
Abstract

The aim of this thesis is to establish whether a neural network (NN) can be used for emulation of simulated

global crop production - retrieved from the computationally demanding dynamic global vegetation model (DGVM)

Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS). It has been devoted to elaboration with various types

of neural network architectures: Branched NNs capable of processing inputs of mixed data types; Convolutional

Neural Network (CNN) architectures able to perform automated temporal feature extraction of the given weather

time series; simpler fully connected (FC) structures as well as Multitask NNs. The NN crop emulation approach was

tested for approximation of global annual spring wheat responses to changes in CO2, temperature, precipitation,

and nitrogen fertilizer levels.

The model domain is a multidimensional hyperspace of non-IID samples that can be blocked into climate-,

temporal- and global position factor levels. NNs tend to focus on the normally behaving samples and take less

notice of rare behaviors and relations. In this vast data set, the varying characteristics and relations can thus be

hard to detect - even for a large and complex neural network. Due to these complexities in the LPJ-GUESS sample

distributions and because neural network learning is heavily reliant on the data, a fair share of the thesis has been

dedicated to network training and sample selection - with the purpose of improving learning without causing the

network to overfit.

Further, the Köppen climate classification system, based on historical climate and vegetation, was used for

aggregation of the emulator domain - in order to form smaller homogeneous groups. It is easier to dissect the data

when these disjoint groups are analysed in isolation, which in turn can facilitate input variable selection. Moreover,

by aggregating the model domain and allowing for separate deep learning of each domain-fraction, several sub-

models can be constructed and trained for a specific Köppen climate region. These can then be combined into an

integrated composite emulator. In contrast to an emulator trained to model crop production for the whole domain,

a model composition emulator does not have to account for the di�erences between the sub-domains and hence

only has to focus on learning the within-group relations and patterns in the disjoint climate classes.
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1

Introduction

A growing world population alongside climate change and greater uncertainties in weather, increases the concern

about food security and raises questions about vulnerabilities and potential adaptation strategies in the agricultural

sector. This has eventuated in the need for dynamic global vegetation models (DGVMs) that both can predict

vegetation in changing climate settings, many out of which have not yet been seen in historical record and also at

new potential cultivation locations with no previous record of food production. (Franke et al. 2019, pp. 1-2).

A problem with such vegetation models is their computational burden, especially when many di�erent climate

scenarios are of interest. Cheap estimates of the simulator outputs can be retrieved from a mimicking emulator.

Such approximation function can be seen as a statistical representation of the simulator, trained to model the

mapping of input data to output targets. (Schmit and Pritchard 2018, p. 1).

This master’s thesis seeks to find a surrogate model strategy that can be used for emulation of the DGVM

Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS), which is one of the models in the Global Gridded

Crop Model Intercomparison (GGCMI) study. Active analysis of LPJ-GUESS inputs and outputs was carried through

out the model search and iterative optimisation runs. The analysis of inputs mainly involved evaluation of their

respective feature importance. But also additional simulator outputs, like above ground biomass and length of

di�erent development phases, have been considered with the idea that a multitask learning of these related tasks

could improve yield predictions.

Because of the mixture of input data types, the model search has been restricted to Branched Neural Networks:

in which one branch is constructed as a Convolutional Neural Network (CNN) to perform automated temporal feature

extraction in the given weather time series; while numeric LPJ-GUESS input data like CO2 levels, fertilization and

location inputs, were passed through fully connected layers. This Branched Multitask CNN crop emulation approach

have been tested for one of the high priority output in the GGCMI, namely global annual spring wheat.

Neural networks are heavily reliant on the data and tend to focus on the the normally behaving samples

that make up the majority of the samples seen during training. Hence NNs takes less notice of unusually

behaving samples and especially in intra diversity within such minority groups. The codomain, with one-to-one

correspondence to the input domain, is a multidimensional hyperspace that can be blocked by climate-, temporal-

and global position factor levels - including 31 annual crop responses to 672 di�erent climate scenarios, at every

global 0.5° by 0.5° grid cell location covering ice-free land. In this vast hypercube, with unbalanced and non-i.i.d

distributions, many block-groups preserve attributes di�erent to the majority and can also have large within-group

variance.

Due to these complexities, much of the surrogate modeling involved parallel hyperparameter optimisation,

adaptive parameter optimisation, implementation of regularization methods and sample selection for the purpose

of improving learning of as many samples as possible without causing the network to overfit.

The presented emulator is a model composition of multi-task convolutional neural networks, each trained

to predict annual spring wheat as well as above ground biomass in four disjoint regions, classified as tropical,

dry, temperate or continental according to the Köppen climate classification system. Aggregation of the model

domain can be of use if it manages to distribute the samples into subsets with smaller within-group variance, but

1



Chapter 1. Introduction

deficiencies in the Köppen classification resulted in great intra diversity within the dry climate class in particular.

When it became evident that the simulations at dry locations are much harder to model than the others, the focus

shifted from individual optimisation of the respective class models, to a search for an architecture that worked well

for all climate class models and especially favoured the crop estimates in the dry climate region. This despite the

fact that several network architectures had shown to be better suited for the other three climate class-models, in

order to facilitate model comparison and conduct a useful analysis.

Notwithstanding the room for improvement, the neural network approach can evidently be used for emulation,

especially if complemented with some of the methods suggested in this thesis. Particularly put forward for

consideration is implementation of sequential sample design and suggested adjustments of the Köppen climate

aggregation scheme, which most likely will increase the probability of success for combining separate branched

multitask CNNs into an integrated composite emulator.

1.1 Background

In 2012 the The Agricultural Model Intercomparison and Improvement Project (AgMIP) - a large collaboration

of climate, crop and economic modeling communities which connects models from di�erent fields - initiated

the Global Gridded Crop Model Intercomparison (GGCMI) (GGCMI ) to investigate climate impact on agricultural

production.

Figure 1.1: AgMIP’s module lingkages. McDermid 2015.

GGCMI is a protocol-based research that started with a historic evaluation phase - presented in The Global

Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (Elliott et al. 2015) - and continued

in a second phase (Franke et al. 2019) in which the participating modeling groups were to simulate global crop

responses to di�erent combinations of carbon dioxide, temperature, precipitation and nitrogen levels (collectively

refereed to as CTWN in GGCMI), based on data between 1980 and 2010. The phase 2 protocol (Franke et al.

2019), presents the data and which climate factor levels of carbon dioxide, nitrogen, temperature and precipitation

that are of interest. The levels considered are 10, 60, and 200 kgN/ha nitrogen (N), 360, 510, 660 and 810 ppm

atmospheric carbon dioxide (C), temperature (T) kept unchanged and shifted with −1, 1, 2, 3, 4 and 6 Kelvin, and 9

levels of relative change in precipitation (W) at ±50,±30,±20,±10, 0 percent and at full irrigation at the lowest

thresholds for triggering irrigation.1 That is, a total of 756 (|C||T ||W ||N | = 3 · 4 · 7 · 9) combinations, or 672

(3 ·4 ·7 ·8) without the last full irrigation scenarios.(see Franke et al. 2019). Finally, the Global Gridded Crop Models

(GGCMs) were evaluated in the model intercomparison in order to understand the climate driven crop processes

1Note that the climate scenarios considered here are not identical with those in the older version of the protocol from 2015.
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1.1. Background

and to improve the models by for example constructing a statistical representation of the GGCMs simulations in

form of an emulator, a.k.a surrogate model.

The emulators can be seen as statistical representations that can take a climate scenario point in a CTWN

hypercube spanned by the climate variables C, T, W and N, and map it to a response, such as the expected crop

production. (Müller 2019). One of the higher priority tasks to be emulated is how the simulated annual spring wheat

responds to shifts in climate, at all potential cultivation locations on the globe, over a 31 year period. The world

is represented by a grid-based map with 0.5° by 0.5° resolution and all ice-free land is assumed to be cultivation

locations from 1980 to 2010, which are the 31 simulation years.. Each 0.5° by 0.5° grid cell thus corresponds to 31

annual spring yield simulations for every climate scenario.

Figure 1.2: Conceptual representation of LPJ-GUESS, with the variables used in this project circled in green.

The DGVM Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS), for which the neural network emulator

approach will be tested, is one of many simulators taking part in the GGCMI study. LPJ-GUESS, developed by Ben

Smith of Lund University in collaboration with Potsdam Institute for Climate Impact Research and the Max-Planck

Institute for Bio-geochemistry (2001), is made up of several connected modules, each modeling an ecosystem

processes. Based on input climate data, potential ecosystem processes, implemented at daily or annual timescales,

are simulated across one or many grid cells. (Smith 2001). LPJ-GUESS also consist of ecosystem state variables

connected to the processes, as can be seen in figure 1.2. (Smith 2001).

The LPJ-GUESS inputs and outputs to be used in the surrogate model, have one-to-one correspondence. That

is, for every point (c, t, w, n, y, l) ∈ CTWN ∪ Y ∪ L (where n is a specified nitrogen (N) level, t a specified

shift in temperature (T), etc., Y the set of years [y1, y2, ..., y31] and L the set of 0.5° by 0.5° grid cells), the set of

inputs X(c, t, w, n, y, l) is mapped to a crop response Y(c, t, w, n, y, l)

1.1.1 Strategies and Earlier Attempts

The suitability of the emulator design will depend on the problem at hand, how it is formulated and the available

data. There is no universally good model, or as George Box put it: "all models are wrong, but some models are
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Chapter 1. Introduction

useful." (Box and Draper 1987, p. 424). The models usually take di�erent forms for di�erent purposes and fields,

but even when restricted to one problem it is hard, if not impossible, to verify that a model is the best among all

possible models. Thankfully, there exist several good enough models. By restricting the model search to a smaller

set of models, it becomes much easier to find a good or even a best model among the ones given. This subset

can be chosen in infinitely many ways, depending on the considerations taken into account, but modelers often

restrict the model search to a subset of models with common characteristics and structure that are likely are to

perform well. This reduces the problem to finding an optimal or at least good model of a certain type, like linear

regression, Gaussian process regression or, as here, Neural Network.

The emulator can be constructed in several di�erent ways, using di�erent inputs and problem formulations.

Two previous attempts, using quadratic regression and Gaussian processes, are briefly described below as well as

the preparatory bachelor’s thesis that laid the foundation for this thesis.

Location Based Quadratic Regression Model for Time-Averaged Yield

One approach suggested in the GGCMI study, was to model time-averaged yield responses to shift in climate

parameters, using location-based quadratic regression models with interaction terms.

Yemulator = β0 + β1c+ β2t+ β3w + β4n

+ β5c
2 + β6t

2 + β7w
2 + β8n

2

+ β9ct+ β10cw + β11cn+ β12tw + β13tn+ β14wn

(1.1)

where the β parameters have di�erent values for each grid cell. Depending on the variables importance at the

considered location, this model consist of up to 15 parameters for all of the locations. Since the parameters are

uniquely determined for every 0.5x0.5 grid cell covering ice-free land, this would amount to hundreds of thousand

model parameters. 2

Gaussian Process Emulator (tested for one climate scenario)

The Master’s thesis Emulators For Dynamic Vegetation Models - Supervised Learning In Large Data Sets (Olsson 2017)

investigated whether Gaussian processes (GP) could be used for emulation of spring wheat. Rather than constructing

a complete emulator, the GP-approach was tested on 196 spread out grid cells, by mapping daily weather strings

to predicted annual spring wheat for the climate scenario. The climate scenario was similar to the current, where

carbon dioxide (C) is increased to 480 ppm, the levels of rain (W) and temperature (T) are kept unchanged and

where fertilization is taken to be 60kg of nitrogen (N) per hectare, which is considered to be a medium level of

nitrogen supply.

A set of GP regression models, mainly with constant mean and anisotropic Matérn covariance function were

tested using the di�erent summary statistics of precipitation, temperature, radiation and grid cell coordinates

latitude and longitude.3

2Another suggested approach in the GGCMI study was to emulate individual years in a similar fashion as the above mentioned, but instead
of using the average annual yield (averaged over the time dimension), by modeling yield of the one year most similar to the season to be
emulated. In order to select the season that is most similar in temperature and precipitation, they suggested to make use of summary statistics
taken from the four months before harvest (which they call the key growing period). For this case more non-linearities are expected to be found
in the CTWN responses produced by this model, compared to the averaged climatological yields, and can thus require higher order polynomial
fits.

3Tested combinations of summary statistics: Annual averages [p̄ryear, ¯tasyear, ¯rsdsyear]; four month growing season averages and grid
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1.1. Background

The Gaussian Process study suggested a more complex model, but it mat have performed better for other, more

informative, summary statistics than those considered as inputs (min, max and mean of the weather time series).

(Olsson 2017, p. 29).

Convolutional Neural Network (tested for one climate scenario)

The preparatory Bachelor’s thesis (Nilsson 2019), that laid the foundation for this Master’s thesis, investigated

whether a CNN could be used for emulation of annual spring wheat. Similar to the thesis testing a Gaussian

Process, the goal was not to construct a complete emulator, but rather to test it for one climate scenario. Namely

the same climate scenario considered in the GP master’s thesis, using the same set of locations.

The weather data used in the GP-study was also considered in this bachelor’s thesis, but kept as daily time

series of observed precipitation, temperature and radiation, instead of using summary statistics. The time series

stretched over the 150 days anterior to the harvesting to ensure that all series covered the grain-filling phase

(delimited by onset of anthesis and maturity).

The hope was that the CNN could be used for data mining and give insight into aggregation of the input time

series, by e.g. looking at the kernel windows that scans the input series and whose weights are optimised during

training of the network. The results underlined the need for making more interpretable kernel windows, or some

incorporated penalty on the weights, in order to provide a clearer insight in the importance of the features in

the inputs. Though well performing, the CNNs could not give enough insight in which, if any, summary statistics

to use as inputs. It did show that convolution layers could be used as a pre-processing step. The automatically

extracted features coming out of the convolution layer could hence be seen as inputs - despite not being as simple

and easily interpreted as e.g. the summary statistics used in the GP-study.

cell coordinates [p̄r120, ¯tas120, ¯rsds120 , lat, lon], [p̄r120, ¯tas120, ¯rsdsyear ], [p̄r120, ¯tas120, ¯rsdsyear , lat] and [log(p̄r120), ¯rsdsyear ].
The summary statistics p̄r120 , ¯tas120 and ¯rsds120 were taken from the four months (120 days) of growing season also used in the emulator
approach in the previous section. It was motivated as a suitable period for the reason that it is close to the average number of growing days
for spring wheat. Which 120 days depends on the harvest date, which is a LPJ-GUESS simulator output
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2

Data

The neural network emulator to be constructed will be designed to map LPJ-GUESS inputs to the simulated spring

wheat yield. The domain considered contains the 672 CTWN combinations1, the 192 globally spread locations

the simulation years 1982-20092. Even with the number of sites and years reduced to these 192 locations and 28

years, respectively denoted L and |Y , the total number of data samples becomes as great as 3 612 672 (where

|C||T ||W ||N ||Y||L| = 4 · 7 · 8 · 3 · 28 · 192).

The vegetation models in the GGCMI study are to simulate several types of annual crop, like spring wheat,

winter wheat and maize, as well as produce some lower prioritized simulator outputs related to that crop - like

total above ground biomass, plant date, days until anthesis and days until maturity. These related crop outputs

mentioned can also be of use as emulator outputs - which will be shown later in this thesis.3

Inputs used in LPJ-GUESS are the climate variables carbon dioxide (C), precipitation change (W), shift in

temperature (T) and nitrogen (N) as well as weather sequences of daily averages of precipitation, temperature and

radiation and soil-mixture, where year and the 0.5° by 0.5°grid cell coordinates in latitude and longitude are

specified for all samples. As mentioned in section 1.1.1 it is not mandatory to include all simulator inputs in the

emulation, but no other inputs than those used in the LPJ-GUESS simulation will be considered. However, the

inputs can be transformed and pre-processed in various ways. The inputs and transformations considered in this

study are presented in section 2.3.

2.1 Outputs

The wheat simulations have been divided into groups of spring wheat and winter wheat due to their di�erence in

length of growing periods. Winter wheats are often planted during the fall, while spring wheats are planted in the

spring, both are harvested between late summer and early autumn. It generally grows faster than winter wheats

that require a long period of low temperatures during the vegetative phase (Underwood 2018, p. 89).

Annual Spring Wheat is one of the simulated crop responses that are of highest priority for emulation, but

other lower priority outputs related to spring wheat were also considered as outputs in this study, namely total

above ground biomass, length of anthesis period and maturity season. These four simulator outputs are further

1672 CTWN combinations are the 4 atmospheric carbon dioxide concentrations (C) levels 360, 510, 660 and 810 ppm, the 7 sifts in
temperature (T) of −1, 1, 2, 3, 4 and 6 Kelvin, the 8 relative changes in precipitation (W) at −50,±30,±20,±10, 0 percent (excluding the
full irrigation case) and the 3 fertilizer levels at 10, 60, and 200 kilos of nitrogen (N) per hectare kgN/ha.

2Here, year 1980, 1981 and 2010 was removed from the data set. Some samples planted 2010 and spanned over the following year were not
accountable since the whole growing season would not have be covered for those, and for simplicity all observations that year was removed.
The first two years were contained many outliers so all samples from those years were removed, also for simplicity, because sample analysis
could take time and is not of focus here. Further, locations for which some yield responses were missing in the data set were completely
excluded from in the study (hence the reduction from 200 to 192 locations.

3They could also be used as inputs, if modeled independently of the yield output, which easily can be done, but in surrogate modelling
it is customary to take only simulator inputs as explanatory variables. However, the weather sequence, used as inputs in the LPJ-GUESS, were
here cut based on the simulator outputs plant date and maturity season and therefore made the model dependent on simulator date-outputs.
But this type of dependence was also introduced in the suggested quadratic regression approach for emulation of individual years as well as in
the GP-emulator study where the summary statistics used as inputs where taken from weather time series that ranged from the day of harvest
to the longest observed anthesis period, which indeed are a simulator output.
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Chapter 2. Data

described under the following subsections and their distribution is visualized in figure C.2a. The histograms of

the four outputs reviles the similarities in distribution between yield and biomass as well as between the length

of the period before anthesis and growing season. In the end, only total above ground biomass was included as

an additional output to yield in the final multi-output model. However, the growing season output was used for

cutting the daily weather time series.

Annual Spring Wheat Responses to Change in Climate

Annual Spring Wheat, measured in dry matter ton/(ha · year), is simulated for all 3 · 7 · 8 · 4 = 672 climate

scenarios (in the CTWN hyper-cube) considered here, at 192 locations for the 29 years between 1981 and 2009.

Total Above Ground Biomass Responses to Change in Climate

Annual total above ground biomass is, like the corresponding spring wheat output, measured in ton/(ha · year)
and simulated for all 3 ·7 ·8 ·4 = 672 climate scenarios (in the CTWN hyper-cube) considered here, at 192 locations

for the 29 years between 1981 and 2009.

Length of Developing Phases

The pre-anthesis phase, i.e. the days before anthesis covers the, more established termed, vegetative phase (between

sowing and floral initiation) and the consecutive reproductive phase (Satorre 1999, p. 14). The number of days

between sowing and maturity will here be referred as length of the growing season, containing both the pre-

anthesis phase and the post-anthesis period, conventionally described as the vegetative phase, reproductive phase

and grain-filling phase (Satorre 1999, p. 14).

Growing season was however used for cutting the weather time series so that they all covered the longest

observed growing season. These development phase lengths are set to be the same for all climate scenarios and

only varies between locations and over time. Length of the pre-anthesis phases and growing season were both

considered as outputs in some models, but in the final model not used.

2.2 Inputs

The daily weather data used in the Bachelor’s thesis was also used here:

• Precipitation Flux (pr) denoted pri,y , measured in kg/m2.

• Surface Downwelling Shortwave Radiation Flux (rsds) denoted rsdsi,y , measured in W/m2.

• Surface Air Temperature (tas) at 2 meter denoted tasi,y , measured in Kelvin.

• Latitude Coordinate, lati,

• Soil Mixture of clay, silt and sand:

soili = [clayi, silti, sandi] where clayi + silti + sandi = 1 (2.1)

where i and y denotes the location index and year, respectively. Note that these inputs are the actual observed,

hence kept fixed for all points in the the CTWN climate hypercube. The soil vector contains the observed fractions
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of clay, silt and sand that sum up to 1. Figure C.1 in Appendix C.1 displays how the three processes rsds, pr and tas

can behave at a single location, during a year as well as over the longer period between 1980 and 2010.

2.2.1 Climate Adjusted Series

Instead of feeding the same times series for every climate scenario, as if the above mentioned where to be used,

it has in the GGCMI study been suggested to transform the precipitation and temperature series according to the

shifts along W and T axes in climate hypercube. That is, climate adjusted precipitation p̃ and temperature t̃

could be derived from the observed time series of precipitation p and temperature t using the climate variables

P := W
100

= [−50,−30,−20,−10,0,10,20,30]
100

= [0.5, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.2] 4 and T = [−1, 1, 2, 3, 4, 6] accordingly

p̃rw,i,y = pri,y · Pw (2.2)

˜tast,i,y = tasi,y + Tt (2.3)

for all locations i, years y, climate levels w and t along the TW dimensions in the climate hypercube. Note that each entity

(corresponding to e.g a day or month) in these new time series p̃rw,i,y and ˜tast,i,y are adjusted by an equal amount. Thus,

the climate changes of precipitation and temperature are uniformly distributed over time.

