
MASTER’S THESIS 2020

Semi-Supervised Text
Classification: Automated
Weak Vulnerability Detection
Anton Duppils, Magnus Tullberg

ISSN 1650-2884
LU-CS-EX 2020-02

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-02

Semi-Supervised Text Classification:
Automated Weak Vulnerability Detection

Anton Duppils, Magnus Tullberg

Semi-Supervised Text Classification:
Automated Weak Vulnerability Detection

Anton Duppils
dat13adu@cs.lth.se

Magnus Tullberg
mat12mtu@cs.lth.se

January 28, 2020

Master’s thesis work carried out at Debricked AB.

Supervisors: Marcus Klang, marcus.klang@cs.lth.se
Emil Wåreus, emil.wareus@debricked.com

Examiner: Pierre Nugues, pierre.nugues@cs.lth.se

mailto:dat13adu@cs.lth.se
mailto:mat12mtu@cs.lth.se
mailto:marcus.klang@cs.lth.se
mailto:emil@debricked
mailto:pierre.nugues@cs.lth.se

Abstract

Open-source software is prevalent in the development of new technologies.
Monitoring software updates for vulnerabilities is expensive and time-consuming.
Online discussions surrounding new software updates can often provide vital in-
formation regarding emerging risks. In this Master’s thesis, we present a novel
approach for automating surveillance of software through the use of natural lan-
guage processing methods on open-source issues. We explore the potential of vir-
tual adversarial training, a popular semi-supervised learning technique to lever-
age the vast amounts of unlabeled data available to achieve improved perfor-
mance. On industry data, the best performing model is a hierarchical attention
networkwith virtual adversarial training that utilizes the innate document struc-
ture to encapsulate the text. Promising results are achieved for text classification
in the computer security domain.

Keywords: NLP, SSL, HAN, VAT, Security, Vulnerability Detection, Text Classification

2

Acknowledgements

This Master’s thesis would not be possible if it were not for the valuable advice from our
supervisors Emil Wåreus and Marcus Klang. They both went beyond the call of duty with a
great deal of support and engagement. Thanks for taking the time to discuss our ambitious
ideas and for keeping us grounded. Having two supervisors meant that we were blessed with
di�erent opinions, pushing us to consider far more options than anticipated. We also want to
thank Debricked for supplying us with peripherals, a nice work environment, and sponsoring
for model training. We would also like to take this moment to thank our friend Alex for
keeping us in good spirits and for the occasional good tip. Lastly, we appreciate the feedback
and critique from our examiner Pierre Nugues and hope the final revision of this Master’s
thesis does the topic justice.

3

4

Contents

1 Introduction 9
1.1 Task . 9
1.2 Contribution . 9
1.3 Outline . 10

2 Related Work 11
2.1 Security Identification . 11
2.2 Document Classification . 12
2.3 Semi-Supervised Learning . 12

2.3.1 Adversarial Networks . 12
2.3.2 Virtual Adversarial Training . 12
2.3.3 Self Learning . 12
2.3.4 Variational Autoencoders . 13

3 Theory 15
3.1 Language Model . 15

3.1.1 Word Representation . 15
3.1.2 Word Embedding . 16
3.1.3 Term Frequency-Inverse Document Frequency 18

3.2 Dimensionality Reduction . 18
3.2.1 Truncated Singular Value Decomposition 19
3.2.2 Latent Semantic Analysis . 19
3.2.3 T-Distributed Stochastic Neighbor Embedding 20
3.2.4 Uniform Manifold Approximation and Projection 21

3.3 Introduction to Machine Learning . 23
3.3.1 Supervised, Unsupervised, and Semi-supervised Learning 23
3.3.2 Clustering . 24
3.3.3 Overfit and Underfit . 24
3.3.4 Batches and Epochs . 24
3.3.5 Gold Standard . 25

5

CONTENTS

3.3.6 Activation Function . 25
3.3.7 Backpropagation . 26
3.3.8 Evaluation Metrics . 26

3.4 Optimization . 27
3.4.1 Stochastic Gradient Descent . 27
3.4.2 Hyperparameters . 29

4 Data 31
4.1 Data Acquisition . 31
4.2 Data Annotation . 32
4.3 Data Cleaning . 33
4.4 Exploratory Data Analysis . 34

4.4.1 Distributions . 34
4.4.2 N-Grams . 34
4.4.3 Document Similarity Scoring . 35

5 Models 37
5.1 Baseline . 37

5.1.1 Logistic Regression . 37
5.1.2 Silver Standard . 37

5.2 Model Architectures . 38
5.2.1 Convolutional Neural Network . 38
5.2.2 Attention . 39
5.2.3 Hierarchical Attention Network 40

5.3 Semi-Supervised Learning . 41
5.3.1 Adversarial Training . 41
5.3.2 Virtual Adversarial Training . 42

5.4 Neural Networks . 45
5.4.1 Hierarchical Attention Network 45
5.4.2 Alpha SecureReqNet . 46
5.4.3 Hierarchical Attention Virtual Adversarial Network 47

5.5 Evaluation . 47
5.5.1 Metrics . 48
5.5.2 Area Under the Receiver Operating Characteristics 49
5.5.3 Statistical Properties . 49
5.5.4 Datasets . 49

6 Results 51
6.1 Statistical Significance . 52

7 Discussion 55
7.1 Data . 55
7.2 Embeddings . 56
7.3 Evaluation . 56

7.3.1 Optimization and Training Philosophy 57
7.4 Semi-Supervised Learning . 57
7.5 Mistakes and Bias . 57

6

CONTENTS

7.6 Ethics . 58

8 Final Thoughts 59
8.1 Conclusion . 59
8.2 Future Work . 59

8.2.1 Transfer Learning . 60
8.2.2 Semi-supervised learning . 60

9 Appendix 61
9.1 Annotation Guidelines . 61
9.2 N-Grams . 63
9.3 Sample Text Data . 63

9.3.1 Before Cleaning . 63
9.3.2 After Cleaning . 64

9.4 Most Common Words In Clusters . 64

7

CONTENTS

8

Chapter 1

Introduction

1.1 Task
The use of open-source software has proliferated in modern times. According to an Open
Source Security and Risk Analysis report by Synopsys, 96% of codebases scanned in 2018
used open-source code (Synopsys, 2018). A followup report in 2019 shows an increase in
open-source usage to more than 99%. Vulnerabilities in open-source components are often
mismanaged as the same report also highlights that 40% of the aforementioned codebases
feature open-source vulnerabilities that are more than 10 years old (Synopsys, 2019).

Open-source updates can expose security vulnerabilities. Keeping track of vulnerabilities
in open-source software can help mitigate the potential damage done by malicious parties.
It is hard to keep track of when a new vulnerability has been discovered. Human resources
dedicated to vulnerability tracking is expensive and has limited reach. It has been found that
90% of exploited exposures are from previously known issues (Ferenc et al., 2019). Therefore
it is decidedly useful to be able to detect reported vulnerabilities in text. An example of a
truncated computer security related sentence can be viewed in Table 1.1. Automated weak
vulnerability detection using text classification on discussions in open-source repositories
could potentially provide awareness of security flaws. This thesis explores the potential for
automation with the goal of providing non-trivial classification of computer security discus-
sion.

1.2 Contribution
The work in this Master’s thesis explores the possibilities of text classification in the domain
of computer security. The domain is still in its early stages and the best model architectures
and general approaches have not been established. This study attempts to construct bench-
marks in the domain for future works to compare against. The results prove that the problem

9

1. Introduction

id2 Examples of data in training set (truncated)
Security related
CVE-2018-11392 An arbitrary file upload vulnerability in classes/...
Non-security related
docker docker.github.io 8022 Add screenshot for backup warning, minor edits...

Table 1.1: Table containing a truncated example of a security related
example and a non-security related example.

is indeed solvable with natural language processing (NLP) and achieve quite respectable per-
formance on binary text classification. The HANmodel architecture, first proposed by Yang
et al. (2016), attempts to make use of the innate structure of text and is the primary model
proposed for this task. The semi-supervised learning technique Virtual adversarial training
(VAT) (Miyato et al., 2016) is used to leverage the large quantities of unlabeled data acquired.
The use of machine learning in the computer security domain is intended to alleviate the
great cost of human resources in monitoring open-source projects for potential vulnerabili-
ties. Automation improves the coverage for vulnerability management. A quicker response
is also possible, limiting damage. The best achieved performance for prediction on vulner-
abilities is 97% precision with 49% recall on the main test set, achieving an F1 score of 65%.
The best overall performance across several datasets is our HAVANmodel, combining HAN
with VAT.

The co-authors both contributed equally to this project. They have both been part of
every step from start to finish.

1.3 Outline
The Master’s thesis is divided into sections, in order: Theory, Method, Results, Discussion,
and Conclusion. Theory handles the theoretical groundwork which the thesis builds its ap-
proach on and discusses previous work that inspired this research. A well educated NLP
data scientist should be able to skip this section. The following section, Method, describes
the workflow and process from the start of the thesis to its completion. The Results section
presents the evaluation plots and tables. The predictions are made on several test datasets
using both a baseline model from a recently published previous work with a convolutional
neural network (CNN) model and our own HAN implementation with and without Virtual
Adversarial Training (VAT). The results are elaborated upon in the Discussion section. The
methodology, approaches used, and the potential sources of errors are discussed in detail. In
the Conclusion section, the thesis reflects on how it has contributed to research, how these
results can a�ect the industry, and what future work could improve the results and further
advance the field.

10

Chapter 2

Related Work

2.1 Security Identification
Zou et al. (2018) present a model they call Security Bug Report Identifier (SBRer). Themodel
is trained on labeled datasets and is specifically trained to distinguish between security re-
lated bug reports and non-security related bug reports. SBRer uses both textual features and
meta features to try to maximize the identification rate. The SBRer is trained on a dataset
consisting of 23,608 bug reports from Bugzilla using three di�erent open-source products;
Firefox, Seamonkey, and Thunderbird. The results achieved by the SBRer was with the pre-
cision of 99.4% and a recall of 79.9%.

Behl et al. (2014) propose a model that uses text mining approaches in combination with
TF-IDF. The model tries to predict the nature of a bug to decide whether it is a security bug
report or not using naïve bayes.

Though there is various research and related work on identifying bug reports from non-
related bug reports, the research found on detecting if a text concerns security-related issues
were sparse.

A new study exploring the potentials of natural language processing for security topic
classification was published by Palacio et al. (2019), the creators of the Alpha SecureReqNet
(SRN)model. The paper claims that the task of identifying security related texts is achievable
but lacks benchmarks or comparisons with any previous works. The authors left a more
extensive evaluation with several baseline models to be done in the future.

We took advantage of the opportunity to use their model as a benchmark neural network
to compare our HAN model to. An open-source variant of the SRN model architecture is
available for free online and contains most of the necessary code. SRN is a CNN as opposed
to the more common recurrent neural networks (RNNs) used for problems in the text do-
main. CNNs have widespread use in image tasks, but did not have the same levels of success
in text tasks until recently. The theoretical background for CNNs can be found in the ap-
propriate Theory section 5.2.1 as well as how text problems are structured and fed into CNN

11

2. Related Work

architectures.

2.2 Document Classification
HAN (Yang et al., 2016) attempts to take advantage of sentence based structure in text. It
is built using attention mechanisms and RNNs. HAN is developed specifically to work well
for document classification.

2.3 Semi-Supervised Learning
There are several interesting SSL techniques. Most of these methods have been initially de-
veloped for image-based tasks in mind and some of them have been adjusted to work well
with text-based problems. The purpose of SSL is to leverage the vast amount of unlabeled
data that is often available for training better machine learning models.

Adversarial methods are a popular way to improve a model by creating training data that
aims to trick the classifier into making wrong predictions.

2.3.1 Adversarial Networks
Generative adversarial networks have a generator and a judge. The generator creates fake
images to feed to the judge. Both generated images and real images are fed to the judge
and the judge tries to predict what images are real(Goodfellow et al., 2014a). This scheme
improves both the generator and the judge in tandem by pitting them against each other. An
alternative method that has found success on text problems is the discriminative adversarial
network(dos Santos et al., 2017). The network has a predictor and a judge and the predictor
labels unlabeled data and sends the annotated data to the judge. The judge must decide if the
annotation was done by a human or by the predictor, leading to a similar adversarial problem
that improves both predictor and judge.

