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Abstract

Today, meeting and conference rooms may be too big or small compared to
the actual number of people using them and it would bring benefits to know to
what extent they are used. In this thesis, occupancy count has been estimated
by training models on passive infrared (PIR) sensor and booking data. I built a
system with two artificial neural network models, where a binary classification
model predicts the occupancy state of rooms, i.e. if it is empty or not. If a room
is considered occupied, a subsequent regression model predicts the number of
occupants.

Solutions exist today where cameras are used to calculate occupancy count,
however these can be intrusive, costly and computationally expensive. PIR sen-
sors placed in rooms can detect movement, but its data cannot directly be trans-
lated into occupancy count. To solve this and determine the occupancy level, I
developed di�erent neural network regressionmodels and trained them onman-
ually collected ground truth data from real meetings. The performance of the
models were then compared and the best results were obtained with a bidirec-
tional long-short term memory architecture. It reaches a mean squared error of
2.27 and mean absolute error of 0.94. It predicts the number of people with an
error margin of one individual at 85% respectively 49% accuracy for occupants
ranging from 1 to 7 and 8 to 14. At an error margin of two individuals the results
for the same intervals are 94% respectively 66% accuracy.

Keywords: room occupancy, artificial intelligence, machine learning, deep learning, re-
gression, PIR
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Chapter 1

Acronyms

PIR Passive Infrared Radiation

API Application Programming Interface

IDE Integrated Development Environment

LSTM Long Short-Term Memory

BiLSTM Bidirectional Long Short-Term Memory

MSE Mean Squared Error

MAE Mean Absolute Error

RMSE Root Mean Squared Error

MLP Multi-layer Perceptron

SVM Support Vector Machine
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Chapter 2

Introduction

To utilize space and resources e�ciently, it would be beneficial for companies to know to
what degree their meeting and conference rooms are used. The aim of this thesis was to
determine the number of people in rooms by using machine learning techniques. I used PIR
motion sensor and booking data together with static data, i.e. number of chairs in rooms,
to predict the occupancy level of meeting and conference rooms where we collected ground
truth data from real world meetings to train and test machine learning models.

2.1 Problem Formulation
The challenge of this thesis is to determine the number of people occupyingmeeting and con-
ference rooms at a time and to count it automatically by using machine learning techniques.
It may not be sure that meeting and conference rooms are the optimal size and can be too
big or small compared to how they actually are used. Therefor it would be beneficial to have
information about how many people occupy a room at a time. This information can also be
studied and used to improve other aspects of an o�ce, such as to reduce energy consumption
and cleaning costs. The estimation of room occupancy with PIR sensor data is a task where
the problem is to go from low level data from the sensors to higher level data of number of
occupants. This a great fit for machine learning models that may find patterns in data which
can be hard for a human to see. The aim of the project is to use and compare di�erent neural
network models since these have not nearly been explored as much as other machine learn-
ing models within occupancy level estimation. Neural networks have been shown to perform
very well in other areas such as image recognition and natural language processing, and in
specific in this thesis I wanted to study three di�erent types of neural network models that
have been shown in other areas to perform well, namely a feed forward model as a baseline,
LSTM and a BiLSTM models and to train di�erent models of these architectures and com-
pare the results. There are many sources of data that more or less can explain the occupancy
level of a room, for example cameras, CO2 sensors and Wi-Fi networks. However in super-
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2. Introduction

vised machine learning it is required to have answers to this type of data in the form of the
number of people occupying the room at given times. This data is called the ground truth and
when it is established it can be used to train and test models. But in this project, this data was
not available and had to be collected to be able to train a machine learning model. The main
objective of the thesis has been to study di�erent machine learning techniques to be able to
determine the number of people in meeting rooms in a way that gives the best results. In this
thesis the main source of data is PIR motion sensors, explained in section 1.3, and could be
combined with booking data from the Nimway team at Sony Mobile Communications.

10



2.2 PIR Sensors

2.2 PIR Sensors
In the project, the main source of data was PIR sensors. The PIR sensor can detect movement
by sensing changes in infrared radiation. Infrared light is radiated from the human body, but
can generally not be seen by the human eye. It works by having voltages change as it notices
changes in radiation in its field of view (Chodon et al., 2013). In the project, I used two
di�erent types of sensors to get data about the amount of movement in rooms. The first one
is a motion sensor, as shown in figure 1.1, and can detect motion in a room. The other one is a
passage motion sensor (figure 1.2) which is mounted by the door frame of rooms and looking
downwards to detect motion close to door openings.

Figure 2.1: Motion sensor
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2. Introduction

Figure 2.2: Passage motion sensor

2.3 Process of Machine learning
Machine learning is a set of techniques that can be used to train a model to thereafter be able
to perform predictions. Models are trained by weighting features in training data to map
them in the best way to corresponding targets. A simple example of a model could be one
trained to determine if features correspond to an apple or orange. In such a case features
could be weight, texture and color. By letting the model see large amount examples of what
constitutes an apple and an orange, it should eventually be able to distinguish between the
two.

