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Abstract

Laborious and repetitive tasks in education can be replaced by smart systems,
and the necessity has become more clear, as indicated by the research made in
this area. However, these systems su�er from many layers of complex tasks, such
as data processing and evaluation. We present a complete solution in automatic
feedback generation, which provides candidate responses for a given question
and answer based on their similarities with previously-seen questions and an-
swers. This is done using the information retrieval models BM25, TFIDF and
the Boolean model. With ROUGE metrics, we pick the best response among
the candidates with respect to a reference response. Our BM25 model achieved
the highest F1-score of 52.11%, 33.93% and 50.19% using the metrics ROUGE-1,
ROUGE-2 and ROUGE-L, respectively. Of all the models, the lowest mean re-
ciprocal rank was 0.27. We conclude that the solution architecture and models
serves as a good baseline for further improvements.

Keywords: feedback generation, natural language processing, information retrieval sys-
tem, text generation, education
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Chapter 1

Introduction

1.1 Background
Computer-aided education has a history that dates back to the 1950s, taking place in theMIT
labs in the form of a computer flight simulator to train pilots. This is the first documented
case of using computers to teach (Sharp, 2001). Today, computers are essential for education.
The rapid digitization of educational platforms entails extensive possibilities of optimizing
tasks that were previously seen as laborious, time-consuming, repetitive and ultimately costly.
Embracing new technology, considerable research is put into assisting teachers in making
better use of their time to focus on tasks that require more qualitative care and attention.

One of the research areas in this optimization is automatic student assessment: the ability
for computers to aid teachers in providing feedback and assessing student output. Feedback is
essential in education and plays a central role in students learning. More specifically, feedback
of high quality serves as a waypoint for students to assess their current skills and also as a form
of formative assessment (Nicol and Macfarlane-Dick, 2006). These fundamentals promote
an improved and accelerated learning (Liu et al., 2008, pp 745–783).

With the rise of e-learning platforms and massive online courses, the lack of face-to-face
interaction can pose a serious challenge for teachers to give proper feedback to the students,
causing adverse e�ects in the learning process. Studies have shown that a distance learning
might have undesirable manifestations, such as feeling of isolation, self-evaluation problems
and lack of support from tutors (Galusha, 1997). Kosba et al. (2007) seek to mitigate these
disadvantages in form of smart software, which help teachers understand the needs of their
students and give appropriate feedback.

In this study, we present an architecture and algorithms to generate feedback with a
model akin to recommender systems using content-based filtering as described in Isinkaye
et al. (2015). Our goal is to reduce time teachers spend on feedback by generating feedback
based on completed exercises submitted by students, who often write similar answers and
make the same mistakes, resulting in duplicated feedback. While duplication per se is not

7



1. Introduction

necessarily a time-consuming task, completed exercises need to be carefully analyzed to give a
fair and correct assessment. Such text analysis requires sophisticated reading comprehension,
a non-trivial task for machines.

Starting from the extraction and preprocessing of data, we create a data structure for the
acquired data set. Using an engine and techniques common in the areas of information retrieval
(IR) systems, we populate the index of our engine with the prepared documents. Given a new
pair of question and answer, we will use di�erent IR techniques to score their relevance with
indexed questions and answers. The question and answer with the highest score will have an
associated response by a teacher which will be our candidate feedback. Finally, we will show
a use-case in the form of a complete solution with a graphical user interface, and evaluate our
system.

1.2 Related work
Generating appropriate response for a given text is a challenging task in natural language
processing and, if well-performing, can help automatizing time-consuming, laborious and
repetitive tasks.

Starting in 2016, a particular area in reading comprehension has been further catalyzed
with the release of Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016),
which focuses primarily on finding a correct answer in a passage given a question. Focusing
on finding a answer for a given question and a passage, the authors of the paper achieved an F1
score of 51%, a significant improvement of the set baseline of 20%, but lacking in comparison
with a human performance of 89%. In 2019, a top scoring model achieved an F1 score of 92%
(Lan et al., 2019).

Singh et al. (2013) discuss the pros and cons of traditional approaches to test-case based
feedback and peer-reviewed feedback in introductory programming courses. For beginners,
test-case base feedback is not ideal and poses a certain problem since error codes typically do
not address the erroneous lines of code directly. Peer-reviewed feedback becomes unfeasible
with a large class. They introduce a technique for automated assessment using program syn-
thesis technology to match student code submission with a reference code provided by the
teacher. While their contributions primarily focus on introductory programming courses us-
ing an error model for correction, they address a common denominator, specifically the high
workload of teachers. Their system managed to correct 64% of all incorrect programming
submissions.

Kosba et al. (2007) presents a novel feedback generation framework utilizing a model for
web course management systems. Using a feedback taxonomy defined from problems found
in distance courses from previous studies, the framework provides relevant information for
teachers with help from tracking data. This, in turn, will allow teachers to gain a deeper
insight into the situation of each individual student and thus provide better feedback.

A machine learning approach for feedback generation of essays is presented in Liu et al.
(2017), which primarily focuses on linguistic aspects and writing style. They first present a
feature model based on Coh-Metrix (Dowell et al., 2015), a system for computing cohesion
and coherence metrics for texts. Using three common classifiers: naïve Bayes, support vector
machine and decision tree, the authors trained a model which helped students improve their
writing qualities.
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1.3 Problem statement

Britt et al. (2004) present Sourcer’s Apprentice Intelligent Feedback mechanism (SAIF), a tool
to automatically provide feedback for a student’s sourcing skills, the ability to write source
correctly, for a given essay. Defining sourcing rules for their model to focus on, they used
text-matching techniques (latent semantic analysis) to score the essays. Tested on high-school
students, SAIF could not only perform as well as human raters but also help students source
better relative to a student group without the aid of SAIF.

Ruambo and Nicholaus (2019) surveys di�erent IR models used in modern systems, such
as vector space models (VSM), Booleanmodels and probabilistic models. They present a general
process flow which includes data indexing, IR model internals and querying handling. Their
findings showed conclusively that understanding and adoptions of IR models are important
for e�cient retrieval.

