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Abstract

Systemic Lupus Erythematosus, SLE, is a disease with a large variation of symp-
toms. Some patients have neuropsychiatric symptoms, such as cognitive dysfunc-
tion and epilepsy. The classification of patients into NPSLE, with neuropsychi-
atric symptoms, and non-NPSLE, without these symptoms, is uncertain. Studying
the white matter microstructure of SLE patients and comparing this with healthy
controls can lead to better understanding of the disease and the neuropsychiatric
symptoms. White matter microstructure can be characterized by the use of dif-
fusion MRI. This imaging technique also enables segmentation of the brain into
different nerve tracts.

The data set used in this thesis consisted of 63 SLE patients and 20 healthy
controls. Previous analysis on this data set was limited to three nerve tracts because
of time-consuming manual work of the segmentation. The aim of this thesis was
to extend the analysis of the white matter microstructure to include all the major
nerve tracts of the brain and by that, enable group-comparisons of the whole brain.
This was done by implementing the methods into a pipeline where no manual
work was required. Group comparison based on the extracted values was done
between healthy controls and SLE patients and between the two classifications of
the disease.

Significant differences of the microstructure were found when comparing SLE
patients with healthy controls. In the comparison between the subgroups of SLE,
with and without neuropsychiatric symptoms, the difference was not significant.
This emphasizes the theory of the brain being affected in all SLE patients, and not
only the ones having neuropsychiatric symptoms. The conclusion of this thesis
is that the use of automated methods for extracting values of the white matter
microstructure is a time-effective approach on analysis of large data sets, but it
requires extensive quality control of each step.
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Chapter 1

Introduction

1.1 Background

Systemic Lupus Erythematosus, SLE, is a chronic autoimmune diseasewith a large
variation of symptoms. The central nervous system can be affected by the disease
and some patients have neuropsychiatric symptoms. There are ways to classify the
patients into neuropsychological SLE, NPSLE, and non-NPSLE, where no neu-
ropsychiatric symptoms are present. One of the challenges in the classification is
to determine if the symptoms that occur are connected to the disease or if it is due to
other causes [1]. By studying the white matter microstructure in SLE patients and
making comparisons with healthy controls, the disease and the neuropsychiatric
symptoms can be better understood.

Magnetic resonance imaging, MRI, is a commonly used imaging technique
when the brain is to be studied. It has the advantage of being able to image soft
tissue and hence, the gray and white matter can be separated. To retrieve infor-
mation about the microstructure of the white matter, diffusion MRI is needed. It
measures the amount of diffusion of water molecules in the brain and based on
this, the microstructure can be described. The use of diffusion MRI in clinical ap-
plication started off with the use of detection of acute stroke in in end of the 20th
century [2]. Later on, it has been used in a large variation of diseases, multiple
sclerosis and brain tumors as an example [3, 4].

Segmentation of the white matter facilitates the comparison of microstructure
in different parts of the brain. Diffusion MRI enables this segmentation of the
brain into the different nerve tracts, which are bundles of nerve fibers with a spe-
cific function. Based on this segmentation, values can be extracted and analyzed
between different groups of individuals. Segmentation of nerve tracts can be done
manually but it is time-consuming and will restrict the analysis to a limited number
of tracts.
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2 Introduction

Several studies have been done comparing the white matter microstructure in
SLE patients. A study published by Nystedt et. al. showed that differences could
be identified between healthy controls and SLE patients in some nerve tracts, but
no differences were found between NPSLE and non-NPSLE patients [5]. Only
three tracts were studied, which may give a biased view of which areas are affected
by the disease. Analyzing all of the major nerve tracts of the brain could give a
better understanding of the disease.

1.2 Aim and Problem Formulation

The data from the study published by Nystedt et al. [5] is used in this thesis.
The aim of this thesis was to extend the analysis of the white matter microstruc-
ture to include all the major nerve tracts of the brain and by that, enable group-
comparisons of the whole brain. The work could be divided into three different
tasks:

1. Identify and implement a method that segments the major nerve tracts of the
brain without demanding time-consuming manual work.

2. Validate the chosen method and investigate the statistical power of using
different parameters to describe the microstructure.

3. Perform a statistical analysis on the values extracted by the method to gain
new insights about SLE as a disease.

Segmentation of the brain is a time-consuming task and can limit the analysis
to only include a subpart of the nerve tracts of the brain. To be able to study
the whole brain, there is a need to use automated methods for the segmentation.
The automated methods should be implemented in a pipeline to achieve a fully
automated analysis of the brain.

In group-comparisons, the statistical power is important to consider. The sta-
tistical power is the probability of correctly rejecting a null hypothesis. If there is a
difference between the two groups, the method should be able to find it. Different
parameters should be investigated to achieve the highest statistical power.

There are several important research questions that needs to be answered to
get a better understanding of SLE as a disease. This thesis aimed to answer three
of these research questions:

• Are there any microstructural differences of the brain between patients with
SLE and healthy controls?
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• Are there any microstructural differences of the brain between SLE patients
classified with NPSLE and the patients with non-NPSLE?

• What areas of the white matter in the brain are affected by the disease?



4 Introduction



Chapter 2

Theory

2.1 Systemic Lupus Erythematosus

Systemic Lupus Erythematosus, SLE, is a chronic autoimmune disease. The preva-
lence of SLEwas 60-70 cases/100 000 habitants in Sweden year 2016. The disease
is more common in females and in the childbearing ages, the risk for women to
develop SLE is 20 times higher than for men in the same age [6]. SLE appears in a
remitting-relapsing manner; periods with a more active disease are alternated with
periods of little or no evidence of the disease. SLE affects multiple organ systems,
and many different symptoms may be observed. According to a study made on
1000 SLE patients published in 2009, the most common symptoms are arthritis,
malar rash (facial rashes), and nephropathy (damage of the kidneys) [7].

The central nervous system can also be affected, which can lead to neuropsy-
chiatric symptoms with a large diversity. It ranges from milder symptoms as
headache, mood disorders, fatigue, and cognitive dysfunction tomore severe symp-
toms as epilepsy, stroke, and psychosis. Different suggestions have been made on
how to classify the disease in having neuropsychiatric symptoms or not. In 1999,
The American College of Rheumatology presented 19 case definitions to achieve a
standard way of diagnosing SLE patients in NPSLE, with neuropsychiatric symp-
toms, and non-NPSLE, without neuropsychiatric symptoms. The diverse symp-
toms make it hard to classify [8]. The neuropsychiatric symptoms may be a direct
cause of the disease but might as well occur due to other reasons; side effects of
medication or hypertension. The classification is even harder to make since many
of these neuropsychiatric symptoms are common in all SLE patients and in the
general population [6].
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6 Theory

2.2 The Brain

The brain is one part of the central nervous system. The nervous tissue contains
different types of cells where neurons are one of these. Neurons are the cells
responsible for the communication and transmission of nerve signals. It consists
of a cell body, dendrites that receives information and the axon that connects the
neuron with the target. The axon is a long cylinder covered in myelin sheaths to
make the transmission of the nerve signal faster [9].

A bundle of axons found in the central nervous system is called a nerve tract.
In the brain there are several nerve tracts where each one has a specific function
of transmitting signal and connecting different parts of the brain. Some nerve
tracts are more involved in the cognitive tasks and memory, while other tracts are
involved in the motor control of the body.

The nervous tissue of the brain can be divided into gray matter and white mat-
ter. The gray matter primarily consists of cell bodies and dendrites and the white
matter are regions with many axons. It appears white because of the myelin that is
a lipid-rich substance. In Figure 2.1, an MRI image of the brain can be seen show-
ing the gray and white matter. Diseases affecting the brain may lead to minor
deviations of the white matter microstructure. These deviations can be neuronal
dead or a lower amount of myelin covering the axons.

