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Abstract

This thesis describes the fundaments of SAGBI theory, including definitions, sub-
duction, SAGBI basis verification and construction. A resultant identity is then
used to demonstrate some conditions on univariate SAGBI bases for subalgebras
generated by two polynomials.
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Populärvetenskaplig sammanfattning

En av matematikens stora nyttor är att kunna beskriva saker p̊a ett precist sätt
som till̊ater beräkningar. Ett centralt redskap för s̊adana beskrivningar är baser,
allts̊a en referensram som saker beskrivs utifr̊an. Koordinatsystemet p̊a en karta är
ett exempel p̊a en bas som gör det lätt att beskriva en punkt exakt med hjälp av
n̊agra bokstäver och siffror som hänvisar till en referensram. Denna uppsats hand-
lar om baser för mängder av polynom, uttryck med en eller flera okända variabler
upphöjda till heltal och med koefficienter, exempelvis x2 + 2x + 1. En SAGBI-bas
är en bas för en familj av polynom med användbara egenskaper, och denna uppsats
undersöker när s̊adana baser existerar och hur de kan konstrueras. Tv̊a perspektiv
är vägledande: om vi ges en viss familj av polynom, existerar en SAGBI-bas för den
familjen, och hur hittar vi den? Om vi å andra sidan utg̊ar ifr̊an n̊agra polynom,
utgör de en SAGBI-bas, och i s̊a fall för vilken familj av polynom?
SAGBI-baser är nära besläktade med Gröbner-baser, som är baser för en viss sorts
polynomsstruktur. Gröbner- och SAGBI-baser har mängder av tillämpningar, exem-
pelvis för att lösa icke-linjära ekvationssystem, varför det är av intresse att undersöka
deras förekomst och egenskaper.
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Introduction

Gröbner bases were introduced by Bruno Buchberger in 1965 in his Ph.D. thesis
[Buc65], and named for his advisor Wolfgang Gröbner. A Gröbner basis is a cer-
tain generating set, or basis, for an ideal in a polynomial ring, and Buchberger
contributed an algorithm which can produce such a basis for any ideal and which
always terminates. This result led to a wide range of applications in computer alge-
bra. The subject of this thesis is the subalgebra analogue to Gröbner bases in ideals,
or SAGBI bases for short. A SAGBI basis has similar properties to Gröbner bases,
but for subalgebras instead of ideals. The concept was introduced by Robbiano and
Sweedler [RS90], and independently by Kapur and Madlener [KM89].

SAGBI bases differ from Gröbner bases in several important ways. Most notably,
any ideal, be it finite or infinite, has a finite Gröbner basis which can be determined
by Buchberger’s algorithm. For subalgebras there is no such guarantee, and there
exist subalgebras that lack a finite SAGBI basis. Thus, it is of interest to classify
subalgebras that have finite SAGBI basis.

This thesis aims to give an introduction to the theory of SAGBI bases and
to investigate SAGBI bases for algebras generated by two univariate polynomials.
Several conditions for such bases were described in [Öfv06].
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1 Preliminaries

This chapter provides definitions and preliminary results that are necessary foun-
dations for the theory of Gröbner and SAGBI bases. Motivational and explanatory
examples will also be given, as well as references for further reading.

1.1 Motivational Examples

Imagine the following game: you are given some polynomials, which make up your
building blocks. You are allowed to combine them with each other via common
addition and multiplication of polynomials, as well as multiplication by scalars.
How do you describe and classify all the polynomials they can, and cannot, be
combined into? And how do you figure out if they can combine into some other
given polynomial?

Example 1.1. Let f be the polynomial f = x. By multiplying and adding f to
itself, every polynomial in x can be generated (if x0 = 1 is considered as an empty
product). If f = x2, only polynomials with terms of even power can be generated.

Example 1.2. Let f = x3 + a2x
2 + a1x + a0, g = x2 + b1x + b0. Can f and g

be combined to form a first-degree polynomial? This is the motivating example of
[TUÖ03], and the answer is not obvious. We will return to it later, once we have
the tools necessary to answer it.

Conversely, imagine that you are given a large set of polynomials. How do you
find the smallest set of building blocks which can combine to generate this larger
set, given the rules above? Is it even possible to find such a set?

This “smallest generating set” is called a SAGBI basis. SAGBI bases are an ana-
logue to Gröbner bases, which are similar generating sets for polynomial ideals. The
questions posed above are of importance in a range of mathematical applications,
and run closely parallel to other problems in algebra.

1.2 Monomials and Polynomials

The basic building blocks of Gröbner and SAGBI theory are polynomials and their
components, monomials. Throughout the thesis k will denote an arbitrary field over
which our polynomials are constructed.

The definitions in this chapter are by and large taken from [Tad19], [CLO92],
[AL94]
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Definition 1.3. Let a be an element of k, x1, x2, ..., xn be variables and α1, α2, ..., αn ∈
N, where N is the set of non-negative integers (this notation will be used throughout
the thesis). A monomial is a product of the form

xα1
1 · xα2

2 · ... · xαnn .

To compress the notation, let x := (x1, x2, ..., xn) and ααα := (α1, α2, ..., αn). Then
the above monomial can be expressed as xααα. Note that if ααα = (0, 0, ..., 0), then
xααα = 1. To avoid using indices when dealing with monomials in few variables, it is
conventional to use e.g. x, y, z instead of x1, x2, x3, where x1 = x, x2 = y, x3 = z.
This notation will be used in some examples in this thesis.

Definition 1.4. A polynomial is a finite linear combination of monomials. Any
polynomial f can be expressed as

f =
t∑
i=1

aix
αααi ,

or, equivalently,

f = atx
αααt + ...+ a1x

ααα1 + a0x
ααα0

where xαααi are different monomials and ai ∈ k. If ai 6= 0, aix
αααi is called a term of f.

1.3 Monomial and Polynomial Structures

The following notation will be used throughout the thesis. The ring of polynomials
in the variables x1, x2, ..., xn over k is denoted by k[x1, x2, ..., xn]. The set of all
monomials in k[x1, x2, ..., xn] is denoted byM— it will be clear from context which
set of polynomials M is a subset of.

Remark 1.5. The operations on k[x1, x2, ..., xn] are common addition and multipli-
cation of polynomials. k[x1, x2, ..., xn] equipped with regular addition of polynomials
and multiplication with scalars is also a vector space over k, considering polynomials
as vectors. Thus, for f, g ∈ k[x1, x2, ..., xn] and any α ∈ k, f + g ∈ k[x1, x2, ..., xn],
αf ∈ k[x1, x2, ..., xn]. There also exists a zero vector 0 ∈ k[x1, x2, ..., xn]. To-
gether, this makes k[x1, x2, ..., xn] an algebra. Thus, for any f, g ∈ k[x1, x2, ..., xn],
fg ∈ k[x1, x2, ..., xn]. Notably, this algebra is associative and commutative, and has
identity element 1 = x0.

Definition 1.6. A subset R of an algebra is a subalgebra if it is a subring of the
ring underlying that algebra and contains k. Notably, it is also a subspace, contains
both 0 and 1, and is closed under the operations of the algebra.

Definition 1.7. Let G be a nonempty subset of k[x1, x2, ..., xn]. The set

Gmon := {
t∏
i=1

gαii , gi ∈ G, αi ∈ N}

is a monoid under multiplication generated by G.
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The elements of Gmon are called G-monomials - though the individual gi may be
polynomials in k[x1, x2, ..., xn], their products can be understood as monomials in
this context. The identity element 1 of this monoid is the empty product

∏0
i=0 g

αi
i ,

which can also be written g0
i for any gi ∈ G.

Definition 1.8. Let G be a nonempty subset of k[x1, x2, ..., xn]. The subalgebra
generated by G is the smallest subalgebra of k[x1, x2, ..., xn] that contains G. It is
denoted k[G]. A subalgebra R of k[x1, x2, ..., xn] is said to be finitely generated
if there exists a finite subset G ⊆ R such that R = k[G].

Remark 1.9. The elements of a finitely generated subalgebra R = k[G] can be seen
as polynomials as they are exactly the finite k-linear combinations of the monomials
in G.

Definition 1.10. An ideal I in k[x1, x2, ..., xn] is a subring of k[x1, x2, ..., xn] such
that for every g ∈ I and every f ∈ k[x1, x2, ..., xn], fg ∈ I.

Definition 1.11. An ideal I ⊂ k[x1, x2, ..., xn] is a monomial ideal if there exists
some subset A ⊂ M such that I consists of every polynomial f on the form f =∑t

i=1 gix
αααi , where gi ∈ k[x1, x2, ..., xn] and xαααi ∈ A. Then, I is said to be generated

by A, which is denoted as I = 〈xαααi : xαααi ∈ A〉.

The following important theorem will not be proved here; the interested reader
is directed to [CLO92, pp. 70]

Theorem 1.12 (Dickson’s Lemma). A monomial ideal I = 〈xαααi : xαααi ∈ A〉 ⊂
k[x1, x2, ..., xn] can be written on the form I = 〈xααα1 , ...,xαααt〉, where xααα1 , ...,xαααt ∈M.

The idea of the proof is to show that the statement holds for polynomial rings
in one variable, and then use induction on the number of variables. The significance
of Dickson’s lemma is that it guarantees the existence of a finite generating set for
every monomial ideal in k[x1, x2, ..., xn].

