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Abstract

Memorizing sequences is useful formany applications such as natural language
processing and anomaly detection, but can also be used to e.g. generate missing part
of a photograph or music sheet.

In this work, we study the performance of memorizing sequences in dynamic
Boltzmann machines and quantum Boltzmann machines. The hardware used for the
quantum Boltzmann machine was a quantum annealing machine developed by
D-Wave with 2000 qubits, the most powerful quantum annealing machine as to
this day of writing.

The dynamic Boltzmann machines are trained with bitmap patterns of al-
phabetical images. We also train a quantum Boltzmann machine with the goal
of learning classification of the same data set used for memorizing sequences.

The results show that dynamic Boltzmann machines perform well for se-
quence memorization for the data set we used. The quantum Boltzmann ma-
chines successfully classified the data set with an accuracy of ∼ 80% , but did not
converge when solving sequence memorization.

This work was carried out at the Department of Computer Science, Lund
University, Sweden and the Department of Information Science, Tohoku Uni-
versity, Japan.

Keywords: QuantumBoltzmannMachine, Dynamic BoltzmannMachine, SequenceMem-
orization, Sequence Model, D-Wave 2000Q, Quantum Annealing
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Chapter 1

Introduction

An artificial neural network (ANN) can be described as a system that learns to perform a task
by repeated exposures to examples of the task.

Implementations of ANNs commonly consist of sets of nodes (neurons) and connections
between the nodes called edges. The edges have a weight that represents how strongly the
neurons are bound. As the network gets examples presented to it, the weights are adjusted
so that the output ultimately is as close as possible to the targets.

We can introduce a bias to an ANN: It is the shifting parameter b applied to the linear
transformation of each layer. It is a constant which helps the model in a way that it can fit
best for the given data.

There are many di�erent types of architectures for an ANN such as feed-forward neural
networks, recurrent neural networks, convolutional neural networks and energy-based mod-
els (EBM). EBM’s are generative models and can be used to model the unknown distribution
of some data such as images and text. A common implementation of an EBM is called a
Boltzmann network.

We can use an ANN for many tasks, but in this report, we are focusing on training ANN’s
to memorize sequences. This is useful for many real-world applications today such as natural
language processing, DNA sequencing, anomaly detection and it can be used to generate new
information like music and art.
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1. Introduction

1.1 Boltzmann Machines

ANN’s can be trainedwith theHebb rule [1], which intuitively can be described as cells that fire
together, wire together. Networks that are trained this way are called Hopfield networks. The
neurons for a Hopfield network are deterministic; a network with neurons that are stochastic
is called a Boltzmann machine (BM), see Figure 1.2 If we train a Boltzmann machine (BM)
on sequences, they store static patterns and retrieve a particular pattern when an associated
cue is presented to it. The architecture of a Boltzmann machine is shown in Figure 1.1.

Figure 1.1: Boltzmann Machines use neural networks that are con-
nected not only to other neurons in other layers, but also to neurons
within the same layer.

Figure 1.2: The Hopfield network has an “energy” defined for the
overall network and produces binary results. But unlike Hopfield
nets, Boltzmann machine neurons are stochastic.

One interesting property of these networks is that the training algorithm only needs local
information and thus there is no need for backpropagation. BMs are in theory a general com-
putational medium, e.g if trained on photographs the machine would model a distribution
of photographs and could be used to e.g complete a partial photograph.

A shortcoming of BM’s is that they stop being practical when the networks are scaled up.
The need to compute all the weights between all the neurons creating a time complexity of
2n where n is the number of neurons. This makes the networks grow exponentially in com-
putation time as the network size increases. Another shortcoming is the so-called “variance
trap”, which means the neuron activations will saturate in the presence of noise. This is due
to the fact that BMs are a stochastic system, the connection strengths are more plastic when
the units being connected have activation probabilities intermediate between zero and one.
The net e�ect is that noise causes the connection strengths to follow a random walk until the
activities saturate.
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1.1 Boltzmann Machines

The global energy E, in a Boltzmann machine, is given by [2] and shown in Equation 1.1.

(1.1)E = −

∑
i< j

wi jsis j +
∑

i

θisi


where:

• wi j is the connection strength between neuron j and neuron i

• si is the state, si ∈ {0, 1}, of neuron i

• θi is the bias of neuron i in the global energy function. ( −θ is the activation threshold
for the neuron.)

The weight wi, j are represented as a symmetric matrix W = [wi j], with zeros along the
diagonal.

A unit i then turns on with the probability given by the logistic function:

prob(si = 1) =
1

1 + e−zi
(1.2)

where the scalar T is temperature of the system and zi = bi +
∑

j siwi j .

If the units are updated sequentially in any order that does not depend on their total
inputs, the network will eventually reach a Boltzmann distribution, also called equilibrium or
stationary distribution. This probability of a state vector v is determined solely by the energy
of that state vector relative to the energies of all possible binary vectors:

P(v) =
e−E(v)∑
u e−Eu

(1.3)

where E(v) = −
∑

i sv
i bi −

∑
i> j sv

i s
v
jwi j and sv

i is the binary state assigned to unit i by state
vector v.

Given a training set of state vectors (the data), learning consists of finding weights and
biases (the learnable parameters) that make those state vectors good. More specifically, we
try to find weights and biases that define a Boltzmann distribution in which the training
vectors have high probability, i.e, small energy E.

Furthermore, the search can be improved with the help of simulated annealing [3], and
as an extension of that, quantum annealing [4].
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1. Introduction

1.1.1 Restricted Boltzmann Machines

One big drawback of the Boltzmann machine is the running time complexity. A solution
for this is to limit the network connectivity. RBM’s are two-layered (one layer being visible
and the other one being hidden) and all the nodes in one layer are connected to all the nodes
in the other layer but no two nodes in the same layer are connected together. This is called
Restricted Boltzmann Machines (RBM’s) and is shown in Figure 1.3. An RBM is thus a quite
di�erent model from a feed-forward neural network. They have connections going both ways
(forward and backward) that have a probabilistic interpretation.