Figure 2.1: Example of an MRI image of the brain. The lighter parts of the
brain are white matter and the darker areas on the peripheral parts of the brain
are gray matter.

2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging, MRI, is an imaging technology that does not use
any ionizing radiation. Compared to other imaging technologies, soft tissue is
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better seen in MRI images. For instance, the gray matter and the white matter can
be separated as in Figure 2.1.

It is the nucleus of the of the hydrogen atom, the proton, that makes MRI
possible. The human body consists to a large extension of hydrogen, mainly in
the form of water and fat. The proton has a spin, it rotates around its own axis. A
nuclear magnetic moment appears in each proton, due to the fact that the proton
is positively charged and that it rotates. The magnetic moment can be thought of
as each proton being a small magnet. All the protons are randomly oriented in
the absence of an external magnetic field, as can be seen in Figure 2.2a. To be
able to construct a 3D image, the object being imaged will be divided into small
volume compartments called voxels. All the protons placed within a voxel can be
represented by a net magnetization vector by adding all the magnets, the protons,
together. It is the net magnetization vector of each vector that is measured during
an MRI acquisition.

When the human body is placed within an external magnetic field, the protons
will change their direction and will start to precess. Instead of being randomly ori-
ented, each proton will be parallel or anti-parallel to the direction of the external
magnetic field, see Figure 2.2b. It is a slightly higher probability for the proton
being in parallel because of the lower energy state. This leads to a greater num-
ber of protons aligned in that direction. The net magnetization of all the protons
will have the same direction as the external magnetic field, the z-direction. The
precession of the protons makes rotate around the z-axis in a wobbling motion.
The frequency of the precession is called the Larmor frequency, and it is linearly
proportional to the strength of the external magnetic field. The protons within a
voxel do not precess in phase with each other, and the net magnetization vector
can be viewed as non-rotating.

(a) The protons are randomly
oriented in the absence of an
external magnetic field.

(b) The protons align parallel
or anti-parallel to the external
magnetic field.

(c) After the 90◦RF-pulse, the
net magnetization vector is di-
rected in the x-y-plane.

Figure 2.2: The basics for MRI technology.
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The use of radio frequency pulses, RF-pulses, is an important step in the MRI
acquisition. AnRF-pulse is applied with the Larmor frequency causing the protons
to absorb this energy. The energy absorption makes the protons precess in phase
with each other and the direction will be flipped 90◦, causing the net magnetization
to be oriented in the x-y-plane. Since the protons are precessing in phase, the net
magnetization vector will rotate around the z-axis. A schematic explanation of
the net magnetization vector after the RF-pulse can be seen in Figure 2.2c. The
rotation of the net magnetization vector is measured in the MR scanner by the use
of receiver coils.

Two things will appear after the 90◦RF-pulse; change of direction and dephas-
ing. The direction of each proton will return back to the direction of the external
magnetic field. The protons will also dephase due to the slightly different frequen-
cies of their precession, causing the net magnetization vector to be smaller as can
be seen in Figure 2.3a. How fast the dephasing and direction change will occur is
due to the tissue characteristics and that is why different tissues can be visualized
with MRI.

The dephasing of the protons can be reversed by the use of a second RF-pulse.
The protons are flipped 180-degrees in the x-y-plane causing the dephasing to be
reversed, see Figure 2.3b. By the time for readout, the protons will precess in
phase again and the net magnetization vector is maximized in the x-y-direction.
The effect of the dephasing will be removed, and it is mainly the change of the
protons directions that will be imaged. The process of the dephasing and the use
of the 180◦RF-pulse is described in Figure 2.3.

Field gradients are applied to enable the spatial encoding of the signal. Field
gradients in x-, y-, and z-direction change the magnetic field that each voxel is af-

(a) The protons will dephase,
making the net magnetization
vector smaller.

(b) After the 180◦RF-pulse,
the protons will change their
direction again.

(c) The spins will precess in
phase and by the time for read-
out.

Figure 2.3: Dephasing of the protons.
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fected by. The gradients are applied in different time points during the acquisition,
causing the protons to be affected by different strengths of the external magnetic
field. The image is reconstructed by using the Fourier transform of the k-space that
is created for each slice. The k-space includes information about phase, frequency
and intensity for the different voxels in that slice.

2.4 Diffusion MRI

In diffusion MRI, the diffusion of water molecules is measured and can be used to
estimate characteristics of themicrostructures in the brain. Diffusion is the random
movement of molecules due to thermal energy. The mean-square displacement of
a molecule in three dimensions, ⟨r2⟩, can be described by

⟨r2⟩ = 6Dt

where D is the diffusion coefficient and t is the diffusion time. The diffusion co-
efficient in liquids depends on the temperature and characteristics of the material.

In a large gathering of water, the diffusion is isotropic. It means that the prob-
ability for a molecule to diffuse is the same in all directions. In the brain there
are several structures restricting the diffusion of water molecules. The diffusion
is not the same in every direction and it is therefore said to be anisotropic. One of
the structures restricting the diffusion is the myelinated axon. The diffusion is not
restricted along the axonal direction whereas perpendicular to the direction of the
axon, the diffusion is restricted due to the cell membrane and the myelin sheaths.
The water molecules will diffuse to a larger extent in the axonal direction than
perpendicular to it.

The basics for the technique behind diffusionMRI were introduced by Stejskal
and Tanner in 1965 [10]. A specific MRI sequence with two diffusion gradients
enables the measuring of the diffusion, the principle for the sequence can be seen
in Figure 2.4. The first diffusion gradient leads to a phase shift among the protons
in the gradient direction. The protons will continue their dephasing and will also
move due to the diffusion. The 180-degree RF-pulse will revert the dephasing
of the protons. The second diffusion gradient induces a phase shift opposite to
the first gradient. The protons that have diffused between the two gradients will
experience unequal effects by these and will not have completely rephased by the
time for readout. This leads to a signal loss where higher signal loss is an indication
of larger amount of diffusion.

During the acquisition, the signal is measured with and without the use of dif-
fusion gradients. The diffusion gradients are applied in several directions to be
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Figure 2.4: Schematic image of the MRI sequence used for diffusion MRI.

able to model the diffusion of molecules in different directions. The characteris-
tics of the diffusion gradients, strength, duration, and spacing of the gradients, are
represented by the b-value. The direction of the gradient is given by the b-vector.
The measured signal, the b-values, and the b-vectors are used to model the diffu-
sion. There are several different techniques for the acquisition of diffusion MRI
where Diffusion Tensor Imaging, DTI, and Diffusion Kurtosis imaging, DKI, are
examples of these.

2.4.1 Diffusion Tensor Imaging
One way to model the diffusion in each voxel is to use the diffusion tensor, which
is the basis for Diffusion Tensor Imaging, DTI [11]. The signal with the diffusion
gradient explained by b can be modeled as

S(b) = S(0)e−bD

where S(0) is the signal without diffusion gradients and D is the diffusion coef-
ficient. The diffusion is assumed to be Gaussian, but the variance of the diffusion
is different in spatial directions. Since the diffusion is not isotropic in the brain,
the diffusion coefficient D must be explained in a different way than only with a
scalar. The diffusion tensor is a 3 x 3 matrix given by

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


where Dab describes the diffusion in the direction from a to b. Since the diffu-
sion is the same in the direction a to b as in b to a, Dab = Dba, D is a real and
symmetric matrix. By the use of single value decomposition, the tensor D can be
explained by its eigenvalues and eigenvectors. The geometrical representation of
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the diffusion tensor is an ellipsoid rotated in the direction of the eigenvectors and
the eigenvalues describes the shape. The tensor can be seen in Figure 2.5 where
λ1 is the largest eigenvalue and thus represents the principal direction of diffusion.

