
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

CODEN:LUTEDX/(TEIE-5446)/1-92(2020)

Aggregating and utilizing
sensor data

Maximillian Vilensten
Oskar Hermansson

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

“output” — 2020/6/28 — 10:14 — page 1 — #1

Aggregating and utilizing sensor data

Maximillian Vilensten
bas12mvi@student.lu.se

Oskar Hermansson
mat11ohe@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Christian Nyberg

Examiner: Mats Lilja

June 28, 2020

“output” — 2020/6/28 — 10:14 — page 2 — #2

c© 2020
Printed in Sweden
Tryckeriet i E-huset, Lund

“output” — 2020/6/28 — 10:14 — page i — #3

Abstract

The world of data is changing fast, while data always have been present in the world of
computer science the importance of data has in the last couple of years grown, and it
does not seem to be slowing down. The data usage is steadily increasing and the amount
of data is growing, as well as the ever expanding amount of devices that produce data,
especially in fields such at IoT and cloud computing. This has resulted in a need to make
sure that ones data storage solution can effectively keep up without being too much of a
hassle to maintain and upgrade. Data warehouses have for long been a popular choice for
data storage partly due to its rigid structure. But in the world of big data, this structure
can make it hard to adapt and add new types of data to the storage. A data lake can be
a viable data storage solution if one seeks to achieve storage of many types of data from
multiple sources since its open structure enables the user to practically store anything.
This open structure however comes at a cost since the user now has to manage the raw
data instead of the traditionally processed data of a data warehouse. Managing raw and
unprocessed data is challenging as the purpose of the data may not be determined when
the data is stored. This often leads to all data stored in a data lake to remain in the
data lake without any form of structure nor purpose which quickly leads to the data lake
turning into a data swamp. This thesis seeks to create a data lake solution that can store
data from multiple sources and from different sensors while also making it very easy to
add or remove data sources but also being resilient if the data format changes from its
original form. While at the same time try to keep the infamous data swamp away. This
involves sending the data from the sensors to a storage solution and then making sure
that the data stored can be utilized by the data lakes owner as well as a third party.

Keywords: IoT, Data lake, Axis, Message broker, Cloud, Microsoft Azure, AWS, IBM
cloud

i

“output” — 2020/6/28 — 10:14 — page ii — #4

Foreword and Acknowledgements

Firstly we would like to thank our assistant supervisor at Axis Mattias Backman and the
engineering Manager at Cognimatics Mikael SW Nilsson for giving us the opportunity to
have our thesis work at Axis and for being very helpful an communicative despite their
hectic schedules.

A thank you should also be given to the Axis Core technology Systems for the great
feedback that was given during presentations.

We would also like to thank our examiner at LTH Mats Lilja and to our supervisor
Christian Nyberg for the general guidance and for their feedback during the final thesis
writing process.

Finally we would like to thank all the developers at Axis that have given us guidance
during the thesis and for the technical support when things didn’t work.
Maximillian Vilensten and Oskar Hermansson

ii

“output” — 2020/6/28 — 10:14 — page iii — #5

Table of Contents

List of Figures v

1 Introduction 1
1.1 Background . 1
1.2 Goal . 1
1.3 Problem Specification . 2
1.4 Current solution . 2
1.5 Purpose . 3
1.6 Axis . 4
1.7 Thesis scope and limitations . 4

2 Method 5
2.1 Sprint I . 6
2.2 Sprint II . 7
2.3 Sprint III . 8
2.4 Sprint IV . 9
2.5 Metrics . 10
2.6 Priority list . 10
2.7 Data Lake criteria . 11
2.8 Source criticism . 11
2.9 Individual grading of source credibility . 13

3 Technical Background 14
3.1 Message broker . 14
3.2 ActiveMQ . 16
3.3 Apache Kafka . 17
3.4 Apache Pulsar . 19
3.5 AWS Kinesis . 20
3.6 MQTT brokers . 21
3.7 NATS . 24
3.8 RabbitMQ . 26
3.9 Redis . 27
3.10 Google pub/sub(aka cloud pub/sub) . 29
3.11 ZeroMQ . 31
3.12 Data Lake(s) . 33
3.13 Azure . 34
3.14 AWS . 36

iii

“output” — 2020/6/28 — 10:14 — page iv — #6

3.15 Google Cloud . 37
3.16 IBM Data Lake . 38
3.17 Apache Hadoop . 39

4 Analysis 41
4.1 Message brokers analysis . 41
4.2 Data Lake comparison . 47

5 Prototyping 50
5.1 Message Broker . 50
5.2 Data Lake Architecture . 53

6 Conclusion 61
6.1 Project Result . 61
6.2 Discussion . 62
6.3 Future Work . 64

References 67

A Some extra material 72
A.1 Message broker . 72
A.2 code . 85
A.3 File format examples . 88
A.4 output . 90
A.5 Future Work bullet list . 91

B Licenses 92

iv

“output” — 2020/6/28 — 10:14 — page v — #7

List of Figures

1.1 Diagram showing how the current solution at Axis works 3

2.1 The initial suggested solution . 6
2.2 The updated solution . 7
2.3 The second update of the solution . 9

3.1 Image showing a message being sent from single source to a single receiver . 14
3.2 Image showing a single publisher sending a message to two separate subscribers 15
3.3 A schematic showing a Kafka Cluster working with connectors,producers,consumers

and stream processors . 17
3.4 An image showing how messages are stored in a topic and how offsets for

consumers work . 18
3.5 Visual representation of how MQTT data packet are structured 21
3.6 Showing a message being sent with QOS 22
3.7 A figure showing a publisher sending data to a queue with one consumer . . 26
3.8 A figure showing a publisher sending data to a queue with multiple consumers 26
3.9 Diagram showing on a high level how Redis handles subscribers and publishers 27
3.10 Diagram showing how Google pub/sub handles topics 29
3.11 Diagram showing how Google pub/sub saves message history 30
3.12 An example of a simple request reply using ZeroMQ 31
3.13 An example of a simple request reply using ZeroMQ 32

5.1 Intended message broker architecture . 50
5.2 Folder structure in the STG folder . 51
5.3 Message broker architecture for an all local solution 52
5.4 Message broker architecture for a hybrid solution 53
5.5 Message broker architecture for the final developed solution 54
5.6 Image showing the first data lake design iteration 55
5.7 Image showing the second data lake design iteration containing a new pro-

cessed section . 56
5.8 Image showing the final design of the data lake 57
5.9 Image showing one of the folder structure iterations 58

v

“output” — 2020/6/28 — 10:14 — page vi — #8

Terminology

OASIS - is an abbreviation for Organization for the Advancement of Structured Information
Standards and is a non profit organization for development of technical standards. Their
focus is mostly around security and informational technology.

TLS - is an abbreviation for Transport Layer Security and is a set of cryptography
protocols that are used to secure communication between devices and services

WILDCARD - is a term used when having a placeholder for a string represented with
a single character. It is commonly used to reduce file directories in computing.

MVP - is a abbreviation for Minimum Viable Product and is a term that describes
a product with just enough features to make customers satisfied. Basically this is the
bottom line of what should be allowed to deliver to a customer.

BI - is a abbreviation for Business Intelligence and is referred in this thesis as business
analytics using different types sales data to display this in different types of graphical
representations.

SQL - is a abbreviation for Structured Query Language and is a language primarily
used to insert and retrieve data from tables inside databases.

AMQP - is a abbreviation for Advanced Message Queuing Protocol and is an open
protocol that is used by some message oriented middle ware. The protocol works on the
application layer.

IDaaS - stands for Identity as a service and is a phrase commonly used for cloud bases
identity authorization platforms

IaaS - Infrastructure as a Service is a term most used on cloud services that have an
instant computing infrastructure. An example would be data storage over the cloud or
big data analysis.

SaaS - Software as a service is used to describe services that can include their entire
services in the cloud, an example would be emailing where all work technically is done
over the internet and all the user has locally is a program that can view the data that is
stored online.

vi

“output” — 2020/6/28 — 10:14 — page vii — #9

POS - Point of Sale is refered to data that has been obtain at a certain sales location.
The data usually contains the amount of transactions,sales value,timestamps and other
such data. This type of data is usually used to try to find sales trends and such for larger
companies.

PaaS - Platform as a Service A category of cloud computing services that provides a
platform allowing customers to develop, run and manage applications.

HDFS - The Hadoop Distributed File System is a distributed file system that has been
design to work well on enterprise and consumer computer hardware and was developed
under the Apache foundation.

RSMB - Really Small Message Broker was a message broker developed by IBM as a
lightweight message broker alternative.

JMS - Java Message Service is an message-oriented middleware API that was developed
for sending messages between multiple sources.

SDK - Software Development Kit is software made by a service created to ease devel-
opment or usage of features provided in the original service.

vii

“output” — 2020/6/28 — 10:14 — page 1 — #10

Chapter1
Introduction

1.1 Background
Axis Communications is one of the global leaders in network cameras for the physical se-
curity and video surveillance industries. The company now does not only try to maintain
its expansion and growth but also focuses on staying in the forefront of providing exclu-
sive services that will improve the customer experience and ease of use of their products,
and at the same time differentiate them from their competitors.

With this in mind the company now strives to improve their current solution to collect and
analyze data to be able to have many different types of input data from multiple sensors.
It should also be able to handle adding of new sensors that would generate different input
data for the storage without major integration issues. The collected information should
be available and comprehensible to the customers. The intended customers are mostly
system integrators tasked to display the data to the end users which could range from
companies to individuals. Examples of this sensor data could be statistical information
which is used for reports about customer flows in retail, banks, etc. This data produced
by these sensors is currently stored in a traditional database, which is used by system
integrators to present the end user with data for analysis. This sort of data storing poses
a problem when adding a data type not currently supported by the current database,
since adding a new source of data requires refactoring of a database. In the current
solution data is sent from its source to its predetermined database and stored there. In
the desired solution the default mode of transfer is used to transfer the data from its
source to a storage medium. Axis seeks to improve the database with a more modern
solution but are uncertain which solution that would be. A proposed solution to this as
presented by Axis is the usage of data lakes, which solves the problem of adding data
from new sources. A data lake is a data archive that stores its data in a raw format,
and often stores all data from its user in a single location. This kind of repository makes
managing and analysing large amounts of data more manageable, which is the reason for
Axis interest in it.

1.2 Goal
The goal is to determine a solution for sending sensor data to a storage medium on
either the cloud or non SQL based database that best suit the company. The data
should come from multiple sources with different output formats in different locations
and must therefore be able to handle this in an efficient manner. The database should
also be able to identify commonality between data from different sources, such as data

1

“output” — 2020/6/28 — 10:14 — page 2 — #11

Introduction 2

coming from the same source, or sensor data that represent the same type of data, e.g.
temperature data or data used to represent customer flow, while at the same time be
able to sort out data that is deemed irrelevant to the customer. The database must also
be able to handle losing one of the sensor inputs without creating a major error for the
entire database. The end goal for the project would be to have at least one solution with
a working prototype that clearly highlights the benefits and drawbacks of the solution.

1.3 Problem Specification
In order to create a feasible scope for this thesis a set of scientific questions were for-
mulated as a basis. These scientific formulations were made by the thesis workers in
consultation with their supervisors from both Axis and LTH until an accepted common
ground was found. The final scientific questions were:

1. How should sensor data be stored for analysis?

• Is there a way to analyze data prior to storing it?

• Is there a way to determine which data should be stored?

• Is there a way to store the same data in different formats?

2. What is needed in order to analyze data?

• What metrics does the current Analysis Service used by Axis need?

• What metrics would be needed in the future?

• Is there a way to merge data in order to improve analyzing?

3. Is there a way to store multiple types of data in one database?

4. How should data be transferred? (Is there a way to efficiently transfer data from
multiple sources to the database?)

5. Where should the relevance of data be determined? (Should all data be saved or
is there a need to filter out incomplete or faulty data?)

• Should data be filtered before being stored or after being stored?

• What determines what input data should be deemed unnecessary and re-
moved?

• Does time affect the relevance of data?

6. Is there a way to utilize data?

• Is there a way to visualize the analyzed data?

• Are there tools that can utilize data?

1.4 Current solution
Axis current data aggregation solution is having all sensors, cameras and other devices
that produces data to report their data to what is known as the Axis Store Data Man-
ager. Axis Store Data Manager serves as both a database for storage with a traditional
warehouse structure and also actively manages the data. The data stored in the data
manager is then used for analysis by a third party. This third party uses the data to
make visualizations of the data as well as offering fast queries into the data. This can be
seen in figure 1.1

“output” — 2020/6/28 — 10:14 — page 3 — #12

Introduction 3

Figure 1.1: Diagram showing how the current solution at Axis works

Although the current solution works it is not without problems[64]. The most significant
problem is that whenever a sensor in the system outputs data in a form not known by
the data manager, the data manager has to be modified in order to be able to handle
the new input and will therefore crash or have other issues if this is not properly handled
beforehand. This also means that all third party applications using the data manager
may have to change as well. There is also the problem of having no way of analysing the
sensor produced data in real time, as of right now the sensors upload their data to the
data manager once every 15 minutes. This is not a problem for all sensors as not all of
the data is relevant in real time, but for some such as the Axis Queue monitor a real time
analysis may be of interest. Due to a static database and a lack of real time analysis Axis
is looking for ways to implement this or find solutions that can provide this for them.
Axis current solution is an SQL database saving data in a fixed location. After this third
parties need to access this data in order to graphically display the data for the end user.
This was also considered a problem since Axis would prefer to keep third parties away
from their data storage.

1.5 Purpose
The purpose of the thesis is to investigate different possibilities of solving the problem
of adding new data sources to a database as well as how the data should be stored to
optimize analysis of the data. This will be done by firstly researching and finding solutions
within the scope given by Axis (i e. Cloud based, non SQL, adding new types of data
without the need to adjust the data archive). If only one solution would be found, a
prototype would be developed in more depth with a deeper analysis of why this would be
the only feasible solution. If multiple solutions will be found these will then be eliminated
by specifications given by Axis. Subsequent to this, a prototype will be developed for each
of the remaining solutions. This will serve as a basis for the recommendation of which is
most suited for Axis. There will also be a deeper investigation into whether the stored
data can be automatically analyzed to some degree using a form of AI technology or
machine learning. This area will not necessarily be included in the demo but a thorough
analysis will be included in the thesis.

“output” — 2020/6/28 — 10:14 — page 4 — #13

Introduction 4

1.6 Axis
Axis communications is a Swedish hardware manufacturer that mainly specializes in se-
curity and video surveillance solutions for both companies and individuals. The company
was founded in 1984 and began their journey selling print servers. This changed when
Axis received a thesis worker pointing out that the systems could be used for network
cameras, setting a new course for the company.

While network and security cameras are the main source of income for Axis the company
has begun to widen its revenue streams by providing other services such as audio solu-
tions and access control solutions for companies.

The company’s headquarters is located in Lund Sweden where around 2000 of the com-
pany’s 3600 employees work. Apart from its headquarters in Sweden Axis communi-
cations has a presence in more than 50 different countries around the world. In 2015
Canon bought a majority of the shares but regardless of that the company still remains
independently run with little to few restrictions from its parent company.

1.7 Thesis scope and limitations
The thesis also contains limitations that were not stated in the scientific formulations in
section 1.3. In difference to those limitations these have been set by either Axis or the
department at LTH. The restrictions are as follows:

• The presented prototype should not be using a SQL database as main data storage
point.

• The workflow must follow the Kanban framework used by Axis.

Resources

• Computers provided by Axis for development of software.

• Coaching from Axis staff and usage of their facilities.

• Sensor data provided by Axis.

Considerations

• Results need to have a slight consideration on financing, meaning that if the best
found solutions is way more expensive than the rest, some sort of motivation on
why the extra cost would be needed in the use case.

• The solution should try to be as platform independent as possible. This means that
while it will be impossible to avoid cloud storage to be independent from any other
company’s ecosystem the proposed solution should partially or entirely be able to
be implemented in other ecosystems if the client requests so. If the proposed final
solution would end up completely locked to one ecosystem, a motivation on why
the added productivity can be more beneficial in the intended thesis use case.

“output” — 2020/6/28 — 10:14 — page 5 — #14

Chapter2
Method

In this thesis a Kanban approach has been used to structure and plan the project. This
chapter will go through how the work was carried out as a whole as well as how it
was carried out per sprint, which can be seen in the following sections. The use of the
Kanban work methodology was highly desired by Axis in order for them to be able to
provide as much support in organising of workflow, and for them to be able to provide
workload balance suggestions. With this in mind it was deemed highly beneficial to use
this work methodology in combination with the fact that the thesis workers already were
comfortable with working in Kanban. The entire thesis was split into four sprints which
are documented in separate parts below. The group had daily stand-ups internally to
get a clear picture what each member was doing, and also had weekly playbacks with the
supervisor at Axis where the progress made by the team was presented as well as what
each member should be working on for the next week. These kinds of meetings gave
the company better insight into the progress of the thesis, but also gave both parties an
excellent opportunity to communicate on how to prioritize the work going forward into
future sprints and whether or not any extra task should be added to the backlog. This
means that the work methodology included some structural reforms from Axis and is not
pure Kanban.

5

“output” — 2020/6/28 — 10:14 — page 6 — #15

Method 6

2.1 Sprint I
The initial sprint started with a meeting with the Axis supervisor Mattias Backman,
the purpose of the meeting was to determine where to start the project. Since there
are a number of issues of having a static database, it was suggested that the data lake
concept should be explored. As data lakes are often marketed to solve this very problem.
Unfortunately Axis cameras and sensors do not currently have the capability for pushing
their data to anything but Axis Data Manager, which means a message broker should
probably be considered to transfer the data between Sensor and Storage. The conclusion
of the meeting is presented in 2.1.

Figure 2.1: The initial suggested solution

Following the meeting a thorough research of most available data lake solutions was done
followed by a broad research of possible message brokers compatible with one or more of
the data lake solutions. The result generated by these researches could then be reduced
based on either by being deprecated or having limited compatibilities with the data lakes.
The result of this research can be found in chapter 3, listing the message brokers and
data lakes considered for solving the problem. Subsequently to the research the width of
the scope of the thesis needed to be evaluated as the number of message brokers resulted
by the research was greater than expected and needed to be reduced. To do this a small
send and receive test of all message brokers was done to determine usability and to check
if the message model of the broker would make a difference on the suggested solution.
Unfortunately there was no difference in this nor was there any eliminations being done
based on the semantics offered by the different message brokers, since error handling
is easily done by most data lakes. Since this method did not generate any reduction
amongst the chosen message brokers it was suggested by the Axis supervisor that more
metrics should be included. Lastly in the first sprint the most suitable message broker
and data lake were selected for prototyping. The chosen broker was Apache Kafka for
being the most compatible of message brokers as well as being the most well documented.
The Azure data lake was selected for data storage since it was the most familiar platform
to Axis Communications.

“output” — 2020/6/28 — 10:14 — page 7 — #16

Method 7

2.2 Sprint II
The Second Sprint started with the creating of a prototype utilizing Apache Kafka to
transfer data from an arbitrary source to Azure Data Lake Storage. The data sent was
sensor data provided by Axis to resemble actual data to be handled. This prototype was
presented during a meeting to show the progress of the project and to confirm that it
was going in the right direction. During this meeting the initial structure (see 2.1) of the
solution was discussed, and three things was decided. The first one was that for sensors
to upload individually to the lake wasn’t optimal and should be avoided, the Second was
the introduction of a raw data point. The third was that the message broker and data
lake should be interchangeable if possible. This was due to not all of Axis current or
future customers may be partial to use a specific brand of software. The conclusion of
the three changes resulted in a new structure which is presented in figure 2.2

Figure 2.2: The updated solution

With the new structure came the conclusion that the broker used to implement the
solution needed to support a publish/subscribe message modelThis resulted in ZeroMQ
being eliminated due to it not having support for the publish/subscribe model. For the
message broker to be interchangeable it needs to be directly or indirectly compatible with
any of the data lakes. Whilst this is true for most of the chosen brokers it isn’t true for
Google pub/sub and AWS Kinesis as they both are bound to their respective distributor,
which resulted in these also being eliminated. The initial research had resulted in 12
viable message brokers that now could be reduced to 9. The second half of the second
sprint consisted of researching and prototyping data lake structures. This was done to
find suitable metrics for a data lake comparison, as Axis had a very limited knowledge
of data lakes prior to this thesis. The findings of the research as well as the data lake
prototype were presented in a meeting at the end of the sprint. During this meeting the
metrics for the message broker comparison was also discussed as the writers of this thesis
found the current metrics to be insufficient.

“output” — 2020/6/28 — 10:14 — page 8 — #17

Method 8

2.3 Sprint III
With the new input given during the meting at the end of the second sprint a set of new
aspects were taken into consideration that somewhat changed the prerequisites needed
for the message broker. During the demo of the prototype Axis expressed a desire to
increase the focus on security aspects and encryption while sending the messages through
the message broker. Security was formerly quite low on the priority list when compar-
ing different message brokers, and while Apache Kafka was the message broker used for
demo purposes, built in security was not it’s strongest suit. This new requirement lead
to most of the brokers to be "phased out" due to them having either no built in security,
or just authentication while the messages could still be sniffed out with software such as
Wireshark. The strongest candidate for built in security at this point was RabbitMQ
with it’s built in TLS for securely sending data[6]. The testing showed that RabbitMQ
had lower efficiency of message throughput and had a higher power consumption com-
pared to the previously tested Apache Kafka broker. This could be due to the added
encryption and it was considered that a custom made security scheme could be developed
for Apache Kafka to compare how both brokers worked when secure. While researching
how to add security to Kafka, a new message broker named Apache Pulsar was found
with a similar structure as Apache Kafka but with higher scalability and built in secu-
rity features. Therefore assessments where made to find out if the benefits of changing
into Apache Pulsar would outweigh the costs in comparison to just develop some sort of
encryption into Apache Kafka. It was deemed that testing Apache Pulsar would be more
beneficial due to the built in security features and higher scalability. And since brokers
were selected to be interchangeable the cost of changing would not be that high.

