
MASTER’S THESIS 2020

Secure Updating of
Configurations in a System of
Devices
Jens Mellberg

ISSN 1650-2884
LU-CS-EX: 2020-04

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-04

Secure Updating of Configurations in a
System of Devices

Jens Mellberg

Secure Updating of Configurations in a
System of Devices

Jens Mellberg
dat14jme@student.lu.se

February 10, 2020

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Mattias Nordahl, mattias.nordahl@cs.lth.se

Examiner: Boris Magnusson, Boris.Magnusson@cs.lth.se

mailto:dat14jme@student.lu.se
mailto:mattias.nordahl@cs.lth.se
mailto:Boris.Magnusson@cs.lth.see

Abstract

Large scale systems of interconnected IoT devices are widely used for
performing important tasks, all from data collection and analysis to per-
forming work tasks in certain fields. Such systems are often subject to
frequent updates, due to e.g. changes in functionality, bug fixes or se-
curity issues. Releasing a new update means having to update many
individual devices, that might not be available at the same time, while
minimizing any loss of data or system downtime. Furthermore, updates
need to be verified as trusted in order not to compromise the integrity
of the system. Additionally, as software is deployed in a system of de-
vices, issues such as incompatibility between devices, and other informa-
tion regarding the combined software of the involved devices may not be
identifiable until after initial deployment. Therefore, it would be prac-
tical to use a format that allows for documenting these issues together
with the software after its release without changing the software itself or
compromising the verification process. This thesis presents a design for
ensuring the integrity of software components taking part in updating a
system of devices. A format that allows for continuous addition of meta
information to a software after its release is also presented. The results
are then evaluated against a real life scenario.

Keywords: IoT, PalCom, automatic update, update verification

2

Acknowledgements

Special thanks to Boris Magnusson and Mattias Nordahl for supervising the project
and providing valuable feedback when writing this thesis as well as helping me set
up and understand the PalCom framework. This work was done as part of the
SSF-project RIT17-0035 Smarty.

3

4

Contents

1 Introduction 7

2 The updating process: Previous work 9

3 Problem Formulation 13
3.1 Approach . 14

4 PalCom 15
4.1 General Overview . 15
4.2 Technical Details . 16
4.3 Summary . 19

5 Cybersecurity threats and prevention 21
5.1 Man-in-the-middle Attack . 21
5.2 Malware . 22
5.3 Checksums and Hash functions . 22
5.4 Digital Signatures . 23
5.5 Summary . 24

6 Solution Design 25
6.1 Checksum Verification . 25
6.2 PAR-file Format . 27

7 Implementation 29
7.1 PalCom detailed description . 29
7.2 Checksum Validation . 31

7.2.1 Testing . 33
7.3 Par-file implementation . 34

8 Evaluation 39

5

CONTENTS

9 Conclusion 41

6

Chapter 1

Introduction

Digitalization has greatly simplified many aspects of our society by using software
to perform tasks for us. It has also given rise to many systems of computer de-
vices, continuously running software, all while communicating with other devices
and servers, often referred to as "always on" systems. A big share of these are
connected wirelessly which adds additional challenges because of devices not always
being available due to connection issues, being in use or turned off, amongst other
things. One of the major issues is updating these devices. In particular a system of
devices with dependencies amongst themselves might have to be updated simultane-
ously, but some devices might be unavailable at the time. Nevertheless we want the
system to update smoothly without downtime. This means that the system must be
able to fully update every aspect of itself while still maintaining full functionality.
Additionally, to support scaling of the system structure, there is a need to be able
to fetch updates from a close source and not rely solely on a central database. At
the same time this also has to be done in a secure way, since there is always a risk
of attackers trying to inject malicious data posing as an update. This is even more
relevant on a wireless system due to all data being transmitted through the air,
giving outsiders an easier access to infiltrate the system.

Another issue with using software in a large scale system is that of compatibil-
ity with other components. After a new software version is released, other users
may discover that it is not compatible with certain architectures or other running
software. Additionally, we would like to allow users to "sign" the software when it
has been tested in their particular setting. We therefore want to be able to add these
kind of annotations to the affected software version incrementally without changing
the software itself.

As a way of simplifying developing applications for IoT systems by abstracting
certain aspects, middleware are often used. Middleware provides additional services

7

1. Introduction

to software and connects devices together and are often used as underlying software.
One kind of middleware aiming to ease the updating process is the PalCom archi-
tecture model, developed at Lund University. Our design will be integrated on the
PalCom architecture. PalCom includes a configuration server that will release new
configurations to its clients which they should update to. A PalCom configuration is
a set of software (referred to as services) that the client is instructed to run. These
software will be fetched from the server, or for efficiency, from other clients as well.
They must therefore be verified to ensure that they have not been tampered with
and are correct.

The security of a software system is arguably one of its most important aspects,
since an intrusion could compromise the system as a whole and even shut it down.
This could have devastating effects if the system performs an important task like for
example keeping hospital records. The system might also include sensitive personal
information that might be leaked in case of a breach. Software security is also a
field that needs constant research and improvement since the opposing side, mali-
cious attackers, is constantly coming up with new methods.

Finding a secure and efficient way of implementing and evaluating these security
aspects will be the primary focus of this thesis.

8

Chapter 2

The updating process: Previous work

The problem of updating software has been around since computers started making
their way into mainstream use. To better illustrate the problem, we will look into
the challenges posed and see how they have been solved previously in various set-
tings and how one can make sure that the new software is trustworthy.

In the days before the internet distributing and updating software was done man-
ually by disk or CD-Rom. Security was less of an issue then since the steps from
acquiring the updates to installing them was carried out by humans and the process
was much less automated. With the introduction of the internet however, updat-
ing software became more convenient while also introducing new challenges. New
versions of applications are now available online for easy access but this informa-
tion is now sent over a public network (the internet) and is vulnerable to external
modification. In the current day, software updates are often completely automated.
An example is smartphone applications which can be set to automatically update
themselves as long as certain conditions are met. Package Managers[1] can also be
used, which deals with software in packages. These contain information such as
the software’s dependencies and allows for automatic installing and updating. This
opens up even more vulnerabilities as the user are completely detached from the
process and can not aid in detecting anomalies.

A common way of automating the update process is to have the application reg-
ularly request updates from an update server, where the DNS name of the server
is hard-coded into the application beforehand[3]. The update is then fetched and
installed, typically requiring the software to do a complete restart. This is usually
acceptable for most applications used by the average user. To prevent other attacks
this process also requires extra measures taken such as authenticating the server
(DNS responses can be spoofed) and validating the software received.

