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Abstract. The potential for making profits investing in cryptocurrencies, the hedging benefits and 

the role in global economy, make it relevant to study the determinants of cryptocurrencies and 

to analyze different returns prediction models. Previous studies have focused one or some 

cryptocurrencies, this study analyzes the cryptocurrency market as a whole and finds the 

determinants of the cryptocurrency market and a returns prediction model using a machine 

learning approach. Evaluating the immediate impact of features, divided in cryptocurrency 

market data, information demand, financial markets, exchange rates and macroeconomics, it 

was found that the most important determinants of the cryptocurrency market returns is the 

cryptocurrency market data. For prediction of the next-day returns, the USD-CNY exchange rate 

emerged as the most important determinant. Different returns prediction models are evaluated 

using Lasso, Regression Tress, Random Forest and Boosting. Random Forest presents the best 

prediction accuracy and can be used to predict the cryptocurrency market returns.  
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1. Introduction 

Cryptocurrencies are a specific type of virtual currencies that use cryptography to protect 

financial transactions (Vejacka, 2014). As many discussions about their role in economy have 

been taking place in the last years, they can be considered one of the most controversial 

innovations in modern economy. Being decentralized, that is, existing outside the control of 

governments and central authorities, they are not restricted to any local jurisdiction or fiat 

currency (Brookins, Rinaldo & Zhao, 2019). Thus, cryptocurrencies seem to be detached from 

macroeconomic features and behave independently from other financial markets.  

Low transaction cost, anonymous exchange and easy access, have created worldwide interest in 

cryptocurrencies. The importance of cryptocurrencies is undeniable. As Facebook develops their 

Libra cryptocurrency, China´s pilot program for the upcoming digital yuan has been taking place 

in Xiong’an (Cheng, 2020), representing an initiative that can change the way Central Banks 

manage money. Cryptocurrencies have reached the mainstream and this trend is expected to 

grow the next years (Dempere, 2019). 

As their popularity rises, the number of cryptocurrencies in the market increases existing about 

2 817 different cryptocurrencies at the time of collecting data for this study. Despite fluctuations, 

their prices have been going up since 2016 keeping the interest very substantial. Many 

cryptocurrency users think of them as assets rather than currencies and use them as an 

alternative investment to stocks and funds (Parashar & Rariwalla, 2019). It is considered, see for 

example Sun, Liu and Sima (2020), that cryptocurrencies can reduce portfolio risk by offering 

diversification and hedging benefits given their low correlation with other financial assets. 

Thus, the potential for making profits investing in cryptocurrencies stimulates the development 

of methods and models for predicting prices which become very relevant for financial analysts, 

investors, traders and motivates this study. Moreover, the unique features of cryptocurrencies 

and their controversial role, not only in global economy but also in the digital future, make it 

essential to study their behavior, features and returns.    
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Recent studies about cryptocurrency price and returns prediction have focused on one or some 

cryptocurrencies and analyzed one currency at a time. For instance, Alahmari (2019) and 

Bezkorovainyi et al. (2019) predicts and forecast the price for Bitcoin, Ethereum and Ripple 

establishing similar but independent models for each. Brookins, Rinaldo and Zhao (2019) study 

returns prediction of Bitcoin, Ethereum and Litecoin to determine the method with best 

classification accuracy and use it to create trading strategies. Gomez-Espinosa, Valdés-Aguirre 

and Valencia (2019) focuses on predicting price direction of Bitcoin, Ethereum, Ripple and 

Litecoin using social and market data.  Dempere (2019) analyzes the predictive power of selected 

financial variables over Bitcoin, Ethereum and Ripple. The results of these studies are important 

because they examine the cryptocurrencies with largest market. However, as most investors will 

invest in different cryptocurrencies and as the number of other cryptocurrencies available 

increases, a more comprehensive research approach about the whole cryptocurrency market is 

needed.   

This study contributes to previously mentioned literature by studying the market as a whole and 

not analyzing one or some cryptocurrencies individually. The purposes are to find the 

determinants of the cryptocurrency market returns and their relationship (inference) and to 

determine a returns prediction model for the cryptocurrency market (prediction). Thus, the 

results from the present study can help to understand if the market behaves independently from 

other financial assets or macroeconomic features and find an approach to predict the 

cryptocurrency market returns.  For this, machine learning techniques, that have gained a lot of 

attention for their forecast efficiency in the recent years will be used. Thus, while finding the best 

prediction model, new technology will be analyzed.    

The study will be structured as follows: In Section 2 previous literature is analyzed. The data used 

in the study is presented in Section 3 followed by the Methodology in Section 4. The results of 

the determinants of the cryptocurrency market and the returns prediction models are presented 

in Section 5 leading to conclusions in Section 6.  
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2. Literature Review 

The present study stablishes on the two main concepts of statistical learning. Hastie et al. (2013) 

define statistical learning as the approaches for estimating a function 𝑓 that connects an output 

with one or more inputs in order to make inference about their relation or predict the output. 

Then according to them,  the objectives for estimating a function are inference and prediction, 

where inference refers to the relationship between the inputs and the output (explanatory 

power) and prediction refers to using available data in the inputs to predict an output that is not 

available yet (predictive power). Thus, these two concepts, inference and prediction, match the 

purposes of this study and are used for its development. Inference relates to finding the 

determinants of the cryptocurrency market returns and prediction to determine a returns 

prediction model. 

This section is divided in tree parts. Firstly, theory about inference is presented as the first step 

of the study will be to find the determinants of the cryptocurrency market returns. Then 

prediction and methods used for prediction are described. Finally, previous literature about 

cryptocurrency price and returns prediction is presented.   

2.1 Inference  

As mentioned and stated by Hastie et al. (2013), given a quantitative response 𝑌 of predictors X 

and the irreducible error term 𝜖 (equation 1), inference refers to estimating a function 𝑓 in order 

to explain how changes in the input 𝑋 = {𝑋1, 𝑋2. . . 𝑋𝑃} affects the response variable Y, which 

predictors are associated with the response and what is the relationship between the response 

and the predictors.  

Y = 𝑓 (X) + ϵ (1) 

When determining a model, some predictors might not be associated with the response causing 

unnecessary complexity in the model (Hastie et al. 2013). Thus, in order to determine a model 

for cryptocurrency returns, a variable selection approach which penalize or remove unrelated 

features is needed. Hastie et al. (2013) describe approaches that could be applied to perform this 

task and divide them in three groups: Subset Selection, Shrinkage and Dimension Reduction. In 
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this case, the more suitable are the Shrinkage approaches, where Lasso is the most appropiate 

since some variables could be irrelevant and thus removing them from the model by setting their 

respective coefficient estimates to zero becomes relevant. Hastie et al. (2013) emphasize that 

selecting a good value of the tuning parameter λ is critical for Lasso since setting λ to zero 

produces a least square fit and a large value of λ sets all the coefficient estimates to zero. Thus, 

depending in the value of λ different models are produced by Lasso. The authors suggest using 

Cross-validation to define the appropriate value of λ, that is, the value corresponding to the 

smallest Cross-validation error.  

