often envisioned as a ”soup”
of quarks and gluons, which are some of the most elementary particles we know of.
According to the Big Bang Theory, our Universe existed in this state during the
first few microseconds. It is therefore an exceptionally interesting state of matter to
study. However, it still remains to be properly explored whether observables such
as flow can be explained without a QGP.

Simulations of heavy-ion collisions provide a tool to probe the properties of
the system by comparing the results to experimental data. The programs that
simulate these events are known as event generators. The PYTHIA event generator
[28], developed at Lund University, is based on a microscopic model of particle
interactions and does not assume that the system reaches a state of QGP. This
makes it a valuable tool for testing whether we have truly created a QGP in heavy-
ion collisions.

In this project, a tool will be developed to provide a detailed flow-analysis of
the final-state particles produced in PYTHIA simulations of relativistic nuclear col-
lisions. The analysis will enable detailed comparisons of these simulations with cor-
responding experimental measurements. The purpose of this project is to expand
the tool-box for future research to be done in this field.
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1 Introduction

In the Standard Model of particle physics, the strong force is the force responsible for
binding colour multiplets, such as quarks, together into colour singlets, e.g. hadrons,
and is mediated by the colour octet, the gluon. The strength of the strong force is
quantified by the Quantum Chromodynamics (QCD) coupling constant, αQCD, and a
particularly interesting characteristic of this coupling constant is that its magnitude
continuously decreases with increasing momentum transfer, a phenomenon known
as asymptotic freedom[18]. A consequence of this is that at sufficiently high energy
densities, the strong interaction between particles becomes weak enough that a
system’s color degrees of freedom may become deconfined, meaning that they are no
longer bound together into color singlets but are able to travel freely[25]. For this
reason, nuclear matter existing in such a deconfined phase is known as quark-gluon
plasma (QGP) and corresponds to the state of our Universe during the first few
microseconds following the Big Bang.

The aim of heavy ion collision experiments is to study strongly-interacting matter
under extreme conditions, with the possibility of recreating a thermalised, decon-
fined system, i.e. a QGP. Experimental results have revealed convincing evidence
that the systems formed in these collisions undergo a collective, fluid-like expansion
[13][16][29], a well-known characteristic of a thermalised system[21]. Moreover, re-
sults from hydrodynamical simulations have been able to describe this data quite
well [13][23]. However, a relevant question still remains: can we have this collective
behavior (or ”collectivity”) without a deconfined, thermalised medium, and can we
explain it without appealing to the notion of a fluid like the QGP?

One of the most widely used tools for probing the properties of the matter
created in nuclear collisions is known as anisotropic flow [23]. It is an experimental
observable which measures the degree of azimuthal asymmetry in the final state
momentum distribution of emitted particles. It is a particularly useful probe in
that it is sensitive both to the system’s fluctuating initial state and to the system’s
subsequent evolution. In Ref. [2] the idea to apply a Principal Component Analysis
(PCA) to two-particle anisotropic flow observables was proposed as a way of isolating
linearly independent fluctuation modes contained within the anisotropic flow signal.
The PCA may thus be used to place powerful constraints on both the initial stages
and subsequent evolution of high-energy nuclear collisions.

In this project, the code will be developed which can be interfaced with the
PYTHIA/Angantyr event generator [28] to perform a PCA of two-particle azimuthal
correlations. This will enable the study of flow fluctuations within PYTHIA/Angantyr.
Angantyr is a recently developed extension to PYTHIA which focuses on improved
modelling of heavy-ion collisions [6]. The framework of PYTHIA/Angantyr is based
on perturbative QCD (pQCD) and string-string interactions and, in contrast to
the hydrodynamic models mentioned above, does not assume the formation of a
thermalised medium.

The goal of this project is therefore to provide a tool for probing the evolution
of simulated high-energy nuclear collisions in the PYTHIA/Angantyr approach, as
a way of ascertaining whether QGP formation is essential to our understanding of
high-energy nuclear collisions.
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The outline of this thesis is as follows. In Sec. 2 the basic ideas of anisotropic
flow in relativistic nuclear collisions are introduced and the necessary formalism for
building the PCA is presented. Sec. 3 introduces the toy model we use for simulating
anisotropic flow and lists the details of the PYTHIA/Angantyr data selected for our
PCA. The chosen method for error estimation is also briefly outlined. In Sec. 4,
we present and discuss the results of our toy model calculations, along with those
obtained from our simulations using PYTHIA/Angantyr. Finally, we draw some
general conclusions in Sec. 5.

