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Abstract 

Monitoring crop phenology at parcel scale aligns with the concept of precision 

agriculture (PA) and can provide invaluable information to agronomic management 

systems. Satellite time series data are commonly deployed for detecting crop growth 

stages, while the recent advancements in remote sensing (RS) technologies such as the 

launch of Sentinel 2 (S2) are providing unprecedented opportunities for crop 

monitoring. In this thesis, the focus is on spring barley parcels with available in-situ 

crop growth stage measurements (recorded in Zadoks scale) located in south-central 

Sweden over the period of 2017 – 2019. More specifically, the aim was to detect three 

specific crop growth stages of spring barley that are crucial for applying external inputs 

(e.g. fungicides applications) named according to the Zadoks Scale: (i) first node 

detectable (31DC) (ii) flag leaf ligule just visible (39DC) and (iii) first spikelet of 

inflorescence just visible (51DC).  

This thesis describes a simple empirical approach based on Normalized Difference 

Vegetation Index (NDVI) and Enhanced Vegetation Index 2 (EVI2) S2 time series. 

TIMESAT 4.0 was deployed to reconstruct the S2 NDVI and EVI2 trajectories using 

the Double Logistic (DL) smoothing function. Moreover, the available in-situ crop 

growth stage measurements were utilized to optimize the dynamic thresholds (% of the 

amplitude of the season) for detecting the different crop growth stages of interest 

(31DC, 39DC, 51DC).  Two types of thresholds were conceptualized and optimized: 

the (i) local threshold and the (ii) global threshold. The optimal local threshold for each 

crop growth stage of interest refers to the threshold that created an agreement between 

the vegetation index (NDVI and EVI2) results and the in-situ measurements for each 

spring barley field individually. The global threshold refers to the optimal threshold 

that resulted in the smallest Root Mean Square Error (RMSE) between in-situ 

measurements and S2 derived results when applied on all the studied spring barley 

parcels.  

The optimal local thresholds showed high variability especially for the crop growth 

stage 31DC, where the standard deviation (SD) of the local threshold values was 16.1% 

(NDVI) and 22.1% (EVI2). The variability of the optimal local thresholds showed a 

decreasing trend with latter crop growth stages, where for the stage 51DC the SD was 

5.9% (NDVI) and 3.1% (EVI2). According to the results of the global threshold 
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optimization, the optimal thresholds for the stages 31DC, 39DC and 51DC based on 

NDVI were 74%, 92%, and 99% respectively, where for EVI2 the optimal global 

thresholds were 70% (31DC), 91% (39DC) and 99% (51DC). When applying the 

optimized global thresholds, the RMSE of the retrieved dates for the different crop 

growth stages against the in-situ measurements was smaller than 7.6 days (for both 

NDVI and EVI2). EVI2 consistently outperformed NDVI regarding all the crop growth 

stages of interest (31DC, 39DC, 51DC) where it resulted in lower RMSE (5.1 days, 4.8 

days, 4.2 days) and higher coefficient of determination (R-square; 0.43, 0.45, 0.69) 

compared to the NDVI induced RMSE (6.9 days, 7.6 days, 7.2 days) and R-square 

(0.33, 0.27, 0.39). The results showed the feasibility of using S2 data in crop phenology 

studies and demonstrated its potential uses and inaccuracies regarding the detection of 

three specific crop growth stages of spring barley that are of interest in agronomic 

decision making. 

Keywords: spring barley, crop phenology, crop growth stages, TIMESAT, double 

logistic, threshold optimization, Sentinel 2. 
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1. Introduction 

 

Precision agriculture (PA) is a sophisticated approach for monitoring the spatial and 

temporal variability of crop related parameters within a field (e.g. soil properties, 

nutrients, pests, etc.) in order to apply the right crop management practices explicitly 

where and when needed (Mondal and Tewari 2007). PA has been widely promoted for 

increasing crop yield and its quality while reducing adverse environmental effects (e.g. 

nutrient or pesticides leakage) and has been characterized as essential for the future of 

agriculture since it facilitates sustainable agronomic management (Whelan and 

McBratney 2000; Mulla 2013). PA enables precise crop monitoring throughout the 

growing season, and promotes timely and spatially accurate application of proper 

external input doses (herbicides, fungicides, fertilizers, etc.) which is crucial for 

maintaining healthy crops and for maximizing their profitability (Mulla 2013; Yang 

2020). The importance of detecting the different crop growth stages for agronomic 

management is highlighted in many crop phenology studies (You et al. 2013; Zheng et 

al. 2016; Stendardi et al. 2019), where in order to apply external inputs efficiently it is 

crucial to refer to crop growth stages that exist in numerous crop growth stage scales 

(e.g. Zadoks scale; Tottman et al. 1979). As noted by Luo et al. (2020), in-situ 

measurements for monitoring crop growth stages are not time efficient and come with 

an economic cost that is higher than when utilizing technologies that can establish 

detailed and frequent methods for monitoring agricultural areas at regional scales. 

Satellite remote sensing (RS) has been advertised as an indispensable data acquisition 

method for agriculture monitoring (Defourny et al. 2019). There have been tremendous 

advancements in RS technologies since the appearance of PA (Mulla 2013). These 

developments attracted many researchers to study the use of satellite RS techniques for 

monitoring crop phenology (Viña et al. 2004; Pan et al. 2015; Gao et al. 2017; Xu et al. 

2017; Gomarasca et al. 2019; Huang et al. 2019; Nasrallah et al. 2019; d’Andrimont et 

al. 2020; Gao et al. 2020; Luo et al. 2020). Viña et al. (2004) and Yousfi et al. (2019) 

describe that monitoring the phenological cycle of crops can provide invaluable 

information about the crop growth stages. Furthermore, as noted by Jin and Eklundh 

(2014) when working with RS data the utilization of spectrally based equations known 

as Vegetation Indexes (VIs) is an effective way to monitor phenology. In recent 

decades, the most commonly used optical platforms for crop monitoring were offering 

either high spatial resolution (e.g. Landsat) or high temporal resolution (e.g. MODIS). 

However, the use of coarse or medium spatial resolution data (e.g. MODIS) is 
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insufficient for crop monitoring at parcel level, while satellites with low temporal 

resolution (e.g. Landsat) cannot provide sufficiently frequent coverage of the rapid crop 

growth cycle (Solano-Correa et al. 2017). In that scope, data with high spatial and 

temporal resolution are required to create dense and robust time series and ultimately 

for monitoring the phenological cycle of crops at field scale (Pan et al. 2015; Solano-

Correa et al. 2017; Defourny et al. 2019). 

Sentinel-2 (S2) is a mission managed by the European Space Agency (ESA) that 

provides invaluable data with a highly effective combination of spatial and temporal 

resolutions (Escolà et al. 2017). As a result, S2 has been labelled as an unprecedented 

improvement in optical RS sector for conducting near real-time crop monitoring of 

large agricultural areas at field level (Defourny et al. 2019) and thus, S2 has been the 

basis for a vast amount of agronomic applications (Escolà et al. 2017; Nasrallah et al. 

2019; Stendardi et al. 2019; Belda et al. 2020; d’Andrimont et al. 2020). The 

Normalized Difference Vegetation Index (NDVI) is the most common VI used in PA 

and phenology studies (Viña et al. 2004; Gao et al. 2017; Yousfi et al. 2019; Zeng et al. 

2020). However, the non-linear relationship between NDVI and Leaf Area Index (LAI) 

under dense vegetation has raised criticism by Huete et al. (2002). Out of the vast 

amount of VIs that can be used in phenology studies, the Enhanced Vegetation Index 2 

(EVI2; Jiang et al. 2008) has been commonly utilized (Cai 2019; Zhang et al. 2020). 