9

2. The updating process: Previous work

A solution to one of the more complex scenarios of the updating problem is posed by
researchers at the University of Erlangen–Nürnberg, where they explain and attempt
to give a solution to dynamically updating the software of embedded systems[2]. De-
vices in these kinds of systems may be under heavy resource constraints as well as
having software running that is constantly doing important tasks. The system could
be designed to run for a very long time and regular updates to the software might be
required to fix issues or adapt to changing circumstances. Doing a complete restart
of the software when updating is usually undesirable in these scenarios since it would
lead to either losing the current application state or having to spend resources to
saving and restoring it. Their solution is to gradually update the code by identifying
the changes in the updated code and analysing the current execution of the program
to see how the changes will affect the flow. This involves advanced analysis of the
device’s memory such as checking if the current running function is affected by the
update or if any functions present on the call stack will have their return addresses
altered.

This problem becomes even more complex when we are working with big inter-
connected IoT systems that are constantly communicating data between the devices
in the system. If a new update is released we would ideally want to instantly update
every device to the new configuration without any downtime since it could result
in loss of gathered data. But that is not realistic. Each device will finish their
individual update process at different times and some devices might even be offline.
To illustrate the problem, consider the following example:

An IoT system consists of a central server and several client devices that collect
data. The clients send their data unencrypted to the server for analysis and logging.
The system is later updated to include encryption for heightened security. This will
lead to one of the following problem scenarios:

1. If the server is updated before the clients it would start to expect encrypted
data and treat each message as encrypted, but the devices are still running
the old configuration, and will send the data unencrypted.

2. If the clients are updated before the server they will start sending encrypted
data while the server will expect normal messages.

Both cases will lead to the server being unable to process the data and it would be
lost, or cause the system to behave unexpectedly. Wißbach et al. (2016) provides
their solution to this, which involves each device having their own Local Update
Manager (LUM)[7]. New updates are first sent to the LUMs of all affected com-
ponents of the system. These will communicate with each other and wait until all
affected LUMs have correctly received their update. The LUMs then instructs the
components to stop communication with the affected devices and starts the updat-
ing process on them synchronously. The LUMs will keep communicating with each
other and when all updates have been completed successfully, the system will resume
its active state.

Their solution does however require that all affected devices are eventually online

10

simultaneously, which might not be possible in an environment where devices are
often disconnected from the system. Therefore PalCom provides an alternative so-
lution for the problem which is to update the systems components asynchronously,
while letting the server run the old and the updated configuration simultaneously.
This removes the coordination needed to assure that each device is able to complete
the update at the same time, and any unavailable or busy device can simply delay
the update while still maintaining a fully functional system. The drawback is that
the system components have to be designed in such a way that both versions can be
handled simultaneously. This might be impossible in certain cases, for example if a
resource cannot be accessed by two processes simultaneously. Although it appears
that such a design is possible in most systems.

11

2. The updating process: Previous work

12

Chapter 3

Problem Formulation

We will use a running example throughout the thesis, based on a real life scenario
from e-health.

ItACiH[6] is a project that focuses on it-support for healthcare when patients are
treated in their homes. Traveling nurses use mobile tablets with a software appli-
cation that contains their visiting schedule, patient information, test results etc.
They will perform check ups and medical tests on the patients and can register and
view the results on their tablets. All results are sent to the hospital where they can
be analysed by doctors. This system is built on top of the PalCom framework and
both the patient’s and nurses’ tablets are connected to a central configuration server.
Note that this is a simplified example, real life applications could include additional
servers. Lets imagine a scenario where the software used in the nurses’ tablets has
recently been patched to fix a bug and this update should now be distributed to all
the affected tablets. When these updates are received by the tablets, they are in-
stalled and begins executing. The communication process must be designed in such
a way that it allows the server to communicate with tablets running both the old
and new configuration. The tablets need to verify that the software they received is
indeed the correct one that the configuration server has assigned them. The admin-
istrator of this system then discovers a compatibility issue between the software and
the operating system that the tablets are running that causes the software to crash
unexpectedly. He then needs a way to attach this information about this issue to
the software without changing it in a way that will disrupt the verification process.
In addition to compatibility, it is useful to have the option for the administrator
of approving that the software is now tested in this particular system. These at-
tributes are associated with the software, but are not necessarily fit to be part of the
software itself. Therefore we want a representation that allows us to incrementally
add information to the software even after its release. To summarize, this thesis will
attempt to solve the following problems:

13

3. Problem Formulation

• Each device needs to verify that the software they received is authentic and of
the correct version.

• We need a way of attaching external information to each software without
changing the software itself or breaking the authenticity validation.

Approach
We will start by looking closer at the PalCom architecture to see how the updating
process is performed in more detail and look for potential vulnerabilities to determine
at which step a validation check should be performed. Then we will provide a general
overview of cybersecurity threats to get an idea of what we need to consider before
implementing the update verification in the architecture. This includes researching
common exploits and attacks as well as existing verification methods to ensure that
the correct data gets delivered. Later we will implement this verification as well as
the functionality for adding additional data to the software incrementally after its
release. Finally we will evaluate the results and provide a conclusion.

14

Chapter 4

PalCom

To continue further we need to know more about how the PalCom architecture is
structured. The system is far too big to describe it in detail and therefore we will
focus only on the parts that are relevant for the thesis.

General Overview
PalCom acts as a middleware for simplifying connecting devices together in a system
and handles the low level communication between devices as well as updating and
instantiation of the software that they are running (this software is referred to as
services by PalCom). We will not go into detail about how the connections between
devices are established and what communication protocols are used and instead fo-
cus on how services are deployed and updated. This process is built around a central
configuration server and client devices that are connected together in a system. The
configuration server keeps a table with information about which configuration each
of the system’s devices should currently be running. Note that, in the context of the
PalCom framework, we define a configuration as a set of services of specific versions
that a device should run. This server will act as the coordinator of the system and
will communicate to each device which configuration to run. To update the system,
new configurations can be assigned to the client devices. The server will then com-
municate this to all affected devices and they will in turn download needed services
as specified by the configuration and start running the new versions.

When a device does not already have a service in the particular version that is
included in its configuration, it should be able to download it from other available
devices. A device should potentially accept and store any service that is sent to it for
future use. This means that we do not know if the currently stored services contain
corrupt data or malicious code. Thus some sort of verification becomes necessary

15

4. PalCom

to ensure that the services can be trusted and are safe before they are executed.

The PalCom framework includes tools for visualizing, administrating and debug-

Figure 4.1: The configuration server keeps a table of which
configuration each device should be running. Whenever a
change in the table is made, the configuration server notifies
the devices about this and provides the configurations.

ging purposes. One of these is the PalCom Browser which lets you explore all
currently active devices on your PalCom network and what services they are run-
ning. PalCom services are self-descriptive. They contain an API that the PalCom
browser can visualize in a graphical interface. Users can interact directly with the
system services to try out and learn how they function. We can also simulate devices
with another PalCom tool called "TheThing". This tool will start a virtual device
that will act in the same manner as a physical device. We will use both of these
tools for making sure services and configurations are received correctly later.