Aravind et al. (2019) presents an IR based model for physicians to fetch relevant medical
documents when facilitating diagnosis and making medical decisions. They also further op-
timize queries by introducing a learning to rank layer. Their model was tested on 30 queries,
which as a whole yielded relevant results.

While the progress in feedback generation has been significant in the last few decades,
the wide variety of technologies might indicate that there are no clear approaches to this
matter. The studies done so far focus primarily on either a specific technology, providing
domain-specific feedback or data tracking. Our study di�erentiates itself by being hands-on
with a complete solution, starting from data extraction of a teaching platform database and
concluding with an evaluation of our models. We also contribute to the general feedback
generation repertoire by introducing an IR-based approach for teaching platforms. We first
index question-answer-response triples, then we query using questions-answer pair. This is
done using di�erent IR models, which are evaluated with respect to a reference set.

1.3 Problem statement
We want to introduce a proof-of-concept model for automatic student assessment in educa-
tion and its life cycle. This includes (1) analyzing, extracting, cleaning and preprocessing the
data, and (2) building models with di�erent scoring techniques and (3) evaluate the models
using ROUGE metrics.

We will make an attempt at answering the following problems:

1. How can we generate an acceptable response for an answer given by a student based
on past responses to a similar answer and question?

2. How can such responses be evaluated?
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Chapter 2

Approach

2.1 The teaching platform
The teaching platform referred in this report is a digital platform for both students and
teachers.

• For students, it acts as a hub for learning where students can find study material and
exercises submitted by a teacher. The teaching platform o�ers a variety of tools and
exercise formats to help engage students into learning. Students with reading disabil-
ities, can also adjust the text complexity and text formatting of the study material.

• For teachers, it serves as a centralized platform for monitoring of student perfor-
mances, creation of study material and more. This way of centralizing information
allows teachers to save time and have a better overview of the individual needs of ev-
ery student. Teachers can use the study material included in the platform or create
their own. As of 2020, the teaching platform supports most subjects in primary and
secondary school.

In this section, we will present a use case on who and how the teaching platform is used and
which data is being extracted for the feedback generation.

2.1.1 Context model
This section presents in detail the di�erent terms and agents involved in the teaching plat-
form. The name of these entities will be referenced according to the following list.

Stakeholders
Teachers. Teachers are educators who use the platform to create exercises and give feedback

to students. For our system, we will be utilizing exercise questions and written feed-
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2. Approach

back given to students who have completed the exercises.

Students. Students complete exercises made by teachers. Exercises are typically formed as
written questions. The students are primary and secondary school students. For our
system, we will be utilizing the answer written by students to generate feedback.

Data elements
Study material. All study material belongs to a specific textbook published on the platform.

While it could prove to be useful for feedback generation, it will not be used in this
study.

Questions. In most cases a question is associated with corresponding study material, typ-
ically a chapter or subsection of a textbook. The teaching platform supports many
di�erent types of questions, such as multiple choice or image clicking.

Answer. The format of each student answer is highly dependent on the question type. We
will primarily focus on free-text answers.

Response. When students have submitted their answers, the teacher can choose to leave a
feedback in form of a response to the student. The responses virtually always come in
free-text.

A diagram of the domain logic is shown in Figure 2.1. Teachers prepare the questions,
which are then answered by students who in turnmight receive free-text feedback in the form
of a response from the teacher. Note the relationship between the questions and answers. For
a given question, there are many answers, each written by di�erent students. In turn, each
answer has one response given by a teacher.

För mkt (sic) vatten gör att rötterna kvävs och dör.
Det gör också att dom inte längre kan ta upp vatten
och då kan dom inte producera energi i
fotosyntesen. // Too much water suffocates the
roots and they die. It also makes them unable to
absorb more water and then they cannot produce
energy in the photosynthesis.

Att de har mycket makt eftersom de informerar,
granskar och förklarar. // It means that they have
too much power since they inform, investigate and
explain.

Kan du utveckla ditt svar mer? // Could you further
elaborate your answer?

Då kommer det ingen syre till rötternas celler.
Liksom andra celler behöver de syre för att kunna
förbränna druvsocker. Kan de inte bränna
druvsocker får de ingen energi till sitt arbete. // Then
no oxygen will reach the root cells. Like other cells
they need oxygen to burn dextrose. If they cannot
burn dextrose, then they will not get any energy to
work.

4 x 24000 = 96000 år // 4 x 24000 = 96000 years

Study material and questions Student answers Teacher feedback

Medierna kallas ibland för den tredje statsmakten.
Vad menas med det? // The media is sometimes
referred as the fourth power. What does it mean?

3.10 En krukväxt kan dö om man ger den för
mycket vatten. Varför? // 3.10 A potted plant can die
if it is overwatered. Why?

11.29 Plutonium har en halveringstid på ca 24 000
år. Hur många år har gått innan bara en sextondel
är kvar och resten sönderfallit? // 11.29 Plutonium
has a half-life of about 24,000 years. How many
years have passed before only one-sixteenth is left
and the rest has become radioactive waste?

1500 år // 1500 years

Figure 2.1: A diagram showing the relation between the questions,
answers and responses. The diagram shows authentic samples from
di�erent subjects.
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2.2 Application model and architecture

2.2 Application model and architecture
Using the data extracted from the database of the teaching platform, we will have a set of
triples consisting of three data elements: a question, answer and a response. When given a
new question-answer pair, the model will match it with the question- and answer value of
each triplet in this set using a scoring model. The response value of the top ten scoring triples
will be the candidate responses for the new question-answer pair. Among the top ten triples,
the teacher can qualitatively choose which response that fits the best.