During testing between between RabittMQ and Apache Pulsar, results showed that Pul-
sar was indeed faster while also having a more robust built in security feature. While
not leading to the elimination of RabittMQ for now, it lead to the decision of using
Pulsar as the message broker intended for future demos. With the new Apache Pulsar
message broker implemented with added security, the data aggregation phase was con-
sidered working and focus now shifted to the field of data utilization instead. This lead
to a meeting with our representative on Axis discussing what type of data utilization
would be interesting for them. During this meeting it was decided that for the MVP,
three data utilization examples should be produced that could showcase the use of each
layer of the finished data lake structure. The first was a way to push data from the data
lake to one of Axis partners and their data warehouse. This was of high interest to Axis
and was discussed before the thesis began. And was deemed a interesting way to test
if data could be processed to the right format and sent within the lake in a streamlined
fashion. The second decision was to transform incoming data to a format that fits users
that work with BI, and export it to Microsoft’s Power BI in order to create diagrams or
in other ways visualize data. The third utilization required for the MVP is to visualize
the data from the raw data point. More ways to utilize data were discussed but not put
in MVP and can be read in the future work section and the schematic for the solutions
now looked like figure 2.3.

The utilizations for the MVP where successfully developed but at the end of the sprint a
question was asked by Axis if there was any way of using the solution locally. i.e without
any involvement of the cloud for the small group of customers that are reluctant to use
the cloud. Since this was not possible at that point, ways to implement some features
to be able to run locally were researched to be presented at the next sprint meeting.
While many possible solutions could be made, the most feasible one for the scope was
to consider if the message broker could send the data to a local data storage as well as

“output” — 2020/6/28 — 10:14 — page 9 — #18

Method 9

Figure 2.3: The second update of the solution

sending data up to the data lake. This would potentially solve the issue if one does not
desire any sort of cloud computing or storage for their data, it could just be sent straight
to a local data base instead circumventing the cloud.

2.4 Sprint IV
This sprint represented the last sprint for the project and was highly focused on finishing
the demo and finalizing the analysis for both message brokers and data lakes as well
as the thesis report. Since asked by Axis in a meeting to investigate possibilities to
circumvent the cloud, code sending all data to an SQL data base was developed to show
that data could be sent locally. While researching how to implement a data lake without
the cloud, it showed that in order to get most capabilities and development freedom
that could be provided by the cloud, only a Hadoop solution could be used. Due to the
drastically different structure and how each feature works in Hadoop along the fact that
not much time was left for the thesis, no complete Hadoop solution could be developed
but a recommendation and high profile schematic was made. After presenting this to
Axis the company was pleased with the results and focus completely changed to finish
the analytics. To finalize what metrics where needed for the final evaluation a meeting
was held with Axis. After some brainstorming alongside another extra meting with Axis
Core Technology Systems, a finalized metric list was made and can be read in section 2.5
along with a priority list of the metrics that can be read in section 2.6. With this the
final analysis began and it was decided to make a more theoretical approach in order to
get a higher quality comparison in time. The analysis and how each test was conducted
can be read about in chapter 4. After this some final updates on the demo was made
to make sure that advantage was taken of the new knowledge gained from the analysis.
With the analysis and demo done the only remaining tasks were to finalize the thesis
report and hold a final presentation which was considered the end of the sprint.

“output” — 2020/6/28 — 10:14 — page 10 — #19

Method 10

2.5 Metrics
These were the metrics used to compare message brokers and were the result of several
meetings and discussions with several departments at Axis.

• Availability - It is the capability of a system to maximize its uptime.

• Interoperability - Interoperability refers to the basic ability of different comput-
erized products or systems to readily connect and exchange information with one
another, in either implementation or access, without restriction.

• Message delivery guarantee - The Quality of Service offered by the broker(see
3.1).

• Performance - The amount of processing power needed per message sent.

• Portability - the usability of the same software in different environments. The
prerequirement for portability is the generalized abstraction between the applica-
tion logic and system interfaces. When software with the same functionality is
produced for several computing platforms, portability is the key issue for develop-
ment cost reduction

• Scalability - the adaptability of a system to cater to a growing number of tasks
such as producers, consumers or messages.

• Security - Security in this instance refer to the measures required to develop a
secure system. Where a broker with built in security features are valued higher as
opposed to one that does not.

• Throughput - The rate of successful message delivery over a communication chan-
nel.

• Usability - Is the degree to which a software can be used by specified consumers
to achieve quantified objectives with effectiveness, efficiency and satisfaction in a
quantified context of use.

2.6 Priority list
The aforementioned metrics for comparisons were given the following priority based on
instructions and suggestions by Axis.

High

The list labeled high were the metrics that both Axis and the thesis writers found to be
the most important ones and where the following:

• Scalability

• Security

• Portability

Medium

The list labeled medium were the metrics that both Axis and the thesis writers found to
have importance to the work but not as much as the ones labeled high, and the metrics
were the following:

• Throughput

• Message delivery guarantee

“output” — 2020/6/28 — 10:14 — page 11 — #20

Method 11

Low

The list labeled low were the metrics that both Axis and the thesis writers found to be
interesting features to the message broker but were not necessary to be included if a
message broker fulfilled the metrics in high or medium. The metrics were the following:

• Availability

• Usability

• Performance

2.7 Data Lake criteria
Since Axis had limited prior knowledge of data lakes, determining a list of metrics to
compare them by was difficult, so instead a list of criteria Axis felt were important was
established. The criteria were given any priority with the exception of data lake as a
Service being more important than the others. These criteria are listed bellow.

• Data Lake as a Service - Axis asserted early in the process of data lake selection
the preference of a data lake solution that was well established and already had a
lot of the features pre built so testing the potential of data lakes would not take
to long.

• Data Lake Interopability - Refers to the openness of the platform, i.e how well
it communicates with products outside the platform.

• Platform maturity - The maturity of a platform does not imply that is bet-
ter than its competitors but it often implies a larger number of users and more
documentation.

• Data Migration - The ability to move data from the selected platform to a new
one.

There are a number of other criteria often considered when selecting data lake services
that are not mentioned here. Such as cost, performance, reliability and availability.
These metrics were purposefully excluded as the they are difficult to compare to each
other without having a full grasp on what data and how much data it will process. The
cost of running any of the platforms is difficult to calculate without knowing the extent
of the data to be processed. The purpose of the thesis was not to develop or determine
the most optimal data lake, but rather suggest a solution to the specified problem by
utilizing an appropriate data lake.

2.8 Source criticism
In order to make sure that sources in this thesis will hold a proper academic level and in
an attempt to make sure that the reader can trust the information given, a quite rigid
system was put in place to check sources for their reliability and transparency.

The first step when searching for information was to search sources trusted by the uni-
versity such as LUBsearch in order to see if peer reviewed articles or publications could
be found. When that was not available the Publications and dissertations section on the
LTH website and Google scholar can also provide good sources that are to some degree
more reliable than others. The process of doing this is quite time consuming in com-
parison to just googling, but usually provides with better results and one also can rest

“output” — 2020/6/28 — 10:14 — page 12 — #21

Method 12

assure that the content is of high quality and therefore spend less time on source criticism.

One can not always find the needed information by exclusively searching these mediums
however and other sources have to be considered in order to get enough information
to satisfy the need of this thesis. This resulted in the need to come up with a source
criticism system which differs from medium and the system works as follows:

2.8.1 Books
Books are considered to be very valuable sources of information that are mostly on par
with those acquired on LUBsearch. This is due to the fact that most printed works are to
some extent checked for fact errors and hold an overall higher quality than most websites.
Therefore in the case of a book checks were made to see if the book seems to be written
in a serious manner. There was also some minor fact checking when the data presented
in the book did not seem to match data acquired from other credible sources, this was a
rare occurrence however.

2.8.2 Websites, E-books and PDF files
While many websites contain a lot of good and unbiased information, there is also a lot
of them that do not. The internet also provides a cheaper option for individuals and
companies to publish biased information that puts their favorite solution in a better light
than it might have been deservant of. This is why a more rigorous system was put in
place for source criticism when using Websites, E-books and PDF files. The process
involved four different steps to determine how credible a source was to use for the thesis
and to which extent they could be used. This means that some sources might not be
credible in all aspects but were deemed credible enough in the particular use case and
was used anyways but other data from the source should be taken with caution. In some
cases where credible sources where not found, multiple semi credible sources where used
to try and justify that this is the correct fact. This was exclusively the case for mi-
nor details in the technical background and was not deemed good enough as a source for
any other types of statements in the thesis. The steps that where taken are the following:

1. What are the editorial rights on the website?
There are sources on the web that have different privileges when it comes to who
is allowed to edit information on the site. An example would be Wikipedia where
more or less anyone is allowed to edit while sites such as ne.se only allow people
knowledgeable in the subject to edit the information. This provides a more reliable
data source than Wikipedia although the information might not technically be
wrong it is also harder to confirm that it is correct.

2. Are there any other incentives for the author?
Some web pages are written by corporations or individuals that have some sort of
gain of promoting services that are not necessarily as good as they claim. This
usually happens in the form of companies boasting features or performance of their
solution without any proper proof. These type of exaggeration might have an affect
on the end results of analytics and can therefore be unsuitable for use in a thesis.

3. Does the website instill a serious impression to the reader?
There are institutions and groups that provide data and information in a detailed
and more objective manner. This provides the reader with some confidence that
the data can be trusted and that information might not have been made up on the
spot since someone took the time and effort to properly present it.

“output” — 2020/6/28 — 10:14 — page 13 — #22

Method 13

4. Does the site provide sources?
When writing any type of article or publications that includes statements one might
want to see the sources as a reader to make sure that this statement is correct. If
sources are not provided or some sort of credibility that the writer has knowledge
of the subject one might find the information given in this publication to be not
credible and might not be suited for thesis use.

2.9 Individual grading of source credibility
The sources numbered [15-22], [24], [30-33], [35], [39], [40-45], [58] and [64-74] are all doc-
umentation taken from the official source or from official partners of the service. While
these might not be the most suitable sources for comparison of performance and such
they do need to provide correct descriptions of their systems for developers to be able
to work with them. This makes them perfectly usable in cases where technical aspects
come into play but might not necessarily be good sources when quoting performance.

The sources labeled [1-14], [26], [57] and [59] are sources taken directly from LUBsearch,
the university website or Google scholar and can be considered quite reliable as sources
due to them already being peer reviewed and published by universities. This means that
the sources are deemed most credible and require a minimal amount of fact checking
before they where deemed highly trustworthy by the standards of this thesis.

The sources labeled [36] and [47-49] are books found on the subject. They fall under
a similar category as the sources from LUBsearch and also have been deemed highly
credible to be used in this thesis

The sources labeled [23], [25], [27-29], [34] and [60-63] are web pages that have been
deemed trustworthy for use in this thesis.

The sources labeled [38], [46] and [50-56] Are websites, E-book and PDF files with less
credible sources. These have been deemed to be not particularly trustworthy but have
have been the most credible source found on the subject. These sources have only been
used in combination with other sources to strengthen it claims or used to clarify minor
details in the technical background. The information in these sources should be properly
reviewed before any usage in any academical texts.

“output” — 2020/6/28 — 10:14 — page 14 — #23

Chapter3
Technical Background

This chapter presents Axis current solution for data aggregation as well as the concept
of a data lake and a description of a message broker. The message brokers and data lake
solutions evaluated in this thesis will also be presented here. This does not include all
message brokers and data lakes as some were eliminated in the research process.

3.1 Message broker
The term Message Broker or occasionally integration broker is most commonly defined as
"An intermediary program that translates a system’s language from one internationally
suitable language to another via a telecommunication medium", and its primary objective
is to validate, transform and route messages. A message broker consists of three parts, a
producer who sends the data, a consumer who receives the data, and a server acting as
a broker in between the aforementioned. Simply put, the producers sends the message
to the broker, and then the server sends the message to the consumer. How the server
goes about this depends on the message model of the broker.

3.1.1 Point to point
A point-to-point communication model refers to communication connections between two
endpoints, i.e a message is sent from one endpoint to another see figure 3.1. Message
brokers implement this by sending a message from a producer to a previously specified
queue on the server. The consumer may then fetch the messages from this queue, and
when a message is consumed from the queue an acknowledgement is sent from the server
to the producer. A producer can produce to any number of queues and a consumer can
consume from any number of queues, but a message cannot be consumed by multiple
consumers.

Figure 3.1: Image showing a message being sent from single source to a
single receiver

14

“output” — 2020/6/28 — 10:14 — page 15 — #24

Technical Background 15

3.1.2 Publish subscribe
In a publish/subscribe model (pattern) the producer published the message on a server
with or without a specified topic. The consumer may subscribe to any number of mes-
sages based on one or both of the following filters:
Topic: The producer specifies a topic when it publishes a message, one or more con-
sumers may then subscribe to the same topic to receive all messages published on that
topic.
Content: A content based filter implies that the consumer specifies a number of at-
tributes contained within the message, the server then returns all messages that satisfy
these constraints.

Figure 3.2: Image showing a single publisher sending a message to two
separate subscribers

Both of these filters support the so called one to many model, i.e. the same message can
be read by any number of consumers as can be seen in figure 3.2. The publish/subscribe
model has a lower risk of data loss as there are more components that need to fail for a
message to be lost, some also offer message retention to ensure message delivery. Message
retention refers to a message brokers ability to retain messages until all consumers have
received the message or for a specific amount of time(retention period). In any system
there is always a risk of failure, a message broker has three parties involved which is
three parties that can fail independently or all together. To prevent data loss all message
brokers offer a Quality of Service (QoS) level, which are classified below.

• At least once: To guarantee that all messages sent by the producer makes it to
the consumer, the consumer sends an acknowledgment back to the producer and
if the producer doesn’t get the acknowledgment it sends the message again. This
results in all messages arriving at least once even when the broker or consumer fails
or the acknowledgement times out. This is done by simply sending the message
again if no acknowledgement was received to the sender. Which means that there
is a high risk of receiving duplicate messages, which need to be handled.

• At most once: To avoid getting duplicates the acknowledgement of having re-
ceived a message is not sent, this guarantees there being no duplicates but doesn’t
take into account the package loss of not using acknowledgement.

• Exactly once: Exactly once guarantees exactly what it implies, only and exactly
one message. This has no general solution and the approach on how to do it can
differ from message brokers[57].

As previously mentioned some but not all messages brokers will be presented in the
coming chapters. The list of messages was compiled during the initial research and does
therefore include non-optimal options for the solution, since the requirements on the
message brokers changed during the project. The criteria for selection and the changes
made to them can be found in chapter 2.

“output” — 2020/6/28 — 10:14 — page 16 — #25

Technical Background 16

3.2 ActiveMQ
ActiveMQ was developed by LogicBlaze in 2004 as an open source, asynchronous mes-
sage broker. Written in Java, utilizing the Java Message Service (JMS), the reason for
starting the ActiveMQ development was the lack of message brokers fully compliant with
the Java Platform. Having originally been hosted by CodeHaus the code and trademark
were donated to the Apache Foundation in 2007 where its founders together with the
Apache community continues the development under an open source licence [65].

ActiveMQ supports both the point-to-point and publish/subscribe message models and
the broker may be used as a queue, a topic or both simultaneously. When using the point-
to-point message model the ActiveMQ broker acts as a load balancer routing messages
from the queue to one of the available consumers. As opposed to the publish/subscribe
model, where all messages in the queue are sent to each consumer subscribed to the topic.
In both cases ActiveMQ does not guarantee that the messages are delivered immediately
nor simultaneously for the consumers subscribing to the same topic, this is due to Ac-
tiveMQ sending its messages asynchronously, which is the result of having producers and
consumers work independently. The producers process of composing and sending mes-
sages is separated from the consumers process of fetching it. As soon as the producer
sends its message its task is done and it moves on to the next message to be sent, and
the consumer on receiving a message is unaware of its origin. Having clients working
independently of each other is called loose coupling and has a few benefits that include
a higher throughput due to not having to wait for acknowledgement, and high flexibility
by not needing to know the sender or receiver of the messages. This also allows for new
clients to be added dynamically. This is also the reason for ActiveMQ offering the at
least once semantic.

A consumer within ActiveMQ can be either durable or non-durable, the difference be-
tween them being that a durable consumers messages will be retained by the broker upon
the broker disconnecting from the consumer, and a non-durable subscriber will lose all
messages sent to it when disconnected[5].

Advantages
• The opportunity of dynamic queue creation

• Web UI for queue management

• The broker is configurable through XML

• The product is actively maintained

Disadvantages
• Messages must be sent to either queues or topics

ActiveMQ is often used for its flexibility; it has support for a large number of protocols
such as STOMP, MQTT, AMQP, REST and OpenWire [3]. It is also compatible with
Apache Zookeeper out of the box enabling replication, as well as offering a number of other
useful features such as wildcards or Composite Destinations. Composite Destination
allows the same message be sent to several queues.

“output” — 2020/6/28 — 10:14 — page 17 — #26

Technical Background 17

3.3 Apache Kafka
Apache Kafka is a service provided by the Apache group in order to stream streams of
records through a publish subscribe pattern. Apache themselves call this a distributed
streaming platform which consists of three key capabilities.

• The ability to Publish and subscribe to streams of records.

• A way to durably Store streams of records.

• Process streams of records as they occur.

This means that the Kafka server is capable of having multiple producers(publishers)
and consumers(subscriber) simultaneously and will still be capable of Exactly-Once data
delivery.

The Kafka server is able to categorize input data with the use of topics and multiple
topics can be created in a single Kafka server. Consumers are capable of consuming
from not just one topic but multiple ones if desired. Kafka also has many different API’s
known as connectors that allow users to directly transfer data to and from the Kafka
cluster with minor changes to the Kafka configuration files. This provides a fairly simple
no programming required way to integrate the Kafka cluster to many different types
of databases, cloud services and analytic tools given that a connector has already been
developed for it. While Kafka mostly is recognized as a message broker for individual
message packages Kafka also has the capability to stream data from one point to another
using what Kafka calls the Streams API. In order to get a visual representation on how
data can travel to and from the Kafka cluster one can view figure 3.3 which shows all
the unique parts that can be added to the cluster as well in what direction the data can
flow in each case.

Figure 3.3: A schematic showing a Kafka Cluster
working with connectors,producers,consumers
and stream processors

Kafka also has the ability to save all messages within a retention period, this means that
if a topic has a retention period of 24 hour all messages within these 24 hours will be
saved in memory. These messages will only be deleted if instructed by a developer or if

“output” — 2020/6/28 — 10:14 — page 18 — #27

Technical Background 18

the retention period runs out. This feature is meant to reduce loss of data if consumers
somehow get bottlenecked or otherwise get disconnected to the Kafka cluster for a longer
period of time. To better visualize how this works let’s consider a scenario in which a
topic contains one producer that writes data and two different consumers that read from
it as can be seen in figure 3.4. Each numbered block can be seen as a message sent by
the producer. It began at zero and has now written eleven messages and has started to
seen a twelfth message. The first consumer named Consumer A has read up to message
nine and the second consumer named Consumer B has managed to read eleven messages.
The Kafka cluster remembers the position of all consumers which is known as individual
offset. Let’s say that for some reason Consumer A after reading the ninth message now
loses connection to the Kafka cluster and after a short while manages to reconnect and
starts to read messages again. The Kafka cluster will automatically recognize Consumer
A and automatically requests it to start consuming from message ten (as long as message
ten has not been deleted of course). This way no message has been lost to Consumer A
and it can continue to consume without any worries[21].

Figure 3.4: An image showing how messages are
stored in a topic and how offsets for consumers
work

Advantages
• Scalable

• Message retention

• Able to be clustered if desired

• Large support amongst companies

• SDK’s available in many languages

Disadvantages
• Basic topic structure

• No topic wildcards selection

• Slows down with high number of message queues

Apache Kafka provides a scalable solution that is also clusterable and provides message
retention. It is also open source making it an option that receives frequent updates from
the community.

“output” — 2020/6/28 — 10:14 — page 19 — #28

Technical Background 19

3.4 Apache Pulsar
Apache Pulsar is a pub/sub, massively scalable messaging system originally developed by
Yahoo to address the several shortcomings of existing open source messengers at the time.
Pulsar is open-source and is incubated under the Apache Software Foundation and was
originally developed to support multi-tenant use cases. The Pulsar cluster is composed
of a set of brokers and bookmakers and an Apache Zookeeper. The broker is a stateless
component that receives, stores and delivers messages. Apache bookkeeper (Bookie) is
used to store data in the cluster until they are consumed. Apache Zookeeper stores
metadata about the Pulsar cluster used for configuration and coordination management.
Apache Pulsar uses a generalized version of the two message models point-to-point and
Publish/subscribe, to be able to offer both. The producers publish messages on a topic,
these messages are then broadcast to any number of subscribers to consume the messages.
Consumers under the same subscription may then choose what type of subscription should
be used. Pulsar offers exclusive, failover, and shared subscriptions [66].

• Exclusive With an exclusive subscription only one consumer may subscribe to
one topic at a time.

• Failover With a failover subscription any number of consumers may subscribe to
the same topic, but there may only be one active consumer on a topic.

• Shared A shared subscription allows multiple consumers subscribe to the same
topic and the messages are sent with a round-robin delivery method.