Technical Details
The PalCom framework is written in Java and uses its own format for serializing
and unserializing java classes such that they can be sent between devices, called
PON (PalCom Object Notation)[5]. The framework provides tools to convert every
PalCom class to and from this format. This is how a configuration (and all other
PalCom objects) will be sent to a device from the configuration server. The device
will store the configuration in its local file system in the PON-format so that it can

16

4.2 Technical Details

Figure 4.2: Device A has received a configuration. This con-
figuration contains a reference to Service A (note that it is a
reference and not the actual service). Device B then provides
this service to Device A. Device B is an untrusted source and
the service needs to be authenticated.

be loaded each time it boots up. The services are currently implemented as jar files
and their content is not restricted so that users of the system are free to develop
suitable services to fit the purpose of the system.

The term "service" can mean and refer to several things depending on the context
in which it is used, for example:

• A general type of software. Devices can host and run services

• The implementation of a specific service, i.e a jar-file.

• An instance of a running service.

To help dealing with this ambiguity and to be able to be precise when referring
to things, the PalCom framework uses the following hierarchy of terminology:

• Kind
This refers to what kind of resource something is, e.g. a device, service, con-
figuration etc. This is the most fundamental distinction and all latter terms
will be built on top of the previous ones.

• Type
A kind of resource, such as a service, is of a certain type. PingService and
CameraService are both services, but of different types.

17

4. PalCom

Figure 4.3: The GUI of the PalCom Browser tool. The
browser provides a visual interface for interacting with ser-
vices and configurations

• Version
A type can appear in different versions.

• Instance/Role
A specific version of a given type can exist in multiple instances. We give them
roles (or instance names) to distinguish them.

Additionally there can be references to a resource, which is an object that
"points" to a specific resource and is separate from the resource itself. These are
used by configurations to point to their resources. Note that this is not a hier-
archy in the sense that they are Java classes inheriting each other but expresses
aggregation. To better understand the hierarchy, we provide these examples. A
ServiceTypeVersion is the actual implementation of a service. It is of a specific
kind (service), type (e.g camera) and version (1.0). In practice it is the service jar file.
We can reference it with a ServiceTypeVersionReference. Similarly, we can refer-
ence a configuration implementation with a DeviceConfigTypeVersionReference.
To generalize these for all kinds, we use the terms TypeVersion and TypeVersionRe-
ference.

A service implementation will also contain a reference to itself. It is used for compar-
isons with references contained in configurations to determine if a matching service
(ServiceTypeVersion) exists on the device. An update interaction will begin with

18

4.3 Summary

the configuration server notifying a device that its configuration has been changed
or that a new one has been added. Alternatively a device will request this informa-
tion when it first comes into contact with the server. The configuration server will
then inform the device of which configurations it has been assigned according to the
servers internal table. These are referred to as bindings and a device is bound to cer-
tain configurations. The client will then store these as pending while it gathers the
required resources. The bindings include resource references to the configurations
which in turn include references to the services. The device will use the information
from each reference to construct a unique file path for where the resource should be
located. If a file for each specific file path exist, the device will conclude that it has
all the required resources, otherwise it will request any missing resource. When all
required resources has been acquired, the configuration will switch from pending to
active and all services will be loaded. Somewhere during this update process each
acquired resource needs to be verified.

Summary
To summarize, the PalCom architecture consists of a Configuration server and sev-
eral connected clients. To inform the clients of which software to run the server will
send configurations to each client. A configuration contains references to specific
software versions (services), which the client can use to request the actual service
implementations. Since we cannot trust that a source actually provides the service
pointed to by the reference, we need some way of validating its authenticity to avoid
executing potential malware.

19

4. PalCom

20

Chapter 5

Cybersecurity threats and prevention

Before implementing the validation in the system it is necessary to have some back-
ground knowledge about cybersecurity, about which exploits exist and how to pre-
vent them.

Security attacks are becoming more and more sophisticated, meaning that secu-
rity itself has to keep evolving to protect against these new threats. This, in turn,
forces attackers to invent newer exploits again, essentially creating a never ending
cycle of keeping both fields in need of constant improvement. This makes computer
security a fairly unique field in the sense that it is more dependent on how the secu-
rity exploits are developing rather than simply advancing the field by learning more
about it.

Given this relationship, it is impossible to prove that a system is completely se-
cure. The closest we can come is to argue how the system is safe against the attacks
that are known. Therefore this section will include a description of common attacks
and establish which of them that PalCom might be vulnerable to.

Man-in-the-middle Attack
The Man-in-the-middle Attack (MITM) is an attack where a third party will insert
themselves in between the two communicating devices. It will then receive the mes-
sages sent from either of the devices, read them or possibly change their contents
and then pass it on to the original receiver. All while the two devices believe they are
communicating directly with each other. This can be achieved if the message when
the parties exchange keys are able to be intercepted. The attacker might acquire
the correct encryption key from party A and then proceed to send its own key to
party B. Party A will then believe that this is B’s key and send messages that are

21

5. Cybersecurity threats and prevention

encrypted with it. The attacker can then decrypt these, manipulate them, and then
send a response to B encrypted with their actual key.

A way to defend against this attack is to somehow have predetermined keys that
never are exchanged over an insecure channel.

Malware
Malware is a widely known security threat. This is software designed to hurt the
system it is running on and can come in many forms. Protecting against this threat is
not always straight-forward and vulnerable points in the system need to be analysed,
such as carefully analysing when software that has been received from other sources
is executed.

Checksums and Hash functions
Checksums are a way of detecting errors in a chunk of data, by producing a sequence
of control bits from the data. If this sequence matches the expected one, it can be
assumed that the data is correct. One of the common ways of achieving this is by
using Hash functions. Hash functions produce a seemingly random string (called
a hash) from an input by performing a sequence of mathematical operations on it.
It is critical that the original input data can not be produced from the hash (or at
least that it takes an unreasonable amount of time to do so). A well designed hash
function should also have few collisions, meaning that different data sets should be
very unlikely to produce the same hash. If collisions were to be able to be found,
a malicious piece of software could be made, which produces the same hash as the
original program. The error detection will then fail to detect anything and the
program will be assumed to be correct. There are three ways of looking at the
security of hash functions, these are:

• Pre-image resistance
Given the hash, it should be hard to find any data which produces that hash.

• Second pre-image resistance
Given an input, it should be hard to find a different input which produces the
same hash.

