
MASTER’S THESIS 2020

Transitioning from C to Rust in
Media Streaming Development
Samuel Johansson, Ludvig Rappe

ISSN 1650-2884
LU-CS-EX: 2020-06

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-06

Transitioning from C to Rust in Media
Streaming Development

Samuel Johansson, Ludvig Rappe

Transitioning from C to Rust in Media
Streaming Development

(An Industrial Case Study)

Samuel Johansson
johansson.samuel@live.se

Ludvig Rappe
ludvig.rappe@gmail.com

February 25, 2020

Master’s thesis work carried out at Axis Communications AB.

Supervisors:
Elizabeth Bjarnason, elizabeth.bjarnason@cs.lth.se

Jonathan Karlsson, jonathan.karlsson@axis.com
Srimanta Panda, srimanta.panda@axis.com

Examiner:
Björn Regnell, bjorn.regnell@cs.lth.se

mailto:johansson.samuel@live.se
mailto:ludvig.rappe@gmail.com
mailto:elizabeth.bjarnason@cs.lth.se
mailto:jonathan.karlsson@axis.com
mailto:srimanta.panda@axis.com
mailto:bjorn.regnell@cs.lth.se

Abstract

Rust uses static types, a strict compiler, and a unique ownership system, in
order to make guarantees about memory safety without the use of a garbage col-
lector and without sacrificing performance.

This paper presents a case study of evaluating a programming language tran-
sition from C to Rust through the creation and usage of a Programming Language
Transition Framework.

We found the Programming Language Transition Framework to be a helpful
tool for evaluating a programming language transition, but there is room for
further improvements.

We found Rust to provide a far superior developer experience, while still
performing on par with C. However, Rust’s ownership system gives it a steep
learning curve even for those with prior experience in programming.

Given that the impact on performance is acceptable, and that build system
integration can be done successfully, we deem it feasible to transition from C to
Rust in this case.

Keywords: Rust, C, Programming Language, Framework, Performance, Usability

Acknowledgements

First and foremost, we would like to thank Axis Communications AB for giving us the op-
portunity and resources to conduct this Master’s Thesis.

We would also like to thank our supervisors at Axis, Jonathan Karlsson and Srimanta
Panda. They have provided us with invaluable help and feedback, mostly regarding Axis-
specific tools and the build environment, but also concerning the report and the Program-
ming Language Transition Framework.

Last, but definitely not least, we would like to thank our supervisor at LTH, Elizabeth
Bjarnason. She has helped us formalise the scope and methodology for this thesis and without
her this thesis would not have been possible. In addition to this, she has also provided us with
invaluable feedback regarding the report, how to conduct interviews, and much more.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Case description . 2
1.3 Purpose . 2

1.3.1 Research questions . 2
1.3.2 Approach . 3

1.4 The four levels a�ected by a programming language transition 3
1.4.1 Execution level . 3
1.4.2 Programmer level . 3
1.4.3 Toolchain level . 3
1.4.4 Management level . 3

1.5 The Rust programming language . 4
1.5.1 Language features . 4
1.5.2 Cargo . 7

1.6 Contributions . 7

2 Related Work 9
2.1 Overview . 9
2.2 Impact on Execution level . 10
2.3 Impact on Programmer level . 11
2.4 Impact on Toolchain level . 12
2.5 Impact on Management level . 13

3 Research Method 15
3.1 Overview . 15
3.2 Literature study . 16
3.3 Programming Language Transition Framework 16
3.4 Interviews . 17
3.5 Programming in Rust . 18
3.6 Focus Group . 19

CONTENTS

4 Programming Language Transition Framework (PLTF) 21
4.1 Factors . 21

4.1.1 Execution level . 21
4.1.2 Programmer level . 24
4.1.3 Toolchain level . 25
4.1.4 Management level . 27

4.2 Usage . 28

5 Results 29
5.1 Execution level . 29

5.1.1 Evaluation of performance . 29
5.1.2 Performance requirements . 37
5.1.3 Focus group insights . 38

5.2 Programmer level . 39
5.2.1 Evaluation of programming in Rust 39
5.2.2 Developer perspective on programming languages 46
5.2.3 Focus group insights . 49

5.3 Toolchain level . 49
5.3.1 Evaluation of Rust tools . 49
5.3.2 Common tools among developers 50
5.3.3 Focus group insights . 51

5.4 Management level . 52
5.4.1 Evaluation of Rust’s impact on software projects 52
5.4.2 The current impact on software projects 54
5.4.3 Focus group insights . 56

6 Discussion 57
6.1 How to evaluate a transition from C to Rust (RQ1) 57

6.1.1 Execution level . 58
6.1.2 Programmer level . 58
6.1.3 Toolchain level . 59
6.1.4 Management level . 59

6.2 Consequences of transitioning from C to Rust (RQ2) 60
6.2.1 Execution level . 60
6.2.2 Programmer level . 61
6.2.3 Toolchain level . 63
6.2.4 Management level . 64

6.3 Challenges of transitioning from C to Rust (RQ3) 65
6.3.1 Execution level . 65
6.3.2 Programmer level . 65
6.3.3 Toolchain level . 65
6.3.4 Management level . 66

6.4 Threats to validity . 66
6.4.1 Construct validity . 66
6.4.2 External validity . 66
6.4.3 Reliability . 67

CONTENTS

7 Conclusions 69
7.1 Summary . 69
7.2 Future research . 70

Bibliography 73

Appendix A Interview Guide 79

Appendix B Focus Group Guide 83

Appendix C Summary of the final Programming Language Transition Framework 85

CONTENTS

List of Figures

1.1 Hello, world! in Rust[37]. 4

3.1 An overview of the case study. 16

5.1 The execution times for the C and Rust version of the element, for di�erent
input sets. The execution times for each input set are the average of 100 runs.
O and X mark the average execution time for C and Rust, respectively. . . . 31

5.2 The execution times for the C and Rust version of an element written by
the developers behind the framework, for di�erent input sets. The execution
times for each input set are the average of 100 runs. O and X mark the average
execution time for C and Rust, respectively. 32

5.3 The latencies for the C and Rust version of the element for di�erent input
sets. The latencies for each input set are the average of 1000 runs. O and X
mark the average latency for C and Rust, respectively. 33

5.4 The latencies for the C and Rust version of an element written by the devel-
opers behind the framework, for di�erent input sets. The execution times
for each input set are the average of 1000 runs. O and X mark the average
latency for C and Rust, respectively. 34

5.5 The maximum memory usage (maximum resident set size) for the C and
Rust version of the element for di�erent input sets. The memory usage for
each input set is the average of 100 runs. The average maximum memory
usage of each version has been rounded to the nearest integer. O and X mark
the average memory usage for C and Rust, respectively. 35

5.6 The maximum memory usage (maximum resident set size) for the C and
Rust version of an element written by the developers of the framework, for
di�erent input sets. The memory usage for each input set is the average of
100 runs. The average maximum memory usage of each version has been
rounded to the nearest integer. O and X mark the average memory usage for
C and Rust, respectively. 36

5.7 Attempting to mutably borrow two fields from a struct that is protected by
a mutex. This code does not compile (see error message in Figure 5.8). . . . 40

LIST OF FIGURES

5.8 The error message that is produced when attempting to compile the code in
Figure 5.7. 41

5.9 A working version of the code in Figure 5.7. 41
5.10 The output from rustc when compiling a program containing a function

that tries to return an integer value despite being declared to not return
anything. 43

5.11 The output from GCC when compiling a program containing a function that
tries to return an integer value despite being declared to not return anything. 43

List of Tables

4.1 A summary of the factors in the PLTF. 22

5.1 An overview of which methods yielded results for the di�erent factors. . . . 30

C.1 A summary of the factors in the Programming Language Transition Frame-
work, including changes suggested by the focus group. The changes are in
italic. 86

LIST OF TABLES

List of Acronyms

API Application Programming Interface

PLTF Programming Language Transition Framework

IDE Integrated Development Environment

OSS Open Source Software

RAII Resource Acquisition Is Initialisation

LIST OF TABLES

Chapter 1

Introduction

Today, there exist more programming languages than you can shake a stick at, and their
number continues to rise. Choosing which languages to use can be a di�cult task, as di�erent
languages o�er di�erent features. That task is also made more di�cult due to the fact that
one language is seldom strictly better than another. Instead, languages are often better in
some areas and worse in others. After having used a certain programming language for some
time, a new language could be released that may be better suited for your application. How
do you determine whether or not you should transition to this new language?

In this chapter we present the context of the thesis, and briefly describe Axis Communi-
cations AB and its Streaming department. In addition, this chapter also gives a short intro-
duction to the Rust programming language.

1.1 Context
The C programming language was created in 1972 [35], and is arguably one of the most widely
used programming languages today. One of the reasons for this is that C provides good
performance while also giving the developer a lot of control, e.g. by giving the developer
direct control over their system’s memory. However, this control comes at a price: discipline.
C requires that the developer is disciplined enough to use the control given by the language
in a responsible and safe way. If the developer does not have this discipline, then they might
introduce a small error in the source code, which in turn could lead to severe errors and bugs
in the program.

Rust is a programming language that was released in May 2015 (version 1.0), and aims to
provide safety without sacrificing performance [24]. One feature that sets Rust apart from
other languages is its type system, which builds on the accumulated experience and knowledge
of C and C++ developers. This type system enforces many of the “best practices” that have
been learned through years of programming, and enables the Rust compiler to make checks
that find many errors (e.g. memory leaks) at compile-time.

1

1. Introduction

1.2 Case description
Axis Communications AB (henceforth referred to as Axis) was founded in 1984 with a focus
on developing networking technology for printers [4]. In 1996, Axis invented the world’s
first network camera, Neteye 200, and has since shifted its focus to primarily developing
network cameras. Today, Axis continues to make advances in camera technology, while also
successfully moving into other markets, such as access control and IP Video Doorstations.

The Streaming department at Axis is divided into multiple teams, each focusing on dif-
ferent parts of the development. The main goal for the department is to develop software
for multimedia streaming between the host computer (referred to as host) and the camera
(referred to as target). The department develops software for embedded systems (software to
run on target), and for some of these programs the C programming language is used.

To achieve their goals, the Streaming department uses di�erent tools and frameworks.
Some examples of tools used are development environments (e.g. Vim [44], Emacs [12], and
Eclipse[8]), tools for debugging (e.g. the GNU Project Debugger (GDB) [11] and Valgrind
[43]), as well as tools for co-operation and code reviews.

One of the more important frameworks that the department uses is an Open Source Me-
dia Framework. This framework enables the department to create media pipelines by linking
together various Media Framework Elements (referred to as elements). Thus, when the de-
partment wants to add new features, they can create a new element and insert it into an
already existing pipeline.

The Open Source Media Framework used by the Streaming department is currently un-
dergoing a gradual transition to Rust, while still supporting C. This is done by letting ele-
ments written in both C and Rust be used interchangeably in a pipeline. Since this framework
has taken steps towards Rust, and because its creators are encouraging their users to do the
same, the Streaming department is interested in learning the benefits and drawbacks of doing
a transition from C to Rust.

1.3 Purpose
The purpose of this thesis is twofold: to find a structured way of evaluating a programming
language transition, and to evaluate the feasibility of transitioning from C to Rust.

1.3.1 Research questions
First, we need to find a structured method that is suitable for evaluating a programming
language transition in the given time-frame. We can then apply this method to investigate the
consequences, both positive and negative, of doing a transition from C to Rust. In addition
to this, we can also investigate what challenges one could face during such a transition. This
is summarised by the following research questions.

RQ1 How can a transition from C to Rust be evaluated?

RQ2 What are the consequences of transitioning from C to Rust?

RQ3 What are the challenges of transitioning from C to Rust?

2

1.4 The four levels affected by a programming language transition

1.3.2 Approach
Our approach will be to first investigate what could be important to consider when tran-
sitioning from one programming language to another in general, and for Axis in particular.
This information will then be used as a basis for further investigation into how the Streaming
department at Axis could be a�ected by a transition from C to Rust. Based on our results,
we will ultimately present our assessment of whether or not such a transition is feasible.

1.4 The four levels affected by a program-
ming language transition

During this Master’s thesis, we identified four levels that could be a�ected by a programming
language transition. The four levels are Execution level, Programmer level, Toolchain level,
and Management level. We refer to these four levels throughout the thesis, and they are ex-
plained in more detail in Chapter 4. However, in this section we will give a short introduction
to them.

1.4.1 Execution level
The Execution level is the lowest of the four levels, the level closest to the hardware. This
level can be seen as representing the interaction between the programming language and the
hardware. Examples of factors covered by this level are execution time and memory usage.

1.4.2 Programmer level
The Programmer level covers the interaction between the programming language and the
developer. This level focuses more on usability, i.e. what it is like to use the programming
language as a developer. This level includes factors such as writeability and readability.

1.4.3 Toolchain level
The Toolchain level focuses on the interaction between the programming language and the
tools. This includes tools for di�erent purposes, e.g. debugging and development environ-
ments.

1.4.4 Management level
The Management level is the highest of the four levels, focusing on the “bigger picture”. This
can be seen as the interaction between the programming language and projects. This level
covers how the programming language can a�ect the execution and management of projects,
and includes factors such as productivity and code defects.

3

1. Introduction

1.5 The Rust programming language
Rust is a fairly new programming language, but has since its release in May 2015 been voted
the most loved programming language in the Stack Overflow Developer Survey every year
[27] [28] [29] [30]. According to the Rust website [22], it is currently used in many popular
applications, including Dropbox and the Mozilla Firefox web browser.

Using static types, a strict compiler, and a unique ownership system, Rust is able to make
guarantees about memory safety without the use of a garbage collector. In practice, this means
that many subtle memory and concurrency-related bugs can be detected at compile time,
and that automatic memory management can be provided without sacrificing performance.
Rust’s high performance, combined with an emphasis on memory safety, makes it a suitable
language for concurrent systems with strict security requirements.

In this section, we will give a short introduction to some of Rust’s language features, and
also briefly introduce Cargo [33], the Rust package manager.

1.5.1 Language features
Rust has some interesting language features that make it stand out from other programming
languages. We will focus on covering these topics at a higher level, mostly describing the
concept behind them and how they can a�ect the source code in general. As the focus is
on a higher level, we will limit the amount of code examples we show in this section to only
include the “Hello, World!” program shown in Figure 1.1. Readers interested in learning more
about Rust are advised to read the book The Rust Programming Language [50] [37].

fn main() {
println!("Hello, world!");

}

Figure 1.1: Hello, world! in Rust[37].

Ownership
One of Rust’s more unique features is its Ownership system. This can be seen as a set of
rules that dictate how data can be used. Rust’s ownership rules state that each value has a
unique owner, and that the value is dropped when its owner is no longer in scope. These can
generally be good rules to follow in other languages as well, but unlike many other languages,
Rust actively enforces them. Rust’s Ownership system, Lifetimes (Section 1.5.1), and other
language features, enable the compiler to make certain guarantees. One example of such a
guarantee is that programs written in Rust will not have any memory leaks1 nor data races
(unless you use Unsafe Rust, described in Section 1.5.1).

1By using the function std::mem::forget<T>(), it is possible to leak memory in safe Rust. However,
this is arguably not something a developer would accidentally do.

4

1.5 The Rust programming language

Lifetimes
Rust’s automatic memory management is based on its lifetime system, which makes it possible
to determine when memory should be freed. During compilation, the Rust compiler analyses
references in the program to figure out their lifetime, which is defined by the Rust book as
“the scope for which that reference is valid” [37]. The rules for determining the lifetime of
a reference are called lifetime elision rules, and are patterns based on commonly occurring
situations when writing Rust code.

For those situations where the rules are not enough to determine the lifetime of a ref-
erence, the programmer must annotate the lifetime manually. The lifetime elision rules are
continuously expanded, which means that Rust’s ability to automatically deduce lifetimes
will improve as the language matures.

Option<T> and the absence of null
One special feature of Rust is the Option<T> enum. Values of this enum are either of some
type T, or None, which indicates that there is no value. The value null was chosen not to be
included in Rust, instead letting Option<T> with value None take that role. At first glance
this may seem cumbersome, but this enables the compiler to check, at compile-time, if all the
cases where Option<T> can be None are handled. If these cases are not handled, then the
compiler will generate an error and inform the developer of this. Thus, using Option<T>
instead of null enables the Rust compiler to detect errors that would not be detected until
run-time in other languages.

Result<R,E> and error handling
The enum Result<R,E> is used for error handling in Rust. This enum is either of some
type T, when we successfully return a value from an operation, or of some type E, when we
return an error indicating what went wrong. Both of these cases must be handled when using
a Result<R,E>, otherwise the compiler will generate a compilation error. Result<R,E>
can therefore be used to get structured built-in error handling that is enforced at compile-
time.

Object-Oriented Programming (OOP)
Rust also has some features that are inspired by object-oriented programming, with one of the
most notable being the ability to have methods on structs and enums. Although Rust does not
have the object keyword, Gamma et al. [47] defines objects as data and operations performed
on that data. Following this definition, Rust could be considered an object-oriented language.

Another object-oriented feature in Rust is traits, which are similar to interfaces in Java.
Traits make it possible to let many di�erent types share behaviour through the methods de-
fined on a trait. Even though functionality similar to object inheritance can be achieved by
using traits, Rust does not have inheritance specifically. Thus, if a language must have inher-
itance in order to be considered object-oriented, Rust is not an object-oriented language.

5

1. Introduction

Functional language features: Iterators and closures
Rust has two noteworthy features that are inspired by functional programming: iterators and
closures. In this section we will give a short description of them.

In the Rust book [37], closures are defined as function-like constructs that can be stored
in a variable. They are also described as anonymous functions that have the ability to capture
variables from the scope they are defined in. These properties mean that closures can be
used to reduce code duplication within a method, without having to pass a large number of
arguments for every call to them. Closures are also useful for declaring short functions that
will be passed as an argument to some method or function.

Iterators are defined by the Rust book as “a way of processing a series of elements” [37].
Iterators are responsible for handling the logic of iterating over elements, which means that
the programmer does not need to write that code manually. One useful feature of iterators
is that they have iterator adaptors, which are functions that return another iterator. This
means that calls to iterator adaptors can be chained together, enabling the programmer to
write code that does complex processing of a sequence of elements in a concise and potentially
more readable way.

Unsafe Rust
Rust normally protects the programmer from making many memory-related errors by doing
static analysis at compile-time. However, this static analysis is conservative and will there-
fore not accept some code that is actually correct. Thus, in order to provide a way for the
programmer to write such code, unsafe Rust exists.

Unsafe Rust can be used in an unsafe block, and will enable the programmer to do certain
things that are not allowed in safe Rust. These include:

• Implementing unsafe traits

• Calling unsafe functions and methods

• Accessing and modifying mutable static variables

• Dereferencing raw pointers

Mutex in Rust
Locking a Mutex in Rust is done by calling its lock() function. This function returns the
protected resource wrapped in a type called MutexGuard, which is responsible for releasing
the lock when it goes out of scope. The MutexGuard type implements the Deref trait, en-
abling Rust to automatically convert a MutexGuard reference to a reference to the protected
resource. In practice, this means that one cannot access the protected data without first tak-
ing the Mutex, and one cannot forget to release the Mutex, as this is done automatically
when it goes out of scope.