EVI2 is a two-band version of the Enhanced Vegetation Index (EVI; Huete et al. 2002), 

with both of them exhibiting a higher sensitivity in dense canopies than NDVI (Huete 

et al. 2002; Jiang et al. 2008). While different VIs have been reported to have varying 

performance and results in phenology monitoring (Jiang et al. 2008; Gao et al. 2017; 

Huang et al. 2019; Zeng et al. 2020), many researchers have described the presence of 

noise caused by atmospheric contaminations as a common drawback of VIs (Hird and 

McDermid 2009; Wei et al. 2016; Zheng et al. 2016; Cai et al. 2017; Luo et al. 2020).  

Hence, in phenology studies, the application of gap filling and noise reduction methods 

(i.e. smoothing functions) is required in order to reconstruct a continuous and smooth 

VI curve that can be used for extracting dates of phenological events (Wei et al. 2016; 

Cai et al. 2017; Xu et al. 2017; Belda et al. 2020; Zeng et al. 2020). Many researchers 

report that the use of satellite RS enables efficient crop growth monitoring, but they 

also underline the fact that the extracted phenological metrics, such as the start and end 

of growing season, do not refer precisely to crop growth stages (Delécolle et al. 1992; 

Gao et al. 2017; Liu et al. 2018; Huang et al. 2019). Zeng et al. (2020) describe the 
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efforts that aim to detect different crop growth stages as species-specific phenology 

studies, with the use of dynamic thresholds (percentage of the amplitude of the season; 

Gao et al. 2017; Gao et al. 2020) being among the most common methods for detecting 

phenological events (Pan et al. 2015; Huang et al. 2019). Zeng et al. (2020) explain that 

the optimization of dynamic thresholds based on in-situ measurements as performed in 

the study of Xu et al. (2017) corresponds to an empirical approach for detecting crop 

growth stages. Nonetheless, the optimization and comparison of crop phenological 

metrics with in-situ crop growth stage measurements is rare and challenging, where the 

availability of in-situ measurements is of high importance for studies that aim to detect 

specific crop growth stages (Xu et al. 2017; Luo et al. 2020; Zeng et al. 2020). 

Nevertheless, great efforts have been directed towards assessing the potential of S2 in 

crop growth stage detection. More specifically, Stendardi et al. (2019) and d’Andrimont 

et al. (2020) demonstrated the use of S2 time series for detecting the Start of the Season 

(SOS) and End of the Season (EOS) along with other broad phenological phases (e.g. 

flowering, heading) of different crops. 

In this study, in-situ measurements related to crop growth of spring barley parcels 

(according to the Zadoks Scale) over the growing seasons of 2017 – 2019 were used.  

Such an archive of in-situ measurements allowed the focus on specific crop growth 

stages that are important in agronomic management instead of detecting the general 

phenological development of the crops (e.g. SOS) and ultimately, enabled this study to 

investigate the potential of S2 that comes with its high spatial and temporal resolutions 

along with its drawbacks and inaccuracies regarding the detection of crop stages. 
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1.1 Objectives and research question 

 

This thesis aims to study the feasibility to monitor crop growth stages of spring barley 

in south-central Sweden, using S2 data. The objective is to assess the ability and 

potential use of S2 for the detection of three specific crop growth stages of spring barley 

that are of high importance in agronomic management: (i) first node detectable (ii) flag 

leaf ligule just visible and (iii) first spikelet of inflorescence just visible. The research 

questions this thesis will try to answer are: 

• Can the aforementioned crop growth stages be detected in S2 data?  

• Is NDVI or EVI2 more accurate in the detection of these crop growth stages? 

• Is it possible to use a global threshold for a vegetation index to detect these 

stages?  

• How much does the optimal local thresholds vary between fields? 
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2. Background 

2.1 Crop phenology and crop growth stages in Zadoks scale 
 

Studying the repetitive dynamic cycle of specific vegetation events like the leaf 

emergence, and flowering is known as phenology (You et al. 2013; Eklundh and 

Jönsson 2016; Zeng et al. 2020). Monitoring crop phenology has been characterized as 

vital for establishing an efficient agronomic management (Sakamoto et al. 2005; You 

et al. 2013; Xin et al. 2002; Liu et al. 2018). In order to optimize any agricultural 

practices, such as the application of external inputs (e.g. fungicides, nitrogen), it is 

required to have a standardized description of the different crop growth stages (Poole 

2005). The above requirement was described decades ago, where Zadoks et al. (1974) 

underlined the need of creating a universal scale for describing the growth stages of 

cereals (e.g. spring barley). The scale developed by Zadoks et al. (1974) named Zadoks 

scale has been widely utilized in agriculture applications (Anderson et al. 1995). 

Tottman et al. (1979) provide a detailed explanation of Zadoks scale (Appendix Table 

S1) regarding the crop development stages of cereals, where, the crop phenological 

cycle is divided into 10 long lasting development phases called principal growth stages 

numbered with one-digit Decimal Code (DC) from 0 (germination) to 9 (ripening). 

Furthermore, in order to enable studies that require a higher level of detail, these stages 

are divided into shorter stages called secondary stages numbered with a two-digit DC 

that ranges from 00 to 99 with some being merged to avoid surplus classification of 

growth stages (Zadoks et al. 1974; Tottman et al. 1979). Figure 2.1 illustrates some 

characteristic crop growth stages of the spring barley phenological development along 

with their two-digit DC. 

 
Figure 2.1 Cereal growth stages according to Zadok DC scale (modified from Anderson et al. 1995). 
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2.2 Fungicides application and crop growth stages  

Fungal diseases are known for diminishing crop yield of spring barley crops by 

decreasing the number of ears along with the size and quality of the grain (Jenkyn 

1974). Therefore, fungicides are widely used to counter fungal crop diseases by 

protecting crop plant matter, where the health state of specific parts of the plants like 

the three final leaves, the ear and the stems are having a great influence on crop yield 

of cereals (GRDC 2013). To maximize the protection of a leaf, fungicides should be 

applied after its full emergence and before the presence of disease signs, hence, it is 

crucial to monitor the emergence of the parts of the crops that have the biggest influence 

on crop yield and quality in order to ensure their health status (Poole 2005). 

Furthermore, a majority of fungicides are useful at certain crop growth stages only, 

where Nakajima (2010) informs that missing the optimal timing of fungicides 

application is a common problem in agricultural management which can have the same 

results as the omission of fungicides. Hence it is of high importance to assess the crop 

growth stages in order to apply fungicides at the suitable time, optimal amount and 

location which as an agricultural management procedure will ultimately increase crop 

profitability by minimizing yield loss and the amount of financial resources spent on 

fungicides (Newlands 2018). The emergence of the plant parts with the highest 

influence on crop yield and quality for cereals according to the Zadoks scale are falling 

between the crop growth stages of early stem elongation and ear emergence (30DC–

59DC; Poole 2005). However, a leaf needs to be fully emerged to receive the maximum 

protection from fungicides application. The stage of the flag leaf being fully emerged 

(39DC) is common crop growth stage for applying fungicides, since at the stage 39DC 

the three most important leaves that drive grain production are fully emerged (Poole 

2005), where additionally fungicides applications at stage 39DC are promoting spikelet 

survivability (AHDB 2020).  

Fungicide applications scheduled once or twice during the growing season are usually 

sufficient for maintaining healthy spring barley crops (AHDB 2020). In the case of 

spring barley the double fungicide application should have the first dose performed 

within the period of late tillering (25DC–31DC) and the second dose between the stages 

of the flag leaf being fully emerged and the complete emergence of the ear (39DC–

59DC) where for malting barley the latest timing of fungicide spraying should be the 

initiation of ear emergence (51DC). On the other hand, in the case of applying 

fungicides only once over the growing cycle of spring barley, the spraying should take 
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place at the stages around the flag leaf emergence (37DC – 39DC; AHDB 2020). As 

noted by McLean (2012) the double timing fungicide application schedule (at 31DC 

and 39DC) is more efficient than a single application, where fungicides applied at the 

initiation of ear emergence (51DC; first spikelet of inflorescence just visible) can 

promote a better yield but with questionable effect on the total crop profit. 