• Collision resistance
It should be hard to find any two different inputs which produces the same
hash. Figure 5.1 shows the probability of finding collisions in the hash function
Sha-256 for the number of hashes performed. As we can see, closer to 6 ·
1044 hashes needs to be performed to guarantee finding a collision, which will
take an extremely long time to generate. This makes Sha-256 a reliable hash
function when used for hashing input values with high entropy inputs (and will
be for many more years unless an internal flaw is discovered[10]). A side note

22

5.4 Digital Signatures

is that having a hash function that performs well at these resistances does not
make it a fitting candidate for all purposes. For example, using Sha-256 for
password hashing is not recommended since it takes a short amount of time
to calculate and passwords generally have a fairly low entropy. This makes it
weak against attacks such as dictionary attacks[11].

Figure 5.1: Sha-256 collision resistance. Probability of a col-
lision given a number of hashes.

Avoiding collisions completely is not reasonable as that would require the total
amount of output hashes to be the same as the amount of possible inputs, which
is highly impractical. Instead the security is based on having the collisions be hard
enough to find that it will be infeasible using the current technology. The frequently
used size of the output ranges from 128 to 512 bits. Figure 5.2 shows a collision
found with the Sha-1 hash function. The two pdf documents produces the same
hash and was discovered by researchers at Google[9]. This requires developers to
keep up with any recent news about flaws found in hash functions.

Digital Signatures
A digital signature is similar to a hash function in that it produces a sequence of
bits from the data, but with the addition of asymmetric encryption. One party will
sign a chunk of data using an algorithm that produces an output from the data and
their private key. This signature is then sent alongside the data and any receiver
can use the corresponding public key to verify that the signature belongs to the
data. As opposed to using hashing, digital signatures guarantee that the message
was sent from the correct source, since creating the signature requires knowledge of
the private key.

23

5. Cybersecurity threats and prevention

Figure 5.2: Two different Pdf documents producing the same
Sha-1 hash.

Summary
Data sent over any network is always susceptible to being compromised. In the case
where it is crucial that the data has not been changed since the message was sent,
a proper key distribution protocol should be used. If we want to receive a specific
piece of data, but we don’t know if we can trust the sender, validating the data with
a hash checksum or a digital signature is preferred. Security based on hash functions
relies on the function producing a value from the data which would be infeasible to
recreate with a different set of data. We can then compare the hash produced from
the data with the validation hash. A digital signature allows us to verify that the
data has been signed by a specific source using asymmetric key encryption.

Using checksums requires us to acquire the correct hash for the expected data be-
forehand by a trusted source. On the other hand, a digital signature can validate
that an arbitrary data set is sent by a specific source but it requires us to have access
to the sources public key.

24

Chapter 6

Solution Design

This chapter will provide a high level description of the solution, with the following
chapter going into more detail and motivating the specific implementation choices.

Checksum Verification
The whole updating process and verification described so far poses multiple prob-
lems that need to be addressed. However, to address them all would be too large of
a scope for this thesis. Therefore we will limit our scope somewhat. Specifically, we
will make the assumption that the communication between the update-server and
the clients is secure and everything that has been received from the server can be
trusted.

A device will receive configurations from the trusted server. These configurations
will contain references to services that the device should be able to fetch from any
source that might have a copy of the service. This is where the first apparent secu-
rity vulnerability in PalCom’s updating scheme comes in. If clients should be able
to accept services that come from any source, we need a method of ensuring that the
services are authentic before execution. The only services that should be executed
are those which are referenced by the current configuration, which has been received
from the trusted server.

As we know from the previous section, using a secure hash function to produce
a checksum for a file, and validating it against the expected sum, will make sure
the file is the expected one. We receive the configuration from the server which
then contains the references to the included services. We will therefore include the
hash of the services in these references which means that we can trust that the
validation hash is that of the correct file. We will calculate the same hash of the

25

6. Solution Design

service before activating it and compare this against the verification hash contained
in the reference as depicted in fig. 6.1. This procedure will ensure that no corrupt
services are ever allowed to execute. We will use Sha-256 for the checksum hashing
since creating a malicious service that produces the same checksum as the correct
one will require finding a second pre-image, which for Sha-256 currently is infeasi-
ble. An alternative solution would be to use a digital signature and let the server
sign each service. But this alternative, would, however, require distributing keys
and does not provide any extra security. Attacks such as Man-in-the-Middle do not
need to be given any consideration in this case, as the service is already sent from
an untrustworthy device. Additionally, as an attempt to detect corrupt services at
an earlier stage, we will calculate the hash on a service and validate it with the hash
contained in its own reference as soon as it is received.

In case a corrupt service is located, the client will remove it from its file system
and later request to fetch a copy, preferably from another source. Future additions
to this could include notifying other clients of a potentially corrupt service being
circulated to avoid further spread.

Figure 6.1: The verification process. Device A has a reference
to a service which contains a validation hash. As A receives
the service, the hash for the service is calculated using the
hash function. The calculated hash is then compared with
the validation hash from the service reference to verify that
they match.

26

6.2 PAR-file Format

PAR-file Format
To provide a way to add additional information about services, such as compatibility
issues, we introduce a new format: Par-files (’PalCom Archive’ inspired by the java
equivalent, Jar files). These will be the standard format used for representing a
service or a configuration. Each Par-file is an archive file that consists of a main
part and a corresponding metadata part. In the case of a service, the main part
would be that service i.e. a jar file and the metadata will contain information such
as compatibility and creator id. The metadata can be updated incrementally by
users even after the main part itself is finished and released since they are separate
from each other.

Figure 6.2: Par-file format, it includes the content file along
with metadata information about the file

As this metadata could still contain crucial information, we will include a check-
sum verification for it. In order to allow additions to be made, the reference will
specify a certain part of the metadata that it trusts and will only verify against
this part. Any following information will be ignored but can be considered in a later
distribution of the configuration when it has been verified to be trustworthy. Chang-
ing the configuration to include this new information could be seen as the trusted
administrator approving or "signing" these additions with the new checksum. This
allows users to freely add new information and still keep supplying the Par-files to
other devices without causing their verification to fail.

27

6. Solution Design

28

Chapter 7

Implementation

This chapter will provide a more detailed description of the implementation details.

PalCom detailed description
To understand the implementation process, we will provide a more detailed descrip-
tion of the PalCom functionality, including names of classes and their function.

All incoming and outgoing communication regarding configurations and their in-
cluded content by the configuration server is handled by a class called the Configurat-
ionDBService. It is implemented as a regular PalCom service and therefore any de-
vice that has PalCom installed can be used as the server. It is set up to communicate
with the ConfigurationManagerCommunicationService that should be present on
every device. Each device has a number of Managers that handle specific parts of
the system, most relevant are the ConfigurationManager and ResourceManager.

• The ResourceManager is responsible for storing and retrieving resources from
the devices, it is the only gateway to directly access files on the devices in-
ternal file system and its tasks include storing resources, retrieving resources,
checking if a resource exists etc.