2.3.2 Virtual Adversarial Training
Virtual adversarial training (VAT) (Miyato et al., 2016) is another method first developed
with image tasks in mind that has found relevance in text problems. VAT on text perturbs
word embeddings in a direction that will have the highest chance of tricking the classifier
into making the wrong prediction.

2.3.3 Self Learning
Self-learning, also called pseudo labeling, is amethod of having the classifiermake predictions
for an unlabeled dataset and then adding it into the pool of labeled training data with the
classifier’s annotation. This type of method incurs a certain risk of overfitting to a certain
subset of data, but has had some recent success from Xuan et al. (2017) where it was used with
a naive Bayes classifier for assigning the correct developers to each bug report.

12

2.3 Semi-Supervised Learning

2.3.4 Variational Autoencoders
Variational autoencoders have been used recently on the SSL text classification problem by
Xu et al. (2016) with a promising degree of success. The model consists of an encoder and
a decoder. The encoder maps the input text to a latent space of lower dimension and the
decoder is responsible for mapping values in this space back to human language. Encoding
and decoding data can lead to loss, a reconstruction error, meaning that the input data will
not be equal to the output data. In autoencoders, the encoder and decoder are made of
neural networks aiming to learn the optimal encoding and decoding behavior by minimizing
the reconstruction error. Variational Autoencoders build on the concept of autoencoders by
regularizing the latent space so the decoder can be used on a random point in latent space to
generate data of acceptable quality(Rocca, 2019).

13

2. Related Work

14

Chapter 3

Theory

3.1 Language Model
Language modeling is a way of learning the innate structure of a language. Since language has
a restrictive rule-set, the language model data is sparse. Most combinations of words do not
form an acceptable sentence. There are many ways of building a language model for word
representations. In this study, we have tried 100 dimensional GloVe and security domain
SecureReqNnet embeddings.

3.1.1 Word Representation
A simple word representation scheme is one-hot encoding. It constructs a matrix with dimen-
sions corresponding to the number of unique words and the number of input data. Each row
contains the number one for each unique word that occurred in the input and zero for all
other words. Since most words will not appear in any given text input, the matrix is sparse.
This carries with it the curse of dimensionality, which are problems that scale poorly with
high-dimensional representations.

Figure 3.1: Example of one-hot encoded vectors. The words are rep-
resented with 0 at each index except one with the value 1. The total
words in the one-hot encoding is equal to the dimension or length
of the vector.

15

3. Theory

3.1.2 Word Embedding
Word embedding is defined as language modeling and feature learning techniques in NLP
that map symbols (words) into a vector space. This vector space has some desirable prop-
erties, such as similarity by angle and allowing dense representation. Dense representations
generally have less computational cost than one-hot encodingwhenworkingwith large inputs
and vocabularies. Since the dimensions are fixed, it does not su�er from the curse of dimen-
sionality. Embeddings can represent the similarity or distinctness of words, often proving
helpful in NLP tasks. Note the classic example:

The words "king", "man", and "woman" are selected. If we take the embedding values of
"king" and subtract the embedding for "man" and add "woman" the result will be the embed-
ding for "queen". We note that one aspect being measured is the royal attribute, the other is
gender. Word embedding can learn to represent these attributes so that words with similar
attributes are close in space of a given dimension. See Figure 3.2 for a visual representation.
This scenario assumes that one of the embedding dimensions has learned the attribute gender
and one has learned the attribute royal.

Figure 3.2: Embedding representation of words in 2d space where
the dimensions were arbitrarily chosen to show the relations for
royalty and gender. As can be seen from the figure above, an equal
change in embedding values for man and woman lead to logical rep-
resentations for king and queen respectively. Similarly, a change in
the gender in terms of embedding perturbation can take the word
man or king to woman or queen respectively.

The choice of dimensions for word embeddings is not necessarily intuitive. One may
think that just increasing the dimensions of embeddings lead to better results, but more di-
mensions means a larger feature space, introducing the curse of dimensionality. Many com-
mon pretrained embeddings available typically have about 50 to 300 dimensions(J. Penning-
ton, 2014).

16

3.1 Language Model

It is common practice to randomize embedding initialization of words that are not in
the vocabulary from a distribution with a certain mean and standard deviation. Randomly
initialized embeddings are not much worse than pretrained embeddings for neural networks
since the network will often learn the relations after some time regardless(Kocmi and Bojar,
2017).

Two common methods used to train word embeddings are continuous bag of words
(CBOW) and skipgram. CBOW uses the frequency of the surrounding words to predict a
word, which means CBOW predicts a missing word from a given context. Skipgram, on the
other hand, uses a given word to predict the surrounding words, meaning skipgram predicts
the context given a word. See figure 3.3 and 3.4 for an example.

Figure 3.3: Bag of words as can be seen in the illustration, takes n
words as input and calculates a prediction for which word is in the
middle.

Figure 3.4: Skipgram takes one word and tries to predict the n sur-
rounding words.

17

3. Theory

3.1.3 Term Frequency-Inverse Document Frequency
Term frequency-inverse document frequency (tf-idf) is a calculation on how important a term
t is to a document d in a corpus D. The basics of it is built upon two bases, term frequency
(TF) and inverse document frequency (IDF). TF is the count of a term t in a document d.
For a document d containing the term t i times, the basic approach to TF would be to use
the number of occurrences i. Often an approach that takes into account the length of the
document may be used, such as dividing the basic TF by the number of words in the docu-
ment thus normalizing it for each document. To compensate that the TF emphasizes more
on common words, the IDF instead measures how much information the term provides by
looking at the whole corpus. The IDF therefore emphasizes on the more interesting terms of
the corpora, the terms which are more unique. The formula for IDF is

log
|D|

|{d ∈ D : t ∈ d}|
where |D| is the number of documents and {d ∈ D : t ∈ d}| is the number of documents the
term t appears in.

TF-IDF is the product of TF and IDF. An example of TF-IDF can be seen in Figure 3.5.

Figure 3.5: TF-IDF example with a simple term frequency (TF), in-
verse document frequency (IDF), and term frequency - inverse docu-
ment frequency (TF-IDF). Inverse document frequency is calculated
using all documents and represents how rare the term is in the con-
text of how many di�erent documents contains the term.

3.2 Dimensionality Reduction
Dimensionality Reduction serves to find a representation for certain data that retains as
much of the important information as possible, while reducing the number of dimensions.
A more succinct representation allows for faster calculations. It can also improve human
understanding of data through plotting the observations in 2 or 3 dimensions. In this section,
we present a variety of methods and the theory for which these methods are based on. The
methods used in this thesis are: Latent Semantic Analysis, T-Distributed Stochastic Neighbor
Embedding, and Uniform Manifold Approximation and Projection.

18

3.2 Dimensionality Reduction

3.2.1 Truncated Singular Value Decomposition
When working with highly sparse matrices, it is often desirable to reduce the dimension-
ality of the matrix, making it dense. One common way is to use Truncated Singular Value
Decomposition (TruncSVD), to do both.

TruncSVD is an approximation of the Singular Value Decomposition (SVD) of a ma-
trix, containing only the k largest singular values, where k is a value less than the number of
columns of the matrix.

SVD is a commonly used linear algebra technique that factorizes a matrix into three
matrices; a left unitary matrix, a diagonal singular values matrix, and a right unitary matrix.
The formula for SVD is shown in equation 3.1.

Mm×n = Um×mΣm×nVT
n×n (3.1)

The singular values matrixΣ is often listed in descending order, which is important when
using TruncSVD. In TruncSVD, only the k columns of U and k rows of V are calculated.
These rows and columns should correspond to the k largest singular values. TruncSVD thus
relies on the truncated values being small enough for Mm×n ≈ Um×kΣk×kVk×n to be a good
approximation. Using the obtained Um×k to represent the matrix will finalize the reduction
and made it dense, giving the truncated matrix the same number of rows as the original
matrix.

3.2.2 Latent Semantic Analysis
Latent Semantic Analysis (LSA) is an NLP technique for analyzing text documents and ex-
tracting useful data. The technique first uses term weights. In this case they have been cal-
culated as a sparse tf-idf matrix of word weights. This matrix is transformed into a dense
matrix through dimensionality reduction, in this case Truncated SVD. LSA works under the
assumption that the distributional hypothesis holds; words that occur in similar contexts,
such as documents, are inherently similar in meaning. In the case of this thesis, documents
from the National Vulnerability Database (NVD) should possess a discernibly di�erent con-
text than Github issues. Therefore, the distributional hypothesis is assumed to hold for the
purpose of this study.

19

3. Theory

3.2.3 T-Distributed Stochastic Neighbor Embedding
T-Distributed Stochastic Neighbor Embedding (t-SNE), is a dimensionality reduction tech-
nique commonly used to visualize high dimensional data.

T-SNE is used to plot and display the data clusters in a meaningful way. Figure 3.6 and
Figure 3.7 uses t-SNE to properly display the clusters.

Figure 3.6: t-SNE plot showing the k-means clustered documents
by Github and NVD source using tf-idf. Red dots correspond to
Github issues and blue dots are NVD texts.

20

3.2 Dimensionality Reduction

Figure 3.7: t-SNE plot showing the k-means clustered documents by
Github andNVD source using tf-idf. Red dots correspond toGithub
issues and blue dots are NVD texts. Significantly more observations,
greater than the other clustering plots for visualization purposes.

3.2.4 Uniform Manifold Approximation and Projec-
tion

Uniform Manifold Approximation and Projection (UMAP) is a more recent dimensionality
reduction technique that aims to optimize the mapping from a higher plane into two or three
dimensions for visualization(McInnes et al., 2018). This method is still quite new and does
not provide the same level of quality assurance when compared to a technique that has been
in use for a longer period of time. McInnes et al. (2018) claim that UMAP is:

demonstrably faster than t-SNE and provides better scaling.

This claim is inline with the observed calculations times for t-SNE and UMAP in this thesis,
as can be seen in Figure 3.8. The observations are more closely clustered than in TSNE, which
gives a better representation of the data.

21

3. Theory

Figure 3.8: UMAP plot showing the k-means clustered documents
by Github and NVD source using tf-idf. Red dots correspond to
Github issues and blue dots are NVD texts.

22

3.3 Introduction to Machine Learning

3.3 Introduction to Machine Learning
Machine learning has been regarded as magic by the uninformed. This section aims to demys-
tify the concept of machine learning and better explain the fundamental concepts required
to understand academic work in machine learning. The core concepts that will be covered
are: types of machine learning, overfitting and underfitting, batches and epochs, activation
functions, optimization, and hyperparameters. In the figure below, the red nodes symbolize
input to the system, blue is the system itself, and green is the output. The classifier is created
using the machine learning algorithm and is a product of training. The classifier is then used
in the following figure as an independent system which takes new data as input and outputs
a prediction.

machine
learning
algorithm

classifier

training data
training
epoch

optimization

classifierdata to predict prediction

3.3.1 Supervised, Unsupervised, and Semi-supervised
Learning

Supervised learning is the most common way to approach machine learning. Each observa-
tion in the training set contains both training data and a corresponding label. The model is
then trained on these data-label pairs, making the model learn how to classify new observa-
tions without the label after the training. During training, the model updates its parameters
based on the results.

Unsupervised learning on the other hand does not have access to any labels. It tries to
learn from the data’s internal structure. Example of common unsupervised learning methods
are word embeddings, as explained in Section 3.1.2, and clustering, which is explained in the
next subsection.

Semi-supervised learning tries to use a combination of supervised learning and unsuper-

23

3. Theory

vised learning to make the model better, by making use of both labeled and unlabeled data
during training. The reason why semi-supervised learning is interesting is because it is te-
dious to label data and there exists a lot of unlabeled data freely available on the internet.