Figure 2.5: Schematic image of two different diffusion tensors. The tensor
to the left is anisotropic, and the principal direction of the diffusion is pointed
out by the arrow representing the first eigenvalue λ1. The tensor to the right is
isotropic, and it can be represented as a sphere.

The eigenvalues are used to represent the diffusion with different parameters.
The mean diffusivity,MD, and the fractional anisotropy, FA, are calculated as

MD =
λ1 + λ2 + λ3

3

and

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

.

MD is the mean of all eigenvalues and gives a measure of the displacement of
the water molecules. FA is the variance of the eigenvalues and gives a relative
measure of the anisotropy. It ranges from 0 to 1 where FA = 0 means that the
diffusion is isotropic, all eigenvalues are equal and the tensor is represented as a
sphere, as the right part of Figure 2.5. Larger values of FA mean that the diffusion
is anisotropic, and the diffusion has a principal direction. The fractional anisotropy
can also be interpreted as the fraction of diffusion that is present in the predominant
direction of diffusion. With high values of FA and low values of MD, the white
matter is indicated to be intact. A lowered FA and increased MD could be an
indication of tissue damage of the white matter.
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2.4.2 Diffusion Kurtosis Imaging, DKI

DiffusionKurtosis Imaging, DKI, is an extension of the DTImodel andwithout the
assumption about the distribution beingGaussian [12]. DKI gives the possibility to
quantify the non-Gaussianity of the diffusion. The tensor model is complemented
with the kurtosis parameter, which is a parameter describing the peakedness of a
distribution. The equation describing the signal loss is given by

ln
S(b)

S(0)
≈ −bD +

1

6
b2(MD)2MK

where MD is the mean diffusivity and MK is the mean kurtosis. It is the average
of the kurtosis among all directions. A higher value of the kurtosis means that the
diffusion is more restricted. It gives a hint that the environment is more complex
and that it does not follow a Gaussian distribution [13]. The kurtosis parameters
are more sensitive to heterogeneity of the diffusion in neural tissue [14].

To be able to model the diffusion by DKI, another acquisition technique is
needed than for the DTI. It requires at least three different b-values and a larger
number of directions of the gradients than is needed for the acquisition of DTI.

2.4.3 Constrained Spherical Deconvolution, CSD

The diffusion tensor model is valid in voxels with one main direction of the dif-
fusion. In case of a voxel where several nerve bundles pass by, and with different
directions, the diffusion tensor model is not sufficient. With constrained spherical
deconvolution, CSD, the diffusion can be modeled in several directions.

Figure 2.6: The principle of constrained spherical deconvolution. Stot is the
measured signal, it is modeled as the sum of two separate signals, S1 and S2,
from two fibers with different directions. The direction of the fibers, fODF, can
be achieved by deconvolving Stot with the response function. Source: Figure
from [15].
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The principle of this model can be seen in Figure 2.6. The total measured sig-
nal in each voxel, Stot, is the sum of contribution from several different fibers.
This can be modeled as the convolution of the orientational distribution function
of the fibers, fODF, with the response function R that explains the signal contri-
bution from one fiber. It is the fODF that is of interest, which can be achieved by
spherical deconvolution of Stot with the fiber response [16]. Since deconvolution
is sensitive to noise, the robustness of the method is achieved by the constraint of
only accepting non-negative values [17].

2.4.4 Tractography

Diffusion MRI, and especially the use of CSD, enables information about the di-
rection (or directions) of the diffusion in each voxel. The direction of the diffusion
is expected to correspond to the direction of the axons in the brain. Tractography
uses the directional information to reconstruct the pathways of the white matter.
Streamlines are estimated by following the main diffusion direction of adjacent
voxels, it tracks the path where the diffusion is least hindered. A map with the
streamlines calculated by the tractography is called a tractogram, see an example
in Figure 2.7. The streamlines will be an assumption of how the fiber bundles, a
gathering of axons, are oriented in the brain. The tractogram gives an estimation
of the network of nerve fibers within the brain. Tractography can also be used in
order to segment different nerve tracts of the brain.

Figure 2.7: Streamlines after calculated tractography in a part the brain.
Source: Figure from [18].
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2.4.5 Gradient Directions
Some applications of the diffusion MRI require that the spatial information and
the orientational information in each voxel are represented in the same coordinate
system. The scanner, the imaging protocol, and the software used to process the
images might have different coordinate conventions. The directional information
about the diffusion is extracted based on the representation of the coordinate sys-
tem of the b-vectors, which are the gradient directions. If the processing software
expects a different representation of the coordinate system than the existing, the
directional information about the diffusion will be wrongly oriented. Correct rep-
resentation of the gradient directions can be achieved by permutation of the axes,
changing the order of x, y, and z, and/or change the polarity of one axis [19].

Tractography is dependent on the estimated direction of the diffusion since the
streamlines follow the main direction of the diffusion. In case of estimating fODFs
on wrongly oriented gradient directions, as can be seen in the left part of Figure
2.8, the streamlines will not follow the nerve tract as expected. When the gradient
directions are correct, as can be seen in the right part of Figure 2.8, the estimated
streamlines will be as expected.



15

Figure 2.8: Showing the problems with gradient directions, where the fODFs
are overlaid on the FA map. Left: the fODFs are reconstructed based on the
original gradient directions. Right: the fODFs after correction of the gradient
directions. Source: Figure from [19]

2.5 Segmentation of Nerve Tracts

As explained in Section 2.2, the bundles of axons in the brain can be categorized
into different nerve tracts. To extract information about the diffusion within one
tract, segmentation of the brain into the different nerve tracts is required. The
basic idea behind the segmentation is that the tractogram of the whole brain is
calculated. The tractogram can be segmented into different tracts by determining
which of the streamlines that belong to a specific tract. This can be achieved in
different ways, manually or automated.
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Manual segmentation of the nerve tracts requires someone to draw regions-
of-interests, ROIs, in each individual. The ROIs for each tract are placed in the
anatomical regions known to be a part of that tract. All streamlines passing through
the ROIs will be the segmentation for that tract. The manual drawing of ROIs in
each individual can induce variability of the segmentation, which might reduce
the statistical power in comparison between individuals. Another drawback with
manual segmentation is that it is time-consuming and hence, might limit the anal-
ysis of nerve tracts to only include a few nerve tracts of the brain.

In order to reduce the need of manual work for the segmentation, different
methods have been published that does the segmentation in a more automated way.
The automated segmentation methods could be categorized into three groups:

• ROI-based segmentation

• Clustering-based segmentation

• Direct segmentation

The ROI-based segmentation uses Regions of Interests, ROIs, to achieve the
segmentations. The ROIs could be gathered from different atlases, where the re-
gions are pointed out in a standard brain. The ROIs from the atlases will be regis-
tered to the individual space, projecting the ROIs on the brain to be segmented. The
tractograms are filtered through the ROIs, and the streamlines that runs through
the ROIs for that specific tract is segmented. This method requires the tractogram
of the brain and will also be in need of registration of images from one space to
another.

The clustering-based segmentation is about grouping the streamlines into clus-
ters. The clustering could be done manually or automatically by the use of an atlas
and will then be assigned to a specific nerve tract. This method also requires the
tractogram of the brain.

The direct segmentation is different than the other techniques. It is named di-
rect because the segmentation is donewithout the use of calculating the tractogram.
Tractography is time-consuming and computer power demanding. By skipping the
step of calculating the tractogram of the brain, the segmentation could be achieved
faster. Several methods of direct segmentation are available, using mathematical
models or deep learning approaches to go from the input dMRI image to segmen-
tation of the nerve tracts [20, 21].
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Figure 2.9: Nerve tracts segmented by TractSeg. Source: Figure from [20]

2.5.1 TractSeg

TractSeg is one of the published methods using the approach of a direct segmen-
tation. It is a method implemented in Python and available as an open-source
package. The method was developed by Wasserthal et. al. in Heidelberg, Ger-
many [20]. The segmentation does not require tractography but is instead based
on deep leaning. The input to the method is a dMRI image with corresponding b-
values and b-vectors and the output is binary segmentations of 72 different nerve
tracts.