1.4 Term Orders

In the one-variable case, the degree of monomials and polynomials is used to compare
and order them. When presenting a univariate polynomial on the expanded sum
form above, the terms are written in order of descending degree. The notion of
degree is not immediately transferable to the multivariate case, however: which of
the terms x2y and xy2 should be written first in a polynomial? To answer this
question, the concept of term order is needed. First, the definitions of partial and
total orders are given.

Definition 1.13. Let B be a nonempty set. A partial order is a relation � on B
that satisfies the following conditions for all x, y, z ∈B:

(i) x � x (reflexivity),

(ii) x � y � x⇒ x = y (antisymmetry),

(iii) x � y � z ⇒ x � z (transitivity).
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� is a total order if, additionally, for any x, y ∈B either x � y or y � x. If x � y
and x 6= y, their relation can be expressed as x � y.

Definition 1.14. A term order or monomial order is a total order � on M
satisfying the following for any xααα, xβββ, xγγγ ∈M:

(i) xααα � xβββ ⇒ xαααxγγγ � xβββxγγγ,

(ii) xααα � 1, thus 1 is the minimal element of M.

Proposition 1.15. The common degree ordering

xα ≥ xβ ⇔ α ≥ β

where α and β are nonnegative integers is the only term ordering on a univariate
polynomial ring.

Proof. Assume xα > xβ, and that � is some other term order such that xβ � xα.
Then

xα > xβ ⇔ xβxα−β > xβx0 ⇔ xα−β > x0 = 1.

Doing the same for � gives

xβ � xα ⇔ xβx0 � xβxα−β ⇔ 1 = x0 � xα−β.

This contradicts the second property of term orders, so � cannot be another term
order.

There are several term orders on multivariate polynomial rings. These term
orders require some ordering of the variables, so in the sequel it is assumed that
x1 > x2 > ... > xn, without loss of generality.

Definition 1.16. Let k[x1, x2, ..., xn] be a polynomial ring. The lexicographical
order >lex on M is defined as follows:
for xααα,xβββ in M:

xααα >lex xβββ ⇔ the leftmost nonzero entry of ααα− βββ is positive.

The degree lexicographical order >deglex is defined as follows:
for xααα,xβββ in M :

xααα >deglex xβββ ⇔|ααα| =
n∑
i=1

αi > |βββ| =
n∑
i=1

βi or

|ααα| = |βββ| and xααα >lex xβββ.

The degree-reverse lexicographical order >degrevlex is defined as follows:
for xααα,xβββ in M :

xααα >degrevlex xβββ ⇔|ααα| =
n∑
i=1

αi > |βββ| =
n∑
i=1

βi or

|ααα| = |βββ| and the rightmost nonzero entry of βββ −ααα is positive.

Example 1.17. Let f = x2yz3, g = xy3z4 and x > y > z (x = x1, y = x2, z = x3).
Then f >lex g but g >degrevlex f . If instead z > y > x, g >lex f and g >degrevlex f .
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The lexicographical order is simple and intuitive to understand - it is the same
ordering as is used for words in a dictionary, hence the name. Deglex order also
takes into account the total degree, or sum of exponents, of a monomial. Degrevlex
order is less intuitive, but makes certain computations with Gröbner and SAGBI
bases much more efficient.

Definition 1.18. Let f = a1x
ααα1 + a2x

ααα2 + ... + anx
αααm be a polynomial and let �

be a term order with xααα1 � xααα2 � ... � xαααm and α1 6= 0.

(i) The initial, or leading monomial is defined as in�f = xα1 .

(ii) The leading coefficient is defined as lc�f = a1.

(iii) The leading term is defined as lt�(f) = lc�f · in�f = a1x
α1 .

Remark 1.19. Let fi ∈ k[x] for i = 1, 2, ...,m.

(i) If fh is the maximum fi, then in≥fh ≥ in≥
∑m

i=1 fi. If fh is additionally the
only maximal fi, then in≥fh = in≥

∑m
i=1 fi.

(ii) If all fi are nonzero, then in≥
∏m

i=1 fi =
∏m

i=1 in≥fi.

In the sequel, multivariate divisibility is used in the sense of [CLO92, pp. 61].

Definition 1.20. Let f ∈ k[x1, x2, ..., xn], g1, ..., gt ∈ k[x1, x2, ..., xn]. Dividing f by
g1, ..., gt means expressing it on the form

f = a1g1 + ...+ atgt + r

where a1, ..., at and the remainder r lie in k[x1, x2, ..., xn] (note that the ai are poly-
nomials, not necessarily scalars). If r = 0, f is said to be divisible by g1, ..., gt.
Otherwise, r is a k-linear combination of monomials, none of which is divisible by
any of lt�g1, ..., lt�gt.

Note that any f ∈ k[x1, x2, ..., xn] can be expressed on the form above - this will
be discussed in more depth in chapter 2, section 2.

Lemma 1.21. Let G be a set of monomials G ⊆ M, and I be a monomial ideal
I = 〈xαiαiαi : xαiαiαi ∈ G〉. Then a monomial xααα lies in I if and only if xααα is divisible by
some xαiαiαi ∈ G.

Proof. If xααα is a multiple of xαiαiαi clearly it lies in I. Conversely, if xααα ∈ I, then
xααα =

∑t
i=0 gix

αiαiαi . Then by the definition of multivariate divisibility, xααα is divisible
by at least one xαiαiαi .

Lemma 1.22. Any strictly decreasing sequence in M must terminate.

Proof. Let � be a term order. Assume there is some infinite strictly decreasing
sequence xα1α1α1 � xα2α2α2 � ... in M. Then I = 〈xα1α1α1 ,xα2α2α2 , ...〉 is a monomial ideal. By
Dickson’s lemma there exist xα1α1α1 , ...,xαtαtαt such that I = 〈xα1α1α1 , ...,xαtαtαt〉, with possible
relabelling.

Note that if xααα,xβββ ∈M and xααα divides xβββ, then xβββ � xααα, since there then must
be xγγγ ∈ M such that xβββ = xαααxγγγ. The definition of term orders guarantees that
xγγγ � 1, so xβββ = xαααxγγγ � xααα1 = xααα.

Now consider xαt+1αt+1αt+1 , the first term in the sequence smaller than any element of the
generating set of I. Since it is clearly in I, it is divisible by some xαiαiαi ∈ {xα1α1α1 , ...,xαtαtαt}
by lemma 1.21. This means xαt+1αt+1αt+1 � xαiαiαi by the argument above. However, this
contradicts our assumption that xα1α1α1 � ... � xαtαtαt � xαt+1αt+1αt+1 , proving the lemma.
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Corollary 1.23. A term order � is a well-order onM, meaning that every nonempty
subset of M has a least element.

Proof. Assume there is some subset A ofM that does not have a least element.
Pick an element xα1 ∈ A. Then, since it is not minimal in A, pick xα2 ∈ A such
that xα1 � xα2 . Since there is no least element of A, this can be repeated infinitely
creating a strictly decreasing sequence that does not terminate, contradicting lemma
1.22.
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2 Gröbner and SAGBI Bases

This chapter gives definitions of Gröbner and SAGBI bases and demonstrates some
of their properties. The concepts of reduction and S-polynomials, and subduction
and T-polynomials respectively, will be shown, and basis generation algorithms will
be presented. In many cases, these concepts will be closely analogous between
Gröbner and SAGBI bases.

2.1 Definitions and Existence

Definition 2.1. Let R be a k-subalgebra of k[x1, x2, ..., xn]. The initial algebra of
R with respect to �, denoted by In�R, is a k-subalgebra generated by {in�f : f ∈
R − 0}. If I is an ideal in k[x1, x2, ..., xn], the ideal of initials In�I with respect
to � is the ideal generated by {in�g : g ∈ I}.

Note that initial algebras and ideals of initials are different structures, and that
this notation is dependent on whether the underlying set is an algebra or an ideal.
This will be stated whenever the notation is used.

Proposition 2.2. Let I ⊆ k[x1, x2, ..., xn] be an ideal andR be a subset of k[x1, x2, ..., xn].

(i) Lt�I = 〈lt�g : g ∈ I〉 is a monomial ideal equal to In�I.

(ii) There exist g1, ..., gt ∈ I such that Lt�I = 〈lt�g1, ..., lt�gt〉.

Proof. To show (i), first note that In�I is a monomial ideal. The elements
of Lt�I are on the form lt�g1 = lc�g1 · in�g1, where lc�g1 is some constant in
k. Let f be any polynomial in Lt�I. From the definition of monomial ideals, f =∑t

i=1 hi ·lt�gi where hi ∈ k[x1, x2, ..., xn]. Let ti = hi ·lc�gi. Then f =
∑t

i=1 ti ·in�gi,
which shows Lt�I ⊂ In�I. The converse inclusion In�I ⊂ Lt�I follows from k
being a field and lc�gi therefore being invertible. Thus Lt�I = In�I, so Lt�I is a
monomial ideal. For (ii), Dickson’s lemma gives that In�I has a finite generating
set of monomials {in�g1, ..., in�gt}. It follows from the argument proving (i) that
Lt�I = 〈in�g1, ..., in�gt〉 = 〈lt�g1, ..., lt�gt〉.

Remark 2.3. A statement similar to part (ii) of proposition 2.2 holds for initial
algebras, with the difference that In�R is not necessarily finitely generated, meaning
that the set g1, ... is not necessarily finite.

These results lead to the following powerful theorem.