3.3.2 Clustering
The core principle of clustering is to group observations into separate categories. Clustering
can be useful for finding patterns or groupings that a humanwould not normally find through
more intuitive approaches of categorization. There are various ways of clustering observa-
tions. One of the most common forms of clustering in data mining is the simple k-means
clustering approach. K-means clustering is determined through setting k cluster centers and
then calculating the nearest cluster for each observation. The nearest cluster is the cluster
center whose mean (from the observation) has the least squared Euclidean distance.

When the clusters have formed, each cluster has its center recalculated as the center of all
of its observations. Each point is then reassigned to the nearest cluster (not necessarily the
same as last iteration). This process continues either until a certain number of iterations have
passed and may or may not converge. There is no guarantee for the convergence to reach a
global optimum and as such, results may vary depending on initial cluster center allocation.
Each observation is assigned to the cluster with the least squared Euclidean distance mean,
that is the cluster whose points are closest on average to the observation to assign to a cluster.

3.3.3 Overfit and Underfit
A machine learning model is tasked with learning from the input data available to it. The
patterns the model constructs to describe the data can overfit or underfit. Overfitting occurs
when the model learns very complex patterns in order to perfectly fit the training data. This
results in amodel that will perform very well on the training data, but will fail to generalize to
new and unseen data. Overfitted models have high variance, meaning that small di�erences
in data will yield widely di�erent results because the model has not learned the overarching
patterns in the data and instead learns random noise. In contrast, the model can also underfit
the training data, meaning that it learns too little from the training data. This results in high
bias, making broad erroneous assumptions about the data by learning simplistic patterns.
The trade-o� in bias and variance of a model decides the ability to generalize to new data as
well as the complexity of patterns learned. A method called dropout is commonly used to
reduce overfit.

3.3.4 Batches and Epochs
When using a dataset in a neural networkmodel, it is often a good practice to split the dataset
into smaller batches. A batch contains a fixed amount of observations, usually chosen as a
power of 2. The last batch of a set may be unbalanced.

Passing an entire dataset forward and backward through a network once is called an
epoch. During training, multiple epochs are usually performed.

24

3.3 Introduction to Machine Learning

3.3.5 Gold Standard
Ideally, a ground truth should be used for evaluation of a machine learning model. Ground
truth is the absolute truth, which will rarely be observable information. A gold standard is a
dataset which aims to represent the underlying ground truth as accurately as possible. In the
case of this thesis, the gold standard has been labelled manually by humans with some exper-
tise in the field of computer security and will be assumed to be correct for proper evaluation.
The main purpose of the gold standard is to ensure a high degree of certainty that a classifier’s
evaluation can be trusted. Ground truth and gold standard are often used interchangeably in
the machine learning field, but will be referred to as gold standard below.

3.3.6 Activation Function
An activation function in the context of neural networks, is the function each node has that
takes the inputs to the node and calculates the output from the node. The purpose of the
activation function is to introduce non-linear behaviour. The choice of activation function
can greatly impact the way a neural network works. The following activation functions are
used in this study.

Rectified Linear Unit
Rectified Linear Unit or ReLU is a function that is zero for all negative input values and
linear for all zero and positive values as seen in Figure 3.9, meaning that the activation is
sparse. With fewer neurons sending a non-zero output, the network is more lightweight and
less computationally expensive. The function is also computationally cheap and converges
quickly as the function does not taper o� at large input values. This means it will not su�er
from the vanishing gradient problem.

fReLU(x) = max(0, x) (3.2)

Figure 3.9: ReLU function

25

3. Theory

Softmax Function
The softmax function is also called the normalized exponential function. The function takes a
vector of real numbers and as the name suggests, normalizes them so the sum of the vector is 1.
The vector then represents a probability distribution, proving quite useful when outputting
a prediction from a multiclass classification problem.

The input vector z has length K :

σ(z)i =
ezi∑K

j=1 ez j

i = 1, ...,K

z = (z1, ..., zK) ∈ RK

(3.3)

The probability distribution has sum of 1 meaning that the probability vector covers all
outcomes:

K∑
i=1

σ(z)i = 1 (3.4)

Sigmoid Function
The sigmoid function is bounded, meaning that the maximum and minimum y values are
finite. It also only has positive derivatives at every point, giving it a characteristic sigmoid
curve shape seen in Figure 3.10. Sigmoid functions are common in binary classification prob-
lems as a final layer to get a binary output. There are many sigmoid functions, the one used
in this thesis is the logistic function, having the following formula:

fSigmoid(x) =
1

(1 + e−x)
(3.5)

3.3.7 Backpropagation
Backpropagation (BP) is a commonly used algorithm during training in machine learning. It
uses the weights of the model to e�ciently compute the gradient of the loss function for a
single sample. The algorithm works by calculating the gradient of the loss function. It does
this in respect of each layer’s weight using the chain rule, iteratively going backwards from
the end layer-wise. This is an e�cient way to calculate multi-variable derivatives.

3.3.8 Evaluation Metrics
Evaluation of model predictions is first measured and divided into true positives, false posi-
tives, true negatives and false negatives. True positives tp is the category of positive predic-
tions that are actually from the positive class. False positives fp are incorrectly predicted as

26

3.4 Optimization

Figure 3.10: Sigmoid function

the positive class but is actually an element of the negative class. In the same vein, true neg-
atives tn are negative predictions that are correct and false negatives fn that are incorrectly
predicted as negatives but are from the positive class. Precision and recall is explained in
Figure 3.11.

Precision is the measurement of correct predictions compared to the total predictions.

Precision =
tp

tp + fp

Recall is measured as the detected elements of the class in proportion to the total scope
of the class.

Recall =
tp

tp + fn
F1 score can be calculated with di�erent formulae, the following formula expresses the

traditional F1 score function that was used in this thesis, calculating the harmonic mean of
precision and recall.

F1 = 2 ∗
precision ∗ recall
precision + recall

3.4 Optimization
3.4.1 Stochastic Gradient Descent
Gradient descent is defined as the minimization of the objective function f (θ) where θ is the
model’s parameters. The gradient is calculated at each iterative step and the parameter θ is
updated in the opposite direction of the gradient by an amount based on the learning rate.

The learning rate controls the scale of updates to the weights. A lower learning rate value
leads to smaller weight changes and slower convergence towards the optimum. A higher

27

3. Theory

Figure 3.11: The left side are all instances of the positive class, on the
right are the negative instances. The circle shows correct predictions
and the outer rectangle shows the incorrect predictions. Precision is
the proportion of true positives out of the total positive predictions.
Recall is the proportion of positives found out of the total number
of positive instances. As such, a high precision reduces false positive
rate and increases true positive rate. High recall improves the total
scope of positives found.

learning rate converges faster, but at a greater risk of overshooting the target and in the
worst case not converging at all. The intention in gradient descent is to reach the global
minimum. There are several issues that can arise in gradient descent, such as getting stuck
in a local minimum during optimization. If the learning rate is too high, it is possible that
the algorithm will not converge to a minimum. In contrast, a low learning rate leads to slow
optimization and risk of underfitting.

In machine learning, stochastic gradient descent (SGD) is primarily used. It is a stochas-
tic approximation of gradient descent, replacing the gradient with an estimation of it. In
SGD, the gradient is calculated using a random subset of the data, instead of using the entire
dataset. Backpropagation is used to e�ciently compute this gradient.

There are many SGD optimization algorithms and some popular algorithms will be men-
tioned in this section. For further reading, refer to the gradient descent optimization overview
by Ruder (2016).

The Adaptive Gradient algorithm (AdaGrad) (Duchi et al., 2011) has the learning rate
adjusted for each parameter. Infrequent parameters have a higher learning rate for more sub-
stantial updates. Frequent parameters instead have lower learning rate, leading to smaller
updates but more frequent iteration. This method achieves good performance on sparse gra-
dients such as nlp tasks(Ruder, 2016).

Root Mean Square Propagation (RMSProp) similarly to AdaGrad, has per-parameter
learning rates. The learning rates are adjusted based on the first moment or mean gradient.

Adam
The optimizer primarily used in this thesis is the Adam optimizer proposed by Kingma and
Ba (2014). Adam is short for adaptive moment estimation, building on the fundamentals of
AdaGrad and RMSProp. In Adam, the optimizer calculates the mean gradient like in RM-
SProp and additionally the second central moment or variance gradient. The combination

28

3.4 Optimization

of these two calculations are used to change the parameter learning rates. The exponentially
decaying averages of the first (gt) and second (g2

t) moment of the gradients from previous
iterations are calculated as following:

mt = β1 ∗ mt−1 + (1 − β1)gt

vt = β2 ∗ vt−1 + (1 − β2)g2
t

(3.6)

m is the mean (first moment) and v is the uncentered variance (second moment). β is the
decay rate for each equation. β close to 1 corresponds to very slow decay.

There is bias-correction that accounts for a bias towards zero for the m and v vectors as
they are initialized as zeroes. The first and second moment are estimated to:

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

(3.7)

The updated parameters θt+1 are derived from the following equation utilizing the first
and second moment in addition to the learning rate η and the smoothing term ε :

θt+1 = θt −
η

√
v̂t + ε

m̂t (3.8)

3.4.2 Hyperparameters
Parameters used in machine learning can be divided into two categories: mutable and im-
mutable. The property describes the parameters’ ability to change during training.

Parameters are either derived during training or set in advance. The ones specified be-
fore training begins are called hyperparameters. Some hyperparameters may also be muta-
ble. Common hyperparameters for neural networks are learning rate, batch size, number of
epochs, and number of cells in each layer. Learning rate is typically set to a certain value
before training and in some cases uses learning rate decay with each epoch during training.
This results in the model quickly adapting during the early stages of training followed by a
more controlled convergence towards the optimum.

29

3. Theory

30

Chapter 4

Data

In machine learning tasks, the data is an essential part of the problem statement. In the case
of vulnerability detection in text, there are several questions that must be answered before
considering the usage of NLP. The entire research process is documented and divided into
sections, including the Data chapter andModels chapter. Data Acquisition describes how the
data was gathered. Next, some of the data is annotated for future use in Data Annotation.
Exploratory Data Analysis refers to the practice of learning useful patterns in the data.

• Data acquisition: is it possible to gather data of su�ciently large quantities to e�ec-
tively use machine learning?

• Data annotation: what restrictions limit data annotations and what annotation guide-
lines should be used?

• Data cleaning: what information is important in the data and what should be filtered
out?

• Exploratory Data Analysis: do patterns exist in the data? Can the problem statement
be answered with the type of information available?

Examples of data samples can be found in the Introduction in Table 1.1 as well as in the
Appendix Example 9.3.

4.1 Data Acquisition
Our unlabeled data is scraped fromGithub (Github, 2020) andNational VulnerabilityDatabase
(NIST, 2020). The Common Vulnerabilities and Exposures (CVE) and Common Weak-
ness Enumeration (CWE) descriptions from the National Vulnerability Database (NVD) can
safely be considered security related.

31

4. Data

Dataset Github NVD Gitlab
Train Dataset
non-security related 47095 0 460
security 3691 47662 452
Validation Dataset
non-security related 4683 0 66
security 453 5242 55
User Labeled Test Dataset
non-security related 555 0 0
security 514 0 0
Debricked Labeled Test Dataset
non-security related 835 0 0
security 112 0 0

Table 4.1: Table presents the distributions of data from di�erent
sources by class.

The data from Github consisted of publicly posted issues from popular repositories. The
issues were often user submitted and described the topic with varying degrees of precision
and with di�ering levels of comprehension of the English language. Some issues were not in
English. The issue data could be considered highly variant overall. The data from NVD in
contrast to the Github data, was incredibly consistent in vocabulary, overall language, and
format. Note that these descriptions are quite di�erent from issue descriptions on Github.
The di�erences in these texts were to be evaluated in the following section, which deals with
providing a better understanding of the data. A substantial labeled dataset, User Labeled
Test Set, from the SRN paper is used(Palacio et al., 2019). This set was generated through
combining NVD data with Github and Gitlab issues labeled as security related or not. Note
that an overwhelming majority of security related data is from NVD.

Since there is a risk that the model is trained to predict if a text comes from Github,
Gitlab, or NVD instead of if the content is security related, the test sets used contain only
Github data. More security issues from other sources than NVD could improve the training
results as the domains will be more similar in regards to testing and training.