Regardless of which subscription selected Pulsar offers Message Retention, which allows
the consumption of messages from a topic at a given date. To accomplish this Pulsar
uses the Apache Bookkeeper who offers stream storage. This is also what enables Pulsar
to guarantee that data isn’t lost. Messages sent to a Pulsar cluster firstly arrive at the
broker, the broker sends the message to a set of bookie nodes. When data is received in a
bookie node it stores a copy in memory and writes it to a log. This log ensures that data
is not lost even on machine failure. Storing on multiple bookmakers allows the pulsar
cluster to survive even if multiple nodes fail and still guarantee a zero data loss, even
in the presence of multiple hardware failures. The subscriptions also offers namespaces
which are logical groupings of topics. The namespaces can be seen as a way to categorize
topics in a more efficient manner, for example one can create a name space named public
in which all topics inside can be read by all consumers and create a namespace called
secret which only consumers with special permission would get access to.

Advantages
• Geo-replication

• Exactly once delivery

• Durable storage

• High throughput

• Broker and bookmakers scale independently

Disadvantages
• Many components involved

• Limited amount of documentation due to being relatively new

“output” — 2020/6/28 — 10:14 — page 20 — #29

Technical Background 20

Apache Pulsar comes with a lot of features not mentioned in this thesis such as geo-
replication, multi-tenancy and zero rebalancing time. While these and more are useful
in most cases they are not relevant within the scope of the thesis. Multi-tenancy is used
to run clusters with a massive amount of clients, which can be run on an enterprise scale
level.

3.5 AWS Kinesis
AWS kinesis is a data streaming service that was designed to stream data to and from
Amazon’s cloud service AWS[15]. This means that the service requires an AWS account
and membership to setup and use, regardless of where the data comes from or where
the data is going[16]. The service itself is intended for streaming data and puts a high
emphasis on its real time analytics capabilities and is not necessarily intended for batching
data. AWS Kinesis is intended to send data and does not concern itself over messaging
patterns such as pub/sub or push/pull and if messaging patterns are desired one has to
use separate software on top of AWS Kinesis to achieve this[17][18][19]. This also means
that AWS Kinesis itself can’t decide what message delivery guarantee that can be used
when sending messages, but instead that responsibility lies within the software that is
used in conjunction to have a working message broker[20]. In order to reduce the risk of
data loss AWS Kinesis has the ability to store data until the end of a certain retention
period. This period is originally set to 24 hours but can be extended if desired[17]. This
helps AWS Kinesis to guarantee exactly once message delivery and does not need to
be enabled if the user does not desire this feature. The data is streamed using blobs
which are truncated pieces of the original data, these blobs will then be sent through
the pipeline with something that Amazon calls shards which can be seen as a data lane.
These shards are capable of transporting 1Mb of data per second and each "pipeline"
is capable of maintaining up to 5000 parallel shards giving the maximum theoretical
transfer speed of 5Gb per second[17]. Since the intended main use for AWS Kinesis is to
send data swiftly in the AWS a lot of effort has been made to make sure that sending
data between AWS services goes as smooth as possible, and it does not require a lot
of prior programming knowledge to begin sending data since Amazon already created
specific connection services for most of the popular AWS services.

Advantages
• Swift integration with other AWS services

• Message retention

• High transfer speeds

• Capable of streaming

Disadvantages
• Locked to AWS platform

• Not as swift with non AWS software

• Not designed for batching data

• Requires separate software for use as message broker

AWS kinesis provides a fast way to transfer data between AWS services and can in this
use case be considered as the most optimal choice. The requirement to use other software
in order to use the service as a message broker makes the choice not as obvious when
deciding sending the data outside the AWS ecosystem however.

“output” — 2020/6/28 — 10:14 — page 21 — #30

Technical Background 21

3.6 MQTT brokers
MQTT(Message Queuing Telemetry Transport) is a lightweight publish-subscribe ISO
standard protocol, developed by the OASIS organization as a message sending protocol.
In this thesis three different message brokers making use of MQTT were tested in order
to get a better representation on what MQTT can offer. Since they all use the same
protocol they share many features, those will be described in this section in order to
avoid redundancy, the following subsections numbered 3.7.1, 3.7.2 and 3.7.3 will describe
what makes each of these message brokers unique in comparison to other MQTT brokers.

MQTT can use multiple transport protocols for data transport but the most common
one that is used by a vast majority of MQTT solutions are using the TCP protocol.
Data sent through MQTT are structured in data packets named MQTT Control Packets
which consists of three parts, the fixed header, the variable header and the payload as
can be seen in figure 3.5. The fixed header has to be included in each packet and contains
a MQTT packet type field and a MQTT flag field and both of these fields are four bits
in size each. The MQTT packet field should contain a number from zero to fifteen and
each number represents a command that the packet tries to achieve. An example would
be that in order to connect to the message broker a packet is initially sent where the
value would be one which represents a connect request, after that another packet could
be sent such as three would be a request to publish a message. The second field should
contain a different set of flags that changes depending on what command the packet
specified in the MQTT packet type field. This means that if a packet wanted to publish
a message the MQTT packet field would be set to three as mentioned before, the second
flags field would then contain information regarding if the message should be duplicated,
if the message should be retained or deleted after a certain time period and also what
quality of service(QOS) that should be used. This means that MQTT is capable of all
the message delivery guarantees listed in section 3.1, but sadly the higher the quality
of service the more acknowledgements and other measures are required to ensure this,
which also means a reduced throughput of messages[22].

Figure 3.5: Visual representation of how MQTT data packet are structured

MQTT also also has the ability to update all clients in the server if any client has ungrace-
fully disconnected using a feature that is called LWT(Last Will and Testament)making
sure that no problems arise with clients trying to produce or consume data to a point
that is no longer connected[23]. The Publish subscribe pattern also follows the simple
structure as mentioned in section 3.1 and a visual representation can be seen in figure
3.6[24].

“output” — 2020/6/28 — 10:14 — page 22 — #31

Technical Background 22

Advantages
• Multiple levels of message reliability

• Low bandwidth

• Highly popular standard

Disadvantages
• More difficult to scale than other options

• Cannot send large payloads such as images or video

• Not encrypted by standard

Figure 3.6: Showing a message being sent with QOS

Since MQTT is a standard, multiple different actors can use MQTT as a publish subscribe
protocol and just give the message broker itself unique features, therefore the thesis will
mostly explore the capabilities of MQTT itself but will slightly test out three different
MQTT broker alternatives in order to see if anyone of these three brokers can add any
improvement in the thesis use case. The three brokers are as follows:

3.6.1 Mosquitto
Mosquitto is a messaging broker that was specifically developed as a lightweight and
low-power consuming MQTT message broker alternative[25]. It has been deemed as a

“output” — 2020/6/28 — 10:14 — page 23 — #32

Technical Background 23

good choice for lightweight IoT devices such as Raspberry pies, due to its single thread
application and the servers low ram usage have made Mosquitto quite popular in use cases
where memory and bandwidth is important[26] [27]. Mosquitto was developed in C and
development started in 2010 from a former IBM employee as an open source alternative
to IBM’s RSMB[28] and has since become part of the eclipse foundation[29].

3.6.2 VerneMQ
VerneMQ is a message broker developed in Erlang by Erlio GmbH as a scalable mes-
sage broker with clustering capabilities for applications that require high scalability[30].
VerneMQ also provides multiple extra features to connect and authenticate to different
databases such as PostgreSQL, MySQL, Redis and MongoDB in order to easily store
data in the cloud[31]. It can also maintain message retention by storing data locally us-
ing LevelDB, this feature is also the reason why VerneMQ is unable to run on machines
using Windows since LevelDB is incompatible with Windows.

3.6.3 HiveMQ
HiveMQ is a MQTT message broker that was developed by Hive themselves and places
its main focus on sending messages in the world of IoT devices. The broker is developed
in Java and consists of an open source edition and an enterprise edition with added
features such as clustering capabilities and higher security. The broker is built for high
scalability and promises ten million simultaneous clients per cluster making it capable
of high volume traffic[32]. The open source edition works as a plain MQTT broker with
no extra features outside what MQTT itself offers whatsoever. The enterprise edition
however offers more in-depth SDK’s and more ways to monitor data sent through the
broker. The enterprise editions also contains Apache Kafka integration meaning that the
message broker can send and receive messages from Apache Kafka brokers as well making
it capable to send messages to MQTT capable clients as-well as Kafka clients[33].

“output” — 2020/6/28 — 10:14 — page 24 — #33

Technical Background 24

3.7 NATS
This sub-chapter describes both NATS Messaging and NATS Streaming, NATS Mes-
saging is a traditional message system and NATS Streaming is an extension of NATS
Messaging. Either of these can be used as a message broker with NATS offering a lot
more features. For this reason the reference made to NATS mentioned after this chapter
will be referencing NATS Streaming [68].

NATS Messaging

Originally developed for cloud messaging, NATS is a lightweight, open-source messag-
ing system. Developed by Synadia in the Go language with a core design principle of
performance, scalability and ease of use. Although NATS was developed and is still
maintained by Synadia, its still open-source under the Apache 2.0 Licence. Nats consists
of the NATS server used as a broker, and the NATS connector framework for building
senders and receivers. Nats server can be clustered. NATS supports both publish/sub-
scribe and message queuing as well as the request reply message models. Request-reply
in this case is simply that all messages sent send an ACK back to the sender to confirm
delivery. This as opposed to publish/subscribe and message queue message models can-
not be done asynchronously. In the case of publish/subscribe, messages are sent to the
NATS server with specified topic, and the receiver may then consume from the server
on a specified topic. This is as in any other pub/sub system but NATS uniquely cuts
off subscriptions if there is a timeout in connection to the server. This provides high
scalability at the cost of minor latency increase.

Nats Streaming

Nats does not by default support streaming of data but does so with the streaming
service NATS streaming. NATS streaming uses channels instead of Topics or Queues for
distributing messages, where a channel is an ordered collection of messages. Subscribing is
instead on a specified channel who distributes messages according to the order specified.
When subscribing in NATS streaming, a subscription is assigned one of the following
types:

• Regular: Messages sent to channels are sent with a position to guarantee order
of messages.

• Durable: The position of the last message consumed is stored on the streaming
server. This position in the channel is maintained through disconnection to allow
consumption to start where it previously stopped.

• Queue: Each message is consumed only once from the channel.

Regardless of subscription type any message sent that does get a ACK back is redeliv-
ered. In doing this at least once is guaranteed. By using the durable subscription type
the clients can guarantee both At Most Once and At Least Once Delivery, and mes-
sage persistence. Durable subscription also allows new subscribers to replay historical
messages from existing channels.

Advantages (NATS Streaming)
• Easy to use for developers

• Extremely lightweight

• Client support for over 30 different programming languages

“output” — 2020/6/28 — 10:14 — page 25 — #34

Technical Background 25

Disadvantages(NATS Streaming)
• Scalability is not well supported

• Messages order is topic independent

NATS Streaming provides subscribers messages in the order they were published by a
single publisher but does not guarantee order delivery in case of multiple publishers. This
means that message ordering is dependent on, and ordered by the publisher the messages
were published from.

“output” — 2020/6/28 — 10:14 — page 26 — #35

Technical Background 26

3.8 RabbitMQ
Developed by Rabbit Technologies in 2007 as an open source client, RabbitMQ is a
message broker implementing the AMQP standard. RabbitMQ’s support of AMQP goes
beyond the standard guarantees of AMQP in a number of ways: it allows putting priority
on consumers, improved support for asynchronous batch transfer, and a number of tools
to handle the message lifecycle. It also has a feature called “Alternate exchange” which
allows handling of messages that clients couldn’t route. Messages sent by RabbitMQ
are sent asynchronously between applications i.e sender and receiver does not need to
be running simultaneously. These messages contain a payload and a routing key, where
the routing key determines the exact queue where the message is to be delivered, it also
contains a position in that queue in order to guarantee ordering of messages. When it
comes to message the delivery guarantee of messages RabbitMQ provides an at least once
guarantuee by default. It can however be changed in the settings to provide at most once
delivery if desired [67].

Figure 3.7: A figure showing a pub-
lisher sending data to a queue
with one consumer

Figure 3.8: A figure showing a pub-
lisher sending data to a queue
with multiple consumers

RabbitMQ supports both point-to-point and Publish/Subscribe message patterns as can
be seen in figure 3.7 and 3.8, in the case of point-to-point a single queue for messages is
used. And for Publish/Subscribe multiple queues are used to represent a topic. Messages
in queues are deleted from the queue on consumption by default. This means that if
there are multiple consumers on a topic none of them will receive all messages. This can
however be changed but at a cost of throughput.

Advantages
• Ordering of messages
• Lightweight
• Highly scalable
• Multi-protocol support.

Disadvantages
• Higher latency than other options in this thesis
• Not as many message delivery guarantees as others in this thesis
• Not as fast as most other message brokers

Originally written in Erlang, RabbitMQ is language agnostic and supports languages
like .NET, Python, PHP, Ruby etc. It can be deployed and used across most operating
systems, and is supported by most cloud based services. This as well as having support
for most messaging protocols such as STOMP and MQTT makes RabbitMQ a one size
fits all of the message brokers.

“output” — 2020/6/28 — 10:14 — page 27 — #36

Technical Background 27

3.9 Redis
Redis(Remote Dictionary Server) is a data server solution developed by Redis Labs as an
intended high speed server that is not restricted to just a string key-value store but can be
able to use more advanced data structure stores, which is why Redis themselves calls it a
data structures server[34]. The first release was published in 2009 and was developed in C
since the developer thought that development in C would make the program smoother[35].
Since Redis is a data structure server it has many other usage patterns than message
brokering such as usage as a web cache or even simply quick storage, however one of the
most common use cases for Redis is the publish-subscribe message brokering feature[36].
Unlike most servers Redis saves it’s data in memory and not a separate hard-drive making
data access faster, however also making it less volatile[37]. As mentioned before Redis
uses publish-subscribe message pattern in order to structure messages and are saved in
key-value pairs where the topic is the key and the value contains the message. To get
a better grasp on how Redis handles subscribers and publishers let’s first take a look at
figure 3.9[35].

Figure 3.9: Diagram showing on a high level how Redis handles subscribers
and publishers

The image features three yellow boxes that represent the clients named client A, client
B and client C that can all be seen as three separate Clients that want to use a specific
Redis server for either publishing or subscribing. All three clients firstly need to make a
connection to the Redis server via sockets on the server machine and all data between the
server and client will be sent through the socket using TCP[35]. This is where differences
can be seen since client A and client B are subscribing and only has a data-flow from
the topic while Client C is a publisher and therefore only sends data to the server. Since
Client A and Client B only want to subscribe to data, they send a subscribe command
to the Redis server along with a list of strings representing the topics that each client
wants to subscribe to. As can be seen in figure 3.9 client A only subscribes to topic A

“output” — 2020/6/28 — 10:14 — page 28 — #37

Technical Background 28

while Client B subscribes to both topic A and topic B meaning that it is possible for
subscribers to subscribe to multiple topics simultaneously.

For client C the initial procedure is somewhat similar initially where it first sends a
publish command to the Redis server establishing that client C wants to publish. Client
C can now publish messages by sending a tuple where the first value is the topic name as a
string and the second value is the message itself and can be more than just a string[38][39].
The technology behind the server gives Redis messages a theoretical maximum size of
512Mb which is quite large in comparison to many other message brokers[34]. Redis
supports at most once data delivery meaning that there is no chance of redundancy but
there is a possibility that subscribers might not receive the message.

Advantages
• Capable of sending large messages

• Data replication availability

• Clients are available in many programming languages

• Fast data access

Disadvantages
• Data stored in ram not always good

• Difficult to scale

• Difficult to manage keys

Due to the unique build of Redis it is able to provide users with a higher variety of
storage features as well as sending large messages. Depending on use case one can argue
for whether or not this can be considered an efficient message broker.

“output” — 2020/6/28 — 10:14 — page 29 — #38

Technical Background 29

3.10 Google pub/sub(aka cloud pub/sub)
Google pub/sub is a fully-managed real-time messaging service developed by Google as a
message broker solution for their cloud platform. This message broker is based inside the
Google cloud platform which requires the user to have a Google cloud account in order
to use it[40] . Since the solution is based in Google’s cloud platform, it promises high
scalability, reliability and also boasts a [41] 99.9 percent up-time for their service[42]. It
can also be reached globally in a more simple manner than most publish subscribe mes-
sage brokers since the service can be reached by anyone with an internet connection and
the correct authentication[40]. As the name might suggest Google pub/sub exclusively
uses the publish-subscribe message model in order to send data between peers and can
also provide asynchronous messaging [41] in order to be more flexible and have a higher
degree of availability. The publisher-subscriber relation can briefly be seen in figure 3.10.

Figure 3.10: Diagram showing how Google pub/sub handles topics

While inspecting figure 3.10 one can notice that Google pub/sub uses topics to structure
the data. It can also be seen that the topics are not limited to one subscriber but are
capable of having multiple subscribers that are capable to "consume" simultaneously
and receive the same message[41]. Google pub/sub also saves messages in the cloud in
what Google calls the message storage, which is a storage unique for each topic that
also contains offsets for each subscriber. This means that if a subscriber for some rea-
son disconnects or ungracefully exits from the session they are still capable of receiving
all messages that were sent during the particular subscribers offline period, a diagram
showing the message storage can be seen in figure 3.11[41]. The messages that are sent
through Google pub/sub are guaranteed at least once delivery, which as the name sug-
gests guarantees that a subscriber will receive every message at least once[43].

“output” — 2020/6/28 — 10:14 — page 30 — #39

Technical Background 30

Figure 3.11: Diagram showing how Google pub/sub saves message history

Advantages
• Scalable

• Fast integration with Google cloud services

• Designed for high data loads

• Data retention

Disadvantages
• Platform locked

• Not as swift to use with non Google cloud software

Google pub/sub aims to make the switch to Google’s platform easier since it provides a
fast scalable solution that is tied to the Google Cloud platform. It is up to the user or
the current use case to decide whether if the locked platform is a reasonable cost for the
scalability and speed that google pub/sub provides.

“output” — 2020/6/28 — 10:14 — page 31 — #40

Technical Background 31

3.11 ZeroMQ
ZeroMQ a message library which is developed by the group iMatix and is meant to be
a lightweight message queue solution[44]. The code was written in C++ but has a wide
array of language support from the ZeroMQ API. ZeroMQ uses the ZMTP transfer pro-
tocol for the message exchange between two peers[45]. Unlike most message queues and
messaging services ZeroMQ directly connects via sockets and therefore no message broker
is required in the middle[46].

This means that a socket has to be bound in order for proper communication to happen
and it will also work slightly differently to many other message libraries[44]. In order to
get a better understanding of how this works let’s consider a simple "hello world"request-
reply scenario as can be seen in figure 3.12. In order to set up a connection the server
binds a port which by default would be port 5555 but can be changed. The server then
awaits a request by a client and when a request is received (in this case Hello) the server
sends a reply (which in this case is World). This exchange is in lockstep, meaning that
the client side is expected to first send one request and later wait for a reply. If this
format is not maintained for example if the client tries to send two requests in a row
an error will occur[44]. When sending and receiving messages ZeroMQ can guarantee
exactly once which makes it easier for the receiving end since no filtering for redundancy
is required.[47]. ZeroMQ does not have active support from any of the major data lake
solutions but is capable of streaming data to them using Apache spark streaming[48].

Figure 3.12: An example of a simple request reply using ZeroMQ

Besides request-reply messaging as used in the example above, ZeroMQ is also capable
of Publish-subscribe messaging. This makes the publisher bind to a socket and the
subscribers will try to receive messages from the bound port. If the publisher notices
that none is subscribing, it will automatically drop all messages. A diagram of how this
could work can be seen in figure 3.13[44]. ZeroMQ is capable of categorizing data by the
use of topics[44].

“output” — 2020/6/28 — 10:14 — page 32 — #41

Technical Background 32

Figure 3.13: An example of a simple request reply using ZeroMQ

Advantages
• Lightweight

• Low latency

• Clients available in many languages

Disadvantages
• Brokerless

• Requires a lot of development for any advanced messaging patterns

• Message reliability

ZeroMQ markets itself to be one of the most lightweight message brokers available, to
achieve this some features and design elements differ from its competitors. Depending
on the use case this can be seen as either a benefit or a problem for a developer and the
use case definitely should be considered before usage.

“output” — 2020/6/28 — 10:14 — page 33 — #42

Technical Background 33

3.12 Data Lake(s)
The concept of a data lake is not clearly defined, one could think of data lakes as a data
storage strategy instead of a new type of storage technology. There are some charac-
teristics that are typical for a data lake however which can roughly be categorized into
four different groups[51]. These groups would be data storage, data governance, flexible
access and data ingestion. It is crucial for a data lake solution that wants to be functional
for a longer period of time without turning into a data swamp to efficiently implement
these cornerstones. In what way the developers chose to do so can change drastically
depending on the end usage of the data lake. Therefore the thesis will mention what part
of each category that will be important to the end customer. "A data lake is a central-
ized repository that allows you to store all your structured and unstructured data at any
scale. You can store your data as-is, without having to first structure the data, and run
different types of analytics—from dashboards and visualizations to big data processing,
real-time analytics, and machine learning to guide better decisions." Simply put a data
lake is storage solution that allows storage of data on any format without it being defined
prior to storing it. The data lake manages and structures its data after its stored, as
opposed to a traditional database that structures prior to storing it. It should also be
noted that a data lake is not a technology but a storage concept, i.e there is no data lake
as a Service. There are instead a number of companies that offers the tools needed to
host a data lake on their platform. These are covered in the subsequent chapters.

There are a number of key components of a data lake and not all of which will be consid-
ered for this thesis, instead only the following will be taken into account since they were
the most relevant to this project.

• Data store
The defining feature of any data lake is that it can store data of any format and
be very highly scalable.

• Data governance
The Data Governance Institute defines data governance as "a set of principles and
practices that ensure high quality through the complete lifecycle of your data".
Data governance is more than just management of data, it is a system of rules
and procedures that make sure these rules are followed. These rules focus on
the availability, usability, consistency, integrity, and security of the data. Storing
unstructured, structured and historical data at the same place will easily result
in a so called "Data Swamp", and to prevent this a data governance system is
required.