Figure 1.3: An example of a an Boltzmann machine architecture on
the left and a Restricted Boltzmann architecture to the right (a)
Boltzmann machine, (b) Restricted Boltzmann machine

1.1.2 Spiking Neural Networks

Spiking neural networks (SNNs) aim to increase the level of realism in neural networks. They
incorporate the concept of time into their model by changing the idea that neurons fire
directly, to instead fire only when a membrane potential (neurons electrical charge) reaches a
specific value. When a neuron fires, it generates a signal which travels to other connected
neurons that in their turn increase or decrease their potential according to this signal, a
process called synaptic time-dependent plasticity [5].

A drawback Boltzmannmachines have is their weak time dependency, which is an impor-
tant variable when considering the memorization of sequences. To mitigate this a suggestion
is to use synaptic time-dependent plasticity (STDP) [6].

STDP suggests that the co-activation of pre and postsynaptic neurons (The neuron where
the signal is initiated is called the presynaptic neuron, while the neuron that receives the
signal is called the postsynaptic neuron) sets a flag at the synapse, called an eligibility trace,
that leads to a weight change only if an additional factor is present while the flag is set.

The weights of a SSNs are thus set based on two basic rules:

1. Any synapse that contributes to the firing of post-synaptic neuron should be made
stronger;
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1.1 Boltzmann Machines

2. Any synapse that does not contribute to a post-synaptic neuron should bemadeweaker.

The learning rules are also simple:

• If pre-connection neurons fire before a post-connection neuron the corresponding con-
nection becomes stronger by a factor proportional to time (the lesser the time, the
greater the change). This is called long-term potentiation (LTP) and can be seen in Fig-
ure 1.4.

• If the pre-connection fires after the post-connection the connection should become
weaker by a factor proportional to time. This is called the Long Term Depression
(LTD) and can be seen in Figure 1.4 .

Figure 1.4: The figure shows the decay how the synapse eligibility
trace is a�ected as a function of time. LTP is the long-term poten-
tiation and LTD is the long-term depression.

1.1.3 Dynamic Boltzmann Machines

A previous study [7] postulates a new neural network that extends the Hebb rule with spike-
timing-dependent plasticity (STDP).

A dynamic Boltzmann machine (DyBM) consists just like the Boltzmann machine of a
set of neurons and synapses, but instead of a simple weight on the synapse, we now calculate
the weights based on the neurons eligibility traces. Each neuron has a neural eligibility traces
and the purpose of this is to aggregate the previous spikes in the neuron. The synapse also has
a synaptic eligibility trace, and similarly to the neuron, this aggregates the previous spikes
from the pre-synaptic neuron. The synaptic queue holds the values of the pre-synaptic neuron
eligibility trace at a certain time.

Any neuron can be both a pre-synaptic and post-synaptic neuron and a neuron can be
connected to itself via a synapse.

11



1. Introduction

Figure 1.5: A pre-synaptic neuron is connected to a post-synaptic
neuron via a queue. The spike from a pre-synaptic neuron reaches
the post-synaptic neuron after a delay. Each neuron stores an neural
eligibility trace (an aggregation of previous spikes) and each synapse
holds a synaptic eligibility trace (an aggregation of previous spike
via the queue from the pre-synaptic neuron).

1.2 Quantum Computing

A classical computer uses electrons and gates to produce results that are in accordance with
Boolean logic. For any two specific input states, we have one certain output state. The funda-
mental unit of classical computers are binary digits whose state is either 0 or 1. In a conven-
tional semiconductor, this is represented as low and high voltage levels within a transistor.

Quantum computers are fundamentally di�erent. The basic unit of registering a state is a
so-called qubit, that also stores states of 0s and 1s but can be both at the same time. Instead of
using transistors, the physical implementation of qubits can take shape in many forms such
as using photons, electrons, and optical lattices [8].

A quantum system considers an electron’s spin (the angular momentum) to be “up” or
“down” and corresponds to the traditional computers 0 or 1.

Particles can exist in di�erent states, for example they can be in di�erent positions, have
di�erent energies or be moving at di�erent speeds. In quantum mechanics, instead of think-
ing about a particle being in one state or changing between a variety of states, particles are
thought of as existing across all the possible states at the same time. A good analogy can be
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1.2 Quantum Computing

thinking of lots of waves overlapping each other. This situation is known as a “superposition”
of states.

When the electron is observed, the superposition collapses and the qubit obtains one
state. It is impossible to witness an electron in a state of superposition because witnessing
requires the very exchange of photons that causes such a superposition to collapse.

Each superposition state a qubit may take may be represented by a vector in a Bloch
sphere, see Figure 1.6. The North and South poles of the Bloch sphere are typically chosen to
correspond to the standard basis vectors 0 and 1 respectively, which in turnmight correspond
e.g. to the spin-up and spin-down states of an electron.

Figure 1.6: In quantummechanics, the Bloch sphere is a geometrical
representation of a qubit, named after the physicist Felix Bloch

In a system with n qubits, the number of possible superposition states for each qubit is
2n. This would mean for a 4 qubit system, each qubit would have 24 = 16 possible states and
the whole system would have 16 × 4 = 64 possible state, this is comparing to a traditional
computer where a 4 bit system only has 16 total states.

The advantages of quantum systems are clear here: If one can utilize the work done in
the unobserved state, a quantum computer is capable of performing algorithmic functions
on units problems that are today would take several thousands of years.