When implementing a machine learning system, the first step is usually to study the raw
data and select relevant features. Thereafter the data can be shu�ed and split into training
and test data. Doing the split early on in the pipeline is important to avoid data leakage
where data enters the test set from the training set. Such a flaw could give good results on
the test set, but may perform worse in practice. When the the split has been performed the
data can be preprocessed so that the data is in a format that is optimal for the model to
process. After preprocessing, the model can be trained when the data and targets, depending
on the problem, have been separated. When the model has been trained it is possible to input
new, unseen, data that the model let it predict targets. Initially, when predicting on the test
set the results will probably not be perfect, therefor the model should be evaluated so that
its performance can be improved.

12



2.4 Related Work

2.4 Related Work
Within the field of machine learning, there is a range of di�erent studies on room occupancy.
Some study binary occupancy, i.e. if a room is vacant or not, and in depending on the study,
di�erent sources of data are used. The work of Hailemariam et al. (2011) studies occupancy
detection in a one minute time window. They tested combining di�erent features from light,
CO2 and motion sensors, but achieved the best results by solely using motion sensors where
they reached an accuracy of 98.4%.

Other studies have looked at counting the number of people in a room and in (Raykov
et al., 2016) a single PIR sensors were used to predict the number of occupants. They reached
an accuracy of 84% for occupants under eight individuals and 97% for occupants ranging
from 8 to 14 with a 2 error margin, when predicting in 20 minute windows. The results do
not reach the state of the art in occupancy counting which can be achieved using cameras.
However, they show that it is possible to determine the occupancy to a certain degree with
a single PIR sensor and that they can be used for tasks outside their ordinary use area of
motion detection.

There is also a study, Jiang et al. (2012), on estimating occupancy levels using purely car-
bon dioxide (CO2) data. They predicted the number of occupants in an o�ce room with 24
cubicles and 11 seats. In the study the performance of three di�erent models were compared,
i.e. an feature scaled extreme learning machine where..... reached an accuracy of 94% when
the prediction error is less than 4 individuals.

In Mohottige and Moors (2018), Wi-Fi data was used to estimate the occupancy level of
university campus lecture theatres with machine learning. They used a regression model to
predict the number of people in lecture theatres, and showed that Wi-Fi data such as signal
strength, number of retries and amount of data sent can be used to estimate the number of
people. Their system reached an RMSE of 25.4 and an MAE of 17.5 with a linear regression
model, where occupants were between 0 and 250.

Another study from 2012, Mamidi et al. (2016) shows that number of people in a room can
be determined by using a variety of data from motion, CO2, light, sound and door sensors.
They trained and tested di�erent models including linear regression, multi-layer perceptron
(MLP) and support vector machines (SVM). And they tested a variety of di�erent sets of
many di�erent features. One of the new ideas of of their approach was to filter out back-
ground noise by introducing additional CO2 features. This was introduced to let the model
be able to consider CO2 coming from other rooms in the building. They received the best
results with a MLP model with an root mean squared error (RMSE) of 0.82 while linear re-
gression reached an RMSE of 0.89 on the same feature set with the number of occupants
ranging between 0 and 10.

When it comes to counting the number of people in an o�ce with a camera based ap-
proach there has been research done in Benezeth et al. (2011) where they reached an accuracy
of 93% when counting the number of occupants in an o�ce environment and 83% accuracy in
a corridor environment. The corridor environment was harder to predict since there could
be an overlap of people in the field of view, i.e. a person behind another.
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Chapter 3

Data

3.1 Features
The features used for the models are based on the two type of motion sensors explained in
section 2.2 together with booking data in the form of number of invites to meetings. Also,
static data such as the number of chairs in a room is included as a feature. In total there are
five features and a brief overview of them can be seen in table 3.1 below.

Table 3.1: Features and their type
Feature Type

Motion event count Integer
Passage event count Integer

Size Integer
Number of attendees Decimal number

Binary occupancy status Boolean

3.1.1 Sensor Data
The sensor data has many di�erent features, however just a subset of them were used for
training the model since many were not relevant for predicting room occupancy. The used
features are listed below.

Motion Event Count
The sensors track the amount of motion that occurs in its field of view and the sum of these
motion events are called event count. The event counts come either from amotion or passage
motion sensor and motion event count is event counts from motion sensors.

15



3. Data

Passage Event Count
Event counts that come from passage motion sensors, mounted at the top of door openings,
are summed for each time step and room, the sum is the feature called passage event count.

3.1.2 Room Data
Size
The number of chairs in the meeting rooms is included as a feature and is named size. The
rooms have sizes ranging from 4 to 14 chairs.

3.1.3 Booking Data
Number of Attendees
Booking data includes the number of people invited to the meeting along with start and end
times for meetings. From this data the number of attendees feature could be derived which is
the number of people invited to a meeting and can be anywhere from zero to around 38.

3.1.4 Occupancy Data
Binary occupancy status
Given that sensors can detect motion, data consisting of the binary occupancy state for
rooms, i.e. if a room is occupied or not, can be derived and this feature can support cases
where event counts are not available.

16



Chapter 4

Theory

4.1 Articial Neural Networks
Nature has been inspiration for many ideas and inventions, including artificial neural net-
works which have been designed by looking at the way the brain works. These networks are
built up by units that are inspired by the neural networks in our brain built up by neurons
(nerve cells). In a neural network, they are represented by units or cells that can build up
layers in the network, these cells can then propagate data to other units.