• Flexible access When it comes to data storage there is not only an issue with
where and how to store all the data but also on whom that should have access to
what part of that data. This is especially apparent in large corporations which
include many types of business roles which all should have different types of access
and that also are interested in their other types of data. It can become especially
troublesome if the company works on a global scale in which the data also might
need to be accessible globally and preferably in a secure manner. There are many
ways to approach this problem and the solutions differ heavily depending on the
organizations structure, size and global presence. If a data lake is properly initial-
ized it can enable a multitude of different data access patterns for different roles
and groups within one shared architecture, making it accessible without needing
to create separate databases or other such solutions to determine data access. A
data lake can also be easily reached globally by setting it up in the cloud making

“output” — 2020/6/28 — 10:14 — page 34 — #43

Technical Background 34

them a highly viable option in data storage solutions at least when it comes to
flexible access.

• Data Ingestion
Data ingestion does in this instance refer to data being moved from multiple sources
to the same destination. In the case of the data lake the data sources produces data
of different formats and are often sent by a varying number of messaging protocols.
Data ingested in this way needs to be processed, transformed, and stored in the
right place even if it is in an previously unknown format.

A data lake offers more functionality than discussed in this thesis but the ones relevant
and within the scope of this thesis are mentioned above. Not all data lake solutions
available are mentioned in this chapter either, as not all data lakes offer the mentioned
features. The following sections will describe different data Lake solutions and how they
have chosen to implement the aforementioned features.

3.13 Azure
Microsoft Azure is a cloud based platform developed by Microsoft for building, testing,
deploying, and managing applications and services through Microsoft-managed data cen-
ters. The services on Azure are quite extensive and range from basic data storage to data
analysis, and amongst these services is the Azure data lake service which this chapter
will focus on. Azure data lake is essentially a combination of services from the Azure
Platform with the Azure Data Lake Storage as its base. Data is stored in the Azure Data
Lake Storage, and managed by a number of tools and features from the Azure Platform
to form a data lake solution [69]. Mentioned below are the tools and services offered by
the Azure Platform to address the most crucial components of a data lake as described
in section 3.12

Azure Data Lake Storage

Built on Azure Blob storage and Azure Data Lake Storage Gen1, Azure Data Lake Stor-
age Gen2 offers storage of multiple petabytes of data of any format regardless of origin,
and regardless of ingestion method. Azure Data Lake Storage Gen2 uses a directory
hierarchy to organize its files and objects for efficient data access as well as making
the structure intelligible. Being built for Big Data Analytics, Azure Data Lake Storage
Gen2 also offers a highly scalable alternative for data storage along with a high level of
input/output operations[70].

Azure Data Factory

To manage massive amounts of various forms of data is quite challenging, to achieve a
stable data governance in their data lakes Microsoft offers the Azure Data Factory tool.
Azure Data Factory consists of a collection of features for handling and manipulating data
of any type or format. Data may be moved, copied, deleted, exported or transformed,
all of which may be executed on demand, at specified time, or at a number of times
within a given time frame. To achieve a stable Data Governance within a data lake there
must be a continuous management of the new as well as old data in the lake. And this
is what Azure Data Factory offers, a continuous managing of data through continuous
applications of defined rules.

“output” — 2020/6/28 — 10:14 — page 35 — #44

Technical Background 35

Azure Data Explorer

Data ingestion and processing the ingested data is a crucial part of any data lake and to do
this Azure Data Lake uses Azure Data Explorer. Azure Data Explorer is a highly scalable
data exploration service used to manage and log telemetry data, and is ideal for processing
large amounts of large data. Azure Data Explorer supports several ingestion methods,
including connectors to common services like Event Hub, programmatic ingestion using
SDKs, such as .NET and Python and so on. Once ingested Azure Data Explorer offers
a long range of service to analyze this data or store it using Azure Data Store.

Azure Active Directory

Azure Active Directory is an identity and access handling service provided by Microsoft
through their cloud service Microsoft Azure for use with both Azure based applications
as well as customer developed applications if desired. This service allows administra-
tors to handle access of users, groups, catalogs and synchronizing meaning that there is
potential for a quite high degree of autonomy since even single user can be allowed or
restricted to data in even an individual file basis while not changing the user experience.
Let’s consider an example where a data scientist and a business analyst both try to get
data from the lake. Both will simply log in using their own unique credentials and then
have the capability to access some data but there is a difference in what data that is
available to each role. And perhaps both of those roles should not be allowed to access
data that is deemed classified by the company regardless if this data would have helped
them speed up their work. The data scientist would probably also find different data
relevant than the business analyst so for simplicity’s sake one could remove access to
the irrelevant information in the data lake and it would then not be accessible or visible
making it easier to browse for what each role really needs.

One of the many advantages of using Azure as a platform for a data lake is the vast
amount of tools and features offered on the Azure platform. Azure offers a lot more than
mentioned in this thesis that includes features analysis tools such as HDInsigt and BI
tools such as Azure Power BI.

“output” — 2020/6/28 — 10:14 — page 36 — #45

Technical Background 36

3.14 AWS
Amazon Web Services is a cloud platform that provides cloud computing tools for com-
panies and individuals. Amongst the services on the AWS platform is the AWS Lake
Formation, which is a service on the AWS platform that allows customers to build, se-
cure, and manage data lakes. AWS Lake Formation simplifies most of the steps needed
to set up a data lake such as collecting, cleaning and cataloging data. The user can easily
bring data from various sources into the data lake by using pre-defined templates. This
data is then easily identified and analysed using one or more of the many AWS data
analysis services. The services within AWS Lake formation needed to build a data lake
within the scope of this thesis are mentioned below.

Amazon S3

Amazon Simple Storage Service is an object storage service on the AWS platform. Ama-
zon S3 is designed to store data in buckets, with each object consisting of data and
metadata and a unique key linking them to a bucket. Metadata is a set of name value
pairs used to describe the object, these include cache control, content length and some
default metadata such as date last modified. The metadata is used by S3 to organize
and store data, since objects uploaded to Amazon S3 are heterogeneous which makes
organizing of data difficult. Buckets are used to organize the Amazon S3 namespace at
the highest level.

Data pipeline / AWS glue

Amazon Data Pipeline offers the user a way to automate the movement and transforma-
tion of data regardless of infrastructure. It may be used to build and deploy pipelines,
where deployment may be done instantly or at a specified time. These pipelines may also
be scheduled for one or any number of times, the service also helps the user to automate
the flow of data inside of the AWS Data Lake.

Athena

Amazon Athena is a query service that enables its users to run SQL queries on data
located in Amazon S3, and it may do so on both structured and unstructured data. It is
also server less removing the need for infrastructure management, and the user doesn’t
have to worry about scaling servers or server failure.

Quicksight

Amazon Quicksight is a business intelligence and visualization tool on the AWS Platform.
Quicksight offers interactive dashboards and machine learning insights on data from any
AWS source.

AWS Lake Formation was developed to simplify and to remove the heavy lifting of setting
up a data lake. With the Lake Formation tool it is easy to automate manual and time
consuming steps, such as provisioning and configuring storage. With AWS Lake Forma-
tion customers can set up and begin using a data lake in days instead of months[71].

“output” — 2020/6/28 — 10:14 — page 37 — #46

Technical Background 37

3.15 Google Cloud
The Google Cloud Platform was launched in 2008 and is a cloud computing service, these
services vary from management tools to storage, to analytics and machine learning. The
platform provides both Infrastructure as a Service and Platform as a Service. While not
offering a data lake solution in its entirety, the Google cloud platform does offer most
tools needed to build a data lake. With Google Cloud Storage as base and a number of
tools running on the Google cloud platform a data lake can be built on the platform[73].
The tools needed to build a data lake on GCP are mentioned below.

Google Cloud Storage

Google Cloud Storage is most accurately described as an Infrastructure as a service (IaaS)
and is used to access and store data on the Google Cloud Platform. Objects stored in
the storage can be of any type or format but must be saved in blobs, the saved data are
organised by buckets that each have a unique key. These buckets and objects are used by
the ACL which is Google’s platform tool for access control. The ACL is used to manage
permissions for users, on both an individual and a role based level.

Google Cloud Dataflow

Google Cloud Dataflow is a fully managed streaming analytics service that minimizes la-
tency, processing time, and cost through auto-scaling and batch processing[58]. Dataflow
may also be used to prep and filter your data prior to passing it into another tool or data
store, such as BigQuery and GCS. GCD also allows the building and execution of data
pipelines on the Google cloud platform ecosystem, enabling scripts or applications to be
run at a specified time and/or in specific intervals.

BigQuery

BigQuery is a fully-managed data warehouse on RESTful web service that enables scal-
able, cost-effective and fast analysis of big data located on the Google Cloud Platform.
It is also a serverless Software as a service(SaaS) that utilizes Google’s own original ver-
sion of mapreduce algorithm. Mapreduce is simply put used to generate intermediate
key-value pairs within the file system, and reduces this keyset to merge all the intermedi-
ate values associated with the same intermediate key. BigQuery also allows storing and
querying massive amounts of datasets from GCS with queries in a standard SQL dialect.
The service may also be used to create, delete and import data on Google storage.

Google Data Studio

Google Data Studio is a data visualization and BI tool that can also be used to combine
data from multiple platforms into one place.

A data lake built on the Google Cloud platform is a more time consuming process as
opposed to the out of the box data lakes offered by Microsoft or IBM. But Google does
provide a long list of documentation on how to accomplish it, making it a shorter process
than Hadoop.

“output” — 2020/6/28 — 10:14 — page 38 — #47

Technical Background 38

3.16 IBM Data Lake
IBM:s platform IBM Cloud Computing offers a long list of features including infrastruc-
ture as a service (IaaS), software as a service (SaaS) and platform as a service (PaaS).
There is also the ability to establish a data lake on the IBM platform, using Cloud Ob-
ject Storage as storage along with tools offered on the platform[74]. Mentioned below
are the tools and services on the IBM Platform considered most crucial for a data lake
as mentioned in section 3.12

InfoSphere Information Governance Catalog

InfoSphere Information Governance Catalog is a collection of tools that allows handling,
manipulation and identification of data. Working on both structured and unstructured
data the catalog can be used to enact policies to data as well as track the lineage of data,
which is the most important part of data governance.

IBM InfoSphere DataStage & Data Replication

IBM InfoSphere DataStage is a leading ETL platform that integrates data across multiple
enterprise systems. It leverages a high performance parallel framework, available on-
premises or in the cloud. The scalable platform provides extended metadata management
and enterprise connectivity. It integrates heterogeneous data, including big data at rest
(Hadoop-based) or big data in motion (stream-based), on both distributed and mainframe
platforms.

Cloud Object Storage

Built to be used as a scalable centralized data repository IBM Cloud Object Storage
allows storing of limitless amounts of data, in any format and from any source. Data is
stored in its native format making data analytics require less conversion steps.

IBM Cloud Identity

IBM Cloud Identity is IBM’s identity and access management solution for the cloud
which also is known as IDaaS (Identity as-a-service).The service offers the ability to
change access privileges on a user to user basis or if desired one can also add work role
access instead. The system also detects dubious activities within different accounts and
can enforce multi factor authentication if deemed desirable by the system administrator.
The service is not exclusive to IBM products but can be integrated to other software
solutions by using what IBM calls connectors. Connectors work as secure API’s for con-
necting to IBM Cloud Identity for authentication.

The IBM cloud platform has been around for a long time resulting in a vast amount of
tools being on the platform, as well as a long list of documentation, and the process of
moving to IBM cloud is quite extensive. The data lake solution is based on and compat-
ible with Hadoop. It is also compatible with most message brokers supporting Kafka,
Pulsar, and more. This and the fact that the IBM data lake solution very easily lives up
to the criteria of a data lake makes it an excellent choice for a data lake.

“output” — 2020/6/28 — 10:14 — page 39 — #48

Technical Background 39

3.17 Apache Hadoop
Apache Hadoop is a distributed computing framework platform which contains a collec-
tion of open-source software used to facilitate a network of computers to solve massive
amounts of data. Written in Java Hadoop was developed for managing big data, Hadoop
is built to scale up from a single server to thousands of machines and clusters. Where each
of them offer local computation and storage. Hadoop’s four core components are Hadoop
Distributed File System, Hadoop YARN, Hadoop MapReduce and Hadoop Common[72].
Apache Hadoop is not a data lake at all but rather a collection of the tools needed to
build one, the tools on Apache Hadoop used to build a data lake with required features
is presented below.

Hadoop Distributed file system

HDFS is a storage system that allows a single data set to be stored across many different
storage devices as if it was a single file, its also schema-less which means its able to
store data of any format and from any source. This allows storing of structured and
unstructured data as well as non relational data. HDFS consists of clusters and has all
data stored in more than one place to ensure availability if one or more servers or clusters
would fail. This gives a higher fault tolerance and makes storing large files easier. HDFS
also contains management options for access to its data, users may have access to all
data or a specified subset of the data.

Hadoop YARN

YARN is the cluster resource manager that allocates system resources to apps and jobs.
This simplifies the process of mapping out the adequate resources necessary. It’s one of
the core components within the Hadoop infrastructure and schedules tasks around the
nodes.

Hadoop MapReduce

Apache Hadoop MapReduce is an open-source implementation based on the Google
MapReduce algorithm[59]. MapReduce is simply put used to generate intermediate key-
value pairs within the file system, and reduce uses this keyset to merge all the interme-
diate values associated with the same intermediate key. This allows parallel execution of
functions on several clusters. Apache Hadoop MapReduce also allows the execution of
‘jobs’ on data inside the Hadoop platform, such as mapping and applying user defined
functions and combining, partitioning, sorting and merging data.

Apache Spark

Apache Spark is used to turn input data into Resilient Distributed data sets, and can
also be used to transform large data clusters in a fault tolerant manner. It may also be
used as an analysis engine on a HDFS based data lake to improve upon what mapreduce
already does.

Sqoop

Is a tool for moving data from HDFS to a more traditional database and vice versa.
Sqoop may also be used to exchange information amongst Hadoop and social database
servers.

“output” — 2020/6/28 — 10:14 — page 40 — #49

Technical Background 40

The Hadoop platform has been around for a while and is still the industry standard for
building data lakes[60], and it has been for decades. But the age of the platform is not
the only reason for its popularity, with age comes a lot of documentation which is always
a plus, as well as most new systems developed are compatible in some way with at least
one of the components on the Hadoop platform. Hadoop can be used as a base for a data
lake but in using the Hadoop solution a lot more code needs to be written compared to
the other options, where configuring existing tools covers most of the work. On the other
side, as Hadoop is the original platform for big data analytics, and the Hadoop platform
in its entirety is developed to be used for almost exactly this. With implementing a
Hadoop data lake also comes a lot of freedom since there are few constraints on what
operations that can be done.

“output” — 2020/6/28 — 10:14 — page 41 — #50

Chapter4
Analysis

This chapter will include the analysis of both the message brokers and data lakes that
where mentioned in chapter 3.12. Since most of the heavy analysis was made during the
later stages some brokers had already been excluded from the analysis due to differing
circumstances. Which of these message brokers that were removed and why they were
removed is mentioned in the first subchapter of the analysis chapter. The subsequent
chapters analyze the remaining message brokers followed by the data lakes, and lastly
the results will be presented in chapter 6 along with some reflections of the result.

4.1 Message brokers analysis
This section covers how the analysis stage for the message brokers was conducted and
will also contain the end results of the individual message brokers. During the thesis
some metrics where added, making some message brokers no longer feasible and where
therefore eliminated at an earlier stage than the rest. These can be briefly read about
in section 4.1.1. Section 4.1.2 will then cover the analysis and results of the rest of the
remaining brokers and will be more detailed than the brief early elimination.

4.1.1 Early elimination
As mentioned in chapter 2 the initial research resulted in a large number of message
brokers. A number that was reduced during the compiling of metrics for comparison.
These early eliminations and the reason for their elimination are mentioned bellow:

• ZeroMQ For any of the suggested solutions in the project to work it requires the
chosen message broker to have support for the pub/sub pattern. ZeroMQ has no
support at all for this, not by default and not by plugin, which meant ZeroMQ had
to be eliminated.

• Google pub/sub For a message broker to be bound to a specific platform isn’t
always a hindrance, especially when you are already using the right platform,
unfortunately what platform Axis will be using is not known beforehand and may
change at a later stage so choosing this would be unadvised.

• AWS Kinesis The need for brokers and lakes to be interchangeable makes Kinesis
unsuitable.

41

“output” — 2020/6/28 — 10:14 — page 42 — #51

Analysis 42

4.1.2 Later analysis
Since most message brokers were developed with a special use case in mind one cannot
easily decide on a message broker that is superior in every field when compared to others.
All message brokers have their pros and cons and therefore one has to combine the results
with a desired use case to truly find which is most suitable for the desired scenario. For
this analysis nine key metrics where highlighted as the most important ones for Axis
intended use case and a list containing these metrics can be seen in section 2.5. The
metrics where then put into high, medium or low priority (as can be seen in section 2.6)
in order to have an extra step of deciding the most suitable message broker. The priorities
where set in conjunction with some Axis employees in order to also get a better grasp of
what Axis themselves found most important. The analysis will be split up in separate
smaller analyses for each metric in order to get a better understanding on which message
brokers that are suitable for each metric and which that are not as suitable. This with a
combination on how high of a priority each metric had will lead to which message broker
this thesis found most suitable for this specific use case.

Availability

When comparing the availability between message brokers there are some external as-
pects that can affect the availability such as how the server containing the message broker
was built or a power outage. These aspects are not something that any message broker
can handle and will not be included in the analysis. The way that message brokers can
affect the availability however are how they react when a broker stops working due to
unforeseen circumstances. Consider a simple scenario where one publisher tries to send
a message to a subscriber using a simple broker solution similar to what can be seen in
figure 3.6. If the broker in that scenario brakes or halts for any reason no messages can
be sent anymore and the system is as good as offline regardless of the amount of work-
ing subscribers and publishers. Message brokers that want to avoid this problem and
maintain a higher level of availability therefore need be able to cluster brokers so that if
one broker brakes or halts another broker can take its place. After extensive research of
the message brokers on whether or not they had the capability of clustering brokers each
message broker was put into one of three categories: native support, external support and
no support. In the category native support the message brokers that were intended to be
used as a cluster or with some degree with clustering in mind. These brokers can achieve
clustering without external libraries or makeshift solutions and are often quite simple to
setup. The second category named external support contains the message brokers that
don’t have native support but though plugin or external libraries provide clustering or
that they don’t provide all features when clustered[7].

Native support : Pulsar, Kafka, HiveMQ, VerneMQ, Redis, NATS, ActiveMQ

External support : RabbitMQ

No support: Mosquitto

With these results it would seem that most of the brokers included in this comparison
have some sort of native support for clustering. However some of the message brokers
(such as Apache Kafka and Apache Pulsar) require less configuration and coding to get
up and running which could be seen as a benefit, but the other alternatives in the native
support list are not difficult to set up but could be seen as somewhat more bothersome
and might be taken into account if needed.

“output” — 2020/6/28 — 10:14 — page 43 — #52

Analysis 43

Interoperability

When implementing a new message broker it might be considered a bonus if there is a
possibility to make sure that it would have some sort of similar message structure to
other message brokers.It would perhaps be even better if it was able to send messages to
different types of message brokers. This would especially be desirable in larger compa-
nies where different departments might have chosen different message brokers for their
solutions but still need some way to communicate. Since producers and consumers are
coded one can make the argument that all message brokers can be made to communicate
with each other to some degree since you can write code that collects a message from one
message broker that sends the acquired message of to another message brokers. Since
one of the earlier metrics required that the message brokers should be publish/subscribe
and contain topics, the high level structure of those message brokers that are still left
are quite identical. So one could say that if one was comfortable with coding for one
of the message brokers they would be very familiar to the others when it comes to the
structure. The underlying strategies of sending and receiving messages are different, but
this won’t be apparent until huge amounts of data are sent and is somewhat of a scala-
bility problem instead. With this in mind it was decided that the best way of measuring
interoperability would be to compare which message brokers that had native support or
official extensions for sending and receiving messages to other types of message brokers.
The following list will contain each message broker and what other message systems that
is can support. Some message brokers have other support such as directly sending data
to databases or other forms of storage but this does not directly help with interoper-
ability between message brokers and will not be included. All message brokers supports
sending and receiving messages with itself and are therefore not mentioned in the list.
The exception for this is when a message broker only supports sending messages to its
own type of message protocol.

• ActiveMQ - AMQP, OpenWire, MQTT, STOMP, HornetQ and CORE
• Apache Pulsar - Apache Kafka (MQTT and AMQP support being developed)
• Apache Kafka - ActiveMQ, MQTT, RabbitMQ (Source), Redis (Sink), JMS , Ib-

mMQ
• RabbitMQ - Qpid, openAMQ, AMQP, STOMP, MQTT
• HiveMQ - MQTT, Apache Kafka
• VerneMQ - MQTT
• Mosquitto - MQTT
• NATS - NATS (MQTT support being developed)
• Redis - Redis

Message delivery guarantee

There was no specified preference for Quality of Service for the message broker, however
it is generally considered that exactly once for message delivery is exclusively better than
at least once. Apache Kafka and Pulsar offers exactly once delivery as does any MQTT
broker that supports Version 5 or higher, which in this case covers both HiveMQ and
VerneMQ.

The remaining brokers support at least once as well as only once, and all of them has one
way or another to support exactly once as well. But for the purpose of this thesis they
will be considered to not have, since adding this feature to the message brokers takes up
both time and resources.