According to Thorne (1966), the photosynthesis by the flag leaf (the last/top leaf) and 

ear is the biggest contributor to the crop yield of cereals, therefore, Jenkyn (1974) 

underline the need of protecting the top leaves (i.e. flag leaf, and the two leaves below 

the flag leaf; flag -1, flag -2) along with the ear of the spring barley plants. The flag leaf 

itself in barley is not that important as for other cereal crops (e.g. wheat), where for 

barley the lower leaves as the flag -1 and flag -2 are having a higher yield contribution, 

with their emergence taking place between the crop growth stages 30DC – 33DC 

(ADAMA, n.d.; Figure 2.2). 

 

Figure 2.2 Crop growth stages of cereals along with important leaves for crop yield (modified from 

ADAMA n.d.). 

Based on the above, it is apparent that the crop growth stages (Zadoks scale), (i) of first 

node detectable (31DC), (ii) flag leaf ligule just visible (39DC) along with the (iii) first 

spikelet of inflorescence just visible (51DC) comprise three crucial stages of the spring 

barley growth cycle for agronomic management (i.e. fungicides application). 
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2.3 Satellite based remote sensing and crop phenology 

2.3.1 Satellite remote sensing and Vegetation Indices 

 

The base of RS is the interaction of the electromagnetic radiation with the surface of 

the earth and the objects on it (Jones and Vaughan 2010). Chuvieco (2016) explains 

that the use of RS enables vegetation monitoring by providing information in different 

parts of the electromagnetic spectrum that can be used for highlighting specific 

properties of the vegetation canopy, such as the leaf’s water content and structure along 

with its photosynthetic pigments. The wavelengths of the electromagnetic spectrum that 

are widely used in vegetation monitoring (Figure 2.3) are the visible light (0.4 – 0.7 

μm; VIS), the near-infrared part (0.7 – 1.1 μm; NIR) and the short wave infrared part 

(1.3 – 2.5 μm; SWIR; Chuvieco 2016). The amount of received and reflected energy 

by a surface (e.g. vegetation) is expressing the reflectance properties of it, which differ 

throughout the EM spectrum resulting in a reflectance signature of that surface (Huete 

2004; Chuvieco 2016). Figure 2.3 illustrates the reflectance properties (or spectral 

signature) of a green leaf in the VIS, NIR, and SWIR parts of the electromagnetic 

spectrum along with the plant properties that drive those changes.  

 

Figure 2.3 Reflectance properties of a green leaf in the visible, near-infrared, and shortwave near infrared 

(where λ is the wavelength; modified from Chuvieco 2016). 

Leaf pigments comprise the main factor for having low reflectance in the VIS spectral 

region (e.g. chlorophyll in red, carotenoids in blue), in the NIR domain the internal cell 

structure of healthy leaves results in high reflectance properties, while the leaf water 

content is having high absorption in the SWIR region with peaks at 1.4 μm, 1,9 μm and 

2,5 μm (Jones and Vaughan 2010; Chuvieco 2016). The large difference in reflectance 
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between the NIR (0.7 – 1.1 μm) and the red (around 0.65 μm) wavelengths has been 

widely exploited for the creation of spectrally based equations as a robust method for 

vegetation monitoring (Reed et al. 2009; Chuvieco 2016). These equations of two or 

more spectral bands also known as VIs are commonly used for assessing vegetation 

properties with the red and NIR being the most commonly used bands in VIs (Huete et 

al. 2002; Chuvieco 2016; Palchowdhuri et al. 2018). 

A widely used VI in crop phenology studies is the Normalized Difference Vegetation 

Index (NDVI; Wei et al. 2016; Zheng et al. 2016; Zeng et al. 2020). NDVI is formulated 

as the ratio of the difference in NIR and red bands divided by their sum as a way to 

normalize for input noises (i.e. viewing effects). Despite its well described drawbacks 

(e.g. saturation under high LAI, soil disturbances) NDVI is known for capturing the 

spatial and temporal aspect of dynamic vegetation activities (Huete et al. 2002; 

Chuvieco 2016). The Enhanced Vegetation Index 2 (EVI2) developed by Jiang et al. 

(2008) is also a ratio based VI which uses the NIR and red bands and comprises a two 

band alternative of the Enhanced Vegetation Index (EVI; Huete et al. 2002). EVI is a 

three band VI, based on the NIR, red and blue bands and along with its two band 

alternative (EVI2), they are known for having the same performance especially under 

good quality observations, where both of them are able to capture variations in dense 

vegetation in contrast with the NDVI. According to, Jiang et al. (2008) the development 

of the two-band EVI2 was motivated by the fact that the blue band that was included in 

EVI mostly for aerosol noise normalization was lacking information about vegetation 

characteristics, while with the recent automation of atmospheric correction procedures 

(e.g. S2 LVL2A, etc.) the differences of these two indices that have origins in the 

exclusion of the blue band are minimized. Another important reason for the creation of 

the EVI2 was the absence of the blue band from many widely used satellite sensors 

(e.g. AVHRR; Jiang et al. 2008).  

2.3.2 Satellite VI time series analysis for crop phenology 

Since VI time series provide invaluable information about the crop growth stages (Pan 

et al. 2015; Araya 2017), their use has been the main RS approach for deriving crop 

phenological characteristics (Sakamoto 2018). However, the presence of noise caused 

by atmospheric effects (e.g. aerosols), cloud contaminations, and sensor and viewing 

effects (partly normalized with NDVI and EVI2) correspond to the main drawbacks of 

optical satellite time series products (Eklundh and Jönsson 2016; Sakamoto et al. 2005). 

The removal of noise is a necessary pre-processing step for acquiring smoothed time 
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series (You et al. 2013) and ultimately for extracting crop phenological metrics (Araya 

et al. 2018). In general, detecting crop growth stages from VI time series can be seen 

as a two-step procedure, where, first step is the reconstruction of a smooth continuous 

VI curve (smoothing and gap filling; Belda et al. 2020), and second step is the analysis 

of the smoothed time series for the extraction of phenological parameters that relate to 

the desired phenological phases (You et al. 2013; Gao et al. 2020).  

Noise Removal and Gap Filling 

Various approaches can be used for removing noise from satellite time series data with 

many comparison studies concluding that there is no universally superior method (Beck 

et al. 2006; Atkinson et al. 2012; Wei et al. 2016; Zheng et al. 2016; Cai et al. 2017; 

Belda et al. 2020). As noted by Eklundh and Jönsson (2016), the Maximum-Value 

Composite (MVC) proposed by Holben (1986) is a simplistic smoothing method that 

was widely adopted in numerous phenology studies based on data with high temporal 

resolution (Jönsson and Eklundh 2002; Xin et al. 2002; Jönsson and Eklundh 2004; 

Zheng et al. 2016). MVC refers to the selection of the highest VI value for every pixel 

of the satellite scene (single location) over a defined period of time (e.g. 8 days) that 

results in a single MVC image representing that period (e.g. decreased temporal 

resolution to 8 days; Holben 1986). A substitute of MVC, the Best Index Slope 

Extraction (BISE) developed by Viovy et al. (1992), has been also utilized in numerous 

phenology studies (White et al. 1997; Lange et al. 2017; Xu et al. 2017; Stendardi et al. 