The challenge for quantum computers is to take full advantage of the ability to manipu-
late qubits during their superposition, prior to their decoherence (the reversion of qubits to
their classical 0 or 1 states).

There are two types of quantum programs, which function very di�erently from one
another: quantum gate models and quantum annealing computers. Quantum gate models create
a quantum circuit and use gates to manipulate qubits in a similar way to classical computers
and are very capable of solving generalized problems. A quantum annealing system is not
a general-purpose computer. It can only solve certain problems that can be structured as
energy minimization. Quantum annealing works best on problems, where there are a lot of
potential solutions and finding “good enough” or “local minima” solutions.
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1. Introduction

1.3 Quantum Annealing

Quantum annealing uses the natural tendency of real-world quantum systems to find low-
energy states e.g a cooling metal bar is the real-world scenario of the function “metalbar”
finding the minimal energy “cool”. If an optimization problem is analogous to a landscape of
peaks and valleys, for instance, each coordinate represents a possible solution and its elevation
represents its energy. The best solution is that with the lowest energy corresponding to the
lowest point in the deepest valley in the landscape. There are a lot of optimization problems
that quantum annealing machines can solve that have a big impact on today’s society e.g.
traveling salesman problems and workflow optimizations.

In more precise terms, a quantum annealing system translates a Hamiltonian function
that describes the total energy of a quantum system into actual physical states [9] and this
process is called quantum annealing.

A Hamiltonian is the sum of the kinetic energies of all the particles, plus the potential
energy of the particles associated with the system. The expression of the Hamiltonian can
take di�erent forms and simplifications taken into account the concrete characteristics of the
system under analysis: single or several particles in the system; interaction between particles;
kind of potential energy; time varying potential or time independent one; etc [10]

The annealing process works as follows:

• First the system’s qubits are placed in an absolute energy minimum.

• The hardware alters the configuration of the system so that the energy landscape re-
flects the problem that it needs to solve.

• If the configuration is successful, all the qubits end up with the lowest possible energy
in the new landscape.

• This process ends up identifying the lowest energy state of that landscape.

Quantum annealing processors naturally return low-energy solutions. Applications can
require the real minimum energy (optimization problems) or they might require low-energy
samples (probabilistic sampling problem) [11].

Sampling from many low-energy states and characterizing the shape of the energy land-
scape is useful for machine-learning problems, where we want to build a probabilistic model
of reality. The samples give us information about the model state for a set of parameters,
which can then improve the model. See Figure 1.7.

Probabilistic models explicitly handle uncertainty by accounting for gaps in our knowl-
edge and error in data sources. Probability distributions represent the unobserved quantities
in a model. The distribution of the data is approximated based on a finite set of samples.
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1.4 Quantum Boltzmann Machine on the D-Wave 2000Q

The models are inferred from the observed data, and learning occurs as it transforms the
prior distribution, defined before observing the data, into a posterior distribution, defined
afterwards. If the training process is successful, the learned distribution resembles the dis-
tribution of that generated data, allowing predictions to be made on unobserved data. For
example, training onMINST dataset of handwritten digits, such amodel can generate images
resembling handwritten digits consistent with the training set.

Figure 1.7: Leveraging the mechanics of quantum tunneling we can
escape local minimums faster

1.4 Quantum Boltzmann Machine on the D-
Wave 2000Q

The D-Wave 2000Q is a physical implementation of a quantum annealingmachine with 2000
qubits and 5600 connections between the qubits called couplers.

The computer implements a Hamiltonian model with a signed state vector s ∈ {−1, 1}
[12, 13]. It also has the quadratic energy function (which is analogous with the energy function
of a Boltzmann Machine):

E(s) = sT Js + hT s, (1.4)

where J is analogous to the weights of a Boltzmann machine and h is analogous to its
biases, see Equation 1.1 [14]. Utilizing this, we can now draw the conclusion that we can
embed a Boltzmann network on the quantum annealing computer and by finding the global
energy minimum we have e�ectively found the ideal weights for the network.

To do this we draw samples from a Boltzmannmachine using the quadratic unconstrained
binary optimization sampler. Samplers are processes that get the low energy states of a prob-
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1. Introduction

lem’s objective function, which is a mathematical expression of the energy of a system. A
binary quadratic model (BQM) sampler samples from low energy states in models such as
those defined by a Hamiltonian function and returns an iterator of samples, in order of in-
creasing energy.

This machine-learning approach based on quantum Boltzmann distribution of a Hamil-
tonian is what we will call the quantum Boltzmann machine (QBM) [15]. The specifics of
how to train a quantum Boltzmann machine is further explained in section 2.4.
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Chapter 2

Methodology

This study involves two parts, the first one focuses on building a DyBM model in Python
and running multiple experiments. The aim is to determine the ability of a DyBM model to
memorize sequences but also to make a model that can be used as library code, that is easy to
maintain, test and develop. Further, the package that is used to embed Boltzmann machines
onto the quantum annealing computer is written in Python and eases a potential integration
between these two libraries for future studies. The model is made available under a MIT
licence [16].

The second part of this study focuses on building two QBM models. The first model
is created to classify bitmap generated letters. The aim here is two test that the model is
developed correctly and is able to classify letters. The second model is created to determine
the ability of memorizing sequences using a QBM. The models are written in Python and
also made available under a MIT licence [17].

2.1 Data sets

The data set being used are monochromatic bitmap images, created from text with the PIL
package from Python. The reason this data set was chosen is three fold:

1. One reason is that it was used in the same study were the DyBM was postulated.

2. The second one is that it gives an easy way of visualising the network and how the
training is progressing.

17



2. Methodology

3. The last advantage is that the data set is can be quite small, somethingwe have to take in
consideration when using the D-wave 2000Q. The reason for this is that the quantum
annealing computer only has 2000 qubits with 5600 couples. Since all neurons in a
Boltzmann machine are fully connected this leads to one only being able to use around
25 neurons in a Boltzmann machine when embedding it into the quantum annealing
computer.