Lasso involves a linear relationship between the predictors and the response, which by removing 

irrelevant variables contributes to better inference, but may not produce accurate predictions as 

other non-linear models (Dalalyan, Hebiri & Lederer, 2017). 

2.2 Prediction  

Hastie et al. (2013) state that highly non-linear approaches can yield more accurate predictions 

because when prediction is the objective the exact form of the estimated function 𝑓 is not 

important as the predictions 𝑌̂ obtained.  

Following, some of the most popular and widely applicable non-linear approaches are presented.  

2.2.1 Regression Trees 

Breiman et al. (1984) remark that tree-based methods add a flexible non-parametrical approach 

to the data. Regression trees are more efficient than classical methods, like linear regressions, 

when the relationship between the predictor and the response variable is complex and non-linear 

(Hastie et al. 2013).  

Cutler, Cutler and Stevens (2008) explain Regression Trees with the tree analogy as follows. The 

“root node”, containing the mean value of the response variable of all the observations, is divided 

into two nodes based on a predictor variable. This split creates two new nodes where the 

observations are divided according to the value in the predictor, that is, if the value is smaller 

than the split-point the observations go to the left and otherwise go to the right. The process 

continues until non-partitioned nodes, called “terminal nodes”, are reached. The value in each 
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terminal node corresponds to the mean value of the response variable for that terminal node 

(Breiman et al. 1984). Further, Hastie et al. (2013) describe the terminal nodes as “leaves” or 

regions, implying that the predictor space is split in several simple regions Rj, and that the 

segments connecting the nodes and the leaves are known as “branches”. 

The Regression Trees use a top-down and greedy approach as stated by Hastie et al. (2013).  The 

authors explain the top-down consideration noting that each split creates two new brunches and 

greedy because in each node the best split is made until some stopping criterion is met resulting 

in a tree with the lowest Residual Sum of Squares (RSS). Regarding prediction, Hastie et al. (2013) 

explain that once the regions Rj or the terminal nodes are defined by the model, the predicted 

response for a test observation which correspond to some terminal node, is the mean value of 

the training observations in that terminal node. However, this procedure might lead to overfitting 

the training data and poor test data prediction, so the authors suggest a tree pruning method 

where a very large tree is grown to be pruned back into a subtree. The objective is to select the 

subtree with lowest test rate which can be estimated by Cross-validation. 

According to Cutler, Cutler and Stevens (2008) the largest drawback of regression trees is 

prediction accuracy.  Therefore, tree-based ensemble methods, as Bagging, Random Forest and 

Boosting, can be used to increase efficiency. The authors further explain that in these methods 

multiple trees are combined to produce an aggregated prediction, however, the methods differ 

in how the predictions are aggregated. 

2.2.2 Bagging  

Bagging, introduced by Breiman (1996), stands for “bootstrap aggregating”. Breiman (1996) 

explains that the method consists in using multiple version of a predictor in order to get an 

aggregated predictor, which averages the values obtained in each version. He further remarks 

that the multiple versions are generated by bootstrap replicates on the training set, meaning that  

datasets are randomly generated with replacement from a single training set containing the same 

number of observation as training set. 

The different regression trees constructed using bootstrapped training sets should not be pruned 

since each individual tree has high variance but low bias and the variance is naturally reduced by 
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averaging the trees (Hastie et al. 2013). Determining the number of regression trees is not a 

critical part of the process as using a many trees does not generate overfitting and typically a 

large number of trees, for instance 100, is sufficient (Hastie et al. 2013). 

Breiman (1996) emphasizes that Baggging increases prediction accuracy by lossing 

interpretability. Cutler, Cutler and Stevens (2008) indicate that Bagging seldom have a worse 

perfomance than indivudual trees. In this regard, Breiman (1996) states that the key factor is the 

stability of the prediction model. If small changes in training set can generate large changes in 

predictor, bagging will improve the model. He additionally comments that Bagging can help a 

good but unestable model to become more optimal, however, it can degrade a stable model.  

In this context, the test error can be estimaded without using Cross-validation. Hastie et al. (2013) 

suggest using the out-of-bag (OOB) obervations in each bootstrapped training set to predict OOB 

responses. This implies that the predictions are generated from the trees where the observations 

were OOB and averaged to a single prediction. Thus, a OOB prediction can be generated for all 

the obervations, leading to an OOB Mean Suared Error (MSE) that is considered a valid test error 

for bagged models.  

2.2.3 Random Forest 

Furthermore, Breiman (2001) also introduced Random Forest, a method that includes 

randomness by using bootstrapped predictor samples in the tree building process. In that sense, 

he explains that Random Forest is an effective tool in prediction, which incorporates random 

predictor selection to bagging.  

In Random Forest, trees are fitted using a bootstrapped subset 𝑚 of the total amount of 

predictors 𝑝; thus, these 𝑚 predictors are randomly and independently chosen at each node, 

where the best split is determined following the single tree approach (Breiman , 2001). Trees are 

grown, and not pruned, until terminal nodes consisting only of a small number of observations 

are reached (Cutler, Cutler & Stevens, 2008).  

Accordingly, 𝑚, the bootstrapped subset of predictors and the number of trees are tuning 

parameters in this method. Hastie et al. (2013) indicate that a commonly use value of 𝑚 is √𝑝 , 
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where 𝑝 is total amouth of predictors. It is suggested that a small value of 𝑚 should be considered 

if the predictors are correlated. Although, Breiman (2001) states that Random Forest’s results are 

insensitive to 𝑚 and the number of trees, and that adding more trees does not generate 

overfitting. Furthermore, Cutler, Cutler and Stevens (2008) point out that the number of 

predictors 𝑚 can be determined by the OOB error rate, implying that 𝑚 can be identified by 

applying Random Forest to few trees to then choose 𝑚 from the OOB data. They also note that 

the depth of tree, that is the number of observations in the terminal nodes, can also be selected 

using OOB data.  

Random Forest can be seen as a Bayesian procedure where accuracy comes from low bias and 

low correlation (Breiman , 2001).  Low bias results from growing large trees and low correlation 

from not generating similar trees while maintaining the low bias (Cutler, Cutler & Stevens, 2008). 

In comparison with Bagging, it is said that in Bagging if the model contains one very strong 

predictor, that predictor will be at the top of the split producing similar bagged trees each time, 

implying that the predictions will be highly correlated and averaging them will not generate a 

large reduction in variance as if they were uncorrelated like in Random Forest (Hastie et al. 2013). 

In Bagging trees differ within each other because they come from different bootstrapped training 

sets, in Random Forest trees further differ because they are fitted in bootstrap samples of 

predictor sets at each node reducing correlation and increasing accuracy (Cutler, Cutler & 

Stevens, 2008).     

Likewise Bagging, the estimated OOB error rate is a valid test rate and a test set of observations 

is not needed.   