4.1.1 Activation functions
The neurons that make up the layers of a neural network each have an activation function
that determines both if there will be an output and the magnitude of the output to send to
the next layer. These functions can be assigned to a whole layer, and can be linear like the
ReLu or non-linear like the sigmoid activation function described below. Nwankpa et al.
(2016)

Sigmoid
The sigmoid is among the most popular activation functions used in neural networks. (Ngah
et al., 2016) The function gives an output from 0 to 1 and has a non-linear curve due to its
properties (equation 3.1). The function is depicted in figure 3.1. A model that is to predict
with the sigmoid function could be if it is to choose between di�erent cases. An example
could be to predict if a fruit is an apple, banana or orange, each of these fruit possibilities
would be assigned a di�erent value between zero and one and the one with the largest value
would be the most probable.

f (x) =
1

1 + e−x (4.1)
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4. Theory

Figure 4.1: The sigmoid activation function.

ReLU
The rectified linear unit (ReLU), see figure 3.4, is an activation function that can be used in
neural network layers. The functions output is either zero or greater, equation 3.2, and thus
can be used if a models goal is to predict non-negative values and is used in this thesis to
predict the number of occupants as the occupancy count can not be negative.

f (x) = x+ (4.2)

Figure 4.2: The ReLu activation function.

18



4.1 Articial Neural Networks

4.1.2 Feed Forward Networks
One of the type of models developed and tested in the thesis is a feed forward neural network
model. It is themost simple version of a neural network and in such amodel the units are fully
connected to all units in the following layer. The units are however not connected to each
other within the layer. The unit data is propagated forward to the next layer, and feedback
does not exist. (Schmidt et al., 1992) These are also called dense layers as the connections are
dense (each unit is connected to the all units in the next layer). The first layer which receives
the feature data is called the input layer and the last layer is the output layer, and the layers
inbetween are called hidden layers (as shown in figure 4.3).

Figure 4.3: A feed forward network with two hidden layers.
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4. Theory

4.1.3 Long Short-Term Memory
Another type ofmodel that has been used in the thesis is the long short-termmemory (LSTM)
is a neural network layer that can take sequences of data as input and has a way to remember
what it has seen before and use that for deciding what to do with new data, see equation 3.3
to 3.7. The input that enters the architecture can be kept within the cell or be sent out or
forgotten through the forget gate. So it can read and write data to its cell like in a memory
chip of a computer (Graves, A. and Schmidhuber, J., 2019).

20



4.1 Articial Neural Networks

ft = σg(W f xt + U f ht−1 + b f ) (4.3)

it = σg(Wixt + Uiht−1 + bi) (4.4)

ot = σg(Woxt + Uoht−1 + bo) (4.5)

ct = ft ◦ ct−1 + it ◦ (Wcxt + Ucht−1 + bc) (4.6)

ht = ot ◦ σh(ct) (4.7)

Where σg is a sigmoid, xt is the input tensor, it is the input gate, ft the forget gate, ot
the output gate, ct the cell state and ht the output tensor. Furthermore, W and U are weight
matrices and b is the bias. A schema of the LSTM cell is shown in figure 3.3 where the green
parts are the respective gates and blue arae gatings.

Figure 4.4: The LSTM cell.

(Gers et al., 1999)
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4. Theory

4.1.4 Bidirectional LSTM
The LSTM layer can be bidirectional, and is then named a bidirectional long short-term
memory (BiLSTM) and has been found to perform better than LSTM networks. Therefor
this model has been included in the project and compared to the two other types of neural
network models explained above. The concept behind a BiLSTM is to stack two LSTMs on
top of each other, where one processes data from start to end and the other from end to start.
And the two LSTM stacked on each other therefor form a BiLSTM layer which can process
data through time in both directions. The input is connected to both LSTM units, which in
turn are connected to the output. The BiLSTM knows what was before and after each point
in a sequence and is thus able to predict based on context (Graves, A. and Schmidhuber, J.,
2019). An illustration of the network is shown in figure 3.2.

Figure 4.5: TheBiLSTMwith forward and backward layers depicted.

(Schuster and Paliwal, 1997)
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4.2 Linear Regression

4.2 Linear Regression
To be able to study the weights of the features, I trained a linear regression model. This is
since this model gives weights in a format where I directly could draw conclusions around
what features that the model prioritized.

Linear regression is statistical model that can be used for problems that involve predicting
values. It is performed by fitting a line to data points so that the line explains the data as
good as possible, which then can be used to predict new values based on new data. The line
can be modelled with

y = β0 + β1x1 + ... + βpxn + εi (4.8)

Where y is the dependent variable, βi influences the variable xi . For a linear regressionmodel,
the goal is to minimize the sum of squared errors,

n∑
i=1

[(yi − f (xi))]2 (4.9)

where yi is the prediction, and f (xi) is the data point. In simple linear regression only one in-
dependent variable x1 is included, unlike equation 3.8 where multiple variables are included,
the line is easy to illustrate. Figure 3.5 shows a regression line fitted to data points.

Figure 4.6: Linear regression example
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Chapter 5

Method

The main goal from the beginning of the project has been to make some kind of general
prototype as soon as possible and iterate. So during the first week a simple Scikit-learnmodel
was created where all the steps from training to evaluation were included. However, the data
sent into themodel was very primitive and the occupancy values were simply random integers
representing the occupancy count, as the ground truth data had not yet been collected.

5.1 Tools and Technologies

5.1.1 Keras
Keras is a a deep learning library where neural network models can be programmed and does
not require the user to go into much detail. It is a simple API for creating and prototyping
neural network models and I used the library for this purpose during the project.