6

1.6 Contributions

1.5.2 Cargo
Rust’s package manager, Cargo, is closely integrated with the language and provides many
useful features. These features include: handling dependencies, calling the compiler with
the appropriate parameters, and introducing conventions. We will only cover these topics
briefly, and refer readers interested in learning more to The Cargo Book [33].

Compilation and dependency handling
Cargo uses a special configuration file called Cargo.toml to handle a project’s dependen-
cies and compilation flags. By defining a project’s dependencies in this file (e.g. as links to
di�erent repositories), Cargo is able to check these when building the project. Cargo will
then download and install any dependencies that have not already been installed.

In Cargo.toml, you can also specify which flags should be used when compiling, e.g.
what level of optimisation should be used for a release build, or how the program should
handle panics (errors during run-time). Thus, when you build your Rust project using Cargo,
you do not have to think about dependencies and compiler flags, as long as they are defined
in Cargo.toml.

Extensions
The functionality of Cargo can be extended by installing extensions. Two such extensions
are rustfmt [26] and Clippy [5], both of which aim to help the developer in writing better
code.

rustfmt can be used to change the formatting of the source code according to specific
rules. This tool checks whether the project follows the desired code style, and if it does not,
rustfmt changes the code accordingly. rustfmt can be used from the command line by
running cargo fmt.

Clippy is used to lint the source code, finding code that is either outright erroneous or
could be written in a better way. Thus, it helps the developer write faster, clearer code, and
potentially also reduces the number of errors. Clippy can be used from the command line
by running cargo clippy.

1.6 Contributions
Both authors have been part of, and have contributed to, every activity involved in the case
study. For most of the activities (e.g. programming, literature study) it was possible to split
the work in such a way that both authors could do similar or identical tasks, while other
activities (e.g. focus group) favoured more asymmetrical roles. As for the report, each chapter
and section was written and/or proof-read by both authors.

7

1. Introduction

8

Chapter 2

Related Work

In this chapter we present work related to our study. These works range from evaluation
of Rust in particular, to evaluation of programming languages in general. Some of these
works showcase metrics and methodology that can be used when evaluating programming
languages, while others present what developers value in programming languages. The Rust-
specific works provide additional valuable information about the language. For each of these
works, a short summary is given.

Further below, the results from previous work are presented, organised by the four levels
(Section 1.4). These levels are: Execution level (interaction between language and hardware),
Programmer level (interaction between language and developer), Toolchain level (interac-
tion between language and tools), and Management level (interaction between language and
project).

2.1 Overview
Rikte [55] conducted a study, also at Axis, evaluating the Rust programming language by
porting a Linux daemon from C to Rust. He described his experiences from the porting
process, but also covered topics such as performance, building and compiling, debugging,
IDEs, productivity, and learnability. He also gave an introduction to the Rust programming
language and how it di�ers from C. Rikte’s study covered several topics investigated in our
study. However, while Rikte evaluated Rust based solely on his own experiences, we instead
base our evaluation on a combination of our own experiences and the experiences of others.

Wilkens [58] conducted a study where he implemented one program in three di�erent
programming languages (C, Go1, and Rust) and compared the solutions. The program im-
plemented was a “shortest path calculation based on real world geographical data which is
parallelized for shared memory concurrency”. The languages were compared both in regards

1“Go is an open source programming language that makes it easy to build simple, reliable, and e�cient
software.” [36]

9

2. Related Work

to performance (Execution level), and in regards to productivity (Management level). Al-
though this study is similar to ours, it was mostly based on the author’s own experiences,
while our study is based on both our own experiences as well as the experiences of others.
Another di�erence is that Wilkens evaluated Rust in the domain of High Performance Com-
puting (HPC), while we focus on the domain of media streaming.

Light [52] created a Unix-like operating system similar to Weenix2 in Rust. In his paper,
he compared Rust to C/C++ (in regards to system programming) and discussed the benefits
and challenges of using Rust, both on the Execution level, and on the Programmer level.
Light’s study is similar to ours in that he compared Rust and C, and did so by not only
investigating performance, but also investigating the benefits and challenges of working with
Rust. However, Light did this in the domain of operating system programming, not media
streaming, and based his evaluation only on his own experiences.

Meyerovich and Rabkin [53] investigated what factors are involved in programming lan-
guage adoption. They did this by analysing in total around 800 000 large software projects
hosted on either SourceForge or Ohloh. They also analysed the results of several surveys
with between 1 000 and 13 000 participants, all of which were programmers. Meyerovich
and Rabkin’s work is similar to ours in that they investigated topics such as what develop-
ers deem important in programming languages. Their work di�ers in that they did this on
a more general level, and did not focus on a specific domain or a specific type of program-
ming language. We instead focus on the opinions of those working in media streaming in the
embedded domain, and limit our study to the low-level languages C and Rust in particular.

Bhattacharya and Neamtiu [46] investigated how the choice of programming language
a�ects software quality and developer productivity. They did this by doing statistical analysis
on the code bases of four large Open Source applications written in C and C++: Blender,
Firefox, MySQL, and VLC. Their work is similar to ours in that they investigated how the
programming language a�ected software quality and developer productivity, and that they
compared C to a language with higher-level features. However, their focus was on C and C++
in particular, while we do a comparison between C and Rust. Another di�erence is that we
limit our investigation to the embedded domain, with focus on media streaming in particular,
while Bhattacharya and Neamtiu investigated a broader range of software.

2.2 Impact on Execution level
Rikte found that the performance di�erence between C and Rust varied. When Rikte mea-
sured the C version and the Rust version of the Linux daemon, he found that Rust had a
14% slower execution time. Rikte noted that during the porting process he found a code de-
fect in the C code that he fixed in the Rust version, which had the side e�ect of increasing
the execution time of the Rust version in the worst case. Excluding the worst case from the
performance measurements resulted in the Rust version being 9% faster than the C version.
However, it is not clear whether these results were averaged or a single measurement, nor is
the exact di�erence in milliseconds mentioned. Rikte also found that the Rust implementa-
tion used 7% (3MB) more memory and had a 36% (225kB) larger binary, when comparing the
smallest executable for each language.

2Weenix[45] is an operating system written in C, and is used for teaching purposes at Brown University.

10

2.3 Impact on Programmer level

After running two performance tests on the C and Rust implementations of the operating
system, Light found that Rust had, on average, worse performance than C. In the first test,
the execution time of doing multi-threaded access on a contested resource with a varying
number of threads was tested. Averaged over 10 runs, the Rust implementation took 3.040
times as long as the C implementation. In the second test, the execution time of doing the
system call waitpid was tested. Averaged over 1 000 runs, the Rust implementation took
2.036 times as long as the C implementation. Light argued that this indicated that di�erent
functions will result in di�erent amounts of slowdown, and that the slowdown was due to
something other than the language’s compiler. He argued that memory allocation was likely
to be the reason, since the Rust implementation did this more frequently and at a higher cost
than the C implementation.

When Wilkens measured the three implementations (written in C, Go, and Rust) of the
shortest path application, he found that the Rust version had the shortest execution times.
Compared to the C version, the execution times of the Rust version ranged from being 35%
(197 minutes) faster at 2 cores, to 98% (62 minutes) faster at 24 cores. Another finding from
the tests showed that the parallel speedup from increasing the number of threads was largest
in the C version for lower thread counts, while Rust and Go had larger speedup at higher
thread counts. It is not clear whether the results were averaged or came from single measure-
ments.

2.3 Impact on Programmer level
Rikte found using Rust to be a “very pleasant experience”. His conclusions were based on
his personal experiences from a developer’s perspective. He expressed his appreciation of the
Rust standard library and listed several examples of Rust constructs that he found were easy
to work with: enums, structs, traits, and tuples. The productivity was also found to be high
when using Rust, which he attributed to aspects such as the ability to do fast prototyping
and the possibility of utilising functional programming. Rikte also concluded that “Rust
definitely aids programmers in writing correct programs.” He found that Rust’s ownership
and borrowing system (Section 1.5.1) ensured that code re-factoring could be done without
fear of pointer-related mistakes. However, Rikte pointed out that the learning curve of the
borrowing system was a bit steep.

According to Rikte, the documentation of Rust’s standard library had detailed explana-
tions and was easy to navigate, and the compiler error messages were user-friendly. Another
finding was that using Rust lead to a shortening of the source code, which he states was partly
due to the possibility of replacing imperative style C code with functional style Rust code.
Rikte also found code readability to increase as a result of this functional approach.

Light found that one of the benefits with Rust was that it had more high-level language
constructs than C. These include the ability to attach methods to structs, as well as scope-
based and custom destructors, which allowed Light to use Resource Acquisition Is Initiali-
sation (RAII)3 semantics. Using RAII semantics one can, among other things, ensure that
one will never access synchronised data without locking its mutex or fail to release the mutex
when one is finished with the protected data.

3“The basic idea [of RAII] is to represent a resource by a local object, so that the local object’s destructor
will release the resource.”[57]

11

2. Related Work

Another benefit of Rust that Light mentioned is its type, lifetime, and borrow checking
system, which “help eliminate entire classes of errors from the code” and “allow one to express
the meaning of code in a much richer way than is possible in C”. Light also mentioned that
Rust is a type-safe language and that the standard library includes two important wrapper
types: Result<T,E> and Option<T>. These types are explained in Section 1.5.1.

One challenge that Light encountered with Rust, was that the language does not have
structure inheritance (Section 1.5.1). This forced him to rethink his code structure, and also
resulted in duplicated code.

Light also encountered a critical problem when using Rust in the domain of operating
system development. The problem he encountered was that when a heap-memory allocation
failed, Rust would call abort() (terminating the process) but other than that the program-
mer would not be aware that the allocation failed. Light’s study was made before the release
of Rust 1.0.0 and the current version of Rust (1.32.0) still calls abort() when a memory
allocation fails, however it does display an error print informing the user4.

When Bhattacharya and Neamtiu investigated the di�erences in internal quality between
C and C++, they used the cyclomatic complexity and interface complexity metrics, and found
that the C++ code had higher internal quality than the C code. They attributed this to C++
being more of a high-level language than C.

Meyerovich and Rabkin found that developers could have di�erent feelings about lan-
guages with similar semantics, suggesting that language perception is a�ected by experience
and training. The enjoyment of a language was found to be highly correlated to expressive-
ness, elegant code, and the ease of abstracting patterns in code.

They also found that ease and flexibility were considered more important than correct-
ness, and that developers were unenthusiastic and even uneasy about static typing. Develop-
ers were more inclined to emphasise the readability and safety benefits of types, rather than
the benefit of finding bugs.

2.4 Impact on Toolchain level
Rikte found that Cargo, the Rust package manager, provides tools for benchmarking, build-
ing, dependency management, and testing. He also commented that the tools are “excellent
and closely integrated and bundled with Rust”.

Included with the Rust installation are the two debugging tools rust-gdb and rust-
lldb, respectively requiring GDB and LLDB in order to work. Rikte found, when using
rust-gdb, that “setting breakpoints, stepping into, stepping over, stepping out etc. all
worked as expected” and that “the Rust pretty printers are very good”. Rikte tested changing
variables during runtime, as well as instantiating Rust structs and adding them to data struc-
tures, and commented that “no problems were found, and the experience was very positive”.
Rikte also notes that “multi threaded debugging worked very well” and that “the tools feel
mature enough for production use”.

Rikte evaluated two open source Integrated Development Environments (IDEs) that had
Rust plugins: Eclipse RustDT and IntelliJ Rust. He found that “IDEs may not yet be full
featured” but “development activity in this department is high, and the experience is contin-
uously improving”.

4We tested this by writing a simple program that tried to allocate more memory than was available.

12

2.5 Impact on Management level

Wilkens found Rust to o�er “excellent tool support for dependency management and
other parts of the build process like testing”. He mentioned this as a potential reason for him
having a lower development time when using Rust.

2.5 Impact on Management level
Rikte found it easy to use C libraries from Rust code, as it required little e�ort. However,
dealing with C strings was found to be cumbersome, as it required the use of unsafe blocks
and many error checks.

Wilkens measured productivity using two metrics, total time and Source Lines Of Code
(SLOC), and argued that low values of these metrics correspond to high values for productiv-
ity. Using these two metrics, Wilkens concluded that working with Rust was more productive
than working with C, since the Rust code took less time to develop and had a lower number
of SLOC. He argued that the longer development time for the C code could be due to the
“manual implementation of common data structures” and the “high amount of memory and
type related errors encountered during the development". Wilkens also mentioned that the
large number of SLOC for the C implementation could be due to “the dominant bracing
style” (placing curly braces on new lines) but that the di�erence between the C implemen-
tation and the Rust implementation was “way too significant to be only attributed to the
style”.

Bhattacharya and Neamtiu evaluated external quality of C and C++ code. They repre-
sented external quality as defect density and measured this by using two metrics: defect
count divided by e�ective Lines of Code (eLOC), and defect count divided by the change in
eLOC (∆eLOC). Across all applications, the average defect density for C was more than 6
times higher than C++ for both metrics. Because of this, they could conclude that C++ code
is less bug-prone than C code.

Meyerovich and Rabkin found that the factor with most impact on the adoption of a
language was the existence of open source libraries, followed by already existing code and
expertise.

13

2. Related Work

14

Chapter 3

Research Method

In this chapter, we present how we conducted our research, and give some motivation for
our choice of methodology.

3.1 Overview
Since the main goal of this thesis is to investigate the impact of transitioning from C to Rust
specifically for Axis, we chose to follow a case study approach based on the methodology
suggested by Runeson and Höst [56]. The case study consists of five main parts, which can
be seen in the overview in Figure 3.1.

First, we did a literature study in order to get an understanding of the work that has
already been done in the area of transitioning between – and evaluating – programming
languages. Equipped with information from the literature study, we were able to compile a
list of factors that we deemed relevant when transitioning to another programming language.
Based on discussions with our supervisors at LTH and Axis, we created the first version of
the Programming Language Transition Framework (PLTF).

Next, we interviewed employees working in the Streaming department at Axis. This was
both to get feedback on the relevancy of the factors in the PLTF, but also to get their insights
and opinions regarding the topics covered by them.

We then translated a media streaming element from C to Rust in order to get experience
working with the language in the environment of the Streaming department. We noted down
our experiences during this process and measured the performance of the translated media
streaming element.

Lastly, a focus group was held with Axis employees in order to gain additional feedback
on the PLTF.

15

3. Research Method

Figure 3.1: An overview of the case study.

3.2 Literature study
First of all, we wanted to see if similar studies had already been made and if so, what conclu-
sions could be drawn from them. Second, we wanted to gather additional information that
could help us find what factors are important when transitioning from one programming
language to another. We did this by conducting a literature study, following a methodology
inspired by Kitchenham and Charters [49].

We started the literature study by searching for related articles online (DuckDuckGo [7],
Google [13], Google Scholar [14], IEEE Xplore [17], and LUBsearch [19]) using specific key-
words. These keywords include, but are not limited to, “multiple programming languages”,
“c”, “rust”, and “programming language transition”. We were also able to find articles com-
paring C and Rust through an older, online version of the Rust Programming Language [38].

Once we had found some relevant articles, and noticed that the keyword search produced
diminishing results, we used backwards snowballing1 in order to find more articles. When
backwards snowballing started to produce diminishing results we decided to end that part
of the literature study.

Using both the keyword search and backwards snowballing resulted in 55 articles that
could be relevant to our study. We skimmed through all of these, and for each article we
wrote a short summary and evaluated the article’s relevance to our study. The more relevant
articles were then read cover to cover.

3.3 Programming Language Transition Frame-
work

As stated in Section 1.3.1, one of the goals of this thesis is to find a method for evaluating
the feasibility of transitioning from one programming language to another. We also want
this method to be a structured way of finding information about the e�ects of doing such
a transition. This information can then be used to make a more informed decision about
whether or not to do the transition.

1Looking at the references of the existing articles in order to find new articles that could be relevant.

16

3.4 Interviews

One possible approach is to do a small-scale transition and evaluate it, but this would
not be doable in the time-frame of our thesis. Thus, we started looking at more theoretical
approaches instead. However, we were unable to find established methods for evaluating a
programming language transition. After some discussions with our supervisors at LTH and
Axis, we decided to create the Programming Language Transition Framework (PLTF).

The PLTF is structured as a list of factors that could be a�ected by a programming language
transition. These factors are divided into four di�erent levels: Execution, Programmer, Toolchain,
and Management. For each factor, there is a description of what it represents, a motivation
as to why it is included, as well as a suggestion on how to do the evaluation. The factors
included in the PLTF were found through a process of brainstorming, literature study, and
discussions with our supervisors at LTH and Axis.

After the literature study, we had a brainstorming session in order to come up with as many
factors related to programming languages and their impact on software development as we
could. Only the authors were present during this brainstorming session. We then refined
these factors by merging those that were deemed to be closely related to each other, and
grouped them based on our assessment of how they a�ect software development.

After further investigation, we found additional literature concerning the evaluation of
programming languages, which we used to modify our list of factors. We also had discussions
with our supervisors at LTH and Axis in order to get their feedback. This resulted in the
version of the PLTF that was used when we created the interview guide (Appendix A).

Finally, we had a focus group that provided further feedback on the PLTF. This feedback
can be found in Chapter 5.

3.4 Interviews
We conducted interviews with Axis employees working at the Streaming department. The
primary purpose of these interviews was to obtain information related to the factors in the PLTF
(see Chapter 4). A secondary purpose was to get feedback on the PLTF itself. The methodology
we used is based on Runeson and Höst [56].

First of all, we created an interview guide (Appendix A) with prepared questions concern-
ing the factors in the PLTF. These questions were created by both authors in a brainstorming
session, and were later reviewed by our supervisors. The interview guide consists of ten main
questions that are more open in nature, with each of these having closed and more specific
sub-questions. The reasoning behind this structure is that we would first ask the main ques-
tion, and then ask the sub-questions if they had not already been answered. Because of this,
the interviews could be considered semi-structured based on the definition by Runeson and
Höst [56].

We interviewed eight employees at the department, out of which two were managers and
six were developers. We wanted to ensure as much variety as possible among the employees to
be interviewed, and therefore selected them based on what they worked with and how long they
had worked at the department. Some of the employees were also selected based on suggestions
from our supervisors.

The interviews took 30-60 minutes, with seven of the interviews conducted in Swedish
and one in English. During the interviews, one of the authors acted as the main interviewer
while the other took notes and made sure that no questions were missed. These roles were

17

3. Research Method

the same during all eight interviews. All the interviews were recorded by both authors.
The interviews covered most of the interview guide, with some of the questions being

excluded from the interviews with the managers, as those questions were not relevant in that
case. Some sub-questions were not always asked as they were covered by other questions.
An example of this is question Q2.4 “What language features do you like/dislike and how do
they a�ect your work/productivity?”, which is covered by Q3 “What are your thoughts about
C/C++?” (and its sub-questions) given that some developers mostly had experience with C.