2 Formalism

2.1 Nuclear Collision Kinematics and Geometry

A nuclear collision at today’s attainable energies is a relativistic system. Relativistic
kinematics is therefore needed for describing the system. The first quantity to
consider is the four-momentum pµ. For the system where the beam is aligned with
the z-axis, the four-momentum in natural units (h̄ = c = 1) is defined as

pµ = (E, px, py, pz) = (E, pT cosφ, pT sinφ, pz) (2.1)

where E is the energy of the particle, pT is the transverse momentum defined as
pT =

√
p2
x + p2

y, φ is the azimuthal angle and pz is the longitudinal momentum. This
geometry is depicted in Figure 1.

Another angle of interest is the reaction plane angle, ψRP . The reaction plane
is spanned by the beam axis and the impact parameter, ~b, which is defined as the
vector connecting the centres of the colliding nuclei. ψRP denotes the angle between
the reaction plane and xlab.

ψRP~b

φa

φb

xlab

ylab

Figure 1: An illustration of a collision event, as seen when looking down the beam (z-axis). The
circles signify two overlapping ions, with the blue crosses indicaitng the centers of the ions. The
two vectors signify two outgoing particles. The dashed line is the reaction plane and the ~b-vector
is the impact parameter.

The impact parameter varies from event to event. The impact parameter can-
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not be measured experimentally, but model studies show that it is correlated with
experimental observables, such as the particle multiplicity and transverse energy [9].

Another useful parameter for a relativistic system is the rapidity, y, which can
be defined as

y =
1

2
ln
[E + pz
E − pz

]
(2.2)

The rapidity corresponds to the longitudinal velocity in a non-relativistic system.
This can be seen by considering the limit of vz � 1. Using the relation p = Ev in
natural units, the non-relativistic limit of Eq. 2.2 becomes:

y =
1

2
ln
[E + Evz
E − Evz

]
=

1

2
ln
[1 + vz

1− vz

]
= tanh−1(vz) ' vz for |vz| � 1 (2.3)

The benefit of rapidity over longitudinal velocity is that rapidity is an additive
quantity under Lorentz boosts, in the same sense that angles are additive under
rotations [9]. For a relativistic system, using the p = Ev relation again along with
pz = p cos(θ) ⇒ pz = Ev cos(θ), where θ is the angular deviation of an outgoing
particle from the z-axis, Eq. 2.2 can be rewritten to

y =
1

2
ln

[
E + Evcos(θ)

E − Evcos(θ)

]
' 1

2
ln
[E + Ecos(θ)

E − Ecos(θ)

]
=

1

2
ln
[1 + cos(θ)

1− cos(θ)

]
≡ η for v ≈ 1

(2.4)
This is called the pseudorapidity. Note that it only depends on the angle of emission
with respect to the beam axis and not on the mass or momentum of the particle.
This quantity is particularly useful in actual experiments.

2.2 Anisotropic Flow

Consider a non-central collision between two nuclei, as illustrated in Figure 1 for the
case of a symmetric collision between two heavy ions. In this case, the overlapping
area between the two colliding nuclei will be of a roughly elliptical shape. This
means that the collision system in the overlapping region will exhibit larger energy
density gradients in directions (anti-)parallel to the impact parameter (“in-plane”)
than in those perpendicular to it (“out-of-plane”). As a result, the system will expe-
rience stronger collective expansion in-plane than out-of-plane, thereby generating
an anisotropy (∼ cos(2φ) oscillation) in the momentum distribution of particles
produced by the collision.

Thus, geometric anisotropies in the system’s initial state generate experimentally
observable anisotropies in the momentum distributions of particles produced in nu-
clear collisions [2]. This phenomenon is known as anisotropic flow. For a given col-
lision event, one may systematically identify these anisotropies in the single-particle
(momentum-space) distribution by means of a Fourier expansion:

Ep
dN

d3p
=

dN

pTdpTdydφ
=

dN

pTdpTdy

∞∑
n=−∞

vne
−in(φ−ψn) (2.5)

The vn coefficients are known as the anisotropic flow coefficients or flow harmon-
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ics, and their magnitudes quantify the anisotropies present in the momentum-space
distribution of a collision’s particle production. The ψn phase is known as the
flow-plane angle and denotes the orientation of the nth-order flow harmonic in the
transverse plane. This thesis will focus on the harmonic with n = 2, which is known
as the elliptic flow harmonic.