2.2.4 Boosting 

Boosting is another tree-ensemble method, as Bagging and Random Forest, that focuses on 

improving prediction performance of an individual tree by fitting and combining multiple trees 

for prediction, but unlike these, Boosting does not involve randomness by using bootstrap 

samples.  

Elith, Leathwick and Hastie (2008) explain that Boosting is a sequential, forward and stepwise 

procedure which fits trees to the training set repeatedly, setting focus on observations that are 
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modeled poorly. There are many Boosting algorithms which vary in the way lack-of-fit is 

measured and the settings selected for each repetition. The authors note that Boosting Trees try 

to minimize the RSS by adding trees that best minimizes it at each step. Initially, the first 

regression tree minimizes the RSS, then, the next tree focuses on the residuals, that is the 

variation that was not explained by the model. This implies that the second tree is fitted to the 

residuals of the first tree, and then these two trees are combined to calculate the residuals that 

will be used for the third tree and so on.  

As trees grow sequentially each tree can be small but have different variables and splits. Hastie 

et al. (2013) describe the tuning parameters of the model. These involve, as usual, the number 

of trees and two new parameter, the shrinkage parameter λ, which make the process even slower 

in order to let trees with different shapes to influence the residuals, and the parameter d, that 

determine the splits in each tree and thus control the complexity of the trees. According to Elith, 

Leathwick and Hastie (2008), an optimal level for the tuning parameters can be estimated using 

Cross-validation. Furthermore, the test error can also be computed using Cross-validation.    

Hastie et al. (2013) further note that unlike bagging and random forest, Boosting depends in trees 

that have already been grown and in this method smaller trees can be enough. Boosting is 

characterized by learning slowly and that kind of approaches usually involve better performance. 

2.3 Previous cryptocurrency studies 

Cryptocurrencies have been attracting many researchers in the last years. Although most studies 

have focused on price prediction of Bitcoin, new literature about other cryptocurrencies can be 

found. In this section, previous studies about cryptocurrency price and returns prediction are 

presented according to linear and non-linear models. These studies have different purposes and 

use different performance metrics making it difficult to compare efficiency within each other. 

Nevertheless, a summary table showing the key elements of the cryptocurrency literature review 

is presented at the end of this section. 
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2.3.1 Linear models 

Arora, Bhatia and Mittal (2018) used a Multivariate linear regression to predict the highest price 

for ten cryptocurrencies. The independent variables analyzed for each cryptocurrency model 

were open price, low price, close price, volume and market capitalization, however, only open 

price, low price and close price were found significant and used for the prediction.  

Other linear models used by researchers to predict prices of cryptocurrency are ARIMA models. 

Bezkorovainyi et al. (2019) used Binary Auto Regressive Tree (BART), ARIMA(1,0,1) and ARFIMA 

(1,d,1), to forecast the prices of Bitcoin, Ethereum and Ripple during: a stable period, a falling 

trend, transition dynamics (change of trend) and rising trend. The models for each cryptocurrency 

were compared by the Root Mean Squared Error (RMSE) and it was concluded that the BART 

models presented higher efficiency in all the periods and for all cryptocurrencies. Alahmari (2019) 

evaluated price prediction and short-term direction for Bitcoin, Ethereum and XRP applying 

ARIMA models. The data was divided in daily, weekly and monthly, and volume was defined as 

an independent variable. The results determined that the ARIMA model with daily sample 

outperformed other models. 

2.3.2 Non-linear models 

Chowdhury et al. (2020) used Gradient Boosted Trees, Neural Network, Ensemble Learning and 

K-Nearest Neighbor, in order to predict and forecast the close price of the Cryptocurrencies Index 

30 (cci30) and nine cryptocurrencies that constitute the index. The study was divided in 

prediction and forecast, using Gradient Boosted Trees, Neural Network and Ensemble Learning 

as prediction methods, and date, open price, high price and low price as features. Forecasting 

was done by K-Nearest Neighbor using date and close price. Gradient Boosted Trees and the 

Ensemble learning method presented better performance. However, the model was more 

efficient, in terms of RMSE, for each cryptocurrency than for the index. 

Furthermore, other studies used Twitter sentiment as a feature to analyze cryptocurrency´s 

prices.  One of these is presented by Fong et al. (2019) which applied a Extreme Gradient Boosting 

Regression Tree to analyze if user sentiments can predict price movements of a cryptocurrency 
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with small market capitalization as ZClassic. They collected tweets during 3.5 weeks and classified 

each tweet as positive, neutral or negative to construct an hourly based sentiment index. Twitter 

sentiments and trading volume were used as features in the model, concluding that this method 

can serve as a viable approach for predicting cryptocurrency prices. Gomez-Espinosa, Valdés-

Aguirre and Valencia (2019) applied a similar approach and used Neural Networks, Support 

Vector Machines and Random Forest to analyze social media and market data for predicting the 

price movements of Bitcoin, Ethereum, Ripple and Litecoin. Three models of different inputs 

were considered for each currency, one that included social data, another with market data and 

a third that used both market and social data. Market data consisted in high price, low price, 

close price and volume. Social data was collected from raw tweets from Twitter where VADER 

(Valence Aware Dictionary and sEntiment Reasoner) was used to quatify the emotions in each 

tweet. The results showed  that Neural Networks outperformed other models and that Twitter 

data by itself could not be used to predict certain cryptocurrencies. The study concluded that 

Twitter data can be used by itself to predict Ripple and Litecoin, but it is not superior to the 

utilization of exclusively market data.  

Brookins, Rinaldo and Zhao (2019) and Aiello et al. (2018) focused on returns´ prediction in order 

to create trading strategies. Brookins, Rinaldo and Zhao (2019) used Suport Vector Machines, 

Random Forest and Extreme Gradient Boosting, and clasiffied the returns of Bitcoin, Ethereum 

and Litecoin in “up”: 𝑟𝑡 > 0,5 , “down”: 𝑟𝑡 < 0,5  and “same”:  𝑟𝑡 = 0,5. Additionally, they 

defined a tuning parameter 𝛾 , which served as a threshold for making trading decisions and 

predicting class probability from the regression functions. For the three classes, a Bayes’ rule 

established  𝛾 = 1/3 and suggested “buy” whenever the predicted probability weight on “up” 

exceeded 1/3, likewise, “sell” if “down” exceeded 1/3. The study concluded that Support Vector 

Machines outperformed other methods and that their “all-in” strategy performed well and could 

avoid big losses of the market.  

The other approach, presented by Aiello et al. (2018), studied three models, two of them based 

on Gradient Boosting: one analyzing all cryptocurrencies and the other each cryptocurrency 

separately, and a the third model based in Neural Networks analyzing each currency separatly. 



[15] 
 

For this, cryptocurrencies with daily trading volume higher than 105 USD from a sample of 1681 

cryptocurrencies were analyzed. The daily price was computed as the volume weighted average 

of all prices and was then transformed in daily returns on investment (ROI). The features for the 

first and the second model were mean, standard deviation, median, close price, the difference 

between last and first value of: price, market capitalization, market share, rank and volume. In 

the third model,  prediction was based on previous returns. The study concluded that the first 

and second model, based on Gradient Boosting, worked best when predictions were based on 

short-term window lengths of 5-10 days, while Neural Networks performed best when 

predictions were based on windows of about 50 days. Among the two methods based on 

Boosting, the one considering a different model for each currency performed best. 