2019). BISE is based on a window that slides over the raw time series data in order to 

exclude negatively and positively biased noise according to a user defined range of 

accepted fluctuations in the VI values (Viovy et al. 1992). 

In recent years, noise removal is additionally based on more sophisticated methods such 

as the fitting mathematical functions to time series of RS data (Eklundh and Jönsson 

2016; Cai et al. 2017; Zeng et al. 2020). Zheng et al. (2016) focused on monitoring crop 

phenology and tested three of the most common fitting functions that are used in 

phenology studies: (1) the Savitzky–Golay filter (SG), (2) the Double Logistic function 

(DL), and (3) the asymmetric Gaussian function (AG). Cai et al. (2017), performed a 

comparison of these three smoothing methods and classified them in two broad 

categories with respect to their ability to maintain long or short term variations of the 

time series, named as global fitting (DL, AG) and local fitting methods (SG) 

respectively. DL as a global smoothing method is better at capturing the general trend 



 

11 

 

of crop properties, while SG as a local method maintains more of the original shape of 

the time series (Liu and Zhan 2016). Furthermore, Zeng et al. (2020) note that for 

selecting the most suitable smoothing method, it is needed to understand the input data 

along with the smoothing quality that was achieved prior to the extraction of the desired 

phenological metrics, since these factors have a great effect on the results. Figure 2.4 

depicts an example of single year raw NDVI time series data (blue points) of spring 

barley, along with the quality marked acquisitions (marked with red circles) that were 

used for fitting the DL function (red line).  

 

Figure 2.4 Example of single year raw NDVI time series data (blue points) of a single pixel of spring 

barley, showing the quality marked acquisitions (marked with red circles) used for the time series 

reconstruction with the use of the DL function (red line). 

Extraction of phenological parameters 

After reconstructing the smoothed VI time series (Figure 2.4), various methods can be 

used for detecting specific phenological events (e.g. fixed and dynamic threshold, 

moving average, derivative and inflection point based methods), where dynamic 

thresholds are among the most common approaches (Pan et al. 2015; Huang et al. 2019). 

The fixed and the dynamic threshold refer to the selection of a VI value for representing 

the desired phenological phase (Cai et al. 2017). A fixed threshold simply defines an 

absolute VI value for representing the desired phenological event. The dynamic 

thresholds are based on the characteristics of the VI time series (Zeng et al. 2020), such 

as the base level (the average of the minimum values on left and right side of the season 

peak) and the maximum seasonal amplitude (difference of maximum VI value and base 

level; Eklundh and Jönsson 2017). Figure 2.5 shows an example of single pixel NDVI 

time series of spring barley. The green dot along the DL fitted curve represents the use 

of fixed threshold (where NDVI equals to 0.4), and the red dot represents the use of 

dynamic threshold (40% of the amplitude of the season). 
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Moreover, the procedures of smoothing noisy time series data and extracting 

phenological parameters have drawn the attention of many researchers, with several of 

time series processing software available (TIMESAT1, Jönsson and Eklundh (2004); 

PhenoSat2, Rodrigues et al. (2013); CropPhenology3, Araya et al. (2018)). Liu and Zhan 

(2016) and Wei et al. (2016) used a 20% threshold (20% of the amplitude of the season) 

for denoting the Start of the Season (SOS) and the End of the Season (EOS) of crops in 

China. Xu et al. (2017), defined different threshold values for detecting different crop 

growth stages (e.g. heading, senescence) of various crop types (e.g. winter barley, 

winter wheat). 

In this study, TIMESAT 4.0 was used, with the main motivation that new version of 

TIMESAT can handle the irregular time step of S2 time series. TIMESAT has been 

widely used in phenology studies (Xin et al. 2002; Jönsson and Eklundh 2004; Atkinson 

et al. 2012; Liu and Zhan 2016; Wei et al. 2016; Zheng et al. 2016; Cai et al. 2017; 

Huang et al. 2019; Zeng et al. 2020) since it provides a way of applying the most 

common methods for the reconstruction of RS time series (e.g. SG, DL, AG) while it 

also allows the use of user-defined dynamic thresholds for the extraction the desired 

phenological metrics (Zeng et al. 2020).  

  

 
1 http://web.nateko.lu.se/TIMESAT/timesat.asp 
2 https://www.fc.up.pt/PhenoSat/software.html 
3 https://cropphenology.wixsite.com/package 

Figure 2.5  Example single year NDVI raw time series data (blue points) of spring barley (single pixel) 

along with the smooth NDVI curve (DL fit; red line). The green dot represents the use of fixed threshold 

(at 0.4 NDVI) and the red dot represents the use of dynamic threshold (at 40% of the seasonal amplitude).   

 

http://web.nateko.lu.se/TIMESAT/timesat.asp
https://www.fc.up.pt/PhenoSat/software.html
https://cropphenology.wixsite.com/package
http://web.nateko.lu.se/TIMESAT/timesat.asp
https://www.fc.up.pt/PhenoSat/software.html
https://cropphenology.wixsite.com/package
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3. Data and methods 

3.1 Study area 

The study area consists of 21 spring barley fields that fall within three S2 tiles (33VUE, 

33VVE, 33VXG) located in south-central Sweden (Figure 3.1). The selection of spring 

barley as the studied cereal crop was based on the availability of crop growth in-situ 

observations. Barley is known for its resilience to extreme climate conditions and its 

ability to thrive in high latitudes (Baik and Ullrich 2008). In Sweden barley is mainly 

used as a spring crop and can be found around the whole country but mostly at middle 

and lower latitudes (Swedish University of Agricultural Sciences 1996). According to 

the Swedish Board of Agriculture (Jordbruksverket) the total arable land in Sweden 

was approximately 2 500 000 hectares in 2019, where around 990 000 hectares (40%) 

were cultivated with cereals and more specifically 300 000 hectares (12%) were used 

for barley. Based on that, barley was the second most grown cereal crop in Sweden in 

2019 (SCB 2019) where the majority of Sweden’s barley production is used for 

livestock feed needs in the inland and part of it is used for malt production and export 

(Swedish University of Agricultural Sciences 1996). 

 

 

The S2 tiles 33VUE, 33VVE (around 58°37´N, 11º33´E to 57°38´N, 15°10´E) and 

33VXG (around 60°25´N, 16º45´E to 59°56´N, 18°48´E) include a considerable 

Figure 3.1 Study area map, showing the three S2 tiles (33VUE, 33VVE, 33VXG) that include the 21 

barley fields that were sampled in 2017,2018, 2019. 
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percentage of the agricultural areas of central Sweden where each of the tiles covers an 

area of 10 000 𝑘𝑚2 with adjacent tiles (33VUE, 33VVE) having a 10 km overlap. For 

the years 2017, 2018, and 2019 the total number of spring barley fields with available 

in-situ measurements in the S2 tiles of interest was 5, 6 and 10 respectively. 

3.2 Data 

3.2.1 Sentinel-2 data 

S2 is a multi-spectral satellite constellation that consists of S2A and S2B launched in 

2015 and 2017 respectively and offers free products of high spatial resolution (60 to 10 

meter). S2 has a 290 km swath width and provides data in 13 different spectral parts of 

the electromagnetic spectrum, ranging from the visible to the short wave infrared 

(SWIR) wavelength (a detailed description of the different bands can be found in the 

S2 user handbook published by ESA in 2015). The theoretical temporal resolution of 

the constellation is equal to 5 days at the Equator, with the middle latitudes having an 

overlap between adjacent acquisitions that results in a shorter revisit cycle (2–3 days; 

Escolà et al. 2017) but with inconsistent viewing conditions (European Space Agency, 

2015).  