Several steps are implemented in themethod, which can be seen in Figure 2.10.
The first step of TractSeg is preprocessing. Based on the dMRI image, b-values,
and b-vectors, the fiber orientations are calculated by the use of constrained spher-
ical deconvolution. Based on the fiber orientations, the three main directions of
the diffusion in each voxel are extracted as the peaks. The next step of the method
utilizes deep leaning, more specifically fully convolutional neural networks, FC-
NNs. The FCNNs use the peaks as input and outputs a binary 3D image for each
of the 72 nerve tracts. In the 3D image for one tract, the voxels with a value of 1
will have a probability higher than 0.5 that the tract passes through that voxel.
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When using TractSeg, the parameters for the FCNNs are pretrained. During
the training of the network, heavy data augmentation was used in order to make
the method robust for different input images. The augmentation included different
rotations of the brain, elastic deformation, displacement of the brain, zooming,
resampling to mimic lower resolution, Gaussian noise, and different contrast and
brightness of the image.

In the publication of the method, TractSeg is compared with six other methods
for segmentation of nerve tracts. In the comparison, the method was found to be
up to 535 times faster than the average of the other methods. By comparing the
overlap of the segmentations of the different methods with a ground truth created
by the same authors, the segmentation based on TractSeg had the highest overlap
in all tracts. The authors states that TractSeg outperforms the other methods when
comparing the segmentations and with one advantage of being much faster than
the other methods.

Figure 2.10: Processing steps for TractSeg. Source: Figure from [20]

2.6 Statistical Power

Group-comparisons are commonly done by the use of a statistical test. The sta-
tistical power of a test can be explained as the probability of rejecting the null
hypothesis when it is false. This can be interpreted as the probability to find the
difference between two groups, if there is a difference to be found. Statistical
power can be used to determine the sample size for a planned study but can also
be used to evaluate results.

The power of a statistical test is related to several parameters; the significance
level, the effect size and the sample size. By keeping the significance level and
the sample size constant, the effect size could be investigated on two different
methods to be able to compare their statistical power. Larger effect size means
higher statistical power and indicates higher probability of finding differences.
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2.6.1 Effect Size
Effect size is a quantitative measure explaining the magnitude of the effect when
doing group comparisons. In case of group comparison where the mean value of
each group is compared, the effect size gives a measure of how well separated the
mean values are and if it is possible to detect the difference. The effect size is
a complement to the significance of a statistical test, since it can tell how large
the difference is between the two groups. Comparing different parts of the brain,
the effect size will tell where the largest difference appears. Comparing different
methods, the effect size will give an indication on which of the studied methods
that gives the highest probability of finding the difference.

Several metrics are available to define the effect size of a test. When the test is
based on comparing the difference in means of two groups, Cohen’s d is a common
metric [22]. It is defined by

d =
µ1 − µ2

s
,

where µ1 and µ2 are the means of the two populations and s is the pooled standard
deviation. The pooled standard deviation is defined by

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

where n1 and n2 are the number of individuals and s1 and s2 are the standard
deviations in each population. Examples of different values of Cohen’s d can be
seen in Figure 2.11. The effect size is defined to be small if d = 0.2, where it is
almost impossible to see a difference between the groups. A medium effect size is
achieved if d = 0.5, where the difference between the two group-means are large
enough to be visible. The effect size is defined to be large when d = 0.8.

In the development of a methodology, it is important to take effect size into
consideration. The effect size is lowered when the standard deviation is increased.
The method should restrict the amount of induced variance in order to keep the
effect size high.
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Figure 2.11: Plot over Cohen’s d. In the left column, the difference between
means are constant and d becomes larger when the standard deviation s is de-
creased. To the right, the standard deviation s is kept constant and it can be
seen that d increases with an increase in the difference between the two means.



Chapter 3
Data

The diffusion MRI images used in this thesis were gathered in a study of SLE
patients [5]. The study contained patients diagnosed with SLE, both NPSLE and
non-NPSLE, as well as healthy controls. Due to the fact that SLE is more com-
monly found in females, the study only consisted of women. All individuals went
through a cognitive test, blood test and were scanned in the same 3TMRI scanner.
Diffusion MRI images of each individual were gathered with DKI and DTI result-
ing in two data sets measuring the diffusion of the brain. These two techniques are
using different MRI sequences during the acquisition, see Section 2.4 for detailed
information about the acquisition techniques. One major difference between the
two data sets is the difference in resolution. The DTI data has better resolution,
smaller voxel size, than the DKI data as can be seen in Table 3.1.

The study consisted of 71 patients with SLE and 25 healthy controls. Some
SLE patients were excluded due to left-handedness or not being able to fulfill
the MRI. Some healthy controls were excluded for invalid cognitive testing and
dyslexia. The final set-up used in this thesis is 20 healthy controls and 63 SLE
patients. The number of individuals in each group, and their age can be seen in
Table 3.2.

Table 3.1: Resolution of the different data acquisitions

Voxel size
DKI 2,3 x 2,3 x 2,3 mm3

DTI 2,0 x 2,0 x 2,0 mm3
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Table 3.2: Number of participants for the three different groups and their age.

Individuals Age
HC 20 36 (23 - 52) years
NPSLE 37 37 (18 - 49) years
non-NPSLE 26 35 (18 - 51) years



Chapter 4

Method

This chapter cover the methods used in this thesis. A major part of the work con-
sisted of development and validation of a methodology to extract parameters that
can be used for group-comparison. To facilitate the reading and understanding of
the methodology, some results from the development of the methodology are pre-
sented in this chapter. The chapter starts with a description of the principle behind
the method and the pipeline used. The following sections describe the four steps
of the method, where an overview of the steps can be seen in Figure 4.1.

Figure 4.1: Flow diagram over the steps of the method

4.1 Pipeline

One of the tasks in this thesis was to develop an automated method that does not
require any manual work on the segmentation of nerve tracts. In order to make the
analysis automated, all the steps of the methodology except for the Data Analysis
were implemented as nodes in a pipeline. The principle behind the use of a pipeline
is that several methods are connected in a network where each method is called a
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node. When the pipeline is running, it will run all the methods for each individual
in that data set. The pipeline used in this work was constructed by the use of a
python package called Nipype [23]. The existing pipeline included a lot of nodes,
mainly preprocessing steps of the data to remove noise and motion artefacts. Since
two different data sets were to be analyzed, two versions of the pipeline were
constructed: DTI and DKI.

4.2 Tract Segmentation

4.2.1 Open-source methods
A literature survey was done to find how to do the segmentation of the nerve tracts
in an automated way. In Section 2.5, the findings from the literature survey are
summarized. Different methods were searched for, but two requisites were stated:
the method must be Python-based and available open-source. The method needed
to be implementable in Python to be able to include it in the pipeline.

TractSeg was found during the search for an automated method for the seg-
mentation. It is a well-documented method implementable in Python and it has
large benefit of having short running time. The paper presenting the method shows
good results of the segmentation of nerve tracts using TractSeg in comparison to
other state-of-the-art methods. The low running time and the sake that it was well
documented was reason enough for it to be chosen as the method for segmentation.

4.2.2 Gradient Check
As explained in Section 2.4.5, some methods depend on that the coordinate sys-
tems of the gradient table and the background image are the same. TractSeg was
shown to be dependent on these directions since the use of TractSegwithout check-
ing the gradient directions did not segment the nerve tracts correctly. The method
chosen for the control of the gradient directions was dwigradcheck from the soft-
ware MRTrix [24]. It runs through different combinations of directions of the
b-vectors. For each combination, streamlines are calculated and summed. The
output of the method is the rotated b-vectors in the direction with the largest sum
of streamlines.