After each interview we transcribed the recordings. One author would transcribe the in-
terview based on their recording. Once that was finished, the other author would then read
through the transcription, compare it with their recording, and correct any possible errors.
Each author was the main transcriber for half of the interviews. The finished transcripts
were then sent to the corresponding interviewee so that they could comment, correct errors, and
elaborate on their answers if they felt it was needed.

Once the interviews had been transcribed, we coded them using an immersion approach [56].
First, we analysed and summarised the interview transcripts by writing down key points
brought up by the interviewees. We then divided these into groups of identical or similar key
points when possible. The results obtained through this process are presented in Chapter 5.

3.5 Programming in Rust
In order to evaluate Rust as a programming language, we needed to get some first hand expe-
rience using it. As neither one of us had any experience with programming in Rust, we first
needed to learn the language. We did this by reading the book The Rust Programming Language
[50] [37] cover to cover.

To be able to compare C and Rust, we needed a program written in both languages that
could be used for comparison. Thus, we were provided with an existing C program from the
department’s code base that we could translate to Rust. This program was selected by Axis
based on its relevance to their work, with a size suitable for the time frame. The selected
program is a media streaming element consisting of approximately 1000 lines of C code.

We started by analysing the C code and its tests in order to find out how the code worked
and how it was used. Our initial plan was to first translate a test, and then translate the code
that it was testing. However, we soon found that we could use the tests written in C to test
the Rust code directly. There was therefore no longer any need to translate the tests, and we
could instead start translating the C code immediately.

First, we created a code skeleton in Rust based on examples from the media streaming
framework. This code skeleton contained the same functions as the C code, but without
implementations. We then ran the tests in order to find out which functions failed first. These
became a natural starting point for the translation. After we had translated the functions
where the tests failed, we ran the tests again and found the next set of functions to translate.
This process continued until all tests finally passed. Essentially, this meant that we could
follow a test-driven development approach without having to write any tests.

During the translation process, we took notes on what we found good, bad, and challeng-
ing with Rust. As we had already created the PLTF at this stage, we had those factors in mind
during this process. We later used what we had written down, combined with experiences
that we could recollect from memory, to evaluate the usability of Rust.

18

3.6 Focus Group

Once the translation was complete, we ran tests to compare the performance between the
C version and the Rust version. We ran three tests in total: two for measuring execution time,
and one for measuring memory usage. These tests were also run on the C and Rust versions of
a media framework element created by the developers of the media framework. The results
from the tests, along with our usability evaluation of Rust, are presented in Chapter 5.

The first thing we tested was execution time. We did this by constructing two minimal
media framework pipelines, one for each version of the element under test. These pipelines
were then executed and timed by using the Unix time command [41]. The tests were run
using 16 di�erent input sets, 100 times each.

The second test was for measuring latency. This was done by using the same pipeline as
in the execution time test, but with some modifications. Instead of measuring the run time
of the entire pipeline, we measured the time from when the element received an input to
when it produced the corresponding output. In this test, we measured the time using media
framework timestamp functionality. These tests were run using 16 di�erent input sets, 1000
times each.

The final test was of maximum memory usage. This test was done by executing the same
pipeline that was used when testing execution time, but now the memory usage was moni-
tored using the Unix command top [42]. The tests were run using 16 di�erent input sets,
100 times each.

3.6 Focus Group
We held a focus group with Axis employees as a way to obtain more feedback on programming
language transitions in general, and on the PLTF in particular. The methodology we used is
based on Kontio et al. [51].

First of all, we prepared three questions to be used as basis for discussion on each of
the four PLTF levels. We also prepared three questions concerning the employees’ thoughts
on the PLTF as a whole, programming language transitions in general, as well as what the
first steps would be for the Streaming department when doing a transition. We attempted to
formulate all of the questions in an open-ended fashion in order to not restrict the discussion
too much. The questions for the focus group are presented in Appendix B.

In order for the focus group to be e�ective, we limited the number of participants to
six. These six employees were selected by Axis based on their knowledge about the covered
topics.

During the focus group, one of the authors was responsible for keeping the discussion
alive by asking prepared questions, as well as follow-up questions where deemed appropri-
ate. We often encouraged the employees to participate in the discussion by stressing that
all opinions are valuable. In addition to this, we sometimes posed follow-up questions to a
specific participant in order to get them involved.

The second author was responsible for advancing the slides, noting down what was said,
and summarising the findings after the discussions on each level. The reason for this was to
reduce the risk for misinterpretation and provide an opportunity for the participants to add
anything to what had been said.

19

3. Research Method

The focus group conducted held in Swedish, and had a duration of approximately one
and a half hour. Immediately following the completion of the focus group, we summarised
and wrote down the findings based on our notes and what we could recollect from memory.
The results from the focus group are presented in Chapter 5.

20

Chapter 4

Programming Language Transition Frame-
work (PLTF)

We designed a framework to be used as a tool to aid in evaluating a programming language
transition, which we call Programming Language Transition Framework (PLTF). The PLTF
consists of a number of factors related to software development (summarised in Table 4.1).
In this chapter, we describe the factors, motivate why they were included, and give examples
on how to evaluate them. This chapter also gives some suggestions on how the PLTF can be
used.

4.1 Factors
A transition to a di�erent programming language a�ects factors at di�erent levels of software
development. We have identified four levels that are a�ected, namely the Execution level,
the Programmer level, the Toolchain level, and the Management level. A summary of these
factors is shown in Table 4.1.

4.1.1 Execution level
In this section we present the factors that are related to the execution of software. This in-
cludes factors such as execution time, memory usage, and size of executable. Most of these
factors are rather quantitative and can be evaluated by writing software with similar func-
tionality in di�erent programming languages and measuring the di�erence.

21

4. Programming Language Transition Framework (PLTF)

Execution level
E1 Execution time How the execution time is a�ected.
E2 Parallelism How the speedup gained from parallelisation is a�ected.
E3 Compilation time How the compilation time is a�ected.
E4 Memory usage How the amount of memory used during execution is a�ected.
E5 Size of executable How the size of the compiled program is a�ected.
E6 Compatibility How suitable the language is for specific tasks and hardware.

Programmer level
P1 Readability How easy it is to understand code.
P2 Writeability How easy it is to write code.
P3 Learnability How easy it is to learn the language.
P4 Knowledge base How much knowledge is available about the language.

Toolchain level
T1 Testing How the usage of testing tools is a�ected.
T2 Debugging How the usage of debugging tools is a�ected.
T3 Co-operation How the usage of co-operation tools is a�ected.
T4 Compilation How the usage of compilers is a�ected.
T5 Development How the usage of development tools (e.g. IDEs) is a�ected.

Management level
M1 Integration How easy it is to integrate software written in the language.
M2 OSS collaboration How OSS collaboration is a�ected.
M3 Productivity How productivity is a�ected.
M4 Code defects How work related to code defects is a�ected.

Table 4.1: A summary of the factors in the PLTF.

22

4.1 Factors

Execution time
The Execution time factor covers the time it takes to execute a task, where the definition of a
task can vary from case to case. A task could be the execution of the entire program, but it
could also be a smaller segment of code, such as a function call.

While the best way to measure execution time may vary depending on the context, a good
rule of thumb is to decide on a task and measure the time it takes for the program to complete
it.

We chose to include this factor since there is often a desire or requirement for software
to execute tasks quickly. This factor is related to the factors Time behaviour [18] and E�ciency
[9], as mentioned in other works.

Parallelism
The Parallelism factor covers the speedup gained from making code run in parallel.

The parallel speedup can be measured by comparing the execution time of a program
running on a single processor, with the execution time of the same program running on – and
taking advantage of – multiple processors. As a reference, the theoretical speedup predicted
by Amdahl’s law [48] can be used.

We chose to include this factor since writing parallel code has become increasingly com-
mon. This is unsurprising, as it is “one of the most important methods of improving perfor-
mance” according to Hennessy and Patterson [48]. This factor is related to the factors Time
behaviour [18] and E�ciency [9], as mentioned in other works.

Compilation time
The Compilation time factor covers how long time it takes to compile code.

Compilation time can, as the name suggests, be evaluated by measuring the time it takes
to compile a program.

We chose to include this factor since compilation time can have a big impact on software
development. This is especially true for projects with a large code base, where compilation
can take a significant amount of time. This factor is related to the factors Time behaviour [18]
and E�ciency [9], as mentioned in other works.

Memory usage
The Memory usage factor covers the amount of memory that is used during execution.

There are multiple ways to measure a program’s memory usage. One of the easiest ways to
do this is to start the program and then use a monitoring tool, such as top [42]. The problem
with this method is that top displays the reserved memory, and not the actual amount of
memory that is used by the program. Another method that does not have this issue is to run
the program with Valgrind [43], which will display its actual memory usage.

We chose to include this factor since the amount of available memory in hardware can be
limited, which is often the case for embedded software. This factor is related to the factors
Resource utilization [18] and E�ciency [9], as mentioned in other works.

23

4. Programming Language Transition Framework (PLTF)

Size of executable
The Size of executable factor covers the memory required to store compiled code on disk.

The size of the executable can be found by measuring the size of code that has been
compiled with the desired level of optimisation, and potentially also reduced in size through
the use of tools such as strip [32].

We chose to include this factor since the amount of available storage space can be limited
in certain hardware. This is often true for embedded applications. This factor is related to
the factors Resource utilization [18] and E�ciency [9], as mentioned in other works.

Compatibility
The Compatibility factor covers the extent to which code is suitable for specific tasks and
hardware.

One way to evaluate compatibility is to go through the programming language’s features
and design decisions, and for each one decide whether or not it is acceptable in the given
context. This can be done in regard to the task, the hardware, or both. An example of this
could be a programming language that has a garbage collector, in which case it would be
important to determine whether or not the performance impact of this feature is acceptable.

We chose to include this factor since certain language features may be a deal-breaker in a
given context. This factor is related to the factors Functional appropriateness [18], Installability
[18], and Portability [9], as mentioned in other works.

4.1.2 Programmer level
In this section we present factors that are related to the interaction between the programmer
and the source code. This includes factors such as readability and learnability. Most of these
factors are qualitative and thus require qualitative measurement techniques. Evaluating these
factors will probably require understanding of what developers like and dislike with di�erent
programming languages but also what makes some source code easier to read and understand
than other.

Readability
The Readability factor covers aspects related to how easy it is to read and understand code.

Readability is often subjective, and it can therefore be di�cult to measure in a quanti-
tative way. The metric Internal quality [46] could potentially be used, but it is worth noting
that the purpose of this metric is primarily to measure the complexity of code structure, and
not the programming language itself. One can, however, look at specific aspects related to
readability. Examples of such aspects are how much is handled automatically by the language, the
need for writing a lot of boilerplate code, and which programming paradigms can be used.

We chose to include this factor since reading code is a large part of software development.
If it is easy to read and understand code, then it is possible to start writing code sooner.
This factor is related to the factors Analysability [18], Easy maintenance [9], Readability [9],
Expressiveness [9], Abstraction [9], and Memorability [54], as mentioned in other works.

24

4.1 Factors

Writeability
The Writeability factor covers aspects related to how easy it is to write correct code.

Writeability can often be subjective in terms of programming style, and thus requires
qualitative measuring methods. However, one can investigate to which extent the language
helps the developer to write correct code.

We chose to include this factor since writeability is perhaps the most impactful aspect of
software development. This factor is related to the factors Writeability [9], Expressiveness [9],
Abstraction [9], E�ciency [54], Errors [54], and Satisfaction [54], as mentioned in other works.

Learnability
The Learnability factor covers aspects related to how easy it is to learn to use a language.

Learnability is subjective, as it depends on how much previous experience in program-
ming the student has. Because of this, it can be useful to look at how similar the language
is to other commonly used languages in terms of syntax and semantics. Examples of specific
aspects that may a�ect learnability are how helpful error messages are, and the availability of
learning material.

We chose to include this factor since learnability can be very important during a program-
ming language transition. This factor is related to the factors Learnability [18], Low traning
time (learnability) [9], Consistency [9], Learnability [54], and Errors [54], as mentioned in other
works.

Knowledge base
The Knowledge base factor covers the availability of information about the language.

The state of a language’s knowledge base depends on a number of factors, such as its age,
its popularity, and its community. Specific aspects to investigate are literature, documentation,
and online forums such as Stack Overflow.

We chose to include this factor since a large part of programming consists of looking up
information related to the language or the problem to be solved. This factor is related to the
factors Learnability [18], Low traning time (learnability) [9], Satisfaction [54], and Learnability
[54], as mentioned in other works.

4.1.3 Toolchain level
In this section we present factors related to tools, e.g. tools for testing, compilers, and IDEs.
These factors can be seen as both quantitative (what tools are available) and qualitative (how
good are the available tools). However, one can argue that the quantitative aspect is more
important for a transition, since one would most likely want to be able to use the same tools
as before.

25

4. Programming Language Transition Framework (PLTF)

Testing
The Testing factor covers what tools are available for writing software tests in the language.

This can be evaluated by investigating which testing tools are available for the language.
In the case of a programming language transition, it may be of interest to investigate if any
tools that are already being used can be used with the new language.

We chose to include this factor since testing software is crucial for ensuring correctness in
software development. This factor is related to the factor Rapid development [9], as mentioned
in another work.

Debugging
The Debugging factor covers what tools are available for debugging software in the language.

This can be evaluated by investigating which debugging tools are available for the lan-
guage. In the case of a programming language transition, it may be of interest to investigate
if any tools that are already being used can be used with the new language.

We chose to include this factor since debugging is often necessary in order to solve errors
during software development. This factor is related to the factor Rapid development [9], as
mentioned in another work.

Co-operation
The Co-operation factor covers what tools are available for co-operation.

This can be evaluated by investigating which co-operation tools are available for the lan-
guage. In the case of a programming language transition, it may be of interest to investigate
if any tools that are already being used can be used with the new language.

We chose to include this factor since e�ective ways of co-operating is important in soft-
ware development, especially for large-scale projects. This factor is related to the factor Rapid
development [9], as mentioned in another work.

Compilation
The Compilation factor covers what compilers and other build system tools are available for
the language.

This can be evaluated by investigating which compilation-related tools are available for
the language.

We chose to include this factor since changing build systems can be a costly and time-
consuming endeavour. This factor is related to the factor Rapid development [9], as mentioned
in another work.

Development
The Development factor covers what development tools have support for the language.

This can be evaluated by investigating which IDEs and other editors are compatible with
the language. In the case of a programming language transition, it may be of interest to
investigate if any tools that are already being used can be used with the new language.

26

4.1 Factors

We chose to include this factor since developers may prefer a specific IDE or editor, and
forcing a change could therefore result in developer discontent and a decrease in productivity.
This factor is related to the factor Rapid development [9], as mentioned in another work.

4.1.4 Management level
In this section we present the factors that are related to management and the execution of a
project.

Integration
The Integration factor covers aspects related to integrating a new language with existing sys-
tems and an existing code base.

Two examples of integration-related aspects to investigate are the possibility to use both
languages in the same project, and the possibility to do a gradual transition.

We chose to include this factor since it can be costly to rewrite existing code. This factor
was also motivated by Axis wanting to ensure the possibility of doing a gradual transition.

OSS collaboration
The OSS collaboration factor covers aspects related to the interaction and collaboration with
OSS communities.

In some cases, OSS collaboration related to software, tools, or frameworks can be a�ected
by a programming language transition. If these have been developed for a specific program-
ming language and are not supporting the new language, there may still be an interest to
do so. By discussing this matter with those responsible, it is possible that they may agree to
adapt to the new language on their own. In other cases, it may be necessary to contribute to
this adaptation, which would require its own investigation.

We chose to include this factor since Open Source Software (OSS) can motivate the use
of a language. Meyerovich and Rabkin found that the existence of Open Source libraries in
particular had the most impact on programming language adoption among the factors they
included in their survey (Section 2.5).

Productivity
The Productivity factor covers aspects related to how productive developers can be in the
language.

Evaluating productivity is non-trivial as it is a�ected by other factors, such as Readability
and Writeability, but also the Toolchain factors.

We chose to include this factor since it could a�ect a product’s time to market, which is
often an important aspect. This factor is related to the factors Rapid development [9] and Easy
maintenance [9], as mentioned in other works.

27

4. Programming Language Transition Framework (PLTF)

Code defects
The Code defects factor covers aspects related to which code defects are present in the language,
and how frequent they are.

This can be evaluated by investigating which types of code defects are possible in the
language, and if any code defects are more common than others. Code defect density can
also be measured by using the metric External quality (Section 2.5).

We chose to include this factor since it could a�ect the correctness, and the quality, of
the software. This factor is related to the factors Maturity [18] and Reliability and safety [9], as
mentioned in other works.

4.2 Usage
We found these factors to be useful for evaluating a programming language transition (Sec-
tion 5.1.3, 5.2.3, 5.3.3, and 5.4.3), but they could also be relevant when evaluating a program-
ming language in general. The following suggestions on how to evaluate a programming
language using the PLTF is based on the approach we chose to follow, but there may be other
methods to do this as well.

Depending on the PLTF level, di�erent roles are a�ected, and they may therefore need
to be involved in the evaluation of the factors. On the Execution level, the factors are mainly
related to performance, and are the ones most likely to have concrete requirements. Because
of this, quality assurance and developers are most likely to be a�ected. On the Programmer
level, the factors cover the interaction between the developer and the language, which means
that developers will be a�ected primarily. On the Toolchain level, the factors revolve around
the tools that are used. This means that the people using the tools – most likely developers and
testers – will be a�ected. On the Management level, the factors are more focused on projects as
a whole, and may therefore involve many di�erent roles. This will primarily a�ect managers
and integrators, but potentially also developers and testers.

While it is possible to evaluate many of the factors in the PLTF without having any con-
crete requirements for the given context, it is often beneficial to be aware of them beforehand.
The reason for this is that the specific aspects that need to be investigated may vary from
case to case, and finding the requirements can make it more clear where the focus needs to
be. Ways that can be used to obtain this information include, but are not limited to, surveys,
interviews, and focus groups.

The method used when evaluating the factors varies depending on the PLTF level. On
the Execution level, mainly quantitative performance measurements are involved. On the Pro-
grammer level, the factors are evaluated through qualitative measurements concerning devel-
opers’ opinions. On the Toolchain level, the evaluation consists of investigating which tools
are available for use with the language, as well as how suitable they are. On the Management
level, evaluation method varies from factor to factor, and includes investigations, contact with
collaborators, and analysis of other PLTF factors.

28

Chapter 5

Results

In this chapter we present the results we obtained from programming in Rust, interviewing
Axis employees, and conducting a focus group with Axis employees. The methodology used
for each of these activities can be found in Chapter 3. The results are first organised by level
(i.e. Execution level, Programmer level, Toolchain level, and Management level) and then
by method (i.e. Programming, Interviews, and Focus group). A summary of which factors
were investigated using the di�erent methods is shown in Table 5.1. These results are later
discussed in Chapter 6.