These anomaly adjusted series can generated in the GetClim tool, accessed within LPJ-GUESS.

2.3 Pre-Processing of Data

Preprocessing of the data, aiming to reduce skewness and heavy tails, can facilitate construction of the network. The transforma-

tions considered here are power transformations, that can make left skewed data more symmetric as well as root transformations

which are often used for right skewed data.

For inputs that vary in range and/or are measured in di�erent units it is often convenient to apply input normalization.

Especially in network modeling, where di�erence in input ranges can slow down the learning process or even make it unstable.

The most common range-scale method for real valued inputs is the standardization,

x− µtraining
σtraining

(2.4)

or z-score normalization derived from the training samples. Here the mean µtraining and standard deviation σtraining

statistics were also used for standardization of the samples used for validation and final evaluation. It is also possible to use

range normalization (Heaton 2015, p. 84), s.a. the min-max normalization,

x−min(xtraining)

max(xtraining)−min(xtraining)
(2.5)

This transformation maps the values of x onto the range between 0 and 1. So in contrast to the z-score normalization, min-max

normalization assures a common range for the training data. It should be noted that both methods are sensitive to outliers.

(Heaton 2015, pp. 84-86).

4The precipitation climate variable W is usually defined with percentage units, i.e. W = [−50,−30,−20,−10, 0, 10, 20, 30] but here,
when used for scaling in the climate equations 6.4 the defined P with fraction units is used.
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3

Emulation

Simulations produced by as large and complex systems as LPJ-GUESS are computationally demanding, so when many simulations

are to be retrieved, a simpler emulator that can approximate the simulators behavior is often of use. Mimicking approximation

models also goes under other names like surrogate models and response surface models. (Balduin 2018, p. 403).

A simulator is a deterministic model that describes the cause-and-e�ect between explanatory variablesX = [x1, x2, . . . , xn]T

and corresponding outputs

Ysimulator = f(X). (3.1)

Due to their complexities these are often treated as black-boxes (Balduin 2018, p. 403), i.e. that only the inputs and outputs are

assumed to be known. An emulator trying to model the simulator output will thus consist of a deterministic component f(X)

and a stochastic error term ε, explaining the unaccounted dynamics, caused by e.g. observation and modeling errors (Tangirala

2015, p. 3, 17), i.e.

Yemulator = f(X) + ε. (3.2)

A model trained to learn the relations between the simulator inputs X = [x1, x2, . . . , xn]T and outputs Ysimulator =

f(X) can serve as a computational cheaper version of a simulator, if it is also general enough to produce acceptable estimates

of new simulator outputs Ysimulator = f(X∗) based on new inputs X∗ = [x∗1, x
∗
2, . . . , x

∗
n]T . (Bishop 2006, p. 2; Schmit

and Pritchard 2018, p. 1)

Figure 3.1: The emulator process (Olsson 2017).

An emulator designed to estimate the LPJ-GUESS responses to climate change for all locations (i.e. the 0.5° by 0.5°

grid cells) and the years 1982-2009, the CTWN hypercube of climate scenarios would be extended to the CTWN ∪ Y ∪ L
hyperspace, where Y is the time dimension (with 28 levels) of the years 1982-2009 and L is the set of 0.5° by 0.5° grid cells.

This is illustrated in 3.1.

A surrogate model can also be a linkage of models corresponding to separate parts of the whole simulator domain, i.e. a

model composition. (Petty and Weisel 2019). For example, a surrogate model consisting of several location-specific emulators

designed to model crop responses to shifts in climate between 1982 and 2009, would require as many emulators as there are

locations of interest. Each model domain would be the CTWN ∪ Y , i.e the CTWN climate hypercube extended only with

time dimension.

Surrogate modeling can be comprised of more than just model design, like the experimental design for sample selection.

The number of emulator samples (the simulations) are often limited if the simulator is computationally demanding and take long

time to produce new outputs. Hence a wise sample selection can yield better emulation results in shorter time. A sample can
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be chosen initially or optimised iteratively along with emulation model reruns. The latter is often used in surrogate modeling of

black-box functions that are expensive to run and can be implemented trough e.g. Bayesian Optimisation (see B.3).
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4

Neural Network Architectures

Neural Network (NN) modeling is an algorithmic machine learning approach to taking actions by parsing data and can massively

parallel process data using many types of well established machine learning and statistical techniques. (Bishop 1995; Waszczyszyn

1999, p. 7). A network, modeling the relationship between inputs and outputs, often consist of an initial layer accepting the

input and forwards it to a "black box" of hidden layers, which in turn is connected to final layer that returns the output (Heaton

2015, p. Preface, xxxv). The black box can consist of one or several hidden layers containing few or many connected neurons.

A layer can either take all of the received inputs simultaneously, one or a fraction at a time and the transforms can

take di�erent forms but normally involves a set of trainable weights and a consecutive wrapper, or activation function. The

activation function can be of many forms, some of which are mentioned in section 4.5, and often have the important task of

introducing non-linearities to a neural network.

The network architecture, i.e. the number of layers and nodes, type of layers and activation function, etc., depends on the

data and problem at hand. A brief description of the layers considered in this study is given under Fully Connected Layers 4.1,

Convolution Layers 4.2 and Pooling Layers 4.2.1.

The neural network architectures considered for this problem has to preserve a special structure in order for it to map a set

of mixed data inputs to a set of multiple outputs. The section Branched Neural Networks for Mixed Data Inputs describes how

a network can deal with multiple inputs and di�erent data types. The following section Multitask Neural Networks describes

how a network can be extended to produce estimates of multiple outputs.

4.1 Fully-Connected Feed-Forward Neural Networks

The Fully-Connected Feed-Forward Neural Network (FFNN), is the the most basic form of Artificial Neural Networks (ANN) and

consist only of fully-connected layers (Schmidhuber 2014). These fully-connected layers, a.k.a. dense layers, consist of operating

neurons, each corresponding to a set of trainable weights which they use to transform the received inputs, by computing their

dot product (element-wise). A bias weight is then added to this weighted sum, before it gets wrapped in an activation function

and passed forward to the next layer. Figure 4.1 illustrates the operation inside a neuron. (Waszczyszyn 1999, p. 4, 6–7).

4.1.1 FFNNs for Regression Problems

A neural network with trainable weights w that accepts inputs x to model an output y, can be defined as an approximator of

the mean of the conditional distribution p(y | x,w), and hence be formulated as a regression problem.

Linear regression models on the form

f(x,w) = w0 +

N∑
i=i

wixi = xTw (4.1)

are often used for modeling responses based on some explanatory variables. Note that x = [x1, x2, . . . , xn]T where x0 is a

dummy variable always equal to one, introduced in order to absorb w0 into the set of weight parameters.

This regression model fails when the relation between the true function and the dependent variables are not linear (Hastie

2009, p. 139). One can move beyond such simple linear models, by letting the function be a linear combination of nonlinear
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Figure 4.1: Operations inside a neuron. x1, x1, ..., xN are either the input data or outputs coming from neurons in a previous
layer. The summoning junction produces the the dot product of the received inputs and node weights u. The activation unit
wraps u in an activation function F. (Waszczyszyn 1999).

basis functions

f(x,w) = w0 +

N∑
i=i

wiφ(xi) = φ(x)Tw (4.2)

This function is nonlinear in the input variables x, but linear in the basis functions φ(x) and can hence be seen as a linear

model in the space spanned by these nonlinear functions. (Bishop 2006, p. 137-139)

Assume that the first hidden network layer has M1 neurons, each producing a linear combination of the set of input

variables {xi, i = 1, ..., N} which form the first activations,

a
(1)
j = w

(1)
j0 +

N∑
i=1

(w
(1)
ji xi) =

N∑
i=0

(w
(1)
ji xi) = xTw

(1)
j (4.3)

for j = 1, ...,M1, where w
(1)
ji is the weight corresponding to the input variable xi connected to the the j:th neuron in the

first layer, and w(1)
j0 is the bias added in the j:th neuron. The initial activations a(1)j are then transformed by using a nonlinear

activation function h(1)(.) to hidden units

z
(1)
j = h(1)(a

(1)
j ) (4.4)

These hidden units can be seen as basis functions φ(.) that, in contrast to the fixed basis functions in equation 4.2, depend

on adaptive model parameters. In fact, for any layer H, every hidden unit h(L)(a
(L)
j ) can be expressed as bias function

φ(x,w(1), . . . ,w(L)) that depend on the initial inputs x and the network weights in the current and foregoing layers (i.e.

w(L) resp. {w(1), . . . ,w(L−1)}).

If the inputs x = [x1, x2, . . . , xn]T are to be mapped to the outputs {yk, k = 1, 2, ...,K} by a single-hidden-layer

network, which has the total of two layers, the first hidden units z(1)j = h(1)(a
(1)
j ), j = 1, . . . ,M1 are assigned the final

weights to produce K output unit activations

a
(2)
k =

M1∑
j=0

(w
(2)
kj zj) (4.5)

These are then transformed to form the final network outputs, by applying a suitable output activation function σ(.),

ŷk = σ(a
(2)
k ) (4.6)

Note that the final activation function is like any other (hidden) activation, but here the hidden activation functions were

denoted with h(.)(layer) to emphasize their respective distinction.
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4.2. Convolutional Neural Networks

For a deep neural network, i.e. one with multiple hidden layers, each hidden unit z(H)
j in the Hth layer is assigned a

weight w(H)
kj for every neuron k it is connected to in layer H + 1. If the number of hidden neurons in layer H + 1 is

equal to M(H+1), the summoning junction results in M(H+1) weighted linear combinations a(H+1)
k = z(H)Tw

(H+1)
k . These

activations are then wrapped in non-linear activation functions h(H+1)(.) forming the hidden units z(H+1)
k passed forward to

the next layer. This process is repeated until the final output unit activations are formed.

The final output units, like the hidden ones, accepts the connecting input units from layer L− 1 and their corresponding

weights, passes them and the bias w0 through the summoning junction

a
(L)
k =

ML−1∑
j=0

(w
(L)
kj z

(L−1)
j ) (4.7)

for k = 1, 2, ...,K where j denotes the neuron in the L-1th layer. The final output unit activations a(L)
k are then transformed

into the network outputs units by applying a suitable output activation function σ(.). That is,

yk = σ(a
(L)
k ) (4.8)

In the case of regression problems, this function is usually set to be the identity in order to introduce the linear relationship

described by 4.1.1. (Bishop 2006, p. 227-229; Nielsen 2015, ch. 2).

4.2 Convolutional Neural Networks

A neural network with convolution layers, convolving received inputs with discrete kernels of trainable weights, are referred to as

Convolutional Neural Network (CNN) (Bishop 2006, ch. 5.5.6; (Chollet 2018, ch. 5)). CNNs have become a popular tool for feature

recognition and forecasting in weather and climate related problems. For example, a convolutional neural network performing

2D convolution operations, can take a weather map to extract spatial features. If temporal features are also of interest, the map

can be extended to a third time dimension and 3D convolutions can be used to detect spatiotemporal relations. (see Larraondo

and Lozano 2017, Klein and Afek 2015 and Chattopadhyay and Pasha 2018). In this project however, rather than finding spatial

or temporal features on a world map, the interest lies in finding patterns in daily weather time series that can help predict

annual wheat production. A 1D convolution layer that scans the received time series can achieve just that.

The 1D convolution layer in this project will accept a 2D tensor with C channels or input features containing di�erent

weather series, derived from the daily observations of precipitation (pr), temperature (tas) and radiation (rsds) given under 2.2.

x = [x1,x2, . . . ,xC]T =


x11 x12 x13 . . . x1T

x21 x22 x23 . . . x2T
...

...
...

. . .
...

xC1 xC2 xC3 . . . xCT

 (4.9)

A convolution layer consist of a pre-defined number of filters, or kernel windows with fixed height and and depth dimension

equal to the number accepted input channels. A convolution layer receiving C input channels will thence have the following

kernel windows:

[w1,1,1, w1,1,2, . . . , w1,1,K ] [w1,2,1, w1,2,2, . . . , w1,2,K ] . . . [w1,c,1, w1,c,2, . . . , w1,c,K ]

[w2,1,1, w2,1,2, . . . , w2,1,K ] [w2,2,1, w2,2,2, . . . , w2,2,K ] . . . [w2,c,1, w2,c,2, . . . , w2,c,K ]

...
...

. . .
...

[wF,1,1, wF,1,2, . . . , wF,1,K ] [wF,2,1, wF,2,2, . . . , wF,2,K ] . . . [wF,c,1, wF,c,2, . . . , wF,c,K ]
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where F is the number of kernel strings of length K. All C channels corresponding to F di�erent kernel windows contain a total

of F · C ·K number of weights.

Every channel in the kernel windows will scan the corresponding feature sequence over the time dimension as illustrated

in figure 4.2.

Figure 4.2: The convolution window of size K scans the input of height T and depth C and step by step produces weighted dot
products that together constitutes the 2D tensor output of height TC and depth F. (Biney 2018)

For every filter f = 1, 2, . . . , F , the layer takes the (discrete) convolution of the window and a input series sub-interval, of

K subsequent entities at a time, for the C channels in parallel. At every time step t, it produces one convolution output

K∑
k=1

xc,(t+k−1)w
(1)
f,c,k (4.10)

for every channel c, which are summed together in similar fashion to a dense layer,

a
(1)
f,t = b

(1)
f +

C∑
c=1

K∑
k=1

xc,(t+k−1)w
(1)
f,c,k

= b
(1)
f +

C∑
c=1

(xc,tw
(1)
f,c,1 + xc,(t+1)w

(1)
f,c,2 + . . .+ xc,(t+K−1)w

(1)
f,c,K)

= b
(1)
f +

C∑
c=1

[
w

(1)
f,c,1, w

(1)
f,c,2, . . . , w

(1)
f,c,K

] [
xc,t + xc,(t+1), . . . , xc,(t+K−1)

]T
(4.11)

The superscript (1) just refers to that the weights and entities are that of the first layer and b(1)f is a trainable bias assigned

to all sums produced by kernel weights in filter f. This is calculated for every time point t=1, 2, ..., TC , meaning that for the

window jumps forward one step and repeats the process until the whole time series have been scanned by the kernel window.

The size of the jumps is called (window) stride S (see below).

When the time series have been scanned by all filters, F output features, or feature maps, have been produced,

a
(1)
f =

[
a
(1)
f,1, a

(1)
f,2, . . . , a

(1)
f,TC

]
, f = 1, 2, . . . , F (4.12)

and together they form a 2D tensor of height TC and depth F. TC is the (new) length of the time dimension.1

1This yields also if zero padding is used, where the added zeros also can be denoted as above, but with ac,t∗ for t*= P− , P− + 1, ... ,
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4.2. Convolutional Neural Networks

The length of the feature maps TC , and thereby the number of outputs, is determined by the stride S between each

convolution computation as well as zero padding, by

TC =
T −K + P

S
+ 1.

where the number of zeros added before and after the input time string is P. The final model in this thesis had stride S = 1

and used no zero padding, P = 0. By equation 4.2, the length of the feature maps is therefore

TC = T −K + 1.

The dot products 4.2 (stacked in a 2D tensor of height T and depth F) can be passed through an activation unit, where they

are activated by a non-linear wrapper h(.), i.e.

z
(1)
f,t = h(a

(1)
f,t) (4.13)

for all filters f = 1, 2, ..., F and time units t = 1, 2, ..., TC . (Goodfellow 2016, p. 338). These convolution layer outputs form

the following 2D tensor

Z(1) =
[
z
(1)
1 , z

(1)
2 , . . . , z

(1)
F

]T
=


z
(1)
11 z

(1)
12 z

(1)
13 . . . z

(1)
1TC

z
(1)
21 z

(1)
22 z

(1)
23 . . . z

(1)
2TC

...
...

...
. . .

...

z
(1)
F1 z

(1)
F2 z

(1)
F3 . . . z

(1)
FTC

 (4.14)

Interpretation of What CNNs Learn

The kernel weights in a trained convolutional neural network which exposes the weather patterns the CNN is looking for. The

convolution, or dot product, will be large if the sub-interval being scanned follows a similar pattern as the one in the scanning

window. Since kernel weighted layer inputs are added, the sum is largest when all weather inputs simultaneously behaves like

their corresponding weights in the feature map.

In this thesis, mainly the the Rectified Linear Unit (ReLU) activation function σReLU (.) = max(0, x) will be considered

for the activation units and is properly presented in ReLU and Other Activation Functions 4.5. By using this ReLU wrapper we

can find the patterns that the network looks for by investigating the filters and biases. The biases determines how large the sum

of the feature channel dot products must be, to not be set to zero by the ReLU activation function in the convolution layer. I.e

zf,t = σReLU (af,t =


af,t if af,t > 0 ⇐⇒

∑C
c=1

∑K
k=1 zc,(t+k−1)wf,c,k > −bf

0 otherwise ⇐⇒
∑C
c=1

∑K
k=1 zc,(t+k−1)wf,c,k ≤ −bf

(4.15)

Hence, the biases could be seen as a feature thresholds for how well the input entities must follow the pattern in the convolution

window, to be accounted for.

If a bias b is positive, i.e. b = c for some constant c > 0, then the output will be included (not be set to zero by the

ReLU function) for all values larger than -c. If the bias is negative, i.e. b = −c, then the outputs must be larger than c to be

included.

The following section presenting Pooling Layers and how these transform convolution layer outputs, explains how this

interpretation can be translated to pooling layer outputs and in Dense Layers In CNNs 4.2.3 this is even further extended.

1, 2, ..., T, ..., T +P+ , where P− is the number of initial zeros and P− number of zeros added in the end. I.e. ac,t∗ is equal to ac,t when
t∗ = t., and set to zero for t∗ >| t |.
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4.2.1 Pooling Layers

Convolution layers are often followed by a pooling layer that takes a fraction, if not all, of the convolution layer outputs and

returns a summary statistic.

A pooling layer neither contains a summoning junction nor an activation function, it only slides a window across the

received tensor and replaces the entities in each window with some summary statistic. In that way it reduces the output

size, its complexity and deals with problematic observations. Common pooling layers are the max pooling layer that takes the

maximum of each window being scanned and the average pooling layer that computes their averages. (Goodfellow 2016, p. 330).

The output size can be derived from the same formula used for calculating the convolution layer output length in equation

4.2. E.g., if a pooling layer with pool window size K = W , stride S that accepts a 2D tensor with feature channels of length T

and adds P zeros at the beginning and the end, then the pooling layer output for each feature channel, will be of length

T −W + P

S
+ 1.

This implies that the outputs from a pooling layer with no padding and no overlapping scanning windows (that is, stride

S = W ) will be of length
T −W + 0

W
+ 1 =

T −W
W

+ 1 =
T

W

Average Pooling Layer

If an average pooling layer, with no padding and no overlapping of scanning windows, accepts the 2D tensor 4.14, then it will

produce a C channeled tensor of length T
Wave

(according to equation 4.2.1), where Wave is the length of the average pooling

windows.

Z(2) =
[
z
(2)
1 , z

(2)
2 , . . . , z

(1)
F

]T
=



z
(2)
11 z

(2)
12 z

(2)
13 . . . z

(2)

1,
TC
Wave

z
(2)
21 z

(2)
22 z

(2)
23 . . . z

(2)

2,
TC
Wave

...
...

...
. . .

...

z
(2)
F1 z

(2)
F2 z

(2)
F3 . . . z

(2)

F,
TC
Wave


(4.16)

The superscript (2) is a denotation for the layer, which here is the second following the first convolution layer in the example

above. Each entity z(2)cj in this 2D average pooling output tensor is derived as such

z
(2)
cj =

1

Wave

jWave∑
i=(j−1)Wave+1

xci (4.17)

for c = 1, 2, . . . , C and j = 1, 2, . . . , TC
Wave

.

Recall from the end of section 4.2, that when a filter scans the time series, if a matching to the window weights is detected,

the convolution will increase. Each entity coming from an average pooling layer, following a convolution layer, can thus revile

to which extent the inputs followed the patterns in the scanning filter on average, within a time interval of K +Wave (if the

stride in the convolution layer is equal to one and the stride in the pooling layer is equal to the size of the pooling window, i.e.

Wave).

4.2.2 Local Equivariance and Invariance

By letting the f th kernel window channel c [wf,c,1, wf,c,2, . . . , wf,c,K ] scan the the whole input sequence c zc,1, zc,2, . . . , zc,T

it finds a specific pattern whenever it appears between the first and the last time step and will produce the exact same con-

volution product. In other words, convolution layers have the property equivariant under translation T , where equivariance is
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4.2. Convolutional Neural Networks

defined as (Goodfellow 2016, p. 329-330)

f(T (X)) = T (f(X)). (4.18)

Further, a function f is said to be invariant to translations T if

f(T (X)) = f(X) (4.19)

A CNN, whose convolution outputs are replaced with summary statistics computed by a pooling layer, can be trained to become

approximately invariant to small local translations in the input data. In this context meaning that the pooling layer output will

not change by much if a feature is delayed a bit. E.g. a returned summary statistic of outputs corresponding to di�erent time

intervals (overlapping or not), will not be highly a�ected by which of the intervals a feature was detected in.(Goodfellow 2016,

p. 331-331).