Theorem 2.4 (Hilbert’s Basis Theorem). Every ideal I ⊂ k[x1, x2, ..., xn] has a
finite generating set g1, ..., gt ∈ I.
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Proof. If I = 0 it is generated by the set 0 which is finite. Otherwise, by
proposition 2.2, there are g1, ..., gt ∈ I such that Lt�I = 〈lt�g1, ..., lt�gt〉. These
g1, ..., gt will be demonstrated to generate I.
Clearly, 〈g1, ..., gt〉 ⊂ I. To show the opposite inclusion, let f ∈ I be any polynomial.
Multivariate division of f by g1, ..., gt gives

f = a1g1 + ...+ atgt + r

where no term in r is divisible by any of lt�g1, ..., lt�gt. Note that r = f − (a1g1 +
...+ atgt) ∈ I, so if r 6= 0, then lt�r ∈ Lt�I = 〈lt�g1, ..., lt�gt〉. But then by lemma
1.21, lt�r is divisible by some lt�gi. This contradicts r being a remainder, so r = 0.
Thus

f = a1g1 + ...+ atgt ∈ 〈g1, ..., gt〉

showing I = 〈g1, ..., gt〉.

Definition 2.5. Let � be a term order and I be an ideal in k[x1, x2, ..., xn]. A finite
subset G = [g1, ..., gt] of I is a Gröbner basis for I if

Lt�I = 〈lt�g : g ∈ G〉.

SAGBI bases, short for “Subalgebra Analogue to Gröbner Bases for Ideals”, are
generating sets for subalgebras of polynomial rings rather than ideals.

Definition 2.6. Let � be a term order and R be a subalgebra of k[x1, x2, ..., xn].
A subset G of R is a SAGBI basis for R if

In�R = k[in�g : g ∈ G].

These definitions are very similar, as are indeed many properties of these bases.

The following example illustrates an application of SAGBI bases for a class of
polynomials.

Example 2.7. Symmetric polynomials are polynomials such that if any of the vari-
ables are interchanged, the polynomial does not change. For instance, xy+yx+ 2 is
a symmetric polynomial of two variables. An elementary symmetric polynomial f in
the variables x1, ..., xn is a polynomial such that for some integer 1 < k < n, f is the
sum of every distinct product of k different variables. The elementary symmetric
polynomials in the variables x, y, z are x + y + z, xy + yz + zx, xyz. For any term
order �, the set G ⊂ k[x1, x2, ..., xn] such that

G = {g : g is an elementary symmetric polynomial}

is a SAGBI basis for the set S of symmetric polynomials in k[x1, x2, ..., xn]. The
initials of the elementary symmetric polynomials will be x1, x1x2, ..., x1x2...xn under
any term order where x1 � x2 � ... � xn. Let f be any symmetric polynomial in
k[x1, x2, ..., xn]. Since g is symmetric, its initial must be on the form xα1

1 x
α2
2 ...x

αn
n ,

where α1 ≥ α2 ≥ ... ≥ αn. Thus it can be expressed as a G-monomial. This means
In�S = k[in�g : g ∈ G], so G is a SAGBI basis for S.
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2.2 Subduction and Reduction

An important application of both Gröbner and SAGBI bases is the ability to solve
membership problems, i.e. answering whether or not a polynomial is an element of
some ideal or subalgebra. To do this, the concepts of reduction (for Gröbner bases)
or subduction (for SAGBI bases) is needed. Here, only the definition of subduction
will be given, but reduction is similar, replacing subalgebras with ideals.1

Definition 2.8. Let R be a subalgebra of k[x1, x2, ..., xn], G ⊆ R and � be a term
order. For f, f1 ∈ R, f subduces to f1 via G in one step, written

f
G−→ f1

if there is some g ∈ Gmon (as in definition 1.7) such that in�f = in�g and some
a ∈ k such that lt�f = a · lt�g. Then f1 = f − ag.

Remark 2.9. The choice of g and a in the above definition causes the leading term

of f to be eliminated. Thus, if f
G−→ f1, then either lt�f1 = 0 or lt�f � lt�f1.

Definition 2.10. Let R, G, � be as above. For f, t ∈ R, f subduces to t if there
exists a chain of one-step subductions from f to t, written

f
G−→ f1

G−→ ...
G−→ fk−1

G−→ t.

In general, the number of subduction steps does not matter, so the above notation

will be compressed to f
G−→ t unless otherwise noted.

Remark 2.11. In general, the result of a subduction is not unique. Consider for
example R = k[g1 = x, g2 = x + y], a subalgebra of a polynomial ring in two
variables, with � being the lex term order. Let f = x3. Clearly f ∈ R, but since
lt�f = lt�g

3
1 = lt�g

3
2 = lt�g1g

2
2 = ... there are many ways to subduce f over R.

Remark 2.12. Since lt�f, lt�f1, ... ∈ k[x1, x2, ..., xn] and lt�f � lt�f1 � ..., any
chain of subductions must terminate (cf. lemma 1.22). When a chain of subductions
via some set G terminates, some fr ∈ R, possibly 0, will remain. This is called
the remainder or final subductum of f via G. Note that in�fr 6= in�g for
every g ∈ Gmon, since it could otherwise be further subduced. Subduction to the

final subductum via G is denoted f
G∗−→ fr. The final subductum is not uniquely

determined in general, as noted above. Note also that f − fr is an element of the
subalgebra generated by G.

Lemma 2.13. Let R, � be as above. If G is a SAGBI basis for R, then f
G∗−→ 0 if

and only if f ∈ R.

Proof. Assume f ∈ R, f
G∗−→ fr. Either fr = 0 or in�fr 6= in�g for every

g ∈ Gmon. But since G is a SAGBI basis for R, In�R = k[in�g : g ∈ G], and in
particular there is g ∈ Gmon such that in�g = in�f for every f ∈ R. Since fr ∈ R,

fr must be 0. Assuming that f
G∗−→ 0, the fact that f−fr ∈ R means f−0 = f ∈ R,

finishing the proof.

1Note that multivariate division as defined in definition 1.20 is equivalent to reduction if one
divides by the elements of a Gröbner basis.
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Remark 2.14. This lemma gives a solution to the membership problem for subal-
gebras. To check if a polynomial f is an element of a subalgebra, subduce f over
a SAGBI basis for that subalgebra. Then f is a member of that subalgebra if and
only if its final subductum is 0. The same method is used for Gröbner bases, again
exchanging the subalgebra and SAGBI basis for an ideal and a Gröbner basis.

With this preparation complete and the membership problem addressed, the
next goal is to characterise SAGBI bases further. SAGBI bases are clearly useful,
but when do they exist, and how does one find or construct them? These questions
are the focus of the rest of the thesis.

Definition 2.15. Let G be a subalgebra of k[x1, x2, ..., xn], let gi ∈ Gmon, ai ∈ k\0
for i ∈ 1, ...,m, and f =

∑m
i=1 aigi. The height of f is equal to max{in�gi} and

the breadth of f is the number of gi such in�gi is equal to the height of f .

Theorem 2.16. Let R, � be as above and G be a subset of R. Then the following
are equivalent:

(i) G is a SAGBI basis for R.

(ii) all f ∈ R subduce to 0 over G.

(iii) all f ∈ R can be written on the form

f =
t∑
i=1

aigi

where ai ∈ k, gi ∈ Gmon and f has breadth 1.

Proof. (i) ⇒ (ii) is the statement of lemma 2.13. (ii) ⇒ (iii) follows from the

subduction algorithm. Each step of the subduction f
G−→ fr uses some gi+1 ∈ Gmon,

ai+1 ∈ k such that fi+1 = fi − ai+1gi+1. For any subduction f
G∗−→ fr, expand it to

f
G−→ f1

G−→ ...
G−→ fk

G−→ fr. Then

f1 = f − a1g1

f2 = f1 − a2g2 = f − a1g1 − a2g2

...

fr = fk − ak+1gk+1 = f − a1g1 − ...− ak+1gk+1.

Rearranging the last equation gives f =
∑k+1

i=1 aigi + fr. However, since f subduces
to 0 by assumption, fr = 0. Since in�f � in�f1 � .. � in�fr there is only one gi
such that in�f = in�gi, namely g1, which gives that f has breadth 1. This shows
the implication (ii) ⇒ (iii). To show (iii) ⇒ (i), In�G must be shown to generate
In�R. Let s ∈ In�R, s 6= 0. Then there is some f ∈ R such that s = in�f .
By assumption, f has a representation f =

∑t
i=1 aigi where ai ∈ k, gi ∈ Gmon for

i = 1, ..., t. Since f is assumed to have breadth 1, in�f = maxi=1,...,t{in�gi}. This
gives

s = in�f = maxi=1,...,t{in�gi} = in�

m∏
j=1

u
αj
j , (uj ∈ G, αj ∈ N) =

m∏
j=1

in�u
αj
j .

This shows that In�G generates In�R, and proves the implication (iii) ⇒ (i).
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Corollary 2.17. Let R, �, G be as above. If G is a SAGBI basis for R, then
R = k[G].

Proof. Since G ⊆ R and k[G] is a subalgebra of k[x1, x2, ..., xn] it follows that
k[G] ⊆ R. To show the opposite inclusion, let f ∈ R, f 6= 0. By theorem 2.16
there is a representation f =

∑t
i=1 aigi where gi ∈ Gmon for i = 1, ..., t, meaning

f ∈ k[gi : gi ∈ G] = k[G]. Thus R ⊆ k[G], so R = k[G].

If some set G is referred to as a SAGBI basis without reference to some other
set, this means it is a SAGBI basis for k[G].