5.1 Execution level
The results related to the execution level are focused mostly on execution time (E1). However,
factors such as compilation time (E3) and compatibility (E6) are also covered. The results
from programming in Rust consist mostly of our own quantitative measurements, while the
interview results cover the more qualitative aspects.

5.1.1 Evaluation of performance
In this section, we present the results from our own performance evaluations of both the
original and the translated media streaming element. We also present results from measure-
ments of another media framework element that had already been implemented in both C
and Rust.

29

5. Results

ID Name Programming Interviews Focus group
E1 Execution time X X X
E2 Parallelism X X
E3 Compilation time X X
E4 Memory usage X X X
E5 Size of executable X X X
E6 Compatibility X X
P1 Readability X X X
P2 Writeability X X X
P3 Learnability X X
P4 Knowledge base X X X
T1 Testing X X
T2 Debugging X X X
T3 Co-operation X
T4 Compilation X X X
T5 Integrated Development Environments X X
M1 Integration X X X
M2 Open Source Software collaboration X X
M3 Productivity X X
M4 Code defects X X X

Table 5.1: An overview of which methods yielded results for the dif-
ferent factors.

30

5.1 Execution level

Execution times in C and Rust for the Axis element

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input set

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

C
Rust

Figure 5.1: The execution times for the C and Rust version of the
element, for di�erent input sets. The execution times for each input
set are the average of 100 runs. O and X mark the average execution
time for C and Rust, respectively.

Execution time
In order to measure execution time, we ran one test on 16 di�erent input sets. We did this 100
times each on both the C version and the Rust version (summarised in Figure 5.1). We found
that the C version and the Rust version have similar performance, with the Rust version
having an execution time that is, on average, 4.24% (0.18 seconds) longer than the C version.
If we exclude data set 10 from these calculations (since it can be seen as an outlier), the average
execution time for the Rust version is instead 1.54% (0.07 seconds) longer than the C version.

In addition to testing our own element, we also tested the C and Rust version of another
element – written by the developers of the media streaming framework – using the same tests
as before (16 di�erent input sets, 100 runs each). The results from these measurements are
shown in Figure 5.2. On average, the execution time for the Rust version of this element is
0.09% (0.004 seconds) longer than for the C version.

Another important metric is latency, i.e. the time from when the element receives an
input to when the element produces the corresponding output. We measured this by running
another test on the same 16 input sets, 1000 times each on both the C version and the Rust
version. The results are summarised in Figure 5.3. We found that, in all tests, the Rust version
has a greater latency than the C version. On average, the Rust version has a latency that is
25.69% (5.00 microseconds) greater than the C version.

31

5. Results

Execution times in C and Rust for the Framework element

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input set

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

C
Rust

Figure 5.2: The execution times for the C and Rust version of an ele-
ment written by the developers behind the framework, for di�erent
input sets. The execution times for each input set are the average of
100 runs. O and X mark the average execution time for C and Rust,
respectively.

32

5.1 Execution level

Latency in C and Rust for the Axis element

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input set

0

5

10

15

20

25

La
te

nc
y

(m
ic

ro
se

co
nd

s)

C
Rust

Figure 5.3: The latencies for the C and Rust version of the element
for di�erent input sets. The latencies for each input set are the aver-
age of 1000 runs. O and X mark the average latency for C and Rust,
respectively.

33

5. Results

Latency in C and Rust for the Framework element

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input set

0

5

10

15

20

25

La
te

nc
y

(m
ic

ro
se

co
nd

s)
C
Rust

Figure 5.4: The latencies for the C and Rust version of an element
written by the developers behind the framework, for di�erent input
sets. The execution times for each input set are the average of 1000
runs. O and X mark the average latency for C and Rust, respectively.

When we tested the latency of the element written by the developers of the framework
(see Figure 5.4), we found that the C version’s latency is 30.30% (4.11 microseconds) longer
than that of the Rust version.

Memory usage

In order to measure memory usage, we ran a test on 16 di�erent input sets, 100 times each,
on both the C version and the Rust version. These were the same input sets that we used
when measuring the execution time. The measurements were done on the entire pipeline, as
it was not possible to do them for just the element. Figure 5.5 shows the results from these
measurements. We found that, in all tests, the Rust version of the element uses more memory
than the C version and, on average, the Rust version uses 1.656% (177 kbytes) more memory
than the C version.

In addition to testing our element, we also tested an element written by the developers
of the framework in both C and Rust (Figure 5.6). The C version of this element uses, on
average, 43.71% (3129 kbytes) more memory than the Rust version.

34

5.1 Execution level

Memory usage in C and Rust for the Axis element

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input set

0

2

4

6

8

10

12

M
em

or
y

(k
ilo

by
te

s)

C
Rust

Figure 5.5: The maximum memory usage (maximum resident set
size) for the C and Rust version of the element for di�erent in-
put sets. The memory usage for each input set is the average of 100
runs. The average maximum memory usage of each version has been
rounded to the nearest integer. O and X mark the average memory
usage for C and Rust, respectively.

35

5. Results

Memory usage in C and Rust for the Framework element

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input set

0

2

4

6

8

10

12

M
em

or
y

(k
ilo

by
te

s)

C
Rust

Figure 5.6: The maximum memory usage (maximum resident set
size) for the C and Rust version of an element written by the de-
velopers of the framework, for di�erent input sets. The memory
usage for each input set is the average of 100 runs. The average max-
imum memory usage of each version has been rounded to the nearest
integer. O and X mark the average memory usage for C and Rust, re-
spectively.

36

5.1 Execution level

Size of executable
We were not able to fully investigate the di�erence in size of executable between the C and
Rust version of the element due to time restrictions. However, we did get some preliminary
results that point towards Rust binaries being significantly larger than C binaries. We discuss
this further in Chapter 6.

Compatibility
In embedded systems, compatibility with the hardware used in the di�erent products is of
course very important. When we tested our translated Rust version of the element, we had
no hardware compatibility issues related to Rust. Unfortunately, since time did not allow
testing on the target platform, we were only able to run the element on the host computer
(64-bit Linux).

5.1.2 Performance requirements
During our interviews with the Axis employees, we asked them what they think is important
for the Streaming department at the Execution level. In this section, we present what we
learned from these interviews.

Execution time
When asked which performance aspects are important for their work, execution time was
mentioned by most employees. One of the employees explained that they view execution
time as something that is especially important to the customer.

A concrete performance aspect that a�ects the customer is that the specified frame rate
should be upheld, which is directly linked to execution time. Since there are several di�erent
processes running on a camera simultaneously, it is important that all of them are e�cient.
A small increase in the CPU usage of one process may not seem to have that big of an impact
by itself, but it will reduce the available CPU time for other processes, potentially a�ecting
the overall performance significantly.

Another employee gave as an example that using a garbage collector, while helpful in
providing automatic memory management, would be problematic in embedded software due
to the performance impact that occurs when it starts cleaning up memory.

Parallelism
Since the processes running on the cameras execute in parallel, it is important that the lan-
guage can handle concurrency e�ectively. However, when asked which performance aspects
are most important, only one of the employees mentioned concurrency.

37

5. Results

Compilation time
Compilation time was not considered to be an important factor by most employees, for two
major reasons. First, compilation time a�ects neither the end product, nor the customer.
Second, compilation time is a relatively small part of the total time used by the build system.
This means that a change in compilation time will not have a large impact on the total build
time.

Memory usage
An important performance aspect is memory usage, which was mentioned explicitly by all
but one of the employees. One employee explained that there must not be too much overhead
when allocating and deallocating memory, since a lot of memory needs to be allocated and
deallocated for video frames all the time. The same employee gave their insight into why C
is used in media streaming: “In a way, it’s the great amount of data that is constantly handled
that steers us towards using C.”

Size of executable
Size of the executable is a performance aspect that was regarded as important by several
employees. New features are constantly added, which requires the size of the programs to be
kept small in order for everything to fit within the memory that is available on the cameras.

Compatibility
It was clear from the interviews that there are several hardware-related requirements that
need to be met by the software before it can be included in the cameras, some of which
have been explained earlier in this section. One additional important requirement is that the
processor architectures in the cameras are supported by the language, which was something
touched upon by one of the employees.

5.1.3 Focus group insights
During the focus group, it was concluded that all Execution level factors are important. It
was also mentioned that it is di�cult to rank them, due to the fact that priorities can vary
depending on the product.

It was, however, clear that some factors are more important than others. For instance, the
participants agreed that it is important that all hardware is supported, indicating that Compat-
ibility is among the most important factors. We also learned that Execution time, Memory
usage, and Size of executable are limiting factors in the camera, suggesting that these may be
the most important Execution level factors in products with limited hardware. Parallelism
was also regarded as important, but the developers were more interested in how easy it is to
write parallel code in the language. It was also concluded that memory robustness is important,
leading to the suggestion of a new factor: Memory management.

Compilation time was considered to be the least important factor, since it does not a�ect the
end product directly, and it was suggested that this factor may fit better on the Toolchain
level.

38

5.2 Programmer level

According to the focus group participants, it is di�cult to set specific requirements on the
Execution level factors. One exception to this is framerate, a metric related to Execution
time, where there is often a concrete requirement that must be fulfilled.

It was also mentioned that programming language culture can a�ect the execution level. One
example that was mentioned, was the extent to which libraries are used, which can vary
between di�erent programming languages. Using a library can reduce development time,
but it may also increase the size of the executable.

5.2 Programmer level
The results related to the programmer level are focused on the interaction between the pro-
gramming language and the programmer. The results from programming in Rust cover our
own experience of using Rust. This includes what we found to be good, bad, or challenging
when using the language. The interviews cover what the developers think of di�erent pro-
gramming languages, what they think makes code easier to read, what language features they
like, and why they like some languages more than others.

5.2.1 Evaluation of programming in Rust
During the translation of the media framework element, we took notes of both the good and
the bad experiences we had with Rust. In this section, we present our thoughts on program-
ming in Rust based on these experiences.

Readability
We found that not having to handle certain things manually in Rust made the code more
readable. We define such manual handling of things that could otherwise be handled by the
language as boilerplate code. Our experience is that such code can be distracting when trying
to understand the code logic.

An example of Rust reducing boilerplate code is its automatic memory management.
Rust follows a pattern called Resource Acquisition Is Initialisation (RAII) (also known as
Scope-Based Resource Management), which means that when a variable goes out of scope, its
associated memory will be returned [37]. As a result, there will be less memory handling code
(such as calls to malloc and free in C), that can be distracting when trying to understand
what the code does.

Another example of boilerplate code reduction is Rust’s implicit deref coercion, which is
used to automatically convert from a reference of a type implementing the Deref trait, to a
reference of the target type specified in the trait [37]. While this does remove certain manual
conversions, generally making the code easier to read, it can also make it harder to understand
what the code does.

We realised that we could take advantage of implicit deref coercion to avoid doing some
conversions manually, and did so without any issues until we encountered a specific situation
similar to the one in Figure 5.7. Here, we wanted to get mutable references to two di�erent
fields of a struct that was protected by a Mutex (Section 1.5.1). When attempting to compile
this code, the compiler produces an error message that can be seen in Figure 5.8.

39

5. Results

use std::sync::Mutex;

struct MyStruct {
x: i32,
y: i32,

}

fn main() {
let mutex = Mutex::new(MyStruct { x: 1, y: 2 });

let mut mutex_guard = mutex.lock().unwrap();
let x_ref = &mut mutex_guard.x;
let y_ref = &mut mutex_guard.y;

*x_ref += 1;
*y_ref += 1;

}

Figure 5.7: Attempting to mutably borrow two fields from a struct
that is protected by a mutex. This code does not compile (see error
message in Figure 5.8).

The error message points out that the MutexGuard cannot be borrowed mutably more
than once, which seems to be irrelevant in this case, as we are only interested in borrowing
the two fields (mutably borrowing two fields from the same struct is allowed in Rust). What
happens in the background when we try to borrow x is that deref_mut() is called on
the MutexGuard in order to convert it into a MyStruct so that we can get a reference
to the variable. In order to do this, the MutexGuard is mutably borrowed and stored at an
unnamed memory location for as long as x_ref is in scope. When we then attempt to borrow
y, the same procedure is followed, giving us another mutable reference to the MutexGuard.
Even though this already seems to violate the ownership rules (only one mutable borrow of
a piece of data is allowed), it actually does not as of Rust 1.31 thanks to the introduction of
non-lexical lifetimes [25]. However, as soon as we try to use x_ref, the compiler sees that
both references to the MutexGuard will have to be in scope at the same time, which is a
violation of the ownership rules. The compiler therefore produces the error message shown
in Figure 5.8.

The solution we found is presented in Figure 5.9, where we create one reference to the
struct from the MutexGuard by calling deref_mut() manually. The reason this had to be
fixed by borrowing the struct is that having only one mutable reference to theMutexGuard is
not enough. In that situation, the struct would be borrowed mutably twice instead, since the
two calls toderef_mut() return a separate mutable reference each. This shows that implicit
deref coercion, while helpful in general, can negatively impact readability and writeability in
that it is not always clear what is happening in the background from just reading the code.

What we found most helpful in terms of readability in Rust are the object-oriented pro-
gramming features (Section 1.5.1). How much an object-oriented structure benefits readabil-
ity, we consider to depend both on how well the problem fits this structure and on how well
it has been implemented.

40

5.2 Programmer level

error[E0499]: cannot borrow ‘mutex_guard‘ as mutable more than once at a time
--> src/main.rs:15:22
|

14 | let x_ref = &mut mutex_guard.x;
| ----------- first mutable borrow occurs here

15 | let y_ref = &mut mutex_guard.y;
| ^^^^^^^^^^^ second mutable borrow occurs here

16 |
17 | *x_ref += 1;

| ----------- first borrow later used here

error: aborting due to previous error

For more information about this error, try ‘rustc --explain E0499‘.
error: Could not compile ‘mutex-problem‘.

To learn more, run the command again with --verbose.

Figure 5.8: The error message that is produced when attempting to
compile the code in Figure 5.7.

use std::sync::Mutex;
use std::ops::DerefMut;

struct MyStruct {
x: i32,
y: i32,

}

fn main() {
let mutex = Mutex::new(MyStruct { x: 1, y: 2 });

let mut mutex_guard = mutex.lock().unwrap();
let my_struct = mutex_guard.deref_mut();
let x_ref = &mut my_struct.x;
let y_ref = &mut my_struct.y;

*x_ref += 1;
*y_ref += 1;

}

Figure 5.9: A working version of the code in Figure 5.7.

41

5. Results

The structure of the media framework element we translated is dictated to a certain
degree by the open-source media framework used at Axis. This means that the suitability
of an object-oriented structure for the element is closely related to how well the framework
itself has been structured in this respect. To the extent that we used it, the framework seems
to be a perfect fit for an object-oriented structure, much because of the way it represents
di�erent parts of an element. One of the ways it takes advantage of this in the Rust version
is that traits are used to separate code into di�erent sections based on which one of these
element parts it is related to.

We found that the object-oriented structure made it easier to navigate and get an overview
of the code, making it easier to read. We also found that this structure made the code fo-
cused and more in line with the single responsibility principle [34], which made it easier to
understand. One example of this was the naming of framework functions. In C, the frame-
work functions were usually named with the framework name first, followed by the element’s
name, followed in turn by the name of the actual function. In Rust, it is not necessary to in-
clude the framework name in the function name, as that information is instead conveyed by
the module name. Similarly, the element’s name can be left out, since the element is rep-
resented as a class that in turn contains the function. For instance, the C function frame-
work_element_function()would correspond toframework::Element::function()
in Rust.

Two Rust keywords that we found helpful in terms of readability are let and fn, which
are used to declare variables and functions, respectively. The let keyword is placed in front
of a variable declaration, while the fn keyword is placed in front of the function declara-
tion. We found that this made it easy to distinguish between variables and functions. This
can sometimes be slightly confusing in languages where variable declarations and function
declarations start in the same way. It also made it possible to quickly find where a variable is
declared or where a function starts, simply by searching for the keyword and the name.

Writeability
We found that the Rust compiler, rustc, was very helpful in terms of getting the code to
work as intended. One of the reasons for this is that it finds many bugs during compile time, that
may otherwise have been cumbersome to track down and fix by debugging. Another reason
is that rustc presents detailed error messages in a way that makes it easy to understand the
underlying problem. In addition to this, the error messages often include relevant suggestions
for how to fix the problem, and where to look for more information about that particular
problem.

Figure 5.10 and Figure 5.11 show the error messages generated when compiling similar
programs written in Rust and C using rustc and GCC, respectively. These error messages
reflect that there is a function that tries to return an integer value despite being declared not
to do so. We find that rustc provides a more detailed and user-friendly description of the
problem than GCC. First, rustc displays the name of the error first, indicating the type of
error that has occurred. Second, the formatting of rustc’s error message makes the context
clear, only showing the lines of code that are relevant to the error. Third, the expected type
and the actual type are displayed, making the problem clear to the user. Finally, a reasonable
fix is suggested and the user is given a command that can be run to get more information
about that type of error.

42

5.2 Programmer level

error[E0308]: mismatched types
--> src/main.rs:11:12
|

5 | fn no_return() {
| - possibly return type missing here?

...
11 | return a

| ^ expected (), found integer
|
= note: expected type ‘()‘

found type ‘{integer}‘

error: aborting due to previous error

For more information about this error, try ‘rustc --explain E0308‘.
error: Could not compile ‘playground‘.

To learn more, run the command again with --verbose.

Figure 5.10: The output from rustc when compiling a program
containing a function that tries to return an integer value despite
being declared to not return anything.

src/main.c: In function ‘no_return’:
src/main.c:9:12: warning: ‘return’ with a value, in function returning void

return a;
^

src/main.c:3:6: note: declared here
void no_return() {

^~~~~~~~~

Figure 5.11: The output from GCC when compiling a program con-
taining a function that tries to return an integer value despite being
declared to not return anything.

43

5. Results

We also found that rustc sometimes displays only a few of all the error messages found.
This helped tremendously in prioritising which errors to fix first.

Because of Rust’s excellent error messages, it was often easier to let the error message explain
what to do instead of looking it up in the documentation. This made it quicker to write
correct code in certain situations. For instance, variable types are sometimes not visible in
Rust code, such as when declaring a variable by using only let and omitting the type. This
is very convenient most of the time, but in some cases the variable type must be known. An
example of this is a function’s return type, which must be specified explicitly. It is not always
trivial to figure out which type to use in such situations, and this is where the compiler’s error
messages can be utilised. By simply omitting the return type, the error message will explain
what type the compiler expected.

When we used Rust, we found that there are often multiple ways to write code. In particular,
the ability to write both imperative-style code and functional-style code enabled us to choose
the method that was most appropriate for the situation. For example, iterating over a list
can either be done by using a standard for-loop with indices, or by using iterator methods
(Section 1.5.1). On several occasions, we were very satisfied with the Rust code because we had
been able to solve a problem in a way that we thought was clean and concise.

We found that the Rust syntax helped us write correct code. One example of this is the key-
word mut, which must be used when declaring a mutable variable. To be able to mutate
a variable, a deliberate choice has to be made by the programmer. We found that this en-
couraged planning ahead, and that it reduced the risk of us making accidental errors due to
incorrect handling of variables.