4.2.3 Dense Layers in CNNs

The convolution layer outputs will be passed through a dense layer in order to produce estimates of the LPJ-GUESS outputs,

whether the convolution outputs are passed through a pooling layer (or several subsequent convolution and pooling layers)

first or not. Dense layers can only take 1D tensors, so in order for it to transform a 2D tensor (coming from a previous 1D

convolution or pooling layer) it must first be column stacked.

Assume we want to process the T̃× 2D tensor coming from layer L-1 (either a 1D convolution layer, with T̃ = TC or a

pooling layer, with T̃ = TC
Wave

,),

Z(L−1) =


z
(L−1)
11 z

(L−1)
12 z

(L−1)
13 . . . z

(L−1)

1T̃

z
(L−1)
21 z

(L−1)
22 z

(L−1)
23 . . . z

(L−1)

2T̃
...

...
...

. . .
...

z
(L−1)
F1 z

(L−1)
F2 z

(L−1)
F3 . . . z

(L−1)

FT̃
.

 (4.20)

Then Z(L−1) would have to be passed through a flattening layer (the Lth layer), producing the column stacked version,

Z(L) =
[
z
(L−1)
11 , z

(L−1)
12 , . . . , z

(L−1)

1T̃
, z

(L−1)
21 , z

(L−1)
22 , . . . , z

(L−1)

2T̃
, . . . , z

(L−1)
F1 , z

(L−1)
F2 , . . . , z

(L−1)

FT̃

]T
:=
[
z
(L)
1 , z

(L)
2 , . . . , z

(L)

T̃
, z

(L)

T̃+1
, z

(L)

T̃+2
, . . . , z

(L)

2×T̃ , . . . , z
(L)

(F−1)×T̃+1
, . . . , z

(L)

F×T̃

]T
.

(4.21)

This column stacked output Z(L) could then be passed through a dense layer and all its nodes. I.e as shown in figure 4.1, get

passed through the summoning junction of and assigned a bias accordingly,

a
(L+1)
i = w

(L+1)
i 0 +

FT̃∑
j=0

w
(L+1)
ij z

(L)
j

=
T̃∑
j=0

w
(L+1)
ij z

(L)
j +

2T̃∑
j=T̃

w
(L+1)
ij z

(L)
j + · · ·+

FT̃∑
j=(F−1)T̃

w
(L+1)
ij z

(L)
j

(4.22)

for every node i = 1, 2, . . . , I . The separation in the second line explicate how the entities are connected to the channels in

the 2D tensor: the first sum is connected to the first channel, the second sum to the second channel, and so on.

Using the same reasoning as in 4.2, that continued in 4.2.1: since the flattened outputs received by a dense layer can be

seen as its explanatory variables, the dense layer weights reviles the e�ect of finding a specific pattern in a specific time interval.
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4.3 Branched Neural Networks for Mixed Data Inputs

If a network is to take mixed data, i.e. multiple inputs of di�erent data types it is preferable, if not crucial, to pass them through

separate initializing branches designed for the respective inputs. These branches can take several forms, e.g. be composed by

one or many layers, and each can be uniquely designed for the data type to be accepted.

(a) A branched neural network can accept inputs of di�erent
data types. Figure taken from PyImageSearch blogpost (Rosebrock
2019)

(b) A multitask network initiated with three shared layers, in which the
weights benefit from the shared representations between tasks, and then
divided into three separate task specific branches. Figure from (Ruder
2017, p. 2).

Figure 4.3: Figure (a) illustrates a branched neural network and figure (b) how shared layers in a network can be split into
separate task-specific branches.

4.4 Multitask Neural Networks

Multitask neural networks can perform several tasks based on the same input data samples. I.e. instead of producing one

output for every point in the model domain (like a sequential neural network), it can produce several outputs. The di�erent

tasks can, besides sharing inputs, also share generic parameter weights. Such multiple output neural networks often consist of

both shared generic parameters and task-specific parameters, as in figure 4.4b illustrating hard parameter sharing. (Goodfellow

2016, p. 237).

Generalization of a task, like prediction of the high priority output annual spring wheat, can be greatly improved through

simultaneous multitask learning of related tasks, like above ground biomass and length of di�erent wheat developing phases.

The number of training samples needed for pressuring the weights to values that makes the network generalized better, could

be heavily reduced if a single-output network was forced to learn other tasks as well, because of the gain in statistical power of

the shared parameters in the extended multi-task network. (Baxter 2011, p. 150; Ruder 2017, p. 1)

Multitask learning of length of the related outputs pre-anthesis and growing season may help the network learn some

features better than a single-output network only predicting yield could; if the importance of those features were to be more

evident in relation to those tasks than for the main task to estimate yield (Ruder 2017). The biomass output behaves similarly

to the yield outputs and might therefore not have this e�ect on learning, or at least not to the same extent as the phase-length

outputs. However, the biomass simulations presumably have di�erent noise patterns than simulated yield, so simultaneous

learning may average out their noise and help the network to become more general (Ruder 2017).

For more information, I suggest reading "An Overview of Multi-Task Learning in Deep Neural Networks" (Ruder 2017), that

summaries the e�ects of learning related tasks and provides additional references.
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4.5 ReLU and Other Activation Functions

As mentioned, nonlinear activation can be used to wrap the layer operations and are especially useful when the relations

between the inputs and outputs are not obvious. The Rectified Linear Unit (ReLU) function is a simple and widely used

activation function in both convolution layers and dense layers.

σReLU (x) = max(0, x) (4.23)

It introduces nonlinearities by setting all negative activation inputs to zero. Other commonly used activation functions are the

Sigmoid activation function σSigmoid(x) 7→ [0, 1]

σSigmoid(x) =
1

1 + e−x
, (4.24)

the hyperbolic tangent, usually termed tanh activation, σtanh(x) 7→ [−1, 1]

σtanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1
(4.25)

The ReLU activation has the perk of being sparsely activated, since negative values are set to zero and is otherwise cheap to

compute, unlike e.g. the tahn or the sigmoidal activation function that require an exponential computation. It has the derivative

σ′ReLU (x) =

{
1 if x < 0

0 otherwise
(4.26)

which in does not raise the problem of vanishing gradients caused by multiplication of many very small derivatives during

backpropagation, in contrast to the other two activation functions that run a greater risk of causing this a problem. (Heaton

2015, p. 124)).

In fact the ReLU activation function is less likely to raise any problems during training due to the one-directional saturation.

Further, hard saturation at zero have shown to help supervised deep neural networks to learn (Glorot and Bengio 2011, pp. 318–

319), given that some units are activated. However, though one of the perks is the sparsely activation, when a ReLU node gets

stuck and never gets activated for any input, it becomes a so called dead state, though which no gradients can flow back and

if too many ReLU nodes are set to zero a type of vanishing gradient problem can in fact occur. (Maas 2013, p. 2; Glorot and

Bengio 2011, pp. 318-319). This dying ReLU problem can however be evaded through some adjustments of the ReLU function as

well as of the learning rate. These adjustments are presented under the respective sections Leaky ReLU and Thresholded ReLU

5.2.1 and Learning Rate 5.2.7.

ReLU As Final Wrapper

As mentioned in 4.1.1, the output activation function of a regression network is the identity, meaning that the output activation

unit will also become the output. However, since the network ought to produce non-negative estimates of the non-negative

simulator outputs yield, biomass and number of days until anthesis and until maturity, ReLU might serve better as a final

wrapper of the network output. The ReLU and identity function are very similar and become even more so as the precision

of the summoning junction (i.e. the weighted sums that the activation function receives (see figure description 4.1) in the final

layer improves - since most of them then would be positive and the other negative estimates should not stretch that far below

zero.
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4.6 Implementation in Keras

Neural networks can be constructed using the modular library Keras ((2015) Keras). Here a Keras implementation was run top of

the open source software library TensorFlow (Abadi et al. 2015) was used. In order to implement a branched multitask network

in Python, Keras functional API was used2 and the NN branches were constructed using the Keras core layers Dense, Conv1D

and AveragePooling1D.

Keras is very user friendly and allows for writing customized layers and functions that can be implemented together with

already defined. It also includes built-in methods for training and evaluation of neural networks. Those used in this thesis are

presented in the next chapter 5 Training of a Neural Network .

2Branched Multitask NNs can not be constructed in the commonly used sequential model type.
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5

Training of a Neural Network

During training a neural network can learn how to act by passing forward training input samples through the network, evaluate

how well it estimates the corresponding training response and finally adjust the weights according to the level of satisfaction

of the returned output, as measured by the loss function. In other words: the loss produced by this objective function to be

minimized is used as a feedback signal directing the weight adjustments. (Chollet 2018, p. 11). Figure 5.1 illustrates this iterative

training loop.

Figure 5.1: Illustration of how deep neural networks learn. Figure from Deep Learning with Python by François Chollet (2018).

Usually the training data is divided into smaller batches for which the loss function is calculated and fed back to the

network, and minimized with respect to the weights and biases. This loss minimization is done iteratively for all batches.

(Heaton 2015, pp. 125-126).

The losses from the batches creates an error surface of which the (local) minimum is to be found during training. This can

be done by moving along the error surface in the opposite direction of its gradient, which gives the direction of the steepest

ascent. Since the losses are functions of the network outputs, which are produced by the outputs of previous layers, that in turn

are functions of the network weights and biases, the error surface can be di�erentiated with respect to the weight parameters.

Thus the gradient of the error surface can be composed by a vector whose components are its partial derivatives with respect

to the weight parameters, each giving the direction of the steepest increase of the error surface.

The method of calculating the gradient of the error surface is often referred to as backpropagation and can be seen as a

way of "going back" in the network to find each neurons contribution to the error. (Heaton 2015, pp. 114-118; Nielsen 2015, ch. 2).

Backpropagation can thus be used in the optimisation of the error surface that aims to find the weights and biases, i.e. model

parameters, that minimizes the loss.

There exists several optimisation algorithms, many of which are gradient based (Goodfellow 2016, ch. 4.3). One commonly

used gradient based optimisation algorithm is the adaptive moment estimation backpropagation algorithm Adam (Kingma and

Ba 2014), that was specifically designed for training of deep neural networks and works e�ciently in a high dimensional

parameter space. Unlike the stochastic gradient descent algorithm that keeps the learning rate, determining the step size along

the error surface (hence also the weight adjustments), fixed for all weight updates, Adam maintains and adapts the learning rate
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for each weight and does so using estimates of both the first and second order moments of gradients (i.e. mean and unshifted

variance) derived during training. It was the only optimisation algorithm considered in this project and can be implemented

using Adam in Keras ((2015) Keras). The pseudocode for the Adam algorithm is appended in A.1. More on the Adam optimiser

and the benefits of having adaptive learning rates is found in section 5.2.7, under Some Practical Considerations For Training

5.2.

5.1 Loss Function

Adequacy of a loss functions can be expressed in terms of its ability to match the actual harm the given observation would

cause. It can also regard the loss functions mathematical properties and its e�ect on the gradient optimisation.

The widely used Mean Squared Error Loss (MSE) is a common choice for a neural network loss function. If our target

yn, n = 1, 2, . . . , N follows a normal distribution N(y | f(x,w), 1
β

) and the corresponding input variables xn, n =

1, 2, . . . , N are i.i.d., then the weight parameters that minimises the MSE are equal to the maximum likelihood estimates,

i.e. the parameter values for which the response value is the most likely to occur, given the set of observations. This since

maximizing the likelihood function of the target given the data and the weights and hyperparameters

P (y | x,w, θ),

is equivalent to minimizing its negative logarithm (Bishop 2006, p. 9)

−ln(P (y | x,w)) = −
N∑
n=1

ln(p(yn | xn, w)) (5.1)

If the normality assumption holds the negative likelihood function is equal to

β

2

N∑
n=1

(f(xn, w)− yn)2 − N

2
ln(β) +

N

2
ln(2π) (5.2)

which depends on the weight parameters only through the sum of squares. The maximum likelihood parameters is thus,

wML = argmin

N∑
n=1

(f(xn, w)− yn)2 = wMSE (5.3)

This also gives the ML estimate of the precision hyperparameter Beta (Bishop 2006, p. 29, 233), as

1

βML
=

1

N

N∑
n=1

(f(xn, w)− yn)2. (5.4)

5.1.1 Robust Loss Function

When dealing with non-normal distributions, the mean squared error (MSE) can lead to bad optimisation since it is derived

from Gaussian assumptions. This quadratic loss function can make the modeling heavily influenced by the outliers as well as

cause overfitting problems and thus raise the need for more robust loss functions. (Bishop 2006, p. 277).
Mean Absolute Error (MAE), like the MSE, measures the magnitude of the errors and does not take direction into account.

The main di�erences between the two is that the squared loss is more sensitive to outliers and that their gradient behaves

di�erently in the training of a neural network. The MAE loss has constant gradient, making it harder to find the minimum

during training, compared to the gradient of the quadratic loss which gets smaller the closer we get to the minimum.

If robustness against outliers is desired, it is possible to use the log-cosh loss function. It treats errors much like the

MAE loss, but are smoothed around zero and hence eases the problem of finding the minimum. Another function that share
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Figure 5.2
MSE is a common choice for a neural
network loss function, but can result
in bad modeling when we have out-
liers in the data. The figure shows to
data sets modeled with simple lin-
ear regression: one with well behav-
ing data and one case with outliers.
The predictions ŷ is much worse in
the second case, even for some well
behaving samples, as consequences
of that MSE penalizes outliers quite
hard. Screenshots from video posted
by Barron (2019).

properties of the squared and absolute loss is the Huber Loss, which is a composition of the two.

LHuber(x, δ) =


1
2
x2 if |x| ≤ δ,

δ(|x| − 1
2
δ), otherwise.

(5.5)

δ is an adjustable hyperparameter that determines its sensitivity to outliers, or rather when errors should be treated as such.

Errors smaller than δ are minimized with MSE and penalized harder than those larger than δ, as the Huber Loss becomes more

linear (see how the the Huber loss changes for di�erent δ in figure 5.3). (TensorFlow: Huber Loss). The Huber loss function is

Figure 5.3: Huber loss function for di�erent δ

not smooth, but can be replaced by a smooth approximation, the Pseudo-Huber loss function, defined as

LPseudoHuber(x, δ) = δ2
(√

1 + (x/δ)2 − 1
)
. (5.6)

Unlike the above mentioned loss functions that can be implemented using the built-in loss functions mean_squared_error,
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mean_absolute_error, log_cosh and huber, this smoothed Huber loss is not pre-defined in Keras TensorFlow, but can

be easily be implemented as any other custom function (see e.g. Keras, Custom Losses).

All these functions can also be implemented using the (custom) loss function, presented in the paper “A General and

Adaptive Robust Loss Function” by Jonathan T. Barron (2017).

ρ(x, α, c) =



1
2
(x
c
)2 if α = 2,

log

(
1
2
(x
c
)2 + 1

)
if α = 0,

1− exp

(
− 1

2
(x
c
)2
)

if α =∞,

|2−α|
α

(
( x
c
)2

|2−α|

α
2 − 1

)
otherwise.

(5.7)

This generalized loss function ρ(x, α, c) is a shifted version of the negative log-likelihood corresponding to the probability,

p(x | µ, α, c) =
1

cZ(α)
e−ρ(x−µ,α,c) (5.8)

Z(α) =

∫ ∞
−∞

e−ρ(x,α,1) (5.9)

and is extended all real values of α, unlike the probability function which is only defined for non-negative values of alpha.

The author Jonathan T. Barron describes the generalized loss function as a “superset of many common robust loss functions”

(Barron 2017, p. 1). It is in fact a composition of single-parameter loss functions - amongst which the pseudo-Huber Loss is one

- and is equipped with two hyperparameters - a shape parameter α and a scale parameter c (Barron 2017, p. 8). Figure 5.1.1

shows how the loss function gets increasingly harder on the errors the bigger they get. Errors smaller than c
2
are treated the

same independently of α, but when errors grow larger the rate of change will depend on α. Put simply, the shape parameter

α determines the sensitivity to outliers by how they should be penalized, and the scale parameter c determines how large an

error must be for the function to assume that the associated target value is an outlier.

Figure 5.4: The loss function and their derivatives for di�erent shape parameters on the left and the corresponding probability
function to the right Figures from the paper A General And Adaptive Robust Loss Function by Jonathan T. Barron (2017)

The shape and scale parameter could either be pre-defined, or optimised as any other hyperparameter. One could also let

the loss parameters be adaptive and allow it to take di�erent values for di�erent samples. More on the generalized and adaptive

robust loss function and how to treat shape and scale parameters α resp. c is found in Appendix A.2. Further suggestions of

how one can make use of generalized loss function is found under VAE for Compression of Weather Series B.5 as well as Varying

Robustness in Loss Function B.6.
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5.1.2 Multiple Losses and Loss Weights

In multitask learning a loss will be calculated for each and every target, using their pre-specified loss functions. These loss

functions can, as for a single-target neural network, be on various forms and does not have to be the same for all target

outputs. The total network loss can be set to be the sum of the separate output losses, but also be a weighted sum of the

losses, weighted with target-specific loss weights.

Losstotal =

n∑
target=1

wtarget · Losstarget (5.10)

See the code 1 used for calculating the loss in Keras found in the GitHub repository (Keras).

Though inclusion of the seasonal variables can help the network become more generalized, it can also cause problems.

Yield and biomass predictions may demand more information than the (easily modeled) seasonal outputs. So if their errors

are equally accounted for during training (meaning that model improvement of one output yields the same loss reduction as

any of the others), it’s fair to assume that it will be easier for the network to focus on representations favourable to the season

variables. This could result in the network ignoring information useful for the yield output, due to it being complex to detect.

Not only can search for weather patterns important for yield be evaded, also the climate inputs C, T, W and N can be ignored

because they’re of no use for the easily modeled phase length outputs that are the same for all climate scenarios.

Among the outputs presented in the data section, annual spring wheat is our main interest - and also the most complex

(along with biomass), in terms of distribution and relation to the inputs. Without any loss weights - determining the importance

of the outputs in terms of how much of their loss should contribute to total model loss - the network will produce very good

estimates of the season variables, enhancing overall model performance. This can (and also did when tested) result in a model

with very good seasonal output estimates, but worse yield and biomass estimates. By putting a constraint on the season outputs

in terms of loss weights, the goodness of the season length variables will not be taken into account as much as the other

outputs, forcing the network towards modeling the yield and biomass.

The importance of having outputs on the same scale will be brought up in the next chapter 6, but in the context of

multi-task learning, it is particularly the resulting loss sizes that facilitates interpretation and adjustment of the loss weights.

By range scaling the outputs to the same interval between zero and one, their losses will be, approximately, on the same scale.

Each loss weights can thus be set to the fraction of the corresponding output loss that should contribute to the total model

loss2. Note however, that though the loss weight can be described as a factor of how much the corresponding output should be

accounted for (when the outputs have the same range), a model could produce better model scores for some low loss weight

assigned output, if these are easier to model. The loss weights may therefore not exactly cohere with how well the model

weights suit the corresponding output.

The loss weights were manually tuned and optimised through grid search, but there exist several automated strategies for

determining the loss weights, see for example Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and

Semantics 2018, GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks 2017 and Dynamic

Task Prioritization for Multitask Learning 2018.

5.2 Some Practical Considerations For Training

Providing higher degrees of freedom by adding more layers and nodes will enhance the networks expressibility. However, a

network that can predict the exact simulator output for any given input from the training sample, might not be able to do so

when receiving new observations. Algorithms with too many degrees of freedom are prone to learn the noise, hence taking the

1If the pdf reader can’t read the hyperlink, copy:
https://github.com/keras-team/keras/blob/9118ea65f40874e915dd1299efd1cc3a7ca2c333/keras/engine/training.
py#L816-L848

2In the case of di�erent ranging outputs and therefore also unequally sized losses, the loss weights would have to be the product of a
parameter value bringing the losses to the same scale and the fraction of how much the loss should be taken into account.
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behaviour of the error into account when trying to model the response variable. This is termed overfitting and can be prevented

e.g. through a robust loss function, described above in 5.1.1; by using the samples in a serviceable manner; or through handling

of the weights. The latter two are presented below, in addition to some regularization techniques, that serves to generalize the

model by preventing it from overfitting, together with other methods for helping the network learn better.

Hyperparameters are the parameters that defines the network structure and control the learning process. These parameters

are not learned or optimised during training of the network like the weights and biases in the layers. They have to be pre-defined

before training and hence must be optimised separately - or at least initialized if optimised through embedded hyperparameter

optimisation.

Activation functions, the number of hidden layers, nodes, convolution filters and their kernel sizes are all examples of

hyperparameters. Type of optimisation algorithm, loss function, the number of batches and the number of epochs, i.e. the

number of times all batches are passed forward and backward trough the network, are all hyperparameters that e�ect the

training. For example, smaller batches can make learning more precise while larger batches can converge faster to a solution

faster and prevent overfitting (Heaton 2015, pp. 125-126).

Choice of Network Structure and Hyperparameters 5.2.8 provides some examples of iterative hyperparameter optimisation

algorithms and how to implement them. Those optimisation algorithms are however not suitable for all hyperparameters - like

e.g the learning rate for reasons explained under 5.2.7. Nonetheless, by getting an intuitive understanding of how they a�ect

the network training for di�erent problems, one can probably reduce the number of combinations to be compared, or at least

know where to start.