Remark 2.18. Note that a subalgebra need not be finitely generated, and thus need
not have a finite SAGBI basis. In fact, even finitely generated subalgebras may not
have finite SAGBI basis. Compare this to Gröbner bases, where the Hilbert basis
theorem guarantees that every ideal is finitely generated and every ideal can be
shown to have finite Gröbner basis. Also, a generating set need not be a SAGBI
basis. This situation will be explored further in the next section.

Example 2.19. This example is due to [RS90]. Let R be a subalgebra of k[x, y]
(finitely) generated by f = x + y, g = xy, h = xy2. Then R does not have finite
SAGBI basis with respect to any term order.

To prove this, first note that every polynomial on the form hm = xym, m ≥ 1,
is in R, since hm = (x + y)xym−1 − (xy)xym−2 and h1 = xy = g, h2 = xy2 = h.
On the other hand, for j ≥ 1 there are no polynomials in R that contain yj as a
homogeneous component. To see this, note that R is a graded algebra, which means
that if some polynomial in R has yj as a homogeneous component then yj is in R.
Since every element of R is a polynomial in f, g, h, there must then be some such
polynomial r(x + y, xy, xy2) such that r(x + y, xy, xy2) = yj. Inserting x = 0 gives
r(y, 0, 0) = yj. This should imply that r(x, 0, 0) = xj but inserting y = 0 gives
r(x, 0, 0) = 0, a contradiction. Hence, there is no polynomial in R with yj as a
homogeneous component.

For any monomial order � on R, either x � y or y � x. Since (x + y)xy =
x2y+y2x, R can also be generated by {x+y, xy, x2y}, so any reasoning for the case
x � y will also hold for y � x with x and y switched. Thus, assume x � y without
loss of generality.

From previous argument, G = {x+ y, xy, xy2, ...} ⊆ R. The aim of the example
is to show that this set is a SAGBI basis for R and that there is no finite SAGBI
basis for R. First, note that for j ≥ 1 there are no elements of R with initial yj,
since x � y means that such an element would have yj as a homogeneous component
which has been shown to be impossible. Thus the initials of elements in R are on
the form xiyj with i ≥ 1. For some such element p ∈ R, its initial is generated by
G:

in�p = xiyj = in�(x+ y)i−1in�(xyj).

Thus, In�G generates In�R and so G is a SAGBI basis for R. If there were some
finite SAGBI basis for R, it has some element with initial of maximal y-degree xiyk.
Now consider some element of R with initial of y-degree larger than k. This initial
clearly cannot be generated by the finite SAGBI basis since there are no elements
of it with yj as a homogeneous component for any j ≥ 1, and so there cannot be a
finite SAGBI basis for R.
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Proposition 2.20. A singleton set G = {g}, g ∈ k[x1, x2, ..., xn] is a SAGBI basis
for the subalgebra k[G].

Proof. Any element f in k[G] must be on the form f =
∑t

i=1 aig
αi , ai ∈ k,

αi ∈ N. This means f subduces to 0 over G, since every term in f is a multiple of
g.

Corollary 2.21. Let G be a subset of k[x1, x2, ..., xn]. If there is some element
g1 ∈ G such that every g ∈ G can be expressed on the form

∑t
i=1 aig

αi
1 , ai ∈ k,

αi ∈ N, then G is a SAGBI basis and {g1} is a SAGBI basis for k[G].

Proof. Clearly k[g1] = k[G]. {g1} is a SAGBI basis due to proposition 2.20. Since
g1 ∈ G, any subduction over g1 can also be performed over G, meaning in particular
that every polynomial that subduces to 0 over g1 also subduces to 0 over G. Thus
g1 being a SAGBI basis implies G is a SAGBI basis.

Remark 2.22. It follows from corollary 2.21 that a subalgebra may have several,
even infinitely many, different SAGBI bases. Trivially, a subalgebra R is a SAGBI
basis for itself. The SAGBI basis with the lowest cardinality is referred to as the
minimal SAGBI basis.

2.3 Verification and Construction of Bases

Consider a finite subset G of k[x1, x2, ..., xn]. It might seem obvious that G should
be a SAGBI basis for k[G], since every element in k[G] is a finite linear combination
of the elements of Gmon. However, this need not be the case.

Example 2.23. Let f = x3, g = x3 + x2 generate G ⊂ k[x]. Clearly x2 ∈ G, since
g− f = x3 +x2−x3 = x2 is a finite linear combination of g and f . Since in≥f = x3

and in≥g = x3 do not generate in≥x
2 = x2, {f, g} is not a SAGBI basis for G.

This example provides an intuition that pairs of G-monomials with the same
initial might create complications for SAGBI bases. Indeed, to verify SAGBI bases,
the term critical pairs is introduced to refer to such pairs.

Definition 2.24. Let R be a subalgebra of k[x1, x2, ..., xn] and � be a term order.
A pair of nonzero elements of R g1, g2 such that g1 6= g2 is called a critical pair if
in�g1 = in�g2, . For this critical pair, there exists a ∈ k such that in�g1 = a · in�g2.
The polynomial g1 − ag2 is called a T-polynomial, also denoted T (g1, g2).

Remark 2.25. If g1, g2 is a critical pair, then g2, g1 is also a critical pair. Since k
is a field, T (g1, g2) = b · T (g2, g1) for some b ∈ k.

Definition 2.26. A T-polynomial T (f, g) has a low representation over k[G]
if it can be expressed as a linear combination of G-monomials

∑t
i=1 aigi, ai ∈ k

such that in�f = in�g � in�gi for all i, or equivalently height(f) = height(g) �
height(

∑t
i=1 aigi).

Proposition 2.27. Let G be a subset of k[x1, x2, ..., xn] and � be a term order. G
is a SAGBI basis if and only if every T-polynomial of critical pairs in k[G] subduces
to 0 over G. Equivalently, G is a SAGBI basis if and only if every T-polynomial has
a low representation in k[G].
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Proof. Assume first that G is a SAGBI basis. Since every T-polynomial of
elements in G must be in G, they all subduce to 0 due to theorem 2.16. To show the
converse, let f be any element of k[G]. Since in�f ∈ Gmon, it can be subduced over
G. The result of this subduction is either a T-polynomial of some critical pair in
G, in which case it subduces to 0 by assumption, or some other f ′ ∈ k[G] for which
in�f

′ ∈ Gmon, in�f � in�f
′. If no subductum of f is the T-polynomial of a critical

pair in G, this creates a strictly decreasing sequence in N which terminates since �
is a well-order. Since every subductum f (k) is either a T-polynomial or has initial
in Gmon, the final subductum must be 0. Thus every f ∈ G subduces to 0, and G is
a SAGBI basis by theorem 2.16.

If every T-polynomial subduces to 0, then any T-polynomial T (f, g) can be writ-
ten on the form

∑t
i=1 aigi, as in theorem 2.16. Here, in�f = in�g � in�T (f, g) �

in�gi, from similar reasoning as in the proof of theorem 2.15, meaning T (f, g) has a
low representation. If every T-polynomial is assumed to have a low representation,
then every polynomial in k[G] can be expressed as a sum

∑t
i=1 aigi, and thus every

polynomial in k[G] has final subductum 0. This means G is a SAGBI basis.

The above proposition gives a method of verifying that some generating set
is a SAGBI basis: find all T-polynomials2 and check if they subduce to 0. This
also suggests a method to construct SAGBI bases from generating sets: if there is
some T-polynomial in the subalgebra that doesn’t subduce to 0, append its final
subductum to the SAGBI basis. Then at least that T-polynomial now subduces to
0. This process is repeated until every T-polynomial subduces to 0 (if there is a
finite SAGBI basis). The following theorem provides proof that the method works.

Theorem 2.28 (SAGBI basis construction). LetR be a subalgebra of k[x1, x2, ..., xn]
and let G0 ⊆ G1 ⊆ ... ⊆ Gi ⊆ ... be a sequence of sets such that G0 generates R, and
all T-polynomials of k[Gi] subduce to 0 over k[Gi+1]. Then G∞ = ∪∞j=0Gj is a SAGBI
basis for R. If R has finite SAGBI basis, there exists an integer N such that GN is
a SAGBI basis for R.

Proof. First note that Gi+1 is constructed by appending the final subductums of
every T-polynomial in k[Gi] to Gi. Since the final subductum of any T-polynomial
in k[Gi] must be in R for any i, the subset inclusions hold and k[G∞] = k[G0] = R.
If Gn = Gn+1 for some n, then every T-polynomial in GN subduces to 0 and Gn is a
SAGBI basis by proposition 2.27. Otherwise, for any T-polynomial T (f, g) of G∞,
one can choose j so large that the final subductum of T (f, g) is an element of Gj,
meaning G∞ is a SAGBI basis for R. If R is assumed to have finite SAGBI basis,
since G∞ is a SAGBI basis for R there must be some N such that GN is the smallest
(finite) subset of G∞ that is a SAGBI basis. Then every T-polynomial in k[GN ]
subduces to 0 and GN = GN+1.

It should again be noted that this process is not guaranteed to generate a finite
SAGBI basis. For Gröbner bases in commutative rings, a very similar process is
guaranteed to generate a Gröbner basis in a finite number of steps. In noncommu-
tative rings, ideals might not have finite Gröbner bases, this situation is investigated
in [Öfv00].

2There are ways of reducing the amount of T-polynomials that need to be checked further,
discussed in e.g. [Tad19].
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2.4 The Univariate Case

For subalgebras of k[x], many useful results and simplifications can be achieved by
studying the degrees of generators. The results in this section are due to [Tad19].