We also found that Cargo increased writeability, mostly because of Clippy (Section 1.5.2).
We found Clippy to be very helpful since it helped us keep the code as simple as possible.

We found that Rust’s ownership system makes it easier to get correct code that is guar-
anteed to not have certain issues, e.g. memory leaks. However, as it does this by enforcing
restrictions on how code is written, it can often take longer to get the program to compile. This
time penalty of course depends on how used the programmer is to thinking about code in
the way that the ownership system works. We found that the time penalty decreased as we
became more experienced with Rust.

When we translated the plugin, we found Rust’s guaranteed thread safety to be very help-
ful in terms of writing correct parallel code, but it did take a while to get there. As with the
ownership system, there is also a time penalty associated with the compiler enforcing thread
safety. It takes longer to get a program running, but it will most likely work as intended when
it does compile. Something that the programmer needs to be aware of, however, is that the
Rust compiler does not detect deadlocks.

Two specific Rust features that impacted writeability in a positive way were Trait and
Option<T>. Trait helped us create an organised code structure, making it possible to
put all related data and functionality together. This made it easy for us to decide where
code should be placed based on which part of the plugin it a�ected. Option<T> helped us
remember to check for missing values, as the Rust compiler will not accept code that does
not handle the possibility of getting a None value.

Because Rust handles many things automatically, such as freeing memory, there is a lot
less boilerplate code that needs to be written. This means that the programmer can focus on
solving the problem instead of spending time with correctly handling the details. Because
of this, we found that translating the plugin to Rust had the e�ect of making the code less

44

5.2 Programmer level

complex in most cases. In addition to reducing complexity, having less boilerplate code also
means that less code needs to be written in general.

Learnability
We started learning Rust with a background of having worked with several programming
languages before, both low-level languages such as C and high-level languages such as Java.
This meant that most of the basics in Rust were familiar, but certain language features such as
the ownership system and the lifetime system were completely new to us. We were not used
to thinking about code in terms of ownership, and neither did we have much experience
handling data lifetimes.

During the translation of the media framework element, we never had to manually handle
any lifetimes, but we were frequently “fighting the borrow checker”1. Getting our mental
image of the ownership system to match with how it actually works was by far the greatest
challenge for us in learning Rust. Had it not been for the Rust compiler constantly giving
informative error messages, suggesting fixes for these violations of the ownership rules, it
would have been even more di�cult and time-consuming to learn the language.

Since the Rust compiler produces very informative error messages, we were constantly
learning as we made mistakes. We found that we could get by relatively well by using the
compiler as an “experienced programmer”, who could suggest what to do when the program
would not compile. However, in those cases where additional information or a more in-depth
explanation was needed, the various resources that are available online were of much help.
The three most important resources to us were the Rust book [50], the Rust standard library
documentation [39], as well as the open-source media framework Rust documentation and
examples. We found the Rust book to be an especially useful resource for learning the basics
of the language.

The object-oriented structure in the Rust version of the framework resulted in some
di�erences to the C version. As mentioned previously, one example of this is that function
names were updated to reflect the framework being divided into modules, classes, and traits.
This was mostly something positive for us in terms of learnability, as it had the e�ect of
making it much easier to understand the structure of the framework.

We found getting started with programming in Rust to be very easy because of Cargo.
Cargo makes it possible to create a project with the necessary settings and directory hierarchy
with one command. Getting one’s own code to run is just a matter of modifying the generated
Rust source file, saving it, and then running it using cargo run. While there are flags and
other options that can be set for a Rust project, knowing about them is not required when
getting started. We appreciated how easy it was to set up a project using Cargo when we
started to learn Rust, as it enabled us to focus on the language itself.

Knowledge base
During the code translation process, we found that the available knowledge base for Rust
was good in some aspects, and bad in others. The book [50] [37] and the documentation for
the standard library [39] were clear, up-to-date, and contained the necessary information.

1“Fighting the borrow checker” is an expression commonly used by Rust programmers to express their strug-
gle to write code that follows the ownership rules.

45

5. Results

However, when we tried searching online for help we found that solutions posted on forums
(e.g. Stack Overflow) and blogs were often based on an older version of Rust. They were
sometimes older than the o�cial release of Rust, and did not work with the current version.

5.2.2 Developer perspective on programming languages
The interviews focused on the interviewee’s experience with di�erent languages. The focus
was mostly on C, as all of the interviewees had experience with C and most of them use it on a
daily basis. This covers topics such as what makes code easier to read, write, and learn. These
results are presented based on the four factors in Section 4.1.2, i.e. Readability, Writeability,
Learnability, and Knowledge base.

Readability
When we asked the employees about their thoughts on programming language readability,
the questions were mostly targeting C, as that is the language they use the most. However,
not all answers were directly connected to a specific language. Examples of this are factors
such as how the code is written, following a code style, and understanding what happens during code
execution.

Regarding C in particular, some said that they thought it could be hard to read and
understand, giving examples of specific features or properties of the language that they felt
impact the readability negatively. The two most frequently mentioned features were macros
and pointers, but the C syntax was also something that some felt made the code di�cult to
read.

Macros were otherwise described as being useful, but in terms of readability they were of-
ten the first to be mentioned as something negative. One developer said that nested macros
(macros calling other macros) with multiple levels could be particularly di�cult to under-
stand.

According to some of the employees, pointers can make the code di�cult to understand.
One employee said: “It can be confusing with all the stars2, and if it’s a pointer or not”.
Another employee said that when function pointers are involved, the code can be very hard
to read. They explained that function pointers can make it di�cult to understand the control
flow of the program when debugging.

Many employees expressed that they thought readability has more to do with how the code
is written, rather than it being something inherent to the language. One developer said: “It’s
more about praxis for developers, and you can always obfuscate anything with macros if you
want to.” One employee mentioned that developers sometimes write code that is hard to read
because it happens to be more e�ective code than if it was written some other way.

Some employees suggested that it is important to have a code style to follow. One example
was given about di�erences in indentation between di�erent code standards used in various
open source projects. They felt that this makes it di�cult to read the code, highlighting
the importance of following a single code style in a project. Another developer said: “It’s all
about setting up rules, and making sure that everyone follows the same rules.” One employee

2In the C syntax, a star (*) is used both to denote a pointer and to dereference a pointer. In some cases,
multiple stars are involved, e.g. when having pointers that point to other pointers.

46

5.2 Programmer level

expressed that they did not think of C code as being hard to read, as long as conventions are
followed.

Another type of readability is how easy it is to understand what the code does. In the inter-
views, this was one of the most frequently mentioned positive things about C. One developer
explained that the lack of “hidden things” is something that can make C code easier to under-
stand. Others expressed similar opinions, saying that C is a simple language and that nothing
happens “behind the scenes”.

Writeability
We learned from the interviews that one of the most appreciated features of C was that it
enables the programmer to have much control over what happens. One employee expressed
appreciation of the language’s simplicity and the possibility to do exactly what you want in C.
They explained that “everything you want to do that’s a bit more complicated, you’ll have to
do yourself, and those are hopefully things you are knowledgeable about.”. Another employee
expressed similar opinions, saying that one of the reasons they love C is because you get to
write everything yourself just the way you want it, and do not have to rely on methods created
by others. Comparing C to Python, one developer said: “Python is definitely faster to get
something going with, but you don’t have the same control.”

Another positive aspect that was mentioned about C was that it is a powerful language,
making it possible to do things that are di�cult or not even possible to do in other languages.
An example of this, mentioned by one of the employees, was the ability to pass around func-
tion pointers, which would require the creation of objects in Java. One of the developers also
pointed out that creating or controlling programs such as drivers or kernel software is easy
to do in C.

While having control was generally regarded as a positive aspect of C, something that was
mentioned by several employees was that it is easy to do “bad” things because of this control.
One developer likened C to a scalpel, explaining that in the hands of a surgeon, a scalpel can
do much good since it enables them to be very precise. However, there is also a possibility
of doing much harm with it. The developer concluded that “you have to know what you’re
doing”.

Some employees said that C can be di�cult to work with. One developer said: “I have prob-
ably never encountered code that can be as di�cult as C.” Another employee argued that the
help provided by C is limited when compared to Java. As an example, they mentioned the
lack of standardised libraries in C, which was brought up by others as well. Manual mem-
ory management and the existence of null pointers were specifically mentioned as problematic
aspects of C.

Making mistakes in C is very easy according to many of the employees, especially mistakes
related to memory management. Because of this, many of them wanted more help from the
language than C provides. One developer mentioned that language checks when casting from
one type to another is something they miss in C. Others mentioned that having the language
detect deadlocks would be very useful.

The developers also gave examples of features in other languages that they would ap-
preciate, such as Java’s garbage collector for automatic memory management. Employees
mentioned the benefit of not having to search for memory leaks or worry about memory al-
locations. Another desired feature was to have object-orientation built into the language. One

47

5. Results

employee elaborated: “It’s nice to have something that forces you to work in a more struc-
tured way, such as having an object-oriented approach. You have to create this yourself in
C.”

Learnability
The employees appreciated language properties in general that make the language easy to use
and easy to understand. One example of this was that the language should be easy to learn or
get started with. One of the developers mentioned that Python is easier to get started with
than C, and other employees mentioned that Java was easier both to understand and to work
with due to the existence of standardised libraries in Java.

Something that almost all of the developers had in common, was that they had used C for
three or more years, with some even approaching twelve years. All but one of the developers
said that C was their favourite programming language, and mentioned habit as one of the
main reasons for this. One developer explained: “I guess that’s what happens when it’s the
language you work with the most, so it’s what I feel most comfortable with.” One developer
also said that they usually do not test new languages very often.

We asked the employees what they knew about Rust, and learned that most of them had
heard about the language and knew at least a little bit about it and why it is popular. One
of the reasons for this is that the media streaming framework used at Axis is transitioning
to Rust themselves, and are actively encouraging their users to start transitioning to Rust as
well. A few of the employees were quite interested in the language and said that they had
looked at it more closely, with some of them even having written some code in the language
themselves. One developer mentioned that Rust seems to be relatively easy to understand.

A few of the employees mentioned that the lack of knowledge about the Rust language
could be a challenge when doing a transition from C to Rust. They argued that the devel-
opers would need to learn not only how to use Rust, but how to take full advantage of its
features. One experienced C developer used the example that while developers who are used
to working in C may be able to write programs in Python, that code will often look more
like C code than idiomatic Python code.

Knowledge base
When asked about where they look for information or help, all developers said that they
sometimes discuss the problem with colleagues, look for a solution on the internet, and read
documentation (e.g. man pages or Application Programming Interfaces (APIs)). All of the de-
velopers noted that they use all of the previously mentioned sources, but not at the same time;
the type of problem often decides what they will use. They only discuss it with colleagues if it
is a larger problem, and for small problems (e.g. what function to use, or questions regarding
the language) they often turn to documentation or internet forums for answers. Another
developer mentioned that transitioning to Rust could mean that one has to get involved in
the Rust community, which they had heard good things about.

A few developers mentioned that if they have questions about the code base, they some-
times use tools in order to browse through it. Another developer mentioned that they also
like to use books as a source of information.

48

5.3 Toolchain level

5.2.3 Focus group insights
The focus group participants did not express any negative opinions about any of the existing
individual Programmer level factors. They did, however, comment that the three factors
Readability, Writeability, and Learnability all a�ect each other.

One developer mentioned that Readability depends on the way the code is written, in addition
to depending on the language itself. It was therefore concluded that it should be easy to write
expressive code in the language. Error handling was mentioned as an example of this. In C,
there are no built in structures for error handling, which means that such a structure must
be created manually. This can lead to error handling logic being separated from the rest of
the code, potentially making it harder to understand.

The developers expressed a desire for the possibility of storing related information close to-
gether, as long as it does not a�ect flexibility. More specifically, exceptions (a common structure
for handling errors) was mentioned as a requested language feature. Other requested language
features include interfaces, garbage collection, a good standard library, and good free libraries.

When it comes to learning a language, having access to several examples was something
that the developers valued and appreciated. We also learned that Learnability is an especially
important factor, since other departments read the code created at the Streaming department.

The developers highlighted the importance of having an easy way to debug code and an easy
way to test code. This led to the suggestion of two new Programmer level factors: Debuggability
and Testability.

5.3 Toolchain level
Here we present the results related to the toolchain level. From the programming we found
how it is to use some Rust-specific tools such as Cargo [33], the Rust package manager (Sec-
tion 1.5.2), and from the interviews we found what tools developers use in their everyday
work.

5.3.1 Evaluation of Rust tools
During the porting process we were able to get hands-on experience using some tools together
with Rust, which we cover here. These experiences include both tools specific to Rust and
more general tools that can be used with other programming languages as well.

Debugging
During the porting process we did not need to use any tools for debugging, and the reason for
this was twofold. First, the Rust compiler, rustc, is very strict and helpful, which enables
finding and solving a lot of errors at compile-time. Second, we ported code, meaning that
there is probably a lower chance for our code to contain bugs. At least there would probably
be fewer bugs, since we had some working code to uses as a basis.

49

5. Results

Compilation
One tool that is closely integrated with Rust is Cargo [33], Rust’s package manager (Section
1.5.2). We used Cargo in order to handle our project’s dependencies, compile the project with
the appropriate flags, and to enforce a set of formatting rules. For these tasks we found Cargo
to be very useful. We could easily add dependencies and specify how the project should be
compiled by editing the Cargo.toml file, and enforcing formatting was easy with rustfmt
[26].

At the time of writing, there is only one compiler for Rust, rustc. During our time
using the compiler, mostly through Cargo, we found that the compiler helps the developer in
writing correct code. The compiler helps the developer both by being able to detect a lot of
errors at compile-time (also thanks to the programming language itself) but also by providing
clear and helpful compiler messages.

We found integrating Cargo and Rust with the build system at Axis to be non-trivial.
However, this is mostly due to us lacking knowledge about the build system. For someone
with more experience, this might not be an issue. Thus, it is hard to estimate how much work
it would take to integrate Cargo with the build system. This is also the reason why all our
tests were run on the host computer, and not on the target camera.

Development
There are multiple editors and development environments that can be used together with
Rust [23], e.g. Vim [44], Emacs [12], and Eclipse [8]. During the porting process we used only
one of these, Vim, and we found it to work as expected with Rust. Vim does not support
syntax highlighting for Rust “out of the box”, but enabling it took little e�ort.

5.3.2 Common tools among developers
The interviews focused on what tools the interviewees used for di�erent parts of the develop-
ment process. This covers three of the factors from Section 4.1.3: Debugging, Compilation,
and Development.

Debugging
When asked about what tools they liked to use for debugging, all of the developers said that
they like to use the GNU Project Debugger (GDB)3 for general debugging. Some developers
also mentioned that they use debug prints for debugging. Some developers said that they like
using Valgrind4 for finding memory-related code defects.

There are also some tools that were only mentioned by one or two developers. However,
it is likely that these (or similar) tools are used by the other developers as well.

3“GDB, the GNU Project debugger, allows you to see what is going on ‘inside’ another program while it
executes – or what another program was doing at the moment it crashed.” [11]

4“Valgrind is an instrumentation framework for building dynamic analysis tools. There are Valgrind tools
that can automatically detect many memory management and threading bugs, and profile your programs in detail.”
[43]

50

5.3 Toolchain level

The tools used by the Streaming department at Axis include: Helgrind5, Atop6, strace7,
gperf8, AddressSanitizer9, and MemorySanitizer10.

Compilation
Most of the developers said that they did not have, nor were they aware if there was, any re-
quirements on the compiler. Multiple developers noted that the compiler “should just work”.
One developer said that they want a compiler to be able to generate both unoptimised code
that can be used for debugging, as well as code that is compact and optimised. The same
developer also noted that they do not want to be forced to use a graphical environment in
order to compile the code.

Development
For development, most developers preferred to use a more advanced text editor (e.g. vi [40],
Vim [44], Emacs [12], or Atom [2]) since this allows them to add only the add-ons and exten-
sion that they want to use. One developer preferred to use Eclipse and noted that this was
mostly due to habit, having used Eclipse for multiple years.

5.3.3 Focus group insights
During the focus group, we learned from the developers that Debugging may be the most im-
portant factor on the Toolchain level. Specifically, the developers want debugging tools to support
C, and they also expressed a desire for already existing camera-specific debugging tools to
continue to work in a new language. Being related to debugging to a certain extent, a good test
framework was also desired by the developers.

In response to the Co-operation factor, it was mentioned that co-operation is usually not
language-dependent. The developers concluded that it is not good if the language requires
specific co-operation tools.

Another comment we received was that developers rarely interact with the compiler directly.
The general opinion was that compilers should just work. However, build systems are often
used, and this led to the suggestion of renaming the Compilation factor to Build system.

5“Helgrind is a Valgrind tool for detecting synchronisation errors in C, C++ and Fortran programs that use
the POSIX pthreads threading primitives.” [16]

6“Atop is an ASCII full-screen performance monitor for Linux that is capable of reporting the activity of
all processes (even if processes have finished during the interval), daily logging of system and process activity
for long-term analysis, highlighting overloaded system resources by using colors, etc.” [3]

7“strace is a diagnostic, debugging and instructional userspace utility for Linux. It is used to monitor and
tamper with interactions between processes and the Linux kernel, which include system calls, signal deliveries,
and changes of process state.” [31]

8“GNU gperf is a perfect hash function generator. For a given list of strings, it produces a hash function and
hash table, in form of C or C++ code, for looking up a value depending on the input string. The hash function
is perfect, which means that the hash table has no collisions, and the hash table lookup needs a single string
comparison only.” [15]

9“AddressSanitizer (aka ASan) is a memory error detector for C/C++. It finds: Use after free (dangling
pointer dereference), Heap bu�er overflow, Stack bu�er overflow, Global bu�er overflow, Use after return,
Use after scope, Initialization order bugs, [and] Memory leaks.” [1]

10“MemorySanitizer (MSan) is a detector of uninitialized memory reads in C/C++ programs.” [20]

51

5. Results

This way, the scope would be broadened and build system support could be something to
consider when evaluating this factor.

There were some requested features related to development tools, including code-completion,
code skeletons, and something like Ctags11. In general, the conclusion was that the developers
were prepared to compromise concerning development tools if the language lacks support for
their preferences. However, it was noted that it is almost a requirement that Vim [44] can be
used.

5.4 Management level
The results from the programming focuses on our own experience with integration (M1),
productivity (M3), and code defects (M4). From the interviews we instead found how the
employees value integration (M1), OSS collaboration (M2), and code defects (M4).

5.4.1 Evaluation of Rust’s impact on software projects
In this section we cover our experiences from the porting process regarding the Management
level. This focuses on our experiences of Rust integration at Axis, how Rust a�ected our
productivity, and how frequent di�erent code defects were in our Rust code.

Integration
During the porting process, we received first-hand experience of integrating Rust with the
environment at Axis. This included setting up Rust on an Axis workstation, using Rust with
the tools used at Axis, writing a media framework plugin in Rust, testing Rust code using
tests written in C, as well as running Rust code together with existing C code.