Figure 2.2 shows a simplified example of this model, where the indexed q, a and r are
extracted from the database and the non-indexed is a new question-answer pair. In this case,
ri , rn and rp are the top three candidate responses. The main assumption of this approach
is that two matching question-answer pairs have a similar, if not the same, response. In
contrast to the example shown in Figure 2.2, it is also assumed that in a typical use-case,
the set of questions is significantly smaller than the set of answers, meaning that the main
di�erentiating factor is most likely the answer since there are many redundant questions.
For preprocessing and fast computations when scoring, we will be using the Apache Lucene
search engine library (v8.2).

q1
a1

r1

q
a

q2
a2

r2

q3
a3

r3

q
a

ri

q
a

rn

q
a

rp

Scoring each match

Top candidates

Figure 2.2: A diagram showing the relation between the questions,
answers and responses. The diagram shows authentic samples from
di�erent subjects.

The architecture comprises:

• Cleansing data extracted from the teaching platform database;

• Indexing the data for e�cient scoring in Lucene;

• The graphical user interface.

Section 2.3 presents the data available for extraction. Due to the sizable database of 50GB,
we need to store the extracted data in a suitable data- and file structure with support for var-
ious data formats. The data will be cleansed, removing any text deemed useless for feedback
generation. We will also analyze the data to find useful patterns for the feedback generation.

Using Lucene, the cleansed data will then be preprocessed, used to build an inverted index
and generate feedback. To build the inverted index in Lucene, the cleansed data need to be

13



2. Approach

rebuilt in the form of documents. This process, together with the di�erent scoring models,
will be presented in Section 2.4.

At the end of this chapter, we will present a user interface as an example of how our
model can be used from a teacher’s perspective.

2.3 Data extraction and cleansing
The domain logic of the application is closely tied to the database structure. In object-
oriented programming terms, each answer object has a question object and a feedback ob-
ject. By join-querying the three objects, we conveniently acquire the answer, question and
response. Such a triplet will be referred to as an exercise instance. Due to the relatively large
size of the database, we use the seek method (Winand, 2012, pp 147-148) to query the table
row by row.

2.3.1 Data set structure
The questions, answers and responses are primarily stored in HTML. Since we are only con-
cerned about the text, we use the Pythonmarkup parsing library BeautifulSoup to extract the
text from the HTML code. We chose to store the extracted data in XML due to two primary
reasons:

• The length of the texts varies greatly and therefore the output size di�cult to esti-
mate. Storing the data in-memory can quickly become unfeasible. There are a handful
of libraries in di�erent programming languages that support bu�ered XML reading.
Typically XML is read by constructing a DOM object, which is stored in-memory. As
an alternative, we will instead look at Simple API for XML (SAX).

• XML is known for being human-readable, in case we want to inspect certain sentences
during development.

The data was not stored in its original form after extraction due to problems occurring
when parsing the data set. This was partially remedied by storing the data in CDATA sec-
tions, as seen in Listing 2.1, allowing XML parsers to interpret the data as purely textual.
The alteration of data during extraction means loss of information, but is in return more
readable. Given the triple text:

Question: 9.6 Varför ser pupillen i vårt öga svart ut? 9.6 Why does the pupil in our eyes look
black?

Answer: För pupillen absorberar allt synligt ljus som trä�ar den. Därför studsar inget ljus
tillbaka. Because the pupil absorbs all visible light that hits it. That is why no light is reflected
back.

Comment: Det är inte pupillen som absorberar ljuset utan näthinnan - annars var det rätt.
It is not the pupil that absorbs the light, it is the retina. Otherwise, you are correct.

we create the data structure seen in Listing 2.1.
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2.3 Data extraction and cleansing

<exerciseInstance>
<question id="639463">

<![CDATA[9.6 Varför ser pupillen i vårt öga svart ut?]]>
</question>
<answer id="245518341">

<![CDATA[För pupillen absorberar allt synligt ljus som träffar
den. Därför studsar inget ljus tillbaka.]]>

</answer>
<response answerId="245518341">

<![CDATA[Det är inte pupillen som absorberar ljuset utan nä
thinnan - annars var det rätt]]>

</response>
</exerciseInstance>

Listing 2.1: The listing shows the data structure of the exercise
instances in XML format.

Querying and storing data from large tables come with many challenges. While querying,
we found bugs which might have a�ected some output. Other issues involve the structure of
the texts. These obstacles will be more deeply discussed in Section 2.3.4.

2.3.2 Evaluating usefulness
Not all text extracted from the database was considered usable for our model. For instance,
the majority of the exercise instances were missing responses from the teacher. To automati-
cally assess if an exercise instance was usable, we set up requirements as a part of the cleansing
process.

Firstly, a substantial amount of exercise instances contained empty strings. This was
especially true for responses. Exercise instances that contained an empty answer or response
were omitted as a part of the cleansing process, as they were not considered usable and also
exceptional cases.

Secondly, we observed a large number of template responses while exploring the data.
This was expected, but by looking at the top ten most frequent duplicate responses in Table
2.1, we can see that some template responses have not been written or manually handled by
teachers. These exercise instances are deemedmeaningless and are omitted during our cleans-
ing process. As a minimal viable solution for this study, we chose to only remove meaningless
template responses among the most frequent ones. Judging from the frequency graph of the
top 30 most frequent responses in Figure 2.4, we concluded that most meaningless duplicate
responses most likely had a relatively low frequency and would not have a major impact on
the performance of our feedback generation.

Finally, some extracted data were not human-readable. These were also removed as a part
of the cleansing process. Examples of such will be shown in Section 2.3.4.

2.3.3 Data analysis
The cleansing presented in Section 2.3 concentrated the data set, reducing its size signifi-
cantly. Due to the data structure of the exercise instance, it could potentially skew the avail-
able data for the questions, answers and responses. Relevant frequency cutback for each
question, answer and response are presented in Table 2.2.
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Table 2.1: The table shows the top ten most frequent template re-
sponses found in the data set

Response Translation Count
Jämför ditt svar med mallsvaret (din
lärare har inte skrivit någon kommen-
tar).

Compare your answer with the sug-
gested answer (your teacher has notwrit-
ten a comment)

559,212

Jämför ditt svar med mallsvaret (frågan
har inte rättats av din lärare).