From Eq. (2.5) the Fourier coefficients can be found in terms of the single-particle
distributions as functions of pT and y:

vn(pT , y)einψn(pT ,y) =

∫ π
−π dφe

iφ dN
pT dpT dydφ∫ π

−π dφ
dN

pT dpT dydφ

≡
{
eiφ
}
pT ,y

(2.6)

For this thesis, the following notation will be used:

Vn(pT , y) ≡ vn(pT , y)einψn(pT ,y) ≡
{
eiφ
}
pT ,y

(2.7)

Here the curly brackets denote the average over a single event and a shorthand
notation has been introduced in the last step, which emphasizes that the average
over the azimuthal distribution is differential in pT and y. Eq .(2.6) is the definition
of differential flow [22]. A fully integrated definition of flow, the integrated flow, can
similarly be written

Vn =

∫ π
−π dφe

iφ dN
dφ∫ π

−π dφ
dN
dφ

≡
∫
dy dpT pT

∫ π
−π dφe

iφ dN
pT dpT dydφ∫

dy dpT pT
∫ π
−π dφ

dN
pT dpT dydφ

(2.8)

≡
{
eiφ
}

(2.9)

Unfortunately, the single-particle distribution is dependent on the reaction plane
angle, whose determination is sensitive to finite-statistical fluctuations in the number
of particles emitted on an event-by-event basis [27]. To avoid such uncertainties in
the reaction plane determination, the distribution of pairs of particles within the
same event can be considered instead. The Fourier expansion of the pair-particle
distribution is defined in analogy with Eq. (2.5):

dNpairs

dpadpb
=

∞∑
n=−∞

Vn∆(pa, pb)e
−in(φa−φb) (2.10)

where p ≡ (pT , y, φ) and p ≡ (pT , y). The Fourier coefficients for the pair-particle
distribution of a single event, i, are given by:

V
(i)
n∆(pa,pb) =

{
e−in(φa−φb)

}(i)

pa,pb
(2.11)

The flow matrix, constructed as an average over many events is thus given by

Vn∆(pa,pb) =
〈{
e−in(φa−φb)

}
pa,pb

〉
(2.12)
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where

〈X〉 ≡ 1

Nevents

Nevents∑
i=1

Xi (2.13)

defines the “ensemble average” of X over the set of collision events being considered.
The flow matrix (2.12) can be estimated by the following equation

Vn∆(pa,pb) =

〈 ∑
pairs

e−in(φa−φb)

Npairs(pa,pb)

〉
(2.14)

However, due to finite statistics, particularly important in experiments, another
definition of the flow matrix is often preferred by experimentalists [24][13], and is
presented here

V N
n∆(pa,pb) =

〈∑
pairs

e−in(φa−φb)

〉
(2.15)

This method requires compensation for the extra factors of particle numbers, which
will be explained below in the Principal Component Analysis section. Both defini-
tions of the flow matrix will be explored in this thesis.

2.3 Event-by-event Fluctuations

The initial conditions of a collision, such as the impact parameter and the transverse
density profile of the system, fluctuate from event to event due in large part to the
random distribution of nucleons within each nucleus at the moment of collision. Even
events with identical impact parameter will have fluctuations in the initial density
profile due to such quantum fluctuations [22]. These event-by-event fluctuations of
the initial state induce corresponding fluctuations in the anisotropies of the final-
state momentum spectra [24].

The Fourier coefficients in Eq. (2.11) can be expressed as the covariance matrix:

Vn∆(pa,pb) = 〈V ∗n (pa)Vn(pb)〉 (2.16)

In the absence of event-by-event fluctuations, the covariance matrix factorises as

Vn∆(pa,pb) =
√
〈|Vn(pa)|2〉

√
〈|Vn(pb)|2〉 (2.17)

and the covariance matrix will only have one non-vanishing eigenvalue [24], which
corresponds to the anisotropic flow discussed above. However, in the presence of
event-by-event fluctuations this factorisation breaks and the covariance matrix will
have more than one non-vanishing eigenvalue, with each eigenvalue corresponding
to a linearly independent fluctuation mode [2].