“output” — 2020/6/28 — 10:14 — page 44 — #53

Analysis 44

Scalability

When it comes to scalability one should differentiate between brokers that are devel-
oped to handle big data and those who don’t. Message brokers developed to handle big
data such as Kafka or Pulsar scale a lot better since they need to in order to handle
big data[10][11]. For a system to scale efficiently clusters needs to be used. Mosquitto
is not a solid option when it comes to clustering since it has no support for it at all,
making it the least scalable of the message brokers analysed. RabbitMQ needs a plugin
to achieve clustering, but the queues in RabbitMQ can’t be split even with clustering[7]
which greatly limits its scalability[1]. For Redis to achieve clustering it needs to shard
its dataset, which can be done by its built in sharding feature. This feature requires
very little configuration. NATS does not scale well even though it has a clustering mode,
this is due to the clustering mode is optimized to offer High Availability. To achieve
anything close to high scalability with NATS Streaming scheduling mechanisms for the
nodes needs to be introduced. ActiveMQ has native support of clustering that only need
to a small number of configurations. This does require the user to handle the persistence
of the cluster as ActiveMQ opens a file descriptor for each queue which may quickly run
into limits. This can be handled by Apache Zookeeper and such, which ActiveMQ has
native support for. The scalability of the brokers could be listed as:

Big Data Scalable : Pulsar, Kafka,

Highly Scalable : HiveMQ, VerneMQ, Redis, ActiveMQ,

Poorly Scalable : Mosquitto, NATS, RabbitMQ

Security

Most message brokers offers little when it comes to security as they are meant to be run
on a local network. A message broker often only offers a TLS an/or a SSL encryption,
and some form of authentications for producer and consumer, and this is the case for all
of the brokers. All brokers offer some form of authentication for its producers and con-
sumers, the implementation varies the result is the same. The protocols for encryptions
are either TLS or SSL or either. At the time of writing of this thesis the SSL encryption
is now deprecated, meaning a brokers offering only SSL encryptions should probably be
avoided. The security protocols offered by the brokers are as follows.

TLS/SSL : Kafka, Pulsar, HiveMQ, VerneMQ, ActiveMQ

TLS : Redis, NATS, RabbitMQ

SSL : Mosquitto

With SSL now being deprecated this does not result in a one winner scenario but rather
one loser scenario, and that loser being Mosquitto. There is however another winner
in Apache Pulsar who, in addition to its TLS encryption offers end to end encryption.
Pulsar uses a dynamically generated symmetric AES key to encrypt its messages. This
means that Pulsar is secure over any communications channel, as opposed to the other
brokers on the list, which makes it the most optimal choice if security is of high priority.

“output” — 2020/6/28 — 10:14 — page 45 — #54

Analysis 45

Throughput

The initial idea was for the thesis to contain an evaluation of throughput for the se-
lected message brokers, this was scrapped since several studies were found that covers
the throughput of different brokers and how they relate to each other. The first of these
was a performance study [61] of the message protocol AMQP and MQTT, and it states
that AMQP is far superior to MQTT when it comes to throughput. This means that
ActiveMQ would be a better option than RabbitMQ(which [4] confirmed) or any of the
other MQTT brokers. ActiveMQ is however outperformed by Moquitto according to [62]
even though it uses the MQTT protocol, this is due to Mosquitto being a lightweight,
which is beneficial for sending large amounts of messages. Mosquitto also outperforms
NATS, who quite marginally outperforms RabbitMQ[14]. For the the brokers developed
for big data it appears Pulsar outperforms Kafka by quite the margin, according to [13]
Pulsars throughput is up to 2.5 times that of Kafka. This is similar to the findings of [9]
which suggests Pulsar handles about three times as much throughput. Kafka and Pul-
sar outperforms the other brokers with a margin[8][14], the closest being Mosquitto[63].
Based on this the brokers could be ordered as:

High : Pulsar , Kafka , Mosquitto

Medium : ActiveMQ, NATS

Low : RabbitMQ, VerneMQ, HiveMQ, (Redis)

All of the studies and analysis mentioned above are all based on using a single broker and
one producer and consumer, i.e it does not take scaling into account. This is rarely the
use case in the industry but is the easiest way to compare the throughput of the brokers.
This is also the reason for Mosquitto placing so high, had scalability being taken into
account it would be down at the bottom since it barley scales at all.

Usability

Since usability is a highly subjective metric where opinions can change drastically de-
pending on how experienced one is with the subject and also just what is perceived
convenient on a person to person basis, one needs some set of constraints to make it
somewhat quantifiable. Since this thesis initially assumes that the intended user for the
message brokers have programming knowledge and some understanding of what a mes-
sage broker is, one can assume that these criteria can be given for the end user as well.
Therefore it would be wiser to compare how difficult it is to develop a certain feature
for each message broker and find what types of struggles that where experienced along
the way, and how easy these issues where to fix. It was decided that the simple publish
subscribe examples for each message broker was to be used and the criteria for usability
would be the following: Maturity of community, how well written the documentation
is and rows of code for solution. These criteria might not cover how everyone perceives
usability but they should give some indication on how easy it is to solve issues when stuck
for individuals with prior coding experience. The following list rates each message broker
from one to nine where one is considered most usable and later in descending order to
nine which is least usable. This along with a brief motivation on how each fulfilled the
three criteria in order to give a overview on why each placed as they did. The code for
each message broker can be viewed in appendix A.

1. MQTT (HiveMq,VerneMq and mosquitto) - MQTT has been popular mes-
sage system for many years and also has a very active and mature community

“output” — 2020/6/28 — 10:14 — page 46 — #55

Analysis 46

making, it very easy to ask for help regarding any issues with MQTT itself. In or-
der to develop a simple publish/subscribe example one does not have to write large
amounts of code and the code itself is very readable and comprehensible. Docu-
mentation for MQTT is really strong when it comes to the core features of MQTT
itself but the separate brokers do sometimes offer exclusive features which can be
somewhat poorly documented. Since these features where not needed however they
won’t affect most developers in any significant way.

2. Apache Kafka - Apache Kafka has become a strong contender when it comes to
big data message brokers and it also has a large and mature community that is
easily reached through platforms such as stack overflow or the official forum if any
help is needed. The documentation is one of the best of the compared message
brokers which is not only well written but also one of the most extensive ones with
many code examples included for multiple programming languages. This makes
it easy to understand what each and every function does and it also contains in
depth schematics of how every part of the Kafka cluster works and how most key
features work as well. Coding the publish/subscribe example was very easy due to
the large community, and while some parts where not as straight forward initially
the documentation made up for this so that with a little reading one could be right
back on track.

3. RabbitMQ - RabbitMQ is also a quite popular choice of message broker that also
has been around for quite a while. The community is quite mature and one can find
help for most issues when searching around the right platforms. The documentation
has some nice code examples and does contain most topics needed to be considered
comprehensive but the layout of this documentation is quite confusing and it does
not go into as much depth as some of the other documentations. Coding the
example was not difficult but not as straight forward as some other message brokers
since it has both a queue and publish subscribe pattern one has to specify a bit
more before working as intended. But the end result worked fine and does not
require an awful lot of code but still more than some.

4. Apache Pulsar - Apache Pulsar is on the rise and with that the community also
grows but as of writing this thesis it is not very large and there might not be a lot
of help to be found. The documentation is highly detailed and contains detailed
schematics of the overall structure of a Pulsar cluster and how most feature work
as well. The documentation does not update as frequently as Pulsar itself and does
sometimes contain features that are deprecated or sometimes do not contain new
features added. When browsing around the website one can find all of the new
features and how they work and while inspecting the Javadoc for one can easily
find what features are deprecated and also what to replace this with. So one can
find all the information needed but its not necessarily as simple as just reading the
documentation. Coding the example in Pulsar was simple due to code examples
and detailed explanations and there are not a lot of rows of code either.

5. ActiveMQ - ActiveMQ is quite powerful as a message broker since it does support
a lot of message systems and does not need a lot of code to change between them.
The community around ActiveMQ however is not nearly as large as the ones higher
up on this list which does mean that getting information about how to solve certain
problems might take a while longer. The official documentation on their web page
does not entirely work which is quite frustrating and requires the user to find
other ways to solve the problem at hand. While coding the example most of the
time spent on problem solving was spent searching the community instead of the
documentation which is not uncommon but this included issues that most other

“output” — 2020/6/28 — 10:14 — page 47 — #56

Analysis 47

documentations should cover such as return types for certain functions. When
coding, the community was helpful enough to make development not so frustrating
and the code itself is short and quite comprehensible.

6. NATS - The community of NATS is dedicated but is quite small in comparison
to most other message brokers on this list. The official documentation however
is very detailed and contains lot of coding examples for most features that are
included and would definitely be considered higher on this list if documentation
was the only factor. Issues start to emerge however when coding and something
not included in the documentation either went wrong or was to be added. Since
the community is quite small it took a long time to find any information to solve
any issues and it therefore took the longest time to finalize the coding example
amongst all message brokers on the list. The finished code however wasn’t too
long and was comprehensible enough after one got to understand how it all works.

7. Redis - Redis is not exclusively a message broker but does contain the capability
to act as a publish/subscribe broker. The Redis community itself is quite large but
not the message broker part which is somewhat small. The official documentation
does not cover a lot for messaging and it does not go into too much depth either.
Features for the message broker seemingly differ greatly from library to library as
well but is not mentioned making it the worst documentation on the list. There
are dedicated Redis supporters however so the community can help out quite a lot
regardless of its size. The finished code was also very comprehensible and worked
well but it cannot make up for the lack of community and official documentation.

4.2 Data Lake comparison
As the Data Lakes as a Service was given a higher priority compared to the others, this
analysis will focus on the three platforms that offer this. Hadoop and Google will not be
discussed in this comparison for the simple reason that it does not offer this service, this
section will focus entirely on IBM, AWS, and Azure data lake solutions and how they
lives up to or don’t live up to the criteria specified in section 2.7.

When reading articles online in order to get a better sense on the differences of the data
lake solutions one gets the impression all data lakes that where tested for this thesis
are more or less functionally identical[50][51][52].This seems to be true while setting
up a basic structure for a data lake for this thesis anyways. And for the enterprise
solutions (Azure, AWS, Google cloud and IBM Data Lake) all of them have big data
and high performance in mind and under no circumstance under the thesis did any one
preform slowly regardless of amount of data sent or analysed. When features, pricing and
performance are somewhat similar one has to use other metrics to define what service to
use.

Data Lake Interopability

While one can consider choosing an enterprise data lake as locking oneself up into a
platform but it could be desirable to still have the ability to use third party services or
even open source services to work on the stored data. It might also be nice if pushing
data to other services was a simple task and did not require too much work to get done.
It would also be nice to know that data could both be sent into and out of the data
lake so that one does not get stuck in an undesired platform just to prevent data loss.
A potential use case that would benefit from a more open data lake platform would be

“output” — 2020/6/28 — 10:14 — page 48 — #57

Analysis 48

if one wanted to use the data lake to filter and analyse the data but then sending that
analysed data to an internal data warehouse away from the cloud. The following list
contains the data lakes in order on how interoperable they where and how simple it was
to send data outside the data lake. Where one is the most inoperable and three is the
least inoperable.

1. Microsoft Azure - Azure offers a lot of different services that send data both to
and from the data lake. Azure also contains the Azure marketplace that provides
extra third party services that could be of interest to the user. Many features are
also open source so that developers can actively contribute to add features they
would want, and there’s also a platform to request new features for the community
to develop. The Azure feature data factory already has a lot of built in source and
sink additions to easily send and receive data and during a conducted test to just
send and receive data from an external data warehouse where it was perceived to
be the most swift of the data lakes.

2. IBM Data Lake - The IBM data lake solutions use Amazons S3 API to structure
data but the actual data is stored on IBM’s servers. IBM has some partners
which have developed third party features that can be used in conjunction with
the data giving some third party support. It is also quite capable of migrating data
from previous data storage solutions such as data warehouses into their data lake
solution. The problems start to arise when trying to send data from the data lake
to other services. There are features allowing one to send data such as support
for some message brokers and IoT communication features etc. However it seems
that it is their intention to keep data in their data lake and even offer to migrate
former local data warehouses such as MySQL databases into their cloud to host
them there instead. Trying to send data to and from a data warehouse was possible
but quite tricky to pull off.

3. AWS - The initial stance of Amazon was to not allow open source development
for the AWS platform but this has changed and Amazon does to some degree allow
third party development[54]. They also have an Amazon marketplace where third
parties can offer extra storage or managerial services that might but useful. Ama-
zon has many services that integrates data from other services into their respective
solutions on the cloud, and might be the best of the data lakes when it comes to
that. There is however not a lot of services or information that helps you to use
third party services outside their platform nor is it any intention from their side
to help you get data off their platform in general.

Platform maturity

First to market their data lake solution was AWS with AWS Lake Formation, second
was Microsoft with the Azure platform and last the IBM Data Lake. The amount of
documentation and community adoptions follow this quite closely with IBM having very
little documentation compared to the other two. IBM:s data lake is still quite new
which is noticeable when setting one up with a very limited amount of documentation of
common errors. The documentation on how to set up a data lake on IBM:s platform is
however the most detailed and distinct making the set up quite manageable. The Azure
Platform and its tools are well established and documented as is expected as the Azure
platform has been around for a while. This is also true for the community around the
Azure platform. The documentation for setting up an Azure data lake is very clear as
is the documentation for all the tools offered on the platform. This does however only
apply to the English documentation as the documentation written in the language native
to the writers of this thesis, is awfully confusing and whoever wrote it clearly struggles

“output” — 2020/6/28 — 10:14 — page 49 — #58

Analysis 49

with the language. AWS Lake Formation does offer the largest number of tools amongst
the platforms as well as the highest amount of documentation. The documentation is
clear and makes setting up and managing a data lake on the AWS platform effortless.
There is however a great lack of documentation for involving third party software, which
is a drawback when working with data lakes.

Data migration

For companies such as Axis having a reliable way to store data is essential to their op-
eration especially when handling a lot of different customers. Some customers do have
objections to what services should be used or not used when storing or analyzing data.
This could be for reasons such as the company does not want to help competitors. An-
other example would be the recent rise of Amazon which make many small American
businesses refuse Amazon’s products and services[55][56]. This requires Axis to some-
times migrate their data storage from one provider to another in order to comply with
the customer’s wishes. This is why it could be seen as very desirable to have the ability
to quickly migrate data to or from this data lake so that they can adapt faster. All three
data lake solutions have a wide offering of different services to migrate data from another
service into their own platform. In this regard Amazon can be considered the best due
to the wide range of migration tools. When it comes to migrating data of the data lake
to another service Azure is the only data lake service that provides sending data directly
from the data lake into either data warehouses outside the platform or even other third
party services. Both AWS and IBM Data Lakes require either some sort of workaround
or using multiple services making any potential migration of the platform quite difficult
unless the new data storage solution for some reason accepts importing data from AWS.
While most cloud storages have this ability many local storage’s do not, making Azure
the best in that regard.

“output” — 2020/6/28 — 10:14 — page 50 — #59

Chapter5
Prototyping

After all the analytics and comparisons had been made for both message brokers and
data lakes, work could begin on the final prototype. This section will cover how the work
progressed during the final demo development and how all knowledge gained during
testing and analysing came into play. It will also cover some of the technical details
in more depth. The section will be split into subcategories so that each aspect of the
development can be read separately for those interested in specific parts. The sections are
however to some degree written in a chronological order where some problems stumbled
upon in the earlier sections might be resolved in later parts so in order to fully understand
the process its encouraged to read the sections from top to bottom.

5.1 Message Broker
This section will cover the message broker structure set up i.e how data produced by
sensors is sent from the sensors to the data lake. In the prototype Apache Pulsar is used,
but the setup can be used for most message brokers that support the publish/subscribe
pattern. The setup contains three main components, one broker, one consumer and any
number of producers. In this setup each producer sends their message on an individual
topic to the broker and the consumer consumes all message from all topics produced on
the broker. These messages are then uploaded to Azure Data Lake Store.

Architecture

During the second sprint it was decided that the publish subscribe pattern should be
used for the message broker architecture, this lead to what is shown in figure 5.1. The
components and their role are described below.

Figure 5.1: Intended message broker architecture

50

“output” — 2020/6/28 — 10:14 — page 51 — #60

Prototyping 51

Broker

The broker in this case is a Pulsar cluster that consists of Apache Zookeeper and Apache
bookkeeper. The broker used for the prototype is Pulsar standalone cluster which includes
both the required zookeeper and bookkeeper. When running Pulsar in production or
another large scale, standalone should be avoided.

Producer

Each producer publishes individual topics to not confuse the broker. The topic in this
case is comprised of owner of the sensor, location of the sensor, the current date and the
Serial number. Example of a topic.

Axis/Lund/20170113/ ACC8E20F09C

Ending the topic with a serial number ensures that no two sensors publishes to the same
topic. While it is possible for producers to publish on the same topic it would not work
for this prototype.

Consumer

The consumer subscribes to all topics from the Pulsar Broker, the consumer then uploads
the data from each topic to the data lake. This means that the topic decides the struc-
ture of the folder hierarchy on the destination folder named STG. So if the previously
mentioned topic is used the data from that topic would be placed in the folder path:

STG/Axis/Lund/2017/01/13/

This would create the folder hierarchy seen in figure 5.2.The data will be written to a
file with the name of the serial number if such a file exists, otherwise such a file will be
created first.

Figure 5.2: Folder structure in the STG folder

This solution was selected because with this solution adding a new producer requires
no modifications on the broker or the consumer. When adding a new producer, all the
producer needs to know is where to find the broker. The new producer may then start
producing messages on its own topic which will eventually be uploaded to the data lake.

Raw data point

The raw data point is simply a consumer consuming on all messages on a broker.

“output” — 2020/6/28 — 10:14 — page 52 — #61

Prototyping 52

There were three suggestions for the architecture solutions considered for this project,
hosting all put producers on Azures platform, hosting consumer on the Azure platform.
or hosting only the lake. All of which are explained below.

Host all but producers

The solution as shown in figure 5.3 is the one most similar to Axis current solution where
each sensor(producer) individually sends their data, the difference being that messages
sent are being sent to a broker first instead of immediately to a database. This leaves
little to no hosting required for the user of the sensors, but the setting up of sensors
becomes more extensive as the data sent needs to be encrypted on the sensor.

Figure 5.3: Message broker architecture for an all local solution

Host consumer and lake

By hosting the Pulsar cluster on the same site as the sensors(producers) as seen in figure
5.4 it becomes less complicated to add new sensors, as each new sensor now only needs
to know the location of the Pulsar cluster. It also enables hosting the raw data point
locally.

Only lake on Azure

Hosting on the cloud is generally more expensive than hosting locally, so hosting only
the data lake on the cloud was considered. This solution seen in figure 5.5 requires more
local set up than the others for the system integrator but in doing this makes the solution
more modular. By using this set up changing either data storage solution or swapping to
another message broker can be done with the least amount of effort. As opposed to the
previous solutions where the data lake and some part of the message broker architecture is
hosted on the same platform which creates issues when one of them needs to be replaced.

It was decided that the last solution should be the one to implement. This was due to it
being the most interchangeable as the two first requires a lot of modifications if the buyer
of the sensors does not want the used message broker. In the third solution switching to
a new broker is a lot easier, as it requires no actual changes to the data lake. This also

“output” — 2020/6/28 — 10:14 — page 53 — #62

Prototyping 53

Figure 5.4: Message broker architecture for a hybrid solution

makes it easy for the user if they have a preference of data lake host. There was also the
factor that this was the least costly solution as well as it having fewer security concerns
since all data sent by the broker is sent locally, i.e less security needed.

5.2 Data Lake Architecture
With the ability to use the developed message broker to receive data from multiple sen-
sors and send the data to the data lake, a lot of effort was now made to properly receive
the data and to make sure that data will be available. When initializing an Azure data
lake storage one receives an empty storage space without any form of structure in it. A
close comparison would be to compare it to an empty hard drive since it has no structure
and one technically can add any type of file in there without any restrictions. While
this gives the data lakes an extreme freedom on how to store data it also requires more
design from the developer to make it easily accessible and avoid what is commonly know
as data swamp.

Firstly to confirm that a lack of structure would present an issue to the data lake a test
was conducted where a lot of data from different sources and formats where inserted into
the data lake without any structure whatsoever. Unsurprisingly the test clearly showed
that after just a couple of days collection of data the system no longer was particularly
easy to navigate. It was also discussed that perhaps not everyone that accesses the data
lake is interested in all data or perhaps even shouldn’t be allowed to access all data.

An example would be that people interested in business analytics might be more inter-
ested in sales figures than what type of sensor that calculated the amount of people that
came into the store, which probably is more in tune with data scientists or electrical
engineers. So with these considerations in mind, research began for a well organised data
lake solution that to some degree also can keep all the data if desired and has the ability
to give users a better experience by giving them data relevant for their interests.

“output” — 2020/6/28 — 10:14 — page 54 — #63

Prototyping 54

Figure 5.5: Message broker architecture for the final developed solution

Initially a design was made that would be a strict folder hierarchy where each sensor
would have its own folder and save data there. This was not optimal since all data was
still visible to everyone alongside that one could not find data based on specific times
or dates this way. It was also discussed that if data was to be analysed and checked for
errors or redundancies after being stored it would be a bit more bothersome since one
then has to store all data and go through it all again to find all errors and then finally
remove the errors without damaging the rest of the data. Therefore a way to make some
initial data "cleaning" and redundancy removal was also needed in addition to the other
points discussed previously.