Lemma 2.29. Let R be a subalgebra of k[x] and � be a term order. Then

(i) A = {in�f : f ∈ R} is a multiplicative monoid.

(ii) B = {deg(in�f) : f ∈ R} is an additive monoid.

(iii) a mapping α : A → B defined by α(in�f) = deg(in�f) is a monoid isomor-
phism.

Proof. Let f, g be any polynomials in R. Since in�f · in�g = in�fg and
fg ∈ R, (i) holds, and x0 = 1 is the identity element of the monoid. For (ii),
deg(in�f) + deg(in�g) = deg(in�fg) and fg ∈ R, (ii) holds. Here deg(x0) = 0 is
the identity element. As for (iii), α is a bijection from A to B and α(in�fin�g) =
deg(in�fin�g) = deg(in�f) + deg(in�g) = α(in�f) + α(in�g), so the statement
holds.

Theorem 2.30. Let R, � be as above and G be a nonempty subset of R. Then the
following statements are equivalent:

(i) G is a SAGBI basis for R.

(ii) {in�g : g ∈ G} generates the multiplicative monoid {in�f : f ∈ R}.

(iii) {deg(in�g) : g ∈ G} generates the additive monoid {deg(in�f) : f ∈ R}

Proof. Let A, B be as in lemma 2.29, and furthermore let C be the multiplicative
monoid generated by {in�g : g ∈ G} and D be the additive monoid generated by
{deg(in�g) : g ∈ G}. The aim of the proof is to show that A = C and B = D if
and only if G is a SAGBI basis. The implication (i) ⇒ (ii) was shown as part of the
proof of theorem 2.16, which also gives the converse implication (ii)⇒ (i). To show
(i) → (iii), let f be any polynomial in R. Since G is a SAGBI basis, we have

f ∈ R ⇒ in�f ∈ In�R
⇒ in�f ∈ 〈in�g : g ∈ G〉

⇒ in�f =
m∑
i=1

ai(

ti∏
j=1

(in�gji)
αji ), gji ∈ G

⇒ in�f =

ti∏
j=1

(in�gji)
αji for some i ∈ {1, ...,m}

Then deg(f) is clearly equal to deg(in�gj), which shows B ⊆ D. As for the opposite
inclusion, G ⊆ R ⇒ In�G ⊆ In�R ⇒ D ⊆ B.
To show (iii)⇒ (ii), let f ∈ R. From (iii), deg(in�f) =

∑m
i=1 ai ·deg(in�gi), gi ∈ G,
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ai ∈ N. Let α be as in lemma 2.29. Then

in�f = α−1deg(in�f)

= α−1(
m∑
i=1

ai · deg(in�gi))

=
m∏
i=1

(α−1(deg(in�gi)))
ai

=
m∏
i=1

(in�gi)
ai

Thus, in�f ∈ C, so A ⊆ C. For the opposite inclusion, G ⊆ R ⇒ C ⊆ A.
This theorem gives a simple way to verify SAGBI bases in the univariate case

— simply check whether the degrees of the initials of basis elements generate the
degrees of the initials of the subalgebra under addition. This gives part of the
answer to the question posed in example 1.2: does the subalgebra generated by
f = x3 +α2x

2 +α1x+α0, g = x2 +b1x+b0 contain x? If {f, g} is a SAGBI basis the
answer is no, as deg(f) = 3, deg(g) = 2 do not generate deg(x) = 1 under addition.
It would be possible to verify that {f, g} is in fact a SAGBI basis by checking the
subduction of T-polynomials, but there is a more general proof of this fact that will
be explored in the next chapter. Before that, theorem 2.30 leads to one more result
for univariate SAGBI bases.

Definition 2.31. A nonempty subset of N is an additive subsemigroup if it is
closed under regular addition.

Theorem 2.32. Every subalgebra R of k[x] has a finite SAGBI basis.

Proof: Let B = {deg(in�f) : f ∈ R}. B is an additive subsemigroup due to
lemma 2.29. From [SS75] every additive subsemigroup is finitely generated. Let
G = {g1, ..., gm} such that {deg(g1), ..., deg(gm))} generates B. By theorem 2.30 G
is a finite SAGBI basis for R.

Remark 2.33. The approach of working with the structure of degrees of SAGBI
bases leads to further conditions on univariate SAGBI bases by utilising results from
the study of numerical semigroups, as in [Tad19] which gives conditions for when
three generators with consecutive degree form a SAGBI basis.
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3 Resultants and Univariate SAGBI
Bases

This chapter focuses on an application of resultants to the theory of univariate
SAGBI bases first described in [TUÖ03], and developed in [Öfv06]. This chapter
will largely follow the structure of the latter. Recall example 1.2, restated here,
which that article’s motivational example:

Example 3.1. Let f = x3 +a2x
2 +a1x+a0, g = x2 + b1x+ b0. Does the subalgebra

generated by f and g contain any first-degree polynomial?

From the results of the previous chapter, it follows that if {f, g} is a SAGBI
basis, then k[f, g] does not contain any first-degree polynomial as the degrees of f
and g cannot be added to make 1. To investigate whether {f, g} is in fact a SAGBI
basis, the T-polynomials of k[f, g] must be inspected - if they subduce to 0, then
{f, g} is a SAGBI basis.

Example 3.2. Let f and g be as above. First, substitute t = x+ α, which gives

f =(t− α)3 + a2(t− α)2 + a1(t− α) + a0 =

= t3 + (−3α + a2)t2 + (3α2 − 2a2α + a1)t+ C

g =(t− α)2 + b1(t− α) + b0 = t2 + (−2α + b1)t+D

where C and D are some constants. Let 2α = b1, which eliminates the first-degree
term from g. Relabel the constants before the first- and second-degree terms of f
as a and b, respectively. The polynomials now have the form

f =t3 + at2 + bt+ C

g =t2 +D

.

Now, since the question is whether {f, g} is a SAGBI basis, the constants C and
D can be discarded, as k[f, g] = k[(f − C), (g − D)] and in�f = in�(f − C),
in�g = in�(g − D). Furthermore, the problem can be simplified by working with
f − ag instead of f , since k[f, g] = k[f − ag, g] and in≥f = in≥(f − ag). This
eliminates the second-degree term of f . Let f ′ = f − ag + aD − C = t3 + at,
g′ = g − D = t2 and consider the T-polynomial f ′2 − g′3. If this T-polynomial
subduces to 0, then every T-polynomial of {f, g} will subduce to 0 (as is proven in
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lemma 3.15 below). Carrying out the subduction gives

f ′2 − g′3 = t6 + 2at4 + a2t2 − t6 = 2at4 + a2t2 = h4

h4 − 2ag′2 = 2at4 + a2t2 − 2at4 = a2t2 = h2

h2 − a2g′ = a2t2 − a2t2 = 0

This shows that {f, g} is in fact a SAGBI basis, since every critical pair subduces
to 0 no matter what the coefficients in f and g are. Thus, there are no first-degree
polynomials in k[f, g].

Though the above method gives an answer to the motivating question, it is not
very satisfactory. This chapter will show, using the resultant, that two univariate
polynomials of relatively prime degree always constitute a SAGBI basis. Some
further conditions on SAGBI bases for algebras generated by two generators will
also be shown.

3.1 SAGBI Bases and Field Extensions

The connection between resultants and SAGBI bases requires an alternate condition
for SAGBI bases, using the theory of field extensions. This section describes the
field extensions k ⊂ k(u) ⊂ k(x), where k(x) is the field of rational functions in
the variable x with coefficients in k and k(u) is the field extension obtained by
adjoining some non-constant polynomial u to the field k. This notation will be used
throughout.

Lemma 3.3. If d = deg(u) ≥ 1, then [k(x) : k(u)] = d.

Proof. Let p(t) = u(t)−u, p(t) ∈ k(x)[t] where u(t) is the polynomial obtained by
replacing x with t in the polynomial u. The strategy of the proof is to show that this
p is the minimal polynomial of x over k(u) (possibly differing by a constant factor).
Since x is a zero of p(t), p is algebraic over k(u) and its minimal polynomial has
degree less than or equal to d. Since d ≥ 1, the polynomial ring k[u] is isomorphic
to the polynomial ring k[x], meaning k[u] is a unique factorisation domain (UFD)
and k(u) is its field of fractions. Then, to prove p is irreducible over k(u), it suffices
to prove it is irreducible over k[x] by Gauss’ lemma, which states that a polynomial
is irreducible in a UFD if and only if it is irreducible in the field of fractions of that
UFD and primitive in the UFD.

Assume then, to the contrary, that there is some non-zero polynomial q ∈ k[u, t]
such that deg(q) = k < d and x is a zero of q. Then q can be written on the form

q = qkt
k + qk−1t

k−1 + ...+ q1t+ q0

where all qi ∈ k[u]. The assumption that x is a zero of q can be written

0 = q(x) = qkx
k + qk−1x

k−1 + ...+ q1x+ qo.

For this equality to hold, there must be cancellation between terms containing the
same power of x. This is not possible: since every qi belongs to k[u] the degrees of
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the terms must obey the congruences

deg(qkx
k) ≡ k mod d

deg(qk−1x
k−1) ≡ k − 1 mod d

...

deg(qo) ≡ 0 mod d

Since k < d, these congruence classes are all different, meaning that the highest
terms of the different classes cannot cancel. Thus, the assumption that k < d is
contradicted, which shows p is the minimal polynomial of x over k(u).

The proof of the following theorem follows the structure laid out in [Ber97].