4.2 Data Annotation
Proper evaluation of the models requires labeled data to test against. Firstly, the SRN dataset
is split into train, validation, and test sets. The test set, as previously mentioned, only con-
tains data from Github.

While these sets should be su�cient, we personally annotated over 1000 Github issues
to have a gold standard to test against. We discovered that few issues on Github are actually
security related, around 1% were actual vulnerability reports. We settled on creating slightly
di�erent annotation guidelines that valued potential security risks as security related. This
came to include for example issues about crashes and memory leaks. Since this problem
statement or test set is quite di�erent from the training and validation data, we expect these

32

4.3 Data Cleaning

results to be significantly worse than our other test set, derived from the same annotation
guidelines as the training data.

Manual human labeling was required to create a gold standard. Instructions on how to
annotate were specified to keep the annotations consistent with several annotators. Refer
to section 9.1 for details. The annotation policy has five categories with an ascending asso-
ciated risk for each category. The highest risk is the Vuln category which contains known
exploits and user reported vulnerabilities. The next category, Risk, contains memory leaks,
unrestricted user inputs, access violations among others. In the safest categories, the subject
matter covers for example design and questions unrelated to code.

In order to address the issue of few security related texts, di�erent methods of sampling
from the unlabeled dataset were used. The first 300 entries were extracted using uniform
distribution sampling. The next method of sampling used the document similarity scoring
method found in Subsection 4.4.3. Lack of labeled and categorized data necessitated this
method, but note that it is biased.

Annotating whether a text is about security was not always straightforward, since it re-
quires more domain specific understanding of the meaning of the issue. For example, the
problem of annotating if a text is positive, negative, or neutral should be a much easier task
and as such, result in high annotation similarity. Having established that the problem was
di�cult to annotate for the two annotators, this is a source of potentially inaccurate data for
the model. When annotations were made for the same data, the annotations were compared
and discussed. Later on, this process was automated and the higher risk annotation value was
chosen when conflicting annotations were made.

4.3 Data Cleaning
After accumulating the labeled data that is needed, the next step is cleaning the data. In order
to properly read the data, it needs to be tokenized. Tokenization is a process that splits the
text strings into tokens, with the resulting tokens being for example words and punctuation.
Without cleaning the data first, it would be di�cult to knowwhere the string should be split.
The primary focus of data cleaning should be to allow for as useful tokens as possible.

• Words that are connected to punctuation should still end up as the correct base word.
Example: "word." should be split into "word" and ".".

• Non-English text: The model we are building will not be trained to understand any
other languages than English and will only use English embeddings, therefore, we dis-
card all documents that contain non-English characters, such as Cyrillic script or kanji.

• Documents that contain only a few words or too many words are removed as they are
deemed to not contain important information. There is a lower limit to how useful a
few words can be. The lack of substance in the outliers was empirically evident and
they were removed from the training data.

• Code segments were removed in the capacity that was possible, but it is possible that
other models are able to take advantage of this type of text. This aspect was considered
outside the scope of this study.

33

4. Data

4.4 Exploratory Data Analysis
With machine learning problems, it is essential to understand the training data used to learn
to solve the problem. The techniques that were utilized in this step include clustering, plot-
ting the clusters utilizing dimensionality reduction, n-gram counting, and tf-idf scoring.

4.4.1 Distributions
The Github data was first uniformly sampled and annotated for the purpose of understand-
ing the data. Unbiased sampling may help to understand the distributions of various data
types. From the issues that were annotated, it was observed that staggeringly few observa-
tions were even vaguely related to computer security. With this in mind, the definition of
security related text was initially decided to be somewhat lenient and inclusive. The issue
of unbalanced data distributions will be elaborated upon in the Discussion section. The ef-
forts to cluster the data with t-SNE and UMAP indicated that the Github and NVD datasets
were decidedly di�erent. Plot 3.6 and plot 3.8 show that NVD and Github observations are
mixed. Ideally, the security related Github issues would all be clustered with various NVD
dominant clusters and the safe issues would be completely separated. Most common words
in these clusters can be seen in the appendix 9.4.

A variety of biased sampling methods were tried in order to receive more balanced distri-
butions. Metadata and features were extracted from NVD data in order to find meaningful
descriptors for computer security. This was accomplished by incorporating topword n-grams
extraction and calculating tf-idf vectors to learn word weights for computer security related
contexts. With these features, the biased sampling was possible.

4.4.2 N-Grams
Unigrams, bigrams, and trigrams were extracted from two distinct sources: Github and
NVD. The n-grams from these sources were extracted both from the raw sources and cleaned
sources. The n-gram sets were compared to find patterns in the language used in these sources,
as seen in tables 4.2 and 4.3. Complete lists of top n-grams can be found in the Appendix 9.2.
After comparing the two sources, the common n-grams inGithub issues that are not common
in NVDwere removed fromNVD n-grams. The goal is to filter NVD n-grams to only contain
security related n-grams. The NVD security n-grams filter the Github issues and remove any
issues not containing security n-grams. The result was a dataset with a high degree of vaguely
security related issues. This process creates insight into the data that will be learned from
in the training stage. The n-gram filtered dataset can be used at later stages as training data
if it is of high quality, which can be ascertained by manually checking a uniformly sampled
subset.

34

4.4 Exploratory Data Analysis

Top Word Unigrams Descending Order
NVD (filtered) Github
allows js
vulnerability error
attackers node
improper version
arbitrary file
cve com
web lib
site using
execute use

Table 4.2: Unigrams: single terms with no spaces.

Top Word Bigrams Descending Order
NVD (filtered) Github
remote attackers node modules
allows remote github com
cross site youtube dl
execute arbitrary usr lib
cve cve py line
denial service usr local
site scripting https github
cause denial steps reproduce
attackers execute framework versions

Table 4.3: Bigrams: pairs of terms separated by a space.

4.4.3 Document Similarity Scoring
One samplingmethod that was attemptedwas tf-idf document source scoring. Previous work
could not be found in academic papers, but it was considered an interesting experimental
approach for ranking the relevance of a document. Tf-idf scoring firstly calculates tf-idf
vectors on the corpus corresponding to each data source and normalizes the vectors using
the L1-norm. The averaged sums of the tf-idf vectors produce an averaged tf-idf vector. Each
issue fromGithub is then scored with each of these vectors and the tf-idf vector that produces
the highest score is chosen as the issues’ source. The issues that were predicted to derive
from NVD but were actually from Github were considered interesting and sampled out. The
documents with a score lower than the median were discarded as being irrelevant and scores
that were too similar between the Github score and NVD score were also discarded. The
NVD tf-idf score as such had to be distinctly higher than the corresponding Github tf-idf
score. The tf-idf score describes the amount of corpus specific terminology the text contains,
which enabled finding documents that are as unique as possible. These samples were found
to contain a substantially higher proportion of security related issues.

35

4. Data

36

Chapter 5

Models

The Baseline section establishes a simple initial document classifier model to see if the prob-
lem statement seems solvable with NLP. Following the baseline implementation, more com-
plex models are constructed in neural networks. Finally, the evaluation process for model
comparisons is described.

5.1 Baseline
It is pervasive within machine learning to create a simple baseline early in the development
phase in order to form some initial assessments about the problem’s nature. The baseline
model should primarily be used to explore how di�cult the chosen problem. The baseline
will also provide a base for comparison with more complex architectures.

5.1.1 Logistic Regression
A binary logistic regression classifier on tf-idf vectors was chosen in order to establish what
a basic model could achieve in terms of classification strength. Later on, the more complex
models will be compared to this classifier in order to gain context as to how it performs. A
neural network will often perform better than a logistic regression classifier, but it cannot
be assumed to be true.

5.1.2 Silver Standard
The data annotations needed for the project is di�cult to outsource to other annotators
as expertise in the computer security domain is required. It was quickly ascertained that
a silver standard of high quality is essential to compensate for the lack of outsourcing. A
logistic regression classifier was trained on a subset of the gold standard found in Subsection

37

5. Models

3.3.5 and evaluated on another subset. The classifications demand a high degree of certainty;
probability scores above 95% or below 5% were chosen. It was deemed that 5 percent data
uncertainty was low enough that the mislabeled data will largely be ignored or not have a
large impact on the training. These silver observations are then added to the training pool
together with a small subset of NVD-data labeled as security-related. The model is then
retrained using the new training pool as its training input. This iterative process improves
the model slowly while building a silver standard.

The silver standard generated through the logistic regression pseudo labeling was not
used to train the neural network in the end. The gold standard training data used to acquire
the silver standard could not be used for testing as it was biased and had been seen by the
logistic regression model. In the end, a larger test set was prioritized over a silver standard
training set in order to improve confidence in the evaluations.

The silver standard generated through the use of issue tags and NVD data also possesses
some bias since it is in part derived from user reported vulnerabilities and does not contain
unreported vulnerabilities.

5.2 Model Architectures
We intend to further expand on security text classification with a di�erent NLP approach,
specifically the Hierarchical Attention Network (HAN) architecture built on RNNs and at-
tentionmechanisms. While the problem statement is similar to the previously discussed SRN
study (Palacio et al., 2019), the purpose is to explore alternative solutions to this problem,
evaluate on a proper gold standard annotated by us, and put the task into context through
benchmarking. With an implementation of the SRN model at hand, benchmarking and
proper evaluation can be found in the Results chapter 6. We also intend to lay some ground-
work for SSL approaches. The Model Architectures section covers the theoretical basis for
the neural networks implemented, specifically CNN, HAN, and VAT.

5.2.1 Convolutional Neural Network
Convolutional Neural Networks were initially developed for the computer vision domain.
Like many other machine learning techniques, CNNs have been adapted for the text domain
with great success. It has been shown to be e�ective on the text domain to a similar degree
as LSTMs and GRUs(Lopez and Kalita, 2017)(Bai et al., 2018).

CNNs use a kernel to mask over the input data and output a single value at each step as
seen in Figure 5.1. The weights of the kernel are used to calculate the output value. In the case
of CNNs in NLP, the kernel size is typically limited to word n-grams (a number of words) by
the number of embedding dimensions.

CNNs can be tricky to tune hyperparameters successfully, for more information on good
practices refer to the article by Zhang and Wallace (2017).

38

5.2 Model Architectures

Figure 5.1: The figure shows how the kernel (in red) calculates one
of the output cells (red highlight on the right grid). Kernel is size 3x3
meaning that with a step size of 1, there will be four steps in total.
The output shape is therefore 2x2

5.2.2 Attention
Attention originated from the sequence-to-sequence modelling problem, such as machine
translation, in the text domain. Previously, sequence-to-sequence problems were often solved
by using an encoder and decoder on an input sequence and predicting a fixed length output
sequence. An encoder is responsible for mapping the words of a sentence into a fixed length
context vector in another space. The decoder receives the vector and maps it back to natural
language space. The encoder and decoder are neural networks. The fixed length restriction
in this approach was shown to decrease performance when used on longer sentences.

Attention in its first iteration (Bahdanau et al., 2014) predicts one word at a time while
only looking at the subset of the input sequence with most perceived importance. Attention
has an encoder and a decoder. The decoder takes a context vector for each word instead of
per sentence. In this implementation, the attention layer is built with a bidirectional LSTM
and therefore combines hidden states forward and backward.

A myriad of variants have been developed since attention’s inception, including the self-
learning variants, for example the Transformer architecture(Vaswani et al., 2017).

Figure 5.2: Example of attention mechanism both for word level
and sentence level attention. The red word highlights indicates rele-
vance to the sentence. The red highlights to the left of each sentence
shows the relevance of each sentence to the document. Grey or non-
highlighted words are deemed irrelevant to the core message of the
document.

39

5. Models

5.2.3 Hierarchical Attention Network
Hierarchical Attention Network (HAN) for document classification was first introduced by
Yang et al. (2016). The paper proposes a model based on a hierarchical structure that tries to
mirror the structure of a document, by having one level focusing on the words and one level
focusing on the sentences. The implementation of HANused is based on themodel described
by Yang. A word encoder embeds the words into vectors, which are then passed on to an
attention layer that extracts the most meaningful words for the sentence into a summarized
sentence. The authors of the paper note that characters could be used to generate the word
vectors as an additional level instead of directly using word embedding. The sentences go
into a sentence encoder followed by a sentence level attention layer. The sentences build a
succinct document vector representation. Both levels of the structure consist of one encoder
and one attention layer. The output of the model, which is a document vector, then goes
through a softmax layer to get a probability for the classification task. This structure can be
viewed in Figure 5.3.