Compare your answer with the sug-
gested answer (the question has not been
corrected by your teacher).

303,459

Denna fråga har inte rättats och tas inte
med i poängräkningen.

This question has not been corrected and
will not be scored.

227,799

Compare your answer with the sug-
gested answer (your teacher has notwrit-
ten a comment).

170746

Denna fråga har inte rättats av din lärare
och ger därför inga poäng.

This question has not been reviewed and
will not be scored.

144,350

This question has not been reviewed and
will not be taken (sic) ignored in the
score count.

67,650

This question has not been reviewed and
will be ignored in the score count.

55,482

Bra! Good! 16,244
ok 13,872
Bra Good 10,708

The first row shows that there has been a significant decrease in the amount of exercise
instances that could be used for feedback generation, with approximately 1.1% remaining after
the cleansing. The second row displays the number of non-empty responses that existed pre-
cleansing and after cleansing. For this data set, approximately 28% of the responses were non-
template, as specified in Section 2.3.2. While the number of answerswas reduced significantly,
the third row tells that the pool of unique questions was not reduced as much. The final two
rows show us the average character length of the di�erent data elements before and after
cleansing. The average length of answer and responses has been a�ected by the cleansing:
removing empty responses increased the response length from 3.0 to 79.1. If there is a direct
correlation between answer length and response length, is however, not known.

Looking at 2.3, which shows the distribution of the cleansed answers with a length or
200 or shorter, we can also see that there is a certain preference of writing an answer with a
character length of between 0 and 50.

2.3.4 Quality of data
Skimming the data set revealed a lack of linguistic quality which could potentially hurt the
performance. Due to the sporadic nature of the data set and language, we decided that it
would be unfeasible to identify and resolve the abnormalities. The following list presents the
encountered problems during data extraction and cleansing:
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Figure 2.3: The distribution of the answer length between 0 and 200
post-cleansing. The average length of all the answers is estimated to
be 153.7.
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Figure 2.4: The graph shows the 30 most frequent duplicate re-
sponses, including the template responses shown in Table 2.1. Note
the logarithmic scale in the y-axis.

1. Variety of data. Since the data extracted was primarily in HTML, problems in pars-
ing might occur during parsing, leading to textual artifacts. One example of such
problem is vadjQuery19107666632868863588\_1552293736779? ap-
pearing mid-sentence.
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Table 2.2: The table shows the di�erent frequencies of di�erent
data elements, namely the question and responses, before and after
cleansing. It also shows the average length for answers and responses.

Pre-cleansing Post-cleansing
Exercise instances 53,194,420 599,070
Responses 2,127,058 599,070
Unique questions 41,202 11,500
Average answer length 55.9 153.7
Average response length 3.0 79.1

2. Conversational writing style. From observing sample data, we presumed that a large
portion of the text was written in brevity and in a conversational level of grammar,
sometimes addressing the student directly instead of the student answer. For instance,
as shown in Table 2.3, some sentences are incomplete and do not address the problem
of the answer.

3. Parsing error. Some words were concatenated as a result of BeautifulSoup’s HTML
parser.

Examples of each problem type can be found in Table 2.3

Table 2.3: The table shows common textual problems encountered
while inspecting the text manually.

Problem type Example
1 I try to buy jQuery112009065460396115321_1516188811941??? meat
2 Latis ;) Du skulle ju leta upp på skolan... // Slacker ;) You were supposed

to search for it at school. . .
3 Choose the five words that you think describe the girl best.happyimp

atientrebelliousobedientexciteddisappointedstrangeangrypatientnor
mal

2.4 Building the index
In Section 1.2, we presented related work which all used a wide variety of di�erent feedback-
generation technologies, ranging from artificial intelligence to data tracking technologies.
Our model scores similarities between question and answer pairs to derive feedback. To
score the similarities between these, we use models common in IR, namely Boolean Model,
TF-IDF and BM25.

2.4.1 Preprocessing
To score documents e�ciently, Lucene builds an index with preprocessed text. The prepro-
cessing done by Lucene is mainly involves tokenzation, removing stop words, lower casing
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and stemming. The classAnalyzer is a Lucene API which allows us to specify in which lan-
guage text should be preprocessed. We expect that the majority of the exercise instances are
written in Swedish, therefore our model preprocesses according to the Swedish language. In-
tentionally, this approach might cause a side-e�ect when generating feedback for documents
written in other languages, especially English.

2.4.2 Scoring models
Apache Lucene comes with well-established ranking models. For this study, we will be using
Lucene’s implementation of a simple Boolean model, TF-IDF and Okapi BM25.

The Boolean model
The Boolean model is based on Boolean logic and set theory and searches documents for
the exact words specified in a query. Formally, a query is a Boolean normal form expression
consisting of words, naturally supporting AND, OR and NOT operators. It is regarded as
design-wise simple, fast during search and intuitive (Lashkari et al., 2009).

As explained by Lashkari et al. (2009), the disadvantages of the Boolean models are:

• Lack of scoring. The model does not formally specify any means of scoring. A docu-
ment either matches a query or not.

• Lack of control. The results could be too many or too few. The lack of scoring also
makes it di�cult to regulate and rank the potentially explosive results.

Lucene uses the Boolean models (McCandless et al., 2010, p. 16) to narrow down the
documents, which will then be scored using di�erent scoring models. While the Boolean
model formally does not provide any scoring schema, Lucene provides a rudimentary scoring
function which will only score query terms based on whether they match a document or not.
For this study, this score will be the default value of 1. (Apache Software Foundation, 2019a).

Vector space model and TFIDF
The VSM is a model for representing documents and queries as vectors in a high-dimensional
space, in which each word correspond a dimension. If a term occurs in a sentence, its corre-
sponding dimension is a non-zero value. Such representation makes it possible to compare
two documents, which can be computed using cosine similarity. Given a query in a text re-
trieval or search system, the aim is to find the most relevant document by measuring the
cosine similarity of the query and all the documents in a collection. The values of each term
in VSM can be computed in di�erent ways, TFIDF being one of the most popular ones (Man-
ning and Schütze, 1999, pp 539-541).