Theorem 3.4 (Lüroth’s theorem). Let k be a field, k(x) be the field of rational
functions in the variable x over k and L be some extension of k not equal to k such
that k ⊂ L ⊂ k(x). Then there is some element y in k(x) such that L = k(y).

Proof. This proof will follow a similar strategy of considering some rational
function in k(x)[t] of minimal degree, showing it is the minimal polynomial of x
over k(y) and L, and finally that k(y) = L. First note that every element of k(x)[t]
can be written as P (x, t)/Q(x), where P and Q are relatively prime in k(x)[t] and
Q is monic in x. This also holds for u(x) ∈ k(x), and any such u = P (x)/Q(x)
will henceforth be assumed to have those properties. Let the height of P (x, t)/Q(x)
denote the maximum of the degree of P in x and the degree of Q in x.

Pick some nonconstant y ∈ L, y = P (x)/Q(x) such that y has minimal height,
deg(P ) > deg(Q) and P is monic. This is possible since if a y′ = P ′(x)/Q′(x) in L of
minimal height had deg(Q′) > deg(P ′), its inverse would have the same height and
also be in L, and since k is a field P ′ can easily be made monic. If a y′ = P ′(x)/Q′(x)
of minimal height had deg(Q′) = deg(P ′) = n, it could be expressed on the form

y′ = axn+P ′′(x)
xn+Q′′(x)

where P ′′(x) and Q′′(x) are some polynomials of degree lower than
n. Some manipulation of this expression gives

y′ =
axn + P ′′(x)

xn +Q′′(x)
=
axn + a(Q′′(x)−Q′′(x)) + P ′′(x)

xn +Q′′(x)
= a+

P ′′(x)− aQ′′(x)

xn +Q′′(x)

which means the inverse of y′ − a is a rational function in L with the desired prop-
erties.

Let f(t) = P (t) − yQ(t). This (monic) polynomial f(t) is irreducible in L[t],
since if it had some nontrivial factorisation, one of two cases must hold: either one
factor is in k[t], in which case it would divide both P and Q, contradicting them
being relatively prime, or both factors contain x, meaning they have lower height
than y. Either case gives a contradiction, meaning f is irreducible in L[t]. By
Gauss’ lemma, it is then also irreducuble in L(t) Since x is clearly a zero of f , this
means f is the minimal polynomial of x over L. Note that k(x) has dimension
n = height(y) = deg(P ) over L.

Now consider the simple field extension k(y). f will be shown to be irreducible
over k[y], which means it is also irreducible over k(y) due to Gauss’ lemma. If f is
not irreducible over k[y], there is some factorisation f = f1f2 such that f1, f2 ∈ k[y].
Since f has y-degree 1, either f1 or f2 must have y-degree 0, meaning it must lie in
k, making f irreducible. Thus f is irreducible in both k[y] and k(y). Since it has x
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as a zero in k(y) it must be the minimal polynomial of x over k(y) as well, meaning
k(x) has dimension n = height(y) over k(y). Finally, since k(y) ⊆ L and k(x) has
the same dimension over k(y) and L, k(y) must be equal to L.

The following lemmata are due to [Tor02].

Lemma 3.5. For any polynomial h ∈ k[x], k[h] = k(h) ∩ k[x]

Proof. It is clear that k[h] ⊆ k(h) ∩ k[x]. For the opposite inclusion, let f ∈
k(h) ∩ k[x], meaning there are polynomials a, b such that f = a◦h

b◦h . Here deg(f) =
deg(a)deg(h)− deg(b)deg(h) meaning deg(h)|deg(f). The inclusion of f in k[h] will
be shown by induction on the degree of f . Assume deg(f) < deg(h). Then deg(f) =
0, so f ∈ k[h]. If f has higher degree then there is γ such that deg(f) = γdeg(h) and
c ∈ k such that f ′ = f − chγ has lower degree than f . By the induction hypothesis
f ′ = a◦h

b◦h − ch
γ is in k[h] and so f is also in k[h], which means k(h)∩k[x] ⊆ k[h] and

completes the proof.

Lemma 3.6. If {F,G} ⊆ k[x] is a SAGBI basis and h any polynomial in k[x], then
{f = F ◦ h, g = G ◦ h} is also a SAGBI basis.

Proof. Let deg(F ) = n, deg(G) = m, d = gcd(n,m) and n′ = n/d, m′ = m/d.
Since {F,G} is a SAGBI basis the T-polynomial Fm′−Gn′

has a low representation∑t
i=1 aigi, where gi are {F,G}-monomials of degree lower than dm′n′. Now substi-

tute x for h(x), giving fm
′ − gn′

=
∑t

i=1 aig
′
i where g′i are the {f, g}-monomials ob-

tained from the substitution of corresponding {F,G}-monomials. Then deg(fm
′
) =

deg(gn
′
) = dn′m′deg(h), and any g′i has degree deg(gi)deg(h). This means

∑t
i=1 aig

′
i

is a low representation of fm
′ − gn′

, so {f, g} is a SAGBI basis.
This preparation will lead to a set of equivalences to {f, g} being a SAGBI basis.

First, however, the resultant is needed.

3.2 The Resultant

Definition 3.7. Let f, g be polynomials of degree n and m respectively in k[x],
f = anx

n + ...+ a1x+ a0, g = bmx
m + ...+ b1x+ b0 (f and g will be assumed to be

of degree n and m respectively throughout this section). The Sylvester matrix of
f and g is the (n+m)× (n+m) matrix

an an−1 an−2 ... a1 a0 0 0 ... 0
0 an an−1 an−2 ... a1 a0 0 ... 0
0 0 an an−1 an−2 ... a1 a0 ... 0
...

...
. . . . . . . . . . . . . . . . . . . . .

...
0 0 ... 0 an an−1 an−2 ... a1 a0

bm bm−1 bm−2 ... b1 b0 0 0 ... 0
0 bm bm−1 bm−2 ... b1 b0 0 ... 0
0 0 bm bm−1 bm−2 ... b1 b0 ... 0
...

...
. . . . . . . . . . . . . . . . . . . . .

...
0 0 ... 0 bm bm−1 bm−2 ... b1 b0


and the resultant Res(f, g) is the determinant of this matrix.
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Lemma 3.8. Two polynomials f and g in k[x] have a nontrivial common factor in
k[x] if and only if Res(f, g) = 0.

A proof of this lemma is given in [CLO92, pp.153].
For two polynomials f, g, define the polynomials F (t) = f(t) − f(x), G(t) =

g(t)−g(x) in k(x)[t]. They share the zero x in the field k(x) meaning Res(F,G) = 0
by lemma 3.8.

Definition 3.9. Treating f(x), g(x) as formal variables f, g, define

D(f, g) = det



an an−1 an−2 ... a1 a0 − f 0 0 ... 0
0 an an−1 an−2 ... a1 a0 − f 0 ... 0
0 0 an an−1 an−2 ... a1 a0 − f ... 0
...

...
. . . . . . . . . . . . . . . . . . . . .

...
0 0 ... 0 an an−1 an−2 ... a1 a0 − f
bm bm−1 bm−2 ... b1 b0 − g 0 0 ... 0
0 bm bm−1 bm−2 ... b1 b0 − g 0 ... 0
0 0 bm bm−1 bm−2 ... b1 b0 − g ... 0
...

...
. . . . . . . . . . . . . . . . . . . . .

...
0 0 ... 0 bm bm−1 bm−2 ... b1 b0 − g


Lemma 3.10. D(f, g) has the form∑

(i,j)∈∆

αi,jf
igj

where ∆ = {(i, j) ∈ N × N : in + jm ≤ mn} and αi,j ∈ k for all (i, j) ∈ ∆.
Furthermore αm,0 = (−1)m(n+1)bnm and α0,n = (−1)namn

Proof. The determinant of a k × k matrix C = (ci,j) can be calculated with the
formula

det(C) =
∑

σ∈Perm(k)

sign(σ)
k∏
l=1

cl,σ(l)

where Perm(k) is the set of all permutations on {1, ..., k}. Using this formula for
D(f, g) and gathering terms with the same f, g-monomials gives a sum on the form
in the statement of the lemma, with αi,j ∈ k. Since there are only m f -terms and n
g-terms in D(f, g), ∆ must be a subset of {1, ...,m}×{1, ..., n}. To prove that ∆ has
the form claimed in the lemma, let S be the subset of {1, ...,m+n}×{1, ...,m+n}
consisting of all pairs (l, σ(l)) in one non-zero term of the determinant formula above,
and let i and j denote the number of a0− f and b0− g respectively in this product.
Since the determinant is a sum of terms on this form, showing that in + jm ≤ mn
gives the desired conclusion about ∆. Let (l, r) be some element of S, then∑

(l,r)∈S

l =
∑

(l,r)∈S

r = 1 + ...+ (m+ n)⇒
∑

(l,r)∈S

l − r = 0

which means the terms can be grouped as∑
(l,r)∈S
l≤m

(r − l) =
∑

(l,r)∈S
l>m

(l − r) = s.
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Now, considering the form of the matrix in D(f, g), for any nonzero term of the
formula for det(C) one of two inequalities must hold: if l ≤ m then 0 ≤ r − l ≤ n,
and if l > m then 0 ≤ l − r ≤ m. Every element cl,r of the matrix in D(f, g) which
does not obey these inequalities is zero, meaning a term of the determinant formula
containing such a factor would be zero. This gives the following inequality:

in ≤
∑

(l,r)∈S
l≤m

(r − l) = s

since each term of the sum is greater than 0, and exactly i terms are equal to n. On
the other hand the following inequality also holds:

s =
∑

(l,r)∈S
l>m

(l − r) ≤ m(n− j)

since exactly n− j terms of this sum are non-zero, and these terms are all less than
or equal to m. Combining these inequalities gives

in ≤ s ≤ m(n− j)⇒ in+ jm ≤ mn

which shows ∆ has the form claimed in the statement of the lemma.
To show that αm,0 = (−1)m(n+1)bnm, consider some term of det(C) with f -degree

m (in particular, it will contain (−f)m). For this term, σ(i) = n+ i for 1 ≤ i ≤ m.
This gives ∑

(l,r)∈S
l≤m

(r − l) = mn =
∑

(l,r)∈S
l>m

(l − r)

which means that σ(l) = l −m for m + 1 ≤ l ≤ m + n. Thus, the corresponding
term in the formula for det(C) will be

sign(σ)bnm(−f)m = sign(σ)(−1)mbnmf
m

where sign(σ) can be calculated as (−1)mn using the conditions on σ described
above, which means αm,0 is on the form stated in the lemma. The fact that α0,n =
(−1)namn can be proved in a similar manner.