All available S2 Level 2A (LVL2A) and Level 2Ap (LVL2Ap) scenes from the tiles 

33VUE, 33VVE, 33VXG for the years 2017, 2018 and 2019 were downloaded on 26th 

February 2020 (through the Copernicus Open Access Hub1 using Python in conjunction 

with the library Sentinelsat2) without applying a cloud coverage restriction. Both 

LVL2A and LVL2Ap refer to Bottom of Atmosphere (BOA) reflectance products that 

are georegistered in WGS84/UTM (European Space Agency, 2015). Therefore, it was 

not needed to perform any of the common image analysis preprocessing steps (e.g. 

atmospheric, geometric correction). Another feature of LVL2A/p scenes is that they 

include a scene classification product (SCL; generated based on atmospheric 

corrections procedures that ESA applies on these level of products) with 60 and 20 

meter spatial resolution (European Space Agency, 2015). The LVL2Ap (pilot version 

of LVL2A) started being distributed in April 2017 and was replaced by its equivalent 

LVL2A in March 2018. Hence, scenes with an acquisition date before the 3rd of April 

2017 were not included in the analysis, and additionally, the scenes before and after the 

 
1 https://scihub.copernicus.eu/ 
2 https://pypi.org/project/sentinelsat/ 

https://scihub.copernicus.eu/
https://sentinelsat.readthedocs.io/en/stable/
https://scihub.copernicus.eu/
https://pypi.org/project/sentinelsat/
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23rd of March 2018 (LVL2Ap and LVL2A respectively) were treated as the same level 

of products.  

In total, 1832 S2 scenes were downloaded with a total size of 0.9 TB. Table 3.1 shows 

the number of scenes that were used for each of the tiles and years. The year 2017 has 

a significantly lower number of scenes, which stems from the availability of LVL2A 

and LVL2Ap products since not all of the existing S2 scenes (e.g. available as LVL1C) 

have been converted by ESA to LVL2A/p (a complete description of the availability of 

LVL2A/p scenes for the year 2017 can be found in the work of Sudmanns et al. (2019)). 

Table 3.1 Number of Sentinel 2 acquisitions that were used in the analysis per tile (33VUE, 33VVE, 

33VXG) per year. 

 

Out of the 13 spectral bands that S2 provides, Band 4 (Red) and Band 8 (NIR) were 

utilized in this study for the calculation of the selected VIs (NDVI, EVI2), where both 

of them have 10 meter spatial resolution, Table 3.2 shows the basic characteristics of  

these bands. Moreover, the S2 scene classification product (SCL) with original spatial 

resolution of 20 meter was resampled to 10 meter (using the nearest neighbor method) 

and was then used as a quality indicator for the time series analysis. 

3.2.2 In-situ measurements of crop growth stages 

The in-situ crop growth stage measurements of the 21 spring barley fields for the period 

2017-2019 were collected and provided by the Swedish Board of Agriculture 

(Jordbruksverket) in collaboration with the Swedish University of Agricultural 

Sciences (SLU). Xu et al. (2017) described the importance of recording the exact 

location when conducting crop in-situ measurements for reducing any uncertainties that 

can be caused by ground measurements of low spatial quality. That was apparent also 

in this study, when dealing with the vast amount of in-situ measurements that were 

Year 33VUE 33VVE 33VXG Total 

2017 74 95 92 261 

2018 

   2019 

222 

231 

282 

297 

262 

277 

766 

805 

Table 3.2 The two bands of Sentinel 2 that were used in this study (source: ESA, 2015). 

Band        

Number 

Band 

Name 

Central Wavelength 

(μm) 

Spatial Resolution 

(m) 

4 Red 0.665 10 

8 Near infrared 0.842 10 
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provided by Jordbruksverket and SLU. More specifically, a considerable part of the in-

situ measurements did not allow the identification of the sampled spring barley parcel 

(e.g. one pair of coordinates was connected to more than one field, or the in-situ 

measurements were falling on buildings). Thus, it was not possible to include all the 

available ground measurements in the analysis, which in conjunction with the 

distribution of the S2 tiles, affected highly the number of the studied spring barley 

parcels (i.e. 21 parcels).  

The spatial distribution of the sampled spring barley fields is illustrated in Figure 3.1 

The in-situ measurements refer to 13 different varieties of spring barley (Tamtam, SW 

Makof, Severi, Salome, RGT Planet, Propino, Laureate, KWS Irina, Filippa, Ellinor, 

Dragoon, Anneli, and Anakin). The crop growth stage observations are based on the 

Zadok’s scale (Appendix Table S1), where additionally, for 13 fields (out of the 21) the 

sowing date was also recorded.  

Table 3.3 Example of the in-situ measurements protocol showing the field (field number) that was 

sampled, the year, the sampling dates and the corresponding observed crop growth stages (Zadoks scale). 

Two examples of the utilized field measurements that correspond to 2 different spring 

barley parcels are shown in Table 3.3, where the number of the field and the year are 

shown along with the dates of measurements, and the observed crop growth stages 

according to the Zadoks scale. The time step of the in-situ observations is equal to one 

week for most of the observations. The first crop growth stage measurements was in 

most of the cases taken around May (crop growth stages ranging from 10DC to 25DC 

were recorded) which falls around a month after the sowing period (based on the sowing 

date of the observations) while the majority of the final measurements was performed 

around July (crop stages ranging from 70DC to 87DC were recorded). A limitation of 

the in-situ observations, is the fact that the crop growth stages that are of interest in this 

Field 

Number & 

Year 

Sample 

date 

Crop 

Growth 

Stage (DC)  

Field 

Number & 

Year 

Sample 

date 

Crop 

Growth 

Stage (DC)  

#90, 2017 29/05/2017 12 #91, 2019 06/05/2019  12 

 05/06/2017 21  13/05/2019  21 

 12/06/2017 23  20/05/2019  30 

 19/06/2017 31  27/05/2019  31 

 26/06/2017 37  03/06/2019  37 

 03/07/2017 49  10/06/2019  49 

 10/07/2017 65  17/06/2019  59 

 17/07/2017 73  24/06/2019  73 

 24/07/2017 75  01/07/2019  83 

 - -  08/07/2019  83 
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study (i.e. first node detectable; 31DC, flag leaf ligule just visible; 39DC, and first 

spikelet of inflorescence just visible; 51DC) were not always recorded in the in-situ 

observations (e.g. Table 3.3; for the field number 90 in 2017 and 91 in 2019 the crop 

growth stages 39DC and 51DC are not present as measurements). In order to acquire 

the dates of the desired crop growth stages (31DC, 39DC, 51DC) linear interpolation 

was performed according to the Equation 1. 

 𝑦 =  𝑦1 + (𝑥 −  𝑥1) ∗
(𝑦2 − 𝑦1)

(𝑥2 − 𝑥1)
, (1) 

where y is the interpolated Day of Year (DOY) of the desired crop growth stage which 

is denoted as 𝑥 (Zadoks scale), 𝑦1 and 𝑦2 are the DOY of the closest crop growth stages 

recorded respectively before and after the crop growth stage of interest, and 𝑥1, 𝑥2 are 

the crop growth stage recorded respectively before and after the desired crop growth 

stage.  