An example of the training data can be seen in Figure 2.1.

Figure 2.1: The bitmap is one of the data sets being used for de-
veloping, training and testing the qdybm. The x-axis represents the
number of series a bitmap has and the y-axis represents the number
of dimensions

Each bitmap is represented as a matrix of s · d values where s is the number of series and
d is the dimensional of the data set. Each value v can have two states {0, 1}.

The values v are set in such a way that they form any shape or text. Figure 2.1 shows a
bitmap with a dimension of 7 and 34 series.

2.2 Creating the DyBM Model

The first step in the study was to create a DyBM model using Python 2.7.

There are threemain classes for themodel areNeuron,Axon. andNetwork. To define the
Axon queues, two classes are needed: Fifo and BinaryFifo. Below follows a quick description
of the classes:

Neuron is the basis for the network, this hold a number of variables such as its eligibility
traces, and spike probability. It also calculates the total energy of the Neuron based on
the incoming and outgoing Axons.

Axon holds the connections between the Neurons and is implemented as a FIFO queue.

Network creates the architecture of the neurons andAxons. It also holdmethods for training
and free running the network.

Fifo, a First-in, First-out queue for holding the pre-synaptic neural eligibility traces.

18



2.2 Creating the DyBM Model

BinaryFifo, a binary implementation that Fifo uses for more e�cient calculation of the
synaptic eligibility traces.

Implementation of DyBM

A previous study [7] describes the dynamic Boltzmann machine.

A DyBM consists of a set of neurons having memory units and first-in-first-out (FIFO)
queues. Let N be the number of neurons. Each neuron takes a binary value of either 0 or 1 at
each moment t, that is for j ∈ [1,N], x[t]

j is the value of the j-th neuron at time t. A neuron,
i ∈ [1,N], can be connected to another neuron, j ∈ [1,N] with a FIFO queue (synapse) of
length di j−1, where di j is the conduction delay from a pre-synaptic neuron i to post-synaptic
neuron j . Any neuron can both be pre-synaptic or post-synaptic depending on what synapse
is under consideration.

We assume di, j ≥ 1. At each precise moment t, the tail of the queue holds the most recent
value, x[t−1]

i , and the head of the FIFO queues hold the oldest value given the length of the
queue, x[t−di, j+1]

i . For each time step, the value at the head of the FIFO queue is removed and
the remaining values in the queue are pushed towards the head by one position and a new
value is inserted at the tail of the FIFO queue. We allow a neuron to be connected to itself
via a FIFO queue.

Neural Eligibility Traces

Each neuron stores a fixed number of neural eligibility traces, L. For l ∈ [1,N] and j ∈ [1,N],
let

γ[t−1]
j,� ≡

t−1∑
s=−∞

µt−s
� x[s]

j (2.1)

where µ� ∈ (0, 1) is the decay rate for the � -th neural eligibility trace, which is the weighted
sum of all the past value of that neuron, where the recent values have a greater weights than
older ones.

Synaptic Eligibility Traces

Each neuron also stores synaptic eligibility traces, where the number of the synaptic eligibility
traces depends on the number of the neurons that are connected to that neuron. Namely, for
each of the pre-synaptic neurons that are connected to a post-synaptic neuron j, the neuron
j stores a fixed number, K , of synaptic eligibility traces. For k ∈ [1,K], let a[t−1]

i, j,k be the k-th
synaptic eligibility traces of neuron j for pre-synaptic neuron i immediately before time t.

α[t−1]
i, j,k ≡

[t−di, j ]∑
s=−∞

λ
t−s−di, j
k x[s]

i (2.2)
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2. Methodology

where λk ∈ (0, 1)is the decay rate for the k-th synaptic eligibility traces. That is, the synap-
tic eligibility trace is the weighted sum of the values that has reached neuron j, from a pre-
synaptic neuron i, after the conduction delay di, j . Again, the recent values have greater
weights than older ones.

Updating Eligibility Traces

The values of the eligibility traces stored at neuron j are updated locally at time t using the
value of neuron j at time t and the values that have reached neuron j at time t from its
pre-synaptic neurons. Specifically,

γ[t]
j,� ← µ�

(
γ[t−1]

j,� + x[t]
j

)
(2.3)

α[t]
i, j,k ← λ�

(
α[t−1]

i, j,k + x[t−di, j ]
i

)
(2.4)

for � ∈ [1, L] and k ∈ [1,K] and for each neuron i connected to the neurons j .

Learnable Parameters

The DyBM has three learnable parameters. The bias of the neurons, specifically each neuron
j, is associated with a bias b j . Each synapse (the FIFO queue between two neurons) has an
associated weight of long term potentiation (LTP) and weight of long term depression (LTD).

The LTP from a pre-synaptic neuron, i, to a post-synaptic neuron j, is characterized with
K parameters, ui, j,k for k ∈ [1,K]. The k-th LTP weight corresponds to the k-th synaptic
eligibility trace.

The LTD weight from a (pre-synaptic) neuron, i, to a post-synaptic neuron j, is charac-
terized with L parameters, vi, j,� for� ∈ [1, L]. The� -th LTD weight corresponds to the� -th
neural eligibility trace. The learnable parameters are collectively denoted as θ.

Energy Definition

Similar to the conventional Boltzmann machine, the energy of the DyBM determines what
pattern of values that the DyBM is more likely to generate. Contrary to the Boltzmann ma-
chine, the energy associated with a pattern at a moment depends on the patterns that the
DyBM has previously generated.