• The ConfigurationManager is responsible for the logic behind configurations.
It handles receiving configurations and deploying these on the device and re-
quests the resources contained in the configurations. It contains a reference
to the ResourceManager so it can save the configurations to the file system.
The ConfigurationManager also has a communication service, which handles
communication to the server.

29

7. Implementation

To inform a client that its binding has changed, the configuration server will send
DeviceConfigBindings to it. The device will store these as pending and can use
them to extract references pointing to all the resources it will need to acquire, i.e.
the configurations and its services. It will then check with the ResourceManager if
the resources contained in the references exist in its local file system already. This is
done by retrieving the Kind and Type from each reference included in the bindings
and using these to construct a unique file path. Each Kind will be a folder which
in turn contains folders for each Type. These folders include an _index file which
contains a Map of references paired with the corresponding file name of the correct
version of the Type. The file system structure is visualized in figure 7.1. If a map

Figure 7.1: The file system structure. Each Kind will be
represented by a folder. Each Type will be a subfolder. The
index file will contain a mapping from references to the correct
version of the file.

entry for a reference exists the system will conclude that the device has the resource
already and move on. If the resource does not already exist a request will be sent
to retrieve it and then the same process will be run again. When all resources have
been acquired the device will load up the service and start to run on the new con-
figuration. The communication hierarchy between the classes can be seen in figure
7.2. This means that all relevant code for retrieving and initiating services from
the configurations is located in the ConfigurationManager class, and in some part
of this process a verification step needs to be implemented to make sure malicious
services get spotted.

30

7.2 Checksum Validation

Figure 7.2: Communication structure, the server
communicates with each client through the
ConfigurationManagerCommunicationService. The
internal class hierarchy communication is then as shown.

Checksum Validation
The configurations contain ServiceTypeVersionReferences pointing to the ser-
vices, and the system constructs a unique file path based on the contents of the refer-
ence to find out where the referenced service should be located. The ResourceManager
uses the function getResourceFile that takes a TypeVersionReference as param-
eter to retrieve the corresponding file. This function is used both for determining
whether the resource exists and retrieving the resource for execution. The function
will then retrieve the Kind and Type from the reference to find the correct folder for
the index file (as described earlier). The key-value pair containing the references and
service files is inserted when the resource is received from the source. This is done
through the addResource function which takes a TypeVersion parameter. It will
retrieve the reference to that TypeVersion by extracting it from the TypeVersion
itself and use the Kind and Type in the same way to store the actual file contents
in the file system.

The fact that the possibly malicious TypeVersion is able to provide its own ref-
erence for the mapping poses a security risk. An attacker could obtain a correct

31

7. Implementation

TypeVersion for a service which is used in a configuration and then edit the jar
file contents to whatever they like and distribute these to other clients. The ref-
erence extracted from this will then be unchanged and the client will believe that
the file is the correct one. This specifically is why the verification checksum is crucial.

The malicious service will be detected when a configuration containing a reference
to it arrives, i.e. before it is used. This should thus be safe since the code will in the
case of a malicious service never be executed. We leave it to future work to handle
available services that are not yet in use in a more optimal way.

The checksum validation step is implemented right before the device changes the
configuration from pending to active. By this point it has acquired all the ser-
vices and is about to start running them. Letting the ResourceManager handle the
checksum calculation is reasonable as it handles all the system resources.

Listing 7.1: Checksum Calculation
public synchronized String getFileChecksum(File file) throws

IOException {
return getFileChecksum(file.getContents());

}
public synchronized String getFileChecksum(byte[] content)

throws IOException {
MessageDigest digest;
try {

digest = MessageDigest.getInstance("SHA-256");
} catch (NoSuchAlgorithmException e) {

return "";
}
ByteArrayInputStream bis = new ByteArrayInputStream(

content);
byte[] byteArray = new byte[1024];
int bytesCount = 0;
while ((bytesCount = bis.read(byteArray)) != -1) {

digest.update(byteArray, 0, bytesCount);
}
bis.close();
byte[] bytes = digest.digest();
StringBuilder sb = new StringBuilder();
for (int i = 0; i < bytes.length; i++) {

sb.append(Integer.toString((bytes[i] & 0xff) +
0x100, 16).substring(1));

}
return sb.toString();

}

The getFileChecksum[7.1] function is placed in the ResourceManager and will,
given a file or a byte array of the file contents, calculate its Sha-256 hash as a hex-

32

7.2 Checksum Validation

adecimal string. Note that the PalCom system uses its own File-class instead of the
standard Java version and will include slightly different functions. We also added
the function validateResources to the ResourceManager which simply takes a set
of references and retrieves the referenced files and compares the produced hashes
with the string validation hashes contained in the references. The function will re-
turn a set of all the references that had a mismatch in the hashes. This validation
check will be performed in the ConfigurationManager just before deploying the
configuration as seen below.

Listing 7.2: Resource validation
TypeVersionReference[] corruptRefs = resourceManager.

validateResources(requiredResource)
.getTypeVersionReferences();

for (int i = 0; i < corruptRefs.length; i++) {
TypeVersionReference current = corruptRefs[i];
logInfo("Corrupt resource found in storage: The file

referenced ("+current.getUniqueName()+") does not
match its

given checksum)");
resourceManager.removeResource(current);

}

Testing
To test that the new functionality correctly performs its tasks and accepts services
that match the validation hash and discards services that do not, we have set up
some test scenarios.

In order to make sure that the validation functions themselves work correctly, a
manual test is set up where services are placed in a simulated file-system manually
beforehand. This works because when the ResourceManager only checks for existing
services by using the information from the references it has to construct a file path
to where the service should be located, and does not store any extra information if
the services were added by the system itself. A mock file-system is created and given
to a standalone instance of a ResourceManager. The system never communicates
anything directly upwards from the ResourceManager so this is all the set up that
is needed.

Three different services are placed in the file system, these are fully functional
services that can run on the current version of PalCom. The _index files which
contain the reference-service mapping are manually edited so that these references
now contain the validation hash attribute corresponding to the service. This is
needed because these references are compared to the actual ones when the system
looks for existing services. The hash value for one service is left incorrect for testing
purposes. Three configuration PON files are then edited to include hash values in

33

7. Implementation

its references as well and are read directly from the test program to retrieve the
corresponding ReferenceSet for testing the validation function. These three cases
are now tested.

• A configuration containing a hash value that correctly matches the services
This is the intended scenario for the system. The configuration references a
service which currently exists in the file system and the service is in the correct
state and should therefore be accepted by the system. This test passes without
an exception.

• A configuration containing a hash value that does not match the services
This represents a scenario where a malicious service has been distributed by
an attacker. The service is located in the correct location as referenced by
the configuration, but the file itself has been tampered with and produces a
different hash from the expected one. In this case the system correctly throws
an exception due to the produced hash and the validation hash not being
equal.