A principal component analysis of the event-by-event fluctuations can isolate
these fluctuation modes, organised by size, and thereby reveal the most important
contributions to the covariance matrix [2].

These fluctuation modes are sensitive in non-trivial ways to both the initial
conditions of nuclear collisions as well as the nature of their subsequent evolution.
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For this reason, they may also provide valuable into the properties of both the initial
conditions and the mechanisms which drive the evolution.

2.4 Principal Component Analysis

The covariance matrix Eq. (2.16) is symmetric and approximately real after averag-
ing over many events [22]. By the spectral theorem, therefore, it may be decomposed
into positive semi-definite eigenvalues and real eigenvectors in the following way:

Vn∆(pa,pb) =
∞∑
α=1

λ(α)
n ψ(α)

n (pa)ψ
(α)
n (pb) (2.18)

=
∞∑
α=1

V (α)
n (pa)V

(α)
n (pb) (2.19)

where λ
(α)
n are the eigenvalues of Vn∆, in descending order, λ

(α)
n > λ

(α+1)
n , and ψ

(α)
n (p)

are the normalized eigenvectors. The principal components are then, in accordance
with Eq. (2.14), defined to be

V (α)
n (p) =

√
λ

(α)
n ψ(α)

n (p) (2.20)

However, when considering the other method of Eq. (2.15), an extra factor of
〈N(p)〉−1 is required in order to properly normalize the extracted flow modes. The
principal components are then defined by

V N(α)
n (p) =

√
λ

(α)
n ψ(α)

n (p)/ 〈N(p)〉 (2.21)

2.5 The PYTHIA/Angantyr Event Generator

PYTHIA 8 is a general purpose, Monte Carlo event generator designed to simulate
the physics of particle collisions carried out at relativistic particle colliders such
as RHIC and LHC. Within PYTHIA, the partonic interactions are modelled by
perturbative QCD while the hadronization is based on the Lund String Model, which
models high-energy QCD interactions by strings whose energy density is stored in
the form of an effective tension. For nearly four decades, PYTHIA has provided
successful descriptions of a wide range of both elementary particle and hadronic
collisions, including e+e−, pp, and pp̄.

More recently, PYTHIA has been extended to the description of particle-nucleus
(pA) and nucleus-nucleus (AA) collisions by treating the multiple nucleon-nucleon
interactions in such collisions in accordance with the same Lund String Model. The
extended model has been dubbed the Angantyr model. One of the most important
recent developments in this respect has been the application of PYTHIA/Angantyr
to the description of collective phenomena [1] such as anisotropic flow [10], quarko-
nium production and suppression [15], and long-range rapidity correlations [19, 11,
14]. Several novel mechanisms have been implemented within PYTHIA/Angantyr
in order to account for such collective phenomena. One of the main features in-
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troduced is rope hadronization, in which strings overlapping in transverse space can
interact to form a “rope”. As part of the rope hadronization mechanism, other types
of interactions have been introduced, two of which will be explored in this project,
namely string shoving and colour reconnection.

These mechanisms, which will be briefly discussed below, may have quantifi-
able implications for experimental observables which probe collectivity. This in-
cludes, in particular, observables associated to anistropic flow, such as the flow
matrix Vn∆ and its eigenmodes, which may be extracted by principal component
analyses as described above. In this thesis, we will consider the implications of
PYTHIA/Angantyr’s collective mechanisms for PCAs performed on this flow ma-
trix.

2.5.1 String Shoving

In the Lund String model, a colour field can be formed between a qq̄-pair, which can
fragment into two colour singlets (hadrons) when the energy stored in a string is
sufficient for the creation of a new qq̄-pair. These colour fields can be interpreted as
QCD flux tubes and stretch out in both the longtitudinal and transverse direction.
When a qq̄-pair is produced, the flux tube connecting them is compressed in the
transverse directions, and as the partons move apart, the tube is expanded. In dense
environments, this leads to flux tubes overlapping and interacting by a repulsion in
the transverse direction, referred to as shoving [5].

2.5.2 Colour Reconnection

The interacting strings of the rope can be of different colour configurations, and as
they overlap they can interact by a rearrangement to other colour configurations,
determined by the group properties of SU(3) [3]. This is the process referred to
as colour reconnection (CR). Some of the configurations possible with CR are the
junction configurations, where one or more junctions are found along the string.
Each of these junctions allow for the creation of additional baryons [4].