Initially the data redundancy removal was implemented into the message brokers so that
this aspect would not be taken into consideration when designing the data lake, but this
affected the throughput to some degree and it was decided to try and fit that into the
data lake design instead. While researching on data lake designs, a solution was found
that would store data arriving from the sensors in a temporary middle location where
redundancies, errors and other details that might be interesting to analyse or remove
before storage could be done. This middle location would then send the cleaned and
initially analysed data to the storage point in batches with a 15 minute interval. One
can also create specific unique rules to filter data from this location more easily than if
one needed to code this into the message brokers. The temporary storage was named
"Stage" and the storage where all the data was stored was called "raw". These names
were chosen since they were seemingly the most popular to use but other naming variants
do popup. This "stage to raw" design was implemented by having a temporary "folder"
inside the data lake that takes all the data from the sensors. After the allotted time
which in this case was 15 minutes the data gets analysed by an Azure service called
Azure data factory. In the Azure data factory code was written to check that if data was
redundant and if it was it would delete this data. It also checked that the incoming Json
data followed a correct template. To better understand this lets consider an example
when a sensor sending data in the format mentioned in the appendix A.3.1. The message
broker sent a tag along with the data so that the data lake knew what type of sensor
that was sending the data. Since the data lake knew what type of sensor that sent the
data it also knew how the expected format of this data should be. If the system noticed

“output” — 2020/6/28 — 10:14 — page 55 — #64

Prototyping 55

that some tags were missing or gone it would be considered faulty and would be deleted.
This first design step was implemented, tested and improved upon until it was working
without any major issues and finally a schematic was drawn to illustrate the solution
that can be seen in figure 5.6

Figure 5.6: Image showing the first data lake design iteration

After implementing the design shown in figure 5.6 research began to see if it was pos-
sible to implement a way to make the data more accessible and faster to find in order
to actually motivate that a data lake could be a better solution than a standard SQL
database. During research an interesting approach to solve the issue of keeping as much
data as possible but still retain a comprehensible structure was stumbled upon.

It suggested keeping the raw data point that saves all the data as the solution now al-
ready has but also adding extra "directories" that contains some already analysed or
transformed data. An example would be if there would be a group in a company that
exclusively only needed data on the amount of people that come in and out of one partic-
ular store it could be wise to create one directory that has this data in a nicely accessible
format. If the customer only wants that data it will be very simple to log into the data
lake and get this data, since it has already been set up the way they want it and if they
would want some other data they can still access the raw data storage and get the data
that way although with a little more work. This scenario might not be too common but
still proves that there might be some benefit to this design if the newly added "directo-
ries" have been well thought out for the intended user base.

After further research an interesting development on that design was found where two
extra "directories" named "transformed" and "processed" should be added, where pro-
cessed would contain data that was most common for data scientists and transformed
would consist of data more interesting to business intelligence workers. This seemed as
the best design for this use case since the thesis workers knew that the solution in use
now requires a bit of work from a third party that has to collect data from Axis data
manager, which stores in a format that can be seen in section A.3.1 before being able
to visualize this. If another directory could be made that contains precisely the data
that they wanted, a lot of time and work could be saved making both parties happier.
Work quickly began on implementing this "processed" directory along with testing to
make sure that it worked as intended. To implement this, code was written in U-SQL
that went through the data lake and found all relevant data, reformatted it to a format
that was better suited for the third party and then sent that data to the "processed"
directory. This code can be seen in the appendix on section A.2.1. The code also changes

“output” — 2020/6/28 — 10:14 — page 56 — #65

Prototyping 56

the format to fit the third party so no extra time has to be spent to fix that afterwards,
and this format can be seen in section A.3.3. The data lake now has an updated design
that can be seen in figure 5.7.

Figure 5.7: Image showing the second data lake design iteration containing
a new processed section

A demo of a working proof of concept of the "processed" directory was shown to Axis
in order get some feedback on the progress. Axis seemed approving and gave tips on
extra features that can be read about in section 5.2.3. With a usable proof of concept
and Axis feedback, work started on making a proof of concept for the "transformed"
directory instead.

As mentioned previously the "transformed" directory should contain data that is more
usable for business intelligence purposes. The idea being that their usual data needs
to be differentiated from data scientist but in many companies their technical abilities
differ as well. Since they might lack the technical abilities or the patience to search for
data from different sources it might be a good idea to combine these type of data in
a convenient way, with the possibility to have access to all the other data if desired as
well albeit in a less convenient format. Json is also not the most common format when
working with business intelligence so it would be better if one could find a way to convert
the end result into a CSV format instead.

After discussions with Axis it was decided that the "transformed" directory should con-
tain combined data from the Axis queue monitor and with POS data with the idea that it
would be easier to find correlations on the amount of people in a queue and the amounts
of actual sales to the store. Since both the POS data and the data coming from the Axis
queue monitor was timestamped the Json files could be combined on the same timestamp
using another U-SQL script that can be seen in section A.2.1. The U-SQL code takes
out sales value, sales date, number of transactions, sales time and organisations id from
the POS data while it takes the amount of people leaving the store from the Axis queue
monitor and merges these two on the correct timestamp. The code then sorts it in order
of organization number and then creates a CSV file and stores it in the "transformed"
directory. This addition concluded the final design of the data lake architecture and was
followed up with a meeting at Axis where a demo was shown to highlight the design
aspect of the data lake that ended with some feedback on other aspects on the system

“output” — 2020/6/28 — 10:14 — page 57 — #66

Prototyping 57

but otherwise approved of the design. A final diagram of how the system was designed
can be seen in figure 5.8

Figure 5.8: Image showing the final design of the data lake

5.2.1 Structure
While the architectural design of the data lake provided with a much improved data flow
and made it more accessible in addition to comprehensible for a wider range of users it
still did not entirely solve the problem of organizing the data. Because it was easier for
different work groups to find data that was more relevant to their use case the data still
was just dropped into the respective directory without any type of structure whatsoever.

This quickly proved to have a lot of issues in terms of finding relevant and correct data
since storing all data that way solves the issue of finding where relevant data might
be, but still not how to find specifically timed data or data from a specific sensor. For
example if one wanted to find data for sensor A from between 11.00 and 12.00 on the
first of April 2020 one could assume that finding data relevant to the intended use case
was easier, there is no clear way to find what sensor that uploaded that data or during
what time if one does not go into every Json file to read the sensor name and timestamp
from there. This is clearly not optimal and work quickly began on implementing some
kind of structure to avoid a "data swamp" in each directory of the data lake as well.
Since the data lake is similar to a hard drive structure wise where each section in the
architecture can be considered a folder in the root directory of the hard disk to some
degree it was established that every directory should follow the same structure so that

“output” — 2020/6/28 — 10:14 — page 58 — #67

Prototyping 58

it would not confuse the user. It should also work in a folder hierarchy so that it would
be easy to navigate. This sentiment was also shared with Axis during a meeting where
this issue was discussed in particular. Firstly a structure was discussed where each sen-
sor had its own unique folder and in these folders the data was structured in order of date.

While not a bad design it required a lot navigation to get data from multiple sensors
and it was not particularly easy to wildcard directories to make data retrieval easier. For
example if one wanted to find data from three different sensors from one particular day
the design mentioned above requires the user to firstly find the first sensor and then find
the correct date, then go to the second and third sensor to do the same action. It would
be a nicer option to be able to select what day that was needed and the select the sensors
from there. The design did not consider multiple breaches either of the same store saved
in one data lake either. So if a chain of stores had three stores in different cities but still
wanted to save all data in the same data lake, all the data from the stores would have
been mixed together. This problem could have been solved by naming the files differently
for each store to differentiate them but this did not seem as a proper solution so this
entire design was put on hold and another one was in the works instead.

After a lot of minor redesigns and meetings a final design was settled and can be seen in
figure 5.9.

Figure 5.9: Image showing one of the folder structure iterations

As figure 5.9 shows the structure begun with the root folder which in the figure is named
exjobb. This would of course be raw, stage, processed and transformed in the data lake
architecture since it was decided that they all should follow the same structure. Lower in
the folder hierarchy lies different franchises or store chains. This part of the hierarchy is
optional and would only be used if multiple franchises were owned by one conglomerate
and wanted to store their data on the same data lake. This was easily removed to the
potential customers wishes. In figure 5.9 there are two franchises, one named Axisebra
and the other was a name of a real store that was censored since it did not want to
be shown in the image. Going further down in the hierarchy the different store loca-
tions would appear. So for example if a franchise named Fakestore has two stores where
one is in city A and the other in city B there would be two folders here named Fake-
store A and Fakestore B. After this its a standard hierarchy of year, month and finally
day where each sensor would store one days worth of data in a file with the sensors name.

“output” — 2020/6/28 — 10:14 — page 59 — #68

Prototyping 59

While this solution might not seem better than the previous one at first glance it becomes
easier to navigate due to directory wildcards feature while using U-SQL to handle data
in the Azure data lake. To use the same example as mentioned before with trying to get
three different sensors data from the same day one simply makes a wildcard requesting
all data from that folder and now one can easily specify what data you want from there.
This feature also works on months and years which makes this solution way simpler com-
putational wise. It also seems more graspable for a person if one wants to traverse the
data on their own.

With both the structure and architecture in place one can argue that a lot has been done
to prevent formation of a data swamp as well as providing easier access to different user
groups while still keeping all the data in a raw format. But there are still aspects that
will be taken into consideration such as if all data will be needed or not and also find
ways to govern the data stored.

5.2.2 Data governance
While accessibility and ease of use are very important features for any type of storage
solution one has to focus on not only how and where to store the data but also have to
consider what data that should be stored.

Due to the very open and unrestricted nature of data lakes no initial data governance is
in place. One can simply add whatever type of data to the lake and this data will remain
in the data lake until someone manually decides to remove it. While the data redundancy
and error removal feature discussed in section 5.2 cover a lot of space in regards to data
governance there are other aspects to consider.
Data governance principles differ from company to company and therefore a lot of dif-
ferent strategies have been invented. But all of these strategies do to some degree try to
solve the same issues [49]. During research for this thesis it was decided that the focus of
the data governance should lie within redundancy and error removal which was achieved.
It did occur, however that this would result in that some data would remain inside the
data lake indefinitely. The relevance of data is to a very large degree decided by the ones
that will utilize it and therefore a meeting was set up with Axis to determine if other
aspects of data governance should be considered [49].

In this meeting it was determined that an additional feature should be added that could
remove data after a certain time period. So if one deems that data would be unnecessary
after three years this feature could be added and all data older that three years will be
removed from the data lake. This was implemented with the Azure data factory feature
that specifically scans the data lake and removes data satisfying a specific metric which
in this case is older than a certain date.

While it is somewhat uncommon for a data lake to delete data after time since one of
the key attractions of a data lake is to store raw data indefinitely. It was deemed to be
convenient for the customer to have the option if desired.

5.2.3 Data utilization
Early on in the project Axis showed interest in pushing data from the data store to a
third party API. So this was the obvious first choice when deciding what utilization the
aggregated data should be used for.

“output” — 2020/6/28 — 10:14 — page 60 — #69

Prototyping 60

Transform data and push to External API

By using the pipeline feature on the Azure platform one may push data saved in the data
lake by using http post to third party API:s. This may then be combined with a U-SQL
script that can extract data on one format and output a new.

The third API in this example requires data that is to be pushed to it to be in a specified
format. The format is specified in A.3.3 and is a simple Json format. This format does
not match the output of any of the sensor data provided for this thesis. Fortunately the
Azure platform allows running of U-SQL scripts of files stored on the platform. With
U-SQL one may query files for specified data and output the data on another format or
with new or renamed objects. The data used in this case is from a people counter camera
that outputs data on the format seen in A.3.1. By running the U-SQL script in A.2.1 on
this file the output will be A.3.3.

By using the pipeline feature the process can be run on a schedule and by doing this
there is no need to give any third party access to the storage as all data they require can
be pushed to them.

Data can now also be directly visualized using power BI that can directly access the data
stored in the transformed section in the data lake.

“output” — 2020/6/28 — 10:14 — page 61 — #70

Chapter6
Conclusion

This chapter will firstly cover the results of the analysis of message brokers and data
lakes. The results are separated into two cases, the first describing the result where the
metrics in section 2.5 are all given the same priority, and the second one the priority-list
of section 2.6 are used to determine the best option in the use case. This is then repeated
for the Data lakes using the criteria of section 2.7 instead. Secondly a discussion of the
mentioned results and how they relate to the use case. Lastly a list of suggestions for
further development of the prototype.

6.1 Project Result
The following subsections describes the result of the analysis for the given metrics.

6.1.1 Best message broker
Consequently reoccurring at the top spots of all the metrics is Apache Kafka, which is the
main reason it was selected as the broker to be used when developing the first prototype.
The closest contender being Apache Pulsar as it does outperform Kafka at Throughput,
availability, and scalability. But Apache Pulsar is as of writing this thesis very inoperable
as well as having limited usability. Both of these are however subject to change as both
of these shortcomings are common for new software.

6.1.2 Best message broker for use-case
For the specified use-case of the thesis as can be seen in chapter 2 the metrics are given
a priority(2.6). This list states that Security, Interopability and Scalability are of most
importance. The most scalable of the brokers was shown to be Apache Pulsar after
testing, whose Bookkeeper handled clustering which allows it to have higher scalability
than Kafka. Pulsar also has a built in security feature making it the most secure broker
by default. Due to its relative "newness" the interopability of the broker is more limited.
The only other metric where Pulsar does not outperform the others is usability, where it
scores lower for its lack of documentation and small community.

6.1.3 Best Data Lake for the use case
To make a full comparative analysis of which data lake is actually the most suitable for
the use case, more criteria is required. But with the given criteria the most optimal
selection is Microsoft’s Azure Data Lake. Azure is by far the most interoperatable with

61

“output” — 2020/6/28 — 10:14 — page 62 — #71

Conclusion 62

support for a long list of third-party apps as well having a lot of features that are open
source. It is not as established as AWS but far more established than IBM:s data lake.
AWS Lake formation is currently the most established of the data lake solutions but it
falls short of being the best in this use case for its low interoptability and it being difficult
to move the data from the platform.

6.2 Discussion
The age of NoSQL big data is clearly pushing a paradigm shift away from the familiar
relational database. Solutions such as data lakes in the cloud are still quite new and
definitely has its own set of flaws. So while there definitely are cases where data lakes
can be seen as a massive improvement some aspects still make it seem less viable as
a solution. One of these aspects are the speed that one can retrieve data from these
databases. But when looking into many data lake solutions it is technically possible to
achieve just as fast speeds as SQL databases if one takes the time to design it properly.
So it seems that most developers just haven’t been bothered to take the time to look
at how to design data lakes but instead opt to stick with what they are used to. With
increasing amounts of data and different types of data traditional databases seem less
capable to cope however and many start to look at different alternatives to fix this either
with extensions to traditional databases or solutions such as NoSQL databases or data
lakes.

6.2.1 Results
When viewing the results on both message brokers and data lakes there is a lot that
one can reflect on. If one looks at the message broker results its more or less impossible
to crown a winner without taking a look on what’s important for the use case and the
developers. Most of these message brokers have widely different use cases and one cannot
call them bad or worse than the other since they were not intended for the same end use.
An example would be Redis which was ranked lowest on the usability ranking. Redis
itself is built as a data caching system and only added message brokering as an extra
feature. That the documentation is lacking and the community is small only refers to
the message brokering part since Redis as a memory cache system is quite popular. The
message broker itself also has some strong suites such as quite low latency and capability
of sending large messages up to 512 megabytes. However this was not deemed useful for
the use case and it can’t therefore get a higher score.

An interesting addition one could have done to the analysis if time had permitted it
would be possible to add more advantages and disadvantages in each metric to get a
more nuanced view on what fields that each broker could be useful in, and not only how
it relates to the use case. To mitigate this by having both a best broker and best broker
for use case might to some degree show that not all message brokers are the best case for
all scenarios. The issue here is that while the winner in the best message broker category
was the broker that got the highest average amongst the metrics without any priority on
what metric was more important than the other, it still compares with the metrics which
were created for this use case. An example of other metrics that some might consider
important is performance. This was initially tested and was supposed to be included as
a metric but during testing most message brokers bottlenecked with their throughput
before putting any major dent in processing power of the test rig.

“output” — 2020/6/28 — 10:14 — page 63 — #72

Conclusion 63

While discussing this with Axis they mentioned that as long as no message broker showed
horribly clear results of being inefficient on the testing rig one did not need to consider
this too important and was therefore removed, since the thesis workers had nothing to
add in the analysis except that none of the brokers where horribly inefficient. But if one
would like to send data into weaker computers such as Raspberry pies one would have to
consider performance and then Mosquitto would have won in that metric. But given the
metrics that were defined the analysis seemed to be working well and the results where
not that shocking from what was experienced during usage of the brokers.

When it comes to comparing data lakes things actually get very difficult. In difference
to the message brokers where features differ from broker to broker making it easier to
differentiate, it is more difficult for most enterprise data lake solutions to offer very sim-
ilar features, performance and cost which forced the authors to rethink how to compare
these solutions. When reading how others went about comparing data lakes most fo-
cused on how large part of the market they used. An example would be "52% of the
small businesses use solution A for their data lakes therefore it must be the best" which
was not an approach that the thesis workers felt actually argued for whether its better
than the alternatives. Therefore a meeting was held with Axis to find some metrics that
actually could be used with a better motivation than market share and those can be read
in section 4. In that regard both thesis authors felt that the analysis on the data lakes
was good but there are minor differences that might make one better than the other still,
so an advised approach is still to look at the intended use case. Some argue that AWS
is the best choice in general since it is the most mature solution and therefore had more
time to iron out flaws. It also argued that Azure is the best if the intention is to use
Microsoft software such as Excel or power BI. Some of these metrics where taken into
account but were hardly a major basis for the analysis and it felt that they should not
be part of the analysis since there was no real analysis made to come up with them but
it was instead based on metrics from Axis.

Another aspect that can be considered is when to use enterprise solutions such as Azure
or AWS versus using solutions such as Hadoop. Hadoop provides a lot more freedom in
terms of what you can do with the data and where you want the data lake to be hosted.
But since most things are not already made and is no longer running on enterprise hard-
ware everything comes down to your skills as a developer and how much time one wants
to spend on optimizing or making things work just as intended. Performance will be
more of an issue as well since the hardware probably don’t match up the the Amazon or
Microsoft servers. But it can also be motivated that one can greatly affect the perfor-
mance of a Hadoop solution by improving the code but in the enterprise solutions the
best one can do is to write a ticket and hope that this will be resolved soon. There is also
a question of costs, while the enterprise solutions have a direct cost in form of a bill the
Hadoop solution still provides a cost with longer development time and also the building
and maintenance of the server to host it on. So it would be interesting to make some
sort of studies on when one solution would be more beneficial in comparison to the other
from a purely financial perspective.

The discussion of whether to use an enterprise solution or a more self-developed solution
such as Hadoop would have been an extremely interesting addition to the analytics if the
time frame was larger for the thesis. Especially since Axis in the later stages expressed a
desire to look into a data lake solution that can be keep locally in which Hadoop would
have been a very interesting option to dive further into and explore.

“output” — 2020/6/28 — 10:14 — page 64 — #73

Conclusion 64

6.2.2 General evaluation of thesis and planning
While making a general assessment on how the thesis went both authors where happy
with the end result. Both thesis authors learned a lot both theoretically and practically
about data lakes and message brokers. Something else that was also very rewarding was
the new knowledge gained from working in large companies and the importance of team-
work. Since both thesis authors wanted more work experience this was seen as something
very valuable and one will surely be able to apply a lot of the knowledge gained in future
projects wherever those might be.

When it comes to the work done at Axis both thesis workers felt that a lot more work got
done than what was initially estimated during the planning stage which was very satis-
fying to see. Those extra features came with slight quality loss for the analysis, however
since focus shifted into finishing these features instead of starting the analytics in time.
This is somewhat regrettable but can also be considered a good lesson in estimating the
time each feature would take to develop so that one does not start a to big task when
ahead of schedule, and will be had in mind in future projects. When on the subject of
the planning of the project one can compare how the workflow was in comparison to the
initial planning made just before starting the thesis work at Axis. In this regard the
thesis workers initially performed well and got ahead of schedule during middle of sprint
three. This lead to a decision to take on extra features for the demo which lead to a slight
postponement of the analysis that was intended to start in the beginning of sprint four.
The thesis workers also managed to hold weekly meetings with the supervisors on Axis
even during the tumultuous times during the corona outbreak but then in a digital form.
So in short the planning went very well and the issues mostly circle back to taking on
extra features when slightly ahead of schedule without regarding how long these features
would take to finish. One could argue that this might have been avoided if the sprints
were cut down to shorter sprints which is a fair point and something to consider in the
future. But the reality was that the sprint actually worked as phases and there was
something called sub sprints which where weekly so while the terminology was different
than normal Kanban the work methodology was similar.

When presenting the product to Axis they also seemed pleased with the result giving
the impression that the end result could be considered a success despite having some
minor bumps along the way. The thesis workers were also very pleased with the level
of interaction that was received from Axis and the company also gave a lot of valuable
feedback that really helped in some situations. The company also showed great interest
in the progress of the thesis and many employees both from and outside the department
came to ask what has been learned so far and requested meetings to follow up on how said
work was going, and if they could help in any way. While both thesis members are happy
with the end result there were a lot of extra features or opportunities that were found
along the way that both thesis workers would love to be able to explore. Unfortunately
time is a factor in every project and one cannot create everything that seems interesting
or pop up along the way or the project would have never been finished. A list of all the
additions that was considered along the way where written down however and the most
interesting ones will be mentioned and discussed in this thesis in section 6.3.

6.3 Future Work
Both thesis workers have found that the work done at Axis has been very interesting to
work with and both also find this project to be full of potential for future work, and as a

“output” — 2020/6/28 — 10:14 — page 65 — #74

Conclusion 65

potential product that will at some point be used by Axis and their customers. During the
process of research and development of the project many interesting potential additions
to either research or development were uncovered but unfortunately most of them could
not have been completed within the given time frame. Most of these ideas can be viewed
as a bullet list in the appendix at A.5 but due to the amount it was deemed to only the
most interesting ideas will be discussed in this chapter.

6.3.1 Hosting lake locally
There exists a general mistrust of storing data in the cloud for many companies, meaning
that the suggested data lake solutions would be completely out of the question as all data
is stored in the cloud[53]. This along with the fact that some companies might prefer the
higher degree of freedom when developing solutions yourself.