• A configuration containing a hash value that does not match the services but
the _index file contains a reference with a hash matching the services
This represents a scenario where an attacker has edited the service contents
and also edited the validation hash contained in the reference-service mapping
to match the corrupted service. (The reference for the mapping is retrieved by
the system from the service and is therefore also able to be tampered with).
Here the system does not even recognize the file as existing since the reference
from the configuration is no longer the same as the one in the map. Thus, no
damage will be done.

Par-file implementation
In the current implementation, a TypeVersion includes a byte array with its content
(e.g. a service or a configuration) and it is these classes in their PON format that are
communicated between the devices. This means that no changes have to be made in
regard to making the device communication work with the new Par format except
for making the byte array contain the Par file instead. The handling of the archiving
and extraction of the Par files needs to be kept consistent and we therefore introduce
a new class PARUtils with static methods to create a par file out of a content part
and its metadata part as well as methods for extracting the respective parts from
the Par file. The Par archive itself does not require any unique functionality and
to avoid reinventing the wheel we used the Apache Commons Compress[16] library
to compress and extract the Par files using the same protocol as Tar files. These
methods, compress and unPar (for compression and extraction), are listed below.

Listing 7.3: Compression
public static byte[] compress(byte[] file, byte[] meta,

String filename) throws IOException {

34

7.3 Par-file implementation

ByteArrayOutputStream bytes = new
ByteArrayOutputStream();

TarArchiveOutputStream out = new
TarArchiveOutputStream(bytes);

addToArchiveCompression(out, file, filename);
addToArchiveCompression(out, meta, "metadata");
out.close();
return bytes.toByteArray();

}

private static void addToArchiveCompression(
TarArchiveOutputStream out, byte[] content, String name)

throws IOException {
TarArchiveEntry entry = new TarArchiveEntry(name);
entry.setSize(content.length);
out.putArchiveEntry(entry);
out.write(content);
out.closeArchiveEntry();

}

Listing 7.4: Extraction
public static byte[][] unPar(byte[] file) throws IOException {

TarArchiveInputStream myTarFile = new
TarArchiveInputStream(new ByteArrayInputStream(file
));

TarArchiveEntry entry = null;
int offset;
byte[][] files = new byte[2][];
int counter = 0;
while ((entry = myTarFile.getNextTarEntry()) != null)

{
byte[] content = new byte[(int) entry.getSize()

];
offset = 0;
myTarFile.read(content, offset, content.length

- offset);
files[counter] = content;
counter++;

}
myTarFile.close();
return files;

}

The parameters and return values are kept as byte arrays and the actual writing
to the disk is handled by other classes. The unPar method returns an array of ar-

35

7. Implementation

rays and its usage might be unintuitive and therefore extra methods to extract the
content and metadata respectively as byte arrays have been added.

We will begin by implementing this format for the services. There needs to be
a way of creating the Par files to begin with, which would be done when the ser-
vice jar file has finished its development. The ServiceManager class is what han-
dles the service management similarly to the resource and configuration managers
and it seems reasonable to let it handle the initial creation of the service Par file.
The ServiceManager has a service which allows users to interact with it remotely
through the PalCom browser. This manager-service currently includes a command
for adding a service to the file system, and its usage could be seen as a way of adding
a finalized service to the file system of the configuration server. We will now add the
Par archiving process to this command. It will, given a service jar file, package this
into a Par file containing the service and an initialized metadata file. The format
of the metadata will be that of a key value map, where the current protocol is to
have a set of predetermined keys such as creation date and the device id of the
publisher. To allow users to still add information to the metadata without breaking
the verification, we will specify how many values to read from the metadata and
provide a checksum that matches these values only. We will refer to this as lines
even though each value is not necessarily stored as a different line in the format.
Anything contained after these lines will be ignored, but can be considered in a later
configuration containing a new checksum. The metadata checksum as well as how
many lines to read is added to the references.

The current metadata format is stored as text, which is required to start with the
version of the format followed by the hash value of the version number. This is to
allow for backwards compatibility in case the format is changed later on and needs
to be kept constant for future updates. An example of a metadata file containing
only the version would be:

Version:1.0:b0453560c8c1ed6f44df6b5373fb2ddf
a950a07614c965588e9deaaf220c8c65

Following this will be a PON representation of a list including all the key value pairs.
These are represented as MetadataEntry objects which include a key, a timestamp
of when it was added, a byte array containing the value and a hash. This hash will
be the hash of the line combined with the previous lines hash. You can think of it
as the recursive calculation

hashx = h(Linex + hashx−1)

Where h(x) is a hash function and hash0 = ε . This assures that any change in
the text will also change all future hashes. The reason for this format is to allow
clients to be able to retrieve the hash for any line without having to compute it
every time. This can be used for verifying that the data is correct before sending it
to another client that has requested it. As the values are stored as byte arrays, they

36

7.3 Par-file implementation

can originally be anything from a string to a PON object and it is up to the parser
to interpret this correctly depending on the key, and convert the values accordingly.
To work with the metadata we have added a Metadata class to represent it, which
can be retrieved from a Par file by calling a function in the PARUtils class. This
class includes functionality for parsing the text format into a list attribute for all
key value pairs. We represent this map structure as a list since it is important that
each line must stay in the order of their creation time so that the hash values never
change. Individual get-methods and set-methods will need to be added for each new
attribute as they are introduced and these will then iterate through the list and look
for the correct key, and then convert the value to the correct class. All values will be
returned as a MetadataValue class that includes both the value and the timestamp.
To ensure that the metadata does not return values that have not been verified with
the checksum, it will store a maximum line number for how far in the list it will
search. This can be set with a function call and should always be the same as what
is included in the reference.

Since the content from which to calculate the checksum on is now contained in
this Metadata class, we introduce a new interface ChecksumCalculator that only
consist of a method to calculate the checksum of a byte array. We change the
ResourceManager to include an instance of a Sha256Calculator to use for its cal-
culations. We then let the Metadata calculate its own checksum by creating a
method that takes a ChecksumCalculator and a line number and then returns the
resulting hash string from doing the iteration, hashes from the entries are calcu-
lated by adding the key, value and timestamp together with the previous line hash.
Add-methods will also require a ChecksumCalculator parameter as it also adds the
hash automatically for each new key value pair. The metadata is also separate from
the actual Par file stored on the disk, meaning that adding values to the metadata
class does not directly influence the file itself. To save any changes to disk we have
added a updateMetadata function to the ResourceManager that given a reference
to a Par file, will update its metadata file to the contents of a given metadata class.
When an instance of this Metadata class is created, it will make sure the format is
correct and all the internal hashes are correctly generated, otherwise it will throw
an InvalidFormatException. This enables us to detect potentially corrupt files be-
fore having a reference from a configuration for comparison and will prevent further
spread. The ResourceManager will now validate the content file and metadata file
separately using the checksums and line count contained in the references.