TFIDF is a family of weighting scheme used to evaluate the importance of a word in
relation to a document. It comes in two parts, term frequency (TF) and inverse-document
frequency (IDF). Given a document, TF is the frequency of a term in the document. Intu-
itively, we say that the more frequent a word occurs in a document, the more important it is.
However, TF does not capture the specificity of a term and can be seen as trivial if it occurs
in many di�erent documents, albeit a high frequency. Jones (1972) argued that while TF is
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important, an IDF could further improve the weighing scheme by introducing IDF. Given a
collection of documents, IDF gives a higher value for terms that appears in fewer documents,
e�ectively mitigating the disadvantages of TF.

Lucene uses the variant following TFIDF formula to calculate the scoring for a term ti
with respect to a document d j , with some slight modifications:

TFIDF(d j , ti) =
√

t f (d j , ti) ∗ (1 + log(
N + 1

d f (t) + 1
)) (2.1)

where N is the total number of documents in a corpus, d f (t) is the number of documents
containing ti and t f (d j , ti) is the frequency of ti in d j . Lucene’s implementation of Eq. 2.1 is
slightly di�erent in that it adds extra weights to make it possible to boost the value of certain
query terms and documents, making some documents more relevant than others. Lucene also
tweaks the normalization factor when computing cosine similarity by boosting the score of
shorter documents (Apache Software Foundation, 2019b).

Although TFIDF is considered a classic weighting scheme with good heuristics, it has
been criticized for being an ad-hoc solution, lacking a mathematical foundation (Manning
and Schütze, 1999, p 544).

BM25
BM25 is an alternative, probabilistic approach which has shown good and consistent perfor-
mance (Harmon, 1996) (Trotman and Keeler, 2011).

While BM25 is inspired by probabilistic models, it still shares it similarities with TFIDF.
Likewise, BM25 consists of two parts: TF and IDF. These are however calculated di�erently in
comparison with their TFIDF counterpart. The weight w of a term t is calculated according
to the following formulae:

TFBM25(t, d) =
t f (t, d)

k1((1 − b) + b ld
avld

) + t f (t, d)
(2.2)

IDFBM25(t) = log(
N − d f (t) + 0.5

d f (t) + 0.5
) (2.3)

w(t, d) = TFBM25(t, d) ∗ IDFBM25(t) (2.4)

where k1 and b are free parameters with default values of 2 and 0.75 respectively, ld is the
document length, avld is the average document length of a collection. Looking at Eq. 2.2,
assuming that the denominator is strictly larger than 1, it is substantially more punishing
for highly frequent terms than its TFIDF counterpart. The TFBM25 eventually converges
at 1 while TF of the classic TFIDF is missing an asymptotic maximum. Another notable
di�erence is that the scoring function R(q, d) does not utilize any vector space model and
the score is calculated directly on the results, whereas TFIDF weighs the individual terms for
a vector space representation.

The full document score R is computed by summing all the weights of a given query q:

R(q, d) =
∑
t∈q

w(t, d) (2.5)
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The standard scorer of Lucene is BM25F, a variant of BM25 that supports structured docu-
ment properties, such as fields. Since it adds another level of depth into the scoring function
R, it is slightly more complex but does not divert much from the original formula (Pérez-
Iglesias et al., 2009).

BM25 is arguably a more abstract model than TFIDF, drawing inspiration from prob-
ability and statistical assumptions. With respect to the scope of this study, we will direct
the curious reader to Robertson and Zaragoza (2009) for a comprehensive explanation of its
internals.

To summarize, Lucene uses the Boolean model to acquire documents that are relevant to
a query. These documents are then scored using one of the following: (1) the Boolean scoring
function which will give a score of 1 for each matching term, (2) VSM and TFIDF or (3)
BM25.

2.5 Application use-case
This section presents a proof-of-concept application for generating feedback based on a given
question and answer. The teacher inputs a question and an answer given by a student to the
model that will return ten top scoring responses. If none of the responses are satisfactory,
the teacher is given an opportunity to edit a response and add it as a new exercise instance
to the index. The model in the following screenshots are scored using BM25 as described in
Section 2.4.2.

2.5.1 User input
To generate responses, the user writes a teacher-provided question and a student answer in
the text fields, as shown in Figure 2.5, where the translated question is “How big is the force
of attraction between you and the Earth?” and the answer “Big.”. The application will then
show the top ten scoring responses in a list. Figure 2.6 shows an example such a list, in this
case the top four response candidates: (1) “How big?”, (2) “Ten times as big.”, (3) “You need to
answer how big the Earth’s force of attraction is in Newton!” and (4) “Ten times your weight.”.
Figure 2.8 shows the prompt which allows the user to edit the response before sending the
feedback to a student. An edited response, together with the given question and answer, can
be added to the index, so that the next time a similar question and answer is inputted, the
newly added response will most likely appear.

Figure 2.7 shows the advanced mode, which is enabled by checking the checkbox. This
mode will instead show a detailed list that also displays the question and answer, i. e. the
exercise instance, that generated a particular response stored in the index.
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Figure 2.5: The figure shows the initial screen of the application.
The user can input a question and an answer in the fields to start
generating a response.

Figure 2.6: A list consisting of the top ten candidates are generated
after inputting a question and answer. Translation: (question field)
5.12 How big is the force of attraction between you and the Earth?, (answer
field) Big.
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Figure 2.7: Checking the “Advanced” checkbox displays the indexed
question-answer pairs that generated the responses in the list.