3 Method

3.1 Acquiring Data

3.1.1 Toy Model

To illustrate the functionality of the PCA, a toy model with well defined expected
behaviour has been constructed. This model simulates elliptic flow in fluctuating
nuclear collisions in a way which can produce a non-factorisable flow matrix. The
toy model mimics elliptic flow by randomly generating particles whose momentum-
space azimuthal angle is distributed according to a (properly normalized) cosine
distribution

φ ∼ 1 + 2v2(pT ) cos[2(φ− ψ2(pT ))] (3.1)
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with

v2(pT ) =
v̄2pT

p̄T + pT
(3.2)

and
ψ2(pT ) = ψRP + kpT (3.3)

Here, v̄2 and p̄T are model parameters which set the effective elliptic flow magnitude
and typical pT scale, respectively. In this analysis, the values v̄2 = 0.25 and p̄T = 1
GeV have been used. Additionally, the fluctuating parameter k in Eq. (3.3) is
included in order to induce a pT dependence in the second-order flow plane angle ψ2

which mimics the usual effects of event-by-event fluctuations in nuclear collisions.
This pT dependence is responsible for the breaking of flow factorization in these
collisions, as will be shown in Sec. 4 by comparing the results for k = 0 with those
for k 6= 0 [22]. In the latter case, k is sampled on an event-by-event basis from a
uniform distribution on the interval [0, 0.1] in units of 1/GeV. ψRP of course also
fluctuates uniformly from 0 to 2π on an event-by-event basis.

The pT distribution is chosen to be exponential with scale parameter p̄T = 1
GeV, as above. Additionally, since the flow matrix is not constructed differentially
in rapidity y or pseudorapidity η in this project, the longitudinal structure is less
important than the pT and φ distributions. Therefore, in the interest of simplicity,
each particle’s η is chosen according to a normal distribution with zero mean and
a standard deviation of 2 units in pseudorapidity. This is sufficient to generate
semi-realistic flow distributions.

3.1.2 PYTHIA/Angantyr

In this project two different types of collision systems are considered: p+p and p+Pb
collisions at a beam energy of

√
sNN = 14 TeV and

√
sNN = 5.02 TeV, respectively.

For each collision type, four different models are explored. These are as listed in
Table 1 below. No retuning against experimental data has been performed for the
models in this project.

Table 1: The four different models considered in this thesis.

String Shoving Colour Reconnection

Model 1 Off Off

Model 2 Off On

Model 3 On Off

Model 4 On On

Events are simulated in four different multiplicity classes on the basis of the
charged particle multiplicity, Nch. The four classes are as follows: 120 ≤ Nch < 150,
150 ≤ Nch < 185, 185 ≤ Nch < 220 and 220 ≤ Nch < 260; they correspond to the
multiplicity classes used for p+Pb collisions in a recent PCA analysis performed by
the CMS collaboration [13]. Note that while all charged particle species are used in
determining the multiplicity class, only charged pions are used in constructing the
flow matrix in this analysis.
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For p+p collisions, 106 events are generated for each model and each multiplicity
class. Similarly, for p+Pb collisions, 105 events are generated in each case.

3.2 The Flow Matrix and Eigendecomposition

The flow matrix of this project is differential in pT and cover a pT range of 0.3 <
pT < 3.0 GeV/c, where the number of (uniformly spaced) pT bins npT = 6.

Since there us no binning done in η, the flow matrix is effectively integrated
over this direction. However, a rapidity gap of |∆η| > 2.0 is imposed on the pairs
used to construct the flow matrix. This is a common procedure to minimise non-
flow contributions to the flow signal [12]. Such contributions can arise from jets
and resonance decays, in which many particles emerge with similar rapidity and
outgoing angle, and can therefore dominate the correlations at small ∆η and ∆φ.

After the flow matrix is constructed, we use the GSL library [20] to perform the
eigendecomposition and the extraction of the flow modes.