37

7. Implementation

38

Chapter 8

Evaluation

To evaluate how the implementation functions in practice, we will return to the
nurses’ tablet scenario and evaluate the results. This will be done by using the
included PalCom tools to simulate a real world interaction of the system. We start
by creating a new device to act as a client (a nurses private tablet in our scenario).
We then create another device that will act as the configuration server. We use an
example service to act as the newly patched patient record software and package this
into a Par-file for distribution. Since the PalCom system currently does not include
functionality for receiving services from other clients we will let the tablets retrieve
these from the server. We then create a new configuration that includes this service
and bind it to the tablet device. The server now informs the tablet of the change
and makes it retrieve the new service from the server. This is performed successfully
and the tablet now has the updated service software in its file system and can start
running the new configuration. Since the service was accepted, this means that the
checksums for the content and metadata correctly matched up with the references
checksums and that the verification is working as intended. We will make sure that it
also detects erroneous situations by testing a scenario in which an attacker intercepts
the communication and provides a corrupt service. Implementing an actual attack
would be unnecessarily advanced, and since the client to client requesting is not yet
implemented in the system, we will simply manually edit the par service file stored
in the configuration server. This results in that the client correctly concludes that
the received service does not match its checksum and does not attempt to execute it.

The overall process is working as intended but there are a few inconveniences. Since
the GUIs are currently under development, using them together with each other can
be inconvenient. Mainly, since the Configuration server is set up as a separate ser-
vice that is running on a device, we cannot package a service into a par-file directly
onto the configuration server and we need to package it separately before import-
ing it to the server. When detecting a corrupt service there remains to design the

39

8. Evaluation

handling of the situation to avoid requesting the same corrupt service again. One
option would be to always retrieve a resource from the trusted update-server after
it has been detected to be corrupt. Additionally, one could mark the source of the
corrupt service as untrustworthy and avoid it in the future.

The authentication process will remain secure as long as finding a second preim-
age for sha-256 remains infeasible. As sha-256 is a fast hash function the extra
computational time will be negligible even for smaller devices. The Par-file format
functions as intended and can be stored and retrieved from disk while still generat-
ing the same checksum. However, changes to the metadata functionality will likely
have to be made after discovering new requirements from real life use. Future addi-
tions would include extending the par format for other kinds, such as configurations.

Our solution does not use any stored keys for authenticating the updates which
differs from how for example the Microsoft Windows update client works. The act
of signing updates is replaced with including the updates checksum in the configu-
ration. This means that it is crucial that the communication with the configuration
server is secure since we have no way of detecting a corrupt update apart from
that checksum. As Windows automatic software updating system is posed with a
similar problem of authenticating the updates, their solution is instead based on
Microsoft signing the code which is then verified by the client computer. This does
add an extra level of certainty since even if all outside communication managed to
be infiltrated, corrupt software could never pass the verification.

40

Chapter 9

Conclusion

Any system using this PalCom implementation will be secure against having mali-
cious software pose as a new update. This is achieved by an authenticated server
providing the software’s checksum that will be used for validation before the software
is executed. This allows for safe deployment of new updates while still allowing the
system’s devices to distribute updates internally without the risk of corrupt software
being allowed to execute. The Par-file format allows for additional information such
as testing and compatibility to be added to services after publishing them while still
passing the verification process. Each Par-file will consist of a content file and its
metadata separated from each other and these will be verified separately, making it
possible to incrementally update the metadata.

41

9. Conclusion

42

References

[1] L. Courtès, "Functional Package Management with Guix", Bordeaux, France
https: // arxiv. org/ pdf/ 1305. 4584v1. pdf

[2] Felser M., Kapitza R., Kleinöder J., Schröder-Preikschat W. (2007) Dy-
namic Software Update of Resource-Constrained Distributed Embedded Sys-
tems. In: Rettberg A., Zanella M.C., Dömer R., Gerstlauer A., Ram-
mig F.J. (eds) Embedded System Design: Topics, Techniques and Trends.
IFIP – The International Federation for Information Processing, vol 231.
Springer, Boston, MA https: // link. springer. com/ content/ pdf/ 10.
1007/ 978-0-387-72258-0_ 33. pdf

[3] Kevin Dunn, Automatic update risks: can patching let a hacker in?,
29 July 2004 https: // www. sciencedirect. com/ science/ article/ pii/
S1353485804001023

[4] L. Kvarda, P. Hnyk, L. Vojtech, Z. Lokaj, M. Neruda, T. Zitta, "Software
Implementation of a Secure FirmwareUpdate Solution in an IOT Context",
Czech Technical University in Prague, https: // pdfs. semanticscholar.
org/ 7515/ 43344eee3b7716e4fbcdcf57c6520de0afe0. pdf

[5] B. Magnusson, M. Nordahl, "A lightweight data interchange format for internet
of things with applications in the PalCom middleware framework" 14 May 2016
https: // doi. org/ 10. 1007/ s12652-016-0382-3

[6] itACiH https: // itacih. se/

[7] M. Weißbach, N. Taing, M. Wutzler, T. Springer, A. Schill and S. Clarke,
2016 IEEE 3rd World Forum on Internet of Things Service A(WF-IoT),
Reston, VA, 2016, pp. 171-176. doi: 10.1109/WF-IoT.2016.7845450 https:
// ieeexplore-ieee-org. ludwig. lub. lu. se/ document/ 7845450

[8] M. Yang and F. Zhu, "The Design of Remote Update System Based on
GPRS Technology," 2010 International Conference on Management and Ser-

43

https://arxiv.org/pdf/1305.4584v1.pdf
https://link.springer.com/content/pdf/10.1007/978-0-387-72258-0_33.pdf
https://link.springer.com/content/pdf/10.1007/978-0-387-72258-0_33.pdf
https://www.sciencedirect.com/science/article/pii/S1353485804001023
https://www.sciencedirect.com/science/article/pii/S1353485804001023
https://pdfs.semanticscholar.org/7515/43344eee3b7716e4fbcdcf57c6520de0afe0.pdf
https://pdfs.semanticscholar.org/7515/43344eee3b7716e4fbcdcf57c6520de0afe0.pdf
https://doi.org/10.1007/s12652-016-0382-3
https://itacih.se/
https://ieeexplore-ieee-org.ludwig.lub.lu.se/document/7845450
https://ieeexplore-ieee-org.ludwig.lub.lu.se/document/7845450

REFERENCES

vice Science, Wuhan, 2010, pp. 1-4. doi: 10.1109/ICMSS.2010.5575699 https:
// ieeexplore. ieee. org/ document/ 5575699

[9] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov, A.
Bianco, C. Baisse "Announcing the first SHA1 collision", 23 February
2017, Google Security Blog https: // security. googleblog. com/ 2017/
02/ announcing-first-sha1-collision. html

[10] H. Gilbert and H. Handschuh, "Security Analysis of SHA-256 and
Sisters" , 2004 https: // link. springer. com/ content/ pdf/ 10. 1007%
2F978-3-540-24654-1_ 13. pdf

[11] J. Lane Thames, R. Abler and D. Keeling, "A distributed active response ar-
chitecture for preventing SSH dictionary attacks," IEEE SoutheastCon 2008,
Huntsville, AL, 2008, pp. 84-89. doi: 10.1109/SECON.2008.4494264 https:
// ieeexplore. ieee. org/ abstract/ document/ 4494264

[12] M. Månsson, "Dynamic installation and automatic update of Bluetooth low
energy devices in PalCom", 8 June 2015, Department of Computer Science,
Lund University.