2.3.3 A wider view of predictors 

The previous studies used almost the same variables in their respective models. These variables 

include cryptocurrency market data: open, high, low, volume, market cap and historical prices, 

and social media data: Tweets. Since one of the objectives of this study is to determine the 

variables that affect the cryptocurrency market returns, other studies that analyzed more 

variables are further presented.  

Dempere (2019) analyzed the predictive power of selected financial variables over principal 

cryptocurrencies: Bitcoin, Ethereum and Ripple. The independent variables included in the study 

were the daily Google trend values of the words “cryptocurrencies”, “Bitcoin”, “Ethereum”, and 

“Ripple”, the daily log returns of exchange rates of several major currencies USD, GBP, JPY, EUR, 

RUB, CNY per Special Drawing Rights, the daily log returns of the S&P500 index, gold and oil. The 

results provided evidence that the log returns of each studied cryptocurrency had significant 

explanatory over each other. The study also found significant results for the daily Google trend 

values of the search terms “Bitcoin”and “Ripple”, the log returns of the exchange rate of Chinese 

Yuan per SDRs and the S&P500 index. The log returns of oil prices have a significant relationship 

with Bitcoin and Ethereum, but not with Ripple.  

Panagiotidis, Stengos and Vrabosinos (2018) studied the determinants of Bitcoin using a Lasso 

approach. The variables examined in the study were the oil and gold prices, the Fed Fund 
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effective rate and ECB deposit facility rate, the exchange rates USD to EUR, GBP, CNY, JPY. The 

stock markets index: Dow Jones, Nasdaq, Nikkei 225, S&P 350, SSEC, the VXD volatility index, the 

Policy Uncertainty Index for US, Europe and China and the Google and Wikipedia trend for the 

term “Bitcoin”. Search intensity and gold return were found as the most important variables for 

Bitcoin returns. 

As a summary, table 1 present the important characteristics of the previous studies about 

cryptocurrencies. 

 

 

Source Objective Explanatory variables Empirical Method  
Performance 
Metrics 

Arora, Bhatia 
and Mittal 
(2018)  

Predict highest price of 10 
cryptocurrency (individually) 

Open 

Linear Regression Accuracy 

Low 

Close 

Volume 

Market Cap 

Type of coin 

Delta of currency 

Bezkorovainyi 
et al. (2019)  

Short-term forecasting 
model for prices of Bitcoin, 
Ethereum and Ripple 

Price past values 
Binary Auto Regressive 
Tree (BART), ARIMA(1,0,1) 
and ARFIMA  

RMSE 

Alahmari 
(2019) 

Price prediction and short-
term direction for Bitcoin, 
Ethereum and XRP  

Volume ARIMA 
Mean absolute 
error (MAE), 
MSE, RMSE 

Chowdhury et 
al. (2020) 

Predict and forecast close 
price of cci30 and 9 
cryptocurrencies 

Date 

Gradient Boosted Trees, 
Neural Networks, 
Ensemble Learning, K-
Nearest Neighbor 

RMSE, 
prediction 
trend, accuracy, 
absolute error, 
relative error, 
squared error 

Open 

High 

Low 

Date (forecast) 

Price (forecast) 

Fong et al. 
(2019)  

Twitter sentiment as a 
feature to analyze 
cryptocurrency´s prices: 
Zclassic 

Positive  

Extreme Gradient Boosting 
Regression Tree 

Pearson 
correlation  

Negative 

Neutral 

Unweighted Index 

Weighted Index (retweets) 

Trading volume 
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Gomez-
Espinosa, 
Valdés-Aguirre 
and Valencia 
(2019)  

Predict price movements of 
Bitcoin, Ethereum, Ripple 
and Litecoin 

High (market data) 

Neural Networks -MLP, 
Support Vector Machines, 
Random Forest 

Accuracy 

Low (market data) 

Open (market data) 

Volume (market data) 

Neutral (tweets-social data) 

Negative (tweets-social data) 

Positive (tweets-social data) 

Polarization (tweets-social data) 

Norm (tweets-social data) 

Brookins, 
Rinaldo and 
Zhao (2019) 

Returns´ prediction to create 
trading strategies for 
Bitcoin, Ethereum and 
Litecoin 

Open 

Support Vector Machines, 
Random Forest, Extreme 
Gradient Boosting 

Accuracy 

High 

Low 

Close 

Volume 

Other features based on historical 
prices and volumes 

On-chain data 

Aiello et al. 
(2018) 

Anticipate cryptocurrency 
prices. Construct investment 
portfolios 

Price: last, mean, trend, std, median 

Gradient Boosting, Neural 
Networks, Baseline model: 
simple moving average 
strategy (SMA) 

Profits 
(expressed in 
Bitcoin) over the 
entire 
considered 
period and for a 
large set of 
shorter trading 
periods 

ROI: mean, trend, std, median 

Age: last, mean, trend, std, median 

Volume: last, mean, trend, std, 
median 

Rank: last, mean, trend, std, median 

Market share: last, mean, trend, std, 
median 
Market Cap: last, mean, trend, std, 
median 

NN: ROI past values 

Dempere 
(2019) 

Predictive power of selected 
financial variables over: 
Bitcoin, Ethereum and 
Ripple.  

Google trends 

PGARCH, ECGARCH, 
TGARCH and GARCH 
models 

Statistical 
significance at 
the 0.1%, 1%, 
5%, and 10% 
significance 

   

 USD, GBP, JPY, EUR, RUB, CNY per 
SDRs 

Log returns of S&P500 

Log returns of gold 

Log return of oil prices 

Panagiotidis, 
Stengos and 
Vravosinos 
(2018) 

Examine the significance of 
twenty-one potential drivers 
of Bitcoin returns 

Gold and oil prices 

Lasso 

Lasso 
coefficients and 
direction 
movements 

EFFR 

ECB deposit facility rate 

USD to EUR, GBP, CNY, JPY 

Dow Jones Index, Nasdaq, Nikkei 225 

S&P 350, SSEC 

VXD 

EPU for US, China and Europe 

Google and Wikipedia trend "Bitcoin" 

Table 1. Summary literature review about the cryptocurrency market 
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3. Data 

A dataset including all cryptocurrencies was extracted from coinmarketcap.com, a source 

frequently used in previous literature. At the time of the data collection, eleven cryptocurrencies 

with largest market capitalization represent the 90% of the total market capitalization (see table 

2). Since these cryptocurrencies highly represent the market, they will be used as the base for 

this study. It is considered that other cryptocurrencies, following in market capitalization, have a 

smaller market share and will not make a big contribution to the main results. Following a CAPM 

market portfolio determination, where assets are weighted in proportion to their presence in the 

market, the close price of these top eleven cryptocurrencies are weighted according to their 

market capitalization resulting in a daily capitalization-weighted index ( “cap-weighted index”).  