5.2.1 Leaky ReLU and Thresholded ReLU

There exist several versions of the ReLU Activation Function and two of them - the Leaky ReLU and the Thresholded ReLU will

be presented here. These share the many advantages with the regular ReLU Activation Function mentioned in section 4.5.

Leaky ReLU

σLeakyReLU (x) = max(α · x, x) for α ≤ 1. (5.11)

The Leaky ReLU does not have the regular ReLU zero-slope, i.e. no hard saturation at zero, and can therefore be used to alleviate

the dying ReLU problem (Maas 2013, p. 2; Glorot and Bengio 2011, pp. 318-319). In Keras the activation layer LeakyReLU(α),

α can take values larger than one, but was here, as in many other applications, set to some small fraction between zero and

one. Another option is to let α be an adaptable vector of the same shape as the input tensor x that is learned during training,

but then the activation function usually is referred to as the Parametric ReLU (PReLU) (He and Sun 2015), implemented using

PReLU(αinitial) in Keras. (Keras, Activation Layers). The Leaky ReLU was however the only option considered here and the

coe�cient α was optimised trough grid search given a range of some pre-defined values between zero and one.

Adaptive Upper Threshold in Final Wrapper

The adaptive version of generalized robust loss function (presented in 5.1.1) penalizes negative and positive residuals equally (see

extended explanation in B.6). However, the distribution of annual spring wheat is heavily right tailed at most locations, where

some potentially influential, but likely miss-representative, outliers are far higher than other values. It could therefore be of

interest to introduce an outlier-limit preventing the final network estimates to grow larger than a given threshold. If applied, the

best estimates for samples beyond the threshold would be the actual threshold and hence restrict the related losses from never

decreasing further than the di�erence between the threshold and the actual target. When prohibited from improving estimates

of the outliers (beyond the given threshold) in this manner, the network can only reduce the loss through betterment of the

other estimates (below the given threshold).

This activation function was tested (see how in outline A.7), but was not properly investigated nor used in the final model.

More information about this activation function and how it can be applied, particularly for this emulation problem, is found in
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section A.3.

5.2.2 Batch Normalization

Shifting and rescaling of inputs can facilitate the modeling - whether it’s a min-max range scaling of nonnegative inputs or

normalization of real valued inputs. Neural network training can benefit from normalized inputs, just as normalization can

speed up training of all regression models. As the inputs are passed down a network, the distribution is likely to change and

become less favourable. ((2015) Keras; Goodfellow 2016, pp. 309-312). A solution is to incorporate a normalization step before

some, if not all, layers, using the Keras layer BatchNormalization ((2015) Keras).

5.2.3 Weight Initialization

In order to find the optimal weights and biases, they first have to be initialized (see for example the Adam algorithm A.1). In

Keras, the bias weights are initially set to zero and the default initializer for the weights is the Glorot uniform initializer (Glorot

and Bengio 2010), a.k.a. Xavier uniform initializer. ((2015) Keras). However, these initializers are not optimal for all problems.

The suitability of certain weight initialization schemes vary for di�erent activation functions.

Ill-fitting initializers can cause vanishing gradients and prevent the networks from learning. The Glorot weight initializer

conditions the layer inputs and outputs to have the same variance as well as the gradients to have the same variance before and

after having passed through the layer nodes. This constraint was integrated in order to prevent the signal from dying, exploding

or saturating - both in the forward passes made to produce estimates and in the backpropagation of gradients. (Glorot and

Bengio 2010).

If the weights are initialized from normal distribution and condition for the variances holds, then they have the variance

V arGlorot(W ) = 2/(nin + nout), where nin is the number of input units and nout is the number of output units in the

weight tensor. That is, if the Glorot normal initializer is used, then the weights are initialized with the truncated normal

distribution N
(
0,
√

2/(nin + nout)
)
. (Glorot and Bengio 2010 (2015) Keras).

If the weights W instead are assumed to be uniformly distributed3, then if the condition of equal variances holds, i.e. that
the weights W have the Glorot Variance V arGlorot(W ) = 2/(nin + nout) we get,

V ar(W ) = L2/3 := V arGlorot(W ) = 2/(nin + nout) (5.12)

⇔ (5.13)

|L| := ±
√

6/(nin + nout) (5.14)

Meaning that, if the Glorot uniform initializer is used, then the weights will be drawn uniformly from the interval
[
−√

6/(nin + nout),
√

6/(nin + nout)
]
. (Glorot and Bengio 2010; (2015) Keras).

He-initialization is a similar weight initialization, but designed for weights in layers producing ReLU-wrapped output. It
makes use of the preserved variance derived from the Glorot Initialization by

V ar(y) = V ar(x)V arGlorot(W ) (5.15)

and defines the variance of the ReLU wrapped layer outputs in terms of the He-initialization weight variance, by halving the
weight variance accordingly,

V ar(y) = ReLU(V ar(x)V arHe(W )) =
V ar(x)V arHe(W )

2
. (5.16)

(He and Sun 2015). So the He-initialization assumes the weight variance to be twice the size of the Glorot weight variance, i.e.

V ar(x)V arHe(W )

2
= V ar(x)V arGlorot(W ) (5.17)

⇔ (5.18)

V arHe(W ) = 2V arGlorot(W ). (5.19)

3W ∼ U(−L,L) then V ar(W ) = L2/3 by definition of uniformly distributed r.v.
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5.2.4 Weight Regularization

Weight regularization can prevent a neural network from overfitting by adding a regularizer R(f) for the network function

f : x 7→ y, to the loss function L(f, y),

L(f, y)penalized = L(f, y) +R(f). (5.20)

The regularizer can for example be expressed using the summed magnitude (`1-norm) of the weights w,

λ

n∑
i=1

|wi| (5.21)

perhaps scaled with some value λ. This is either termed the `1 or lasso regularizer. The ridge regularizer is similarly defined,

but instead uses the `2-norm,

λ

n∑
i=1

w2
i (5.22)

Both regularizers ensure that the weights do not grow too large, but di�ers in that the `1 regularizer prioritize sparsity by

forcing seemingly irrelevant weights to zero, whereas the `2 regularizer is better suited for high dimensional spaces and can

handle correlations better than `1. Elastic net regularization (Zou 2005) makes use of both the `1 and `2 penalty, by combining

the two,
n∑
i=1

λ1|wi|+ λ2w
2
i (5.23)

In the tensorflow module tf.keras.regularizers, lasso, ridge and elastic net regularizers are available. These can

be applied on layer parameters in Keras models through kernel_regularizer and bias_regularizer that penalizes the

layer’s kernel and bias, as well as activity_regularizer that adds a penalty on the layer output.

5.2.5 Dropout

Dropout is the term for the regularization strategy to exclude, or drop out, a set of randomly chosen network nodes during

training (Heaton 2015, pp. 175-176, 228–229). Exclusion (dropout) of di�erent layer inputs during training, prevents the network

from relying on single layer inputs. Similarly to the weight penalization, node-dropout can be used when the layer inputs

correlate, to prevent canceling-out-e�ects. Further, it forces the network to make use of layer input that might have been

assigned less importance when all layer inputs are provided.

Dropout can be implemented in Keras models by adding the layer Dropout(rate) prequel to the layer to be a�ected by

dropout. Here, rate is a hyperparameter taking values between 0 and 1 and determines the fraction of inputs be excluded

during training. ((2015) Keras).

SpatialDropout1D(rate) is another dropout-layer in Keras, but excludes whole feature channels instead of single

elements and is often used after convolution layers. In the Keras layer description (Keras: SpatialDropout1D layer), the usage

of this sequential dropout is motivated with following: "If adjacent frames within feature maps are strongly correlated (as is

normally the case in early convolution layers) then regular dropout will not regularize the activations and will otherwise just

result in an e�ective learning rate decrease. In this case, SpatialDropout1D will help promote independence between feature maps

and should be used instead.".
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5.2.6 Early Stopping

Early stopping can be seen as a optimisation in time and controls the complexity during a training session. By specifying

a monitor metric in EarlyStopping, a Keras model can be set to only run for as long as it improves more than some

pre-defined rate parameter. The network training can for example be set to stop after the validation loss improves by less

than the rate parameter given, or let the network run as long as it improves at all. When training is allowed to continue after

the validation metric has reached its minimum, improved estimates of training samples it can cause the validation metric to

deteriorate. Hence a validation metric can be seen as a measuring of generalization the and a way to detect overfitting.

5.2.7 Learning Rate

The learning rate determines how much the weights are to be adjusted during training and can have huge impact on learning.

A model can converge faster to a solution with a large learning rate, but larger learning rates runs a higher risk of convergence

to a suboptimal solution. Too high of a learning rate can further lead to the dying ReLU problem mentioned in 4.5, especially

for deep learning networks. On the other hand, too small learning rates can cause the learning to make insu�cient progress in

each step. (Reed and Marks 1999, p. 87; (2015) Keras).

A uniquely determined learning rate which is optimal during the whole training session might not exist. It can therefore be

serviceable to allow for a varying learning rate. This could be implemented by setting the learning rate to decay according to

a pre-defined learning late scheduler , or through adaptive learning rate methods, like Adam (Kingma and Ba 2014), where the

weights are individually adjusted according to the specified learning rate as well as their iteratively updated respective moment

estimates (see pseudo code A.1). ((2015) Keras).

Adam and other adaptive learning rate methods generally improves deep learning and usually converges faster than a simple

optimiser with a fixed and improper learning rate (Kingma and Ba 2014; Reed and Marks 1999, p. 72).

The learning rate scheduler ReduceLROnPlateau is set to reduce the learning rate once some given metric stops

improving. It could for example monitor the validation loss and keep track of when it stagnates as an indication of when

generalization stops improving. In order to do so, the scheduler needs an initial learning rate, a specified reduction factor

determining how much the learning rate is to be reduced by and must know when to reduce the learning rate. The learning

rate scheduler can be set to reduce the rate after a pre-determined number of epochs, expressed by a patience parameter, of no

further loss decrease; or if oscillation is to be accounted for: when the loss has stagnated on a plateau (neither increased nor

decreased) for that long. ((2015) Keras)

The initial learning rate, reduction factor and patience parameter can be arbitrary chosen or optimised like other hyperpa-

rameters as described in the next chapter under Choice of Network Structure and Hyperparameters 5.2.8.

5.2.8 Choice of Network Structure and Hyperparameters

There is no straightforward or standard model selection method that can be used for all neural networks. It is not possible to

compare all possible neural network architectures, but by training networks of di�erent architectures and comparing them on

validation-data, through non-nested model comparison measures like R2 and root mean squared error (RMSE) (Rawlings and

Dickey 1998, p. 220), optimal hyperparameters and network structures can be found among the ones given. Whether or not it is

possible to base model design only on theory and intuition, some iterative trial and error procedure can streamline the search

for a good model design.

Potential network candidates and hyperparameter combinations can be compared through grid search - parameter sweeps of

the space with the pre-defined parameter subsets, in which every hyperparameter combinations is evaluated with the associated

loss and performance metrics.

Talos (Talos 2019) is an automated hyperparameter optimisation tool for Keras models. By defining a Keras model frame and

specifying a range of values for each hyperparameter to be evaluated, Talos can find the optimal hyperparameter combination

among the ones given. It provides several options, s.a. Grid search and Random search, where a variety of random methods can
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be used for drawing a set of hyperparameter values among the given ones: from uniform selection methods to lower discrepancy

methods like Latin hypercube sampling. These can in turn be combined with probabilistic reducers that reduces the remaining

search space by removing poorly performing values of hyperparameters. For more information see the Talos GitHub repository.

Another strategy for finding suitable hyperparameter values is through incorporation of penalties in the training of the

network. LASSO, or `1-penalties (5.2.4) on weights and activations increases the loss function when they’re included and forces

unnecessary weights to zero. A display of the LASSO-network weights can reveal which layer inputs that have no impact on the

result and thus indicate nodes or kernels that can be removed. This can also be used for input selection, where the importance

of the received inputs can be measured by their corresponding weights in the first layer.
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6

Preprocessing and Analysis of Data

In the Bachelor’s thesis (Nilsson 2019), the square root transform was used for annual spring wheat because it follows symmetric

distribution. The squared rooted yield is in this case also presumably much easier to model than the untransformed yield, but

even those leaves much to be desired. However, while other data transformations possibly are be easier to model, complex

transformations can impede interpretability. The distribution of above ground biomass is very similar to that of yield, so the

square root transformation will be applied both outputs.

Also the number of days before anthesis and before maturity outputs behave very similarly. This becomes even clearer

when we also apply min-max standardization,

Ỹ =

√
Y −min(

√
Y )

max(
√
Y )−min(

√
Y )

(6.1)

See their distributions in figure C.2b. It will make the outputs similar outputs even more similar and make the losses of the

same scale. The latter facilitates interpretation and adjustment of loss weights used during training of a multitask network (see

5.1.2).

The histograms C.2a of all four the outputs related to spring wheat show that many samples are stacked at zero and that

the distribution is long-tailed and multimodal. This becomes even clearer when the samples are blocked by location and by

climate scenario and analyzed separately. This could be due to measure errors or some simulator deficiency, but the more

likely explanation is that the samples belong to di�erently distributed populations. See for example the varying ranges and

multiple nodes in figure C.4a showing the distributions of global annual yield in di�erent climate settings. The many modes

could is a result of varying means in di�erent types of sample groups, out of which most presumably only has a single mode

in their distribution, whether the samples are grouped by location or similarly behaving locations. See for example figure C.4b

displaying the distribution of annual crop responses to the base scenario C360T0W0N200 at some random locations, in four

di�erent climates: at which some have the about the same crop production every years, while at others the variance of annual

yield is large; and the location-wise annual simulations are both right- and left skewed. The di�erences in skewness and length

of tails between the blocks could be due to e.g. that extreme high yield is be more probable to occur at some locations and/or

climate scenarios than others; just as e.g. the di�erence in number of zero-cases at some locations could be caused by varying

probability of premature plant death.

As was previously mentioned, the sample space can be described as a climate hypercube spanned by the climate variables,

or an extended version with the additional time-dimension and axis for the geographical position. Hence the samples could

be blocked into smaller groups of di�erent variable combinations, after their respective factor levels, which could be compared

and analysed through e.g. ANOVA (ANalysis Of VAriance).

Section 6.1 below mentions some considerations that were taken into account before surrogate modeling. The following

section introduces the Köppen climate classification system used in this surrogate modeling approach; it is properly explained

in appendix A.4.

As was mentioned in chapter 3, a wise sample selection and split for training and testing can help control the surrogate

models ability to predict in unseen scenarios. Sample Selection and Split 6.3 describes how this was handled. The final two

section describes how the inputs where preprocessed before being passed into the emulator (6.4) and how the input variables

selection were selected (6.5).
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6.1 Considerations and Cautions

Outliers

Outliers can influence the training of a neural network. Besides from using a robust loss, an alternative is to remove outliers

and miss-representative samples. In a data set as skewed and complex as the one considered here, it can be hard to determine

which samples are miss-representative. The thresholds suggested by Tukey (1977) could possibly be useful for detecting outliers

and are defined as follows:

Tlwr = Q1− c · IQR (6.2)

Tupr = Q3 + c · IQR (6.3)

where Q1 and Q3 are the first resp. third quartile, or 25th resp. 75th percentile, and IQR is the the inter quartile range

Q3−Q1. The scale parameter c is usually is set to be 1.5, but sometimes take other values. Note that increased c gives a wider

outlier-interval and that decreased c implies narrower interval. An alternative is to use the similarly defined thresholds below,

Tlwr = Q1lwr − c · IQRlwr (6.4)

Tupr = Q3upr + c · IQRupr (6.5)

where Q1lwr , Q3lwr , Q1upr and Q3upr are the 12.5th, 37.5th, 62.5th and 87.5th percentiles respectively, and the inter

quartile range for the lower threshold IQRlwr is set to be the range between the first and third quartile among the low-valued

samples below the median, i.e. IQRlwr = Q3lwr − Q1lwr , and the inter quartile range for the high-valued samples above

the median lower threshold IQRupr = Q3upr −Q1upr .

These thresholds were used in the preparatory data analysis in comparisons of samples with and without outliers, but in

regards to the modeling: besides from the years and locations mentioned in chapter 2, no other outliers were removed. Outliers

were instead dealt with through other training-techniques, to prevent them from having to large of an impact in the overall

performance - through e.g. tuning of the shape and scale parameters in the robust loss function; and elaboration of the ReLU

activation function, by applying an upper threshold in the final wrapper - as explained explained in section 5.2.1.

Unbalanced Data

Neural networks tend do focus on the normally behaving samples that make up the majority of the training set and takes less

notice of rare behaviours and relations. Exclusion of outliers may therefore not significantly enhance the model performance.

In fact, outliers and samples behaving di�erently to the majority can provide useful information and the di�culty of modeling

rare samples might even be of a greater concern than the problem of modeling the over-all behavior.

Not only would the statistical power be reduced with the decreased data set, the rare samples will already be less accounted

for during training as it is, since their related errors easily be can evened out in the cumulative loss and merely be read as

noise. For the same reason, intra diversity within minority sample groups may be even harder to detect. (Zhou, Hu, and Wang

2018; Wang and Hebert 2017).

This property can be very rewarding, especially if the minority groups are misrepresentative, but could hinder learning of

useful information in the data considered here. This because the vast hyperspace of unbalanced and non-i.i.d data samples -

that can be blocked by climate-, temporal- and global position factor levels (i.e. the 29 annual crop responses to 672 di�erent

climate scenarios, at every global 0.5° by 0.5° grid cell location covering ice-free land) - includes many groups that preserve

attributes di�erent to the majority and some have large within-group variance. For this reason, many samples run the risk of

being treated as extremes, or "minorities", in relation to the main stream and thereby also the risk of being ignored during

training. Hence the loss of information provided by these samples that could be of use - if not in isolation, at least as a

collective.
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Multicollinearity

The potential problem with correlated inputs and inclusion of redundant information was discussed in the Bachelor’s thesis

(Nilsson 2019). Strong multicollinearity is mostly an obstacle for linear regression and becomes less of problem when nonlinearity

is introduced. Neural networks usually consist of a vast amount of weight parameters and overparameterization itself includes

redundant information. However, previous results from the Bachelor’s thesis underlined that correlated inputs should be included

with caution - where canceling-out-e�ect could be seen in e.g. the kernel weights in the convolution layers in which negatively

correlated inputs could be assigned equally heavy weights with opposite sign and vice versa with positively correlated inputs.

Instead of excluding related inputs, multicollinearity can be dealt with through methods like those presented in section

5.2. For example, the sequential dropout can be tested on the convolution layer outputs, as suggested in section 5.2.5, but also

applied to the input time series before passing them into the initial convolution layer, in order to prevent overfitting as well as

the canceling-out-e�ects in the kernel windows.

6.2 Köppen Climate Classification System

The varying characteristics and preserved relations can be hard to detect in the large data set, even for a neural network

(as explained in previous section 6.1), but if homogeneous samples are analysed in isolation patterns may become more

distinguishable and the smaller groups can in turn be intercompared.

Figure 6.1: The five main Köppen climate classes tropical (A) covering 22.2% of the land, dry (B) covering 32.2%, temperate
(C) covering 16.5%, continental (D) covering 24.0% and polar (E) covering 5.1%. Figure from ”What Are the 5 Koppen Climate
Classification Types?” 2020. The 192 locations are also mapped out and marked with the color of their class.

The widely used Köppen climate classification system, based on historical climate and vegetation, can classify the hetero-

geneous data samples to separate regions around the globe. It was used in the data analysis, in the evaluation of feature

importance on which the input variable selection was based as well as for aggregation of the emulation domain (elaborated

under 7.1).
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Using temperature and precipitation summary statistics, the Köppen climate classification system separates the world into

the five main climate classes: tropical (A), dry (B), temperate (C), continental (D) and polar (E), shown in figure 6.1. It can further

divide these into several sub-classes, but these mostly larger groups where considered here. The definitions and conditions used

for the five main classes can be found under section A.4.

In this study, the input weather time series of precipitation (pr) and temperature (tas) were either based on the actual

observed or the climate adjusted versions defined in section 2.2.1 - where pr is changed with the climate variable W and tas

shifted with the climate variable T. The actual observed time series were used for aggregation of the emulator domain and is

further discussed under 7.1. If the climate adjusted series are used for classification, then for some locations, the crop responses

to changes in T and W would be classified into di�erent climate classes. I.e. a location could belong to some climate regions

for some TW-combinations and another for other settings. In that case, samples derived from the same location would be

estimated with di�erent climate class models, which in turn would introduce more uncertainty in the sensitivity study across

the climate dimensions T and W. However, the climate adjusted series it yielded better clustering in terms of similarly behaving

groups and was therefore applied in the data analysis and input variable selection 6.5.

However, locations’ di�erent climate scenario crop responses (in the space spanned by T and W) would be classified into

di�erent climate classes. That is, samples derived from the same location would be estimated with di�erent climate class

models, which in turn would introduce more uncertainty in the sensitivity study across the climate dimensions T and W.