3.3 Error Estimation

The errors of the flow matrix and eigenvalues and -vectors are estimated using the
Jackknife method [26]. For a dataset of M values the method requires M unique
Jackknife samples, each constructed by deleting a single value from the dataset. In
this case, M = Nevents. Define the full dataset, x, and the ith unique sample, xi by

x = {x1, x2, . . . , xi−1, xi, xi+1, . . . , xM} (3.4)

xi = {x1, x2, . . . , xi−1, xi+1, . . . , xM} (3.5)

Each element xi corresponds to the evaluation of a fluctuating quantity (e.g., the
subleading eigenvalue λ1) in a single event. Each eigenvalue, eigenvector element,
and pT -bin multiplicity is taken to be an independently fluctuating quantity in this
regard.

The variance squared, σ2, is then defined as

σ2 =
M − 1

M

M∑
i=0

(x̄i − x̄)2 (3.6)

where x̄i and x̄ represent the arithmetic averages of the elements in xi and x,
respectively.

The uncertainties on the eigenvalues λ
(α)
n and the eigenmodes ψ

(α)
n

1 are evaluated
using the jackknife approach. The corresponding uncertainties are denoted by δλ

(α)
n

and δψ
(α)
n .

1Note that the eigenmodes ψ
(α)
n and ψ

N(α)
n should be distinguished from the flow-plane angles

ψn.
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Using this notation, the estimated uncertainty of V
(α)
n (p) is

δV (α)
n (p) =

∣∣∣∣√λ
(α)
n ψ(α)

n

∣∣∣∣
√√√√(δλ(α)

n

2λ
(α)
n

)2

+

(
δψ

(α)
n

ψ
(α)
n

)2

(3.7)

where the momentum p is held fixed.
A similar result holds for the V

N(α)
n (p) of Eq. (2.21). In this case, the error on

〈N(p)〉 must also be estimated and is determined by the standard error

δ 〈N(p)〉 =
σp√
Nevents

(3.8)

where σN(p) is the standard deviation

σ2
N(p) =

∑
(N(p)i − 〈N(p)〉)2

Nevents − 1
(3.9)

This gives the final error estimation

δV N(α)
n (p) =

∣∣∣∣∣∣
√
λ
N(α)
n ψ

N(α)
n

〈N〉

∣∣∣∣∣∣
√√√√(δλN(α)

n

2λ
N(α)
n

)2

+

(
δψ

N(α)
n

ψ
N(α)
n

)2

+

(
−δ 〈N〉
〈N〉

)2

(3.10)

and the p dependence is again held fixed and suppressed.
In both Eqs. (3.7) and (3.10), any possible covariance between the various uncer-

tainties has been neglected in the interest of simplicity. This approximation could
be relaxed in a future analysis, but is good enough to give a rough feeling for the
importance of statistical uncertainties on the results that will be presented here.

4 Results

In Figure 2, the results of the toy model (for 105 events) are depicted. They confirm
the role of pT dependent flow fluctuations in the factorization breaking of the flow
matrix. The leading mode for both definitions of the flow matrix increases towards
high pT . Regarding the subleading modes, it can be seen that the datasets from
a distribution without pT -dependent fluctuations (subplot (a)) generate an almost
negligible subleading mode. On the other hand, the distribution with pT -dependent
fluctuations (subplot(b)) has a non-vanishing subleading mode, clearly indicating

a breakdown of factorization. Finally, while the leading modes of V
(α)

2 are always

positive, the subleading modes of V
(α)

2 are partially positive and negative, as must be
the case in order for the eigenmodes to fullfill the expected orthonormality relation
[24].
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Figure 2: Leading (α = 0) and subleading (α = 1) modes from our toy model-generated data of
105 events. Subfigure (a) does not include a pT dependence in the second-order flow plane angle
ψ2, while subfigure (b) does.

Figures 3-4 show the leading mode results of the p+p collisions. Similarly, Fig-
ures 5-6 show the leading mode results of the p+Pb collisions.

Immediately noticeable in the leading modes of the p+p, as well as the p+Pb
collision events seen below, is the difference in behaviour between the two definitions
of the flow matrix, with V

(α)
2 decreasing at larger pT -values while V

N(α)
2 continues

to increase. While V
N(α)

2 has the advantage over V
(α)

2 that it gives more weight
to events with more pairs, thereby reducing statistical uncertainties, it is sensitive
to the effects of multiplicity fluctuations [24]. V

(α)
2 may still be sensitive to some

multiplicity fluctuations, but it eliminates a trivial and significant background noise
and represents a more direct estimation of the anisotropic flow fluctuations.