 

 

#  Name Symbol Market Cap 
% of Total 
MarketCap 

1 
 

Bitcoin BTC $170,651,691,691  67% 
2 

 

Ethereum ETH $23,261,371,032  9% 
3 

 

XRP XRP $9,695,669,860  4% 

4 
 

Tether USDT $6,431,242,163  3% 
5 

 

Bitcoin Cash BCH $4,613,776,379  2% 
6 

 

Bitcoin SV BSV $3,861,539,716  2% 

7 
 

Litecoin LTC $3,057,758,053  1% 
8 

 

Binance Coin BNB $2,651,426,622  1% 
9 

 

EOS EOS $2,567,439,196  1% 
10 

 

Tezos XTZ $1,952,676,394  1% 
11 

 

Stellar XLM $1,468,255,838  1%   
90% 

Table 2. Top 11 cryptocurrencies - representing 90% of total cryptocurrency market 
(data on 6th May 2020) 
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Data for the cryptocurrencies is collected for the period from April 29th, 2013 to May 1st, 2020. 

Some cryptocurrencies were released at a later point of time from the initial date of analysis and 

are included in the daily cap-weighted index at their respective date of release. Figure 1 shows 

the evolution of the prices for each cryptocurrency. Bitcoin, which reached its highest level of 

$19 497 in December 2017, represents the highest prices in the market followed by Bitcoin Cash 

and Ethereum. Further, another period with big rises for these three cryptocurrencies, in 

particular Bitcoin, is between June and August 2019. Moving away from these levels are Litecoin 

and Monero which rose to their highest rates in November 2017 and kept levels above $400 and 

$250 until January 2018. Other cryptocurrencies have prices under $40 during the all the study 

period.  

The daily cap-weighted index calculated and consisting of 2 030 observations are also shown in 

figure 1, these will be transformed to log returns to be used as the response variable in this study.  

Figure 2 shows the cap-weighted index returns, hereinafter referred to as returns, and the 

summary statistics are presented in Table 2. 

 

 



 

 

 

Figure 1. Prices of the top 11 cryptocurrencies and the WMAP. The prices of Bitcoin and the WMAP are presented in the right axis, the rest in the left axis
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Figure 2. Cap-weighted log returns from April 30th, 2013 to April 30th, 2020 

 

 

Mean 0.0021 

Standard Error 0.0012 

Median 0.0011 

Standard Deviation 0.0534 

Sample Variance 0.0029 

Kurtosis 11.8832 

Skewness 0.1228 

Range 0.9893 

Minimum -0.4696 

Maximum 0.5197 

Sum 3.8501 

Count 1829 

Table 3: Descriptive statistics of Cap-weighted 
log returns 
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Regarding the predictors, almost all variables that have been suggested in previous literature and 

other variables of interest are considered, representing cryptocurrency market data, information 

demand, commodities, financial markets and macroeconomics.  The cryptocurrency market data 

include the market cap weighted values of: open, high, low and volume. A market capitalization 

one-day-before value is incorporated to evaluate the effects of cryptocurrency supply. 

Information demand in cryptocurrencies is represented by the google search trends of the term 

“cryptocurrency”. The commodities included in the study are: gold spot price, gold futures, oil 

spot price, oil futures, silver spot price, silver futures, gas spot price and gas futures. Regarding 

financial markets the following indexes are incorporated: Russell 2000, IMOEX, SICOM, FTSE 

China A50, SHCOMP, HSI, BSE Sensex, NIKKEI, NASDAQ, S&P500, DJI, IBEX 35, FTSE 100, DAX and 

CAC 40.  Additionally, the Trade Weighted U.S. Dollar Index (DWTEXBGS), the exchange rates USD 

to: GBP, EUR, JPY, CNY, RUB and the VIX, VXD and FFER are examined. Moreover, 

macroeconomics variables as the Economic Policy Uncertainty Daily Index for US, China and UK 

are analyzed. Other macroeconomic variables are not included as they are computed in monthly 

basis. The logarithmic values of all the predictors, except for volume, are used to make them 

comparable with the response variable. A summary of the 41 predictors, their groups, 

transformations and sources, is presented in Appendix 1.  

Cryptocurrency data can be obtained for the weekends, but other variables do not follow the 

same frequency, thus weekend cryptocurrency data is removed and when missing data is found 

the last value is repeated.                                          

4. Methodology 

Firstly, stationarity is tested in the returns and model identification performed to evaluate if an 

ARMA model applies to the returns time series.  

Stationarity is tested using an ADF test. In this case, the ADF test specification does not include a 

time trend and a drift, as the p-values in the lags that minimizes the information criteria indicate 

that they are not significant in the test equation. The results from the ADF test show that the null 

hypothesis of the time series containing a unit root is rejected, thus the returns can be considered 

stationary.   
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Figure 3 shows the Sample Autocorrelation Function (SACF) and Sample Partial Autocorrelation 

Function (SPACF). In a non-stationary process the ACF will not convert to zero as the lag length 

increases presenting shocks that never die away and persist indefinitely in the system (Brooks, 

2014). The SACF plot shows that the ACF is under or at the level of the significance, in almost all 

the lags, with values that approximate zero. This confirms the ADF test outcome that a unit root 

or non-stationarity is rejected for the returns. Regarding model identification, it cannot be 

concluded from the ACF and PACF plots since they do not exhibit a simple pattern. Thus, the 

order of the model is identified applying information criteria and a Box-Jenkins approach for 

ARMA modeling is used. 

    
       Figure 3:  Plot of Sample Autocorrelation Function and Sample Partial Autocorrelation Function 

 

Brooks (2014) describes the Box-Jenkins approach as a practical and pragmatical method which 

contains three steps: identification, estimation and diagnostic checking.  

For the first step, as mentioned, graphical procedures are not appropriate so information criteria 

is used to identify the model specification. Brooks (2014) explains that the number of parameters 

chosen should minimize the value of the information criteria, which involves two factors: one 

that is a function of the Residual Sum of Squares (RSS) and another that is considered a penalty 

for the loss of degrees of freedom caused by adding extra parameters. The author further 

emphasizes that adding an extra term will reduce the information criteria only if the decrease in 

the RSS is larger than the penalty term involved.   
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Once the ARMA model is specified, the predictors are included to the model. Since Machine 

Learning methods can handle a large number of inputs, many variables used in previous studies 

are collected and used as predictors.  Stationarity is also tested in all the predictors using ADF 

test. The first difference is calculated for non-stationary series (Appendix 1) and stationarity is 

tested again to make sure that all predictors used in this study are stationary time series. The 

predictors are included in the model to perform the objectives of this study: inference and 

prediction of the cryptocurrency market returns. 