Setting up Rust and Cargo on the Axis workstation by following the steps provided in
the Rust book [50] turned out to be very easy. We had no issues with installing Rust under the
64-bit Linux distribution used in the Axis workstations, and there were no problems with
Axis-specific settings. As there are no requirements for using a specific IDE at Axis, there
were no issues related to this either.

Writing media framework code in Rust was straightforward as well. First, the C version
of the framework needed to be installed on the computer, and the Rust bindings had to be
downloaded as well. Getting Rust to find the bindings was just a matter of including the file
path to their location in the Cargo.toml file. It was then possible to import the framework
modules into the code and start using their functionality.

While translating the element, we wanted to test the functionality that we were working
on. We first thought that we had to translate the existing tests from C to Rust, but we
soon realised that the tests could be used without translating them. By creating a simple shell
script that built our Rust code and linked it to the C tests, we could run the tests as if we were
testing the C code. The reason for this compatibility is that the tests did not communicate
with the element directly, but instead did all communication via the framework. Having

11Ctags [6] is a tool that generates an index file that maps language objects (found in source code files or
header files) to the location of their definition. The purpose of Ctags is to provide this information to programs
such as text editors so that they can, for instance, locate the definition of a function.

52

5.4 Management level

access to working tests from the beginning was very valuable, and sped up the translation
process significantly.

Setting up and running a pipeline with both C and Rust elements was easy to do. We
made the element visible to the framework by first compiling the Rust code with Cargo, and
then adding it to a framework path variable. After this, we set up a pipeline with already
existing C elements, as well as the translated Rust element, and executed it without any
issues.

Something we tested early on was to call C code from Rust code manually. It was di�cult
to find accurate and up to date information on how to do this, but we eventually managed
to get it to work. We did this by using cc, which is a Rust library that builds C and C++ files
and puts them in a static archive.

Productivity
Through learning and working with Rust, we found that the language has a number of fea-
tures and properties that a�ect productivity in various ways. From our experiences, we feel
that the positive aspects of Rust in terms of productivity outweigh the negative, at least in
the long run. Overall, we feel that we had a higher productivity when working in Rust than
we have previously had working in C.

One big reason for us having good productivity in Rust was the compiler, which through
its helpful error messages enabled us to find and solve a lot of errors at compile-time. Because
of this, we never needed to debug our code, which can be a very time-consuming task. Another
aspect related to this is the strictness of Rust. Because errors are found during compile-time,
they must be fixed before the program can be compiled and run. This means that correct code
can be obtained quicker, but it also means that it takes more time to get a program to run than in
other languages where not all errors are caught when compiling.

When encountering an issue in the code, the compiler’s error messages were often su�-
cient to solve the problem, but sometimes we also needed to look up information elsewhere.
In these situations, we could usually find the information quickly in the documentation. How-
ever, since Rust is a relatively new language, there were some questions that we could not easily
find answers to.

Rust has many language features that we found to increase our productivity. Two exam-
ples of this are the features inspired by functional programming and object-oriented programming.
These features made it possible for us to structure the code in a way that better corresponded
to our understanding of how the program should work. It also reduced the amount of details
that otherwise would have needed to be handled manually.

Other examples of Rust features that had a positive impact on our productivity are types
such as Result<T,E> and Option<T>. These types provide a structured way to handle errors
and missing values, which means that less time needed to be spent on correctly implementing
such functionality manually.

Having a built-in package manager in Cargo was something we found to a�ect produc-
tivity in a positive way. When we needed to download a crate (package), we only needed to
specify it as a dependency in the Cargo.toml file in order to make Cargo download it and
make it available for use in our code.

The major issue for us in terms of productivity was Rust’s ownership and lifetime rules. Even
after having spent much time with Rust and reading through the excellent learning material,

53

5. Results

we often found ourselves in situations where we had di�culties in getting the code to work
due to these rules. The compiler often suggested solutions to the issues we encountered, but
it was still the most time-consuming aspect for us when writing Rust code.

Code defects
We encountered several code defects during the translation of the media framework element
from C to Rust. Most of these were code defects related to Memory and Concurrency, and
were all caught by the compiler, with one exception. Deadlocks were the only code defects
that the Rust compiler did not warn us about.

Because we wrote concurrent code, deadlocks were not uncommon, and were definitely
the hardest code defects to solve for us. It was easy to realise that a deadlock had happened,
but figuring out where it had happened was not as easy. In our case, we had access to the
working C code, which meant that we could relatively easily find where the deadlock had
occurred.

We found that there were some tests made for the C version of the element that were
unnecessary for the Rust version. One example of this is a test that checked if memory was
leaked by counting the number of references to a piece of data. For the Rust version, these
tests were not necessary as memory leaks are impossible12.

5.4.2 The current impact on software projects
On the management level, the interviews focused on the employees’ thoughts on the topics
explained in Section 4.1.4. For integration, we asked the developers about their thoughts
on both the possibility and the e�ects of a transition from C to Rust. The topic of OSS
collaboration was investigated by asking about the current practices at the department. By
asking about their thoughts on C, Rust, and current practices, we got an understanding of
what the employees value in terms of productivity. We also asked the employees to share
their experiences with code defects.

Integration
When asked about their opinion on the possibility of transitioning from C to Rust, most of
the employees seemed positive, especially given the assumption that similar performance can
be achieved using Rust instead of C. One developer mentioned that the only challenge they
could see with a transition is performance. They elaborated by saying that if Rust can achieve
similar or better performance than C, then there should be no noteworthy challenges with
the transition. However, they also explained that if Rust cannot achieve the required levels of
performance, a transition would be out of the question since the quality of the end product
would deteriorate.

Some interviewees brought up the question of how to transition to a new language when
working with a large code base. Several of the interviewees expressed that the focus should
be on developing new code in Rust and ensuring interoperability with legacy code in C. Some
interviewees stated that the need to rewrite code was the biggest challenge with transitioning

12Memory leaks are impossible to do in safe Rust, unless you explicitly call a function to do so:
std::mem::forget().

54

5.4 Management level

to a new language. One developer argued that since Rust is so compatible with C, they would
not be restricted by the large amount of C code they are using today.

Regarding how a transition to Rust would a�ect other departments, there seemed to be
mixed opinions. A few employees thought that other departments could be largely unaf-
fected, as long as C and Rust can work together and the existing APIs can be used. A few
other employees thought that other departments could be a�ected, for example in that they
would need knowledge about Rust. Others were unsure about the extent to which other de-
partments could be a�ected.

OSS collaboration

When asked about how their work is a�ected by Open Source Software (OSS), all of the
employees said that it a�ects a big part of their work. This is mostly due to the fact that the
department uses an open source media framework in most of their work, but also because
some of the tools the developers use are open source.

The department also actively contributes to OSS, mostly to the media framework that
they use, by uploading patches and reporting bugs. However, they are not maintainers so
they do not review the contributions of others.

Some of the interviewed employees mentioned that a disadvantage of using OSS is that
it sometimes takes a lot of time before the patch they submit is added to the software. This
means that the department is sometimes forced to have local patches. A few employees men-
tioned that a benefit of using OSS is that the department does not have to write all the code
(for the framework) and that bugs can be found and fixed much faster.

Productivity

From the interviews it was clear that the main reason for the employees having an interest
in Rust was the positive things they had heard about the language. Most of the features they
mentioned were in some way related to productivity, such as the language providing help with
memory management and parallelism. One developer said that problems related to memory
and parallelism take a long time to find and solve. They therefore argued that getting help
from the language with these issues as early as during compilation could save a lot of time.
As long as performance is not significantly a�ected, they thought that doing a transition to
Rust based on an increase in productivity was not out of the question.

Code defects

When asked about code defects in C code, most of the employees said that concurrency
and memory-related bugs are the most common. Some of the employees also mentioned
performance-related code defects and crashes as common in C code. Most of the employees
commented that concurrency and performance-related code defects are hard to solve, while
only a few employees said that memory-related code defects and crashes are hard to solve.

55

5. Results

5.4.3 Focus group insights
During the focus group, we learned from the developers that on the Management level it is
important to compare the long-term consequences with the short-term consequences. All the devel-
opers agreed that this is especially important for the factor Productivity, which would most
likely decrease directly after a transition but should increase long-term. The focus group also
commented that productivity could increase by using a higher-level language, as this could result
in a higher level of code quality.

It was also mentioned that Integration is very important, and that it must be possible to
use C and Rust together. The reason for this is that they will most likely not rewrite the existing
C code to Rust if a transition would be made, and instead focus on writing new code in Rust
and integrating it with the existing C code.

The focus group also considered Code defects to be an important factor and commented
that it is important that new code defects are not introduced as a result of the transition. The
developers also mentioned that being able to make guarantees about the types of possible code
defects could be very useful.

Regarding OSS Collaboration, the focus group concluded that this could be a�ected in
both positive and negative ways. Since the open-source media streaming framework used by
the department is transitioning to Rust there is a possibility that, if the department want
to contribute to the framework, then these contributions would be given higher priority by the
framework maintainers. On the other hand, as there are fewer framework maintainers work-
ing with Rust, it may take more time for them to review contributions.

The focus group also mentioned that possibilities for education is important, and that
using Rust could a�ect recruitment and how attractive Axis is on the job market. Another
important factor mentioned by the focus group was how time needs to be allocated between
writing new code and maintaining the existing code. Thus, three new factors were suggested
for the Management level: Education, Recruitment, and Maintainability.

56

Chapter 6

Discussion

In this chapter we discuss the results from the previous chapters. This focuses mostly on the
results covered in Chapter 5, the results related to the Programming Language Transition
Framework (PLTF) (Chapter 4), and our methodology (Chapter 3). This discussion is di-
vided into three sections, based on our research questions (Section 1.3.1). Each section is then
divided into four subsections, one for each PLTF level.

6.1 How to evaluate a transition from C to
Rust (RQ1)

We found that almost all of the factors in the PLTF are important during a programming
language transition. However, there are some factors that may need a more detailed definition
and there are also additional factors that should be investigated. A summary of the PLTF,
including suggestions from the focus group, is presented in Appendix C.

One of the levels, the Toolchain level, did not get any suggestions for additional factors,
indicating that it is more complete. The Execution level, Programmer level, and Management
level got one or more suggestions for additional factors, indicating that there may be even
more factors missing from them. All levels were seen as relevant, and the factors on each level
were considered to be mostly a�ected by other factors on the same level, indicating that the
PLTF has a good level classification and that none of the factors should be moved to another
level.

While we developed the PLTF with Axis in mind, we argue that it is useful in other cases
as well. We base this on the fact that our motivations for including the di�erent factors
(Section 4.1) are not specific for Axis or the given use-case. However, some factors can be
more or less important based on the context. Performance is very important in embedded
systems, but in other domains this may not be the case. Other factors, such as Productivity
and Readability, are more general and less dependant on the context.

57

6. Discussion

6.1.1 Execution level
When evaluating the two languages on the Execution level, we found that porting code from
one language to the other, and then comparing the two programs, worked well. This process
also saved us a lot of time, compared to having to start writing Rust code from scratch.

During the focus group we found that developers are not only interested in how much
memory a program uses, but also how memory is used (Section 5.1.3). This is not unreasonable as
how long time it takes to read from and write to the memory can a�ect the overall execution
time of the program.

As mentioned during the focus group, there are some external factors that can a�ect
Execution level, namely language culture and product specification (Section 5.1.3). While these
can a�ect the PLTF factors on the Execution level, they were regarded as too specific (in
the case of product specification) or too hard to measure (in the case of language culture) to
warrant being their own factors.

6.1.2 Programmer level
We found that porting code is not as useful as writing code from scratch when evaluating
usability. The reason for this is that some usability aspects are only present when writing new
code. However, we still found that we could evaluate a great deal of the language’s usability
through the process of porting C code to Rust.

When evaluating the Programmer level factors, we found that they are vague and di�cult
to investigate in a structured way. In particular, more detailed definitions and methods for
evaluating the factors would have made the process easier. We attribute this in part to the
factors being relatively open in nature, as well as there being some overlap between the factors.
For instance, one aspect of Readability may also a�ect Writeability.

As was mentioned during the focus group, readability is not only dependent on the lan-
guage, but also dependent on the author (Section 5.2.3). The language may be able to increase
the code’s readability, but a developer may still be able to decrease the readability by writing
the code in a way that obfuscates the code’s functionality. If the readability is a�ected by
both the language and the developer, then it would be interesting to investigate what the
ratio between these two are. How much does the language a�ect readability and how much
does the developer a�ect readability (or how much do they need to a�ect it)?

What would make one programming language more readable than another? A program-
ming language may be able to increase the readability on a small scale (e.g. what a line of code
does or how the standard library works), by matching the mental image of the reader. On a
larger scale (e.g. what a function or program does), then more of the responsibility in terms
of readability falls on the developer in that they have to structure their code in a way that is
logical to the reader. Readability (and in some part writeability) could perhaps be measured
by how much work the developer has to do in order to make the code readable, and to what
extent the language encourages writing readable code.

When evaluating the usability of a programming language, it is important to not only
evaluate the more obvious factors (such as Readability and Writeability) but also how it is to
work with the code in other ways. During the focus group we found that developers were also
interested in Debuggability (how easy it is to debug the code) and Testability (how easy it is to
test the code) (Section 5.2.3). This seems reasonable, since software development is not only

58

6.1 How to evaluate a transition from C to Rust (RQ1)

about reading and writing code, but also checking that it works as intended and correcting
potential bugs.

6.1.3 Toolchain level
The Toolchain level can be evaluated by investigating if the currently used tools work with the
new language. Since having to learn to use a lot of new tools during a transition could result in a
too big barrier of entry to the new language, it may be preferred to continue using the currently
used tools even after a transition. However, if the new programming language would open
up possibilities to new, perhaps better tools, then evaluating these tools could be important.

As we found that tools for co-operation are often language independent, this factor may be
unnecessary (Section 5.3.3). As long as the new language does not put restrictions on what
co-operation tools could be used, then there is probably no need to investigate further. If the
new language would require special tools for co-operation, then that could be a deal-breaker
as it would mean that you have to use one co-operation tool for the new language, and another
for the old. However, such a scenario should probably be seen as an exception, and because
of this, the Co-operation factor should be mostly irrelevant.

6.1.4 Management level
When evaluating the Management level, it is important to evaluate both short-term and long-
term, as some factors may a�ect both in di�erent ways. It is safe to assume that a lot of the
factors on the Management level would not show an immediate gain when transitioning. It
is more likely that they would yield a loss in the beginning, as having to spend time and
other resources on educating the workforce is a direct cost – or an investment – that could
potentially pay o� later.

Productivity is one example of a factor that will likely be a�ected negatively in the be-
ginning, which would be considered a short-term cost. The language’s benefits in terms of
productivity will therefore not be noticeable until some time later, potentially resulting in
a long-term gain. Because of this, it may be beneficial to do a small-scale experiment with a
group of individuals who will learn the language and start using it. The results from this
experiment could then be used to evaluate the Management level impact on a larger scale.

In this particular case study, it was clear that the focus for the Streaming department
was not to translate already existing code. This means that a factor about code translation was
not necessary. However, in other cases where code translation will occur, this Management
level factor would be of great importance. For example, having automated tools for this kind
of task has the potential of dramatically decreasing the time it takes to translate code, and
can therefore be important to consider when making a decision about a potential language
transition.

During the focus group, we received suggestions for three more factors for the Manage-
ment level: Education, Maintainability, and Recruitment (Section 5.4.3). Since this level only
has four factors, adding three new factors would equal a 75% increase. This indicates that
there may be additional factors missing from the Management level.

59

6. Discussion

6.2 Consequences of transitioning from C to
Rust (RQ2)

We found that transitioning to Rust can result in both positive and negative consequences.
On the Execution level, we found that for most of the factors Rust can perform on par with C,
performing better than C in some tests and worse than C in other tests. On the Programmer
level, we found that Rust is able to provide a better developer experience than C, by o�ering
clearer error messages and more ways to write the code. On the Toolchain level, we found that
there is little di�erence between Rust and C, as most tools support both languages. Finally,
on the Management level it is hard to draw a conclusion. For some factors (e.g. Code defects),
we found that Rust is better than C, while for other factors (e.g. Productivity) it is hard to
know how the department would be a�ected.

6.2.1 Execution level
As we see in Section 5.1.1, the Rust versions of the elements have longer execution times than their
corresponding C versions. This is true both in the case of the element translated by us and in
the case of the element written by the developers of the framework. The Rust version of the
elements have an average execution time that is 4.24% (0.18 seconds) and 0.09% (0.0004 sec-
onds) longer than the corresponding C version, respectively. However, these measurements
are based on measuring the execution time of the entire pipeline, meaning that they include
more than just the execution time of the element, which is likely to be a small part of the
entire pipeline.

When we measured latency, we found that the Rust version of our translated plugin has,
on average, a 25.69% (5.00 microseconds) longer latency than the C version. While we were
unable to get any conclusive results concerning the reason for this di�erence in latency, we
did get some indications using the performance analyser tool perf [21]. One function in the
Rust code showed up in several measurements, indicating that it is among the most time-
consuming functions in the program. Although this perhaps does not account for the entire
di�erence in latency between the two versions of the element, it certainly could be one of the
major causes. This is especially likely as the function did not show up in the measurements
for the corresponding C version.

Because we used the original C tests to test our Rust version, we were limited by how
they tested certain aspects of the element. The way one of these aspects was tested made
it impossible for us to follow the code style used in the Rust plugins made by the media
framework, and instead forced us to write sub-optimal code in this function. The main dif-
ference between the Rust implementation and the C implementation of this function is that
the Rust version uses a hash map data structure, while the C function utilises functionality
built into the media framework. Our assumption was that using a hash map would improve
performance, but as the measurements indicate that this function is slower in Rust, it may
be that this approach is actually slower. Unfortunately we lacked the time to test if imple-
menting the C approach in Rust would make it faster, or if the performance di�erence is due
to something else.

60

6.2 Consequences of transitioning from C to Rust (RQ2)

Another potential reason for the performance di�erence is that we were not able to fully
utilise the media streaming framework, as we are not as well-versed on that subject. However,
since we did not write any new functionality but instead ported existing C code to Rust, this
factor should be fairly limited.

When we compared the average latency di�erence between the C and Rust version of a
plugin written by the developers in the media framework, we found that the C version had a
30.30% (4.11 microseconds) longer latency than the Rust version. These results indicate that
there is either something special about the particular plugin we translated that makes Rust
less suitable for it, or that our code translation is sub-optimal. Because of the measurements
indicating that at least one function may be implemented sub-optimally, we believe that the
latter is most likely.

From the related works by Rikte, Light, and Wilkens, we see that the performance dif-
ference between C and Rust varies in terms of execution time (Section 2.2). This pattern is
also reflected in our results, where in one case the Rust version has a 25.69% longer latency,
and in the other case the C version has a 30.30% longer latency. From these results, we can
conclude that the execution time of Rust can be either significantly faster than C, or signifi-
cantly slower than C. This suggests that there may be some aspects of the Rust programming
language that make it better in some situations, and some aspects that make it worse in oth-
ers.