Figure 5.3: The structure of HAN.

Themain model investigated in this thesis uses a HAN classifier, using LSTM as encoders
and simple attention with context as its attention layers.

The first layer of the HAN architecture is the word encoder. Just like the first attention
variant by Bahdanau in 2014, HAN uses a GRU sequence encoder. A GRU has two types of
gates: the reset gate and update gate. The purpose of these gates is to modify the hidden state

40

5.3 Semi-Supervised Learning

transition. The update gate controls what is kept and removed from the old state as well as
what information to add when updating to the next state. The reset gate controls how much
information from the previous state to forget(Nguyen, 2018).

Following the word sequence encoder, the output is passed into a word-level attention
layer. For HAN, Yang et al. (2016) engineered attention with context to:

discover when a sequence of tokens is relevant rather than simply filtering for
(sequences of) tokens, taken out of context.

The word annotation hit is inputted into a one-layer multilayer perceptron with weight Ww
and bias bw to extract the corresponding hidden state uit , using tanh as the activation func-
tion. The weight αit is calculated with a word-level context vector uw attention scheme and
is normalized with a softmax function. Lastly, a sentence vector si is computed as a weighted
sum of the word annotations and their calculated weights. Attention with context can be
viewed in the following equation.

uit = tanh (Wwhit + bw)

αit =
exp(u>it uw)∑
t exp(u>it uw)

si =
∑

t

αithit

(5.1)

It is possible to generalize this approach to character and sentence level attention as well.
In the case of sentence attention, which is used in HAN, the final output is an concise docu-
ment vector.

The document vector is used for document classification using a softmax function.

5.3 Semi-Supervised Learning
Most neural network models are using supervised learning, which are trained with already
labeled data. For every data instance fed into the model during training, the data have a
corresponding label attached to it. Semi-supervised models di�er in that in addition to the
labeled observations, they try to take advantage of unlabeled data as well.

The main semi-supervised learning approach tried in this thesis is Virtual Adversarial
Training (VAT). VAT is a regularizing method modifying the loss-function, making it de-
ployable in an existing model. To better understand VAT, basic Adversarial Training (AT) is
first explained.

5.3.1 Adversarial Training
Adversarial Training is a supervised method based upon creating adversarial examples. It was
first introduced by Goodfellow et al. (2014b). The adversarial examples are created by mod-
ifying existing examples with a small perturbation in a direction that makes the model mis-
classify the adversarial example with as high degree as possible. The idea behind the method

41

5. Models

is to use observations that are very close in input space, but very far away from each other in
the model output space. If these points exists and the model has not trained with adversar-
ial examples, then there exist small perturbations that will make the classifier misclassify by
adding the perturbation to the example. By letting a model train on these adversarial exam-
ples the model can learn to regularize and generalize better. These perturbations are often
too small for a human to notice.

Adversarial Training modifies only the loss function, making it applicable on already
existing models. Denote x as the input, y as the label paired with x, θ as the parameters
of the model, θ̂ as the parameters with a backpropagation stop, and r as a small uniformly
sampled perturbation with the same dimension as x. The ε is a hyperparameter that restricts
the absolute value of r. The adversarial loss Ladv can then be viewed in equation 5.2. Stopping
the backpropagation in θ̂ means that the backpropagation algorithm should not be used to
propagate the gradients in the case of θ̂.

Ladv(θ) = − log p(y|x + radv; θ)

radv = arg min
r,||r||≤ε

log p(y|x + r; θ̂)
(5.2)

5.3.2 Virtual Adversarial Training
Virtual Adversarial Training (VAT) is an extension on Adversarial Training making it acces-
sible in a semi-supervised environment(Miyato et al., 2015). It works similar to Adversarial
Training, but instead of using the labels to determine how the perturbation should be cre-
ated, it tries to follow the direction of the gradient using an approximation. This is done by
calculating the Kullback-Leibler divergence (DKL) between the probability distribution of
the input and the probability distribution of the input plus a small random perturbation.

The DKL between two discrete probability distributions P andQ on the same probability
space χ is defined as

DKL[P||Q] =
∑
x∈χ

P(x)log(
P(x)
Q(x)

The VAT cost is calculated using the equation 5.3, using the same variables as denoted in
Adversarial Training with the addition of DKL as the Kullback-Leibler divergence.

Lv−adv(θ) = DKL[p(·|x, θ̂)||p(·|x + rv−adv; θ)]

rv−adv = arg max
r,||r||≤ε

DKL[p(·|x; θ̂)||p(·|x + r; θ̂)]
(5.3)

In the equation, the probability distributions are denoted as placeholder distributions,
p(·| . . .). The actual distribution used will vary depending on the problem.

A classifier is trained to be smooth by minimizing equation 5.3, which can be considered
to making the classifier resilient to worst-case perturbation(Miyato et al., 2015).

42

5.3 Semi-Supervised Learning

VAT in Text Classification

VAT in text classification was first proposed by Miyato et al. (2016). It expands VAT into the
text domain. Since text basically is a sequence of words, the algorithm needs to be updated
to handle sequences instead of just raw input.

Denote s to be a sequence containing word embeddings, s = [v̂1, v̂2, . . . , v̂k] where v̂i is a
normalized word embedding using the equation 5.4.

v̂i =
vi − E(v
√

Var(v)

E(v) =
K∑

j=1

f jv j ,Var(v) =
K∑

j=1

f j(v j − E(v))2

(5.4)

The word embeddings need to be normalized to avoid making the perturbations insignif-
icant by learning embeddings with very large norm. In equation 5.4, E is the expectation and
Var is the variance.

InAdversarial Training for text classification, the updated loss function for sequences can
be seen in equation 5.5. The variables are used in the same way as previous subsections, as
in equation 5.2 and in equation 5.3, but with the addition of ∇ being the gradient calculated
e�ciently during backpropagation and N being the number of labeled entries in the dataset.
The symbol ∇x is the gradient using the observation x during backpropagation. Figure 5.4
illustrates embedding perturbation as is used in VAT on text.

Ladv(θ) = −
1
N

N∑
n=1

log p(yn|sn + radv,n; θ)

radv = −εg/||g||2

g = ∇s log p(y|s; θ̂)

(5.5)

By using a sequence of word embeddings as the input instead of the sequence of the
tokenized words, applying the perturbations obtained from the VAT-calculation directly on
the embeddings will create adversarial examples suitable for text, as shown in figure 5.5.

In VAT for text classification the approximated virtual adversarial perturbation is calcu-
lated using the equations in Equation 5.6. This is done at each training step. The number of
labeled and unlabeled examples are denoted as N ′, but otherwise the same variables are used

43

5. Models

Figure 5.4: VAT perturbation of the embedding values for the word
represented by the red star into the value represented by the green
star. The embedding value is still very similar, but the value in value
space no longer necessarily matches any word in word space. The
red dots represent some other arbitrary words as embedded values
in 3d vector space.

as in equation 5.2, Equation 5.3 and in Equation 5.5.

Lv−adv(θ) =
1
N ′

N ′∑
n′=1

DKL[p(·|sn′; θ̂)||p(·|sn′ + rv−adv,n′; θ)]

rv−adv = εg/||g||2

g = ∇s+dDKL[p(·|s; θ̂)||p(·|s + d; θ̂)]

(5.6)

44

5.4 Neural Networks

Figure 5.5: Left picture shows a simplified picture of embeddings
with HAN, right picture shows the perturbed embeddings with
HAN. Dim shows the output dimension of each layer and y is the
output of the network.

5.4 Neural Networks
After establishing a simple baseline Logistic Regression, the results suggested that the prob-
lem could be solved with machine learning. At this point, more complex model architectures
were considered. There are di�erent advantages to recurrent neural networks (RNNs) and
convolutional neural networks, as stated in Yin et al. (2017). Previous work use CNNs in the
context of security text classification (Palacio et al., 2019).

We chose to implement a HAN model utilizing a RNN layer. This was in part because a
recent study, which proposed the SRNmodel, had already established that CNNs were e�ec-
tive in this classification domain at this time. The study only compared against variations of
itself and did not leave test data to allow benchmarking, we found there was room to further
explore both the potential of CNNs and RNNs in this task. The CNN model is a publicly
available implementation of SRN made by the authors, which only requires some extra lines
of code to make work. The model itself is there in its entirety but the hyperparameters are
not tuned the same as their private versions. In this thesis, we aim to do the SRN model
justice with our own hyperparameters and benchmark against the same testsets for both our
HAN model and our version of SRN.

5.4.1 Hierarchical Attention Network
The HAN architecture consists of a word level section followed by a sentence level section.
The model can be seen in Figure 5.6. The input to the model is the text document data. The
first layer is a frozen embedding layer, mapping each word to the corresponding stored em-

45

5. Models

bedding values. This is followed by a spatial dropout layer, first proposed by Tompson et al.
(2014), which randomly discards a fraction of the words in each input text. This method has
previously been shown to reduce overfitting. The model also makes use of normal dropout,
helping reduce overfitting by randomly dropping output from a fraction of the neural net-
work’s cells.

The LSTM is a CuDNNLSTM optimized for Nvidia GPUs for quicker training, which
leaves more room for hyperparameter tuning. The next layer is attention with context at a
word level. The attention layer keeps only the most important words of each sentence in the
document text. The word encoder model described above is input to a time distributed layer
along with sentence divided document text.

A bidirectional LSTM at a sentence level is followed by attention with context on a sen-
tence level, meaning that the most relevant sentences of each document will remain.

Figure 5.6: Figure showing the layer structure of HAN. The time
distributed layer applies the word model on each sentence in a doc-
ument.

5.4.2 Alpha SecureReqNet
The SRN implementation lacks an embedding layer and instead maps the document text
data to their embedding values, reshapes the result, and feeds the embedding text into the
neural network as input along with the max sentence length. The way embedded text is fed
into the neural network is e�ectively the same as in the HAN model because the embedding
layer in HAN is frozen, which means the weights cannot be changed during training. For

46

5.5 Evaluation

illustrations and more details about this model, refer to the research paper on SRN(Palacio
et al., 2019).

The first layer is a 7-gram convolutional layer, with a kernel size of seven words by the
embedding dimensions. All the convolutional layers use a ReLU activation function. The
resulting 32 vector feature maps are then fed into a max pooling layer, which is responsible
for down sampling the patches of a feature map, taking the maximum value of each patch.
The flatten layer takes the pooled tensor and flattens it into a one dimensional vector. The
vector is reshaped to (32,1,1) followed by a 5-gram convolutional layer. Another max pooling
and flatten layer resulting in a 64 feature column matrix. Three 3-gram convolutional layers
followed by another max pooling and flatten layer to fully connect the vector.

Themodel has dense layers that serve to reduce the number of features and dropout layers
to reduce overfitting. The final layer is a dense layer with an output dimension of 2 and the
activation function is softmax. The reason softmax is used is that the prediction is chosen to
be multiclass classification with two classes: the security and non-security class. Multiclass
classification with two classes is often not needed as the same result can be achieved with a
binary classification, the authors of the model may have good motivation to do so. This is in
contrast to the previous models, where the prediction value was binary with one dimension.
The output of SRN has been adjusted into a 1 dimension prediction at a later stage for con-
sistent and more easily interpreted results. The typical output will be 1 or 0 instead of (1,0)
or (0,1).

It is worth noting that the number of trainable features in the model in total is slightly
below 100k with a training set of size slightly above 100k. When there is less training data
than features in a model, the model may not able to learn the optimal hidden states.