Theorem 3.11. Let f and g be polynomials in k[x] of degrees n and m respectively.
f and g form a SAGBI basis if the degrees of f and g are relatively prime.

Proof. Assume for simplicity that f, g are monic. The strategy of the proof is
to show that the T-polynomial fm − gn has a low representation. Since only two
generators are considered, every T-polynomial must be on the form fm

α−gnα , which
has low representation if and only if fm− gn has low representation, so it suffices to
investigate this smallest T-polynomial. Consider then D(f, g) in the form of lemma
3.10. Since m and n are relatively prime, the expression in+ jm ≤ mn has equality
only when i = m, j = 0 or j = n, i = 0, so the only {f, g}-monomials of maximal
degree mn in the sum are fm and gn. This together with the identities on αm,0 and
α0,n from the lemma means that

D(f, g) = ±(fm − gn) +
∑
(i,j)

α(i,j)f
igj
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where in+ jm < mn. Since D(f, g) = 0, this means that

fm − gn = ∓
∑
(i,j)

α(i,j)f
igj

where the right hand side is a low representation of fm − gn.

Finally, the previous sections culminate in the following equivalences:

Theorem 3.12. Let f and g be polynomials, of degree n and m respectively, in k[x].
Let d = gdc(n,m). Then the following are equivalent:

(i) {f, g} is a SAGBI basis,

(ii) There exists a polynomial h of degree d and polynomials F and G such that
f = F ◦ h, g = G ◦ h,

(iii) [k(x) : k(f, g)] = d.

Proof. To show (ii)⇒ (i), note that the degrees of F and G are relatively prime,
meaning they are a SAGBI basis by theorem 3.11. Then by lemma 3.6 {f, g} is
also a SAGBI basis. To show (i) ⇒ (ii), Lüroth’s theorem is applied to show that
k(f, g) must be equal to k(h) for some h ∈ k(x). Then f, g ∈ k(h) ∩ k[x], so by
lemma 3.5 f, g ∈ k[h]. This means there are F,G such that f = F ◦ h, g = G ◦ h.
Now h must be shown to be of degree d. Clearly deg(h)|deg(f) and deg(h)|deg(g)
meaning deg(h)|d. On the other hand, h must be in k[f, g], and since {f, g} is a
SAGBI basis, the initial of h is generated by the initials of f, g. This means deg(h)
is a linear combination of deg(f), deg(g), so d|deg(h). Thus deg(h) = d, which
completes the implication.

To show (ii) ⇒ (iii), note that by assumption k(f, g) ⊆ k(h), meaning [k(x) :
k(f, g)] ≥ [k(x) : k(h)] = d , where the last equality follow from lemma 3.3. Com-
bining lemma 3.3 and the tower law gives

n =[k(x) : k(f)] = [k(x) : k(f, g)][k(f, g) : k(f)]

m =[k(x) : k(g)] = [k(x) : k(f, g)][k(f, g) : k(g)].

This means [k(x) : k(f, g)]|d, so [k(x) : k(f, g)] = d. Finally, (iii) ⇒ (ii) is given by
Lüroth’s theorem in combination with the assumption [k(x) : k(f, g)] = d. There
must be some h ∈ k(x) such that k(f, g) = k(h), and by lemma 3.5 f, g are then
elements of k[h]. This means f, g are polynomials in h, and from lemma 3.3 it follows
that deg(h) = d.

Remark 3.13. Theorem 3.12 cannot be extended to more than two generators, as
the implication (ii) ⇒ (i) does not hold even for three polynomials. This is noted
in [Tor02] who also notes that (i)⇒ (ii) holds for any finite number of polynomials.
As the proof of (ii) ⇔ (iii) can be extended to hold for any amount of polynomials,
a similar set of implications for any finite number of polynomials would be (i) ⇒
(ii) ⇔ (iii), as is noted in [Öfv06].
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3.3 Algebras Generated by Two Polynomials

It has been previously shown that two polynomials of relatively prime degree form
a SAGBI basis. This sections deals with algebras generated by two polynomials
that are not of relatively prime degree, and certain SAGBI bases for such algebras.
Throughout, f and g will be assumed to be two polynomials in k[x] of degree n and
m respectively, such that gcd(n,m) = d, d > 1. Furthermore, n′ = n

d
and m′ = m

d
.

To check whether {f, g} is a SAGBI basis, one would check if the T-polynomial
fm

′− gn′
subduces to 0. If it does, then {f, g} is a SAGBI basis. If it does not, then

subduction of fm
′ − gn′

over {f, g} gives some nonzero final subductum h such that
l = deg(h) < m′n′d. The main result of this section is that if d and l are relatively
prime, then {f, g, h} is a SAGBI basis. First, some preparation is required.

Remark 3.14. To simplify this section, instead of working with T-polynomials
directly many proofs will utilise the degrees of the polynomials of the critical pair.
For instance, {f, g} is a critical pair if and only if deg(in≥f

α) = deg(in≥g
β) for some

α, β which can be expressed equivalently as the Diophantine equation nα = mβ. In
a context where the generators are known, only the exponents α, β are needed, and
the critical pair {fα, gβ} will be expressed as the coordinates [(α, 0), (0, β)].

Lemma 3.15. Let f, g,m, n, d, n′,m′ be as defined above. Every T-polynomial in
k[f, g] is on the form ±(fkm

′ − gkn′
) for some k ∈ N. In terms of coordinates, this

corresponds to the critical pairs [(km′, 0), (0, kn′)] and [(0, kn′), (km′, 0)]. If fm
′−gn′

has low representation, every T-polynomial in k[f, g] has low representation.

Proof. Let the coordinates of some critical pair be [(i1, i2), (j1, j2)]. This corre-
sponds to the T-polynomial f i1gj1 − f i2gj2 , which by cancellation of terms is equal
to ±(f i − gj) for some i, j ∈ N. Consider first the critical pair with coordinates
[(i, 0), (0, j)]. Then in = jm⇒ in′ = jm′ ⇒ i = km′ ⇒ j = kn′. This means that

[(i, 0), (0, j)] = k[(m′, 0), (0, n′)]

with a similar argument for a critical pair on the form [(0, i), (j, 0)], which gives
the first statement of the lemma. The second statement follows from considering
in≥(fm

′−gn′
) which is an {f, g}-monomial of degree lower than nm′ = mn′. Clearly

in≥(fαm
′−gαn′

) must be the same {f, g}-monomial to the power α, which has degree
lower than αnm′ = αmn′, meaning fαm

′ − gαn′
has low representation.

Lemma 3.16. Let m,n, d,m′ be as defined above and l be a positive integer such
that gcd(l,d) = 1. Then the condition

i1n+ j1m+ k1l = i2n+ j2m+ k2l

where 0 ≤ k1 ≤ k2 ≤ d, 0 ≤ i1 < m′ and 0 ≤ i2 < m′, implies either that k1 = k2,
i1 = i2 and j1 = j2, or that k2 = d and k1 = 0.

Proof. The condition gives that (k2 − k1)l = (j1 − j2)m + (i1 − i2)n, meaning
that d|(k2 − k1). Thus either k2 = d and k1 = 0, in which case the statement of the
lemma follows, or k1 = k2. In that case, division by d gives (j1− j2)m′ = (i2− i1)n′.
This means m′|(i2 − i1), so i2 must be equal to i1 by the assumptions made, and so
j1 must also be equal to j2
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Lemma 3.17. Let m,n, d, l,m′, n′ be as above. If the linear Diophantine equation

i1n+ j1m+ k1l = i2n+ j2m+ k2l

has a nontrivial solution [(i0, j0, 0), (0, 0, d)], where 0 ≤ i0 ≤ m′ and 0 ≤ j0 ≤ n′,
then all T-polynomials have low representation if the T-polynomials corresponding
to [(i0, j0, 0), (0, 0, d)] and [(0, n′, 0), (m′, 0, 0)] have low representations.

Proof. First, note that if [a, b] and [b, c] are solutions to the equation in the
lemma such that T (a, b) and T (b, c) have low representations, then T (a, c) also has
low representation. To prove this, recall the notation that xααα = xα1

1 · ... · xαnn . Then

T (a, c) = xaaa − xccc = xaaa + xbbb − xbbb + xccc = T (a, b) + T (b, c)

which proves the statement. Now, let [(i1, j1, k1), (i2, j2, k2)] be some fixed solution
of i1n + j1m + k1l = i2n + j2m + k2l. If both k1 > 0 and k2 > 0, subtract some
multiple of [(0, 0, 1), (0, 0, 1)] from the solution such that at least one of k1, k2 is
zero. If both k1 and k2 are zero, then the T-polynomial is of the form f i1gj1−f i2gj2 ,
which reduces to the case fm

′ − gn′
by lemma 3.15 If one of k1 and k2 is nonzero,

assume without loss of generality that k1 = 0 and k2 > 0, which gives the equation

k2l = (i1 − i2n) + (j1 − j2)m.