Considering the trade-off between interpretability and prediction accuracy, the process is divided 

in two stages where the first consists in studying the explanatory power of the predictors 

(inference) and the second focuses on the prediction power (prediction). Hastie et al. (2013) 

mention that more restrictive methods, that produce a small range of shapes to estimate the 

function 𝑓  i.e. linear methods, should be used if inference is the objective. However, more 

flexible methods, that generate a much wider range of shapes to estimate 𝑓 as non-linear 

methods, should be used if the purpose is prediction accuracy. 

Lasso, using a fitting procedure to estimate the coefficients setting some of them to zero, is more 

restrictive than a linear regression but also more interpretable as the response is related to a 

small subset of relevant predictors (Hastie et al. 2013). Thus, for inference a Lasso regression is 

performed in order to define the relationship between the predictors and the returns and gain 

insights about the optimal features surrounding the cryptocurrency market returns. The Lasso 

regression, as shown in equation 2, examine the returns and the explanatory variables on the 

same day to determine the immediate relationship for the inference purpose.  

𝑅𝑡 =  𝛼 +  𝛽 𝑋𝑡  +  𝜀𝑡 (2) 

For prediction, one-day-before data for all the predictors is used, i.e. yesterday’s data is examined 

to predict the daily returns. In this sense, the one-day-before return is included as predictor like 

shown in equation 3. 

𝑅𝑡 =  𝛼 +  𝛿 𝑅𝑡−1 +  𝛽 𝑋𝑡−1  + 𝜀𝑡 (3) 
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Non-linear methods as Bagging, Boosting, Random Forest and Support Vector Machines are hard 

to interpret but yield more accurate predictions (Hastie et al. 2013). Thus, for prediction all the 

predictors and the subset of relevant predictors selected by Lasso for the next-day-returns are 

used in non-linear methods: Regression Trees, Random Forest and Boosting to determine the 

prediction model that can produce better results for the cryptocurrency market returns i.e. the 

model with the lowest test Mean Square Error (MSE). 

The test MSE is a measure that quantifies the approximation of a predicted value from the 

estimated function 𝑓,  to the true response value, i.e. the true value of the cryptocurrency market 

return 𝑅𝑡 (Hastie et al. 2013), as shown in equation 4. 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑅𝑡  −  𝑓(𝑋𝑡))

2
𝑛

𝑡=1

 
 

(4) 

The MSE will be small if the predicted value is close to the true response. In that sense, the most 

accurate method will be the one with lowest test MSE rate. This value will be determined for 

each model in the prediction section.  

5. Results  

Following the Box-Jenkins approach an ARMA(0,0) is suggested. This means that the model does 

not include a moving average or autoregressive lag. Thus, only the predictors are used as 

explanatory variables in the model. The results are presented regarding inference and prediction. 

5.1 Inference 

As mentioned, the predictors (except the market cap lag) and the response were analyzed in the 

same day for the inference purpose. As stated in the previous literature section, according to 

Hastie et al. (2013), inference refers to estimating a function in order to explain how changes in 

the input variables  affect the response variable, that is, which variables are associated with the 

response and what is the relationship between the response and the input variables. 

The results reveal that Lasso removed 27 predictors, that is, from the 41 predictors only 14 were 

related to the response. This result was obtained using the value of the tuning parameter λ that 
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minimized the Cross-validation error (see Appendix 2). Table 4 shows the variables selected by 

Lasso ranked according to the absolute value of the coefficients.  The Lasso regression was run 

several times where some changes in the coefficients were observed, but the ranking and the 

sign of the coefficients remained the same. 

Variables Coefficients  

High 0.6642 

Low 0.6640 

Open -0.4696 

Market cap lag -0.1431 

DJI 0.1041 

Gold spot 0.0474 

USDRUB -0.0263 

NASDAQ 0.0242 

IMOEX 0.0131 

VIX -0.0017 

Gas futures* -8.30E-04 

Gas spot* -2.94E-04 

Oil futures* 1.38E-04 

Volume 1.06E-12 
Table 4. Variable selection by Lasso  
*Excluded in one model in the Lasso regression  

Thus, after removing irrelevant variables and unnecessary complexity, a model that is more easily 

interpreted containing 14 variables is obtained. The variables associated with the response 

include market data, commodities, stock market indexes, the VIX and the USD-RUB exchange 

rate.  

The largest positive coefficients correspond to the high and low values of the cryptocurrency 

market, followed by the open and market cap lag with negative coefficients. The stock market 

indexes Dow Jones, NASDAQ and IMOEX have a positive relationship with the returns, being the 

most important the Dow Jones Index. The USD-RUB exchange rate and VIX affect the 

cryptocurrency returns negatively. Regarding commodities, the effect of gold is positive.  Other 

commodities with lower coefficients, implying lower influence in the cryptocurrency returns, are 

gas spot and futures with a negative effect, and oil futures whit positive effects in the returns.  

Finally, volume with the lowest coefficient affects positively the cryptocurrency market returns. 
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5.2 Prediction  

As mentioned in the previous sections, prediction uses available inputs X to produce a response 

that is not available yet so the response variable is the next-day-returns, and in contrast to 

inference, the exact form of the estimated function is not important as the predictions obtained 

in each model. Following, the results are presented according to each method after a very short 

reminder from the literature review.   

5.2.1 Lasso 

A less flexible method as Lasso does not usually provide accurate predictions. However, removing 

irrelevant predictors can imply prediction power if the true relationship between the predictors 

and response is approximately linear (Hastie et al. 2013). 

Likewise inference, the model selected by Lasso for prediction implies the value of the tuning 

parameter λ that minimizes the Cross-validation error (see Appendix 3). The results indicate that 

five variables are related with prediction of the next-day-return, shown in table 5. In this case, 

the exchange rate USD to CNY have a very high positive coefficient implying a strong relationship 

with the next-day-returns. The effect of the stock market index NIKKEI 225 is positive while the 

effect of the BSE Sensex is negative.  Moreover, market cap and gas values affect the next-day 

cryptocurrency market returns negatively. 

 

Variables Coefficients  

USDCNY 0.726 

NIKKEI 225 0.035 

BSE -0.023 

Market cap -2.86E-04 

Gas spot -4.82E-04 
Table 5. Variable selection by Lasso  

When running the Lasso regression several times, another two models where observed. One 

model just included the USD-CNY exchange rate, and the second included none of the predictors. 

Nevertheless, in relation to prediction accuracy, the model with lowest test MSE is the one that 

included the five variables presented in table 5 with a test MSE of 0.00274.  
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As a result from variable selection for prediction, a new dataset of predictors is defined as stated 

in Methodology. Thus, there are two datasets that will be inputs for the following methods, one 

considering all the predictors, as shown previously in equation 4, and other following the same 

equation but focused only in the predictors that Lasso found relevant in its prediction model with 

lowest test MSE: USDCNY, NIKKEI 225, BSE Sensex, market cap and gas spot. 

5.2.2. Regression Trees 

When the predictors and response variable have a complex and non-linear relationship, 

Regression trees are more efficient than linear regressions (Hastie et al. 2013).  