Figure 2.8: Clicking on a response in the list prompts the user to edit
the response and then send it to a student. This is an opportunity
to adjust responses.
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Chapter 3

Evaluation

We took a quantitative approach to evaluate the performance of our model. To evaluate,
we split the data into a reference set and a candidate set, which will be used to generate
ten candidate responses. The metrics used will be two-fold. We measure the quality of the
candidate responses by comparing each one with a ground-truth response from the reference
set. This comparison is done usingRecall-Oriented Understudy for Gisting Evaluation (ROUGE),
a set of metrics originally used to measure machine-generated summarizations. The highest
scoring candidate response will be considered the best response for a given question-answer
pair. We also evaluate the systems ability to rank the top candidate by their mean reciprocal
rank (MRR), with respect to the ROUGE evaluation. This approach is inspired by Ferrucci
et al. (2010), where they narrow down a large set of documents to a few hundred using IR
technologies and rank them using a more specialized evaluation method.

3.1 Preparing the data
The indexing done so far has been populated using the whole data set available. To evalu-
ate the di�erent scoring models, a technique similar to k-fold cross-validation is used. The
cleansed data set will be split into two parts: a reference set and a candidate set. The candi-
date set will be indexed and act as our model. On the other hand, question-answer pairs of
the reference set will be used to query the model and the responses of this set will act as the
ground-truth. Given the question and answer from the reference set, the model will generate
ten responses from the candidate set, as described in Chapter 2. Figure 3.1 shows a diagram
of the approach, where (qr , ar) is a reference question-answer pair, rr is a reference response
and rc,i are candidate responses ranked i by our model.

To reduce the bias, we split the data set into five folds, where one fold is the reference set
and the remainder the candidate set. It is assumed that the data is somehow ordered when
extracted from the database, so the data set is shu�ed before the split. We then change the
reference fold, until every fold has been the reference set. This is repeated for all the scoring
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models. For each iteration, we clear and re-index with the new candidate set.

(qr, ar)

rr rc,1
rc,2
rc,3
rc,4

candidate setreference set

ROUGE evaluation

Figure 3.1: The diagram shows the evaluation procedure. The ref-
erence set contains ground-truth responses for a given question-
answer pair. The candidate set is used to build the index. Each
question-answer set from the reference set is fed into the model,
which will provide the top ten scoring responses. These responses
are then compared with the reference response.

The feedback generation was developed to cater to teachers and does not provide any
means to evaluate the candidate responses. To evaluate, the application stored each set of ten
candidate responses in folders, one for each set and labeled with an identification number.
This identification number is used later to find the corresponding reference response. Using
the Python library rouge, the candidate responses were evaluated by comparing to the re-
sponse from the reference set. Since the candidate responses come in unprocessed form, they
need to be preprocessed once again before evaluated using ROUGE. This was done using the
Python library nltk.

3.2 Evaluation methods
To choose the best response among the ten candidate responses, we use ROUGE, which mea-
sures the term overlap between a reference response and candidate responses. The more
overlap a reference response and a candidate response have, the better the quality of the can-
didate response is. MRR measures the probability of correctness when looking at the top
scoring responses.

3.2.1 ROUGE
In this study, the generated responses will be evaluated using a set of recall-oriented metrics
as described in Lin (2004). Namely, we will be using ROUGE-1, ROUGE-2 and ROUGE-L.
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ROUGE-N
ROUGE-N is calculated by summing all the overlapping N-grams of the reference and the
candidate response and divide it by the total number of n-grams in either the reference set
or candidate set. Dividing by the reference set will give yields the recall value, and dividing
by the candidate set will yield the precision value. Let Coverlap(gramN ) be the number of
overlapping N-grams in the reference set and the candidate set, and Ctotal(gramN ) be the
total number of N-grams in either the reference set or the candidate set. Then, the ROUGE-
N score is calculated as such:

ROUGE-N =

∑
R∈Rr

∑
gramN∈R

Coverlap(gramN )∑
R∈Rr|c

∑
gramN∈R

Ctotal(gramN )
(3.1)

where Rr and Rc is the response set and candidate set, respectively. As a singular score to
benchmark each model in ROUGE-N, we use the well-known F1 scoring. It is the harmonic
mean of precision and recall and is calculated using the following formula:

F1-score = 2 ·
precision · recall
precision + recall

(3.2)

ROUGE-L
ROUGE-L scores a candidate and reference response by its longest common subsequence (LCS).
As described byCormen et al. (2009), a sequenceZ = [z1, z2, ...zk] is a subsequence of another
sequence X = [x1, x2, ...xk] if there exists a strictly increasing sequence [i1, i2, ...ik] of indices
of X such that for all j = 1, 2, ...k, we have xi j = z j . In this case, the LCS is the longest
subsequence of the reference and candidate response with respect to their terms. We say that
the longer the LCS is, the more similar the responses are.

ROUGE-L precision score is calculated by dividing the LCS between a reference and a
candidate response with either the length of the reference or candidate response. Dividing
the LCS by the reference response length yields the recall, and dividing it by the candidate
length yields the precision.

While the paper by (Lin, 2004) specifies a weighted F-measure, also known as Fβ, we will
be using the traditional formula as shown in Equation 3.2, giving equal weight to precision
and recall.

ROUGE-L is, in essence, a unigram comparison that rewards sequence. A major disad-
vantage is that it only considers the longest sequence. If a candidate response is somehow
structurally rephrased, e.g. active and passive form in the English language, but has the same
meaning as the reference response, LCS will severely punish the candidate response score.

3.2.2 Mean reciprocal rank
MRR is a scoring metric used to evaluate the performance of IR systems, originally used as
the main scoring method to evaluate submissions in automatic question-answer workshops
held by Text Retrieval Conference (TREC) (Voorhees and Tice, 2000). At TREC-8, MRR was
used to score a submissions ability to find the correct answer in a corpus given a question.
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The submissions returned a list of five candidate answers, and the rank in this context is the
rank of the correct answer, which was decided by human judges. The score of a given question
was the reciprocal, the multiplicative inverse, of its rank. If the answer does not exist in the
returned list, it is given a score of 0. The final score is the mean of all the reciprocal ranks for
a given set of questions.