When comparing the memory usage we see that our Rust version of the element has, on
average, a 1.656% (177 kbytes) greater maximum memory usage than the corresponding C
version. However, comparing the Rust version and C version of an element written by the
developers of the framework we see that the C version has, on average, a 43.71% (3129 kbytes)
greater maximum memory usage then the corresponding Rust version. When Rikte ported a
Linux daemon from C to Rust, he found that the Rust version used 7% (3MB) more memory
than the C version (Section 2.2). These results show Rust using significantly less memory
than C in the best case, while using only slightly more memory than C in the worst case.

Because of the di�erences in results, and due to the uncertainty concerning the cause of
these di�erences, it is di�cult to draw the conclusion that Rust is better or worse than C
when it comes to latency and memory usage. It is important to keep in mind that, while the
performance di�erence may correspond to the di�erence between the C language and the
Rust language, it is also dependent on the particular implementations. It is clear that Rust
has the potential to perform better than C, but we can also see that translating code from C to Rust
does not necessarily result in equal or better performance.

6.2.2 Programmer level
One of the most positive aspects of Rust, in our opinion, is that so many errors are found
at compile time. We found that we always felt confident when the program compiled. This
confidence came from knowing that successful compilation means the absence of certain code
defects, making it more likely that the program would work as expected. We believe that this
guarantee concerning code defects is of great importance to a developer. This is because those
code defects can be ruled out as potential reasons to their code not working correctly, which
limits the number of possibilities to investigate.

61

6. Discussion

Some compilers produce errors that can take some time to understand, especially for
those who do not have much experience working with the compiler or the language. One of
the reasons for this is that they present the error from the compiler’s perspective, which can be
di�erent from the programmer’s perspective. The first part of solving the problem becomes
interpreting the error, and when the programmer finally understands the error, they can start
investigating what causes the problem and start solving it. We found that rustc, the Rust
compiler, provides detailed error messages that give helpful advice on how to resolve the error
(Section 5.2.1). This is in line with the experiences reported by Rikte, namely that compiler
messages were found to be user-friendly (Section 2.3).

We found that Rust’s error messages could be used as a way to obtain information on how to
write code (Section 5.2.1). We are used to working in languages that mostly report what is
wrong without giving suggestions on how to fix the issues, so this was something completely
new for us. Being able to utilise this method was very helpful, since it gave us the information
we needed to solve our specific problems. Finding the same information in documentation or
online forums is sometimes di�cult, since the programmer is first required to understand the
issue to some extent in order to know where to look or what to look for. Another issue is that
the problem needs to be expressed in relevant keywords for a search to yield useful results.
By letting the compiler provide the information instead, these issues are avoided. Granted,
not all problems can be solved in this way, as it is limited to syntax-related issues and also
because it relies on the compiler correctly interpreting what the programmer intends to do.
Nevertheless, we found this to be a very useful feature, and since Cargo allows checking the
source code for errors without actually compiling anything1, this should in theory be feasible
even for large projects.

In the field of user experience, it is beneficial to have many possible paths to accomplish
the same goal, since it increases the chance that the user finds a path that is natural to them
in their current situation. We argue that this holds true for programming languages as well,
in that having multiple ways to write code that does more or less the same thing can make it
more likely that the programmer finds an approach that is natural for solving the problem.
This has the potential to positively a�ect both readability and writeability if it makes the
code convey the progammer’s intent more clearly. We found that this usually holds true for
Rust, as we could often choose a way to write the code that was natural to us (Section 5.2.1). We
therefore agree with Light’s assessment that Rust allows the meaning of code to be expressed
in a richer way than is possible to do in C (Section 2.3). Depending on the situation, we also
agree with Rikte’s opinion that a functional style has a positive e�ect on the readability of
Rust (Section 2.3).

Being able to write Rust code in a way that was well-suited for the situation also had
the e�ect of making us more satisfied with the code in general. We started to like Rust early
on during our study, which we attribute much to the fact that we find its language features
to be very clean and e�cient ways of writing code. According to Meyerovich and Rabkin,
enjoyment of a language is highly correlated to expressiveness, elegant code, and the ease of
abstracting patterns in code (Section 2.3). Our experiences with Rust support this claim.

1Checking the source code for errors without compiling can be done in Cargo by running cargo check.

62

6.2 Consequences of transitioning from C to Rust (RQ2)

6.2.3 Toolchain level
On the toolchain level we see that Rust o�ers certain benefits over C, with the two major
ones being Cargo (Section 1.5.2) and the Rust compiler.

While Rust only o�ers one compiler, there are multiple compilers available for C code.
However, for this comparison we will limit ourselves to only looking at the C compiler in the
GNU Compiler Collection (GCC) [10], which is arguably one of the more commonly used
C compilers. Comparing these two we find the error messages given by the Rust compiler to be
much more helpful than GCC’s error messages (Section 5.2.1 and Section 5.3.1). We attribute this
to the fact that the error messages from rustc is more verbose and also gives a suggestion
for how to fix the error. This does not only help the developer with writing correct code,
but can also decrease the time needed to solve the error. Thus, rustc is, in addition to
being a functionining Rust compiler, a tool that actively increases the writeability of Rust and
the developers productivity. This was also the case for Wilkens who found that Rust o�ers
“excellent tool support”, which contributed to the lower development time of Rust, compared
to C (Section 2.4).

Based on the interviews, we know that a lot of the developers like using the GNU Project
Debugger (GDB) [11] and Valgrind [43] for debugging. Although Rust does not o�er better
support for these tools than C, it should be noted that there is a specific version of GDB for
Rust called rust-gdb and that it is possible to use Valgrind together with Rust. While we did
not use any of these tools, as we did not need to debug our code, Rikte tested them and noted
that the they work as expected (Section 2.4). Thus, if a transition to Rust would be made, then
the most used tools for debugging would likely be una�ected.

Regarding Integrated Development Environments (IDEs), one developer preferred using
Eclipse while most of the developers preferred not using an IDE but instead use a more ad-
vanced text editor (e.g. vi/Vim, Emacs, or Atom) (Section 5.3.2). As Karl Rikte mentioned,
there is a Rust extension for Eclipse (and IntelliJ) and it works well, although some features
may be missing (Section 2.4). Obviously, the text editors have support for writing Rust code,
but more importantly they also have extensions available that can provide features such as
syntax highlighting and code completion. While we did not test all the editors mentioned
during the interviews, we did get first hand experience using Vim, and can confirm that it
works as expected and that enabling syntax highlighting was trivial (Section 5.3.1). This was the
most important editor to test, as the focus group concluded that it was nigh a requirement
that Vim is supported (Section 5.3.3). Thus, if a transition to Rust would be made, the tools
used for development would most likely be una�ected.

While a lot of tools are language independent or have extensions for Rust, there could
still be some negative consequences of transitioning from C to Rust. As the developers are
free to use the tools they like, there is a risk that some of the developers are using tools that
neither are language independent nor have Rust versions. This will most likely have only a
small impact, as most of the tools used are language independent or there exist similar tools
for Rust.

63

6. Discussion

6.2.4 Management level

Rust o�ers a few features that could be beneficial on the management level, as it can be
integrated with C and potentially reduce the frequency of some code defects.

As we were able to use the unit tests (written in C) for the C version of the element to test
the Rust version we can say that integrating Rust with C is possible to a certain extent (Section
5.4.1). Thus, a transition to Rust would not require one to rewrite all the original tests, which
in turn would make a potential transition easier. This is not so much a benefit of Rust over
C, but more so a benefit of Rust in general.

Another benefit of Rust is its focus on correctness. Since the language and its compiler
have this focus on correctness, the frequency of some code defect can be reduced and some code
defects may be completely eliminated. During the porting process, the only code defects that we
encountered during runtime were concurrency-related (i.e. deadlock) which was due to the
fact that the Rust version of the element was not fully implemented at that time (Section
5.4.1). However, the act of porting existing code from one language to another would most
likely result in fewer code defects compared to writing entirely new code.

Also related to Rust’s focus on correctness is the possibility of finding errors in existing
code. Rewriting code in another language usually opens up the possibility of introducing
errors. Rust’s strictness will not only reduce the risk of this happening, but will also make
the translation process a method for finding previously unnoticed errors in the code. While
we did not find any errors in the C code that we ported, this was the case for Rikte (Section
2.3). Rikte does not mention whether the error in the C code was found through carefully
reading the C code, or if it was found with the help of Rust and rustc.

Integrating Rust into the existing environment could be di�cult in some regards. Based
on our own experience from the porting process, we know that incorporating Rust into the build
system was nontrivial (Section 5.3.1). We were unable to do this mostly due to the fact that we
lacked knowledge about the build system, but it still shows that this is a hurdle that must be
overcome.

Regarding productivity, it is hard to know for certain how the department would be
a�ected by a transition. We felt that our productivity was higher in Rust than our previous
experiences of using C (Section 5.4.1). We attribute this increase in productivity in large part
to the helpful error messages from the compiler, but also to some of Rust’s language features,
such as Result<T,E> and Option<T>. However, since we ported code instead of writing
it from scratch, we would most likely get a feeling of being more productive. The reason for
this is that we always had working C code to use as a basis for our design and our solutions.

Wilkens also found that they were more productive when working with Rust than when
working with C, and attribute this to the tool support for Rust (Section 2.4 and 2.5). How-
ever, it is hard to say if it is universally true that developers are more productive in Rust than
C. What we can say is that if a transition would be made, there will most likely be a decrease
in productivity during a period of time, as developers will need time in order to learn Rust
and how to fully utilise its features.

64

6.3 Challenges of transitioning from C to Rust (RQ3)

6.3 Challenges of transitioning from C to
Rust (RQ3)

We found that each level has their own challenges and that we cannot conclude that one
challenge is more important than another, they are only di�erent. One challenge may be
easier to overcome than another, however if it cannot be overcome then it is just as limiting
as any of the other challenges.

6.3.1 Execution level
One important challenge that we found on the Execution level is the size of executable for Rust.
During the interviews we found that several employees regarded size of executable, along with
execution time and memory usage, as one of the more important factors (Section 5.1.2). While
our execution level results from the porting process (Section 5.1.1) show that Rust can perform
on par with C when it comes to execution time and memory usage, the same could not be
said for size of executable. While we were unable to properly investigate the di�erence in size
of executable between our Rust version of the element and the corresponding C element, we
were able to get some preliminary results that indicate that the Rust version has a significantly
larger binary size than the C version. Similar results were also found by Karl Rikte, who did
a more thorough comparison of the binary size of C and Rust (Section 2.2).

6.3.2 Programmer level
The biggest challenge we experienced on the Programmer level is that Rust has a steep learning
curve, which means that it will take time for developers to learn to use Rust e�ectively. While
there exist excellent learning resources, it still took some time for us to learn Rust, with some
of Rust’s features (e.g. Ownership) being harder to learn than others (Section 5.2.1). The
steep learning curve of Rust, especially for the borrow system, was also mentioned by Rikte
(Section 2.3).

6.3.3 Toolchain level
The only challenge we encountered on the Toolchain level was integrating Rust with the build
system. These problems were due to our lack of knowledge about the build system at Axis, and
that we did not have time to learn more about it (Section 5.3.1). We believe that it is possible
to integrate Rust with the build system at Axis, however it should be done by someone with
more knowledge about the build system.

65

6. Discussion

6.3.4 Management level
The most important challenge on the Management level is that it will take time before the
transition would yield a positive result. In the beginning of a transition it is safe to assume that
there will be a drop in productivity, as developers will need time to get comfortable with the
language. How long it will take for the transition to yield a positive result can be hard to
estimate, and thus it is important that the department is able to handle a temporary decrease
in productivity, if a transition would be made.

6.4 Threats to validity
Just like any other study, our study has its limitations. Here, we will discuss these limitations
and how we tried to mitigate some of them, based on the guidelines for software engineering-
related case studies proposed by Runeson and Höst [56].

6.4.1 Construct validity
Our choice of methodology in evaluating aspects of a Rust transition by porting code rather
than writing new code, poses a threat to construct validity. When porting existing code that is
known to work, it is tempting to use the exact same structure instead of creating a structure
that best fits the new language. As for C and Rust, the two languages are rather similar,
meaning that it is relatively easy to use a C-like structure in Rust code by making only minor
modifications. This usually does not take full advantage of the Rust language. In our case,
however, we had access to examples of other plugins written in such a way as to take advantage
of Rust’s strengths, making it easier for us to do so as well.

Since the Streaming team is not primarily interested in porting old code to Rust, but
rather using the language for new projects, our evaluation is limited as it does not directly
correspond to their use case. However, it is likely that new projects will draw inspiration from
the structure of already existing Rust plugins within the media streaming framework. The
structure we used will likely be used by Streaming as well, meaning that our evaluation of
using that structure is relevant to their use case.

6.4.2 External validity
Seeing as most of our study focused on Axis, and its Streaming department, our results may
be hard to generalise and apply to other cases. This is perhaps most noticeable in the results
from the porting process, interviews, and the PLTF.

When we ported C code to Rust we did so by porting a media streaming element from C
to Rust. This means that our experience is very focused around using Rust together with the media
streaming framework. It also means that the performance results we obtained by comparing
C and Rust are based on using them in an embedded context to create media streaming
applications. Thus, in other cases a comparison between C and Rust may yield di�erent
results.

66

6.4 Threats to validity

During the interviews, we interviewed only eight employees, six developers and two man-
agers, all working at Axis. Thus, the interview results regarding what developers think about
C might not accurately represent what C developers in general think about the language.

We designed the PLTF with Axis’ needs in mind, particularly the Streaming department, and
based on feedback from our supervisors at Axis. This could result in the PLTF having factors
that are relevant for Axis but not other companies. Likewise, the PLTF could also be missing
factors that are important in other cases. However, this is partly mitigated by the fact that
we were able to relate our factors to factors mentioned in other works.

6.4.3 Reliability
Early on in the study, when we learned Rust, we found that we liked a lot of the features that the
language o�ers. While this can be seen as a big plus in favour of Rust, it also means that we
could have been biased towards Rust to some extent from an early stage, which could impact
the reliability of our results.

Both authors were inexperienced with conducting interviews and focus groups, which means
that there is a risk that some information was misinterpreted. We tried to mitigate this by
applying triangulation, both between the authors and towards the interview participants. We
also sent the interview transcripts to the interviewees for validation. Each output produced
by one author, i.e. transcription, coding, and reporting, was reviewed by and accepted by the
other author.

The participants of the focus group were selected based on a recommendation by Axis in terms
of their roles and potential to contribute to the discussion. This resulted in a group where half
of the participants had also been part of the interviews. As their opinions and insights had
already been used to shape the PLTF, the amount of new information that could be gathered
was limited.

Due to time constraints, we were unable to transcribe the recordings from the focus group. As
we were aware of this during the focus group, we decided to take notes, which we periodically
validated with the participants during the focus group.

During the interviews, we noticed that our interview guide targeted developers. The inter-
view guide had some questions that managers were not able to answer, and it was also missing
some questions more suitable for managers. This resulted in that we, during the interviews,
tried to rephrase some questions so that they became more suitable for managers. Instead of
asking a manager “What tools do you use?” we asked “What tools do you think the developers
like to use?”, thus still getting a valuable answer.

Due to time constraints we were only able to interview eight employees, which means that
there is less certainty in the interview results. It was also not possible for us to cover the entire
PLTF during the interviews, as some factors (e.g. how easy it is to learn, read, and write Rust
code) are hard to evaluate during an interview. Thus, we instead asked the interviewees what
they think would a�ect these factors and, since all the developers had experience with C,
what they think of C with regards to these factors.

67

6. Discussion

68

Chapter 7

Conclusions

In this chapter we summarise this study as well as cover some ideas for future research.

7.1 Summary
The Programming Language Transition Framework (PLTF) that we constructed worked well
as a basis for investigating a programming language transition. The focus group concluded that all
of the included factors are important and that the four levels are a good way of classifying the
factors. However, the PLTF still needs work, as we during the focus group got suggestions
for more factors that they think are important.

On the execution level, we had mixed results. Rust is able to perform better than C for
most of the factors, but this is not guaranteed for all cases. The performance is not only
dependent on the application but also on how the code is written (e.g. which code style or
data structures are used). When it comes to the size of the executable for the two languages,
C seems to produce an executable with a smaller size. While we were unable to thoroughly
investigate this claim, it is supported by Karl Rikte’s study [55].

On the programmer level, we found that Rust provides a better user experience than C. This is
partly because of its high-level features inspired by object-oriented programming and func-
tional programming, but also because it handles things such as memory management auto-
matically. While C is a powerful language, it is also a language that requires a lot of discipline,
especially when it comes to memory management and pointers. Rust is able to give the pro-
grammer the same level of control as C, but without forcing the programmer to have the
same level of discipline. The reason for this is that the Rust compiler is able to detect a lot
of errors at compile-time (errors that would be detected at run-time in C) and often gives
helpful tips on how these errors can be fixed. Rust is able to find these errors by using a
special ownership system, which dictates how and when data can be used. In practice, this
means that the Rust compiler will reject a lot of code that would compile in other languages.
Since these ownership rules are not enforced in most programming languages, they make the

69

7. Conclusions

learning curve of Rust rather steep even for those used to writing code in said languages.
On the toolchain level, we found that most tools that support C also support Rust. Some of

the more commonly used debugging tools for C (GDB and Valgrind) have either support for
Rust out of the box or have a separate version for Rust. Some tools, e.g. tools for collaboration
and more advanced text editors, are often language-independent and will thus work without
problems in both languages. In order to get syntax highlighting in some editors, extensions
may need to be installed, but this is often trivial. In addition to being able to use Rust with
many existing tools, Rust also comes with its own tools. The most important of these is Cargo,
the Rust package manager, which is a great tool for handling Rust projects. It allows one to
easily set up, compile, and handle Rust projects while also providing possibilities to install
helpful extensions such as Clippy. The biggest challenge we encountered on the toolchain
level was that we were unable to integrate Rust with the build system at Axis. However, this
is because we were not familiar with the build system, which time restrictions prevented us
from investigating further.

On the management level, we found that Rust can be used together with C and that Rust
can help reduce the number of code defects. Using C and Rust together worked without any
major problems. This was mostly because the media framework supports the use of both C
and Rust elements in the same pipeline. Rust’s ownership system makes it so that a lot of
errors are found at compile-time, which means that the risk of there being code defects in
the finished code is lower. Using safe Rust, it is possible to make guarantees about certain code
defects, e.g. that there are no memory leaks. Once we were used to the ownership system, we
found that our productivity when using Rust was high, which was also the case for Wilkens
[58].

On the one hand, we found the Rust developer experience to be superior to C, with high-
level features and a reduced risk for introducing bugs. On the other hand, the performance
measurements showed mixed results, with Rust performing better in some cases and worse
in others. Thus, we cannot say that Rust is strictly better than C, or vice versa. However,
we can conclude that the four-year-old newcomer that is Rust is a good alternative to the
forty-seven-year-old veteran that is C.