In that way, for the field number 90 in 2017 in Table 3.3, the date of the 39DC was 

interpolated to be the 178th DOY (27th of June, 2017). As seen in Equation 1 and Table 

3.3, for this interpolation the observations on the 26th of June, 2017 (DOY 177; 37DC) 

and on the 3rd of July, 2017 (DOY 184; 49DC) were used. The above method was 

performed for the majority of the fields, where the crop growth stage 31DC (first node 

detectable) was present in the measurements of 18 individual fields out of the 21 fields, 

the stage 39DC (flag leaf ligule just visible) was recorded for 2 of the fields, while the 

crop growth stage 51DC (first spikelet of inflorescence just visible) was recorded for 3 

fields. Therefore, the interpolation for the crop growth stages 31DC, 39DC and 51DC 

was performed 3, 19 and 18 times respectively. Furthermore, for three of the fields it 

was not possible to perform linear interpolation in order to acquire the desired stages, 

in that case these fields were excluded from the analysis as they could be considered as 

non-informative for the purposes of this research. Table 3.4 shows the dates of the crop 

growth stages 31DC, 39DC and 51DC as obtained after the interpolation. 
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Table 3.4 The 3 crop growth stages of interest (31DC, 39DC, 51DC) for the spring barley fields sample 

(N=10), after the linear interpolation. 

 

The priority was to maintain the original location of the in-situ measurements, but some 

of the in-situ observations were falling on the very edge of the spring barley fields 

which can lead to an inhomogeneous pixel (mixel effect). However, the small sample 

size of spring barley fields did not allow the exclusion of every parcel with low quality 

in-situ measurements. Consequently, all in-situ observations that were located at field 

edges were identified in order to assess any major differences between the original 

location and close by pixels. In the case that the original pixel of the in-situ 

measurements was assessed to be inhomogeneous (mixed pixel), the location of the in-

situ observations was moved 20-30 meters further into the spring barley field (that was 

performed only for the spring barley field number 61 in 2017; the NDVI time series of 

the new location and the original location are shown Figure 3.3 and Appendix Figure 

S3 respectively). Another case where the location of the in-situ observations was 

adjusted is the field 90 sampled in 2017, a detailed explanation for adjusting the original 

observed location of that spring barley parcel is given in Section 5.1 (Figure 5.1, Figure 

5.2). 

  

Field Year Tile 
31DC 

(Date) 

39DC 

(Date) 

51DC 

(Date) 

90 2019 33VUE 27/05/2019 06/06/2019 - 

91 2019 33VUE 27/05/2019 04/06/2019 11/06/2019 

60 2019 33VUE 27/05/2019 10/06/2019 15/06/2019 

62 2019 33VUE 03/06/2019 13/06/2019 19/06/2019 

92 2019 33VVE 03/06/2019 09/06/2019 19/06/2019 

152 2019 33VVE 03/06/2019 12/06/2019 19/06/2019 

62 2018 33VUE 03/06/2018 08/06/2018 13/06/2018 

92 2018 33VUE 28/05/2018 02/06/2018 08/06/2018 

61 2017 33VUE 05/06/2017 11/06/2017 17/06/2017 

90 2017 33VXG 19/06/2017 27/06/2017 04/07/2017 
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3.3 Method 

The methodology in this study can be divided in four major stages (Figure 3.2): (1) the 

calculation and construction of single year VIs time series for 2017, 2018 and 2019, (2) 

reconstruction of the time series with the use of the Double Logistic function, (3) 

identifying optimal thresholds for detecting the crop growth stages of interest (31DC, 

39DC, 51DC), and finally (4) the comparison of the extracted S2 (NDVI, EVI2) results 

against the in-situ measurements in order to assess and compare their accuracy. 

Moreover, in this study, two types of dynamic thresholds were conceptualized, the 

optimal (i) local and (ii) global threshold. The (i) optimal local threshold for each spring 

barley parcel is the threshold that creates an agreement between the in-situ DOY and 

S2 (NDVI, EVI2) derived DOY for the different crop growth stages of interest (31DC, 

39DC, 51DC). The (ii) optimal global threshold is the threshold that induces the highest 

agreement for the different crop growth stages of interest for all the studied spring 

barley parcels (when compared against the in-situ measurements). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 Basic steps of methodology workflow. 
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3.3.1 Preparation of VIs and quality data 

Based on the time and storage limitations of this study, the analysis was limited to two 

of the widely used VIs in phenology studies, the NDVI and EVI2. First step was the 

calculation of NDVI and EVI2 for all scenes. NDVI was computed according to the 

Equation 2: 

 
𝑁𝐷𝑉𝐼 =  

(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷)

(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷)
 , 

(2) 

where ρ is the reflectance values in the respective band. NDVI as a VI is dimensionless 

and has a value range from -1 to 1, where bare soil has values around 0 and values of 1 

expresses vigorous vegetation.  

EVI2 is also dimensionless and its values increase as the amount of vegetation increases 

with a range from -1 to 1. EVI2 was computed according to the Equation 3:  

 
𝐸𝑉𝐼2 =  

𝐺 ∗ (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷)

(𝜌𝑁𝐼𝑅 + 𝐶 ∗ 𝜌𝑅𝐸𝐷 + 𝐿)
 , 

(3) 

where ρ is the reflectance values in the respective band, G equals to 2.5 and corresponds 

to a gain factor, C is equal to 2.4 representing aerosol resistant coefficient and L is equal 

to 1 and corresponds to the canopy background adjustment (Jiang et al. 2008). 

The VIs calculations were performed in Python using the rasterio1 library. In total 3664 

VIs images were computed (a detailed description of the number of VIs per tile per year 

is shown in Table 3.1). Furthermore, the scene classification layer (SCL) that is 

available for every S2 scene (LVL1C and LVL2A/p) was used as a quality flag for the 

input data. It was necessary to first downscale the SCL data from the original spatial 

resolution (20 meter) down to 10 meter using the Nearest Neighbor resampling method 

in order to achieve pixel size consistency of the input data. 

3.3.3 Reconstruction of VIs time series 

 

TIMESAT v4.0 is capable of handling the irregular time step of S2 acquisitions, and 

thus, was used in this study in order to reconstruct the raw S2 time series. The double 

logistic function was used for the reconstruction of the VIs time series since it has been 

reported for having the ability to capture accurately the temporal trends of the rapidly 

 
1 https://pypi.org/project/rasterio/ 

https://rasterio.readthedocs.io/en/latest/
https://pypi.org/project/rasterio/
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changing crop dynamics without showing sensitivity to high levels of local variations 

(Beck et al. 2006; Liu and Zhan 2016). The Double Logistic function has the basis 

function in Equation 4. 

 𝑔(𝑡; 𝑥1, … , 𝑥4) =  
1

1 + 𝑒𝑥𝑝 (
𝑥1 − 𝑡

𝑥2
)

−
1

1 + 𝑒𝑥𝑝 (
𝑥3 − 𝑡

𝑥4
)

  , (4) 

where, the parameter 𝑥1 refers to the time of the left inflection point, 𝑥3 refers to the 

time of the right inflection point, and 𝑥2 , 𝑥4 determine the time periods of increase and 

decrease at 𝑥1, 𝑥3 respectively. As explained by Jönsson et al. (2018) reconstructing 

time series data with unfiltered noise can lead to an inaccurate VI curve. To account for 

that, the aforementioned parameters of the DL function are constrained in range (box 

constrained DL) in order to reduce the effect of noisy signals. A further explanation of 

the box constrained DL can be found in the work of Eklundh and Jönsson (2017) where 

a detailed description of TIMESAT 3.3 functionalities is given. 

TIMESAT allows the use of ancillary data/quality data (e.g. SCL) in order to exclude 

outliers by assigning weights based on noise levels (Eklundh and Jönsson 2017). The 

SCL (Scene classification Layer) of the S2 acquisitions was used in order to assign 

quality weights as a preprocessing filtering method before the reconstruction of the 

smooth VI curve. With the use of SCL data, only the pixels classified as vegetation 

(class 4 in SCL) and non-vegetated areas (e.g. bare soil; class 5 in SCL) were included 

in the analysis with a weight of 1. Pixels that were classified as snow, cloud, or shadows 

were given a weight of 0 and were thus excluded from the smoothing procedure. 