5.4.3 Hierarchical Attention Virtual Adversarial Net-
work

The HAN architecture is also expanded with a VAT-implementation. Hierarchical Atten-
tion Virtual Adversarial Network (HAVAN) still retained the HAN-layer structure, but with
some extra SSL steps added to it. The embeddings are normalized using the formula in Equa-
tion 5.4. The calculation of Lv−adv of Equation 5.6 is then added to the loss function as well as
the option to perturb the embeddings of the model during a train step. In HAVAN both la-
beled and unlabeled data is used during training, making it an SSL-based approach. Labeled
data is used for the standard loss function, while both unlabeled and labeled data are used
for the VAT loss function.

Since the problem investigated in this thesis is a binary classification problem, Bernoulli
distribution is used as the distributions in Equation 5.6. The model can be viewed in Figure
5.7.

5.5 Evaluation
Evaluation is intended to measure the performance of the finished, trained model. The use-
fulness of this model can be interpreted from the results below using the following methods.
For benchmarking a model, F1 score is a valuable asset as it takes both precision and recall

47

5. Models

Figure 5.7: Figure showing the layer structure of HAVAN (HAN
with VAT). Perturb is a perturbation that is added to the embed-
dings.

into its calculations. AUROC is used to plot the prediction results. In the evaluation, it is
important to calculate the statistical significance of the results.

5.5.1 Metrics

The classifiers were evaluated on a test set of Github issues from the large user tagged, mixed
source dataset, and separately the held-out gold standard data and the followingmetrics were
recorded: precision, recall, and F1 scores for the positive and negative class. The relevant class
for these metrics is primarily the positive class that encompasses security related text. Pre-
cision, recall, and F1 score are often used in scientific studies and will give more meaningful
context to a predictor’s performance than a simple accuracy score. There are several reasons
to avoid accuracy, the most prominent being the way it can misrepresent performance on
unbalanced test datasets. If only 1% of issues are security related, a model will achieve 99%
accuracy by naively classifying none of the data as security related.

The mean and standard deviation of the evaluations per batch is intended to accurately
represent the results. In the initial models, precision of security classifications was seen as one
of the most important aspects, as a model with many false positives will waste a lot of human
resources. A high precision classifier provides not only usefulness in industry applications,
but also provides early insight into the di�culty of the task. While precision is essential,
high recall is also important when satisfactory precision has been achieved. The final model
comparisons will therefore use F1 score for security related classification.

48

5.5 Evaluation

5.5.2 Area Under the Receiver Operating Character-
istics

The evaluation was also plotted as an Area Under the Receiver Operating Characteristics
(AUROC). The curve is used to interpret how distinct the distributions for true positives
and true negatives are. The overlap in the distributions describe di�culty in classifying the
class correctly(Narkhede, 2018). AUROC has the benefit of comparing a random positive
observation and seeing if it was classified as more positive than a random negative observa-
tion. This allows for a better representation of softer judgement that is useful for example
if one wishes to use soft classification in the form of probabilities or scores relating to being
positive or negative.

5.5.3 Statistical Properties
In order to quantify how well the classification results will represent performance on a larger
dataset, statistical significance must be established. The size of the test data must be large
enough to be able to make statements about the classification performance as a whole with
at least 95% confidence.

5.5.4 Datasets
The evaluation consists of two datasets: Debricked Labeled Test Set andGithubUser Labeled
Test Set. The sets are annotated under di�erent policies, which will bring clarity as to how
well the models detect more subtle signs of vulnerabilities. It also answers the question as
to how well the model generalizes to other definitions of security. It is expected that the
Debricked dataset is much more di�cult and is not expected to produce good results. The
model is trained on data similar to the Github User dataset and as such, it should perform
much better on the Github User Labeled test set.

49

5. Models

50

Chapter 6

Results

The evaluation results for each model will be presented in this section.
The comparisons of interest are:

• Utilization of training data - how much classification performance is gained from hav-
ing a larger amount of training data?

• Weak Detection - do some models perform better on the less strict criteria defined in
the annotation guidelines?

• Convergence rate - how quickly does the model learn the problem?

• Sensitivity to hyperparameter tuning.

There are two test sets used in the final evaluation of each model, User Labeled Test Set
and Debricked Test Set. The results on these test sets can be seen in Table 6.1 and Table
6.2. Since we care more about the performance on the security related data, we prioritize the
results on the security class above the macro average score.

As can be seen in Table 6.1, the best model when evaluating on community or user tagged
Github issues is either HAN or the simple Logistic Regression. HAN achieves higher F1 score
for security related content, while Logistic Regression was able to achieve slightly better
precision. Note, there is low variance in performance when comparing the tested models on
this test set.

When evaluating on the data annotated by the guidelines presented in this thesis, we
observe that the HAVAN model is superior on this test set 6.2. The F1 score of HAVAN
is only a few percent above HAN, but the precision is much higher. The highest recall was
achieved by logistic regression but at the cost of much lower precision.

In Figure 6.2, the 95% confidence interval of the security-related results are evaluated.
Observe that the Debricked Test Set evaluation is less accurate because there are much fewer
observations in this test set. In future work, it would be interesting to expand this set in
order to improve the correctness of the evaluation.

51

6. Results

User Labeled Test Set Precision Recall F1 score N
LogisticRegression
non-security related 65% 99% 79% 555
security 99% 42% 59% 514

macro average 81% 72% 69% 1069
SRN
non-security related 66% 99% 79% 555
security 97% 44% 61% 514

macro average 81% 71% 70% 1069
HAN
non-security related 68% 99% 80% 555
security 97% 49% 65% 514

macro average 82% 74% 73% 1069
HAVAN (HAN w/ VAT)
non-security related 66% 99% 79% 555
security 97% 44% 61% 514

macro average 82% 72% 70% 1069

Table 6.1: Table showing best results for each model on User La-
beled Test Set. The User Labeled Test Set was annotated by users on
GitHub. Bold entries shows the best result for security classification
in each column.

The AUC scores can be seen in Table 6.3. Observe that the User Labeled Test Set achieves
much better AUC scores and thus shows a muchmore distinct separation of the distributions
of security and non-security data in comparison to Debricked Labeled Test Dataset. Note
that the models are optimized for maximum validation accuracy, where the validation set
contains User Labeled observations. The logistic regression approach achieved the best AUC
score for both test set, closely followed by HAVAN. The Figure 6.1 shows ROC Curve of
HAVAN on both test sets.

6.1 Statistical Significance
The confidence interval for the error on positive prediction was not too promising on the
Debricked Test Set, as can be seen in Figure 6.2b. The confidence interval was quite large,
which could be attributed to the small number of security related issues in the test set. Lack of
human resources for annotating Github issues meant that this problem was not easily solved.
In the future, we would like to expand this set to allow evaluation with more certain results.
On the other hand, the confidence interval on the User Labeled Test Set was much smaller,
meaning the evaluation is more precise.

52

6.1 Statistical Significance

Debricked Test Set Precision Recall F1 score N
LogisticRegression
non-security related 92% 92% 92% 835
security 40% 39% 40% 112

macro average 66% 66% 66% 947
SRN
non-security related 91% 89% 90% 835
security 30% 36% 33% 112

macro average 61% 62% 61% 947
HAN
non-security related 91% 97% 94% 835
security 57% 33% 42% 112

macro average 74% 65% 68% 947
HAVAN (HAN w/ VAT)
non-security related 92% 98% 95% 835
security 75% 35% 48% 112

macro average 83% 67% 71% 947

Table 6.2: Table showing best results for each model on Debricked
test set. The Debricked test set was annotated by us, by using the
AnnotationGuidelines in theAppendix. Bold entries shows the best
result for security classification in each column.

AUC
LogisticRegression
User Labeled Test Set 0.962
Debricked Test Set 0.729
SRN
User Labeled Test Set 0.955
Debricked Test Set 0.634
HAN
User Labeled Test Set 0.932
Debricked Test Set 0.666
HAVAN (HAN w/ VAT)
User Labeled Test Set 0.939
Debricked Test Set 0.707

Table 6.3: Table showing the AUC score for each model and test
set.

53

6. Results

Figure 6.1: Graphs showing AUCROC of User Labeled Test Set, and
AUCROC of Debricked Test Set on the HAVAN model.

Figure 6.2: Figure showing the average error on security related data
with its 95% confidence intervall. a) shows the User Labeled Set and
b) shows the Debricked Test Set. The y-axes represents the average
error, which is at most between 0 and 1, where 1 equals 100%. Note
that the scales in the two graphs are di�erent.

54

Chapter 7

Discussion

7.1 Data
In the exploratory data analysis stage, it was clear that the domains of NVD and Github
had little overlap. This is considered during training and evaluation, as the models train
primarily on NVD for security related text since security related Github issues are in short
supply. Despite these issues, the HANmodel was still able to achieve remarkable precision on
security issues on Github. The mediocre recall can be attributed to the diversity in security
related text and the many types of vulnerabilities that exist. It is possible that many types
of vulnerabilities that appear in the test set have not appeared in the training set or that the
text is phrased di�erently than CVE/CWE descriptions.

The results for Debricked Labeled test set and User Labeled test set vary greatly, with the
models performing consistently worse on the Debricked Labeled set. This can be attributed
in part due to the muchmore inclusive definition of security related, as seen in the Appendix.
The models are hyperparameter optimized to maximize the validation accuracy, and the val-
idation set contains a mix of data from a sample of the User Labeled set. The training data
does not contain any data labeled according to the annotation guidelines constructed in this
thesis. The User Labeled test set may be much easier to predict due to the security tagged
Github data mostly being similar to the text in NVD data. Note that the annotations for
Debricked Labeled test set do not consider discussion related to cybersecurity that is not in-
dicative of risk to be security-related by tag. This includes suggestions or questions regarding
security topics. It is possible that the models have trouble distinguishing security-related text
that actually indicates risk as well as the harmless text. To better train themodels to deal with
this type of wrongful prediction, this type of data likely needs to be present in the training
dataset.The User Labeled set has not been completely verified to be correctly annotated and
relies on accurate tags from Github users. The VAT based HAN model had the best preci-
sion on the Debricked Labeled test set security category, which may be attributed to useful
regularization making it more adaptable to problems similar to the training problem.

55

7. Discussion

Themodels evaluated do not use the comments of each Github issue, only the description
of the issue itself. This was done deliberately since the model should detect vulnerabilities
at an early stage, before it gets tagged as security related. A better performance on test data
could most likely be achieved by adding the comment texts to each Github data entry. It
is possible that the clues to vulnerabilities are hidden in the comment section. This could
lead to a lower recall as the model lacks context, but could also be one of the reasons why
the precision on Debricked Test Set is lower. The Debricked Test set was annotated only
based on the text in the title and in the description of the issue, while the model might
have learned something that most security related issues have in common in the description
even though it does not mention anything about security. Perhaps if the issues in Debricked
Test set were annotated with full context of comments, we would have labeled some of them
di�erently. Undiscovered vulnerabilities may exist in the safe class in training, validation,
and test datasets. While the text itself may not seem security related to a human annotator,
it is possible that the neural networks have found vulnerability patterns that may be di�cult
for humans to detect. Further analysis as to what issues are mislabeled could o�er insight in
regards to what is learned by the models.

7.2 Embeddings
The embeddings primarily used were created by Palacio et al. (2019). The intention was in
part to represent the SRN results as favorably as possible, as well as saving time training our
own embeddings. GloVe embeddings were temporarily tested as well with similar results. It
is possible that training our own embeddings specific for the security text classification task
can further improve the results presented in this thesis.

7.3 Evaluation
The model with the highest F1 score with proper hyperparameters ended up being the HAN
model without VAT, as noted in the Result section, for the User Labeled Test Set. The best
precision and F1 score on the Debricked Test Set is achieved by HAVAN. The claimed accu-
racy for SRN could not be achieved with the test data we used. Note that their open-source
implementation was used with our data cleaning and preprocessing. Embedding solution had
to be implemented by us as well. Hyperparameter tuning of the models was done to a near
identical amount to make the comparisons as fair as possible. We reached out to the authors
for their test data so we could benchmark against their claimed accuracy but were not able
to acquire it. Therefore, the SRN model may perform better with di�erent parameters or
cleaning.

Several models achieve high precision but with mediocre recall. It may be possible to
combine these models with an ensemble approach in order to achieve a much higher recall
without sacrificing precision. The ensemble approach would be reliant on themodels making
di�erent mistakes so that their combined recall would be higher.