Let x[t] = (x[t]
j ) j∈[1,N] be the vector of the values of the neurons at time t. Let x[:t−1] =

(x[s])s<t be the sequence of the values of the DyBM before time t. The energy of the DyBM at
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2.2 Creating the DyBM Model

time t depends not only on x[t] but also on x[:t−1], which is stored as eligibility traces in the
DyBM.

Let Eθ(x[t]|x[:t−1]) be the energy of the DyBM at time t. The lower the energy of the DyBM
with particular values x[t], the more likely the DyBM takes those values.

Decomposing the Energies

The energy can be decomposed into the energies of the individual neurons at time t. Specif-
ically,

Eθ(x[t]|x[:t−1]) =
N∑
j=1

Eθ(x[t]
j |x

[:t−1]) (2.5)

The energy of neuron j, at time t depends on the value it takes as follows:

Eθ(x[t]|x[:t−1]) = −b j x[t]
j −

N∑
i=1

K∑
k=1

ui, j,kα
[t−1]
i, j,k x[t]

j +
N∑

i=1

L∑
�=1

vi, j,�β
[t−1]
i, j,� x[t]

j +
N∑

i=1

L∑
�=1

vi, j,�γ
[t−1]
i,� x[t]

j

(2.6)
where

β[t−1]
i, j,� =

t−1∑
s=t−di, j+1

µs−t
� x[s]

i (2.7)

The first term of the right side of Equation 2.6 shows that a neuron having a large positive
bias is likely to spike (x[t]

j = 1) at any time t, because its energy tends to be low when it spikes.
More precisely, the energy of the neuron is determined by the balance among the four terms
on the right side of Equation 2.6.

The second term of the right side corresponds to LTP. Consider a pair of a pre-synaptic
neuron, i, and a post-synaptic neuron, j, whose LTP weight, ui, j,k for k ∈ [1,K], has a large
positive value. Then j is likely to spike at time t, if the spikes from i have arrived shortly
before time t, which makes α[t−1]

i, j,k large for k ∈ [1,K].

The third and fourth term can both be considered long-term depression (LTD). The third
term only considers the spikes that are going to reach the post-synaptic neuron within the
period of conduction delay and the last term takes into account the spikes that are arriving
after the conduction delay [7].

Learning Rule

The probability distribution of the values that the DyBM generates depends on the values
for the learning parameters θ.
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2. Methodology

When the DyBM is presented with the values, x[t] at time t, we update the learnable
parameters in the direction of increasing log-likelihood.

This bias is updated as follows:

b j ← b j + η
(
x j − 〈X j〉θ

)
(2.8)

where 〈X j〉θ denotes the expectation of the value that j generates at the time t given the
values of the parameters and variables of the DyBM just before that time. Another way of
saying this is: The bias is increased if the value present to the neuron is greater than what is
expected, otherwise it is decreased.

The LTP weight is increased or decreased in the same way as the bias as follows:

ui, j,k ← ui, j,k + η
(
x j − 〈X j〉θ

)
αi, j,k (2.9)

Now, the magnitude of the update is also proportional to the corresponding synaptic eligi-
bility trace αi, j,k . The LTP weight is increased if the product of the presented value and the
value of the synaptic eligibility trace is greater than what is expected. Otherwise, the LTP
weight is decreased. Increasing ui, j,k results in increasing the probability that neuron j spikes
particularly at the time s when αi, j,k is high. This is what we expect with LTP.

The LTD weight is increased or decreased depending on two terms:

vi, j,l ← vi, j,l + η
(
〈X j〉θ − x j

)
βi, j,l + η

(
〈Xi〉θ − xi

)
γi, j,l (2.10)

where β depends on the spikes traveling from neuron i to neuron j and γ represents the
neural eligibility trace of neuron j . If the expected value of the first product is greater than
the corresponding observed value, the LTD weight is increased. Increasing vi, j,l decreases the
probability of that neuron j spikes at time time t when β is high. If the expected value of the
second product is greater than the corresponding observed observed value, the LTDweight is
also increased, which implies that the probability that neuron i spikes at t when γ is lower[7].

Parameters

The learning rate was initially set at η = 1 and then adjusted in the training using AdaGrad.
During the experiments the N neurons were densely connected to each other and the con-
duction delay was set to 3. Each neuron was connected to itself. For all the values of the
neurons, the neural eligibility traces and the synaptic eligibility traces were set to zero prior
to training. The learning parameters where set independently from a normal distribution of
0.0 and standard deviation of 0.01. We implemented the algorithm for training in Python 2.7
and executed it on a Intel “Core i7” processor (4980HQ) with 16 GB of memory.

2.3 Sequence Memorization in DyBM

We did two experiments with the DyBM. The first experiment was with the data set “SCI-
ENCE” and the second one was with the “COLABS” data set. The parameters were set as
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2.4 Quantum Boltzmann Machine

mentioned above. For training, we iteratively trained the network on sequence per time step,
which meant we updated the biases and weights (LTP + LTD) and then we set the network
to those sequence values by updating the neurons neural eligibility traces and propagating
these values to the axons (updating the synaptic eligibility trace). This was repeated for all
sequence (one epoch or period) and these epochs were shown to the network until the output
of the network corresponded with training data set.

To get the output of the network it was run in a “free run” state. The weights and biases
for the network were first saved. Then the first input sequence was set. The output of the
network given the first input sequence was now retrieved and then the neuron eligibility
traces were updated with the output sequence and the values were also propagated to the
axons (synaptic eligibility trace). This is done for the entire epoch and then weights and
biases are restored to continue training. Note that the saving and restoration of the weights
and biases are only needed if we want to determine the progressing of the network after every
epoch. We could also set the network to run a fixed number of iterations and then free run
the network to determine the network state. This is however unpractical since we do not
know when the network has converged but was done in the QBM.