6.3 Sample Selection and Split

A wise sample selection and split for training and testing can help us control the surrogate models ability to predict in unseen

scenarios. It can be useful to implement a sample selection method to find the optimal or most representative sample to train

and test the surrogate model on. A sequential model design (mentioned in chapter 3) could be of use to construct a surrogate

model for LPJ-GUESS. However, such sample selection was not embedded in the model search conducted here, because the

initially given large set of already simulated data for globally spread locations (assumed to be representative of all the grid

cells covering ice-free land). These locations were also the ones used in the preparatory Bachelor’s thesis (Nilsson 2019) and

in the thesis testing the Gaussian Process approach (Olsson 2017). Nevertheless, emulation can be improved by a wise sample

selection, that accounts for both exploitation of samples proven to be awarding and exploration of uncertain samples. A

Bayesian optimisation strategy to accomplish this is described in appendix B.3.

Cross Validation Split and Randomly Selected Subset

An emulator for a global vegetation model like LPJ-GUESS ought to be generalized enough to produce estimates of crop at any

given location, based on learning of crop production from only a fractional part of the world. In order to test how well the

trained emulator can estimate crop responses at unseen locations, some sites should be kept out of training. For that reason, the

cross validation split was based on randomly drawn locations, where the test set was given 20% of the locations and remaining

80% were divided into a validation set with 20% · 80% = 16% of the locations and training set with 80% · 80% = 64% of

the locations. That is, 64% of the locations were used for the learning process with iterative weight adjustments, described in

the training chapter 5, 16% were used for validation of the weight adjustments made each epoch and the 20% contained in the

test set was applied in the final evaluation of the trained network.

The risk of including all sequentially dependent samples is that the network learns location-specific information and hence

runs the risk of overfitting. It can therefore be useful to exclude some of the the annual samples from each location and climate

scenario. A random selection of years for every location and climate scenario, proved to help the networks tested to generalize

better. For more details, see sample selection pseudocode A.5 in Appendix.

36



6.4. Preprocessing of Inputs

6.4 Preprocessing of Inputs

If the chosen set of weather series Si,y are not adjusted for the climate anomalies T and W , the emulator f(·) would have to

take T and W separately,

f(Si,y, Cc, Tt,Ww, Nn,Xc,t,w,n,i,y). (6.6)

Whereas an emulator f(·) given the climate adjusted series Sclimt,w,i,y would be able to account for the information provided by

T and W without necessarily including the climate variable T and W directly,

f(Sclimt,w,i,y, Cc, Nn,Xc,t,w,n,i,y) (6.7)

for all locations i, years y and climate factor levels c, t, w, n in the CTWN space, where Xc,t,w,n,i,y denotes some arbitrary

input (here chaining over all climate dimensions, between locations and years).

The final considered X was a vector with the location varying inputs soil soili defined in 2.2 and latitude, lati, defined in

6.4,

Xi = [lati, soili]. (6.8)

The cube root is often used for transformation of rain data and improved training of the network trained in the Bachelor’s

thesis. Though the cube root was used during the model search, only using range scaling was su�cient for the final model.

In the bachelor’s thesis, the daily data was aggregated to 5-day averages. These as well as averages over even longer periods

than five days, were considered in this continued study. Since longer averages could result in loss of important information, the

section Monthly Time Series presents a suggestion for how time series of monthly averages could compensate for potential loss

of useful information, through inclusion of additional summary statistics (taken from the daily weather time series).

Monthly Time Series

The initial attempt in the bachelor’s thesis was to find summary statistics of the weather data based on the patterns automatically

detected by the train CNN. Elaboration with longer time averages of the daily time series (see A.7) resulted in seven monthly

times series derived from the simulator inputs pr, rsds and tas.

The 13 months long time series started 24 days before planting and stretched over the 365 days following planting. Hence

first 30 days (≈ one month) covered the 24 days before planting, the sowing day and the 5 days after. The second "month"

covered the 6th day after sowing and the 30 consecutive days, the third month covered the following 30 days and so on, so

that the last, 13th, "month" covered the final 30 days with the 365th day after sowing as the final day. The seven considered

sequences contained the following summary statistics and are visualized in figure C.1

• T̄m: mean(tas) in month m,

• T (Q10)
m : 1th decile of the daily observed temperatures in tas during month m,

• T (Q90)
m : 9th decile of the daily observed temperatures in tas during month m,

• P̄m: mean(pr) in month m,

• P (%0)
m : fraction of days in pr without rain during month m1,

• P (Q90)
m : 9th decile of the daily rain observations in pr during month m,

• R̄m: mean(rsds) in month m,

For more information on why and how these sequences were derived, see section A.7. 2.

1A 10% percentile would be zero for the majority of month, since there can only be 0.1 ∗ 30 = 3 observations (days) under the lower
quantile, implying that no more than two days in one month can be rain free for the lower quantile to be larger than zero. So instead of
choosing another quantile threshold, I figured I would use this fraction of no-rain days. Additionally previous tested CNNs often seemed to find
long periods of no or little rain to be of importance (e.g. according to kernel windows) and it could help indicate probable drought.

2Note that the monthly sequence of measured fraction of days without precipitation (defined in 6.4) is not a�ected by precipitation anomaly
modification in 2.2.1, since change of rain is adjusted in the daily time sequence pr through the scaling factor P, hence the fixed number of
zeros (days without rain) in the sequence left unchanged.
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Latitude as Indicator Function

The aim is to construct an emulator general enough to predict spring wheat production in all grid cells covering ice-free land,

but only 192 locations are given (out of which only a subset will be used for learning). So if the network is fed the precise

degrees of latitude, it would learn the exact latitudinal relations only for individual grid cells given during training and thereby

run the risk of overfitting. This could be prevented by aggregating the latitude coordinates to less specific information, e.g.

latitudinal band belonging.

An indication function, 1L of a subset L of the latitudes {−55.75,−55.25, . . . ,−0.25, 0.25, . . . , 81.25} that are

considered in the GGCMI study, is for a latitude i defined by

1L(i) :=

1 if i ∈ L,

0 if i /∈ L.
(6.9)

The latitude input was defined as a vector of eight indicator variables (containing a one for belonging and seven zeros for

the rest of the intervals to which the sample does not belong),

lati = [1L1(i),1L2(i),1L3(i),1L4(i),1L5(i),1L6(i),1L7(i),1L8(i)] (6.10)

for all considered locations i = 1, 2, ..., 192. The limits were determined so that every interval contained about the same

fraction of samples locations considered in GGCMI, i.e. each band contains around 12.5% the locations.3

Figure C.7 shows how the 192 locations used in this surrogate modeling approach are distribution over latitude as well as

the distribution of all locations considered in the GGCMI study, where also the limits of the eight latitudinal bands are specified.

Figure C.8 show two plots containing the same information as the first mentioned, but distinguishes between the training,

validation and test set in one and between the four di�erent climate classes derived from the aggregation scheme used in 6.2.

Range Scaling of Inputs

The z-score normalization, will be used for the weather time series , but the soil input vector and the latitude input vector of

indicator variables, both have range [0,1], hence do not have to be range-scaled. The final network structure only has one linking

of branches, where the climate variables will be concatenated directly with the other branch outputs, which will be wrapped in

the ReLU function and thus be non-negative. Therefore a min-max normalization of the climate variables (making them range

between 0 and 1) will be used.

6.5 Input Variable Selection

Investigation of input importance was conducted separately for the four main classes A, B, C and D. Samples derived for

the same locations were allowed to be classified into di�erent climate classes. The reason for analysing the di�erent classes

separately was to get better insight and to easier detect relations between inputs and outputs.

A simple way to get an indication of which variables can be of importance for predicting a certain output, is to look at

their linear relation, by e.g. evaluating the Pearson Correlations. Another motive for exposing the correlations is that it can

be good to keep track of the correlations when using interpretation methods that do not account for feature dependence.

Lasso (5.2.4) is one such method, which can be used for input variable selection by penalizing the weights in the initial layers

accepting the inputs, since a `1-penalty forces weights corresponding to unnecessary inputs to zero, as described at the end

of 5.2.8. Since we’re also interested in intertwined and non-linear relations, a Gradient Boosting Regressor was trained in order

to to see which features that mattered the most for predicting yield. It was implemented through the ensemble-based method

3Initially the latitude dummy variables were uniquely defined for the di�erent climate class models, because the climate regions only stretch
over some latitudes and also di�er between the classes (see the map 6.1).
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GradientBoostingRegressor in the sklearn.ensemble module. The perk of using a random forest instead of a chosen

network is that the results are independent of the network structure.

The network used for the input importance analysis, shown in figure 4.1.1 was not the same as the final model. It contained

Figure 6.2: Neural network used for evaluation of permutation feature importance.

one convolution branch scanning the climate adjusted monthly weather sequences, a second convolution branch initialized with

average pooling layer taking the same weather series excluding the first month and producing pairwise averages (because an

average pool of size 2 was proven to be the best among the tested pool sizes: 2, 3, 4 and 6 respectively). The extracted features

coming from the two di�erent convolution branches were both flattened and concatenated with the other input variables: soil,

latitude and the climate variables C and N. The following sets of inputs were permuted separately,

• every weather sequence taken by the first convolution branch, one at a time,

• every average-pooled weather sequence taken by the second convolution branch, one at a time,

• every weather sequence and their the corresponding average-pooled version, one (pair) at a time,

• every soil variable, one at a time,

• all latitude dummy variables/indicator functions

• climate variable C

• climate variable N.

For every model taking one of the above listed feature permutations, the permutation feature importance error di�erence

resp. ratio measures - comparing predictions of the permuted data with those without permutation - were calculated and

analysed together with the models scores R2 and RMSE.

Details of how the input importance was analysed can be found under section A.6. It includes an example of how the

presented methods were applied.
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Implementation

This chapter presents the implemented surrogate model approach, motivations behind the emulator design and the chosen inputs

and outputs. An elaborate outline of the model search, including the decisions made, considered problem formulations and

re-formulations as well as the reasoning behind, is given in Appendix A.7. Details of the network design and hyperparameters

are summarized under Results and Evaluation 8.

The Universal Approximator Theorem proves the existence of a neural network that can approximate the function f(.)

(Goodfellow 2016, p. 499) which leaves us with the problem of deciding what the neural network should contain. Potential

model architecture candidates were tested and optimised through hyperparameter optimisation using either grid search or

random search in Talos. Also L1 penalization was used for fine tuning (see 5.2.8). When no good enough model was found and

when problems could not be solved by training-adjustments (see 5.2) nor through elaboration with inputs (A.7), I had to go back

and reformulate the model nstructure.

As was mentioned under 6.1, neural networks are heavily reliant on the data used during training. Regularization methods

can prevent overfitting, they do tend focus on the the normally behaving samples that make up the majority of the training

set and takes less notice of rare behaviours and relations. Even very large and complex networks had di�culty with predicting

extremes and distinguishing between modes. This was a problem already in the Bachelor’s thesis (Nilsson 2019), where only

one climate scenario was modeled and where the main variation (in terms of distribution and input-output relations) was that

between locations. This eventuated in exploring of domain aggregation, detailed under section 7.1, with the hope of creating

a model composition of disjoint models (see chapter 3) that could overcome the di�culty of modeling the unbalanced and

seemingly non-i.i.d data considered here.

7.1 Model Composition and Aggregation of Domain

As was mentioned in the precious chapter, the diversity in the global crop responses to shifts in climate - caused by variation in

impact of the di�erent climate scenarios at di�erent geographical locations, among which many diverge from the main stream

- can aggravate learning of general behaviours. If too complex of a network is needed in order to perform well for all scenarios,

then several models for separate domains may have to be constructed, e.g. a model composition. Such integrated composite

model can be trained similarly to the location based regression in the GGCMI study (see 1.1.1). Considering that even simple

models trained for individual grid cells can result in hundreds of thousands parameters, larger model domains are to prefer.

Worth taking into account is the fact that the vegetation models in the GGCMI study takes part in a larger linkage of

models (e.g. economic models) and should be adaptable also in the integrated modeling (see section 1.1). The integrated

assessment modelling (IAM) users can be interested in running simulations for a smaller set of grid cells, say a country, which

could possibly overlap several model domains. They would then have to use several models: one for for every respective model

domain. Therefore the predictions should be equally reliable in every grid cell Hence aggregation of model domain and a model

composition emulator may be advocated if the separate models are equally reliable - or at least not significantly di�erent.

One approach suggested in the GGCMI is to aggregate grid cells to latitudinal levels or bands. This leaves us with the

choice of width and limits of the latitudinal band 1. Though there is a clear relation between crop yield and latitude, data

analysis of simulated spring wheat suggests that crop outputs not necessarily behave similarly at the same latitude, so this type

of aggregation may be too rough.

1Latitudinal bands could be uniformly distributed or set in an automated fashion to find the optimal latitudinal bands
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The Köppen climate classification system, used to facilitate data analysis and input variable selection in the previous chapter

(see 6.2), was in the end also used for aggregation (see details 7.1.1). An even better classification in terms of similar behaviour

could perhaps have been derived from automated unsupervised clustering methods, like K-means, Gaussian Mixed Models or

Markov Random Field models. These Bayesian classification methods were not thought of until late in the process and was

therefore left for further research, so only a brief explanation of the Bayesian classification methods is given in Appendix B.4.

If the Köppen climate classification system proves to cluster the samples in an appropriate fashion in terms of modeling, it has

the advantage over the other Bayesian classification methods, in that it is easily comprehensible to the user.

7.1.1 Köppen Climate Aggregated Model Domain

The definitions and conditions used for this classification system are found under section A.4, together with examples of how

it can be applied on the data used in the LPJ-GUESS. As was stated earlier (6.2), if the Köppen climate classification were to

be based on the climate adjusted time series it would yield better clustering of similarly behaving groups. Furthermore, when

these four model domains were modeled separately (A.7), the evaluated model compositions outperformed networks trained for

the whole domain.

In order to conduct a reliable sensitivity analysis of how spring wheat responds to shifts in climate, simulations correspond-

ing to the same locations should preferably be modeled by the same model, hence be classified into the same Köppen climate

class. For this reason, it is probably better to classify solely based on the observed weather series. The resulting climate classes

may have larger within-group variation, but data analysis and comparison of the data belonging to di�erent climate classes

suggested that also this could be a good clustering method for grouping of the samples into domains of similarly behaving ones.

Splitting of di�erent climate change responses corresponding to the same locations could also be prevented if all climate

scenario responses at a location was included in a class as soon as a location was found in a class, or when the class contains

more than half of the climate scenario responses at that location. The former would result in (all scenarios at) some locations

being classified into several classes, but the latter would put all locations in the class to which the majority of the scenarios

belongs.

7.2 Selected Variables and Neural Network Architecture

A network taking using only the observed time series and introducing the cumulative changes measured by T and W in

separately (together with C and N), describes how the outputs would change with T and W at a location with the given weather

and soil characteristics within a certain latitudinal band, at any year - whereas the estimates from a network taking the shifted

time series could be interpreted as predictions of how the outputs would change with T and W if rain and temperature would

change equally much every month (or day if daily time series).

Initially branched networks was trained to map annual spring wheat by taking the climate variables C and N trough one

branch and scanning the time series of observed radiation (rsds), climate adjusted precipitation (p̃r) and temperature ( ˜tas)

in a separate convolution branch. 2 This was done both with and without the latitude and soil inputs (see A.7). When it

became evident that non of the tested network were able to properly model the crop response to changes along the T- and

W-dimension, the other approach described by equation 6.4 was tested instead. That is, networks using only the observed

weather data, instead of taking the climate adjusted time series, in which T and W are introduced separately, as the variables C

and N. These networks turned out to be much better suited for modeling of crop responses across the shifts in climate if the

shifts of T and W.

The Köppen climate classification system was used for aggregation of the model domain and resulted in a model composition

of four neural network trained for the disjoint climate classes A, B, C and D, all using the same inputs and outputs (where

spring wheat is of main interest), listed under 7.2 resp. 7.2.

2(p̃r) and ( ˜tas) adjusted according to the shifts in their respective climate variables (W) and (T) in accordance to description 2.2.1
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Selected Inputs

The inputs were selected using the methods presented in 6.5, as described in the outline on page 39, and resulted in the

following intpus:

• P̄i,y,m: mean(pri,y) in month m ∀ m = 1, 2, . . . 13,

• P (%0)
i,y,m: fraction of days in pri,y without rain during month m for ∀ m = 1, 2, . . . 13,

• T̄i,y,m: mean(tasi,y) in month m ∀ m = 1, 2, . . . 13,

• R̄i,y,m: mean(rsdsi,y) in month m ∀ m = 1, 2, . . . 13,

• lati = [1L1(i),1L2(i),1L3(i),1L4(i),1L5(i),1L6(i),1L7(i),1L8(i)],

• soili = [clayi, silti, sandi] as defined in 6.4,

• Cc, Tt,Ww, Nn

for all years y = 1, 2, . . . 29, locations i in the respective climate class region (A, B, C and D) and climate levels, or points

(c,t,w,n), in the CTWN hypercube.

Selected Outputs

When all four outputs presented under 2.1 were considered, the hope was partly that the number of days til anthesis and

maturity could help the convolution branch focus on important periods: That they could help the network distinguish between

the di�erent developing phases and in turn shred some light on the di�erences between the phases. E.g. to help figure out

whether some patterns mattered more during some period, like growing season or grain-filling phase, and less during others. If

nothing else, they could be of use for interpretation of the weights.

However, in the end only the the priority yield output and biomass was used, or to be more precise: the min-max range

scaled square root transformed yield and biomass,

• Ỹi,y,c,t,w,n =

√
Yi,y,c,t,w,n−min(

√
Yi,y,c,t,w,n)

max(
√
Yi,y,c,t,w,n)−min(

√
Yi,y,c,t,w,n)

: range scale square root of annual yield,

• B̃i,y,c,t,w,n =

√
Bi,y,c,t,w,n−min(

√
Bi,y,c,t,w,n)

max(
√
Bi,y,c,t,w,n)−min(

√
Bi,y,c,t,w,n)

: range scale square root of annual biomass,

for all years y = 1, 2, . . . 29, at all locations i in the respective climate class region and in every climate scenario (c,t,w,n).

One reason for excluding the seasonal outputs was that they are set to the same for all climate scenarios and are therefore

not representative. Secondly, they did not help the model to predict better with the shifts in climate. Inclusion of seasonal

outputs seemed to improve the estimates of the yield-outputs, in at least B and D climate classes, but for the other two classes

A and C, the network performed best with small loss-weights for the seasonal output (determining how much och the seasonal

outputs should be accounted for during training and adjustment of weights). It felt however reasonable to keep the biomass

variable - due to its similarity to the crop yield.

Final Input Branches

The figure below exemplifies a set of branches that could be used for the spring wheat emulator. These branches are in fact

the ones used in the final chosen model, but other branch compositions and designs were also considered and tested during

the model search.

The first branch in figure 7.13 does not perform any transformation of the received inputs, it is only an array holding four

inputs (in the final model these are the climate variables C,T,W and N). The second branch (in the final model taking the soil

variables) contains one dense layer with one node, thus producing only a single branch output. The third branch also processes

3Note that the network and the branches will receive tensors containing batches of multiple samples and these input tensors will thus be of
the same shape as the inputs shown in the figure, but will have an extra dimension for the batches - i.e. have the shape input shape× batch
size. So the inputs in the figure can be seen as input tensors with one sample, i.e. of shape input shape×1.
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Figure 7.1: Illustration of the four branches used in the final model presented under results. The dense layer node operation is
denoted

⊕
in the text, but the convolution node operation is denoted as in the figure with

⊗
.

the inputs (the latitude indicator variables described in section latitude, i.e. zeros and ones, in model presented) through a

dense layer, but here with two nodes together producing a total of two branch outputs.

The final branch is the convolution branch taking the time series.
⊗

symbolizes the convolution layer node operation and

the activation function transformation4. The convolution outputs are then (average) pooled, two by two, thus producing pooling

outputs of half the length. These are then column stacked and passed through a dense layer.5

As was illustrated in the figure, a branch can be anything from just a column stacking of inputs (as the branch taking

the climate variables in the figure) to a deep neural network (like the convolution branch). These branch outputs can then be

passed into the network simultaneously, by concatenating them as in figure 7.2 in the following section, or at di�erent stages.

The former was done in the finally chosen model presented under ??.

Considered Output Branches

Figure 7.2 shows the continued part of the branched network shown in figure 7.1, in which the branch outputs are concatenated,

passed through shared layers and then separated into k output branches. The k targets. This network could of course have

been designed in several ways - it could for example accept the inputs at di�erent steps along the network and the k output

branches could contain more layers than just one, as in figure 7.2.

4The one visualized in the figure is the convolution node producing the third convolution layer output array. The other four convolution
layer outputs each corresponds to a convolution node

⊗
with another set of kernel windows

5Also here, only one dense layer node operation
⊕

(the third) is visualized in the figure, but all five dense layer outputs were produced by
five di�erent layer nodes.

44



7.2. Selected Variables and Neural Network Architecture

Figure 7.2: A network concatenating the branch outputs from figure 7.1a

aThe network passes the inputs through two or more dense layers, before splitting into k output branches, each a containing a dense layer
with a set of nodes producing separate outputs, which in turn are passed through the final dense layers single node that produces the estimate
of its corresponding target value.