The results of regression trees, considering the all-predictors dataset as input, show a model with 

just a root node where the returns lag value of 0.00217 is the splitting point. The observations 

with a value lower than 0.00217 go to the left with a predicted response of -0.0012, that is the 

mean value of the observations at that terminal node. On the contrary, the returns with a value 

higher than 0.00217 go to the right where a prediction of 0.0057 is made. Thus, the shape of the 

tree is very simple (see figure 4) and no other predictor is considered. The test MSE for this model 

is 0.00283.  

 

 

 
 

Figure 4. Regression Tree with all-predictors dataset 
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Similar is the result for the Lasso-predictors dataset (figure 5). A very simple tree with a root node 

that correspond to the market cap value of -0.00075. The observations with lower values go the 

left with a predicted response of -0.0010, otherwise to the right where the terminal node 

predicted value is 0.0048. No other predictor is included in the tree and a test MSE of 0.00284 is 

obtained.   

In both regression tress, the test MSE corresponds to an automated Cross-validation optimization 

of hyperparameters, i.e. the number of observations in the terminal nodes, that uses Bayesian 

optimization to minimize the Cross-validation error (see Appendix 4-5).  

 

 

 

 
 

Figure 5. Regression Tree with Lasso-predictors dataset 
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5.2.3 Random Forest 

A more flexible method as Random Forest can increase prediction accuracy since randomness is 

entered by using bootstrapped predictor samples in the tree building process (Breiman, 2001).  

To estimate the results for Random Forest with all-predictors dataset a bootstrapped subset of 

14 predictors, randomly and independently chosen, were analyzed to find the best split at each 

node. Moreover, a minimum value of 5 observations in each leave was considered. The number 

of trees examined is 100, although, the MSE maintains the same level after 90 trees (Appendix 

6). As mentioned in the literature review, the results are insensitive to the amount of predictors 

in the bootstrapped sample and the number of trees, so including more trees does not generate 

overfitting (Breiman, 2001). Consequestly, the above mentioned values should not affect the 

MSE.  

Regarding Random Forests’ predictors importance, the highest values correspond to market cap, 

returns lag, USD-CNY, gas futures, DAX and VXD (figure 6).  It is remarkable that the USD-CNY 

exchange rate also appears as an important predictor for the next-day-returns when Random 

Forest examines all predictors. The test MSE for this model is 0.00103. 

 
Figure 6. Predictor importance from RF all-predictors dataset 

Largest estimates for: Return lag, USDCNY, Market cap, Gas Future, DJI, CAC 40.  
From left to right, the first bar is Return lag, then predictors are shown in the same order as in Appendix 1. 
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Random forest, performed with the predictors selected by Lasso, USD-CNY, NIKKEI, BSE, Market 

cap and gas, uses a bootstrapped sample of 2 predictors in each node and minimum leaf size of 

5 observation. Likewise, 100 trees are evaluated but the MSE remains at the same level after 90 

trees (Appendix 7). In this case, the variables have the following order of importance USD-CNY, 

BSE, Market cap, NIKKEI and gas, and only the stock index NIKKEI has a negative relationship with 

the returns (Figure 7). For this model, the test MSE is 0.00136. 

 
Figure 7. Predictor importance from RF Lasso-predictors dataset.  

From left to right: Market cap, gas spot, BSE, NIKKEI, USDCNY 

 5.2.4 Boosting 

Considering Boosting a sequential, forward and stepwise method the focus is on the observations 

that are poorly modeled (Elith, Leathwick and Hastie, 2008).  

The tuning parameters for this method as the learning rate, the number of splits and trees, are 

also obtained using the automated Cross-validation optimization.  As there are many Boosting 

algorithms, this Bayesian optimization selects the method between Bag and LSBoost, choosing 

LSBoost for both models. 

For the model with all the predictors, the results show that the optimal number of trees is one 

and the maximum number of splits, the parameter that control the complexity of the trees, is 

also one. Therefore, it is obtained a tree like the one in regression trees with just one node, the 

root node (Appendix 7).  Moreover, the learning rate which make the process even slower in 

order to let trees with different shapes to influence the residuals, also corresponds to an optimal 

value of one. The model obtained with these tuning parameters has a test MSE of 0.00279.  
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Boosting for the Lasso-predictors dataset gives a very similar outcome, i.e. a tree with just one 

split (Appendix 8), but in this case 24 trees are fitted and a learning rate of 0.25 computed. As 

mentioned in the literature review, this implies that the first regression tree minimizes the RSS, 

then the second tree is fit to the residuals of the first tree, and then these two trees are combined 

to calculate the residuals that will be used for the third tree and so on for the 24 trees. The test 

MSE for this model is 0.00272.  

5.2.5 Performance comparison  

Comparing the test MSE of the different methods and models (table 6), the lowest MSE rate 

correspond to Random Forest all-predictors model, followed by the same method but having 

only the Lasso-predictors as inputs. Thus, Random Forest out-of-bag estimates produces a model 

that can be used to predict cryptocurrency market returns.  The next model in prediction 

accuracy is Boosting with Lasso-predictors, followed by Lasso and Boosting all-predictors model. 

Regression Trees, both with all-predictor and Lasso-predictors, are not very efficient predicting 

the cryptocurrency market returns. This result was expected as usually Random Forest and 

Boosting outperform Regression Trees as indicated in the literature review. However, Lasso 

outperforming Regression Trees suggests that removing irrelevant variables produced better 

predictions than the flexibility provided by Regression Trees. 

 

Method Predictors dataset MSE 

Lasso Lasso 0.002741 
Regression Trees All 0.002839 
Regression Trees Lasso 0.002843 
Random Forest All 0.001034 
Random Forest Lasso 0.001361 
Boosting All 0.002789 

Boosting Lasso 0.002723 

Table 6. Model performance 
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6. Conclusions 
 

This study analyzed the cryptocurrency market through the cap-weighted index returns of the 

top eleven cryptocurrencies which represent the 90% of the total market. To study the features 

surrounding the cryptocurrency market, 41 predictors where selected including variables used in 

previous studies and other variables of interest, representing cryptocurrency market data, 

information demand, financial markets, commodities, exchange rates and macroeconomics.   

The explanatory power of the predictors was studied using a Lasso regression. It is concluded 

that the cryptocurrency market variables are the most important determinants of the 

cryptocurrency market returns. Stock market indexes Dow Jones, NASDAQ, IMOEX have a 

positive effect in the returns, being the most relevant the Dow Jones Index, and implying that the 

hedging popularity of the cryptocurrency market has to be carefully considered. Moreover, gold 

affects the returns positively and the USD-RUB exchange rate negatively.  Thus, the 

cryptocurrency market depends on financial markets, gold and USD-RUB rates but is detached 

from the Economic Policy Uncertain indexes, Central Bank rates and Google trend for 

“cryptocurrency”. Gas and oil futures seem to have a low effect in the market.  