The solution to this would be to offer these companies a locally hosted data lake instead
of a cloud based one. This solution would require using the Hadoop HDFS for storing
the data, and would require developing a data lake that operates on this storage.

6.3.2 Clean and store data
As previously mentioned there is a mistrust in storing data in the cloud, which may
lead to customers not being comfortable with their data being stored in the cloud. For
users with this preference the step of moving data from STG to RAW in the data lake
can be changed to pushing the data to a database that the user finds more trustworthy.
This removes the storing of the data in the cloud but handling the data is still done in
the cloud. This solution would require no changes on the edge solution and only minor
changes to the data lake.

6.3.3 Alternate Edge solutions
Discussed in chapter 5 are a number of alternate edge solutions i.e solutions to moving
data between sensor and the cloud. They were all considered unsuitable for the given
use case but in an alternate use case they may be a better option.

6.3.4 Linking data
This thesis focuses mainly on handling sensor data, but one of the many selling points
is that they handle data of any format and the tools needed to combine such data exists
within most data lake platforms. One might for example want to know how the number
of customers relate to the the revenue of the store.

6.3.5 Raw data point and real time analytics in the cloud
In the current solution the raw data point that can be used for real time analytics lies
locally alongside the message broker. While this is an acceptable solution it might be
interesting to take a deeper look into if this is also possible to have the raw data point
with real time analytics inside the data lake, in order to provide a fully cloud published
solution. There might also be an interesting point to see if the real time analytics services
provided by enterprise data lake solutions might make it easier for developers to get more
use of their data than compared with local solutions.

“output” — 2020/6/28 — 10:14 — page 66 — #75

Conclusion 66

6.3.6 Diving deeper into hybrid message broker solutions
While analyzing and comparing the message brokers focus was put on using just a single
message broker that would try to solve all problems. This was partly in order to keep
the solution more modular for Axis but also due to time constraints since the thesis
workers already compared multiple brokers. One can argue however that a hybrid solution
containing multiple message brokers could provide better results to Axis since one might
get the benefits from multiple brokers instead of trying to find one solution that fits all.

6.3.7 Stream data
With the suggested solution data is uploaded to the data lake batches every 15 minutes,
this was to emulate Axis current solution. There are many message brokers that supports
streaming of data such as Kafka, NATS and Pulsar. To stream the data to the data lake
was considered unnecessary for the use case as most of the sensor data isn’t relevant in
real-time. Streaming data is more relevant when handling big data[12][9][2], which was
outside the scope of this thesis.

“output” — 2020/6/28 — 10:14 — page 67 — #76

References

[1] Estrada, N., & Astudillo, H. (2015). Comparing scalability of message queue system:
ZeroMQ vs RabbitMQ. 2015 Latin American Computing Conference (CLEI), 1.

[2] Mrozek, Tomasz Dąbek and Bozena Malysiak-Mrozek (2019) Scalable Extraction of
Big Macromolecular Data in Azure Data Lake Environment, Molecules, 24(1), p.
179.

[3] Klein, A. F. et al. (2015) ‘An experimental comparison of ActiveMQ and OpenMQ
brokers in asynchronous cloud environment’, 2015 Fifth International Conference on
Digital Information Processing & Communications (ICDIPC), p. 24.

[4] Ionescu, V. M. (2015). The analysis of the performance of RabbitMQ and ActiveMQ.
2015 54th Annual Conference of the Society of Instrument & Control Engineers of
Japan (SICE),p. 132.

[5] Qusay I. Sarhan, & Idrees S. Gawdan. (2017). Java Message Service Based Per-
formance Comparison of Apache ActiveMQ and Apache Apollo Brokers. Science
Journal of University of Zakho, 5(4), p. 307–312.

[6] Maatkamp, M., van Delden, M., & LeKhac, N. A. (2016). Unidirectional Secure
Information Transfer via RabbitMQ.

[7] Rostanski, M., Grochla, K., & Seman, A. (2014). Evaluation of highly available and
fault-tolerant middleware clustered architectures using RabbitMQ. 2014 Federated
Conference on Computer Science and Information Systems, Computer Science and
Information Systems (FedCSIS), 2014 Federated Conference On,p. 879–884.

[8] Dobbelaere, P., & Esmaili, K. S. (2017). Kafka versus RabbitMQ. Nokia Bell Labs

[9] Intorruk, S. and Numnonda, T. (2019) ‘A Comparative Study on Performance and
Resource Utilization of Real-time Distributed Messaging Systems for Big Data’, 2019
20th IEEE/ACIS International Conference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed Computing (SNPD), Software En-
gineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), 2019 20th IEEE/ACIS International Conference on, pp. 102–107.

[10] Le Noac’h, P., Costan, A., & Bouge, L. (2017). A performance evaluation of Apache
Kafka in support of big data streaming applications. 2017 IEEE International Con-
ference on Big Data (Big Data), Big Data (Big Data), 2017 IEEE International
Conference On, 4803–4806.

[11] Hiraman, B. R., Viresh M., C., & Abhijeet C., K. (2018). A Study of Apache Kafka in
Big Data Stream Processing. 2018 International Conference on Information , Com-
munication, Engineering and Technology (ICICET), Information , Communication,
Engineering and Technology (ICICET), 2018 International Conference On, 1–3.

67

“output” — 2020/6/28 — 10:14 — page 68 — #77

REFERENCES 68

[12] Tun, M. T., Nyaung, D. E., & Phyu, M. P. (2019). Performance Evaluation of Intru-
sion Detection Streaming Transactions Using Apache Kafka and Spark Streaming.
2019 International Conference on Advanced Information Technologies (ICAIT), Ad-
vanced Information Technologies (ICAIT), 2019 International Conference On, p.
25–30.

[13] Apache Pulsar Outperforms Apache Kafka by 2.5X. (2018). UNIX Update, 29(4),
2. Linux Foundation

[14] T, Sharvari. and K, Sowmya. (2019) ‘A study on Modern Messaging Systems- Kafka,
RabbitMQ and NATS Streaming’. Available at: https://arxiv.org/ftp/arxiv/
papers/1912/1912.03715 [Accessed 5 March 2020].

[15] What Is Amazon Kinesis Data Streams? - Amazon Kinesis Data Streams. (2020).
Available at: https://docs.aws.amazon.com/streams/latest/dev/introduction
[Accessed: 2 May 2020]

[16] Amazon Amazon Web Services, Inc. 2020. Amazon Kinesis - Process & Ana-
lyze Streaming Data - Amazon Web Services. [online] Available at: https://
aws.amazon.com/kinesis/ [Accessed 5 March 2020].

[17] Amazon.com. 2020. Amazon Kinesis Data Streams Terminology And Concepts -
Amazon Kinesis Data Streams. [online] Available at: https://docs.aws.amazon
.com/streams/latest/dev/key-concepts.html [Accessed 18 February 2020].

[18] Amazon Web Services. 2020. Building Scalable Applications And Microservices:
Adding Messaging To Your Toolbox | Amazon Web Services. [online] Available
at: https://aws.amazon.com/blogs/compute/building-scalable-applications-
and-microservices-adding-messaging-to-your-toolbox/ [Accessed 12 March
2020].

[19] Amazon Web Services, Inc. (2020) What Is Pub/Sub Messaging?. [online] Available
at: https://aws.amazon.com/pub-sub-messaging/ [Accessed 10 March 2020].

[20] Amazon Web Services, Inc. (2020) Amazon Kinesis Data Analytics Faqs - Analyze
Streaming Data - Amazon Web Services (AWS). [online] Available at: https://
aws.amazon.com/kinesis/data-analytics/faqs [Accessed 24 February 2020].

[21] Apache Kafka. 2020. Apache Kafka. [online] Available at: https://kafka.apache
.org/documentation [Accessed 20 January 2020].

[22] Mqtt.org. (2020) Documentation | MQTT. [online] Available at: http://mqtt.org/
documentation [Accessed 23 February 2020].

[23] Team, T., (2020) Last Will And Testament - MQTT Essentials: Part 9. [online]
Hivemq.com. Available at: https://www.hivemq.com/blog/mqtt-essentials-part-
9-last-will-and-testament [Accessed 25 February 2020].

[24] 2019. OASIS Standard. 2nd ed. [ebook] OASIS. Available at: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf [Accessed 18 March 2020].

[25] Eclipse Mosquitto. (2020) Eclipse Mosquitto. [online] Available at: https://
mosquitto.org [Accessed 10 March 2020].

[26] Hwang, K. et al. (2019) ‘Modification of Mosquitto Broker for Delivery of Urgent
MQTT Message’, 2019 IEEE Eurasia Conference on IOT, Communication and En-
gineering (ECICE), IOT, Communication and Engineering (ECICE), 2019 IEEE
Eurasia Conference on, pp. 166–167. doi: 10.1109/ECICE47484.2019.8942800.

[27] eclipse.org. 2020. Eclipse Mosquitto. [online] Available at: https://projects.
eclipse.org/projects/iot.mosquitto [Accessed 4 March 2020].

“output” — 2020/6/28 — 10:14 — page 69 — #78

REFERENCES 69

[28] Mosquitto.org. (2020) Mosquitto Library Reference. [online] Available at: https:
//mosquitto.org/api/files/mosquitto-h.html [Accessed 10 March 2020].

[29] Guindon, C., 2020. Mosquitto | The Eclipse Foundation. [online] Eclipse.org. Avail-
able at: https://www.eclipse.org/proposals/technology.mosquitto [Accessed 2
March 2020].

[30] Company, O., (2020) What Is Vernemq. [online] Vernemq.com. Available at: https:
//vernemq.com/intro/ [Accessed 17 February 2020].

[31] Vernemq.com. (2020) Vernemq Features. [online] Available at:
https://vernemq.com/intro/features [Accessed 29 January 2020].

[32] Hivemq.com. (2020) See The Features Of Hivemq - The MQTT Broker. [online]
Available at: https://www.hivemq.com/hivemq/features [Accessed 18 February
2020].

[33] Team, T., (2020) Discover The 3 Different Editions Of Hivemq. [online] Hivemq.com.
Available at: https://www.hivemq.com/hivemq/editions [Accessed 25 February
2020].

[34] Redis.io. 2020. An Introduction To Redis Data Types And Abstractions – Redis. [on-
line] Available at: https://redis.io/topics/data-types-intro [Accessed 1 March
2020].

[35] Redis.io. (2020) Redis. [online] Available at: https://redis.io/documentation [Ac-
cessed 14 February 2020].

[36] Nelson, J., 2016. Mastering Redis. 1st ed. Birmingham, UK: Packt Publishing.

[37] Amazon Web Services, Inc. (2020) Redis: In-Memory Data Store. How It Works
And Why You Should Use It. [online] Available at: https://aws.amazon.com/redis
[Accessed 6 March 2020].

[38] Fisher, J., (2020) Redis Pub/Sub Under The Hood. [online] Making Pusher. Avail-
able at: https://making.pusher.com/redis-pubsub-under-the-hood [Accessed 19
March 2020].

[39] Redis.io. (2020) Pub/Sub – Redis. [online] Available at: https://redis.io/topics/
pubsub [Accessed 8 March 2020].

[40] Google Cloud. (2020) Cloud Pub/Sub | Google Cloud. [online] Available at: https:
//cloud.google.com/pubsub [Accessed 6 April 2020].

[41] Google Cloud. (2020) What Is Pub/Sub? | Cloud Pub/Sub Documentation | Google
Cloud. [online] Available at: https://cloud.google.com/pubsub/docs/overview
[Accessed 4 February 2020].

[42] google.com. (2020) G Suite Terms Of Service – G Suite. [online] Available at: https:
//gsuite.google.com/terms/sla.html [Accessed 8 March 2020].

[43] Google Cloud. (2020) Subscriber Overview | Cloud Pub/Sub | Google Cloud. [on-
line] Available at: https://cloud.google.com/pubsub/docs/subscriber [Accessed
8 March 2020].

[44] Zguide.zeromq.org. (2020) ØMQ - The Guide - ØMQ - The Guide. [online] Available
at: http://zguide.ZeroMQ.org/page:all [Accessed 20 February 2020].

[45] Rfc.zeromq.org. (2020) 23/ZMTP. [online] Available at: https://rfc.ZeroMQ.org/
spec/23/ [Accessed 10 March 2020].

[46] 250bpm.com. (2020) Scalability Layer Hits The Internet Stack - 250Bpm. [online]
Available at: http://250bpm.com/hits#toc5 [Accessed 7 March 2020].

“output” — 2020/6/28 — 10:14 — page 70 — #79

REFERENCES 70

[47] Hintjens, P. (2013). ZeroMQ: Messaging for Many Applications. 1st ed. O’Reilly
Media, Inc.

[48] Tejada, Z. (2017). Mastering Azure analytics. 1st ed. O’Reilly Media inc.

[49] Smallwood, R., 2019. Information Governance: Concepts, Strategies And Best Prac-
tices. 2nd ed. New Jersey: John Wiley & Sons.

[50] Evisional.com. (2020) Comparison Of Azure Datalake Gen-2 And Aws S3. [on-
line] Available at: http://evisional.com/comparison-of-azure-datalake-gen-
2-and-aws-s3/ [Accessed 17 January 2020].

[51] Levy, E., (2020) Cloud Data Lake Vs On-Premises Data Lake: What You Need
To Know. [online] Upsolver.com. Available at: https://www.upsolver.com/blog/
cloud-data-lake-vs-on-premises-data-lake [Accessed 7 March 2020].

[52] Inside Out Security. (2020) AWS Vs Azure Vs Google: Cloud Services Comparison -
Varonis. [online] Available at: https://www.varonis.com/blog/aws-vs-azure-vs-
google/ [Accessed 10 April 2020].

[53] HALL, P. (2020) ‘Is cloud computing really safe?’, Fairfield County Business Jour-
nal, 56(7), p. 15. Available at: https://search-ebscohost-com.ludwig.lub.lu.se/
login.aspx?direct=true&db=bwh&AN=141798411&site=eds-live&scope=site (Ac-
cessed: 8 May 2020).

[54] Amazon Web Services, Inc. (2020) Open Source At Amazon. [online] Available at:
https://aws.amazon.com/opensource/ [Accessed 15 April 2020].

[55] Mandelbaum, R., 2018. Is Amazon Good Or Bad For Small Business?. [online]
Forbes. Available at: https://www.forbes.com/sites/robbmandelbaum/2018/03/
31/is-amazon-good-or-bad-for-small-business-yes/#450559104467 [Accessed
29 March 2020].

[56] Masters, K., 2019. These Four Companies Still Refuse To Sell On Amazon, Despite
Its Market Dominance. [online] Forbes. Available at: https://www.forbes.com/
sites/kirimasters/2019/09/05/these-four-companies-still-refuse-to-
sell-on-amazon-despite-its-market-dominance/#258f11bc24fe [Accessed 1
May 2020].

[57] Yongqiang Huang and Garcia-Molina, H. (2001) ‘Exactly-once semantics in a repli-
cated messaging system’, Proceedings 17th International Conference on Data En-
gineering, Data Engineering, 2001. Proceedings. 17th International Conference on,
Data engineering, pp. 3–12. doi: 10.1109/ICDE.2001.914808.

[58] Google Cloud. 2020. Dataflow Google Cloud. [online] Available at: https://
cloud.google.com/dataflow#section-5 [Accessed 2 May 2020].

[59] Gunarathne, T. et al. (2010) ‘MapReduce in the Clouds for Science’, 2010 IEEE Sec-
ond International Conference on Cloud Computing Technology and Science, Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second International
Conference on, pp. 565–572. doi: 10.1109/CloudCom.2010.107.

[60] W. W. Eckerson (2018) Data Lakes for Business Users, Arcadia Data, Avail-
able at: https://www.arcadiadata.com/lp/eckerson-report-data-lakes-for-
business-users/ (Accessed: 5 May 2020).

[61] Tarigan, Iyoga & Kim, Dong-Seong. (2016). Comparative Performance AMQP and
MQTT Protocol over Wired Network, Available at: https://doi.org/10.13140/
RG.2.1.2089.8802 (Accessed: 5 May 2020).

[62] ScalAgent (2015) Benchmark of MQTT servers, Available at: http://
www.scalagent.com/Benchmark_MQTT_servers-v1-1/ (Accessed: 7 March 2020).

“output” — 2020/6/28 — 10:14 — page 71 — #80

REFERENCES 71

[63] Renart, E. G., Balouek-Thomert, D. and Parashar, M. (2018) ‘Edge Based
Data-Driven Pipelines (Technical Report)’. Available at: https://arxiv.org/abs/
1808.01353 (Accessed: 5 May 2020).

[64] Axis.com (2020) User Instructions | Axis Communications. [online] Available at:
https://www.axis.com/sv-se/products/online-manual/37930 [Accessed 8 May
2020].

[65] ActiveMQ 5 Documentation (2020) ActiveMQ. [online] Available at: https://
activemq.apache.org/components/classic/documentation [Accessed 26 May 2020]

[66] Pulsar Docs (2020) Apache Software Foundation. [online] Available at: https://
pulsar.apache.org/docs/ [Accessed 26 May 2020].

[67] Documentation: RabbitMQ (2020) Rabbitmq.com. [online] Available at: https://
www.rabbitmq.com/documentation.html [Accessed 26 May 2020].

[68] NATS Documentation (2020) Apache Software Foundation. [online] Available at:
https://docs.nats.io/ [Accessed 26 May 2020].

[69] Azure Documentation (2020) Docs.microsoft.com [online] Available at: https://
docs.microsoft.com/en-us/azure/ [Accessed 26 June 2020].

[70] Azure Data Lake Storage Gen1 Documentation (2020) Docs.microsoft.com. [online]
Available at: https://docs.microsoft.com/en-us/azure/data-lake-store/ [Ac-
cessed 26 May 2020].

[71] Amazon Lake Formation Documentation (2020) Docs.aws.amazon.com. [online]
Available at: https://docs.aws.amazon.com/cloudformation/ [Accessed 26 May
2020].

[72] Hadoop Documentation (2020) Hadoop.apache.org. [online] Available at: https://
hadoop.apache.org/docs/r1.2.1/ [Accessed 26 May 2020].

[73] Google Cloud Platform | Documentation (2020) Google Cloud. [online] Available at:
https://cloud.google.com/docs [Accessed 26 May 2020].

[74] IBM Cloud Docs (2020) Cloud.ibm.com. [online] Available at: https://cloud.ibm.
com/docs? [Accessed 26 May 2020].

“output” — 2020/6/28 — 10:14 — page 72 — #81

AppendixA
Some extra material

A.1 Message broker

A.1.1 Pulsar Producer
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Map;
import java.util.stream.IntStream;
import org.apache.pulsar.client.api.*;

public class encryptProducer {
private static final String SERVICE_URL = "pulsar://localhost:6650";
private static final String TOPIC_NAME = "test";

public static void main(String[] args) throws PulsarClientException {
// TODO Auto-generated method stub
RawFileKeyReader rawRead = new RawFileKeyReader("rsa_pubkey.pem",
privkey.pem");
PulsarClient client = PulsarClient.builder()
.serviceUrl(SERVICE_URL)
.build();

Producer<byte[]> producer = client.newProducer()
.topic(TOPIC_NAME)
.cryptoKeyReader(rawRead)
.addEncryptionKey("mykey")
.create();
producer.send("thisIssecret".getBytes());
System.out.println("sent message");
producer.close();
client.close();

}

72

“output” — 2020/6/28 — 10:14 — page 73 — #82

Some extra material 73

}

A.1.2 Pulsar Consumer
import java.util.stream.IntStream;

import org.apache.pulsar.client.api.*;
public class subscriberencrypted {
private static final String SERVICE_URL = "pulsar://localhost:6650";
private static final String TOPIC_NAME = "test";
public static void main(String[] args) throws PulsarClientException {
// TODO Auto-generated method stub
PulsarClient client = PulsarClient.builder().serviceUrl(SERVICE_URL).build();

Consumer consumer = client.newConsumer()
.topic(TOPIC_NAME)
.cryptoKeyReader(new RawFileKeyReader("rsa_pubkey.pem",
"rsa_privkey.pem"))
.subscriptionName("my-subscribtion")
.subscribe();

while (true){
Message msg = consumer.receive();
System.out.println(new String(msg.getData()));
consumer.acknowledge(msg);

}
}

}

A.1.3 Kafka Producer
import java.util.Properties;

import java.util.concurrent.TimeUnit;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
//simple producer

public class kafkaProducer {

public static void main(String[] args) throws InterruptedException {
// TODO Auto-generated method stub
Properties props=new Properties();
//add properties
props.put("bootstrap.servers", "10.6.3.98:9092");

“output” — 2020/6/28 — 10:14 — page 74 — #83

Some extra material 74

props.put(
"key.serializer","org.apache.kafka.common.serialization.StringSerializer"
);
props.put(
"value.serializer","org.apache.kafka.common.serialization.StringSerializer"
);
//send 500 messages
KafkaProducer<String,String> producNew =
new KafkaProducer<String,String>(props);
for(int i=0; i<5000;i++){
ProducerRecord<String,String> record =
new ProducerRecord<String,String>("test","sample key",Integer.toString(i));
System.out.println(record.value());
producNew.send(record);
}

producNew.close();
}

}

A.1.4 Kafka Consumer
import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

public class kafkaConsumer {

public static void main(String[] args) {

Properties props = new Properties();
props.put("bootstrap.servers", "10.6.3.98:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms","1000");
props.put(
"key.deserializer","org.apache.kafka.common.serialization.StringDeserializer"
);
props.put(
"value.deserializer","org.apache.kafka.common.serialization.StringDeserializer"
);
KafkaConsumer<String,String > consumer =
new KafkaConsumer<String,String > (props);
consumer.listTopics();

//consumes a list of topics
consumer.subscribe(Arrays.asList("test"));