Initially when yield, biomass, anthesis and maturity outputs all were considered, the best estimates were retrieved by

networks with an initial generic part (often su�cient with one generic layer), after input concatenation, that then was split

into two branches: one containing layers shared by the yield and biomass output, followed by a subsequent splitting into the

task specific branches; and one similarly designed branch corresponding to the other two seasonal outputs. I.e. the network

contained generic parameters that were shared among all outputs, parameters that were shared only by the yield and biomass

(with the unit of measurement), parameters shared by the two seasonal output (with the unit of measurement) and respective

task specific parameters. The latter output branch, specified for prediction of length pre-anthesis and maturity season usually

required less layers and nodes than the other two.

It also became evident that no more than one finalizing task specific layer was needed in order to retrieve good estimates

of the respective outputs. Meaning that the two pairs of outputs could share parameters all the way until the final dense layer,

forming a regression equation of the outputs from the layer shared with the output it was paied with.
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Results and Evaluation

The Köppen climate classification system (defined in A.4) was used for aggregation of the model domain. The resulting model

composition of four neural networks corresponding to the disjoint climate classes A, B, C and D: trained to map the same inputs

to the range scaled square root transformed yield and biomass targets. Each climate-class model preprocessed the inputs listed

in 7.2 trough the separate branches, visualized in figure 7.1 - i.e. the monthly weather sequences where passed through a CNN,

both the input vectors containing indicator latitude variables resp. the observed soil ratios of clay, silt and sand, where passed

through a dense layer with two and one node, respectively, and the climate variable inputs C, T, W and N where passed directly

to the concatenation of the branch outputs. Also a sequential dropout (5.2.5) was used: it randomly excluded one of the four

weather time series during training, which helped both in terms of reduced overfitting as well as reduced canceling-out-e�ects.

Though the input branches were equally designed for all, they were retrained, i.e. optimised, individually for every climate class.

The part accepting the branch outputs were designed according to figure 7.1. This part was also weight-optimised separately

(as the input branches) and though most model design parameters were set to be the same, they were allowed to have di�erent

numbers of nodes in the layer receiving the branch outputs.

Figure 8.1: The architecture of the networka

aIt takes the four climate variables, the outputs coming from the soil-branch, latitude-branch and convolution-branch, and producing the
estimates of annual production of spring wheat and above ground biomass. All climate-class models are structured in this fashion, but di�er in
the number of nodes in the initial dense layer that takes the concatenated branch outputs

For simplicity the hyperparameter values shown in table 8.1 was chosen for all. When it became evident that the simulations

at locations in climate class B turned out to be much harder to model than the other classes, the focus shifted from fine tuning

of the individual classes, to a search for a simple model architecture, that worked well for all climate class models and especially

favouring the more demanding modeling of climate region B. This to facilitate performance comparison and model analysis that

can be of use for further research - despite of the fact that several types of hyperparameter combinations had shown to be

better suited for the three other classes.

Some hyperparameters were however allowed to vary between the climate class models and are presented in table 8.2,

where their respective optimal value is given for the separate climate class models. The total number of parameters in the

separate models are also displayed in the table.

The samples were split by location to form the training, validation and test sets, but the network only got to see samples

form seven randomly drawn years for each location and climate scenario as described in section 6.3. I.e. for every combination
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Model Parameters: Training Parameters:

Nr Filter Nodesconv Nodeslat Nodessoil Batch size Weight init.
Nr epochs

before LR red.
Nr epochs
before stop

5 5 2 1 8000 He Uniform 4 15

Table 8.1: Table of model hyperparameters and training-parameters common for all climate class models a

aThe parameters given here were proven to be suitable for all climate models, however not necessarily optimal for every separate model - at
least not according to the conducted hyperparameter optimisation described in the Model Search Outline A.7. The parameter combination that
favoured the more demanding modeling of climate region B were preferred over others, given that they also were good for the other climate
class models.

Class
Total

parameters

Model Parameters: Training Parameters:

NodesL1
LR init. LR red. L2pen L2penlat Loss wL(B) Dropout

A 374 8 (M) 0.0075 0.3 1e-04 1e-07 Huber0.3 0.7 0.25

B 404 10 (L) 0.0075 0.4 1e-03 1e-05 Huber0.3 0.3 0.25

C 374 8 (M) 0.0075 0.1 1e-04 0 Huber0.3 0.65 0.25

D 344 6 (S) 0.0075 0.3 0 0 Huber0.3 0.9 0.25

Table 8.2: Table of model hyperparameters and training-parameters optimal for the di�erent climate class models.a

anodesL1
is the number of nodes in the dense layer accepting the concatenated branch-outputs, LR init. is the initial learning rate, LR

red. the learning rate reduction factor (activated at stagnation during 4 epochs). L2pen and L2penlat are the L2-penalty in the dense layers
following the branch connections (i.e. the dense layer taking the branch outputs and the dense layers in the separate output branhces) resp.
the L2-penalty in the latitude branch. Dropout denotes the Sequential Dropout applied on the input series before passed into the convolution
layer. All parameters in the table were suggested by the thoroughly conducted hyperparameter grid search optimisation described at the end of
the Model Search Outline A.7.

of location and CTWN-combination only a quarter of the annual samples were included in the training and validation set.

The learning rate was set to be reduced at stagnation after 4 epochs (see the learning rate section 5.2.7), with a climate

class specific reduction factor (optimised through grid search) and the network training was stopped when the of the validation

loss of the high priority output yield had not decreased for 15 epochs (see Early Stopping 5.2.6). The choice of parameters

determining how patient the callback function EarlyStopping and the learning rate scheduler ReduceLROnPlateau should

be was based in previously observed loss trajectories (as described at the of the model search outline A.7).

After initial optimisation and fine tuning of the shape and scale parameter in the generalized loss function (5.1.1), determining

when and how the residuals should be penalized, it soon became apparent that the model performance was not highly dependent

on the choice of loss function. Yet, three loss functions of varying robustness was included in the final grid search (see A.7):

Pseudo-Huber loss with δ = 0.3, log-cosh loss and MSE loss (in declining order of robustness). The Pseudo Huber loss was the

best for all climate models and also for the majority of the hyperparameter combinations evaluated in the end. Even so, the

MSE and log-cosh loss produced almost as good model scores (in some cases better).

8.1 Model Evaluation

The performance measures R2 and RMSE were calculated for the network estimates of the range-scaled root yield Ytarget and

range-scaled root biomass Btarget as well as for the untransformed yield Yorig and biomass Borig on the original form. Table
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8.1. Model Evaluation

8.4 and 8.4 displays these yield and biomass scores, calculated separately for the test set and for all locations included in the

training and validation set , i.e. including those years not seen during training.

Class
Total

parameters

|Slocations|

Stest (Strain, Sval)

Ytarget Yorig

R2 RMSE R2 RMSE

A 374 7 (19 5) 0.85 (0.91 0.78) 0.081 (0.068 0.113) 0.84 (0.9 0.69) 0.706 (0.626 1.182)

B 404 7 (21 6) 0.65 (0.83 0.38) 0.095 (0.073 0.12) 0.66 (0.74 0.47) 0.759 (0.857 0.885)

C 374 16 (50 13) 0.78 (0.82 0.62) 0.06 (0.057 0.072) 0.73 (0.82 0.61) 0.963 (0.788 0.896)

D 344 10 (30 8) 0.87 (0.86 0.62) 0.048 (0.059 0.096) 0.86 (0.83 0.57) 0.456 (0.633 1.094)

All 1496 40 (120 32) 0.83 (0.87 0.69) 0.069 (0.062 0.095) 0.8 (0.83 0.63) 0.782 (0.741 0.995)

Table 8.3: Table of model scores for the range scaled root yield Ytarget and the untransformed simulator outputs annual spring
wheat Yorig . |Llocations| is the number samples in the set of locations Llocations. The third column contains the number of
locations included in each model and sample set. The model score for the unseen test set Ltest is the first value in the cells,
the other two values within the brackets corresponds to (Ltrain,Lval), i.e. are the model scores derived from the training
and validation set, respectively

Class
Total

parameters

|Llocations|

Ltest (Ltrain,Lval)

Btarget Borig

R2 RMSE R2 RMSE

A 374 7 (19 5) 0.85 (0.92 0.77) 0.08 (0.062 0.115) 0.83 (0.91 0.68) 0.877 (0.721 1.572)

B 404 7 (21 6) 0.71 (0.83 0.58) 0.09 (0.071 0.104) 0.66 (0.75 0.53) 1.193 (1.089 1.316)

C 374 16 (50 13) 0.8 (0.86 0.61) 0.064 (0.054 0.081) 0.79 (0.87 0.6) 1.145 (0.906 1.213)

D 344 10 (30 8) 0.86 (0.85 0.58) 0.046 (0.059 0.099) 0.87 (0.81 0.53) 0.516 (0.783 1.426)

All 1496 40 (120 32) 0.83 (0.88 0.68) 0.068 (0.06 0.096) 0.81 (0.86 0.61) 0.987 (0.886 1.348)

Table 8.4: Table of model scores for the range scaled root biomass Btarget and the untransformed simulator outputs total
above ground biomass Borig . Same as table , but here for the lower prioritized simulation output total above ground biomass.

The overall model scores derived from the model composition are relatively high. According to the coe�cient of determi-

nation R2, the complete model can explain over 80 percent of the variation of both yield and biomass in unseen data (i.e. the

test set that has not been used during training).

The performance measures derived separately for each climate model are also relatively high, but varies both between the

climate classes and between the training, validation and test sets 1. The high model scores are supported by the the histograms

1R2 and RMSE are better for the training set compared to the validation set, which usually is the case, since the weights are based on the
error surface created by the training loss. This can also be seen in the four climate model loss plots C.2 of the trajectories of the training and
validation losses for yield, biomass and their weighted sum, for all separate climate models, evaluated for every epoch, where the training loss
is lower than the validation loss. These figures also display the initial learning rates and the factors of how much they should be reduced with
when the loss has converged on a plateau. For the same reasoning, the network could not fit the test set equally well as for the training set.
However, the model scores are higher for the test set than for the validation set.

Di�erence in model scores between the test and validation set could be explained by di�erence in sample size or by di�erences in sample
behaviour between the two sets. Compare for example the distribution of yield and biomass in the test, training and validation, respectively, in
the histograms C.2 and C.2.

In addition, the model selection was solely based on how well the networks fitted samples from the test set, since it indicates how well the
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C.2 and C.2 displaying the outputs on the original form (measured in ton/(ha · year)) together with the (inverse-transformed)

network estimates (measured in ton/(ha · year)), for the the climate classes A, B, C and D. They show that the distribution of

the (inverse-transformed) estimates are similar to that of the actual targets.

However, in the scatter plot C.13, it becomes clear that the network always underestimates the spring wheat production for

the largest values, but for the other samples it is not as clear due to the vast number of samples - with 752 640 in the test set

. The more detailed figures C.14 - C.17 displays di�erent parts of figure C.13.

Further, the range of the residuals are quite wide which can be seen in the scatter plot C.18, where also the the residual

distribution for the separate classes are shown. Nevertheless, the vast majority of the residuals do not stretch further than the

standard deviation of the transformed wheat targets (±0.17). The visualized percentile lines, based on the residuals in the plot,

show that 95% lies within the interval [-0.162,0.133] and only one per mille grow beyond the [-0.311, 0.325].

The network’s estimate of annual spring wheat are plotted against the actual targets (measured in ton/(ha ·year)) in C.24.

The figure also displays a line marking the perfect fit together with a somewhat flatter fitted regression line. The outliers are also

here evident and seems to preserve structures. It is hard to detect whether there are any structures among the estimates closer

to the perfect fit and though the estimated regression line suggests that the overall trend of the estimates does not comply with

the true targets, it is not fully reliable since it is highly sensitive to outliers (as was illustrated in figure 5.2 comparing simple

linear regression modeling of samples with and without outliers).

Though the above mentioned could be said about the fitted line in C.20 where residuals are plotted against the targets,

it shows that of two independent x- and y-variables. But there are obvious structures in the residuals. The scatter plot looks

however less dissatisfying, in an overall sense, if analysed together with the residual distribution visualized alongside the plot.

Note that the lower limit of the residuals is initially expanding linearly as the estimates grow which is the result of using the

ReLU-function as a final wrapper (see 4.5).

8.2 Block-wise Analysis

It can be hard to interpret visualizations of large data sets and much can be canceled out or not be accounted for in the model

scores presented above, but there seems to be some explainable variation in the residuals. It might be easier to analyse the

estimates and residuals if they are blocked into sub-groups of di�erent variable combinations, after their respective factor level,

as was suggested in the chapter 6. Since the residuals showed that there’s room for improvement of the models, only a simple

analysis for the top priority yield estimates will be conducted here.

The models should preferably be equally reliable for every point in the domain. As mentioned, IAM users might want

simulations from e.g. from a country covering grid cells from several climate class regions which hence would be provided

by di�erent climate-class models. If the models are to produce estimates of every location with (about) the same precision,

then the model scores for each climate class model should be about the same. One could therefore start o� by comparing the

di�erent climate class models.

The kernel density estimation (KDE) of the underlying distribution of spring wheat residuals for each climate class can be

seen in figure 8.2. Climate class C and D seems to be the only classes with well behaving residuals, despite the tails (which

in relation to the other classes are not that long). The residual distributions for the other two classes are not as smooth. This

is probably due to that the final ReLU wrapper - setting all negative network estimates to zero - is activated more often in the

climate regions A and B with many LPJ-GUESS zero-yield simulations. Though the residuals in climate class B does not range

as far as the ones in class A, it looks like class A has more small residuals.

network performs for unseen data. This in contrast to the model scores for the training and validation sets, which does not say much about the
general performance, but rather reviles how well the network performs for those specific samples - on which the network weights have been
based on, or at least have been seen and accounted for during training.

That being said, model comparison solely based on the model scores for the test set can be somewhat misleading, since one model among a
set of equally generalized models can fit the considered test set better than the others. There is a risk that the chosen models by chance were
particularly suitable for the test set, hence the doubt the test score can fully represent the generalization of a neural network.
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8.2. Block-wise Analysis

Figure 8.2: Violin plot of Spring Wheat Residuals

The separate climate class model scores (presented in table 8.4) also indicate that the uncertainty is unevenly distributed

among the climate classes.

Comparison of the estimated residual distribution for every separate unseen location (i.e the locations in the test set) in the

violin plot C.22a also show that the performance varies between locations.

Differences Across Climate Variable Dimensions

More violin plots for the separate climate models are appended in appendix, where the residual distributions are estimated for

every separate climate variable level in the CTWN hypercube C.2.

The residual distribution for the climate model A and B varies along all climate dimensions C, T, W and N, but are seemingly

unchanged for some adjacent factor levels climate variable levels e.g the residual distributions are gradually changing along the

W-dimension and in model A but for C-levels, the residuals mainly behave di�erently in the first carbon dioxide level C360 (the

latter is also true for climate model D). The other two climate class models C and D show far less variation in the residuals along

the four climate dimensions. However, in the nitrogen violin plot, a more drastic gradual change of the residual distributions

can be seen along the N-levels.

There could be several explanations for why the residuals change more dramatically along the N and C dimension. Firstly,

N and C have far fewer factor levels. In fact, N and C, with three resp. four levels, combined have as many climate levels

as T and less than W with eight precipitation levels. Thus more samples contains the same N and C levels than T and W

levels, respectively. So during training of the network, each N and C level was fed into, or seen by, the network about twice as

many times, compared to the respective T and W levels. It could thus be argued that N and C run a greater risk of overfitting.

Secondly, precipitation and temperature evidently have large impact on spring wheat - which is why the complementary inputs

pr and tas are used in the crop simulation, so the network might therefore be more considerate in the modeling of those inputs,

since neural networks are prone to focusing on the most important features.

Though the aim is to model responses to shift in climate, somewhat poorer accuracy at some climate factor levels can

perhaps be tolerated, especially if greater uncertainty can be explicitly displayed and thereby accounted for in the sensitivity

analysis. This however only applies if uncertainty is distributed in a similar fashion at all considered locations (and therefore

also climate classes), hence not applicable for this model composition. The above mentioned seems to be less of a problem

along the time dimension. According to the violin plot C.22b for the respective climate models’ residuals that distinguishes

between years, the uncertainty does not vary that much between the years. Mainly the length of distribution tails appear to
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vary.

This type of comparison is important if we want the emulator to be useful for the AMI users, but the above mentioned

visualizations can only give an indication of how the model performance di�er between locations and other dimensions in the

sample space. As mentioned, it can be hard to detect dependencies and underlying explanations when working with such a

vast amount of data, where also the separate blocks contain many samples. Therefore a more statistically sound comparison

could be of use, once an emulator yielding good overall models scores has been found (whether the final emulator will consist

of several models with disjoint model domains, like the climate-class models, or whether it will be one single model able to

predict responses to shift in climate for all locations). ANOVA of blocked residuals could for example be used, in which the

analysis can be designed to distinguish between the subgroups of the years, locations and climate levels and compare the group

residuals (through the statistical tests used in typical ANOVA).
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Conclusions and Further Research

The model composition of separate Köppen climate class networks showed that sample aggregation can improve the estimation

of extremes and help the networks to better distinguish between modes, due to the reduced within-class variation. As a result,

the need for complex models was greatly reduced. Also less fine tuning of training parameters was required because of the less

complected variations within each of the disjoint model domains.

Above ground biomass is very similar to the spring wheat simulations in distribution (recall the min-max range scaled

distributions shown in figureC.2b), but was easier to model. It can be seen as an noise reduced version of the top priority

output spring wheat (at least by the network) which could be the reason for the seemingly improved estimates of the yield

outputs. Although the biomass outputs behaves better form a modelers perspective, the same sample dependencies and complex

output structures are preserved, hence biomass is also hard to model. Multitask learning of yield and biomass would certainly

not demands as many model parameters as if they were to be modeled separately.

The seasonal outputs number of days before anthesis and length of growing season was initially considered in the multitask

learning, but was later removed because they (in contrast to yield and biomass) were fixed for all CTWN climate scenarios.

This in spite of the results insinuating that the modeling of spring wheat was improved through the simultaneous learning of

the lower priority tasks. Even if they had been adjusted for the climate changes, it could be better to model them separately,

as they are very easily modeled (alone) and in need of only a few parameters. Whether or not the climate adjusted seasonal

outputs could help the network learn better, including them would most likely require many more model parameters than if the

seasonal and wheat mass outputs were to be modeled separately.

Though robust loss functions sometimes could improve model scores, they could not handle all types of outliers. This

is probably due to the di�erence in target distributions. The loss function can be linked to the target distribution and it is

reasonable to assume that the optimality of a loss function depends on the sample distribution. Varying Robustness in Loss

Function B.6 proposes how sample dependent robustness could be implemented in the loss function.

Many methods and adjustments implemented during training had positive e�ects on performance (for example the learning

rate scheduler, early stopping, weight penalties and He-initialization), but overfitting seems yet to be a problem.

Input Variable Selection

First and foremost, the tested networks conformed that if the climate variables W ans T were introduced separately, where only

the observed weather series were used as inputs, responses to changes in precipitation levels and temperature could be modeled

better. However, this implementation is harder to generalize for other climate models that only uses the climate adjusted time

series, for which the anomalies T and W would have to be extracted. An alternative could be to retrain the network composition

that uses the climate adjusted weather series p̃rw,i,y and ˜tast,i,y (eq. 2.2.1) (in accordance to the initial attempt 7.2) as well as

takes e.g. the averages of p̃rw,i,y and ˜tast,i,y , instead of T and W, in the separate branch with C and N.

That being said, the feature importance alaysis clarified how the inputs impacted the outputs and resulted in a suitable set

of inputs. Though soil and latitude seemed to be of less importance for predicting annual spring wheat, their inclusion did

improve the estimates.

The investigation of input variable importance was conducted when the seasonal output variables still was included in the

multitask models and were hence also accounted for in the final selection. On the other hand, the selection was mainly based

on the input e�ects on spring wheat estimates. Further, the network that was used for feature permutation was defined for the

climate adjusted time series, where only the climate variables C and N was passed in a separate branch. But this may not be
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that big of a concern since the input selection also was supported by the random forest and general data analysis.

If one were to re-do the analysis of input importance, the seven time series with monthly summary statistics defined in

6.4 could also be revised. Though extreme temperatures can be seen by shifts in the daily mean-values, the shifts might not

be fully representative of how extreme the temperature actually were, since the e�ect of an extreme event can be enhanced,

reduced or even canceled out by other daily events. For example, a rise in daily average temperature could be caused by an

overall warm day or be the e�ect of a high peak in temperature on an otherwise normal day. In retrospect, I think more useful

and diverse information could be gained from the lower quantile of min(tday) and upper quantile of max(tday) instead of

quantiles of average temperature mean(tday) in one day - or at least give a better representation of the extreme events like

high temperature assiciated with drought.

Alternative Network Architectures

The climate variable related dependencies in residuals needs to be better managed in the model. As mentioned in the outline

under A.7, when an extra layer was added before the output branching, the model residuals tended to be less correlated with

the climate variables. However, this did not uniformly improve model score.

An alternative approach could be to pass the climate variables through one or several dense layers before connecting them

with the other network branches, instead of directly concatenating the climate variables with the other three branches. Such a

network does not necessarily require more model parameters, since it could result in fewer nodes needed in the joint dense

layer. An example of such model is presented in Appendix B.1. Though it is only an extension of the above models - and not

fully optimised in terms of hyperparameters - it shows that an extra dense layer in the CTWN-input-branch can remove some

of the dependencies in the residuals.