5.1.2 Scikit-learn
For preprocessing, there are several tools in the python library Scikit-learn. I used its func-
tionality for shu�ing and splitting data in the project, as I wanted the data to be in random
order and split the data in a train and test set.

5.1.3 Imbalanced-learn
During the data collection most rooms were empty or had few people occupying them re-
sulting in skewed ground truth data. The imbalanced-learn library consists of di�erent al-
gorithms to over and under-sample data, and as a result reducing or increasing the count of
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5. Method

certain targets to get a more balanced dataset (Lemaitre, G. and Nogueira, F. and Aridas C.
K., 2019).

5.1.4 Pandas
I used the Python library Pandas to analyze and sort data. For example, with the describe
function I could get a summary of the data such as the most frequent values, amounts of
occurrences etc. The head and tail functions print a number of rows in the beginning
respectively end of the dataset, which I used to view actual values in the data. Further, there
is functionality to drop specific columns and locate rows. Moreover, since the project includes
a lot of code which I had to run to process data, compilation and loading time of the IDE was
long. Pandas also includes functionality to save and read data, for example the toPickle
and readPickle methods, which saved me a lot of time by reducing the amount of code
that I had to run.

5.1.5 Numpy
Numpy is a Python library for handling arrays and performing common mathematical cal-
culations. The project dealt with multidimensional data in the form of [sample, time step,
feature] and the library has therefor been useful to be able to handle and process the data.

5.2 Data Collection
Initially, there existed no ground truth, i.e. the number of people in the rooms. So we col-
lected the ground truth data by walking around the o�ce and manually note the occupancy
level.

I collected the data by noting the occupancy of rooms in regular 11 minute intervals and
had help from two other workers from the team at Sony. The rooms were of varying size from
small roomswith four chairs to conference roomswith 14 chairs. We performed the collection
between 10 A.M. to around 16 P.M. during four days. This data was used for developing a
working model and later on in the project I collected data during five additional days since
more data was needed to improve results. For the case of a room being empty, data could have
been taken from nighttime hours where registered sensor activity is nonexistent, but there
were basically always some room that was empty and therefor the data collection naturally
included empty rooms.

5.3 Preprocessing
To be able to get the data in compatible format, preprocessing was performed. Some of
the features were converted into numerical values since they initially were in nonnumerical
format.

Since some parts of the preprocessing required generating large variables like pandas
dataframes and dictionaries, this kind of large data was pickled (cached) during the first
runs to be able to run the code without the large wait times while testing and debugging.
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5.3 Preprocessing

The original data files were first read into Pandas files to be able to get valuable infor-
mation about the data and also so that the data e�ciently could be sorted with respect to
specific columns.

After we had collected the ground truth it was transferred to spreadsheet files so that they
easily could be read with Pandas. Since the data was collected from specific rooms, dates and
times in the o�ce, the training data had to be preprocessed so that the times and rooms of
the data collection process were used.

The data consisted of large amount of rooms, but naturally the room data that was used
for training was only the ones where the ground truth was collected. Also, the data with
timestamps before, after and between the data collection periods were cut o�, so that only
the needed data was used, which also decreased run time in the IDE as less data was processed.

The data had to be sorted by timestamp so that the data could be inserted in the same
order as the ground truth collection. The total data frame was divided into 20 di�erent data
frames for each room that the data was collected from to avoid unnecessary data traversal.

Also worth to note is that there were many parts of the ground truth data that was empty
and therefor translated into NaN in Python. These points were removed since the actual
occupancy at these intervals had not been noted.

5.3.1 Feature and Target Mapping
To be able to couple the ground truth data to the feature data, a list was created where each
element represents the occupancy level per room for an eleven minute window (EMTW).
Since the ground truth target values, i.e. the occupancy count, was collected in eleven minute
intervals the training data had to be mapped to these. Most intervals corresponded to large
amounts of data points, and to be able to map the training data to the collected targets, two
main approaches were tested. The first approach was to take all of the data perand take the
sum of the event count features and means of the booking feature per EMTW and map them
to respective target when training. This approach resulted in a two-dimensional input in the
form of [sample, features]. The second training approach however generated better results
and consisted of having input to the model where each target was mapped to an array with
11 elements where each corresponds to a minute in the EMTW. Each of these array elements
were constituted by the feature values for respective minute. So the input was in the form
[sample, time step, features].
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5.3.2 Empty rooms with detected activity
Sometimes when we observed a room to be empty, the sensor still had detected activity in the
room. This complicated the process for the model to learn how to predict a room as empty, so
these samples were removed. The reason these samples existed can be due to a misjudgement
of the occupancy during the ground truth collection or not noticing that someone walked
into the room for a short while.

5.3.3 Feature selection
The data of the sensors contain many features, but there are just a few of them that are
relevant to the task of determining room occupancy. The features that initially were used
were timestamp and event count which included both passage and motion sensor event counts.
The timestamp feature was the timestamp of an event count and was transformed into an
int. However this feature, was later ablated due to not contributing to performance. Only
these features were used since the initial goal was to have a low amount of features in the
early stage of the project to simplify the process of developing a working pipeline. Later on
the amount of features could be increased so that an ablation study of the features could be
performed.

Later on the dimensionality adding more features and separating event count into mo-
tion event count and passage event count among others, which ultimately improved the models
performance.