When predicting the next day returns, variable selection by Lasso determined as relevant 

predictors the USD-CNY rate, NIKKEI, BSE, Market cap and Gas, in particular, the USD-CNY 

emerged as the most important determinant. Consequently, it seems that Asian markets can 

provide insights about the next day returns of the cryptocurrency market. Furthermore, the USD-

CNY rate was one of the most important predictors in both Random Forest models, confirming 

the importance of this variable.  

Regarding the model with the best prediction accuracy, Random Forest with all predictors 

presents the lowest test MSE 0.0010 confirming that a more flexible model provides better 

predictions (as the theoretical perspective indicates) and suggesting a non-linear relationship 

between the predictors and the cryptocurrency market returns.  
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Boosting, being a method that learns slowly usually has good performance, however, in this case 

did not outperform Random Forest.  This could be because the tuning parameters for Boosting 

where chosen using Cross-validation in contrast to Random Forest where the method is 

insensitive to the tuning parameters. In this sense, using Cross-validation for time series might 

produce inefficient results. Cross-validation for time series is a current research area. Thus, a 

future study can apply an alternative to Cross-validation and use other machine learning models 

as Support Vector Machines and Neural Networks to further analyze the cryptocurrency market.  
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Appendices 

Appendix 1 

Predictors: Group, Transformation and Source  

 

Group Predictor Transformation Source

Open Cap-weighted, Log , Diff CoinMarketCap

High Cap-weighted, Log , Diff CoinMarketCap

Low Cap-weighted, Log , Diff CoinMarketCap

Volume Cap-weighted, Diff CoinMarketCap

Market Cap Log, Diff CoinMarketCap

Information Google Search Log Google Trends

Oil spot - DCOILWTICO Log , Diff Federal Reserve Bank of St. Louis

Oil futures - CL1 COMB Log , Diff Bloomberg

Gold spot - XAUUSD CUR Log , Diff Bloomberg

Gold futures - GC1 COMB Log Bloomberg

Gas spot - NGUSHHUB Index      Log Bloomberg

Gas futures - NG1 COMB Log Bloomberg

Silver spot - XAG CUR Log Bloomberg

Silver futures - SI1 COMB  Log Bloomberg

RUSELL 2000 Index Log , Diff Bloomberg

IMOEX Russia Index Log , Diff Bloomberg

Shenzhen Component Index - SICOM Log , Diff Bloomberg

FSTE China A50 Index Log , Diff Bloomberg

Shanghai Composite Index - SHCOMP Log , Diff Bloomberg

Hang Seng Index - HSI Log , Diff Bloomberg

S&P BSE SENSEX Index Log , Diff Bloomberg

NIKKEI 225 Log , Diff Bloomberg

NASDAQ Log , Diff Bloomberg

S&P 500 Index Log , Diff Bloomberg

Dow Jones Industrial Average - DJI Log , Diff Bloomberg

IBEX 35 Index Log , Diff Bloomberg

FTSE 100 Index Log , Diff Bloomberg

Deutsche Boerse AG German - DAX Log , Diff Bloomberg

CAC 40 Index Log , Diff Bloomberg

CBOE Volatility Index - VIX Log Bloomberg

CBOE DJIA Volatility Index - VXD Log Bloomberg

Federal Funds Effective Rate - FFER Log , Diff Bloomberg

Trade Weighted U.S. Dollar - DWTEXBGS Log , Diff Federal Reserve Bank of St. Louis

USDGBP Log , Diff Bloomberg

USDJPY Log , Diff Bloomberg

USDEUR Log , Diff Bloomberg

USDRUB Log , Diff Bloomberg

USDCNY Log , Diff Bloomberg

Economic Policy Uncertainty Index U.S. Log Federal Reserve Bank of St. Louis

Economic Policy Uncertainty Index China Log economicpolicyuncertaintyinchina.weebly.com

Economic Policy Uncertainty Index UK Log www.policyuncertainty.com

Cap-weighted = Weighted according to Market Capitalization

Log = Natural Logarithm

Diff = First difference to induce stationarity

Cryptocurrency 

market data

Commodities

Exchange rates

Macroeconomics

Financial Markets
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Appendix 2 

Lasso - Variable Selection (Inference) 

 

The x-axis from the L1 norm of the coefficients. The y-axis the value of the coefficients. At the top of the x-axis the plot contains the 
degrees of freedom (df), meaning the number of nonzero coefficients: High, Low, Open, Market cap lag, DJI, Gold spot, USD-RUB, 

NASDAQ, IMOEX, VIX, Gas spot, Gas future, Volume (unfortunately some of them are not shown in the legend of the graph)  

 
The green circle and dotted line locate the Lambda (0.00044) with minimum Cross-validation error. 

The blue circle and dotted line locate the point with minimum Cross-validation error plus one standard deviation. 
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Appendix 3 

Lasso - Variable selection (Prediction) 

 
The x-axis from the L1 norm of the coefficients. The y-axis the value of the coefficients. At the top of the x-axis the plot contains the 

degrees of freedom (df), meaning the number of nonzero coefficients: USDCNY, Nikkei, BSE Sensex, Market Cap, Gas spot 

 
The green circle and dotted line locate the Lambda (0.002752) with minimum Cross-validation error 

The blue circle and dotted line locate the point with minimum Cross-validation error plus one standard deviation. 
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Appendix 4 

Regression trees - Hyperparameters Optimization all predictors model 

 
In the x-axis the 30 functions evaluated. The min objective in the y-axis refer to the min MSE 

Best observed feasible point: 
Observed objective function value = 0.0028518 
Estimated objective function value = 0.0028511 

 

 
Best observed feasible point: 

Min leaf size 880 
Best estimated feasible point (according to models): 

Min leaf size 880 
Estimated objective function value = 0.0028511 
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Appendix 5 

Regression trees - Hyperparameters Optimization Lasso-predictors model 

 
In the x-axis the 30 functions evaluated. The min objective in the y-axis refer to the min MSE 

Best observed feasible point: 
Observed objective function value = 0.0028512 
Estimated objective function value = 0.0028509 

 

 
 

Best observed feasible point: 
Min leaf size 913 

Best estimated feasible point (according to models): 
Min leaf size 809 

Estimated objective function value = 0.0028509 
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Appendix 6 

Random Forest - Number of tress all-predictors model 

 
 

In the x-axis number of trees. In the y-axis the out of-bag classification error (MSE).  
The graph shows that the 80 trees are enough to get optimal results.  
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Appendix 7 

Random Forest: Number of trees Lasso- predictors model 

 
In the x-axis number of trees. In the y-axis the out of-bag classification error (MSE). 

The graph shows that the 80 trees are enough to get optimal results.  
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Appendix 8 

Boosting - Number of splits all-predictors model 

 

 
In the x-axis the number of trees. In the y-axis the Cross-validated MSE. Cross-validation analysis to find optimal learning rate, deep 
of the tree and stump minimizing the MSE 
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Appendix 9 

Boosting - Number of splits Lasso-predictors model 

 

 
 
In the x-axis the number of trees. In the y-axis the Cross-validated MSE. Cross-validation analysis to find optimal learning rate, deep 
of the tree and stump minimizing the MSE 

 
 