4.2.3 TractSeg
The diffusion MRI image with corresponding b-values and rotated b-vectors are
inputs to TractSeg. Based on a convolutional neural network, the method calcu-
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lates the binary segmentation of 72 different nerve tracts. The output from this
step is 72 3D images for each individual. The segmentation process of TractSeg
is explained further in Section 2.5.1.

4.3 Parameter Extraction

4.3.1 Parameter maps
The diffusion tensor and the kurtosis tensor were calculated to be able to extract
parameters from these. The method DTIFIT from the software package FSL [25]
was used to calculate the diffusion tensor based on the DTI data. DiffusionKur-
tosisModel, a method from the software package DIPY [26], was used for the
DKI data. Before determining the kurtosis tensor, smoothing of the DKI data was
needed. A Gaussian sphere with different values of the standard deviation, σ, was
tested. One individual was used as a reference and it was determined to set the
standard deviation to σ = 0.75.

Five parameter maps were determined for each individual; FA and MD based
on the DTI data, and FA, MD, and MK based on the DKI data. An example of
these parameter maps for one individual can be seen in Figure 4.2. The result of
this step was 3D images where each voxel contains the value of the parameter in
that voxel.
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(a) FA from DTI (b)MD from DTI

(c) FA from DKI (d)MD from DKI (e)MK from DKI

Figure 4.2: The five different parameter maps from one individual. Note the
different scaling of the intensity.

4.3.2 Tract Values
The nerve tract segmentations and the extracted parameters were combined to be
able to represent each tract with one value. This was done by taking the mean
value of the parameter in each tract. The volume for each tract was calculated to
be used for quality control of the segmentations.

The output from the pipeline were seven different spreadsheets including in-
formation about all the 72 different tracts in the 83 individuals. The seven spread-
sheets were:

• Mean FA from DTI

• Mean MD from DTI

• Volume based on DTI
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• Mean FA from DKI

• Mean MK from DKI

• Volume based on DKI

4.4 Quality Control

With the output from the pipeline being a spreadsheet of values for each individual
and tract, quality control was needed to validate every step of the pipeline. The
quality control of the segmentation consisted of two different parts; visual inspec-
tion of the segmentations and investigation of the coefficient of variation for the
volume for each tract.

The visual inspection of the tracts was enabled by the creation of a 2D image
with all segmentations for one individual. 2D projections of all tracts were placed
on top of the dMRI image. This image facilitated the quality control since the
segmentations could be visualized.

The volumes were controlled to find the nerve tracts with a large variation in
volume, which might be an indication that the segmentation was wrong for some
individuals. The volume of each tract was normalized by the total brain volume
for that individual to remove the variability of brain size between individuals. The
coefficient of variation, Cv, was used to enable comparison of the variability in
different tracts. It is defined as

Cv =
σ

µ

where σ is the standard deviation and µ is the mean value. A higher Cv indicates
a larger variation of the volume among individuals for that tract.

The nerve tracts with the highest Cv was controlled by plotting the largest and
the smallest volume for each tract. Large variations of the segmentations moti-
vated the removal of six of the nerve tracts from further analysis. 72 tracts were
segmented but the data analysis was only performed on 66 tracts after removal of
the tracts with a large variation of the volume.

4.5 Data Analysis

All statistical analyses of the data were performed in RStudio [27]. The analysis
started by controlling the normal distribution of all parameters. Then, the group
comparisons were done and lastly, the effect size was evaluated on each compar-
ison. The three steps are further explained in the following sections.
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4.5.1 Control of Normal Distribution

Shapiro-Wilk test was used to control if the parameters were normally distributed
within each group. It tests the null hypothesis that a sample came from a normally
distributed population. A major part of the parameters from the DKI data were
found not to be normally distributed. When plotting the distribution of the mean
values of all individuals it was found that four individuals were outliers. These
individuals had the largest (or smallest) mean values for all tracts. By studying
the parameter maps of the outliers, it was found that one of the individuals had a
distorted MKmap, which can be seen in Figure 4.3. The raw images from the DKI
of this individual showed that the patient had moved during the acquisition and the
preprocessing in the pipeline could not remove the effect of the motion artefact.
Due to the distorted input image this individual was removed from further analysis
of the DKI data, but it was kept in the analysis of the DTI data. The other three
individuals, that were found to be outliers, had slightly brighter (or darker) MK
maps than the major part of the individuals. Since it was not certain that this was
due to the anatomy or if the processing was wrong, these individuals were kept in
the DKI analysis.

Figure 4.3: MK map of one of the individual removed from the DKI data.

4.5.2 Group Comparison

Two different group comparisons were done, comparing healthy controls with all
SLE patients and comparing NPSLE patients with non-NPSLE patients. The com-
parison was done tract by tract, by the use of Welch’s t-test, and with an attempt
to include all tracts, by the use of principal component analysis.
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Welch's t-test
Comparisons between the groups was done tract by tract to answer the question
about which areas that are affected by the disease. Since the two groups did not
have equal sample size and the variance could not be assumed to be equal, Welch’s
t-test was used. A test was done for each of the five different parameters, the 66
different segmented nerve tracts and for the two different group-comparisons. The
t-statistics of the Welch’s t-test is calculated as

t =
X1 −X2√
s21
N1

+
s22
N2

whereXi is the mean value, si is the standard deviation andNi is the sample size
for population i. The p-value is calculated based on the t-statistics and the degrees
of freedom. As an example, a two-sided null hypothesis was stated as

H0 : average ofMKtract for SLE = average ofMKtract for HC

for each of the 66 tracts for the MK parameter in the comparison between SLE
and healthy controls. The significance level was set to 0.05 without correction for
multiple comparisons.

Multiple comparison problem
When doing multiple hypothesis tests on the same set of data, the significance
level, σ, is valid for each test but does not cover all the comparisons. To avoid
potential problems with analysis of multiple hypothesis tests on the same data
set, the significance level needs to be lowered. This can be done by Bonferroni
correction. The significance level is divided by the number of hypothesis tests
that should be done. After Bonferroni correction, the significance level for each
hypothesis test was determined to be

σ

n
=

0.05

66
= 0.00076.

Principal component Analysis
The t-test done for each tract only tests if there is any difference between the two
groups in that specific tract. To include all tracts in one test, principal component
analysis was used. Principal component analysis, PCA, is a method that could be
used for dimensionality reduction of data. It uses orthogonal linear transforma-
tions into a new coordinate system where the first coordinate explains most of the
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variability in the data and the second one, the second most variability and so on. It
is also a powerful tool for visualization of high-dimensional data. The data points
for each parameter was plotted by the first two principal components. A Welch’s
t-test was also done on the first principal component.

4.5.3 Effect Size
Comparison of statistical power of the different parameters was enabled by calcu-
lating Cohen’s d. The effect size was used to compare the statistical power and
also to find the tracts that showed the largest effect of the difference between the
groups. The theory behind effect size and Cohen’s d is explained further in Section
2.6.



Chapter 5

Results

5.1 Pipeline

5.1.1 Quality Control

The pipeline run properly for the two data sets and values could be extracted
from all individuals. The visual inspection of the segmentations did not find any
wrongly segmented tracts. An example of an image from the visual inspection of
the segmentation can be seen in Figure 5.1.

Figure 5.1: Image from the quality control. The segmentation of each tract is
projected onto the diffusion MRI image of that individual.
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The quality control of the coefficient of variation resulted in the removal of six
tracts from further analysis. The coefficient of variation, Cv, for the normalized
volume had similar values on the segmented tracts based on the DKI and the DTI
data, which can be seen in Figure 5.3. The mean value ofCv for all tracts was 0.13
for both of the data sets. The standard deviation was larger for the DKI data, with
s = 0.045, than for the DTI data, with s = 0.040.