Sample correlations could also be accounted for in the network, rather than assuming them all to be independent. A

Recurrent Neural Network (RNN) can achieve just that, if the input and output space is ordered correctly. Di�erent types of

RNNs that can handle serial correlations are discussed in appendix B.2.

Importance of Sample Selection

The dependencies between the samples may also be reduced by an appropriately designed sample selection. The importance of

sample selection was supported by the reduced overfitting and improved performance that resulted from the random exclusion

years 1. Such sample selection could be extended to the climate variable dimensions and possibly further reduce overfitting.

Instead of using an initial sample selection, a sequential design could be implemented, in which the sample selection can be

optimised iteratively along with model reruns. Bayesian optimisation is often used on black-box surrogate modeling and is

explained in B.3.

Aggregation

Annual spring wheat in the dry climate region B was much harder to model than those in the tropical (A), temperate (C)

and continental (D) regions. The most probable cause for this is the large variation of samples. In fact, climate class B is

composed by samples (locations) that satisfy the conditions for class belonging of A, C and D, reps (which are solely defined

by temperature statistics), but that also satisfy the extra conditions for being dry (defined by both temperature and precipitation

statistics). Though perhaps fewer distinguishable sample characteristics can be found in class B, than in the whole sample

domain, the samples in B are evidently too diverse for the network.

If appropriately aggregated, the separate models would not have to learn as many varying features and require less

parameters, which in turn even could result in fewer parameters, than if the whole domain (as any other domain containing

significant diversities) were to be modeled by one network. This e�ect could be seen when models were trained for the separate

climate classes derived from the climate adjusted time series p̃r and ˜tas (defined in 2.2.1), mentioned in the introduction of

1i.e the exclusion of three quarters of the years along the time dimension the sample domain, drawn independently for every respective
location and climate scenario
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section 7.1.1. Fewer model parameters and features could in turn facilitate interpretation of what is learned, especially if the

model domain is aggregated in a comprehensive matter.

The Köppen Climate Classification system is advantageous in that the classes are easily interpreted, but as it fails to cluster

the data into adequate classes. If it is to be used for emulation of the data considered, some adjustments are in order. Since

all scenarios in B are just dry locations in class A, C and D, respectively, it may be su�cient to exclude B and distribute the

samples among only these classes. If the dry climate samples di�er to much from the samples within A, C or B, an alternative

could be to also consider aggregating the grid cells into even smaller classes using the sub-classes of A, B,C and D, which would

result in classes that all are defined by both temperature and precipitation statistics.2

Another option is to perform unsupervised classification based on explanatory features. There exists several such classifi-

cation methods that can be implemented in an automated fashion. Three viable candidates are the briefly mentioned Bayesian

classification methods conditioned with various assumptions about the data. For more information see B.4.

As was mentioned in 7.1.1, if the Köppen climate classification proves to cluster the samples in an appropriate fashion - even

if slightly adjusted according to e.g. above suggested configurations - it has the advantage over other automated classification

methods (like those based on Bayesian inference) in that it is easily comprehensible to the user.

Whether or not the Köppen climate classification system is to prefer, temperature and precipitation proved to of help for

clustering of crop responses. Perhaps also the seasonal output variables also could provide information to base the clustering

on. Despite being excluded from the model, the seasonal variables do correlate with the crop responses and they did in fact

help the network learn, at least in some cases. Hence, they could be of use in aggregation of the model domain, e.g. in the

just mentioned Bayesian aggregation methods.

Notwithstanding the room for improvement, the neural network approach can evidently be used for emulation, especially

if sample domain classification is complemented with some sequential sample design, which most likely will increase the

probability of success for separate branched multitask CNNs combined into an integrated composite emulator.

2This however is not true for the polar climate class E, which only is defined by low temperatures, so if there are any samples that do
belong to class E one could just remove the lower temperature threshold in the other climate class conditions that distinguishes them from the
polar climate.
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Extensions

A.1 Pseudocode for Adam

Algorithm 1: The Adam Algorithm

Require: Stepsize lr (Keras default: 0.001)
Require: Exponential decay rate β1, β2 ∈ [0, 1) for 1st and 2nd moment estimates (Keras default: 0.9,
0.999 resp.)
Require: A small constant for numerical stability ε (Keras default: 1e-07)
Require: Stochastic objective function f(θ)
Require: Initial parameter vector θ0
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize time step)
while θt not converged do

t← t+ 1;
gt ← ∇θft(θt−1) (Get gradients);
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased 1st moment);
vt ← β1 · vt−1 + (1− β2) · gt � gt (Update biased 2nd moment);
m̂t ← mt

(1−βt1)
(Bias correction in 1st moment estimate);

v̂t ← vt
(1−βt2)

(Bias correction in 2nd moment estimate);

θ̂t ← θt−1 − lr · m̂t√
v̂t+ε

(Update parameters)

end

A.2 The General And Adaptive Robust Loss Function

The general robust loss function can be seen as smooth approximation of the Mean Absolute Loss function for a = 1 which

also resembles the Huber Loss, where the c - like the Huber Loss parameter δ determines the width of the less robust convex

part. When Huber Loss and the generalized function (with a equal to 1) both having 0.95 as their shape parameter they looks

just like the log-cosh loss function.

When a approaches 2, the loss function start to behave like the Mean Squared Error Loss function. Note that the general

loss equation is not defined when a is 2. Nor is it defined for when a is 0 or infinite. When implemented, the neural networks

will make use of the adjusted version of the general loss function presented in “A General And Adaptive Robust Loss Function”

Barron 2017, p. 10, that guard against the removable singularities of the general loss function and numerically instability for

when alpha close to 0 and 2.

The "adaptive" part of this loss function was not used in this study. This generalized loss function was in fact designed

for Variational Autoencoding (VAE) of images (where the loss function is that of the input data and the encoded-decoded

data), in which the adaptive part comes in naturally in the intermediate sample generation from the encoded latent space.

What distinguishes this general and adaptive function from other loss functions is the additional shape parameter α. VAEs are
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further explained under section VAE for Compression of Weather Series B.5, that focuses on how VAE can be applied using this

generalized and adaptive robust loss in general and in the surrogate modeling of crop responses to climate change in particular.

A.3 Adaptive Upper Threshold in Final Wrapper

The adaptive version of generalized robust loss function (presented in 5.1.1) penalizes negative and positive residuals equally (see

extended explanation in B.6). However, the distribution of annual spring wheat is heavily right tailed at most locations, where

some potentially influential, but likely miss-representative, outliers are far higher than other values. It could therefore be of

interest to introduce an outlier-limit preventing the final network estimates to grow larger than a given threshold. If applied, the

best estimates for samples beyond the threshold would be the actual threshold and hence restrict the related losses from never

decreasing further than the di�erence between the threshold and the actual target. When prohibited from improving estimates

of the outliers (beyond the given threshold) in this manner, the network can only reduce the loss through betterment of the

other estimates (below the given threshold).

If the distribution of samples varies between groups and all samples do not seem to belong to the same population, the

outlier limit can not be uniquely determined. As for the scale and shape parameters in the adaptive generalized loss function

mentioned above, this threshold could be allowed to take di�erent values for di�erent samples. An adaptive threshold could be

suitable for the type of data considered here, which can be blocked into subgroups where the variation is smaller within than

between groups.

By dividing all training samples into groups by similarity (e.g. by location and climate scenario) an outlier threshold can be

calculated for every sample group, according to a chosen formula, e.g. 6.1, and stored in a vector. The adaptable threshold can

then be implemented by constructing a threshold vector as an input of the same shape as the target tensor. So every entity in

that input tensor holds the sample specific threshold based on the distribution to which the output, in the corresponding entity

in the target tensor, belongs. Note that the test-set is assumed to be unknown, which precludes calculations of a test-sample

specific threshold. Hence this threshold should only be applied during training. The thresholds could also be learned during

training (like the adaptive α vector in the above mentioned PReLU activation function).

There exist no such activation layer in Keras, but it can implemented using the Lambda layer that allows for custom

function transformations. (Keras, Core Layers).

A.4 Köppen Climate Classification System

Köppen climate classification system is by the Encyclopædia Britannica described as a "widely used, vegetation-based, empirical

climate classification system developed by German botanist-climatologist Wladimir Köppen. His aim was to devise formulas that
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A.5. Pseudocode For the Blockwise Sample Selection

Class Conditions

A (tropical) min(Ty) ≥ 18°

C (temperate) −3° < min(Ty) ≤ 18° AND max(Ty) ≥ 10°

D (continental) min(Ty) ≤ −3° AND max(Ty) ≥ 10°

E (polar) max(Ty) ≤ 10°

B (dry) 0.7 ·
∑
Py ≤

∑
Ps AND P̄y < 20 · T̄y + 280

OR 0.7 ·
∑
Py ≤

∑
Pw AND P̄y < 20 · T̄y

OR 0.7 ·
∑
Py >

∑
Ps AND 0.7 ·

∑
Py >

∑
Pw AND P̄y < 20 · T̄y + 140

Table A.1: Köppen climate classification conditions for main classes A (tropical), B (dry), C (temperate), D (continental) and E
(polar).a

aClarification of B-conditions: The first condition for B is stating that 70% or more of annual precipitation falls in the summer half of the
year; the first condition in the second alternative (second row in class B) states 70% or more of annual precipitation falls in the winter half of
the year; and the first two condition in the third alternative means neither half of the year has 70% or more of annual precipitation.

would define climatic boundaries in such a way as to correspond to those of the vegetation zones (biomes) that were being mapped

for the first time during his lifetime.” (Arnfield 2020).

It divides the world into five main climate classes: tropical (A), dry (B), temperate (C), continental (D) and polar (E). Their

distribution is shown in figure 6.1.1 The class conditions for A, B, C, D and E are defined using temperature and precipitation

summary statistics that are either monthly, annual, taken from the summer months or winter months. Here the Kö summary

statistics are based on the observed LPJ-GUESS input time series tas and pr between the years 1981 and 2009, using the

conditions defined in the Encyclopædia Britannica (Arnfield 2020).2

The conditions for these main five categories are specified in table A.1. T stands for air temperature and P for precipitation.

The subscripts y , s and w denote that T or P is a vector with monthly averages over a year (y), a vector with monthly averages

during the summer half of the year (s) and a vector with monthly averages during the winter half of the year (w), respectively.

The summer months and winter months are interchanged between the Northern Hemisphere (NH) and Southern Hemisphere

(SH): April-September are the summer months in NH and the winter months in SH; October-March are the winter months in

NH and summer months in SH.

The conditions for class-belonging to A, C, D and E are only based on temperature, whereas the class dry B is defined by

both precipitation and temperature. Note that the conditions for A, C, D and E defines four disjoint sets that make up the whole

globe, so all locations that also satisfy the conditions for the dry class B will be classified as such. In other words, locations in

class B will also satisfy one of the other classes conditions (solely based on temperature).

Non of the locations, at least not the 192 considered here, are classified as polar climate E - neither for when the observed

time series of precipitation and temperature nor for when the climate adjusted time series are used.
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Algorithm 2: Sample Selection

Require: Sample set A =
{

(c, t, w, n, l, y)all : c ∈ [360, 510, 660, 810], t ∈ [−1, 0, 1, 2, 3, 4, 6], w ∈
[−50,−30,−20,−10, 0, 10, 20, 30], n ∈ [10, 60, 200], l = 1, 2, ..., L, y = 1982, 1983, ..., 2009

}
for (c, t, w, n, l, :)all ∈ A do

Draw a set of 7 unique random years {ỹ1, ỹ2, ..., ỹ7} from {1982, 1983, ..., 2009};
(c, t, w, n, l, 1)subset, ..., (c, t, w, n, l, 7)subset ← (c, t, w, n, l, ỹ1)all, ..., (c, t, w, n, l, ỹ7)all

end

A.5 Pseudocode For the Blockwise Sample Selection

A.6 Analysis of Input Variable Importance

This section exemplifies how the analysis of input importance was conducted for climate class A.

Pearson Correlation and Data Analysis

The Pearson correlation matrix A.1 show that yield and above ground biomass resp. maturity season and pre-anthesis phase are

strongly correlated, but also that yield and biomass are somewhat correlated to the season length variables.

Figure A.1: Person Correlation of outputs.

One can also see that the absolute Pearson correlation coe�cient matrices A.2 of the monthly weather series corresponding

to yield and that corresponding to biomass are very similar. As for the case of the season outputs. Initially the network was

separated into four output branches, but these can support the argument for having an initial separation into two branches -

one shared by yield and biomass and the other by the season outputs - before separating the pairs at the final step, i.e. that

yield and biomass resp. the seasonal outputs, share the same networks until the final layer.

It can also be seen that can see that mean R correlation coe�cients, corresponding to R̄i,y,m are the smallest for all

outputs and that P (%0)i,y,m (%W==0) has largest correlation.

Another thing to notis is perhaps the similarities between the Pearson coe�cients corresponding to T̄i,y,m (mean T) and

T
(Q10)
i,y,m (Tq10), resp. P̄i,y,m (mean W) and P (Q90)0i,y,m (Wq90), suggesting it may be redundant to include all of these

1The Köppen climate classification system can also divide the five climate groups A, B, C, D and E into smaller sub-groups, but those will
not be used here (Arnfield 2020).

2The Köppen climate classification system has been updated several times. A new version with conditions adjusted for the second half of
the 20th century was presented in the paper "World Map of the Köppen-Geiger climate classification updated" published in Meteorologische
Zeitschrift (2006).
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Figure A.2: Absolute Pearson correlation coe�cient matrices of the time series for the four separate outputs.

variables.

The same thing could be concluded from the plot and histograms in A.3 of the three T-variables and the three W-variables

(all normalized). The W- and T- quantiles seem to follow similar distributions as their mean-variables and %W==0 instead

mirrors the behavior of the mean.

Permutation Feature Importance

Permutation Feature Importance was conducted according to the description in section 6.5 and the main results are presented

below. The tables in A.4 display how much the performance was reduced for di�erent permuted features.

The metrics used for importance compaison of the respective inputs where R2, the root mean sequared error (RMSE), as

well as the permutation feature importance measures Fdiff and Fratio that compares the residuals Error(Y, f(Xperm),

from the network in which one input in X have been swapped (Xperm), with the residuals Error(Y, f(X)), when all inputs

where accounted for. These are defined below.

Fdiff = Error(Y, f(Xperm)− Error(Y, f(X)) (A.1)

Fratio =
Error(Y, f(Xperm)

Error(Y, f(X))
(A.2)

The tables A.4 suggest that %W==0 is the most important variable and that R never is the most important variable, but

neither the least important. This might be due to it being the only variable representing radiation - in comparison to W and T

having three variables each. Also the T quantiles seem to be of importance (though Tq10 less so for yield and biomass) while

mean T seems to be of more importance.

The permutation results also show similarities between yield and biomass and between maturity season and pre-anthesis

phase. For example, in the second table it can be seen that the permutation that has the largest e�ect on the season outputs

is that of the latitude dummy variables (i.e. in which latitudinal interval the observation lie in), but seems to have quite little

e�ect on the yield and biomass estimates.

Further, permutation of N and C have a very large e�ect on both yield and biomass, in fact the largest e�ect among all

variable permutations (but no e�ect on the model estimates of maturity and anthesis due to them not being climate adjusted)
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Figure A.3

Gradient Boosting Tree

The feature importance according to a gradient boosted tree regressor trained to estimate annual spring wheat.

In the second figure focusing only on the time series could tell us which months in the time series that are of most

importance. If compared with the Pearson correlation matrices we can see that the months the regression tree finds most

important also are highly correlated with yield (e.g. W-variables: more importance and correlation around the end of the first

half, T-variables: more importance and correlation around the beginning of the second half).

The gradient boost importance plot also show that %W==0 is most important. It is also the variable that correlates the most

with the output values as well as the one that seemed to be the most importance according to permutation feature importance

test.

The radiation entities in R also seem to be of importance - perhaps more so than expected in the the Pearson correlation

analysis showing very small correlation between radiation and the output variables. But this result is in line with the permutation

feature importance test. There might thus exist an important relation between R and the outputs - though not a simple linear

correlation. Besides, in contrast to temperature and precipitation, only one input sequence provides information about radiation.
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Figure A.4: Results from permutation of every weather sequence and their the corresponding average-pooled version, one (pair)
at a time in one table and the e�ects of permuting the other input variables separately.

A.7 Outline of Model Search

This section presents a detailed outline of model search, including the decisions made, considered problem formulations and

re-formulations as well as the reasoning behind.

Initial Model Search

I started of by training a branched CNN on all samples. The network took the climate variables C and N trough one branch and

scanned the climate adjusted weather time series in a separate branch, containing one convolution layer - where precipitation

(pr) and temperature (tas) was adjusted according to the shifts in their respective climate variables (W) and (T) in accordance

to description 2.2.1. Initially a large model was tested, with many nodes, and was tuned through several smaller grid searches,

comparing di�erent three-way-combinations of network hyperparameter.

When no good model could be found I decided to make use of more of the LPJ-GUESS inputs: latitude and the soil

data. Tried models where latitude only was range-scaled, with the range-scaled absolute value of latitude (due to the almost

symmetric relation between latitude and spring wheat) as well as with latitude dummy variables defined in section Latitude as

Indicator Function 6.4. I investigated the new models in a similar fashion, but also those left much to be desired.

The problem with fitting extremes and distinguishing between di�erent modes (which had been discernible also in

the bachelor’s thesis, where spring wheat at the considered locations were modeled for only one climate scenario - even when

using di�erent kinds robust resp. sensitive versions of the generalized loss function) was yet to be handled. So I searched for

strategies to overcome multi-modal and long-tail problems.

One idea was to model mean annual spring wheat and shift form mean separately. The shift from mean was also very

skewed and their distributions displeasing, form a modeling perspective, so I figured it was better to use only one model to
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Figure A.5: Input feature importance according to a Gradient Boosted Random Forest. First show that of all variables and the
second includes only the importance of the time series

predict yield on the original form, instead of using two models which would require more storage. The above mentioned

di�culties eventuated in elaboration of various inputs as described in the following section.

Elaboration of Various Inputs

The Köppen climate classification system, I later found, is often used in crop related problems (see A.4). Having seen that

the first, second and third level conditions in Köppen climate classification system could divide the samples into smaller groups

of similarly behaving ones - which could be seen by e.g. plotting their distribution annual spring wheat as well as when

investigating their relation to their corresponding inputs - I decided to make use of the definitions and summary statistics

conditioned on in the classification system. I started o� by taking the following 12 summary statistics:
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Rain(scenario,location,year):

• Total rain during summer resp. winter

• Driest month in summer resp. winter

• Wettest month in summer resp. winter

Rain(scenario,location), same for all years:

• Expected total rain during a year (sum of rain in a year, averaged over 28 years)

Temperature(scenario,location,year):

• Coldest month in summer resp. winter half of the year

• Warmest month in summer resp. winter half of the year

Temperature(scenario,location), same for all years:

• Expected monthly average temperature (temp averaged over 28 years)

where summer and winter is defined as in section 6.2

The networks tested cared less about the daily time series and those of 5-, 10- and 15-daily averages when they also

were passed some of these weather summary statistics (together with the previously mentioned inputs). As soon as the nodes

and activations in the network were assigned small L1-penalties, most, if not all, weights connected to to the time series were

set to zero in almost all of the networks trained.

The monthly time series presented in 6.4, stretching over almost the whole month before planting and the following

year (so that it covered the longest growing season), was interchanged with the Köppen-variables and the shorter time series.

Notwithstanding the prof the weather statistics being useful, they were derived from Köppen climate conditions, hence perhaps

not the optimal inputs. Monthly time series on the other hand allow the network to automatically decide which features that

are of importance.

The reason for including some days before planting and the vegetation state (instead of letting the time series span over the

longest observed anthesis period as before) was to make use of the information that in the previously tested networks showed

to be of importance as well as to get some insight in how the importance of extracted features from the time series varied over

time and between di�erent periods (like before and after planting, before and after heading, etc.).

Advantages of using larger averages over smaller: the climate adjusted daily series were shifted and scaled uniformly

over the days according to the assumed annual change and are perhaps not fully representative of how the actual weather

would behave. By taking larger averages of these possible unrealistic transformed inputs, the resolution is reduced and thus

also the impact of any small scale deviations from reality. Another perk of lower resolution is that sample specific noise (e.g.

for a specific year and/or location) can be hidden, or averaged out, in the monthly summary statistics, which can prevent the

network form overfitting.

Additional Outputs

Instead of re-doing the time consuming hyperparameter optimisation of the network taking the newly defined inputs (in A.7),

which even then probably could be further improved, if not completely unsatisfactory - I tested adding more outputs as well.

In light of what multitask networks can do for training and generalization purposes, as explained under section 4.4, as

well as that the modeler can decide how much that the network should account for the separate tasks - I figured I could expand

the network with the new inputs to a multi-task network before optimising it and fully evaluating the new inputs. Initially the

idea was to train a multi-task neural network to model yield as well as classifying it to sub-intervals:

{y : y = 0}, {y : y ∈ (0, yextreme)}, {y : y ∈ [yextreme,∞)} (A.3)

but that would not solve the long-tail problem. An option could be to use more intervals (however, the first would still contain

the vast majority of the samples, which may or may not be a problem - at least the other sub-intervals will di�er less in size,
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but probably still be larger than the one containing the extremes)

{0}, (0, y1], (y1, y2], . . . , (yn−1, yn = yextreme), [yextreme,∞) (A.4)

Such network would perform both regression (of LPJ-GUESS yield simulations) as well as classification, where the first mentioned

task is to model one continuous output and the latter is to predict probabilities of class-belonging.