Our evaluation will be using a similar approach to Voorhees and Tice (2000), with one
slight modification. We let ROUGE evaluate the correctness of the candidate responses,
instead of having a human judge. More specifically, the candidate response with the highest
ROUGE F1-score is considered the most correct “answer”. If the F1-score is 0.0, meaning no
ROUGE-L or ROUGE-N matches, the reciprocal rank will also be 0.0. It has the following
formula:

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

(3.3)

where Q is the set of all the question-answer pairs from the reference set and ranki is the
rank of the highest-scoring candidate response, with respect to the reference response.

3.3 Results
All the scoring models performed competitively when evaluated using ROUGE metrics and
MRR, di�ering at most a few percentages in their precision and recall. Tables 3.1, 3.2 and
3.3 are evaluated using ROUGE-1, ROUGE-2 and ROUGE-L, respectively. The tables show
the intermediate results for each fold and the total average of the intermediate results, which
we will use as the final score for each model. The highest final score of the scoring models is
made bold. The presented results show the precision (prec.) recall (rec.), the F-score (f) and
MRR (mrr).

It is clear that ROUGE-2 is a more challenging metric for the scoring models, which all
scored substantially lower than the sister metrics as seen in Table 3.2. While performing only
marginally better, the BM25 seems to have an edge over the other scoring models, achieving
at least two top-scores for all the ROUGE metrics. BM25 scored the highest f-score among
all the evaluation methods and scoring models, formally making it the best scoring model.

Table 3.1: The table shows the results of each fold and the total score
evaluated using ROUGE-1.

BM25 TFIDF Boolean
fold prec. rec. f mrr prec. rec. f mrr prec. rec. f mrr
#0 54.26 53.66 51.39 0.36 54.64 52.81 51.14 0.36 51.0 53.85 49.32 0.36
#1 54.23 53.64 51.3 0.36 54.65 52.84 51.11 0.36 51.0 53.75 49.25 0.36
#2 58.68 56.61 55.07 0.38 58.53 54.43 53.69 0.36 55.28 57.78 53.64 0.39
#3 54.35 53.71 51.4 0.36 54.77 52.96 51.23 0.36 51.03 53.81 49.31 0.36
#4 54.29 53.7 51.4 0.36 54.8 52.98 51.29 0.36 51.12 53.98 49.45 0.36
total 55.16 54.26 52.11 0.37 55.48 53.2 51.69 0.36 51.88 54.63 50.19 0.37
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Table 3.2: The table shows the results of each fold and the total score
evaluated using ROUGE-2.

BM25 TFIDF Boolean
fold prec. rec. f mrr prec. rec. f mrr prec. rec. f mrr
#0 34.26 34.39 33.47 0.24 33.87 33.67 32.9 0.24 33.45 34.36 32.96 0.24
#1 34.35 34.38 33.5 0.24 33.96 33.67 32.94 0.23 33.51 34.35 32.97 0.24
#2 36.94 36.23 35.58 0.26 35.71 34.07 33.75 0.23 36.7 37.43 36.12 0.27
#3 34.34 34.36 33.47 0.24 33.99 33.7 32.96 0.23 33.46 34.3 32.93 0.24
#4 34.44 34.51 33.61 0.24 34.06 33.83 33.07 0.24 33.63 34.52 33.13 0.24
total 34.87 34.77 33.93 0.24 34.32 33.79 33.12 0.23 34.15 35.0 33.62 0.25

Table 3.3: The table shows the results of each fold and the total score
evaluated using ROUGE-L.

BM25 TFIDF Boolean
fold prec. rec. f mrr prec. rec. f mrr prec. rec. f mrr
#0 52.95 53.3 49.49 0.36 53.17 52.47 49.23 0.36 49.99 53.35 47.38 0.36
#1 52.83 53.28 49.37 0.36 53.15 52.5 49.18 0.35 49.96 53.25 47.3 0.36
#2 57.22 56.26 53.13 0.38 56.93 54.14 51.67 0.36 54.25 57.28 51.77 0.39
#3 53.02 53.35 49.47 0.36 53.33 52.61 49.3 0.35 50.02 53.31 47.37 0.36
#4 52.93 53.33 49.48 0.36 53.32 52.65 49.37 0.36 50.11 53.5 47.53 0.36
total 53.79 53.91 50.19 0.37 53.98 52.87 49.75 0.36 50.87 54.14 48.27 0.37

3.4 Discussion
The data analysis presented in Chapter 2 gave us some insight into the writing behavior of
the teaching platform users, which is discussed in Section 3.4.1. In Section 3.4.2, we discuss
the outcome of the evaluation of each model in Section 3.3.

3.4.1 The data set
As expected, the data extraction and preprocessing for our application brought many chal-
lenges. We partially address this by putting a minimum requirement by defining “usefulness”
for the data extracted as a part of the cleansing process. The data cleansing also allowed us
to gain some insight into the behavior of students and teachers on the teaching platform.

The statistics tell us that teachers relatively seldom leave feedback to students. In our
data analysis, we found that only 1.1% remained after removing all templates and empty
responses. This scarcity of useful responses is reasonable since, for instance, many questions
could be too simple or are automatically corrected, leaving no opportunity or necessity for
feedback.

Among the question-answer pairs that had a useful response, we saw that many responses
are in fact, copies of each other. This could imply that the mistakes the students make are
also similar. One of the goals of our proposed model is to address this, by helping teachers to
recognize and identify the common mistakes made by students, and also give an opportunity
to improve our model by allowing the teacher to update the model index.

As for preprocessing, we have only done it at a bare-minimum level. Integrating spell
checking, language detection and further noise removal could help the performance.
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3.4.2 Evaluation
We expected BM25 to outperform TFIDF in every metric by a larger margin, contrary to
what is presented in the tables of Section 3.3. While BM25 has a slight edge over TFIDF,
TFIDF is still a strong contender in evaluating the similarity or relevance of a query with
respect to indexed documents. Granted the simplicity of the Boolean scoring, it performed
surprisingly well. While the margins could be considered noise and circumstantial, it shows
that the Boolean scoring is still a model to be considered for our endeavors. The Boolean
scoring showed poor precision, but high recall. This is perhaps expected due to the generous
nature of the Boolean scoring, i.e. all matching terms qualify.