Ablation study
For the features that were available and relevant, I studied how the features impacted the
model’s performance by removing one feature at a time and thereafter studying the results.
This process is called an ablation study. So the performance with di�erent combinations
of features were studied. An ablation study with the total amount of the available features
in the raw data was not performed since the majority of features in the sensor data were
irrelevant to the task of determining room occupancy. However an ablation study has been
performed on the features that were seen as relevant by experimentally removing a feature at
a time, training themodel on this feature set and then studying themodel’s performance. The
results of the study was that a timestamp, invites in the 11 minute interval that was before
each 11 minute interval, and a "not occupied" feature could be removed.

Feature Transformation
To study the weights of each feature in a feature set, linear regressionmodels were trained and
their weights were in such a form that it was easy to study how each feature was weighted.
When doing this I could see that the Motion Event Count and Passage Event Count had low
weights even though they intuitively are relevant features. This could be that they occur often
or that they were too large and had an uneven distribution. This was handled by transforming
the features and testing di�erent approaches. The best approach was to take the logarithm
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of Motion Event Count and the square root of Passage Event Count, as shown in 5.1 and 5.2.

ecma = log |ecm| (5.1)

ecpa =
√

ecp (5.2)

where ecm and ecp is the Motion Event Count respectively Passage Event Count features.

5.3.4 Outlier detection
I tested removing outliers in the data by using the median absolute deviation (MAD) since
it has been shown to be e�cient for outlier detection, Leys, C. and Ley, C. and Klein, O
and Bernarda P. and Licata, L. (2013) where an outlier is a data point lying far away from
the other points. MAD was tested for this purpose to find out if any outliers according to
this method was present in the data. It was used on the Motion Event Count and Passage Event
Count features,

MAD = M(|xi − M j |) (5.3)

xi < M + 3MAD (5.4)

where M j is themedian of the samples and xi is the sample value. Feature samples with a value
over the maximum value (equation 4.4) is considered an outlier. The approach did however
not locate any outliers in the data. And removing the data points that I saw as potential
outliers did not give any better results, but if such data points for some reason would be
present they are handled to di�erent degree through the feature transformations detailed in
equations 5.1 and 5.2.

5.3.5 Feature Imputation
During the project, feature imputation was tested which means that empty or missing data
points can be replaced by values so that the dataset is continuous and can be analyzed statis-
tically as a whole. It was performed on missing data and outlier feature values. The methods
tried were multivariate, median and mean feature imputation, where multivariate imputa-
tion takes other features into account to generate a missing value and the others impute the
median respectively the mean of a feature. Results were however not improved with any of
the three methods, so feature imputation was ultimately not used.

5.3.6 Over-sampling
Larger meetings were less common in the ground truth data, resulting in less data from these
and an imbalanced dataset. The initial distribution of targets after one week of data col-
lection was heavily skewed towards zero but also one and two as shown in figure 4.1. The
zero target was under-sampled and the other targets over-sampled with the Imblanaced-learn
library for the model to be less biased towards a certain occupancy. The algorithms tested for
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over-sampling was the "Synthetic Minority Over-sampling Technique" (SMOTE) and Ran-
dom over-sampling, described below. Oversampling was tried when the data was in the form
of [samples, features] but none of the algorithms tested improved results. Moreover, no li-
braries were found to support three-dimensional data as in the case of an LSTM, which re-
quires an additional time step dimension.

Figure 5.1: Target distribution in ground truth data after initial data
collection

SMOTE
Since some target samples were very few, especially those over 12, the SMOTE approach
could be used to over-sample them. The SMOTE works by constructing new data points
based on data from the nearest neighbors data and creates synthetic samples between the
points. N. V. Chawla (2002)

Random over-sampling
Beyond the SMOTE approach, I also tried another technique that could be utilized, namely
the random oversampling technique, with an algorithm that over-samples targets based on
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random samples taken from the distribution. But this neither gave any improved results.

5.4 Model Development
As mentioned, the work during the project has been carried out iteratively and the goal was
to get a working pipeline early on. A simple Scikit-learn model was developed initially and
after a neural network model was created. Since the thesis task of predicting the number of
people in rooms can be modelled as a regression problem, the loss of the model was set to
mean squared error (MSE) see 4.2 below where Yi is the true value and Ŷ is the prediction.

MSE =
1
n

n∑
i=1

(yi − ŷ)2 (5.5)

5.5 Evaluation
When the model has performed predictions on the test set, the evaluation is done by com-
paring the predictions with the observed targets by using di�erent metrics. The main metric
for evaluating the model is the mean squared error (MSE), see equation 4.5. The benefit of
using MSE as an evaluation metric is that it penalizes large errors. However the MAE has
also been used and is explained in 4.4.2 below.

5.5.1 Mean Absolute Error
The mean absolute error (MAE) sums the absolute errors and then takes the mean of all
errors,

MAE =
1
n

n∑
i=1

|yi − ŷ| (5.6)

where yi is the actual value and ŷ is the prediction. This metric shows the average absolute
error, but can however be misleading if the targets are distributed unevenly or if most targets
are low, as this would give a low MAE.