To conclude, the di�erence between the training and the free-running part is that in
the training part we used the current training sequence to update the neural and synaptic
eligibility traces but in the free-running part we get the sequence by sampling the network
and then using this sequence to update the neural and synaptic eligibility traces.

The result of the experiments are shown in Figures 3.1, 3.2, 3.3, and 3.4.

2.4 Quantum Boltzmann Machine

Twomodels were createdwith theQBM. First, a model that we used to classify bitmap letters.
Secondly, a model that was used to memorize bitmap image sequences..

Learning Rule

Given a training set of state vectors, learning consists of finding weights and biases (the pa-
rameters) that make those state vectors good. More specifically, the aim is to find weights
and biases that define a Boltzmann distribution in which the training vectors have high prob-
ability. By di�erentiating Eq. 1.1 and using the fact that ∂E(v)

∂wi j
= −x[t]

i x[t]
j , it can be shown

that

〈
∂logP(v)
∂wi j

〉
= 〈xix j〉data − 〈xix j〉model (2.11)

where 〈·〉data is an expected value in the data distribution and 〈·〉model is an expected value
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2. Methodology

when the Boltzmann machine is sampling state vectors from its equilibrium distribution at
a temperature of 1. To perform gradient ascent in the log probability that the Boltzmann
machine would generate the observed data when sampling from its equilibrium distribution,
wi j is incremented by a small learning rate times the RHS of Eq. 2.11. The learning rule for
the bias bi is the same as above but with x j omitted.

If the observed data specifies a binary state for every unit in the Boltzmann machine,
the learning problem is convex: There are no non-global optima in the parameter space.
However, sampling from 〈·〉model may involve overcoming energy barriers in the binary state
space [18].

In addition to the basic update rule in Equation 2.11, we add L2 regularization to avoid
over fitting and shrink the model and momentum to help accelerating the gradient vectors
in the right direction and lead to faster convergence. The final learning expression we obtain
is as follows:

Q[:t]
i, j ← Q[:t]

i, j − η ∗
(
〈xi, j〉 − 〈Xi, j〉θ

)
+ ηλ ∗ Q[t−1]

i, j − µ ∗
(
Q[:t]

i, j − Q[:t−1]
i, j

)
(2.12)

where Q is an upper triangular matrix with size NxN where the diagonals Qi,i are the biases
and Qi, j>i are the weights. The first part is the local update rule from Equation 2.11, η is as
before the learning rate. The second part is the momentum, λ is the momentum coe�cient
and Q[:t−1]

i, j are the previous gradient vectors. The last part is the L2 loss and µ is the loss
coe�cient.

When we are trying to learn the parameters j and h we instead use the L2 loss function.

2.5 Classification in QBM

The first step was classifying the individual bitmap letters of the sentence “SCIENCE”.

The first experiment was with an 7x4 bitmap of the individual letters. We first trained
the network on the first two letter “S” and C”. In the next experiment we moved on to classify
all the letters “S”, “C”, “I”, “E” and “N”.

In order to classify the QBM, we first flattened the bitmap image letters, and added 7
more bits to determine the classification. Depending onwhich bit was activated it symbolized
a certain letter. The encoding was:

• S : 1000000

• C : 0100000

• I : 0010000

• E : 0001000
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2.6 Sequence Memorization in QBM

• N : 0000100

The model was trained with Equation 2.12. The first step in constructing the matrix Q which
is needed for the quantum annealing machine. The sampler embeds the networks and the
samples a given number of times. To increase accuracy a high number(>100) of samples are
required. Executing the sampling we get a new matrix Q. Using Equation 2.12 we can then
update the matrix Q until we’ve are satisfied with the result.

We shu�ed the images every time we trained and iterated through all the images for a
set number of epochs.

The mean squared error (MSE) was calculated by the expected data value x j and the sam-
pled expected value 〈X j〉. The accuracy was determined from the ratio of correctly predicted
observations to the total observations. The results can be found in Figures 3.5, 3.6, 3.7 and
3.8.

2.6 Sequence Memorization in QBM

First, we created an experiment comprising a small network, namely a 7x6 matrix of the
“SCIENCE” data set, but only using the first letter “S” and using only the basic learning rule
without L2 and momentum.

After create the Q matrix and use the sampler to embed and get a new Q matrix back.
We then used 2.11 to update the Q matrix. 200 sample reads were used for every sampled
with an annealing time of 5 microseconds.

To do a similar “free run” simulation of the network as we didwithDyBMproved di�cult.
Since we do not have direct access to the q-bits in the D-Wave machine this has to be done by
adjusting the bias (the idea here is that by adjusting the bias we can increase the probability
of the state we want). To activate a neuron we increased that the bias of that neuron and vice
versa. The increment was relative to the existing bias by:

hi ← hi ±
1
N

(2.13)

where hi is the bias for the neuron i and we increase or decrease the bias by a magnitude 1
N

where N is the number of neurons.

However this is method is not ideal and there are other way to go about this. E.g. choosing
a fraction of 1

N was completely arbitrary and both linear and exponential adjustment were
tried, both with similar results.

This algorithm showed no convergence for any training sequences using this approach
and no meaningful results could be found. This is believed to be to the fact that there is no
way of simply “setting a state on a quantum Boltzmann machine. The crude way of changing
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2. Methodology

the bias was simply not enough and more work is needed to be done in this field in order to
fully understand how this could be possible.

26



Chapter 3

Results

3.1 “SCIENCE” Data set DyBM

The results for the DyBM with the data set “SCIENCE” are shown in Figures 3.1 and 3.2. The
execution time was 202 seconds.