7.2 Future research
One of the big parts of this study was the construction of our PLTF. The motivation behind
the factors included in the PLTF are based on the results from our literature study and input
from Axis, making the PLTF specialised for our case. The PLTF could most likely be used in
other cases as well, but might need to have factors added or removed from it. Thus, a study
that evaluates the usefulness of our PLTF in other cases could be interesting.

While we were unable to run Rust on target, which is due to our lack of knowledge about
the build system at Axis, we believe that it is possible. A study that compares the performance
between C and Rust, when running on target (or other embedded systems) could be interesting.

While we were able to present some findings on the Management level, a lot of the factors
on this level need to be investigated over a longer period of time. It would therefore be
interesting to see the result from a study that focuses on the Management level, and investigates
these factors during a longer period of time.

70

7.2 Future research

One of the biggest drawbacks we found with Rust was the steep learning curve, which
was also mentioned by other studies. In all of these studies, including our own, the authors
already had experience with other programming languages. It would be interesting to see
how the learning curve for Rust compares to the learning curve for C, given no previous programming
experience.

71

7. Conclusions

72

Bibliography

[1] AddressSanitizer. https://github.com/google/sanitizers/wiki/
AddressSanitizer. Accessed: 2019-05-28.

[2] Atom. https://atom.io/. Accessed: 2019-05-28.

[3] Atop. https://www.atoptool.nl/. Accessed: 2019-05-28.

[4] Axis - History. https://www.axis.com/about-axis/history. Accessed: 2019-
06-18.

[5] Clippy. https://github.com/rust-lang/rust-clippy. Accessed: 2019-06-
07.

[6] Ctags. http://ctags.sourceforge.net/. Accessed: 2019-10-17.

[7] DuckDuckGo. https://duckduckgo.com/. Accessed: 2019-04-29.

[8] Eclipse. https://www.eclipse.org/. Accessed: 2019-06-07.

[9] Evaluating Programming Languages. https://courses.cs.washington.edu/
courses/cse341/02sp/concepts/evaluating-languages.html. Accessed:
2019-10-12.

[10] GCC, the GNU Compiler Collection. https://gcc.gnu.org/. Accessed: 2019-05-
14.

[11] GDB, the GNU Project Debugger. https://www.gnu.org/software/gdb/. Ac-
cessed: 2019-05-24.

[12] GNU Emacs. https://www.gnu.org/software/emacs/. Accessed: 2019-05-28.

[13] Google. https://www.google.com/. Accessed: 2019-04-29.

[14] Google Scholar. https://scholar.google.com/. Accessed: 2019-04-29.

73

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://atom.io/
https://www.atoptool.nl/
https://www.axis.com/about-axis/history
https://github.com/rust-lang/rust-clippy
http://ctags.sourceforge.net/
https://duckduckgo.com/
https://www.eclipse.org/
https://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-languages.html
https://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-languages.html
https://gcc.gnu.org/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/emacs/
https://www.google.com/
https://scholar.google.com/

BIBLIOGRAPHY

[15] gperf. https://www.gnu.org/software/gperf/. Accessed: 2019-05-28.

[16] Helgrind: a thread error detector. http://valgrind.org/docs/manual/
hg-manual.html. Accessed: 2019-05-28.

[17] IEEE Xplore. https://ieeexplore.ieee.org/. Accessed: 2019-04-30.

[18] ISO/IEC 25010:2011 Systems and software engineering — Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) — System and software quality mod-
els. https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:
en. Accessed: 2019-10-12.

[19] LUBsearch. http://lubsearch.lub.lu.se/. Accessed: 2019-04-29.

[20] MemorySanitizer. https://github.com/google/sanitizers/wiki/
MemorySanitizer. Accessed: 2019-05-28.

[21] perf. https://linux.die.net/man/1/perf. Accessed: 2019-10-17.

[22] Rust – Production users. https://www.rust-lang.org/production/users.
Accessed: 2019-10-10.

[23] Rust – Tools. https://www.rust-lang.org/tools. Accessed: 2019-06-07.

[24] Rust blog: Announcing Rust 1.0. https://blog.rust-lang.org/2015/05/15/
Rust-1.0.html. Accessed: 2019-06-21.

[25] Rust blog: Non-lexical lifetimes. https://blog.rust-lang.org/2018/12/
06/Rust-1.31-and-rust-2018.html#non-lexical-lifetimes. Accessed:
2019-09-19.

[26] rustfmt. https://github.com/rust-lang/rustfmt. Accessed: 2019-06-07.

[27] StackOverflow Developer Survey Results 2016. https://insights.
stackoverflow.com/survey/2016/. Accessed: 2019-05-27.

[28] StackOverflow Developer Survey Results 2017. https://insights.
stackoverflow.com/survey/2017/. Accessed: 2019-05-27.

[29] StackOverflow Developer Survey Results 2018. https://insights.
stackoverflow.com/survey/2018/. Accessed: 2019-05-27.

[30] StackOverflow Developer Survey Results 2019. https://insights.
stackoverflow.com/survey/2019/. Accessed: 2019-05-27.

[31] strace: linux syscall tracer. https://strace.io/. Accessed: 2019-05-28.

[32] strip. https://linux.die.net/man/1/strip. Accessed: 2019-10-13.

[33] The Cargo Book. https://doc.rust-lang.org/cargo/. Accessed: 2019-05-24.

74

https://www.gnu.org/software/gperf/
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html
https://ieeexplore.ieee.org/
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
http://lubsearch.lub.lu.se/
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://linux.die.net/man/1/perf
https://www.rust-lang.org/production/users
https://www.rust-lang.org/tools
https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html#non-lexical-lifetimes
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html#non-lexical-lifetimes
https://github.com/rust-lang/rustfmt
https://insights.stackoverflow.com/survey/2016/
https://insights.stackoverflow.com/survey/2016/
https://insights.stackoverflow.com/survey/2017/
https://insights.stackoverflow.com/survey/2017/
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://strace.io/
https://linux.die.net/man/1/strip
https://doc.rust-lang.org/cargo/

BIBLIOGRAPHY

[34] The Clean Code Blog: The Single Responsibility Principle.
https://blog.cleancoder.com/uncle-bob/2014/05/08/
SingleReponsibilityPrinciple.html. Accessed: 2019-09-19.

[35] The Development of the C Language. http://www.bell-labs.com/usr/dmr/
www/chist.html. Accessed: 2019-06-21.

[36] The Go Programming Language. https://golang.org/. Accessed: 2019-04-24.

[37] The Rust Programming Language. https://doc.rust-lang.org/stable/
book/. Accessed: 2019-04-25.

[38] The Rust Programming Language - Bibliography. https://doc.rust-lang.org/
1.30.0/book/first-edition/bibliography.html. Accessed: 2019-04-29.

[39] The Rust Standard Library. https://doc.rust-lang.org/std/index.html.
Accessed: 2019-09-19.

[40] The Traditional Vi. http://ex-vi.sourceforge.net/. Accessed: 2019-05-28.

[41] time. https://linux.die.net/man/1/time. Accessed: 2019-10-13.

[42] top. https://linux.die.net/man/1/top. Accessed: 2019-10-13.

[43] Valgrind. http://valgrind.org/. Accessed: 2019-05-24.

[44] Vim - the ubiquitous text editor. https://www.vim.org/. Accessed: 2019-05-28.

[45] Weenix. https://cs.brown.edu/courses/cs167/assignments/weenix.
html. Accessed: 2019-04-29.

[46] Pamela Bhattacharya and Iulian Neamtiu. Assessing Programming Language Impact
on Development and Maintenance: A Study on C and C++. In Proceedings of the 33rd
International Conference on Software Engineering, pages 171–180. ACM, 2011.

[47] Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[48] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 2012.

[49] B. Kitchenham and S. Charters. Guidelines for performing Systematic Literature Re-
views in Software Engineering, 2007.

[50] Steve Klabnik and Carol Nichols. The Rust Programming Language. No Starch Press, 2018.

[51] Jyrki Kontio, Johanna Bragge, and Laura Lehtola. The focus group method as an em-
pirical tool in software engineering. In Guide to advanced empirical software engineering,
pages 93–116. Springer, 2008.

[52] Alex Light. Reenix: Implementing a Unix-Like Operating System in Rust. Honors
thesis, Brown University, 2015.

75

https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
http://www.bell-labs.com/usr/dmr/www/chist.html
http://www.bell-labs.com/usr/dmr/www/chist.html
 https://golang.org/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/1.30.0/book/first-edition/bibliography.html
https://doc.rust-lang.org/1.30.0/book/first-edition/bibliography.html
https://doc.rust-lang.org/std/index.html
http://ex-vi.sourceforge.net/
https://linux.die.net/man/1/time
https://linux.die.net/man/1/top
http://valgrind.org/
https://www.vim.org/
https://cs.brown.edu/courses/cs167/assignments/weenix.html
https://cs.brown.edu/courses/cs167/assignments/weenix.html

BIBLIOGRAPHY

[53] Leo A Meyerovich and Ariel S Rabkin. Empirical Analysis of Programming Language
Adoption. In ACM SIGPLAN Notices, volume 48, pages 1–18. ACM, 2013.

[54] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993.

[55] Karl Rikte. Using Rust as a Complement to C for Embedded Systems Software Develop-
ment (A Study Performed Porting a Linux Daemon). Master’s thesis, Lund University,
2018.

[56] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164, 2009.

[57] Bjarne Stroustrup. Bjarne Stroustrup’s C++ Style and Technique FAQ. http://www.
stroustrup.com/bs_faq2.html#finally. Accessed: 2019-03-07.

[58] Florian Wilkens. Evaluation of performance and productivity metrics of potential pro-
gramming languages in the HPC environment. Bachelor thesis, University of Hamburg,
2015.

76

http://www.stroustrup.com/bs_faq2.html#finally
http://www.stroustrup.com/bs_faq2.html#finally

Appendices

77

Appendix A

Interview Guide

79

Gudelines

• Personal experiences are preferred, but any insights are appreciated.

• Try to answer the questions as you interpret them, but feel free to ask for clarification if
needed.

Questions

Q1 Please tell us a little about what you do here at Axis.

Q1.1 How long have you worked at Axis? At this department?

Q1.2 What is your current position at Axis?

Q1.3 What would you say are typical tasks that you work with?

Q2 Which programming languages have you worked with?

Q2.1 Which programming languages do you work with now? What do you think about
them?

Q2.2 What performance aspects are important for your work? Most important? Hard
requirements?

Note: Factors include Execution time, Parallelism, Compilation time, Memory
usage, and Size of executable.

Q2.3 Do you have a favourite programming language? Which one and why?

Q2.4 What language features do you like/dislike and how do they affect your work/productivity?

Note: E.g. syntax, typing, functions.

Q3 What are your thoughts about C/C++?

Q3.1 How long have you worked with C/C++?

Q3.2 What are your feelings towards C/C++? Pros/Cons?

Q3.3 Is there anything that you feel C/C++ is missing?

Q3.4 What are your thoughts on the readability of C/C++ code?

Q4 What are your thoughts about Rust?

Q4.1 What do you know about Rust?

Q4.2 What are your feelings towards Rust?

1

Q5 Have you worked in projects where parts of the code were written in different
languages?

Q5.1 How did the usage of multiple languages affect development?

Q5.2 What were the main benefits/disadvantages?

Q5.3 What challenges did you face?

Q6 What are your experiences with code defects at the Streaming department?

Q6.1 What types of code defects do you encounter?

Note: Types of defects include Algorithm, Concurrency, Memory, Programming,
Security, Performance, Failure, and Other.

Q6.2 Do you encounter some types of code defects more often than other types? Which
ones?

Q6.3 Are some types of code defects harder to solve than others? Which ones?

Q7 What tools do you use?

Q7.1 What IDE(s) do you use? Why?

Q7.2 Do you use any tools for debugging/testing?

Q7.3 Does your work impose any special requirements on the compiler? What are they?

Q7.4 What tools do you use for collaboration?

Q8 Where do you look for answers to programming-related questions?

Note: E.g. StackOverflow, Reddit, documentation, co-workers.

Q9 How is your work affected by Open Source Software?

Q9.1 Do you use Open Source Software in your work? Which ones?

Q9.2 Does your work involve contributing to Open Source Software? How are these
contributions made?

Q10 How do you feel about a transition from C/C++ to Rust?

Q10.1 What challenges do you see in a transition from C/C++ to Rust?

Q10.2 How do you think a transition to Rust in Streaming would affect other depart-
ments?

2

A. Interview Guide

82

Appendix B

Focus Group Guide

83

Execution level

• What do you think about these factors?

• Is there any factor you would like to add to this level?

• What changes would you like to see, and what changes would you not like to see, due to a
transition?

Programmer level

• What do you think about these factors?

• Is there any factor you would like to add to this level?

• What changes would you like to see, and what changes would you not like to see, due to a
transition?

Toolchain level

• What do you think about these factors?

• Is there any factor you would like to add to this level?

• What changes would you like to see, and what changes would you not like to see, due to a
transition?

Management level

• What do you think about these factors?

• Is there any factor you would like to add to this level?

• What changes would you like to see, and what changes would you not like to see, due to a
transition?

Finally

• What do you think is important to keep in mind when transitioning to another programming
language?

• What do you think would be the first steps, for Streaming, when doing a transition?
• Is there anything you would like to add?

Appendix C

Summary of the final Programming Language
Transition Framework

85

C. Summary of the final Programming Language Transition Framework

Execution level
E1 Execution time How the execution time is a�ected.
E2 Parallelism How the speedup gained from parallelisation is a�ected.
E3 Compilation time How the compilation time is a�ected.
E4 Memory usage How the amount of memory used during execution is a�ected.
E5 Size of executable How the size of the compiled program is a�ected.
E6 Compatibility How suitable the language is for specific tasks and hardware.
E7 Memory management How memory is used by the language.

Programmer level
P1 Readability How easy it is to understand code.
P2 Writeability How easy it is to write code.
P3 Learnability How easy it is to learn the language.
P4 Knowledge base How much knowledge is available about the language.
P5 Debuggability How easy it is to debug code.
P6 Testability How easy it is to test code.

Toolchain level
T1 Testing How the usage of testing tools is a�ected.
T2 Debugging How the usage of debugging tools is a�ected.
T3 Co-operation How the usage of co-operation tools is a�ected.
T4 Build system How the usage of build systems is a�ected.
T5 Development How the usage of development tools (e.g. IDEs) is a�ected.

Management level
M1 Integration How easy it is to integrate software written in the language.
M2 OSS collaboration How OSS collaboration is a�ected.
M3 Productivity How productivity is a�ected.
M4 Code defects How work related to code defects is a�ected.
M5 Education Availability of education in the programming language.
M6 Maintainability How work related to maintenance is a�ected.
M7 Recruitment How recruitment is a�ected.

Table C.1: A summary of the factors in the Programming Language
Transition Framework, including changes suggested by the focus
group. The changes are in italic.

86

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2019-10-31

EXAMENSARBETE Transitioning from C to Rust in Media Streaming Development
An Industrial Case Study
STUDENTER Samuel Johansson, Ludvig Rappe
HANDLEDARE Elizabeth Bjarnason (LTH), Jonathan Karlsson (Axis), Srimanta Panda (Axis)
EXAMINATOR Björn Regnell (LTH)

From C to Rust in Media Streaming

POPULÄRVETENSKAPLIG SAMMANFATTNING Samuel Johansson, Ludvig Rappe

We compared C with the relatively new language Rust, using a Programming Language
Transition Framework. We found that they perform similarly, but Rust is a clear winner
in terms of usability.

For a long time, the C language has been very
popular in performance-critical applications due
to the level of control and performance it provides.
While other languages like Java and C# continu-
ously receive updates that improve developer ex-
perience, C has remained mostly unchanged in this
respect. Some will probably argue that this is the
beauty of C – that it is simple and not bloated
with features upon features. But what do you
do if you want the usability features from modern
programming languages in addition to the control
and performance provided by C?
Rust is a programming language released in

2015 that aims to provide safety without sacri-
ficing performance. It brings a lot of conveniences
for a low-level language, with features inspired by
object-oriented and functional programming. The
Rust language has been voted the most loved pro-
gramming language in the Stack Overflow devel-
oper survey each year since its release, and is being
used by companies such as Dropbox and Mozilla.
Axis Communications AB – leader in network

cameras – have become interested in this new lan-
guage and are now looking into the possibilities of
doing a transition from C to Rust. We were in-
vited to investigate the impact of such a transition
by comparing C and Rust in the domain of media
streaming. We did this guided by a Programming
Language Transition Framework (PLTF) that we
created. The PLTF is a list of factors involved

in software development that could be affected by
going from one language to another.
During our time of using Rust, we found it to be

excellent to work with. The strict compiler stands
out as one of the highlights, finding tons of errors
during compile-time and even suggesting how to
fix them. A lot of the time we could simply rely on
the compiler telling us what to do without having
to look in the documentation! However, we also
found that it took quite some time to learn Rust –
especially its ownership rules, which force you to
think a lot more about how you write code than
you need to do in other languages.
We obtained mixed results from comparing the

performance of C and Rust. C performed best for
one program, having a 20.44% shorter execution
time and using 1.63% less memory, compared to
the Rust version. For the other program however,
we instead found that Rust had a 23.24% shorter
execution time and used a surprising 30.41% less
memory, compared to the C version.
Our results show no clear winner in terms of per-

formance, but they do show that Rust can perform
on par with C while providing a far superior de-
veloper experience. We also found that our PLTF
helped us compare C and Rust in a structured
way and hope that it will serve as a useful starting
point for others looking to compare programming
languages.

	Introduction
	Context
	Case description
	Purpose
	Research questions
	Approach

	The four levels affected by a programming language transition
	Execution level
	Programmer level
	Toolchain level
	Management level

	The Rust programming language
	Language features
	Cargo

	Contributions

	Related Work
	Overview
	Impact on Execution level
	Impact on Programmer level
	Impact on Toolchain level
	Impact on Management level

	Research Method
	Overview
	Literature study
	Programming Language Transition Framework
	Interviews
	Programming in Rust
	Focus Group

	Programming Language Transition Framework (PLTF)
	Factors
	Execution level
	Programmer level
	Toolchain level
	Management level

	Usage

	Results
	Execution level
	Evaluation of performance
	Performance requirements
	Focus group insights

	Programmer level
	Evaluation of programming in Rust
	Developer perspective on programming languages
	Focus group insights

	Toolchain level
	Evaluation of Rust tools
	Common tools among developers
	Focus group insights

	Management level
	Evaluation of Rust's impact on software projects
	The current impact on software projects
	Focus group insights

	Discussion
	How to evaluate a transition from C to Rust (RQ1)
	Execution level
	Programmer level
	Toolchain level
	Management level

	Consequences of transitioning from C to Rust (RQ2)
	Execution level
	Programmer level
	Toolchain level
	Management level

	Challenges of transitioning from C to Rust (RQ3)
	Execution level
	Programmer level
	Toolchain level
	Management level

	Threats to validity
	Construct validity
	External validity
	Reliability

	Conclusions
	Summary
	Future research

	Bibliography
	Appendix Interview Guide
	Appendix Focus Group Guide
	Appendix Summary of the final Programming Language Transition Framework
	Tom sida