(Cort, J., W. and Matsuura, K., 2019)

5.6 Post-processing
Since their are two models constituting the system, the second model receives data where
the first model has predicted that a room is occupied. Therefor, if the second model predicts
0 occupants, i.e. empty room, the prediction is altered to 1 since it probably has made an
inaccurate prediction. But since it sees the occupancy as low, it is set to 1.
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Chapter 6

Results

The developed system consists of two models. The first one (Model 1) classifies if a room
is either empty or occupied. Data of rooms that are predicted as occupied are forwarded
to the subsequent regression model (Model 2) where the number of occupants is predicted.
To get the best results possible for Model 2, many di�erent architectures were trained and
evaluated. The networks that were chosen are respectively feed forward, LSTM and BiLSTM
models. Di�erent models and respective results for Model 2 can be seen in table 6.1.
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Table 6.1: Results for Model 2 trained when trained for di�erent
number of epochs.

Architecture MSE MAE Epochs
Feed forward 2.73 1.11 70

LSTM 2.67 1.05 70
BiLSTM 2.49 1.02 70

Feed forward 2.59 1.08 100
LSTM 2.30 0.95 100
BiLSTM 2.31 0.96 100

Feed forward 2.54 1.05 130
LSTM 2.33 0.94 130
BiLSTM 2.40 0.97 130

Feed forward 2.56 1.07 150
LSTM 2.52 0.99 150
BiLSTM 2.32 0.97 150

Feed forward 2.31 1.03 175
LSTM 2.47 0.96 175
BiLSTM 2.27 0.94 175

Feed forward 2.49 1.05 200
LSTM 2.63 0.99 200
BiLSTM 2.43 0.95 200

The best performing archiceture was the BiLSTM and the lowestMAEwas achieved by train-
ing it for 175 epochs. The factor that determined what model to present, is the one with
lowest MSE. This is since the MSE is a better metric on how well the model performs as it
penalizes large errors. But the best performing naturally also has the lowest MAE.
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6.1 Model 1
The initial model is a binary classifier in the form of a feed forward network and predicts if
a room is either empty or occupied. It has been trained 5 epochs which was enough to get
good results. Its layers are described in the layers section underneath and it is also depicted
in Figure 6.1 below.

Figure 6.1: The model architecture with its layers.
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6.1.1 Layers
Input
This is the input layer where the data enters in the form [sample, time step, feature], after this
layer it enters the first Dense layer named Dense1. The number of samples can vary, however
time step is 11 and there are five features in total.

Dense1
This layer has 300 neurons and its activation is ReLu.

Dropout1
The subsequent layer after the first dense layer is a dropout layer with a dropout rate of 0.25
to randomly dropout neurons from the prior layer to hinder overfitting.

Dense2
The second dense layer has 75 neurons and like the Dense1 it has a ReLu activation function

Flatten
This layer is used to transform the data into an appropriate dimension that can be handled
by the output layer. As mention, the input has three dimensions and this layer converts it
into two dimensions with a feature dimensionality of 825.

6.1.2 Output
Two neurons are assigned to the output layer of the model as it is a classification model. The
activation function is a sigmoid. The first neuron represents an empty rooms, and the other
one represents an occupied rooms.
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6.2 Model 2
Themodel that performed the best was a BiLSTM architecture as depicted in figure 6.2. It has
several layers between input and output. There are two BiLSTM layers in the model, where
each of them are followed by a dropout layer to prevent overfitting. The last dropout layer
is flattened to prepare for the output layer which is a dense layer with one unit. The models
output is the predicted occupancy of a room within an 11 minute interval. All of the layers of
the model are described below. Themodel was tested on di�erent numbers of epochs, but the
model performed the best at around 100 epochs. Also, learning rates between 0 and 0.000001
were studied to see which could benefit the model the most and the best performing one was
concluded to be 0.0005.

Figure 6.2: The model architecture with its layers.
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6.2.1 Layers
Input
The input to themodel is a three dimensional array, where the first axis (axis zero) constitutes
the samples. A sample corresponds to an 11 minute interval in which the data was noted per
room. Axis one contains time steps, each corresponding to one minute of data. The third
axis is an array containing the five feature values: Motion event count, Passage event count, Room
size, Number of attendees and Binary occupancy status.

BiLSTM1
The input layer is connected to a Bidirectional LSTM (BiLSTM) layer with 100 units. It has
return sequences and activation set to the ReLu function.

Dropout1
The first dropout layer has a rate of 0.25 to reduce overfitting on the training set by randomly
dropping out neurons of the BiLSTM1 layer.

BiLSTM2
After the first dropout layer comes another BiLSTM layer which is similar to the first BiL-
STM layer except that it only has 25 units.

Dropout1
The second dropout layer after the second BiLSTM has a rate of 0.1, again to reduce the
chances of overfitting on the training set.

Flatten
This layer is to flatten the input into the right dimensions for the next layer. The data is in
the form [sample, time step, features], but for the next layer (Dense) to handle the data its
dimensionality has to be reduced to two dimensions.

Dense
Since determining room occupancy is a regression task, the output layer is a dense layer with
one unit and uses the ReLu activation function.
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6.3 Evaluation
For evaluating the result, predictions are divided into di�erent target intervals. The mean
percentages of predictions with an error between 0 to 1 respectively 0 and 2 individuals have
been calculated for targets within the intervals in the test set as shown in table 6.2. The
method used to be able to evaluate the results is cross validation.