“output” — 2020/6/28 — 10:14 — page 75 — #84

Some extra material 75

for(int i =0;i<1000;i++){
ConsumerRecords<String,String> records = consumer.poll(Duration.ofMillis(100));

for(ConsumerRecord<String,String> record : records)
// Skriver ut hela record med samtliga tags
//System.out.println(record.toString());
// Skriver endast ut value

System.out.println(record.value().toString());
}

}

}

A.1.5 RabbitMQ Producer
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

public class produceTopic {

private static final String EXCHANGE_NAME = "topic_logs";

public static void main(String[] argv) throws Exception {
ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");
try (Connection connection = factory.newConnection();

Channel channel = connection.createChannel()) {

channel.exchangeDeclare(EXCHANGE_NAME, "topic");

String routingKey = "kern.critical";
String message = "SWIZZZZ3";

channel.basicPublish(EXCHANGE_NAME, routingKey, null,
message.getBytes("UTF-8"));
System.out.println(" [x] Sent ’" + routingKey + "’:’" + message + "’");

}
}

}

A.1.6 RabbitMQ Consumer
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.DeliverCallback;

“output” — 2020/6/28 — 10:14 — page 76 — #85

Some extra material 76

public class consumerTopics {

private static final String EXCHANGE_NAME = "topic_logs";

public static void main(String[] argv) throws Exception {
String[] argv2 = { "kern.*", "*.critical" };

ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");
Connection connection = factory.newConnection();
Channel channel = connection.createChannel();

channel.exchangeDeclare(EXCHANGE_NAME, "topic");
String queueName = channel.queueDeclare().getQueue();

if (argv2.length < 1) {
System.err.println("Usage: ReceiveLogsTopic [binding_key]...");
System.exit(1);

}

for (String bindingKey : argv2) {
channel.queueBind(queueName, EXCHANGE_NAME, bindingKey);

}

System.out.println(" [*] Waiting for messages. To exit press CTRL+C");

DeliverCallback deliverCallback = (consumerTag, delivery) -> {
String message = new String(delivery.getBody(), "UTF-8");
System.out.println(" [x] Received ’" +
delivery.getEnvelope().getRoutingKey() + "’:’" + message + "’");

};
channel.basicConsume(queueName, true, deliverCallback, consumerTag -> {
});

}
}

A.1.7 MQTT Producer
import java.nio.charset.StandardCharsets;

import org.eclipse.paho.client.mqttv3.MqttClient;
import org.eclipse.paho.client.mqttv3.MqttException;
import org.eclipse.paho.client.mqttv3.MqttMessage;
import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

public class producer {

public static void main(String [] args)
{
try {

“output” — 2020/6/28 — 10:14 — page 77 — #86

Some extra material 77

MqttClient client = new MqttClient("tcp://localhost:9092",
MqttClient.generateClientId(),new MemoryPersistence());

if(!client.isConnected()) {
client.connect();

}
MqttMessage message = new MqttMessage("testade".getBytes());
//sets qos to 2(exactly once)
message.setQos(2);

client.publish("testExjobb", message);

} catch (MqttException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}

A.1.8 MQTT Consumer
import java.util.Arrays;

import org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;
import org.eclipse.paho.client.mqttv3.MqttCallback;
import org.eclipse.paho.client.mqttv3.MqttClient;
import org.eclipse.paho.client.mqttv3.MqttException;
import org.eclipse.paho.client.mqttv3.MqttMessage;
import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

public class consumer {

public static void main(String [] args)
{

MqttClient client;
try {
client = new MqttClient("tcp://localhost:9092",MqttClient.generateClientId(),
new MemoryPersistence());
client.setCallback(new MqttCallback() {

@Override
public void connectionLost(Throwable cause) {
//Called when the client lost the connection to the broker
}

@Override
public void deliveryComplete(IMqttDeliveryToken arg0) {
// TODO Auto-generated method stub

“output” — 2020/6/28 — 10:14 — page 78 — #87

Some extra material 78

}

@Override
public void messageArrived(String arg0, MqttMessage arg1) throws Exception {
// TODO Auto-generated method stub
System.out.println(arg0 + ": " + arg1.toString());
}

});

client.connect();
client.subscribe("testExjobb", 1);

} catch (MqttException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}

A.1.9 NATS Producer
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.nio.charset.StandardCharsets;
import java.time.Duration;

import io.nats.client.Connection;
import io.nats.client.Nats;

//Example code for a publisher in NATS using java
public class NatsPub {

public static void main(String args[]) throws IOException {
String subject;
String message;

“output” — 2020/6/28 — 10:14 — page 79 — #88

Some extra material 79

String server;

// server defines what ip adress the NATS server resides
server = "localhost:1883";
// This is the subject so that subscribers are
//capable to find the certain instace
//similar to topics in Kafka or events in azure
subject = "Tester";
// The text message
BufferedReader reader =

new BufferedReader(new InputStreamReader(System.in));
message = reader.readLine();

try {
Connection nc =
Nats.connect(ExampleUtils.createExampleOptions(server, false));

System.out.println();
System.out.printf("Sending %s on %s, server is %s\n",
message, subject, server);
System.out.println();
nc.publish(subject, message.getBytes(StandardCharsets.UTF_8));
nc.flush(Duration.ofSeconds(5));
nc.close();

} catch (Exception exp) {
exp.printStackTrace();

}
}

}

A.1.10 NATS Consumer
import java.nio.charset.StandardCharsets;
import java.time.Duration;

import io.nats.client.Connection;
import io.nats.client.Message;
import io.nats.client.Nats;
import io.nats.client.Subscription;

//Example code for a subscriber in NATS using java

public class NatsSub {

public static void main(String args[]) {

“output” — 2020/6/28 — 10:14 — page 80 — #89

Some extra material 80

String subject;
int msgCount;
String server;
String RecvMessage;

server = "localhost:1883";
subject = "Tester";
msgCount = 1;

try {
System.out.println();
System.out.printf("Trying to connect to %s, and listen to
%s for %d messages.\n", server, subject, msgCount);
System.out.println();

Connection nc =
Nats.connect(ExampleUtils.createExampleOptions(server, true));
Subscription sub = nc.subscribe(subject);
nc.flush(Duration.ofSeconds(5));

for(int i=0;i<msgCount;i++) {
Message msg = sub.nextMessage(Duration.ofHours(1));
RecvMessage = new String(msg.getData(), StandardCharsets.UTF_8);
System.out.printf("Received message \"%s\" on subject \"%s\"\n",

RecvMessage,
msg.getSubject());

}

nc.close();

} catch (Exception exp) {
exp.printStackTrace();

}
}

}

A.1.11 Redis Producer
import java.io.BufferedReader;

import java.io.InputStreamReader;

import redis.clients.jedis.Jedis;

public class redisPublisher {

public static void main(String[] args) {

Jedis jedis = null;
String redisPort = System.getenv().getOrDefault("REDIS_PORT", "6379");

“output” — 2020/6/28 — 10:14 — page 81 — #90

Some extra material 81

String redisHost = System.getenv().getOrDefault("REDIS_HOST", "localhost");
try {

/* Creating Jedis object for connecting with redis server */
jedis = new Jedis();

System.out.println("Write message you want to send \n");
BufferedReader reader =

new BufferedReader(new InputStreamReader(System.in));
String message = reader.readLine();
/* Publishing message to channel C1 */
System.out.println("Sending "+message);
jedis.publish("C1", message);

/* Publishing message to channel C2 */
// jedis.publish("C2", "First message to channel C2");

/* Publishing message to channel C1 */
// jedis.publish("C1", "Second message to channel C1");

/* Publishing message to channel C2 */
// jedis.publish("C2", "Second message to channel C2");

} catch(Exception ex) {

System.out.println("Exception : " + ex.getMessage());
} finally {

if(jedis != null) {
jedis.close();

}
}

}
}

A.1.12 Redis Consumer
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPubSub;

public class redisSubscriber {

public static void main(String[] args) {

Jedis jedis = null;

try {

/* Creating Jedis object for connecting with redis server */
// man kan skriva jedis("ipadress",port); för att specifiera port

jedis = new Jedis();

“output” — 2020/6/28 — 10:14 — page 82 — #91

Some extra material 82

/* Creating JedisPubSub object for subscribing with channels */
JedisPubSub jedisPubSub = new JedisPubSub() {

@Override
public void onMessage(String channel, String message) {

System.out.println("Channel " + channel + " has sent a message :
" + message);
if(channel.equals("C1")) {

/* Unsubscribe from channel C1 after first message is received. */
unsubscribe(channel);

}
}

@Override
public void onSubscribe(String channel, int subscribedChannels) {

System.out.println("Client is Subscribed to channel : "+ channel);
System.out.println("Client is Subscribed to "+ subscribedChannels
+ " no. of channels");

}

@Override
public void onUnsubscribe(String channel, int subscribedChannels) {

System.out.println("Client is Unsubscribed from channel : "+ channel);
System.out.println("Client is Subscribed to "+ subscribedChannels
+ " no. of channels");

}

};

/* Subscribing to channel C1 and C2 */
//jedis.subscribe(jedisPubSub, "C1", "C2");
jedis.subscribe(jedisPubSub, "C1");
} catch(Exception ex) {

System.out.println("Exception : " + ex.getMessage());

} finally {

if(jedis != null) {
jedis.close();

}
}

}
}

A.1.13 ActiveMQ Producer

import java.net.URI;
import java.net.URISyntaxException;

“output” — 2020/6/28 — 10:14 — page 83 — #92

Some extra material 83

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.broker.BrokerFactory;
import org.apache.activemq.broker.BrokerService;

public class ActiveMqConsumer {
public static void main(String[] args) throws URISyntaxException, Exception {

BrokerService broker = BrokerFactory.createBroker(new URI(
"broker:(tcp://localhost:8081)"));

broker.start();
Connection connection = null;
try {

// Creates connection to server
ConnectionFactory connectionFactory = new ActiveMQConnectionFactory(

"tcp://localhost:9092");
connection = connectionFactory.createConnection();
connection.setClientID("DurabilityTest");
Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);
Topic topic = session.createTopic("exjobbTopic");

// Create publisher and send the message "Message!"
String payload = "Message!";
TextMessage msg = session.createTextMessage(payload);
MessageProducer publisher = session.createProducer(topic);
System.out.println("Sending text ’" + payload + "’");
publisher.send(msg, javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY, Message.DEFAULT_TIME_TO_LIVE);
connection.start();
session.close();

} finally {
if (connection != null) {

connection.close();
}
broker.stop();

}
}

}

“output” — 2020/6/28 — 10:14 — page 84 — #93

Some extra material 84

A.1.14 ActiveMQ Consumer

import java.net.URI;
import java.net.URISyntaxException;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.broker.BrokerFactory;
import org.apache.activemq.broker.BrokerService;

public class ActiveMqConsumer {
public static void main(String[] args) throws URISyntaxException, Exception {

BrokerService broker = BrokerFactory.createBroker(new URI(
"broker:(tcp://localhost:8081)"));

broker.start();
Connection connection = null;
try {

// Creates connection to server
ConnectionFactory connectionFactory = new ActiveMQConnectionFactory(

"tcp://localhost:9092");
connection = connectionFactory.createConnection();
connection.setClientID("DurabilityTest");
Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);
Topic topic = session.createTopic("exjobbTopic");

//Create a consumer that will consume everything from the topic
MessageConsumer consumer1 =
session.createDurableSubscriber(topic, "consumer1", "", false);

connection.start();

msg = (TextMessage) consumer1.receive();
System.out.println("Consumer1 receives " + msg.getText());

session.close();
} finally {

if (connection != null) {
connection.close();

}
broker.stop();

}

“output” — 2020/6/28 — 10:14 — page 85 — #94

Some extra material 85

}
}

A.2 code

A.2.1 u-Sql scripts
Format output to ZAPI

// A. REFERENCE ASSEMBLY: Load assemblies for compile time and execution.
REFERENCE ASSEMBLY [Newtonsoft.Json];
REFERENCE ASSEMBLY [Microsoft.Analytics.Samples.Formats];

// B. USING: Specify namespace to shorten function names
(e.g. Microsoft.Analytics.Samples.Formats.Json.JsonExtractor)
USING Microsoft.Analytics.Samples.Formats.Json;

// 1. Initialise variables for Input (e.g. JSON) and Output (e.g. CSV).
DECLARE @InputFile string = @"input.json";
DECLARE @OutputFile string = @"output.json";

// 2. Extract string content from JSON document (i.e. schema on read).
@json =
EXTRACT

timestamp string,
serial string,
name string,
input int,
output int
FROM

@InputFile
USING new JsonExtractor();

@datas =
SELECT
"540" AS organisation_id,
serial AS counter_id,
"in" AS visit_type,

timestamp.Substring(0, 4)+"-"+timestamp.Substring(4, 2)+
"-"+timestamp.Substring(6, 2) AS date,

timestamp.Substring(8, 2)+":"+timestamp.Substring(10, 2)+
":"+timestamp.Substring(12,2) AS time,
input AS visitors
FROM @json;

// 3. Write values to json
OUTPUT @datas

“output” — 2020/6/28 — 10:14 — page 86 — #95

Some extra material 86

TO @OutputFile
USING new JsonOutputter();

Merge POS and queue data with U-SQL

// A. CREATE ASSEMBLY: Register assemblies (if they do not already exist).
CREATE ASSEMBLY IF NOT EXISTS [Newtonsoft.Json] FROM
@"codeLocation";
CREATE ASSEMBLY IF NOT EXISTS [Microsoft.Analytics.Samples.Formats] FROM
@"codeLocation";

// B. REFERENCE ASSEMBLY: Load assemblies for compile time and execution.
REFERENCE ASSEMBLY [Newtonsoft.Json];
REFERENCE ASSEMBLY [Microsoft.Analytics.Samples.Formats];

// C. USING: Specify namespace to shorten function names
//(e.g. Microsoft.Analytics.Samples.Formats.Json.JsonExtractor)
USING Microsoft.Analytics.Samples.Formats.Json;

// 1. Initialise variables for Input (e.g. JSON) and Output (e.g. CSV).
DECLARE @InputFile string = @"posdata.txt";
DECLARE @InputFile2 string = @"queuedata.json";
DECLARE @OutputFile string = @"outputfile.csv";

// 2. Extract string content from JSON document (i.e. schema on read).
@json =
EXTRACT

timestamp string,
serial string,
name string,
inpep int,
outpep int
FROM

@InputFile2
USING new JsonExtractor();

@data =
EXTRACT

SALES_DATE string,
SALES_TIME string,
ORGANISATION_ID string,
SALES_VALUE string,
SALES_VALUE_WO_VAT string,
NUMBER_OF_TRANSACTIONS string,
timestamp string

FROM @InputFile
USING Extractors.Text(delimiter: ’|’,skipFirstNRows: 0,quoting: false);

@new =
SELECT sales.SALES_VALUE_WO_VAT,sales.SALES_DATE,sales.NUMBER_OF_TRANSACTIONS,
sales.SALES_TIME,sales.ORGANISATION_ID, count.outpep
FROM @data AS sales

“output” — 2020/6/28 — 10:14 — page 87 — #96

Some extra material 87

JOIN
@json AS count
ON sales.timestamp==count.timestamp;

@new2 =
SELECT * FROM @new ORDER BY ORGANISATION_ID ASC OFFSET 0 ROWS;

OUTPUT @new2
TO @OutputFile
USING Outputters.Csv(quoting: false);

A.2.2 Upload to Azure
import java.time.Duration;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.regex.Pattern;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintStream;
import com.microsoft.azure.datalake.store.ADLException;
import com.microsoft.azure.datalake.store.ADLStoreClient;
import com.microsoft.azure.datalake.store.DirectoryEntry;
import com.microsoft.azure.datalake.store.IfExists;
import com.microsoft.azure.datalake.store.oauth2.AccessTokenProvider;
import com.microsoft.azure.datalake.store.oauth2.ClientCredsTokenProvider;

public class azureUploader {
private static String clientId = "";
private static String authTokenEndpoint = "";
private static String clientKey = "";
// full account FQDN, not just the account name
private static String accountFQDN = "";
private static final String SERVICE_URL = "pulsar://localhost:6650";
// only needed if subscribed to specific topics

private static final String TOPIC_NAME = "test";

/**
* @param args
* @throws IOException
*/

public static void main(String[] args) throws IOException {
// setting up azure stuff

“output” — 2020/6/28 — 10:14 — page 88 — #97

Some extra material 88

AccessTokenProvider provider = new ClientCredsTokenProvider(authTokenEndpoint,
clientId, clientKey);
ADLStoreClient client = ADLStoreClient.createClient(accountFQDN, provider);
OutputStream stream = null;

while (true) {

Message msg = "incomming message";
// The string vector removes the first characters
//and then splits the topic on backslashes.
String[] parts = msg.getTopicName().substring(28).split("\\\\");
// System.out.println(new String(msg.getData()));

String dire = parts[0]+"/"+parts[0]+ "-" + parts[1] +"/" +
parts[2].substring(0,4) + "/" +

parts[2].substring(4,8) + "/" + parts[3]+".json";

if(!client.checkExists(dire)) {
client.createEmptyFile(dire);
client.setPermission(dire, "744");
System.out.println("File created");
}else {
System.out.println("File exists already");
}
stream = client.getAppendStream(dire);

stream.write(new String(msg.getData()).getBytes());
stream.close();
System.out.println("Send done!");
}

}

}

A.3 File format examples

A.3.1 Json file for counter
[
{

"serial":"00408CAC512B",
"name":"CounterName",
"timestamp":"20170503112756",
"in":12,
"out":318

“output” — 2020/6/28 — 10:14 — page 89 — #98

Some extra material 89

},
{

"serial":"00408CAC512B",
"name":"CounterName",
"timestamp":"20170503112759",
"in":15,
"out":322

},
{

"serial":"00408CAC512B",
"name":"CounterName",
"timestamp":"20170503112762",
"in":20,
"out":330

}
]

A.3.2 Json file for queue monitor
[

{
"serial":"ACCC8E20F09B",
"name":"Service Counter",
"timestamp":"20170113181132",
"region1name":"Product Display",
"region1people":1,
"region2name":"Aisle Display",
"region2people":0,
"region3name":"Service Counter",
"region3people":3

},
{

"serial":"ACCC8E20F09C",
"name":"Service Counter2",
"timestamp":"20170113181142",
"region1name":"Product Display2",
"region1people":1,
"region2name":"Aisle Display2",
"region2people":0,
"region3name":"Service Counter2",
"region3people":3

}
]

A.3.3 Json file remade for third party

[
{

"organisation_id":"540",
"counter_id":"ACCC8E02EAB1",
"visit_type":"in",

“output” — 2020/6/28 — 10:14 — page 90 — #99

Some extra material 90

"date":"2020-02-10",
"time":"08:37:42",
"visitors":12

},
{

"organisation_id":"540",
"counter_id":"ACCC8E02EAB1",
"visit_type":"in",
"date":"2020-02-10",
"time":"08:37:44",
"visitors":12

}
]

A.4 output

A.4.1 RawFileKeyReader
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Map;

import org.apache.pulsar.client.api.CryptoKeyReader;
import org.apache.pulsar.client.api.EncryptionKeyInfo;

public class RawFileKeyReader implements CryptoKeyReader {

String publicKeyFile = "";
String privateKeyFile = "";

RawFileKeyReader(String pubKeyFile, String privKeyFile) {
publicKeyFile = pubKeyFile;
privateKeyFile = privKeyFile;
}

@Override
public EncryptionKeyInfo getPrivateKey(String keyName, Map<String, String> keyMeta)
{
EncryptionKeyInfo keyInfo = new EncryptionKeyInfo();
try {

keyInfo.setKey(Files.readAllBytes(Paths.get(privateKeyFile)));
} catch (IOException e) {

System.out.println("ERROR: Failed to read private key from file " +
privateKeyFile);
e.printStackTrace();

}
return keyInfo;

}

@Override

“output” — 2020/6/28 — 10:14 — page 91 — #100

Some extra material 91

public EncryptionKeyInfo getPublicKey(String keyName, Map<String, String> keyMeta)
{
EncryptionKeyInfo keyInfo = new EncryptionKeyInfo();

try {
keyInfo.setKey(Files.readAllBytes(Paths.get(publicKeyFile)));

} catch (IOException e) {
System.out.println("ERROR: Failed to read public key from file " +
publicKeyFile);
e.printStackTrace();

}
return keyInfo;

}

}

A.5 Future Work bullet list
This list show a quick bullet list of potential future work that could be interesting to work
on. It is categorized into three different categories for each field it belongs to. There are
more utilization than this but these might be non essential but may be discussed with
the authors if someone finds this interesting.

Raw

• Send screen-grab when queue is full

• Share analysis from raw and data lake

• Linechart queue monitor

• move raw point to lake

• average time in queue

Lake

• Compare sales data with amount of customers

• Weather and temperature with amount of sales

• People demographics in store

• Average time spent in store

• Amount of people in store during promotions

• Time of day where queues are the longest

• Most relevant age group

• Find fastest moving queue

• Amount of people that have stood in a queue

• Better integration with data warehouses

Data that is not available at the time but could be interesting

• License plate

• Clearance or special sale data

• Air Quality

“output” — 2020/6/28 — 10:14 — page 92 — #101

AppendixB
Licenses

Figures 3.1 and 3.2 are covered by the Apache licence 2.0 which allows use of illustrations
in noncommercial work as long as a link to licence can be provided. The licence can be
viewed here : https://www.apache.org/licenses/LICENSE-2.0

Figure 1 and 2 in section 3.11 follow the Creative commons 3.0 licence the licence can be
found here: https://creativecommons.org/licenses/by/3.0/

All other illustrations, tables or images included in this thesis have been made by the
thesis authors specifically to be included in the thesis and require no extra licence.
Figures 3.6,3.8 and 3.9 follow the Creative commons 4.0 licence the licence can be found
here: https://creativecommons.org/licenses/by/4.0/

92

	Blank Page