The fornices, FX_left and FX_right, and the inferior and superior cerebellar
peduncles, ICP_left, ICP_right, SCP_left, and SCP_right, were found to have Cv

larger than 0.2. This means that the standard deviation covers more than 20% of
the mean value. By plotting the highest and the lowest volume of these tracts and
comparing these, it was found that the segmentation varied considerably as can be
seen in Figure 5.2. Different areas of the tract are covered for each individual and
hence, the group comparison in that tract will not be valid. These six tracts were
removed from further analyses.

(a) Segmentation in the individual with the lowest volume.

(b) Segmentation in the individual with the highest volume.

Figure 5.2: Comparison of the segmentation of the left fornix.
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Figure 5.3: Coefficient of variation of the normalized volume for each tract. A
list with all abbreviations for the studied nerve tracts can be found in Appendix
A.1
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5.2 Data Analysis

5.2.1 Control of Normal Distribution
After controlling normal distribution with the Shapiro-Wilk test, the majority of
the samples from the DTI data were normally distributed. Only 4.2% of the sam-
ples based on the FA parameter and 13.6% of the samples based on the MD pa-
rameter were found not to be normally distributed. Similar numbers were found
on the DKI data, where 15.9% of the samples based on the FA parameter and 3.0%
of the samples based on the MD parameter were not normally distributed. After
the individual with a distorted DKI image was removed, 53% of the samples from
the MK parameter were still not normally distributed.

5.2.2 Group Comparison

Welch's t-test
The use of Welch’s t-test for each nerve tract compared the microstructure of the
brain between the different groups. 66 nerve tracts were analyzed and hence, 66
different hypothesis tests were done for each of the five parameters and for the two
different group-comparisons. The number of significant p-values of all these com-
parisons are summarized in Table 5.1. Significant differences were only found in
two tracts in the comparison between the NPSLE and non-NPSLE. In the compar-
ison between healthy controls and all SLE patients, significant differences were
found in many tracts. The FA parameter, based on both the DKI and the DTI data,
showed differences in the largest number of tracts. MD based on the DTI data
also found differences in some of the tracts. All p-values for the the compari-
son between healthy controls and all SLE patients can be seen in Appendix A.2.
When the significance level was corrected by Bonferroni correction to account for
the multiple comparisons issue, only three tracts were found to be significantly
different, as can be seen in Table 5.1.

The mean values for each group, based on FA, MD and MK can be seen in
Figure 5.4, 5.5, and 5.6. Lower FA-values and higher MD-values are observed in
all tracts for the SLE patients than for the healthy controls. However, the difference
is only significant in a number of the tracts, based in the information in Table 5.1.
The mean values for the MK parameter in each tract do not have the same order
of the different groups.

The difference between the two classifications of SLE does not show large
significance based on the method used in this thesis. Studying Figure 5.4, a lower
mean FA in each tract for the NPSLE group than the non-NPSLE group can be
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observed. The difference is not significant, but the trend can be seen in almost
every studied tract.

Table 5.1: A summation of all hypothesis tests and how many significant dif-
ferences were found. The first number is the number of significant differences
found without correction for multiple comparisons, and within parenthesis is
the number of significant differences after the correction.

Number of tracts with significant differences
Data set, parameter HC - SLE NPSLE - non-NPSLE
DTI, FA 54 (3) 1 (0)
DTI, MD 19 (0) 0 (0)
DKI, FA 38 (0) 1 (0)
DKI, MD 0 (0) 0 (0)
DKI, MK 0 (0) 0 (0)

Figure 5.4: Mean values of FA for the three groups in each tract. Note that
the values are in the same order for the majority of the tracts, healthy controls
having the largest value and NPSLE having the lowest value.
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Figure 5.5: Mean values of MD for the three groups in each tract. Note that
mean value for the healthy control group is the lowest value in every tract.

Figure 5.6: Mean values of MK for the three groups in each tract.
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Principal Component Analysis
The principal component analysis included information from all studied tracts and
made group-comparison based on this. Dimensionality reduction for each individ-
ual from 66 dimensions, with all studied nerve tracts, to only one dimension still
included over 70 % of the variance for all five parameters, see Table 5.2. Doing
a Welch’s t-test on the first principal component showed significance between the
healthy controls and all SLE patients when using the FA values based on the DTI
and the DKI data. No significant differences were found based on the first princi-
pal component between NPSLE and non-NPSLE. A summary of all p-values can
be seen in Table 5.2. In Figure 5.7, principal component 1 and 2 are plotted for
the FA values from the DTI data. It can be seen that there is a larger spread of the
SLE patients than for the healthy controls.

Table 5.2: Summary of p-values for the first principal component for each
parameter.

Parameter p, HC - SLE p, NPSLE - non-NPSLE PC1, Variance
FA, DTI 0.002 0.44 74.4%
MD, DTI 0.06 0.96 78.3%
FA, DKI 0.02 0.43 77.1%
MD, DKI 0.36 0.67 80.4%
MK, DKI 0.80 0.59 86.2%

Figure 5.7: Plot with the two first principal components of mean FA values
based on the DTI data.
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5.2.3 Effect Size

Investigation of the effect size was done to find the method giving the highest sta-
tistical power in the group comparison. The effect size of the differences between
the two classifications of SLE were small, with d < 0.5, in all tracts. Due to the
low effect size it is not possible to draw any conclusions on the statistical power
based on this comparison.

Larger effects were found in the comparison between HC and SLE. No signif-
icant differences and no effect sizes larger than 0.5 were found in the comparison
based on MD and MK from the DKI data. The effect size for the other three pa-
rameters in the comparison between HC and SLE can be seen in Figure 5.9. In the
majority of the tracts, the effect size is largest for the FA value from the DTI data.

Studying the effect size of different tracts can also tell where the differences
between the groups are largest. The corticospinal tract and the optic radiation had
low effect sizes and were not significant for any of the sides, left or right. The
largest effect size was found in the left Anterior Thalamic Radiation, ATR_left in
Figure 5.9, for the FA parameter based on the DTI data. The estimated normal
distributions and the corresponding data points from this comparison can be seen
in Figure 5.8. The mean values of the data points can be separated, and it can also
be seen that the data points overlap each other from the two groups. The spread of
the values for the SLE patients is wider than the spread for the healthy controls.

Figure 5.8: The estimated normal distributions and corresponding data points
from the left Anterior Thalamic Radiation, ATR_left, that was found to have
the largest effect size.
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Figure 5.9: Comparison of Cohen’s d on three of the studied parameters for
each tract. The effect size is largest for the FA parameter from the DTI data
in the majority of the tracts. The dotted and the dashed lines mark where the
effect size is defined to be medium, d = 0.5, and large, d = 0.8.
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Chapter 6

Discussion

6.1 Pipeline

The aim of this thesis was to find a way to enable group-comparisons of the whole
brain by include all major nerve tracts of the brain. A methodology was identi-
fied and implemented that enables the analysis of the microstructure of the major
nerve tracts, without requiring time-consuming manual work. The new approach
to extract parameters of the white matter microstructure enabled group compar-
ison between the SLE patients and healthy controls, although some nerve tracts
had to be removed due to incomplete segmentation.

6.1.1 Importance of Quality Control
The use of automatedmethods, without anymanual work, enables analysis of large
data sets. The output from the pipeline is parameters representing the tract for each
individual. In order to make sure that every step of the pipeline is properly done,
it is of importance to have thorough quality control of each step.

The visual inspection of the quality control was found not to be sufficient.
The image with the 2D projections of all tracts for each individual, see Figure 5.1,
made it easier to visually inspect the segmentation than to check all 3D images.
Without any prior knowledge about how the tracts should look like, it was hard to
see if the segmentations were correct or not.