Instead chose to make use of the lower prioritized simulator outputs that actually are of interest - Total above ground

biomass, Anthesis date, Maturity date. These can all be formulated as a regression problem.

Annual spring wheat, total above ground biomass, anthesis date and maturity date are clearly related (both in relation

to each other and input-wise) but are measured in two di�erent units. Yield and biomass are measured in ton/(ha · year)
and the other in number of days, hence opening for analysis of how the network benefits from modeling outputs with shared

metrics and outputs measured in di�erent units. Further, yield and biomass are similarly distributed - and the same applies to

the other outputs. The distribution of one type of output looks like a shifted version of the other measured in the same unit

and their min-max-range transformations are almost equal in distribution.

Model Composition of Kppen Climate Models and Input Selection

Investigation of input importance was conducted according to section 6.5 with separate sample analysis for the four climate

classes A, B, C and D derived from the climate adjusted and .

Discussions regarding aggregation the model domain, mentioned in 7.1 fed the idea of designing an the emulator as a

composition of domain specific sub-models. The previous analysis involving the Köppen climate classification system showing

that the yield samples could be divided into smaller groups of similarly behaving samples lead to some testing of separate

models predicting crop for the di�erent climate classes - and they proved to be much better at producing good estimates.

The aggregation strategy used for those models tested were the one allowing for di�erent climate scenario samples at the

same location to be separated into di�erent climate classes (among A, B, C and D), mentioned in section 6.2. If these four

model domains were modeled separately, the total number of network parameters required for these climate-models together

to achieve good model scores, were about the same as the number of parameters needed for one network used for the whole

domain to get as good of a model score. When the di�erent network estimates where visualized together with the targets, it

became however apparent that the estimates produced by the large network were much worse, due to it not being able to e.g.

distinguish between modes. The residual analysis also supported that when the di�erent climate-class locations were modeled

separately, much better estimates could be produced.

I thereafter decided to focus on creating four di�erent multi-output network, one for each of the main climate classes

A, B, C and D (not E because no samples was satisfied those conditions), but using the other classification strategy based on

only the observed precipitation and temperature (and not the climate adjusted versions) that sets all samples related to a specific

location in the same climate-class.

When I trained models for each separate climate class, I only included the most important features (according to previous

data and feature analysis) for the climate class considered - which worked fine in terms of model performance - but for

simplicity I later had the four models take the same inputs

Final Changes and Hyperparameter optimisation

The above reformulations and data analysis narrowed down the options to the set of architectures for branched multitask neural

networks, given that the emulator were to be constructed as a model composition of four models with disjoint climate class

domains. Continued model analysis and tuning though hyperparameter optimisation lead to the decisions and considerations

below.

• Removed the date-outputs. For the reasons mentioned at the end of section 7.2.
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• Change of inputs. Initially I chose to introduce the change in T and W by shifting the time series according to 2.2.1,

but no tested network were able to properly model the crop response to changes along the T- and W-dimension. The

network proved to predict better across the shifts in climate if the shifts of T and W were introduced separately, as the

climate variables C and N and only the observed weather series were used as inputs and - instead of using the climate

adjusted time series.

• He uniform weight initializers. The networks tested sometimes stopped learning, especially when extra layers were

added. He weight initialization, both for when assuming normal and uniform distribution, solved this problem. He

initializers are described in section 5.2.3.

• Hyperparameter optimisation using using first probabilistic search in Talos of several network structures. Tested using

several dense layers after the input concatenation with di�erent distribution of the node - equally many nodes in all

layers, nodes descent in consecutive layers, to di�erent extents. The results suggested networks with either a single layer

or with several layers with brick-shape, i.e. with equally many nodes in each layer.

The narrowed down set of networks where then compared through a grid search. Among the considered hyperparameters

one to four number of dense layer before splitting into two output branches was compared, with several combinations of

number of nodes (mainly brick-shape, but also with some node decent in following layers). Also here brick-shape tended

to be best. Often one single dense layer could yield equally good or even better model scores than the networks with

several layers - however, when the residuals were analysed, the multiple-dense-layered networks (with approximately the

same number of model parameters) often seemed to account for more climate-variable dependencies, even when they

had lower overall model scores. For simplicity, only a one such dense layer was used in the climate-networks.

• Adaptive upper threshold in final ReLU wrapper. I constructed an adaptive threshold based based on the quantile

threshold, as described in section 5.2.1, for the simulated annual yield between 1982 and 2009, at each location and

climate scenario, separately. Then included optimisation of the threshold parameter c (together with larger grid search

considering other parameters as well), that involved a c-parameter sweep between 0.5 and 3 as well as 0 (no upper

threshold). Sometimes inclusion of threshold lead to better model scores (mainly for. B-climate class models when

tested), and sometimes not. Better results could perhaps have been attained if other thresholds (than the Tukey) had

been defined. I did not investigate this any further, due to time restrictions and no obvious improvement, and choose to

go on without the threshold.

• Exclusion of some yearly observations. To prevent overfitting I randomly selected yearly observations from every

respective location and climate scenario, as described in section 6.3. This exclusion of random samples removed much

of the sequential dependence between the consecutive samples and really improved the generalization.

• 8000 samples in one batch. Batch size turned out to not be of that great importance in terms of performance (it has

of course an e�ect of the training time). The batch size was set to 8000 for all climate classes. Smaller batches often

resulted in longer training and a loss trajectory that never stopped oscillating (though, as expected, less and less for

each epoch). A smaller batch size (of around 2000) sometimes resulted in improved overall model scores, though not by

much.

• Pseudo Huber loss with δ = 0.3 and handling of learning rate. Grid search evaluating networks using the losses

MSE, log-cosh and pseudo Huber with δ = 0.3, for di�erent initial learning rates and factors of how much they should

be reduced with when the loss has converged on a plateau (see the learning rate section 5.2.7). Having seen the typical

trajectory of losses computed after every epoch from previous runs (using a batch size of 8000), where the validation loss

often started to increase if the network were not stopped soon enough (see Early Stopping 5.2.6), reduction of learning

rate when the loss has not changed (in any direction, i.e. not even oscillated) was set to be allowed after four epochs

and network training was set to be stopped when the loss had not been reduced for 15 epochs.
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Suggested Methods for Further Research

This section proposes alternative methods that can be of use for surrogate modelling of annual crop responses to changes in

climate. The first section B.1 presents results from, in the mentioned Conclusions and Further Research9 mentioned, extended

model accounting for relations between the climate variables C,T,W and N, in the CTWN-branch. The second section B.2

describes another type of neural network than the one used here, that better handles adjacent dependencies and possibly

could make use of the structural dependencies in the sample domain. Surrogate modeling can be comprised of more than just

model design, like sample selection and experimental design. Methods surrounding these other parts of surrogate modeling are

presented in section B.3 and B.4. The final three section B.5, B.6 and ??regards the network training and presents methods that

can be of use for especially this emulation problem.

B.1 Model Climate Variables Separately Before Concatenation With Other Inputs

These models are based the models presented in the result section and have been re-trained but not fully optimised in terms

of hyperparameters. Only the hyperparameters L2-penalty and number of nodes in final dense layer before separation into two

output branches and the new hyperparameter number of nodes in the additional dense layer in the CTWN-branch, have been

optimised through a small grid search. That is, the models contain the optimal values of the hyperparameters just mentioned,

given the other hyperparameter values, like e.g. number of nodes in the dense layer in the convolution branch, soil-branch and

latitude-branch. Thus, there may exist better hyperparameter combinations and these could be found through optimisation of

all hyperparameters (including both the network hyperparameters and training parameters as loss function and initial learning

rate) simultaneously.

Class Param Paramext Param− Paramext R2 R2
ext

A 374 368 6 0.84 0.85
B 404 319 85 0.66 0.71
C 374 388 -14 0.73 0.77
D 344 370 -26 0.86 0.84
all 1496 1445 51 0.8 0.82

Table B.1: Comparison of number of parameters and metrics

The two models are compared in table B.1. Not that the new model composition extended with an extra dense layer in the

nodes actually contains fewer model parameters than the presented one. The improvement isn’t that great and is hardly visible

in the violin plots comparing the two models’ KDE residual distributions grouped by the climate classes C.3 and by location

and year C.25, respectively. But then again, the extended models did improve despite not being fully optimised in terms of

hyperparameters.

B.2 Multi-Directional Recurrent Neural Networks

One should perhaps account for sample correlation, rather than assuming them all to be independent, as was done here. One

could for example use a type of Recurrent Neural Network (RNN) called Long Short Term Memory network (LSTM), to account
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for the serial correlation between the consecutive annual yield samples.

An alternative is to to construct a network similarly designed as a bi-directional recurrent neural network for consecutive

samples, but extended to operate across more dimensions - i.e. some kind of Multi-Directional Recurrent Neural Network

(M-RNN). Such a network could operate across e.g. the climate variable axes. But it could also operate across latitude and time,

or perhaps extend it to a longitude dimension and in that way make use of the dependence along these dimensions. The many

possible blocking factors that could be used for this data, enables several possible M-RNN set-ups.

B.3 Bayesian optimisation

A wise sample selection may help overcome the di�culty of modeling the data considered - in which there are dependencies

between samples, multiple modes in the distribution of all spring wheat simulations and varying levels of skewness. As was

mentioned in chapter 3, Bayesian optimisation is a sequential design approach often used in global optimisation of black box

functions, where only the inputs and outputs are assumed to be known - as assumed here for the simulator LPJ-GUESS.

The modeling di�culties of the unbalanced and seemingly i.i.d. data considered in this project was mentioned in chapter

7. I.e. that neural networks are heavily reliant on the data used during training and though regularization methods can prevent

it from overfitting, they tend do focus on the the normally behaving samples that make up the majority of the training set and

takes less notice of rare behaviours and relations. Further, the statistical power is reduced due to the lower number of examples

and the rare samples are also less accounted for during training, since their related errors easily can be evened out in the

cumulative loss and merely be read as noise. For the same reason, intra diversity within minority sample groups may be even

harder to detect.

Bayesian optimisation can trough certain acquisition functions account for both exploitation of samples proven to be

awarding and exploration of uncertain samples. The acquisition function is optimised over the emulator to get the next query

point i.e. for which point in the domain we should evaluate next. This sample selection altered with emulator re-training can

iterates until for as long as needed.

For more information see A Tutorial on Bayesian optimisation of Expensive Cost Functions, with Application to Active User

Modeling and Hierarchical Reinforcement Learning (Brochu and Freitas 2010)

B.4 Bayesian Classification of Model Domain

Unsupervised Bayesian classification methods can be used for aggregation of the model domain. Below are three such methods

presented in the order of growing complexity: K-means, Gaussian Mixed Models and finally a Markov Random Field model

(MRF).

B.4.1 K-means

Given a set of explanatory variables for each sample and the specified number of classes to be created, K-means will try to

cluster the samples into groups s.t. the within-cluster sum of squares, i.e. within-group variance, is as small as possible. (Kriegel,

Schubert, and Zimek 2017, ch. 3.1.2)

K-mean assumes

• a latent field of class belongings, zi ∈ {1, . . . ,K}

• spatial independence, p(z1, z2, ..., zK) =
∏K
k=1 p(zk)

• equal abundance of each class, i.e. that p(zi = k) = πk = 1
K

is constant,

• Gaussian data distribution, yi|zi = k ∼ N(µ,Σ)

The unsupervised clustering is done by repeatedly assigning classes using maximum a posteriori classification, that is

where convergence is reached when assignments no longer change.
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Require: initial k-means, or cluster centres (could be chosen randomly)
while not converged do

Assign all data points to their nearest cluster centre;
Update the cluster centers to the calculated mean within each cluster.

end

B.4.2 Gaussian Mixed Models

Gaussian Mixed Models also assumes spatial independence, bug are slightly more advanced in that they allow for di�erent class

properties, namely:

• di�erent abundance of each class, p(zi = k) = πk

• di�erent parameters for the data distribution of each class, yi|zi = k ∼ N(µk,Σk)

• spatial independence, p(z1, z2, ..., zK) =
∏K
k=1 p(zk)

Determining the class belongings and parameter estimates given observations, z,θ|y, is hard to do by a maximum likelihood,

due to a complicated posterior distribution. Instead, one uses Gibbs sampling, which is Markov Chain Monte Carlo technique.

The idea behind an MCMC is to sample a Markov Chain with the desired distribution as its stationary distribution. It is even

more convenient to sample from the conditional posteriors, p(zi = k|θ, yi), p(θ|zi = k, yi), which is exactly what is done in

Gibbs sampling. The algorithm can be summarized in the following steps

1. Sample the class belongings, given parameters, p(zi = k|θ, yi)

2. Sample the class proportions, π|z

3. Sample the class parameters (given class belongings and class proportions), p(µk,Σk|zi = k, πk, yi)

B.4.3 Markov Random Field Models

Markov Random Field models (MRF) also takes spatial structure into account. It is a complex model that involves di�erent

sampling schemes and will not be explained in detail here.

They assumes a latent Markov structure

p(xi|{xj , j 6= i}) = p(xi|{xj , j ∈ Ni})

i.e dependence between a point and its neighbours.

In short, inference for an MRF is obtained through

1. sampling from the posterior MRF given parameters, p(xi|xj , j ∈ Ni, y, θ)

2. sampling of the class parameters, µk,Σk

3. sampling of the field parameters, α, βk

and the model allows for investigation of the e�ects of

• the choice of neighbourhood, Ni

• the e�ect of a constant β v.s. a class-varying βk

where β provides information of how similar (or di�erent) neighbouring pixels tend to be. E.g. β > 0 would mean that

neighbours strive to be equal.
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B.5 VAE for Compression of Weather Series

Variational Auto Encoders (VAEs) can pass the inputs through an encoder that produces new feature representations of the

inputs, which in turn gets passed into a decoder that preforms the reversed process. If used for compression of the weather

time series pr, tas and rsds, it could probably remove statistically redundant information. It could either be implemented as

complementary pre-processing step before convolution layer scanning or completely substitute the convolution branch.

It is statistically solid and becomes especially interesting together with the Generalized Adaptive Robust Loss Function,

presented in section 5.1.1. As was briefly mentioned in section A.2, this loss function was created for VAE of images and has

tunable shape and scale parameters, α and c that can be optimised during training.

Usually VAEs assumes the entities in the inputs (pixels in images) to be normally distributed in which the MSE is assumed

to be the the negative log of the univariate probability (of inputs) that is to maximized (see 5.1). Then the scale parameter

(variance) can be adaptively selected during training. However, instead of assuming the input entities (pixels in images) to be

normally distributed, we can assume them to follow this generalized distribution derived from the adaptive loss function (see

5.1.1). That is, the generalized adaptive loss function is set to the negative log of the univariate probability instead. Then both

the shape and scale parameter of the VAE’s posterior distribution over the entities (or pixels), can be adaptively selected during

training.

B.6 Varying Robustness in Loss Function

The generalized robust loss function has tunable shape and scale parameter α and c, where the scale parameter c determines

when a residuals should be considered as an outlier, in accordance to how δ determines the robustness limit in the Huber loss.

Through extra tunable shape parameter α in the generalized loss’, also the sensitivity to outliers can be determined.

The (adaptive) generalized loss function presented in section 5.1.1 can be linked to the target distribution, in similarity to

how the MSE loss is derived from normal assumptions (see 5.1). The scale parameter in the generalized loss function determines

when a residuals should be treated as one corresponding to a target outlier, but since the targets are not identically distributed,

it is probably hard to find a single scale parameter value suitable for all samples. Better results could perhaps be attained

if the scale parameter were allowed to vary among the targets. Each scale parameter value could for example be based on

the sample distribution to which the current evaluated target belongs. This in accordance with how the upper threshold in

the final ReLU-wappers was determined in section 5.2.1. That is, the limit for when a loss should be considered as an outlier

could be pre-defined individually for each sample group at every single location and climate scenario. This could be done by

e.g. calculating standard deviation in each group or some other outlier-limit, to finally incorporate it in the loss function used

during the network training.

This can also be implemented similarly to the adaptive threshold used in the final wrapper (5.2.1). That is, determining a

scale (and shape if desired) for every sample group used during training - and constructing a vector of the same shape as the

target where every entity holds the sample specific scale value based on the sample distribution to which the sample output in

the corresponding entity (in the target tensor) belongs.
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C

Figures

C.1 Data

(a) Distribution of simulated annual spring wheat and above ground biomass responses to change
in climate on the top. Distribution of number of days before maturity and anthesis, respectively, on
the bottom.

(b) Min-max range scaled outputs plotted together in pairs.

Figure C.1
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(a) Global annual crop responses to di�erent climate settings.

(b) Annual yield in base scenario C360T0W0N200 at some random locations, in four di�erent
climates.

Figure C.3: Distribution of simulated annual spring wheat within di�erent sample blocks
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C.1. Data

Figure C.5: Precipitation, radiation and temperature at lon=12.75, lat=56.25 between 1980 and 2010 as well as during year 2000
only (Olsson 2017).
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Figure C.6: The sequences of months defined in 6.4 for di�erent locations within each climate region in 1982, 1994 and 2007.
In these figures average radiation plotted in red is divided by 10.

Figure C.7: Number of locations within latitudinal bands of width 0.5 for the 192 locations in used for training and testing of
emulation approach (left) and the corresponding fractions among all locations considered in the GGCMI study (right). a

aThe ticks on the x-axis mark the limits of the eight intervals, each of which containing around 12.5% ( 1
8

th
) of all the locations.
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C.1. Data

Figure C.8: Stacked number of locations within latitudinal bands of width 0.5 for the 192 for the training, validation and test set
(left) as well as the climate classes (right). a

aThe ticks on the x-axis mark the limits of the eight intervals, each of which containing around 12.5% ( 1
8

th
) of all the locations considered

in the GGCMI study.

Figure C.9: The distribution of annual spring wheat in the considered Köppen climate regions.
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C.2 Results

´

Figure C.10: The trajectories of the training and validation losses for yield, biomass and their weighted sum, for all separate
climate models.a

aAlso displayed is the initial learning rates, the factors of how much they should be reduced with when the loss has converged on a plateau
(see the learning rate section 5.2.7). The blue solid line displays the reduction of the learning rate, The learning rate was set to be reduced at
stagnation after 4 epochs and the network training was stopped early when the of the validation loss of the high priority output yield had not
decreased for 15 epochs. See 5.2.6.
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C.2. Results

Figure C.11: The distribution of the (true) annual spring wheat simulations (measured in ton/(ha · year)) in the test, training
and validation set, respectively, together with the inverse-transformed NN estimates (measured in ton

(ha·year ), for the separate
climate classes A, B, C and D.

Figure C.12: The distribution of the (true) total above ground biomass simulations (measured in ton/(ha · year)) in the test,
training and validation set, respectively, together with the inverse-transformed NN estimates (measured in ton/(ha · year)), for
the separate climate classes A, B, C and D.
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Figure C.19: The network estimated annual spring wheat plotted against the actual targets a

aTheir histograms and kernel density fits along the x-axis and y-axis are. The dashed line is the perfect fit and the solid line is the actual
fitted regression line. The band is a 95% confidence interval calculated for the fitted regression line (using t-student statistic with standard
deviation of crop in the test set.

Figure C.20: The network residuals against corresponding estimates of annual spring, together with their histograms and kernel
density fits. The black line is the fitted regression line.

88



C.2. Results

(a) The kernel density estimation (KDE) of the underlying residual distribution at every location, marked with the climate class they belong to.

(b) The kernel density estimation (KDE) of the underlying distribution spring wheat residuals for every year between 1982 and 2009 (where 1982 is
denoted with 0 in the plot, 1983 is denoted with 1, and so on).

Figure C.21: Violin plot of all spring wheat residuals in the test set grouped by location in and year respectively.
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Figure C.23: Violin plots of spring wheat residuals (for the test set) in the separate climate classes A, B, C and D, showing the
KDE-distribution at every factor level of the climate variables C, T, W and N, respectively.
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C.3. Comparison Plots wih Extended Model

C.3 Comparison Plots wih Extended Model

Figure C.24: R2 for di�erent climate variable levels
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(a) The kernel density estimation (KDE) of the underlying residual distribution at every location, marked with the climate class they belong to.

(b) The kernel density estimation (KDE) of the underlying distribution spring wheat residuals for every year between 1982 and 2009 (where 1982 is
denoted with 0 in the plot, 1983 is denoted with 1, and so on).

Figure C.25: Violin comparison plots of spring wheat residuals (in test set), comparing the KDE residual distributions grouped
by location and year respectively, for the presented model with that of a similar extended neural network with an extra dense
layer in the CTWN-branch.
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C.3. Comparison Plots wih Extended Model

Figure C.27: Violin comparison plots of spring wheat residuals for presented vs. extended network a.

aThe KDE residual distribution for the presented model is compared with a similar extended neural network with an extra dense layer in
the CTWN-branch. The upper violin plot compares the two models by displaying their climate class networks separately. The four plots below
compares all the residuals of the respective model, the at every factor level of the climate variables C, T, W and N, respectively, for the presented
model with a similar extended neural network with an extra dense layer in the CTWN-branch.
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