Optimization

Due to severe performance loss in contrast to the Java implementation ( 200x slower) several
optimization where done to the code, most notably Numba was used to optimize matrix
computations. Numba translates Python functions to optimized machine code at run time
using the LLVM compiler library. Numba-compiled numerical algorithms in Python can
approach the speeds of C or FORTRAN.[19]

Even with an heavily optimized code the performance loss was still severe ( 100x slower).
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3. Results

(a) Epoch 0 (b) Epoch 1700

(c) Epoch 2500 (d) Epoch 3080

Figure 3.1: The output of DyBM after n epochs of training with the data
set “SCIENCE”. The output starts of repeating and with no structure from
the input data and progressively gets better. By Epoch 3080 the output has
converged.

Figure 3.2: The plot show how the loss decreases in the network over
training epochs for the data set “SCIENCE”.

28



3.2 “COLABS” Data set

3.2 “COLABS” Data set

The results for the DyBM with the data set “COLABS” are shown in Figures 3.3 and 3.4. The
execution time was 5 seconds.

(a) Epoch 0 (b) Epoch 100

(c) Epoch 200 (d) Epoch 275

Figure 3.3: The output of DyBM after n epochs of training with the data
set “COLABS”. The output starts of repeating and with no structure from
the input data and progressively gets better. By Epoch 275 the output has
converged.

Figure 3.4: The plot show how the loss decreases in the network over
training epochs for the data set “COLABS”.
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3. Results

3.3 QBM

3.3.1 Classification SCIENCE

In this section we train the QBM to classify all the letters in SCIENCE, that is “S” “C” “I”
“E” “N”. We did 4 experiments with increasing epochs (from 4 up to 25). The results shows
that increasing the epochs also increase the accuracy (from 0.69 to 0.79) but changing any
of the learning parameters could change the results and a lot of work went in to finding the
chosen parameters. We would like the number of samples taken ( r = 200 ) to be higher but
due to cost and time restrictions of qpu we could not increase it. The Learning rule chosen
was a simple linear rule, other rules were tried but did not seems to change the outcome
significantly. Momentum was chosen to be µ = 0.5 and proved to provide a good balance
between speed of converging and oscillation.

(a) Loss (MSE) (b) Gradients

(c) Learning Rate (d) Accuracy (%)

Figure 3.5: Total epochs trained: 4. Best Epoch was: 3. Total qpu access
time: 3.0s. Best Accuracy: 0.69. Total iterations: 20
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3.3 QBM

(a) Accuracy (b) Gradients

(c) Learning Rate (d)Mse

Figure 3.6: Total epochs trained: 10. Best Epoch was: 10. Total qpu access
time: 6.1s. Best Accuracy: 0.79. Total iterations: 50.
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3. Results

(a) Accuracy (b) Gradients

(c) Learning Rate (d)Mse

Figure 3.7: Total epochs trained: 15. Best Epoch was: 13. Total qpu access
time: 9.1s, Best Accuracy: 0.76. Total iterations: 75
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3.3 QBM

(a) Accuracy (b) Gradients

(c) Learning Rate (d)Mse

Figure 3.8: 25 epochs trained. Best Epoch was 16. Total qpu access time:
15.18s, Best Accuracy: 0.79. Total iterations: 125
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3. Results
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Chapter 4

Discussion

QBM Sequence Memorization

There are many reasons to investigate why the QBM never converged. One reason relates to
the setting of the neuron values between sequences. From previous experiments done outside
of this project, it was shown that the QBM had the capability of classifying data, successfully.
However, this was done by utilizing extra bits to represent the classification. To then obtain
the classification we would set the biases of the bits to the same classification sequence as the
classification we would like to obtain. However, in the memorization sequence algorithm,
we want to use the same bits to obtain the next sequence and this is probably where the
issues arise. Since we have to adjust the biases to set the bits on and o�, but we still need
them to keep the network we run the possibility of disturbing the network and not find a
solution. One way of mitigating this would be to add a series of bits representing what order
in the sequence the current sequence hold, and thus in the "free run" phase we could get the
correct sequences in the correct order. However, this would then train the network in several
classifications rather than a correlation function between the di�erent sequences.

QBM Classification

The results of the classification show promising results with accuracy reaching about 80 %.
One of the biggest issue with classifying the letter was the big changes in the accuracy due
to the big variation of the quantum sampling. To mitigate this we tried di�erent numbers
of reads, but the limitations of training time (due to cost allocation) made it not possible
to increase the number of sample reads more than around 500 per iteration. One of the key
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4. Discussion

factor for training successfully was adding momentum to the learning equation. The optimal
value for the momentum constant was found to be 0.5, the higher it was set the more the
model had a tendency to oscillate and become unstable. If we had access to more training
time we would have increased the number of samples for each iteration to around 1000ms as
well as increasing the annealing time to 100ms.

DyBM Sequence Memorization

The DyBM implementation also has opportunities for improvement. As mentioned before
there were many iterations of performance enhancement done to the algorithm to achieve
somewhat reasonable levels of execution time, unfortunately even after using a lot of opti-
mization techniques and converting a lot to C code with the help of Numba, speeds were still
slow. This we assume is due to the innate nature of Python as a dynamic language and not
pre-compiled. We also could have increased e�ciency a lot if we would not have followed
object-oriented programming since Numba, for the time being, does not support classes to
be executed as “no-python” mode. The system in Python ended up not being very scalable
because of its lack of performance, restructuring the code we could use Numba to its full
extent the algorithm could become more scalable.

The conversion from Java to Python eventually ended up much longer than anticipated
due to a large amount of small di�erences in error handling in Python and Java leading up to
many bugs that were hard to track.

From the results, we can also see that the loss function of the DyBM abruptly diminishes
but that then it’s almost like the gradient vanishes and we get stuck in a local minimum for
a long time. Solutions to this could be gradient clipping or possibly changing some parame-
ters. To change all the parameters we could do a hyper-parameter search for di�erent queue
lengths, decay rates and so on.