6.3.1 Cross Validation
To be able to study how the models of the system perform on di�erent data, each model
is trained and tested 10 times on separate data. The total data is divided into 10 folds and
the models are trained on 9 of the folds where one fold per trained model is put aside for
testing. Thereafter the averages of the results are calculated. After cross validating Model 1,
the accuracy of predicting an empty room is 100% andwhen predicting if a room is occupied it
is 100% after editing predictions that are unreasonable. This means changing an empty room
prediction to occupied if motion or passage event counts exists. The average performance for
Model2 is an MSE of 2.27 and MAE of 0.94.
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Table 6.2: Model 1: Accuracy of binary occupancy status.
Occupancy Accuracy
Empty 100%

Occupied 100%

Table 6.3: Model 2: Accuracy within di�erent error margins and
number of people.
Amount 0-1 error margin 0-2 error margin 0-3 error margin
1 to 7 85% 94% 98%
8 to 15 49% 66% 74%

Table 6.4: Model2: Accuracy within di�erent error margins and
number of people. Smaller intervals than table 5.2.
Amount 0-1 error margin 0-2 error margin 0-3 error margin
1 to 3 93% 97% 98%
4 to 6 66% 90% 98%
7 to 10 49% 68% 78%
11 to 15 49% 64% 76%
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Chapter 7

Discussion and Conclusion

7.1 Discussion
In related work, many di�erent approaches have been studied to determine the occupancy
state of a room, i.e. if a room is occupied or empty, and occupancy level withmachine learning
techniques. The work of Hailemariam et al. (2011) studied occupancy state detection with
light, CO2 and motion sensors and reached an accuracy of 98% in one minute time windows.
This thesis reaches 100% for predicting occupancy state, but a mayor di�erence is that the
timewindows are 11minutes longmaking it an easier problem to solve as the windows consist
of more data.

Tomy knowledge, the research that shares most similarity with this thesis when consider-
ing the task to solve and the type of input data is the study by Raykov et al. (2016) which used
PIR sensor data to predict the number of occupants in meeting rooms. The work reached
an accuracy of 97% respectively 84% for when the occupancy count is under eight respec-
tively over seven when the error is two or less in a 20 minute window. In my thesis I reach
94% and 66%, however the prediction windows are di�erent as in this thesis it is 11 minutes.
Furthermore, the distribution of target values in their data is unknown and a di�erence in
distribution most likely leads to di�erent results. This thesis had a target count that declines
as targets get larger, as depicted in figure 5.1, since larger meetings were less usual during the
data collection.

A study by Jiang et al. (2012) estimates the occupancy level with only CO2 data and had a
result of 94% accuracy for a prediction error less than 4 individuals. The room had 24 cubicles
and 11 open seats, so the number of people that could be occupying the room could be larger
than themaximum number of people in a room of 15 as in this thesis. CO2 data therefor seem
to be a good way to determine the occupancy level in an o�ce environment as the accuracy
is high even for relatively large number of possible occupants.

As the number of people in a room increases, use of motion sensors may not be as e�cient
since they may not be able to capture all movement due to loss of line of sight. This is since
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the infrared radiation emitted from one individual may be blocked by another for example if
one is standing up, but this could be solved by adding more sensors to cover di�erent angles
in the room. In research done by Mohottige and Moors (2018) they predicted the occupancy
level in a lecture theatres where the number of occupants ranged from 0 to 250. They solved
the problem by using Wi-Fi based data and reached an RMSE of 25.4 and a MAE of 17.5.
The results cannot directly be compared to the work of this thesis but in relative terms the
MAE is 7% of the maximum occupancy level, while the MAE of this thesis equals 6%, so by
this comparison the results are similar. However this kind of comparison may just be an
indication as there are many other factors contributing to the results such as the distribution
of targets.

In research by Mamidi et al. (2016) a feature set with data from di�erent kinds of sensors
including light, sound, motion and CO2 data. They tested di�erent models including SVMs,
MLPs and linear regression. Their results indicated that the MLP performed the best and
achieved a RMSE of 0.82 where the number of occupants were between 0 and 10. The MSE
of this thesis for the best performing model is 2.27 and by taking the quare root it results
in an RMSE of 1.51. So in comparison their result is much better. However, there are many
aspects that make the results di�er. Especially the fact that the study used many di�erent
sources of data and an maximum occupancy level of 10 individuals, while this thesis includes
room occupancy level of up to 15 individuals and data only derived from motion sensors and
bookings where the latter not always is in line with the actual occupancy level.

It can be interesting to name the study by Benezeth et al. (2011) on people counting with
cameras. Even though it is a di�erent type of project as it includes image processing, the aim
of people counting is still the same. In the study, they counted the exact number of people
with 93% accuracy in an o�ce environment, while this thesis is at that level of accuracy when
occupants range from 1 to 7, but with an error margin of 2 individuals. This infers that a
camera setup is superior to the approach of this thesis and they show that cameras can be an
e�ective tool for people counting. However, a camera solution introduces possible problems
to consider such as increased need of computational power, but also cost and intrusiveness.