It is possible to argue that some parties may prefer a high recall over precision if themodel
is relied on as a catch-all. Our models were not optimized for this situation.

56

7.4 Semi-Supervised Learning

7.3.1 Optimization and Training Philosophy
The classifiers are High Precision (HP) classifiers, prioritizing the precision on the security
class. A high precision on security will result in few false positives that would otherwise waste
precious time for cybersecurity personnel. This comes at the cost of lower recall meaning
that many vulnerabilities will be left undetected. HP classifiers provide several benefits since
they can be combined in an ensemble approach to increase recall on vulnerability detection
assuming that the HP classifiers make di�erent mistakes.

The results from training with varying hyperparameters gave widely di�erent results for
SRN, to a larger degree than HAN. It is possible that models that vary more in their re-
sults depending on hyperparameters have final results that are less representative of their
potential prediction scores. With this aspect in mind, the SRN model may have more room
for improvement than the HAN variant, which could provide context for its lower overall
performance. A sensitive model requires more tuning until it reaches similar scores to an
insensitive model and may result in more training time overall. Hyperparameter tuning is
expensive, so insensitive models are preferable when possible.

7.4 Semi-Supervised Learning
Our implementation of VAT was not able to provide much better results than a model with-
out it. Leveraging large unlabeled datasets is an endeavor that is worth continuing to pursue
as most data is innately unlabeled and the amount of data available plays a large part in the
learning potential of a given classification problem. Due to time constraints, the potential
of VAT may not have been fully explored as di�erent hyperparameters could be superior
compared to the hyperparameters that best fit the base HAN model.

7.5 Mistakes and Bias
The temporal domain is not considered when splitting test and train datasets. This could
give the models clairvoyant knowledge about future vulnerabilities, which could skew the
results slightly. Therefore, the results may be more representative of classification accuracy
of previously known vulnerability types. The test set was not engineered to contain every
type of vulnerability, which may bias the results. A larger test set minimizes these concerns
as more types of vulnerabilities will be present in a larger set.

The means of generating labeled data for training in su�ciently large quantities was
underestimated and ultimately resulted in using data that was already tagged as being security
related. Finding data that was related to computer security was time consuming. Few issues
on Github relate to security and even fewer are tagged as security related by a user. The
lack of balance in the distribution of security and non-security related Github issues meant
that acquiring su�cient security issues with uniform sampling would take a very long time.
From the uniformly sampled issues, only about 8% of the issues were vaguely security related
in content. The security related part of the training set had to use CWE/CVE descriptions
from vulnerability database entries.

57

7. Discussion

7.6 Ethics
There are several ethical issues that must be mentioned in the context of machine learning.
The data we use is taken from the internet without the creator having this use in mind. The
data is gathered legally, but taking advantage of other people’s work may be frowned up
depending on the context. We believe our project has had the ethical aspects in mind and
will serve the greater good.

In regards to the outsourcing of the data annotation process, we chose to opt out of
this option because it is di�cult to annotate without domain specific knowledge. We also
thought it was important to experience this process for ourselves so we could have a better
understanding for the work that goes into this step. We found that it was soul crushingly
tedious and we did not enjoy it. This new perspective gives us a great appreciation for the
work that goes into manual annotations.

58

Chapter 8

Final Thoughts

8.1 Conclusion
In this master thesis, we have expanded on the concept of using NLP for security text classi-
fication. While the problem of security text classification is undeniably a di�cult task, there
are still improvements that can be made and techniques to explore. We have proved the via-
bility of the HAN architecture, designed for documents, in the domain. The concept of SSL
in NLP in the domain of security has shown promising results, indicating that the vast unla-
beled data can be leveraged in this task. VAT improved the performance of classification on
the Debricked Test Set. The algorithms described can help reduce labeling cost and improve
open-source security through automation.

The best performance on the User Labeled Test Set was achieved by the HAN model
with 97% precision and 49% recall. In contrast, the best model for the industry test set (De-
bricked) was achieved by HAVAN at 75% precision and 35% recall. Considering that the
performance on the user labeled test set was very similar for all the models and the perfor-
mance varied substantially more for the industry test set, the HAVANmodel was considered
the best performing model in the end. The motivation behind this statement being that HA-
VAN performed very well on both test sets, but was the best model on the Debricked Test
Set which was considered a more di�cult set to classify.

8.2 Future Work
Though the results look promising, there are still a lot of improvements to investigate as
future work. We did not have time to implement and evaluate all the techniques and concepts
available, but suggest alternatives for additional research in this section.

The data cleaning step can be greatly improved by removing random noise such as tokens
that occur too often or too seldom. Tokens that are underrepresented will not be something

59

8. Final Thoughts

the model can learn from, for example those that occur only once. These tokens can be
replaced by an Unknown token that will be present in a meaningful amount of documents.
The same concept can be used to give value to numbers with a tag for perhaps years and
version numbers.

Transfer learning on a language model utilizing ALBERT could prove promising. The
more data available the more powerful this method should be.

The definitions of computer security risk that also counts potential exposures such as
memory leaks and crashes is di�cult to train for and the domains are somewhat di�erent.
Multiclass classification schemes may be more suited to the annotation guidelines that were
created.

Hyperparameter tuning is an unending process, leaving room for further optimization.
An interesting future prospect is to combine vulnerability detection algorithms with a

vulnerability classification model that can categorize the vulnerabilities by CWE descrip-
tions. It is also possible to incorporate means of scoring these vulnerabilities with a Com-
mon Vulnerability Scoring System (CVSS) that aims to measure the severity of vulnerabili-
ties(Jormakka, 2019).

8.2.1 Transfer Learning
Recent work(Devlin et al., 2018) in NLP shows that transfer learning is more than promising.
As transfer learning revolutionizedmachine learning in other fields such as Computer Vision,
it has in the past two years gained a lot of traction in NLP.

Just recently, ALBERT was released by Lan et al. (2019) and showed promising results
that more parameters does not always translate to just better results. Even more recently
T5 was released and showed that any natural language problem could be transformed into a
sentence prediction problem(Ra�el et al., 2019).

As future work, it would be interesting to see what fine-tuning T5 and ALBERT would
do for our results.

8.2.2 Semi-supervised learning
With the enormous amounts of unlabeled data available online, the prospect of trying dif-
ferent SSL methods in the future is enticing.

The Semi-supervised learning method evaluated in this thesis was Virtual Adversarial
Training. It mainly modified the loss function and was therefore possible to add to an exist-
ing model. Other SSL approaches studied were Semi-supervised Variational Auto-encoders
(SSVAE)(Xu et al., 2016) and Discriminative Adversarial Networks (DAN)(dos Santos et al.,
2017), but due to lack of time it was not implemented.

60

Chapter 9

Appendix

9.1 Annotation Guidelines
A policy was established in order to quicken the annotation process and ensure that similar
annotations were made. All data in the gold standard was annotated by one of the authors of
this thesis. The authors have moderate knowledge in the field of cybersecurity, a condition
that must be met in order to adequately label data as relating to computer security. Some
data was annotated by both parties and compared in the cases of mismatch to ensure the
annotations were similar.

The task of annotating the issues was both hard and tedious. A lot of the issues were
ambiguous and unclear, making it important to create a policy. An annotation guideline
was worked on to establish a unified labeling method. It was updated regularly during the
annotation phase whenever a new kind of case arose.

The following categories do not discriminate between questions, warnings, or other dis-
cussions about a certain topic. The text is annotated as the most severe category that accu-
rately describes it. The priority goes from Vuln being highest to Safe being lowest.

Vuln: Presence of known exploits, user reported vulnerabilities.
Risk: Commonly exploited methods such as: unrestricted user input, memory leaks, un-

expected/unintended r/w/e os/database access, overflows, user reported potential risk, seg-
mentation fault, access violation.

Caution: Breaking changes, breaking dependencies, breaking compilation, breaking up-
dates, installation issues, authentication problems, port or socket malfunctioning, firewall
issues service unavailable, site down, failed tests, out of memory, crash due to instabilities,
unexpected/unintended r/w/e os/database deny, broken links., unknown CPU usage (mostly
high usage with no obvious reason for it), incorrect mathematical calculations (with poten-
tial side e�ects), runtime errors, unknown memory issues, configuration problems of server,
error-flags concerning security, talks about computer security in some way.

Unsure: Unexpected behaviour, minor breaking changes (e.g new functionality that has

61

9. Appendix

Top Word Unigrams Descending Order
NVD (filtered) Github
allows js
vulnerability error
attackers node
improper version
arbitrary file
cve com
web lib
site using
execute use
cross src
service function
memory modules
bu�er https
scripting line
cause code
denial app
information new
sql usr
input issue
crafted build
access type
parameter test
unspecified http
allow like
earlier debug
neutralization users
bounds request
injection github
attacker object

Table 9.1: Unigrams: single terms with no spaces.

not been used in production in previous version), lack of confidence in its safety, UI bugs,
development mode only issues

Safe: Text does not cover topics concerning the categories above, such as issues asking
for help with potential programming mistakes.

62

9.2 N-Grams

Top Word Bigrams Descending Order
NVD (filtered) Github
remote attackers node modules
allows remote github com
cross site youtube dl
execute arbitrary usr lib
cve cve py line
denial service usr local
site scripting https github
cause denial steps reproduce
attackers execute framework versions
improper neutralization console log
arbitrary code npm err
improper restriction �f �f
bounds memory com apple
memory bu�er dylib �f
attackers cause file usr
operations bounds expected behavior
restriction operations lib python
web page react native
input web feature request
sql injection library frameworks
page generation linux gnu
neutralization input module js
generation cross index js
scripting xss bug report
allow remote src github
inject arbitrary java org
arbitrary web make sure
web script usr bin
script html latest version

Table 9.2: Bigrams: pairs of terms separated by a space.

9.2 N-Grams

9.3 Sample Text Data

9.3.1 Before Cleaning
"3.6.3: Wrong number format after copy
past action <p>Run <code>SELECTTO_NUMBER(’0.0000001969’, ’9999.9999999999’) FROM
dual</code>
 copy result to clipboard and past back to sql editor and you get 1.969E-
7</p>"

63

9. Appendix

9.3.2 After Cleaning
"wrong number format after copy past action run select to number from dual copy result to
clipboard and past back to sql editor and you get e"

9.4 Most Common Words In Clusters
Clusters Cluster 0: git : [(’site’, 468), (’web’, 421), (’page’, 337), (’cross’, 124), (’add’, 95)] nvd :
[(’site’, 16340), (’cross’, 15690), (’web’, 14419), (’scripting’, 13506), (’remote’, 12516)]

Cluster 1: git : [(’like’, 50097), (’use’, 43732), (’add’, 30520), (’way’, 29108), (’using’, 27821)]
nvd : [(’use’, 906), (’number’, 767), (’candidate’, 755), (’reject’, 754), (’consultids’, 754)]

Cluster 2: git : [(’function’, 46234), (’return’, 36355), (’code’, 29743), (’var’, 29735), (’error’,
25113)] nvd : [(’function’, 337), (’pointer’, 145), (’null’, 144), (’dereference’, 138), (’issue’, 121)]

Cluster 3: git : [(’version’, 66493), (’expected’, 58000), (’reproduce’, 55980), (’steps’, 52028),
(’behavior’, 40896)] nvd : [(’issue’, 137), (’os’, 110), (’linux’, 107), (’using’, 107), (’information’,
103)]

Cluster 4: git : [(’text’, 15564), (’like’, 13093), (’using’, 12237), (’html’, 11632), (’css’, 10889)]
nvd : [(’bu�er’, 8), (’issue’, 8), (’width’, 8), (’html’, 7), (’using’, 7)]

Cluster 5: git : [(’js’, 21429), (’node’, 16274), (’file’, 15831), (’webpack’, 15559), (’use’, 14492)]
nvd : [(’plugin’, 18), (’wordpress’, 12), (’module’, 11), (’wp’, 7), (’files’, 6)]