The use of the coefficient of variation of the volumes in each tract for all indi-
viduals was an attempt to quantify the segmentations. This type of quality control
is still a relative measure. If the segmentation of one tract is wrong in all individ-
uals, the coefficient of variation will not make this wrongly segmented tract to be
found. To be able to make a proper quality control of the nerve tracts, a ground
truth would be needed. How to find the ground truth for the segmentation is also

41



42 Discussion

a problem. It could be possible to use an atlas of the segmentations in a standard
brain and project this atlas into the individual space. This would lead to the possi-
bility of comparing the result with the correct segmentation. The segmentation of
nerve tracts based on the diffusion of the brain are estimations of the nerve tracts.
Hence, the real ground truth of each individual is somehow unknown until the day
the brain could be dissected. A nerve tract with deviant segmentation might occur
due to pathology of the brain or due to mistakes of the segmentation method.

6.2 Statistical Power

In the development of a newmethodology, it is important to consider the statistical
power. Inducing variance in any of the steps to extract the values will lower the
effect size and hence, lower the statistical. One important step in the analysis was
to remove the tracts with the highest Cv, and thereby not induce any noise from
the wrongly segmented tracts.

Based on the method and statistical analysis used in this thesis, it was found
that the FA value based on the DTI data gave the largest effect size and would
be preferred to find differences between the different groups. In previous studies
where the statistical power between different parameters are compared, the MK
parameter based on DKI have been shown to give the largest statistical power. In
a study on brain maturation, the DKI was found to offer a more sensitive detection
of tissue microstructural changes [28]. Another study of the microstructure of
the development of the brain showed that larger between-group differences were
found based on DKI than on DTI [29]. The result of the investigated effect size
in this thesis is not in line with these previous studies where the microstructure is
compared. In the statistical analysis of this work, no significant differences were
found in the MK parameter.

The difference of the results between DKI and DTI might be due to the lower
resolution of the DKI data. The extraction of the parameters based on the DKI
data might also have been affected by the smoothing in the preprocessing step.
The DTI data was not in the need of any smoothing. A major part of the group
samples from the MK parameter were also found not to be normally distributed.
Welch’s t-test was still used for the comparison of these values. The time limitation
of this project restricted me to look further into the DKI data and why it behaved
differently than the DTI data. Before any conclusions could be drawn that the
DTI analysis gives higher statistical power than the DKI analysis, the control of
the analysis on the DKI needs further analysis.
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6.3 Group Comparison

Previous results on the same data was confirmed, where significant differences of
the microstructure of the brain was found when comparing HC and SLE. Lower
FA values and higher MD values in the SLE patients are indications that there are
microstructural damages of the white matter in these patients. In Figure 5.4, it
could also be seen that the mean value of FA was slightly smaller for the NPSLE
group than the non-NPSLE group in the majority of tracts. No significant differ-
ences were found by the statistical tests, but it might still be an indication that the
NPSLE patients have a larger fraction of abnormalities of the white matter. These
findings emphasize the theory that all SLE patients suffer from white matter ab-
normalities, not only the patients classified with NPSLE. It is also an indication
that the classification into NPSLE and non-NPSLE is uncertain.

Another interesting finding in the comparison between healthy controls and
SLE patients was the correlation of the nerve tracts where no significant was found
with the function of the tract. The corticospinal tract and the optic radiation did
not show any significant differences when comparing the FA values. These tracts
are mainly involved in motor tasks or transferring of visual signals. SLE patients
typically do not have problem with this, which is why it was not expected to be
any differences between healthy controls and SLE patients in these areas.

When solving the multiple comparison problem by the use of Bonferroni cor-
rection, no significant differences was found. One could discuss if the results are
reliable when the difference between the groups are said to be significant when
no corrections was done for multiple comparisons. The comparison between the
groups can be seen in two different ways: considering the whole brain or com-
paring tract by tract. Doing 66 hypothesis tests, one for each tract, and stating
significant differences in the whole brain will not be valid without the correction
for multiple comparisons. To do proper comparisons where the whole brain should
be analyzed, the use of principal component analysis is a better approach. In case
different parts of the brain should be compared, and with the aim is to find where
there are differences between the group, the hypothesis test of each tract can be
seen as independent. The significance level without the correction for multiple
comparisons could still be valid in this case.

6.3.1 Comparing Methodology with the Previous Analysis

The methods for the segmentation differ between the work in this thesis and the
previous analysis of the same data. This makes it hard to do a proper comparison of
the results. The segmentation in the previous work only cover the most central part
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of each tract. In this thesis, the segmentation of the nerve tracts includes a larger
fraction, and the more peripheral parts, of each tract. The fact that a larger part
of the tract is included might be beneficial if the alterations of the white matter is
widely spread in the tracts. If the alterations of the white matter occur in the center
of each, the inclusion of a larger volume for each tract will only introduce more
noise and hence, the statistical power will be decreased. Significant differences
were found in some of the tracts, where the previous analysis showed that the
difference was not significant. This is an indication that the segmentation method
in this thesis is more sensitive in the way of finding differences between the groups
of individuals.

6.4 Future Work

The mean value of each calculated parameter was used as the representation for
every tract. It is a common way of representing each tract with one value, and that
was why it was chosen. Investigating other ways of doing the representation of
each tract would be interesting. One question that needs to be answered is: are the
parameter values within each tract normally distributed? In case of a skewed dis-
tribution, another way of extracting the value would lead to a better representation
of that tract. Future work could include investigating different ways to represent
the tracts with one value and if it could lead to higher statistical power.

The time limitation of this thesis restricted the statistical analysis. The results
from the statistical analysis can be seen as preliminary and future work will be
required to extend the analysis. Previous analysis on the same data set included
correlation of parameter values with the disease duration, cognitive tests, age, and
results from the blood tests. With values for a larger number of tracts, this analysis
could be extended and could lead to new insights about the disease.

6.5 Ethical Aspects

All individuals that was part of the study have given their informed consent in be-
ing a part of the study. The study also had ethical approval for being performed.
One ethical aspect to consider in studies is the anonymity. The privacy of each
individual should be protected. This is why the personal information, such as the
personal identity number, of each individual is not saved in the data that other
people have access to. When 3D images of the head are gathered, especially MRI
where soft tissue can be imaged, it is possible to reconstruct the face of each in-
dividual. Facial information can be used to identify the individual and thereby
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the anonymity is not protected. There are software that can be used to remove
facial data and thereby achieve anonymity [30]. In this thesis, no 3D images of
the head of any individual is presented and thus, the anonymity is still kept but it
is an important aspect to consider when 3D images are handled.

In group studies where healthy controls should be included, it is harder to mo-
tivate the inclusion of healthy controls in studies where the imaging technology
is doing any harm for the individual. MRI has the large advantage of not involv-
ing any ionizing radiation. It is not harmful for individuals and hence, including
healthy individuals in studies based onMRI is not an ethical problem. Even though
it is not harmful, some individuals might experience the acquisition to be uncom-
fortable. The tunnel of the scanner is small, which can lead to a claustrophobic
feeling, and the high volume of the sound from the scanner might seem intimidat-
ing.
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Chapter 7

Conclusion

The use of a method where the segmentation of nerve tracts does not require time-
consuming manual work enables the analysis to cover a larger part of the brain.
When several steps of a methodology are implemented in a pipeline, extensive
quality control is required to ensure the quality of each step.

The results from the group comparison are in line with previous research of
SLE. Significant differencewere found in several tracts when comparing the healthy
controls with the SLE patients with the FA value being lowered for the SLE pa-
tients. Lower FA values indicates damage of the white matter in SLE patients.
Almost no significant differences were found when comparing the subgroups of
SLE, NPSLE and non-NPSLE. This further emphasizes the theory of the brain
being affected in all SLE patients, and not only the ones having neuropsychiatric
symptoms.