3.5 Conclusion
In Chapter 1, we presented the following questions as a part of our problem statement:

1. How can we generate an acceptable response for an answer given by a student based
on past responses to a similar answer and question?

2. How can such responses be evaluated?

As a solution for the first question: in summary, we have designed and built an architec-
ture that generates feedback based on previously given feedback. We began by cleansing the
extracted data, only keeping the data deemed useful. This process also allowed us to have a
deeper look into the writing behavior of the users of the teaching platform, such as a higher
tendency of writing answers with an approximate character length of 50 and high response
duplication among teachers. We then used Lucene to e�ciently generate ten candidate re-
sponses by comparing the similarity of a newly given question-answer pair with already-seen
question-answer pairs.

As a possible solution for the second question, we used di�erent scoring models and
metrics for a quantitative and nuanced evaluation. The ROUGE metrics evaluate the simi-
larity of two sentences by counting the overlapping terms. By scoring the similarity between
the candidate responses with a non-indexed reference response, we find the best responses
among the candidate. The similarity can be measured by either counting n-grams or the LCS.
The top-scoring model, BM25, achieved an F1-score of 52.11%, 33.93% and 50.19% when com-
paring with reference responses using ROUGE-1, ROGUE-2 and ROUGE-L, respectively.
Using ROUGE metrics, we also see that the best candidate can be found among the top four
candidate responses, indicated by the worst MRR of 0.27.

3.5.1 Future Work
For future work, we list directions of potential development for further improvements of
this study.

• Study material. The study material for each question is available but was not a part
of the scope of this study. The study material could aid the scoring models by adding
more specificity to the index. For instance, it would be easier to separate subjects by
their study material due to the specialized vocabulary used.
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• Long answer obscurity. Our model simply queries the question-answer pair, mean-
ing that a long answer could outweigh the question when comparing similarity. For
instance, consider the case where the question is short and the answer long. The ques-
tion, being important for the context, will not have any impact on the scoring. Our
model does, however, have the ability to generate a response for a never-before-seen
question, which could prove to be useful for a di�erent data set.

• Data extraction. The data extractionwas done using a simple school laptop. This posed
problems for exploring di�erent approaches to extracting the data and resulted in a
loss of information during extraction. A cleaner and lossless extraction would allow
better data cleansing.

• Qualitative evaluation. We have taken a quantitative and automating approach in eval-
uating our model. While fast and e�cient, the use of such scoring only goes so far. For
instance, in Rajpurkar et al. (2016), the results are compared to human performance.
The same kind of issue is also reflected upon the top candidate responses generated
by a particular scoring model: ROUGE does not necessarily propose the best candi-
date among the top candidates. We suggest a qualitative evaluation of the generated
responses for a complete benchmark of our models.
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Appendix A

Libraries and frameworks

Data processing: BeautifulSoup, containerized MySQL database with Docker

Backend: Java Spring with Maven, Lucene Core 8.2, JAXP

Frontend: React, Material UI

Evaluation: nltk (stop words, stemming), rouge 0.3.2, pandas, numpy, lxml
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Botten som underlättar pappersarbetet -
och låter lärare vara lärare.

POPULÄRVETENSKAPLIG SAMMANFATTNING Da Yin-Andy Trinh

Med inspiration från AI botten Watson, som vann mot mänskliga deltagare i fråge-
sportsprogrammet Jeopardy!, har jag utvecklat ett smart system som automatiskt
genererar feedback åt elevers inlämningsuppgifter. Grundidén är att ge mer tid åt
lärare, så kan de välja att fokusera på annat.

Idag ägnar lärare mycket tid åt repetitiva och tid-
skonsumerande pappersarbete som hindrar dem
från att göra en av samhällets viktigaste uppgifter
- att lära ut. Detta kan tyckas vara ålder-
domligt i en tid där vi samtidigt har tillgång
till självkörande bilar, smarta dammsugare och
virtuella assistenter. Frågan är då, hur kan smarta
system hjälpa till lärandet i skolan?

I mitt arbete har jag utvecklat ett smart sys-
tem som underlättar för lärare genom att au-
tomatiskt generera feedback till elevers inlämning-
suppgifter. Läraren matar först in en fråga och
ett svar, sedan kommer systemet att returnera en
rangordnad lista med bäst lämpad feedback. Ran-
gordningen är baserat på vad läraren förr har gett
för feedback till liknande svar och frågor. Då det
inte är någon hemlighet att många elever brukar
begå liknande misstag, så blir rättandet snabbare
då lärare bara behöver godkänna, eller redigera
feedback från listan. Om ingen respons tycks vara
lämplig kan läraren uppdatera systemet genom att
skriva en egen respons. Med tiden blir systemet
smartare, och samtidigt så sparar lärare mer tid,
en win-win situation.
För att rangordna feedbacken efter relevans ut-

nyttjar systemet statistiska modeller som även an-

Nästan rätt! Sedan
2006 har Pluto
omklassificerats.

Vilka planeter finns i vårt solsystem?

Merkurius, Mars, Pluto, Venus, Jupiter...

Fråga

Svar

Feedback

vänds av sökmotorer. Vanligtvis anger man sök-
termer till ett sökmotor, som därefter returnerar
sökresultat i form av en rangordnad lista. I de
modellerna jag har utvecklat anger man istället
en fråga och ett svar.
Kvalitén på modellerna utvärderades genom att

jämföra ordsekvens och vokabulär i den genererad
feedbacken med referensfeedback. Detta gjordes
på drygt 100 000 frågor och svar, och resultaten
visar modellens genererade feedback är relativt lik
referensen. Utgångspunkt är att ju mer lika de är,
desto bättre är modellen.
Hur systemet faktiskt presterar på produktion-

snivå återstår att se. Utvecklingsmässigt finns det
många riktingar att gå, som exempelvis att inte-
grera maskininlärningslösningar.
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