Cluster 6: git : [(’php’, 22225), (’error’, 21127), (’line’, 19804), (’version’, 19748), (’file’,
16532)] nvd : [(’php’, 351), (’allows’, 151), (’information’, 146), (’file’, 146), (’attackers’, 140)]

Cluster 7: git : [(’using’, 16351), (’window’, 13958), (’issue’, 13596), (’like’, 13333), (’version’,
12148)] nvd : [(’issue’, 44), (’does’, 41), (’linux’, 39), (’user’, 35), (’kernel’, 33)]

Cluster 8: git : [(’xcode’, 13946), (’version’, 13047), (’error’, 12325), (’ios’, 12197), (’build’,
12076)] nvd : [(’android’, 127), (’versions’, 80), (’id’, 64), (’product’, 61), (’privilege’, 54)]

Cluster 9: git : [(’error’, 20556), (’src’, 13511), (’version’, 13480), (’main’, 13039), (’run’,
11743)] nvd : [(’issue’, 64), (’discovered’, 63), (’kernel’, 47), (’linux’, 44), (’pointer’, 34)]

Cluster 10: git : [(’id’, 15958), (’type’, 15954), (’query’, 12266), (’version’, 11657), (’database’,
11496)] nvd : [(’id’, 359), (’user’, 351), (’users’, 206), (’use’, 184), (’password’, 166)]

Cluster 11: git : [(’com’, 64751), (’https’, 60539), (’github’, 41509), (’http’, 23746), (’issue’,
14004)] nvd : [(’com’, 43), (’https’, 41), (’http’, 30), (’issue’, 15), (’github’, 14)]

Cluster 12: git : [(’remote’, 272), (’memory’, 252), (’service’, 151), (’allows’, 150), (’allow’,
148)] nvd : [(’allows’, 58536), (’remote’, 50901), (’attackers’, 48861), (’vulnerability’, 36376),
(’improper’, 35862)]

Cluster 13: git : [(’app’, 8918), (’atom’, 8468), (’version’, 4396), (’js’, 4082), (’file’, 3947)] nvd
: [(’app’, 80), (’user’, 62), (’users’, 58), (’local’, 58), (’resources’, 51)]

Cluster 14: git : [(’file’, 45117), (’error’, 21490), (’version’, 21175), (’files’, 19919), (’using’,
18173)] nvd : [(’file’, 980), (’users’, 969), (’local’, 968), (’allows’, 575), (’files’, 546)]

Cluster 15: git : [(’react’, 30831), (’component’, 25160), (’using’, 13295), (’render’, 12735),
(’use’, 12213)] nvd : [(’component’, 27), (’issue’, 7), (’versions’, 7), (’vulnerable’, 6), (’a�ected’, 6)]

Cluster 16: git : [(’node’, 39042), (’js’, 37974), (’error’, 29139), (’modules’, 27661), (’lib’,
18784)] nvd : [(’module’, 74), (’node’, 65), (’js’, 52), (’information’, 49), (’exposure’, 44)]

Cluster 17: git : [(’server’, 25890), (’error’, 24841), (’http’, 18885), (’using’, 17925), (’request’,
17913)] nvd : [(’server’, 742), (’user’, 446), (’information’, 417), (’http’, 355), (’access’, 323)]

64

Bibliography

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling.

Behl, D., Handa, S., and Arora, A. (2014). A bug mining tool to identify and analyze security
bugs using naive bayes and tf-idf.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding.

dos Santos, C. N., Wadhawan, K., and Zhou, B. (2017). Learning loss functions for semi-
supervised learning via discriminative adversarial networks.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159.

Ferenc, R., Hegedüs, P., Gyimesi, P., Antal, G., Bán, D., andGyimothy, T. (2019). Challenging
machine learning algorithms in predicting vulnerable javascript functions. pages 8–14.

Github (2020). https://github.com/.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014a). Generative adversarial networks.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b). Explaining and harnessing adversarial
examples.

J. Pennington, R. Socher, C. D. M. (2014). Glove: Global vectors for word representation.
https://nlp.stanford.edu/projects/glove/.

Jormakka, O. (2019). Approaches and challenges of automatic vulnerability classification
using natural language processing and machine learning techniques.

65

https://github.com/
https://nlp.stanford.edu/projects/glove/

BIBLIOGRAPHY

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

Kocmi, T. and Bojar, O. (2017). An exploration of word embedding initialization in deep-
learning tasks.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). Albert: A
lite bert for self-supervised learning of language representations.

Lopez, M. M. and Kalita, J. (2017). Deep learning applied to nlp.

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold approximation and
projection for dimension reduction.

Miyato, T., Dai, A. M., and Goodfellow, I. (2016). Adversarial training methods for semi-
supervised text classification.

Miyato, T., ichiMaeda, S., Koyama,M., Nakae, K., and Ishii, S. (2015). Distributional smooth-
ing with virtual adversarial training.

Narkhede, S. (2018). Understanding auc - roc curve. https://towardsdatascience.
com/understanding-auc-roc-curve-68b2303cc9c5.

Nguyen, M. (2018). Illustrated guide to lstm’s and gru’s: A step
by step explanation. https://towardsdatascience.com/
illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21.

NIST (2020). National vulnerability database. https://nvd.nist.gov/.

Palacio, D. N., McCrystal, D., Moran, K., Bernal-Cárdenas, C., Poshyvanyk, D., and Shene-
fiel, C. (2019). Learning to identify security-related issues using convolutional neural
networks.

Ra�el, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and
Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text
transformer.

Rocca, J. (2019). Understanding variational autoen-
coders (vaes). https://towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73.

Ruder, S. (2016). An overview of gradient descent optimization algorithms.

Synopsys (2018). 2018 open source security and risk analysis synopsys cybersecurity research
center. https://www.synopsys.com/content/dam/synopsys/sig-assets/
reports/2018-ossra.pdf.

Synopsys (2019). 2019 open source security and risk analysis synopsys cybersecurity research
center. https://www.synopsys.com/content/dam/synopsys/sig-assets/
reports/rep-ossra-19.pdf.

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bregler, C. (2014). E�cient object local-
ization using convolutional networks.

66

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://nvd.nist.gov/
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-19.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-19.pdf

BIBLIOGRAPHY

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

Xu, W., Sun, H., Deng, C., and Tan, Y. (2016). Variational autoencoders for semi-supervised
text classification.

Xuan, J., Jiang, H., Ren, Z., Yan, J., and Luo, Z. (2017). Automatic bug triage using semi-
supervised text classification.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and Hovy, E. (2016). Hierarchical atten-
tion networks for document classification. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1480–1489, San Diego, California. Association for Computational
Linguistics.

Yin, W., Kann, K., Yu, M., and Schütze, H. (2017). Comparative study of cnn and rnn for
natural language processing.

Zhang, Y. and Wallace, B. (2017). A sensitivity analysis of (and practitioners’ guide to) con-
volutional neural networks for sentence classification. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
253–263, Taipei, Taiwan. Asian Federation of Natural Language Processing.

Zou, D., Deng, Z., Li, Z., and Jin, H. (2018). Automatically Identifying Security Bug Reports via
Multitype Features Analysis, pages 619–633.

67

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-01-24

EXAMENSARBETE Semi-Supervised Text Classification
Automated Weak Vulnerability Detection
STUDENTER Anton Duppils, Magnus Tullberg
HANDLEDARE Marcus Klang (LTH), Emil Wåreus (Debricked)
EXAMINATOR Pierre Nugues (LTH)

Textklassificering på delvis
kategoriserad data: Automatisk svag
sårbarhetsdetektering i text

POPULÄRVETENSKAPLIG SAMMANFATTNING Anton Duppils, Magnus Tullberg

Viktiga system digitaliseras. Beroendet på öppen källkod ökar. Övervakning av
diskussion kring kod behövs för att snabbt detektera sårbarheter. Neurala nätverk
kan automatisera detektionen genom att utnyttja diskussion kring projekt med öppen
källkod.
Idag innehåller mer än 99% av kodbaser öp-
pen källkod enligt en ny rapport från Synopsys.
Utöver det så innehåller 40% av de undersökta
kodbaserna öppen källkod med sårbarheter som
är äldre än 10 år. Beroendet av öppen källkod
gör det svårt att hålla koll på alla potentiella sår-
barheter, samtidigt som en sårbarhet i koden kan
ge förödande effekter. Att detektera och följa an-
vändarrapporterade sårbarheter är viktigt, då de
flesta sårbarheterna som utnyttjas kommer från
tidigare rapporterade svagheter.
Vi presenterar en ny maskininlärningsmetod för

binär textklassificering; Är texten relaterad till
datasäkerhet? Algoritmen kan användas för att
detektera om ett foruminlägg är säkerhetsrelat-
erad. Algoritmen är ett neuralt nätverk med en
uppnådd precision på 97% på säkerhetsrelater-
ade inlägg och lyckas hitta 47% av de totala sår-
barheterna. Den inledande träningen är väldigt
datorkraftskrävande, men när träningen är klar så
är klassificering förhållandevis billig.
Det valda neurala nätverket är ett så kallat

Hierarchical Attention Network (HAN), som är
en arkitektur framtagen för textdokumentsklassi-

ficering. Vårt nätverk använder även Virtual Ad-
versarial Training (VAT) för att utnyttja omärkt
data under träningen. Det grundläggande kon-
ceptet med VAT är att lura nätverket att begå
misstag under träningen för att få ett mer ro-
bust nätverk i slutändan. Modellen HAVAN - som
använder HAN med VAT - jämfördes med tidi-
gare kända starka klassificerare, såsom en logis-
tic regression-klassificerare såväl som ett convolu-
tional neural network. HAVAN visade sig ge bäst
resultat givet liknande optimeringsmöjligheter.

Resultaten påvisar att maskininlärning kan nyt-
tjas effektivt för att detektera sårbarheter genom
textklassificering. Framtida studier kan svara
på följande frågor: Vilka sorters sårbarheter är
svåra att detektera och varför? Kan HAVAN-
arkitekturen visa hög prestanda på standardiser-
ade problem? Vad är optimeringsbegränsningarna
för de neurala nätverken? Slutligen så ber vi
läsaren att fundera över vart framtiden kan leda
oss. Hur tror du att den ständiga framfarten inom
maskininlärning kommer att förändra världen?

	Introduction
	Task
	Contribution
	Outline

	Related Work
	Security Identification
	Document Classification
	Semi-Supervised Learning
	Adversarial Networks
	Virtual Adversarial Training
	Self Learning
	Variational Autoencoders

	Theory
	Language Model
	Word Representation
	Word Embedding
	Term Frequency-Inverse Document Frequency

	Dimensionality Reduction
	Truncated Singular Value Decomposition
	Latent Semantic Analysis
	T-Distributed Stochastic Neighbor Embedding
	Uniform Manifold Approximation and Projection

	Introduction to Machine Learning
	Supervised, Unsupervised, and Semi-supervised Learning
	Clustering
	Overfit and Underfit
	Batches and Epochs
	Gold Standard
	Activation Function
	Backpropagation
	Evaluation Metrics

	Optimization
	Stochastic Gradient Descent
	Hyperparameters

	Data
	Data Acquisition
	Data Annotation
	Data Cleaning
	Exploratory Data Analysis
	Distributions
	N-Grams
	Document Similarity Scoring

	Models
	Baseline
	Logistic Regression
	Silver Standard

	Model Architectures
	Convolutional Neural Network
	Attention
	Hierarchical Attention Network

	Semi-Supervised Learning
	Adversarial Training
	Virtual Adversarial Training

	Neural Networks
	Hierarchical Attention Network
	Alpha SecureReqNet
	Hierarchical Attention Virtual Adversarial Network

	Evaluation
	Metrics
	Area Under the Receiver Operating Characteristics
	Statistical Properties
	Datasets

	Results
	Statistical Significance

	Discussion
	Data
	Embeddings
	Evaluation
	Optimization and Training Philosophy

	Semi-Supervised Learning
	Mistakes and Bias
	Ethics

	Final Thoughts
	Conclusion
	Future Work
	Transfer Learning
	Semi-supervised learning

	Appendix
	Annotation Guidelines
	N-Grams
	Sample Text Data
	Before Cleaning
	After Cleaning

	Most Common Words In Clusters