With more experiments done we could set up more of a baseline, we could, for example,
see that even though both data sets we used in DyBM had the same length, the training time
greatly di�ered (11x slower for the “SCIENCE” data set). We would like to further study how
similar sequences with the same length a�ect the loss and training time, how the length of
the sequences a�ects training time and how di�erent parameters a�ect the result.

4.1 Outlook

• Converging QBM sequence Memorisation: A key factor that made the QBM not con-
verge was the ability to accurately run the free run procedure on the QBM. To set a
number of bits active this was done by increasing the bias of a particular q-bit, but the
question still remains with how much the bias should be increased.
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4.1 Outlook

• Optimization: As mentioned above, the Python version of the DyBM is still much
slower than the corresponding Java version and would need to become faster.

• Expand data sets: Usingmore data sets would enable us to study the performance of the
sequence memorization in more depth. In particular we would like to study networks
of di�erent sizes. E.g with MIDI sequences one neuron for every note we would almost
double the network size.

• Di�erent Gradient Descent algorithms: Currently we use AdaGrad for the DyBM. It
would be of interest to see how the training behaves with di�erent algorithms such as
RMSProp.

• Hybrid algorithm - Quantum Dynamic Boltzmann machine: Creating a hybrid algo-
rithm that uses the neural and synaptic eligibility traces as well as LTD and LTP would
be ultimate goal. The issue here lies in that the energy model for a QBM and a DyBm
are di�erent and that the sampling is done in a QBM. This leads to some problems
such as how are all the eligibility traces and weights going to be updated. One viable
solution would be to use the QBM as a sampler in the original DyBm.

• Elman networks: Elman Networks are recurrent and specifically designed to learn se-
quential or time-varying patterns. We would like to compare the results of this archi-
tecture to the one we have studied in this report.
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Memorizing sequences is useful for many applications such as natural language pro-
cessing and anomaly detection, but can also be used generatively, e.g. to generate
missing part of a photograph or music sheet. In this work, we study the performance
of memorizing sequences in dynamic Boltzmann machines and quantum Boltzmann
machines.

A artificial neural network (ANN) can be de-
scribed as a system that learns to perform a task
by repeated exposures to examples of the task.
There are many different types of architec-

tures for an ANN such as feed-forward neural
networks, recurrent neural networks, convolu-
tional neural networks and energy-based models
(EBM). EBM’s are generative models and can
be used to model the unknown distribution of
some data such as images and text. A certain
implementation type of an EBM is called a
Dynamic Boltzmann network. This EBM can be
either implemented in a classical computer or as
a Quantum Boltzmann Network, meaning that
the algorithms are used on a quantum computer.
A quantum computer is a type of computer that
uses quantum mechanics so that it can perform
certain kinds of computation more efficiently than
a regular computer can.

In this report, we are focusing on training Dy-
namic Boltzmann networks and Quantum Boltz-
mann Networks to memorize sequences. Memoriz-
ing sequences are useful for many real-world appli-
cations today such as natural language processing,
DNA sequencing, anomaly detection and it can be

used to generate new information like music and
art.
We build a Dynamic Boltzmann Machine model

in Python and run multiple experiments. The aim
is to determine the ability of a DyBM model to
memorize sequences but also to make a model that
can be used as library code, that is easy to main-
tain, test and develop. The data set used is shown
in Figure 1 and the results are shown in Figure 2.

Figure 1: The bitmap is one of the data sets be-
ing used for developing, training and testing both
models. The x-axis represents the number of se-
ries a bitmap has and the y-axis represents the
number of dimensions.

The second part of this study focuses on build-
ing two Quantum Boltzmann Machines. The first
model is created to classify bitmap generated let-
ters. The aim here is to test that the model is
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(a) Epoch 0 (b) Epoch 1700

(c) Epoch 2500 (d) Epoch 3080

Figure 2: The output of Dynamic Boltzmann Ma-
chine after n epochs of training with the data set “SCI-
ENCE”. The output starts of repeating and with no
structure from the input data and progressively gets
better. By Epoch 3080 the output has converged.

developed correctly and is able to classify letters.
The second model is created to determine the abil-
ity to memorize sequences using a Quantum Boltz-
mann Machine. The results for the classification
experiment is shown in Figure 3.

(a) Accuracy (b) Gradients

(c) Learning Rate (d) Mean square error

Figure 3: 25 epochs trained were trained. The best
Epoch was 16. Total quantum processor unit access
time: 15.18s, Best Accuracy: 79%. Total iterations:
125

From the results, we can see that the Dy-
namic Boltzmann Machines successfully manages
to memorize sequences. However, due to the im-
plementation being done in python several perfor-
mance bottlenecks limited the size of the data set.
Having chosen python for its accessibility, how-
ever, limited the networks performance. Would
we have chosen a less accessible language such as
C++ we could potentially have had greater perfor-
mance and is subject for another study.

For the Quantum Boltzmann Machines, we suc-
cessfully trained the model to classify bitmap gen-
erated letters with accuracy reaching about 80 %.
One of the biggest issues with classifying the let-
ters was the big changes in the accuracy due to
the big variation of quantum sampling.

When training the Quantum Boltzmann Ma-
chine to memorize sequences the Quantum Boltz-
mann Machine never converged. The reason for
this is believed being the inability to set the bi-
ases for the different qubits of the quantum com-
puter correctly. A limiting factor here was the
access time of the quantum computer since it is
very costly to run. With more time we believe
that the biases could be set correctly.

Other topics that can be explored is increasing
the number of data sets used, trying different op-
timization algorithms and optimize the Dynamic
Boltzmann Machine code. Another topic that can
be explored is Elman Networks. They are recur-
rent and specifically designed to learn sequential
or time-varying patterns. Comparing the results
of this architecture to the one we have studied in
this report would be of interest.
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