Then d|k2, so there is some integer k such that k2 = kd. Let a = (i1, j1, 0) and
b = (i2 + ki0, j2 + kj0, 0) and c = (i2, j2, kd). Then

[a, b] = [(i1, j1, 0), (i2 + ki0, j2 + ki0, 0)]

and the corresponding T-polynomial has low representation since it again reduces
to the case fm

′ − gn′
. The T-polynomial corresponding to the pair

[b, c] = [(i2 +ki0, j2 +kj0, 0), (i2, j2, kd)] = [(i2, j2, 0), (i2, j2, 0)]+k[(i0, j0, 0), (0, 0, d)]

also has low representation, since the T-polynomial corresponding to [(i0, j0, 0), (0, 0, d)]
has low representation by assumption, as does the T-polynomial corresponding to
[(i2, j2, 0), (i2, j2, 0)], trivially. Since both [a, b] and [b, c] have low representation, it
follows that

[(i1, j1, 0), (i2, j2, kd)] = [a, c]

has low representation, as claimed.

With this preparation done, the main result of the section can be proved.

Theorem 3.18. Suppose the polynomial h is the final subductum of fm
′ − gn′

, i.e.

fm
′ − gn′

=
∑
(i,j)

α(i,j)f
igj + h

where in + jm < m′n′d for all terms in the sum. If deg(h) = l and gcd(l, d) = 1,
then {f, g, h} is a SAGBI basis.
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Proof. Assume that f and g are monic for simplicity. Consider f, g, h as formal
variables, and note that they generate the algebra k[f, g, h]. The idea of the proof
is to use the element

t = fm
′ − gn′ −

∑
(i,j)

α(i,j)f
igj − h

to subduce D(f, g) in this algebra, which will give a useful identity when passing
to k[x]. These subductions will be performed with respect to deglex order, i.e.
f i1gj1hk1 >deglex f

i2gj2hk2 if and only if i1n+ j1m+ k1l > i2n+ j2m+ k2l or, in the
case of equality, if f i1gj1hk1 >lex f

i2gj2hk2 where f > g > h.
Now consider D(f, g) as a polynomial in k[f, g, h] and subduce it over {t}. The

result will be some polynomial

R(f, g, h) =
∑

γ(i,j,k)f
igjhk

which only contains monomials f igjhk where i < m′, k ≤ d. The inequality i < m′

follows from the fact that indeglext = fm
′
, so any term of R containing f s where

s > m′ can be further subduced. The inequality k ≤ d follows from the fact that
t has a positive term fm

′
and a negative term h, meaning that every time a factor

h appears during subduction, a factor fm
′

disappears. Since the only term with
maximal f -degree of D(f, g) is fm = fm

′d (from lemma 3.10), the only term with
maximal h-degree that will appear during subduction is hd.

Now replace f, g, h with f(x), g(x), h(x), and note that R(f, g, h) is then 0
(since both D(f(x), g(x)) and t(x) are 0 over k[x]). This gives an identity be-
tween f(x), g(x), h(x). In particular, the terms of highest degree in R must cancel,
thus at least two {f, g, h}-monomials must have the same maximal degree. By
lemma 3.16, the only {f, g, h}-monomials that can have the same maximal degree
are f(x)i1g(x)j1 and f(x)i2g(x)j2h(x)d for some i1, i2 < m′. The fact that the only
{f, g, h}-monomial of h-degree d is h(x)d implies that i2 = j2 = 0. Since all other
terms of R have lower degree, the equation R = 0 can be represented as

αf(x)i1g(x)j1 − βh(x)d =
∑

(i,j,k)/∈{(i1,j1,0),(0,0,d)}

γ(i,j,k)f
igjhk

for some nonzero α, β ∈ k. The right hand side of this equation is a low rep-
resentation of the T-polynomial corresponding to [(i1, j1, 0), (0, 0, d)] Since the T-
polynomial corresponding to [(m′, 0, 0), (0, n′, 0)] clearly has low representation in
terms of f, g, h, lemma 3.17 gives that every T-polynomial over {f, g, h} has low
representation, meaning {f, g, h} is a SAGBI basis.

There is a partial converse to this theorem.

Theorem 3.19. Let h be a non-zero {f, g}-subduced remainder of the T-polynomial
fm

′ − gn′
and {f, g, h} be a SAGBI basis. If p = gcd(m,n) is a prime, then p and

l =deg(h) are relatively prime.

Proof. To prove the theorem, assume that {f, g, h} is a SAGBI basis and, con-
trary to the statement of the theorem, that p = gcd(m,n) is a prime dividing l. As
in the proof of theorem 3.12, combining lemma 3.3 and the tower law gives

n =[k(x) : k(f)] = [k(x) : k(f, g)][k(f, g) : k(f)]

m =[k(x) : k(g)] = [k(x) : k(f, g)][k(f, g) : k(g)].
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Thus [k(x) : k(f, g)] divides gcd(m,n) = p, and since p is assumed to be prime
either [k(x) : k(f, g)] = p or [k(x) : k(f, g)] = 1. In the first case, {f, g} is a SAGBI
basis by theorem 3.12 so h = 0, contradicting the assumption. In the second case,
k(f, g) = k(x) which implies that x can be written as a quotient of two polynomials
in k[f, g]. Since {f, g, h} is a SAGBI basis, all elements of k[f, g, h] = k[f, g] have
degree divisible by p, in particular the numerator and denominator of x (considered
as a quotient). This means x has degree divisible by p which is not possible, and so
we have a contradiction, which shows that the theorem holds.

Remark 3.20. Note that this theorem does not hold if p is not assumed to be
prime.

Example 3.21. Let f and g be univariate polynomials such that deg(f) = n = 9,
deg(g) = m = 6, and let h be the final subductum of T (f, g) = f 2 − g3. If h is 0,
then every T-polynomial of {f, g} subduces to 0 and {f, g} is a SAGBI basis. If h
is nonzero, it has degree lower than 2n = 3m = 18, and if that degree is relatively
prime to 3, then {f, g, h} is a SAGBI basis by theorem 3.18. The case where deg(h)
is a multiple of 3 must be considered next. Clearly h cannot have degree 6, 9, 12
or 15, since it could then be further subduced by g, f , g2 and fg respectively. So,
if deg(h) = 3, is {f, g, h} ever a SAGBI basis? Consider the T-polynomials h3 − f ,
h2 − g. If these are both 0, then both f and g are polynomials in h, meaning that
{f, g} is a SAGBI basis by theorem 3.12. If either of them is nonzero, then not
all T-polynomials in {f, g, h} subduce to 0, and so {f, g, h} is not a SAGBI basis.
Thus, if deg(h) = 3, {f, g, h} is never a minimal SAGBI basis.

Example 3.22. The last case described in the previous example is illustrated in
the simple example of f = x9, g = x6 + x. Then f 2 − g3 = x3 which cannot be
further subduced, so let x3 = h. Then h3 − f = 0 but h2 − g = x, which cannot
be further subduced, so let x = u. Now every T-polynomial over {f, g, h, u} can be
subduced to 0 and {f, g, h, u} is a SAGBI basis for k[f, g] = k[x]. Note that due to
corollary 2.21, {u} = {x} is a SAGBI basis for k[f, g], and is in fact the minimal
SAGBI basis.
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Future Research

The classification of subalgebras with finite SAGBI bases is an open problem, mean-
ing that further research into conditions for generators to form a finite SAGBI basis
would be useful - an approach that uses results from the study of numerical semi-
groups is suggested in [Tad19], and could be developed further. An alternative
approach to the membership problem for subalgebras was suggested by my super-
visor, Victor Ufnarovski. The idea, which is illustrated in the example below, is to
find function conditions on the evaluation of polynomials to determine whether they
are generated by some SAGBI basis.

Example 3.23. Let f = x3 − x and g = x2 where f, g ∈ k[x]. Let h be some other
polynomial in k[x]. To determine whether h lies in k[f, g], one could subduce it over
{f, g}. On the other hand, note that any term of even power in h is generated by
g, meaning that only terms of odd power have bearing on whether h lies in k[f, g].

Form the polynomial hodd = h(x)−h(−x)
2

, which contains only the odd-powered terms
of h. If hodd lies in k[f, g], it will consist of linear combinations of terms on the form
(x3 − x)i(x2)j. This gives the simple condition h ∈ k[f, g]⇔ hodd(1) = 0⇔ h(1) =
h(−1).

This example could be expanded to e.g. f = x3 + ax, where a is some nonzero
scalar, via variable substitution. It is still not clear that the method can be gen-
eralised, but the idea of finding conditions on evaluations of polynomials as a way
of testing their membership is novel and could potentially be much quicker than
performing subductions, were such conditions to be found.
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[TUÖ03] Anna Torstensson, Victor Ufnarovski, and Hans Öfverbeck. “On SAGBI
basis and Resultants.” English. In: Nato Science series Mathematics,Physics
and Chemistry. Ed. by Jurgen Herzog and Victor Vuletescu. Vol. 115.
2003, pp. 241–254.

28