Based on the statistical analysis done, the FA parameter from the DTI data was
found to give the highest statistical power of the group comparison. The MK pa-
rameter from the DKI did not show any differences between the groups. This is not
in line with previous studies and must be investigated further in the methodology
of the pipeline.
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Chapter A

Appendix

A.1 Abbreviations of all Nerve Tracts

Table A.1: Abbreviations of the names of the nerve tracts.

Abbreviation Name of the Nerve Tract
AF_left Arcuate fascicle
AF_right
ATR_left Anterior Thalamic Radiation
ATR_right
CA Commissure Anterior
CC_1 Rostrum
CC_2 Genu
CC_3 Rostral body (Premotor)
CC_4 Anterior midbody (Primary Motor)
CC_5 Posterior midbody (Primary Somatosensory)
CC_6 Isthmus
CC_7 Splenium
CG_left Cingulum
CG_right
CST_left Corticospinal tract
CST_right
MLF_left Middle longitudinal fascicle
MLF_right
FPT_left Fronto-pontine tract
FPT_right
FX_left Fornix
FX_right
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Table A.1 continued from previous page
Abbreviation Name of the Nerve Tract
ICP_left Inferior cerebellar peduncle
ICP_right
IFO_left Inferior occipito-frontal fascicle
IFO_right
ILF_left Inferior longitudinal fascicle
ILF_right
MCP Middle cerebellar peduncle
OR_left Optic radiation
OR_right
POPT_left Parieto-occipital pontine
POPT_right
SCP_left Superior cerebellar peduncle
SCP_right
SLF_I_left Superior longitudinal fascicle I
SLF_I_right
SLF_II_left Superior longitudinal fascicle II
SLF_II_right
SLF_III_left Superior longitudinal fascicle III
SLF_III_right
STR_left Superior Thalamic Radiation
STR_right
UF_left Uncinate fascicle
UF_right
CC Corpus Callosum - all
T_PREF_left Thalamo-prefrontal
T_PREF_right
T_PREM_left Thalamo-premotor
T_PREM_right
T_PREC_left Thalamo-precentral
T_PREC_right
T_POSTC_left Thalamo-postcentral
T_POSTC_right
T_PAR_left Thalamo-parietal
T_PAR_right
T_OCC_left Thalamo-occipital
T_OCC_right
ST_FO_left Striato-fronto-orbital
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Table A.1 continued from previous page
Abbreviation Name of the Nerve Tract
ST_FO_right
ST_PREF_left Striato-prefrontal
ST_PREF_right
ST_PREM_left Striato-premotor
ST_PREM_right
ST_PREC_left Striato-precentral
ST_PREC_right
ST_POSTC_left Striato-postcentral
ST_POSTC_right
ST_PAR_left Striato-parietal
ST_PAR_right
ST_OCC_left Striato-occipital
ST_OCC_right
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A.2 Group Comparison

Table A.2: p-values of the comparison between healthy controls and patients
with SLE with Welch’s t-test. Bold number shows a significance, with p-value
smaller than 0.05 and the asterisk marks the number where the comparison is
significant after correcting for multiple comparisons.

pDTI, FA pDTI, MD pDKI, FA pDKI, MD pDKI, MK

AF_left 0.003 0.088 0.018 0.395 0.864
AF_right 0.001 0.083 0.006 0.181 0.504
ATR_left 0.001 0.041 0.018 0.478 0.845
ATR_right 0.001 0.045 0.010 0.130 0.558
CA 0.024 0.594 0.046 0.774 0.884
CC_1 0.002 0.075 0.017 0.971 0.645
CC_2 0.0003* 0.041 0.008 0.280 0.676
CC_3 0.001 0.070 0.008 0.679 0.833
CC_4 0.005 0.025 0.027 0.386 0.422
CC_5 0.002 0.007 0.022 0.214 0.325
CC_6 0.007 0.018 0.060 0.197 0.625
CC_7 0.300 0.215 0.502 0.712 0.988
CG_left 0.003 0.086 0.049 0.596 0.897
CG_right 0.005 0.074 0.012 0.391 0.841
CST_left 0.096 0.280 0.320 0.955 0.686
CST_right 0.113 0.220 0.283 0.978 0.707
MLF_left 0.013 0.089 0.061 0.203 0.640
MLF_right 0.002 0.024 0.022 0.194 0.626
FPT_left 0.011 0.259 0.068 0.726 0.883
FPT_right 0.002 0.165 0.025 0.435 0.742
IFO_left 0.002 0.125 0.019 0.279 0.842
IFO_right 0.008 0.091 0.066 0.396 0.960
ILF_left 0.013 0.565 0.101 0.712 0.932
ILF_right 0.071 0.216 0.137 0.545 0.985
MCP 0.209 0.630 0.517 0.840 0.570
OR_left 0.067 0.422 0.240 0.753 0.904
OR_right 0.105 0.269 0.205 0.810 0.718
POPT_left 0.022 0.052 0.116 0.182 0.621
POPT_right 0.004 0.010 0.020 0.071 0.454
SLF_I_left 0.008 0.049 0.028 0.257 0.403
SLF_I_right 0.0003* 0.016 0.006 0.140 0.305
SLF_II_left 0.017 0.059 0.046 0.403 0.730
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Table A.2 continued from previous page
pDTI, FA pDTI, MD pDKI, FA pDKI, MD pDKI, MK

SLF_II_right 0.002 0.060 0.013 0.301 0.561
SLF_III_left 0.002 0.085 0.006 0.437 0.776
SLF_III_right 0.0003* 0.042 0.002 0.159 0.360
STR_left 0.024 0.046 0.100 0.663 0.903
STR_right 0.018 0.105 0.054 0.870 0.919
UF_left 0.005 0.423 0.012 0.947 0.632
UF_right 0.013 0.251 0.046 0.453 0.810
CC 0.003 0.024 0.030 0.188 0.616
T_PREF_left 0.002 0.064 0.027 0.459 0.969
T_PREF_right 0.001 0.077 0.022 0.261 0.629
T_PREM_left 0.004 0.086 0.057 0.865 0.807
T_PREM_right 0.012 0.134 0.062 0.729 0.983
T_PREC_left 0.045 0.090 0.178 0.687 0.977
T_PREC_right 0.028 0.088 0.151 0.699 0.972
T_POSTC_left 0.110 0.052 0.318 0.409 0.853
T_POSTC_right 0.021 0.024 0.100 0.220 0.778
T_PAR_left 0.008 0.020 0.084 0.130 0.547
T_PAR_right 0.003 0.006 0.025 0.107 0.580
T_OCC_left 0.062 0.485 0.213 0.764 0.893
T_OCC_right 0.120 0.274 0.258 0.878 0.684
ST_FO_left 0.002 0.275 0.010 0.872 0.698
ST_FO_right 0.002 0.141 0.011 0.508 0.850
ST_PREF_left 0.001 0.090 0.015 0.399 0.951
ST_PREF_right 0.001 0.111 0.013 0.259 0.591
ST_PREM_left 0.002 0.137 0.017 0.496 0.818
ST_PREM_right 0.006 0.153 0.020 0.506 0.683
ST_PREC_left 0.013 0.124 0.048 0.466 0.800
ST_PREC_right 0.030 0.144 0.103 0.546 0.796
ST_POSTC_left 0.070 0.057 0.157 0.236 0.624
ST_POSTC_right 0.018 0.038 0.049 0.127 0.512
ST_PAR_left 0.007 0.028 0.049 0.112 0.472
ST_PAR_right 0.002 0.007 0.013 0.086 0.480
ST_OCC_left 0.038 0.492 0.116 0.577 0.866
ST_OCC_right 0.067 0.197 0.159 0.685 0.935
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