The PIR sensor has the benefit of being relatively cheap, however it is hard to achieve
perfectly accurate results, even with booking data which I had access to. The booking data
was however not always in line with the actual occupancy and seemed to be more of an
indicator to some extent of occupancy level for the model. The BiLSTM model was the one
that gave the best results, as compared to the model with LSTM respectively the feed forward
dense model. However the LSTM performed better than the dense model. This can be since
the input to the model is in the form [sample, time step, features] and LSTM has memory to
be able to handle the sequences of features in a time window of time steps, unlike the feed
forward dense model which does not have recurrent connections or memory similar to the
LSTM layer’s units. The bidirectional model in addition to the LSTMmodel can process the
time steps both directions. This architecture has been found in other applications to perform
better than unidirectional LSTMs. The architecture may however not be perfect since in
other applications when using LSTM models such as in language technology, specifically
named entity recognition, each time step is predicted and its weights inputed into other
LSTMunits to give it data about previous time steps and base the prediction partially on this.
A di�erent type of input to themodel than the one I present could therefor be tested in future
work. Such an approach could be to let each time step corresponds to a certain occupancy
count to be predicted. If meetings last on average 45 minutes, 4 time steps corresponding to
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4 time windows of 11 minutes could be tested as input to a model.
The evaluationmetric results forMAE is slightly larger compared to the relatively similar

study by Raykov et al. (2016), however it is hard to compare this metric with other studies
as it includes the prediction of empty rooms in its results thus including zero values, which
in my project were the easiest to predict, and thus could be contributing with low errors
and could therefor lower the total mean absolute error. It would however be interesting
to compare the results with the study if they would have included the MSE of their results
as this metric penalizes predictions with large errors. This may a�ect the metrics as the
predictions could be less varying in magnitude compared to if the dataset was completely
balanced with a large share of high occupancy counts. However, when comparing the results
in percentage-terms they still have an edge on larger occupancy levels, but as mentioned this
thesis lacked these samples. However I still think the results for this is still acceptable for
purposes where perfect accuracy is not a make or break such as for allocation of cleaning
resources or air-conditioning. For these cases it should not be critical to know if there were
13, 14 or 15 people in the room during a meeting, since knowing that the occupancy level was
large should be good enough.

7.2 Conclusion
In this thesis, it has been shown that it is possible to determine the occupancy level of meet-
ing rooms to a certain degree using PIR sensor and booking data features together with the
number of chairs in a room. Occupancy level data was collected by manually noting the oc-
cupancy of the rooms and training a model on it. The results for mean squared error is 2.27
and for mean absolute error it is 0.94. The model will therefor on average always have some
error when predicting and results are therefor not perfect, especially for larger occupancy
levels. However, I show that the problem of occupancy can be performed by using a deep
neural network approach while many other studies use other machine learning models such
as HMMs and linear regression to predict the occupancy level. In conclusion it is hard to say
if neural networks or other models perform the best on the problem of determining room
occupancy level, unless the same exact dataset is used, however I show that neural networks,
and especially BiLSTMs, is a possible option for solving this type of problem in addition to
other machine learning models. Neural networks have been shown to perform well in many
di�erent applications from image recognition to natural language processing, and for me it
was natural to try it in the area of room occupancy. Also, to my knowledge there is only
one study looking at the occupancy level in meeting and conference rooms, i.e. the research
by Raykov et al. (2016), where other studies look at predicting the number of occupants in
places such as a lecture theatre where there can be hundreds of individuals or larger open
o�ce spaces. Also many look at binary occupancy status (occupancy detection) based on
motion sensors and other data while I predicted the occupancy count in meeting and con-
ference rooms with up to 15 chairs. I hope that this thesis eventually can be helpful to others
in the future who aim to solve this problem or other machine learning regression problems.
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Automatisk Uträkning av Antal
Mötesdeltagare utan Kamera
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Mötesrum planeras och byggs i olika storlekar, men det är inte säkert att de används
i tillräckligt stor utsträckning eller att de till och med är för små. I detta arbete har
jag utvecklat ett system som automatiskt räknar ut antal personer i rum baserat på
data från bland annat rörelsesensorer.
För att bestämma antalet personer som befinner
sig i ett mötes- eller konferensrum har jag
byggt ett system med två modeller. Data från
rörelsesensorer (Figure 1) och antalet inbjudna
deltagare till möten har matchats med manuellt
insamlad data i form av det faktiska antalet per-
soner i rummen. Datan matades in stora mängder
i modellen för få den att lära sig att på egen hand
veta antalet personer i nya situationer.
Modellerna är utvecklade med hjälp av metoder

inom ett område som heter maskininlärning. Mer
specifikt har jag använt mig av neurala nätverk
som är olika typer av modeller som är inspirerade
av hur våra egna hjärnor fungerar med kopplingar
mellan nervceller.
Den första modellen i systemet förutspår om

rummet var ledigt eller upptaget. Ifall det var up-
ptaget räknar den påföljande modellen ut antalet
individer som var i rummet. För att kunna veta
hur väl modellen presterar, lades delar av datan åt
sidan som testdata och flera modeller har tränats
och testats på olika data. Sedan räknade jag ut

Figure 1: Rörelsesensor som använts i projektet.

medelvärdet av resultaten hos de olika modellerna.
Systemet klarar av att bestämma antalet personer
(från 0 till och med 15) i rummen med lite under
en person fel i snitt. Det visar att det går att
bestämma antalet personer i mötesrum med hjälp
av bland annat rörelsesensorer till en viss utsträck-
ning, men att det inte är helt exakt. Det kan däre-
mot användas för ändåmål där exakta resultat inte
är kritiskt, som till att omfördela utrymme i ett
kontor eller för att veta var man ska städa.
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