An interesting behaviour is exhibited by Model 2 and Model 4. They tend to
have small values in the V

N(α)
2 definition, but larger values in the V

(α)
2 definition.

Both of these models have CR turned on and these results could appeal to the idea
that CR may be more capable of generating anisotropic flow fluctuations than string
shoving alone or than no additional mechanisms.

Model 3 slightly exhibits an exact opposite behaviour, having the larger values
in the V

N(α)
2 definition and the smaller values in the V

(α)
2 definition. This could be

a result of a higher sensitivity to the multiplicity in the string shoving mechanism
than the remaining mechanisms, or possibly an indication that the string shoving
mechanism may generate more multiplicity fluctuations than the remaining models.

However, due to the lack of tuning in this project, the observations regard-
ing the different behaviours of the different models (the observations mentioned in
the previous two paragraphs) should not be taken as conclusive statements. En-
abling/disabling different mechanisms in these simulations, such as colour reconnec-
tion, can affect other parameters and ultimately affect observables such as charged
multiplicity in a way which is undesired and which can be fixed by performing a
tuning [7][17].
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Figure 3: Leading modes for pp collisions as defined by Eq. (2.20). Error bars represent statistical
uncertainties.
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Figure 4: Leading modes for pp collisions as defined by Eq. (2.21). Error bars represent statistical
uncertainties.
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Figure 5: Leading modes for pPb collisions as defined by Eq. (2.20). Error bars represent
statistical uncertainties.
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Figure 6: Leading modes for pPb collisions as defined by Eq. (2.21). Error bars represent
statistical uncertainties.

The error bars of the leading modes of V
(α)

2 as well as V
N(α)

2 for the p+p collision
events are virtually negligible. As expected, however, due to statistical fluctuations,
the error bars of the subleading modes are significantly larger. Figures 7-10 show
the subleading modes of the p+p and p+Pb collisions.

Regarding the orthogonality of the principal components, the V
(α)

2 eigenmodes

are orthogonal to an approximation, while the V
N(α)

2 eigenmodes are not, clearly
seen by their failure to fulfill the orthonormality relation.
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Figure 7: Subleading modes for pp collisions as defined by Eq. (2.20). Error bars represent
statistical uncertainties.

Figure 8: Subleading modes for pp collisions as defined by Eq. (2.21). Error bars represent
statistical uncertainties.

Figure 9: Subleading modes for pPb collisions as defined by Eq. (2.20). Error bars represent
statistical uncertainties.

Figure 10: Subeading modes for pPb collisions as defined by Eq. (2.21). Error bars represent
statistical uncertainties.
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5 Conclusion

In this project we developed a code that applies a PCA to two-particle azimuthal
corelations in nuclear collisions, with the option of using an alternative definition
of the flow matrix often preferred by experimentalists. We tested our formalism
on a toy model simulating elliptic flow. We also applied it to data generated by
PYTHIA/Angantyr and studied the leading and subleading mode of the elliptic flow
of generated p+p and p+Pb collision events. We found that the alternative flow
matrix definition contains a trivial multiplicity fluctuation background. We showed
that the alternative definition gives principal components that are not orthogonal.

The leading mode of V
N(α)

2 of the p+Pb collision events exhibits similar trends
to what has been calculated from CMS p+Pb collisions at the same multiplicity
classes [13]. This correlation could be due to similar magnitudes of multiplicity
fluctuations, rather than similar flow fluctuations. It would therefore be interesting
to extend this research by performing a similar PCA (using the V

(α)
2 definition) on

the CMS data, which would remove the background for a better estimation of the
actual flow fluctuation, to see whether and to what extent those results would agree
with the calculations presented here.

Considering Pb+Pb collision events would be another interesting extension of
this research. In particular, the geometry and centrality fluctuations of such collision
events may play a significant role, as compared to the p+p and p+Pb collision events.

The PCA constructed in this project should also be able to perform a PCA on
the triangular flow, v3, although it has not been tested here. Extending this study
to the triangular flow could also be exceptionally interesting as the event-by-event
fluctuations have a particularly important effect on odd harmonics [10].

This thesis has shown the functionality of the constructed PCA and provided
further grounds for the discussion of the relevance of multiplicity fluctuations PCAs
using the V

N(α)
2 flow matrix definition. There are many ways to extend on this

research. The simulations studied here are hopefully only the beginning.
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