Moreover, TIMESAT compensates for the negatively biased noise that is present in 

various VIs by allowing the adaptation of the smoothed VI curve to the upper envelope 

using a multi-step iterative procedure (Eklundh and Jönsson 2017). TIMESAT is using 

two parameters for the adaption to the upper envelope, the number of iterations and the 

strength of the adaption. The definition of the parameters of the smoothing method can 

be seen as an empirical method which is bounded to the properties of the raw VI time 

series (Cai et al. 2017). For the reconstruction of the VIs time series the number of 

envelope iterations was set to three and the adaption strength was set as two (Table 3.5).  

Additionally, with the use of the seasonal parameters TIMESAT enables the definition 

of the number of seasons to be detected within the studied time period. Because 10 (out 

of the 21) spring barley fields were showing a second season (double crop, or cover 

crop; Figure 3.3) with varying amplitude within the studied period, the seasonal 
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parameter for the reconstruction of the time series was set as 0 to force the generation 

of two seasons. Forcing a double season reconstruction resulted in a satisfying fit for 

the first season which corresponds to the phenological cycle of spring barley (Figure 

3.3; year 2017).  

 

Figure 3.3 Example of NDVI time series of a pixel within a spring barley field (field number 61 in 2017) 

that was showing a double season. This pixel corresponds to the new location of the in-situ observations 

as moved in order to acquire a homogenous spring barley pixel (the NDVI time series of original location 

of the in-situ observations for that spring barley parcel in Appendix Figure S3). 

Likewise the study of Gao et al. (2017), in order to deal with the common agricultural 

practice of crop rotation (i.e. different crop types cultivated at the same field in 

consecutive years), the analysis in this study was based on single year time series. The 

data preparation procedures for analyzing single year time series with TIMESAT have 

been described in detail by Eklundh and Jönsson (2017). The researchers inform that, 

when studying a single year (e.g. 2017), it is required to create artificial time series data 

for the year 2016, and 2018 which are identical to the studied year (i.e. 2017) and are 

placed in the timeline of 2016-2018 to enable the fit of the smoothing function in the 

middle year (i.e. 2017; Eklundh and Jönsson 2017). The settings used for the 

reconstruction of NDVI and EVI2 time series within TIMESAT 4.0 are shown in Table 

3.5. 

Table 3.5 Time series reconstruction settings as used in TIMESAT for the reconstruction of a smooth 

VIs curve. 

Reconstruction settings as used in TIMESAT 

Smoothing Method Box constrained Double Logistic function 

Seasonal Parameter 0 

Number of Iterations 3 

Adaption Strength 2 

Base Level 0.05 
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3.3.4 Thresholds for extracting the crop growth stages of interest (31DC, 

39DC, 51DC) 

As described in Section 3.3.4, two different types of thresholds (optimal local and 

global threshold) were conceptualized in order to acquire the desired phenometrics 

(phenological indicators) regarding the crop growth stages of interest named: (i) first 

node detectable (31DC), (ii) flag leaf ligule just visible (39DC), (iii) first spikelet of 

inflorescence just visible (51DC). The local threshold refers to the optimal threshold 

for each individual spring barley field (single pixel), while the global threshold was 

optimized to give the lowest error (RMSE; in number of days) when applied on all the 

studied spring barley fields. After the pixel level inspection of the location of the in-

situ measurements it was decided that out of the 21 spring barley fields only 10 will be 

used for the optimal global and local threshold definition, since the single pixels studied 

for the 11 excluded fields did not allow the reconstruction of quality time series due to 

the common problems of optical RS time series (e.g. atmospheric contaminations; 

Figure 3.4, Figure 3.5, Appendix Figure S4, Figure S5). 

This exclusion, was based on the fact that the crop growth stage 51DC (first spikelet of 

inflorescence just visible) as reported by Nasrallah et al. (2018) shall fall on the left 

side of the peak, with the peak of the season being during the flowering period (60 – 

69DC). Thus, if the in-situ DOY for the stage 51DC was falling on the right side of the 

peak of the smoothed VI curve, then the fit of the DL function was considered to be 

inaccurate, and therefore, was excluded from the threshold optimization analysis. 

Figure 3.4 depicts the NDVI time series of the location of the in-situ measurements 

(single pixel) for one of the spring barley parcels with available ground measurements 

(field number 93 in 2019). This field was excluded from the analysis since the achieved 

DL fit (Figure 3.4) did not allow the definition of reasonable thresholds that would 

result in a match between the in-situ DOY for the crop growth stages of interest (31DC, 

39DC, 51DC) and the VIs extracted metrics.  

More specifically, for the stage 51DC the in-situ DOY was falling on the right side of 

the smoothed VI peak, thus the achieved fit was considered as an outlier and was 

excluded from the threshold optimization analysis. Additionally, for that single pixel 

(Figure 3.4) the onset of the season (left side of the peak) does not have many quality 

observations (marked as red circles) to support an accurate fit, and thus, the fitted curve 
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and more specifically the green-up phase of the smoothed VI curve can be considered 

to be inaccurate as it is slightly shifted to the left. 

 

 

 

 

 

 

 

Figure 3.4 Example of NDVI time series of a pixel that represents the location of the in-situ 

measurements for one spring barley parcel (field number 93 in 2019). This pixel did not allow the 

reconstruction of a smooth VI curve. Quality observations that were used in the DL fitting procedure are 

marked in red circles. 

Figure 3.5 illustrates the EVI2 time series for the same field (same pixel), where similar 

noise is present which results in a DL fit that is not able to depict accurately the 

phenological progress of that spring barley pixel. 

 

Figure 3.5 Example of EVI2 time series of a pixel that represents the location of the in-situ measurements 

for one spring barley parcel (field number 93 in 2019). This pixel did not allow for the reconstruction of 

a smooth VI curve. Quality observations that were used in the DL fitting procedure are marked in red 

circles. 
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Optimal local threshold definition 

For the 10 studied spring barley fields a manual approach for the identification of the 

optimal local threshold (for each individual field) was performed. Each field was 

investigated at pixel level, where the single pixel representing the location of the in-situ 

measurements was examined to define the optimal local threshold for representing the 

desired crop growth stages (31DC, 39DC, 51DC). As described by Zeng et al. (2020), 

the optimal local threshold was defined as the percentage of the VI amplitude that 

creates an agreement between the in-situ DOY of the different crop growth stages 

(31DC, 39DC, 51DC) and the DOY extracted from the S2 data (NDVI, EVI2). The 10 

spring barley fields were studied at pixel level (at the location of in-situ measurements; 

single pixel) and the optimal local threshold for each field was defined. For example, 

Figure 3.6 shows the NDVI time series of the location (single pixel) of the in-situ 

measurements of a spring barley parcel (field number 91 in 2019). According to the in-

situ measurements the crop growth stage 39DC was recorded on the DOY 155, 

therefore, the optimal local threshold for that pixel was defined as 92% since it created 

an agreement between NDVI DOY and in-situ DOY. 

 

Figure 3.6 Example of NDVI time series of a pixel that represents the location of the in-situ 

measurements for one spring barley parcel (field number 91 in 2019). The achieved DL fit (red line) is 

shown along with the green point representing the crop growth stage 39DC at the optimal local threshold 

92%. The green line represents the in-situ DOY for the crop growth stage 39DC. 

Optimal global threshold definition 

In order to assess the possibility of using a global threshold for detecting the crop 

growth stage of interest (31DC, 39DC, 51DC), the 10 spring barley parcels that allowed 

for a satisfying fit of the DL function were used as the sample (N=10) for the analysis. 