[13] B. Magnusson, B. Johnsson, G. Hedin, "Factoring out Glue-code in Systems of
IoT Devices", Department of Computer Science, Lund University.

[14] M. Nordahl A. Åkesson, B. Magnusson, G. Hedin, "Software updates and main-
tenance for IoT", Department of Computer Science, Lund University.

[15] B. Magnusson, G. Hedin, P. Runeson, "PalCom MIST: a Metaprotocol for
Internet Systems of Things", Department of Computer Science, Lund Uni-
versity. A. Bellissimo, J. Burgess, K. Fu, "Secure Software Updates: Dissa-
pointments and New Challenges", Department of Computer Science, Univer-
sity of Massachusetts Amherst. https: // spqr. eecs. umich. edu/ papers/
secureupdates-hotsec06. pdf

[16] Apache commons compress library https: // commons. apache. org/
proper/ commons-compress/

44

https://ieeexplore.ieee.org/document/5575699
https://ieeexplore.ieee.org/document/5575699
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://link.springer.com/content/pdf/10.1007%2F978-3-540-24654-1_13.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-540-24654-1_13.pdf
https://ieeexplore.ieee.org/abstract/document/4494264
https://ieeexplore.ieee.org/abstract/document/4494264
https://spqr.eecs.umich.edu/papers/secureupdates-hotsec06.pdf
https://spqr.eecs.umich.edu/papers/secureupdates-hotsec06.pdf
https://commons.apache.org/proper/commons-compress/
https://commons.apache.org/proper/commons-compress/

Examensarbete Secure Updating of Configurations in a System of Devices
Handledare Mattias Nordahl (LTH)
Examinator Boris Magnusson (LTH)
Populärvetenskaplig Sammanfattning

Säker uppdatering av konfigura-
tioner i ett digitalt system
Jens Mellberg
Instutitionen för datavetenskap
Lunds tekniska högskola

10 februari 2020

D igitala system bestående av en stor mängd
enheter blir alltmer vanligt förekommande
i takt med att vårt samhälle fortsätter att

digitaliseras. Dessa enheter behöver uppdateras
regelbundet och för enkelhetens skull görs detta
ofta över internet. Detta öppnar upp en möjlighet
för “hackers” att tillverka falska uppdateringar
som de kan lura enheterna att installera. Detta
arbete går främst ut på att ta fram en metod
för att förhindra att dessa falska uppdateringar
godkänns av systemet.

Detta arbete har utförts på PalCom-ramverket
som är utvecklat på Lunds Universitet och det används
som bas på IoT-system för att hantera kommunika-
tionen mellan enheterna. Ett exempel på ett sådant
system är det smarta hemmet, som kan involvera allt
från hemlarm till värmesystem. Programvaran i dessa
system behöver ibland uppdateras, ofta på initiativ
av leverantören. PalCom sköter godkännandet och
installeringen av den uppdaterade mjukvaran. Detta
arbete konstruerar en lösning för PalCom som kan
upptäcka skadlig programvara vid uppdateringar och
avfärda dessa. PalCom förser systemets enheter med
konfigurationer, dessa beskriver vilka programvaror
som enheten ska köra. Dessa programvaror kan
hämtas från andra enheter i systemet och måste då
verifieras som autentiska. Den föreslagna lösningen
bygger på att använda kontrollsummor för att verifiera
autenticiteten. Dessa kontrollsummor kommer att
inkluderas i konfigurationerna. En algoritm används
för att producera en sådan kontrollsumma baserat
på hur programvaran ser ut. Om någon skulle ändra
programvaran kommer algoritmen producera en
annan kontrollsumma. Enheterna kan då jämföra kon-

trollsumman i konfigurationen med den producerade
kontrollsummen varje gång en uppdatering utförts och
på så sätt upptäcka om felaktig programvara mottagits.
Detta är en teknik som används ofta och säkerheten
i metoden bygger på att dessa kontrollsummor ska
vara svåra att förfalska. Mer specifikt så ska det vara
svårt att skapa falsk programvara som producerar
samma kontrollsumma som den äkta programvaran.
Under arbetet har det även utvecklats en metod för

att kunna lägga till information om en uppdatering
efter att den har börjat användas. När en uppdatering
har installerats och börjat användas i ett system kan
man som administratör vilja “tagga” programvaran
med information som t.ex. kompabilitet med andra
delar i systemet eller stämpla den som godkänd när
den har testats. Vi vill kunna göra detta utan att ändra
programvaran i sig, eftersom det skulle leda till att en
annan kontrollsumma produceras och programvaran
avvisas.
Arbetet har resulterat i en lösning som kan garan-

tera att den programvara som mottas är korrekt i
system som använder PalCom. Lösningen kommer
högst sannolikt även att vara säker för en lång tid
framöver baserat på säkerheten hos algoritmen som
producerar dessa kontrollsummor. Även efter att den
användna algoritmen har blivit utdaterad kan den
enkelt ersättas med en mer säker algoritm. Detta
arbete kan potentiellt bli viktigt i säkerhetskritiska
applikationer som hemlarm och inom industri. Arbetet
beskrivs närmare i rapporten: Jens Mellberg, “Secure
Updating of Configurations in a System of Devices”,
Department of Computer Science, Lund University,
Sweden, 2020, ISSN 1650-2884 LU-CS-EX 2020-04.

	Introduction
	The updating process: Previous work
	Problem Formulation
	Approach

	PalCom
	General Overview
	Technical Details
	Summary

	Cybersecurity threats and prevention
	Man-in-the-middle Attack
	Malware
	Checksums and Hash functions
	Digital Signatures
	Summary

	Solution Design
	Checksum Verification
	PAR-file Format

	Implementation
	PalCom detailed description
	Checksum Validation
	Testing

	Par-file implementation

	Evaluation
	Conclusion
	Tom sida