To find the optimal global threshold for each crop growth stage, different thresholds in 
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the range of 45% – 100% (incremented with a minimum step of 1%) were applied as in 

the study by Huang et al. (2019). In that way the optimal global threshold for each crop 

growth stage, was defined as the VI amplitude value that resulted in the highest 

accuracies between S2 derived DOY (NDVI and EVI2) and in-situ observed DOY for 

all of the studied spring barley parcels. The accuracy assessment of the S2 (NDVI and 

EVI2) results regarding the crop growth stages of interest was based on R-square 

(coefficient of determination) and Root Mean Square Error (RMSE; Equation 5, 6 

respectively). 

 𝑅2  =  
𝑐𝑜𝑣(�̂� − 𝑌)2

𝑣𝑎𝑟(�̂�)𝑣𝑎𝑟(𝑌)
 , (5) 

 

 𝑅𝑀𝑆𝐸 = √ 
∑ (�̂�𝑖 − 𝑌𝑖)2𝑁

𝑖

𝑁
 , (6) 

where, 𝑌�̂� corresponds to the S2 derived DOY for the crop growth stages of interest 

(31DC, 39DC, 51DC) for each spring barley parcel included in the sample denoted as 

N, 𝑌𝑖 refers to the DOY based on the in-situ measurements, 𝑐𝑜𝑣(�̂� − 𝑌)2 is the 

covariance between the S2 DOY and in-situ DOY, 𝑣𝑎𝑟(�̂�) is the variance of the S2 

DOY, and 𝑣𝑎𝑟(𝑌) the variance of the in-situ DOY for the different crop growth stages.  

𝑅2 expresses the amount of variation that is explained by the linear model and its value 

range between 0 for low performance models and 1 for models which are able to explain 

fully the variability of the dataset. The RMSE describes the average error (in days) 

between the S2 derived results and the in-situ observations (Huang et al. 2019, Liu and 

Huang 2019). 
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4. Results 

4.1 The optimal local thresholds for detecting the crop growth stages of 

interest (31DC, 39DC, 51DC) 

The NDVI and EVI2 single pixel time series of one spring barley field (field number 

91 in 2019) are depicted in Figure 3.6 (NDVI) and Figure 4.1 (EVI2). For both VIs, the 

smoothed continuous VI curve that was reconstructed using the DL function is showed 

along with the raw data and the quality observations (based on S2 SCL data) marked as 

with the red circles. The achieved DL fit (Figure 3.6, Figure 4.1) was considered to 

depict the growing season of the spring barley parcel in a satisfactory way, where 

observations of high quality (marked in red circle) are supporting the DL fit. The 

optimal local NDVI threshold for that field (field number 91 in 2019) was defined as 

79.8 % for the stage 31DC (resulting in the in-situ observed DOY 147), 92% for the 

stage 39DC (DOY 155; green point in Figure 3.6) and 97.4% for the stage 51DC (DOY 

162).  

For EVI2 the optimal local threshold for the aforementioned spring barley field (same 

exact pixel), equals to 64.5%, 84.2%, and 95% for the crop growth stages 31DC, 39DC 

(Figure 4.1) and 51DC respectively. In that way, the above thresholds created an 

agreement between the in-situ DOY and the EVI2 extracted phenometrics.  

 

Figure 4.1 Example of EVI2 time series of a pixel that represents the location of the in-situ measurements 

for one spring barley parcel (field number 91 in 2019). The achieved DL fit (red line) is shown along 

with the green point representing the crop growth stage 39DC at the optimal local threshold 84.2%. The 

green line represents the in-situ DOY for the crop growth stage 39DC. 

Table 4.1 shows the optimal local thresholds (NDVI, EVI2) for the crop growth stages 

(i) 31DC, (ii) 39DC, and (iii) 51DC for each spring barley field that allowed for an 

accurate fit of the DL function (N=10). It is apparent that the optimal local thresholds 
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of the 10 spring barley fields show high variability (Table 4.1; Figure 4.2), where 

additionally, some optimal local thresholds (mostly for the stage 51DC) are very close 

to the peak of the season (100% threshold). More specifically, the variability of the 

optimal local thresholds for the 10 spring barley fields (in terms of standard deviation; 

SD) is showing a decreasing trend with latter crop growth stages (Figure 4.2, Table 

4.1). 

Table 4.1 Statistics of optimal local thresholds based on NDVI and EVI2 for the crop growth stages 

31DC, 39DC, and 51DC for the 10 spring barley fields that were included in the analysis. 

                                    Optimal Local Threshold (%)  
 Field 

Number  
Sampling 
    Year 

NDVI 
31DC 

NDVI     
39DC 

 NDVI   
 51DC 

    EVI2 
     31DC 

    EVI2     
    39DC  

  EVI2  
    51DC  

90 2019 53.9 83.5 - 46.7 80.5   - 
91 2019 79.8 92 97.4 64.5 84.2   95 
60 2019 63 97.7 99.9 54.5 94   99.3 
62 2019 95 99 99.79 88.5 98.35   99.84 
92 2019 95.65 98.75 99.998 76.7 89.1   99.5 

152 2019 61 78.9 90 22 80.5   98.8 
62 2018 62.3 76.2 87.7 67 79.8   90.2 
92 2018 57 71 84.8 81.2 91.3   97.3 
61 2017 90.5 97.3 99.58 73.5 87.5   96.4 
90 2017 78.4 91.8 97.25 92.4 98.65   99.91 

 Average 73.6 88.6 95.1 66.7        88.3        97.3 
 SD 16.1 10.4 5.9 21.1          7.1          3.1 
 Variance 261.5 108.3 35.7 449.3        51.2        10.1 
 Maximum 95.65 99 99.998 92.4      98.65      99.91 
 Minimum 53.9 71 84.8 22        79.8        90.2 

The crop growth stages 39DC and 51DC based on EVI2 showed a smaller variability 

of optimal local thresholds compared to NDVI. However, the opposite applies for the 

crop growth stage 31DC, where EVI2 resulted in higher variability of optimal local 

thresholds compared to NDVI (SD = 21.1% and SD = 16.1% respectively). 
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Figure 4.2 Standard deviation (SD) of the optimal local thresholds of the 10 spring barley fields 

regarding the crop growth stages 31DC, 39DC, and 51DC. 

Such variability of the optimal local thresholds (unique threshold per field) can be 

explained by the quality of the DL fit, where for each of the barley fields the DL 

function is expected to have a varying reconstruction performance. Moreover, the 

decreasing variability of the optimal local thresholds with later crop growth stages also 

relates to the achieved DL fit, where it appears that the smoothed VI curve was more 

accurate the closer to the peak of the season (Figure 4.2). This could be possibly 

explained further by the higher probability of cloud coverage during the green up phase 

(May – early June) compared to the peak of the season (June – early July). 
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4.2 The optimal global threshold for detecting the crop growth stage – 

First node detectable (31DC) 

For the crop growth stage 31DC (first node detectable) thresholds ranging from 45% – 

90% were used in order to identify the threshold that induces the smallest RMSE against 

the in-situ observations of the 10 studied spring barley fields. The optimal global 

threshold for the crop growth stage 31DC was 74% for NDVI with a RMSE of 6.9 days, 

where for EVI2 the optimal global threshold was 70% inducing a RMSE of 5.1 days 

(Figure 4.3). 

 

 

 

 

 

 

 

 

 

According to the in-situ measurements, the crop growth stage 31DC for the studied 

spring barley parcels was recorded between DOY 147 and 170 (Table 4.2). The 

difference in days between the S2 derived DOY and the in-situ observed DOY for the 

crop growth stage 31DC varies from -13.2 to 6.4 days (range of 19.6 days; Table 4.2) 

for NDVI when applying the optimal global threshold (74%). For EVI2 (optimal global 

threshold 70%) the difference is smaller with a range between -8.2 and +7.2 days (range 

of 15.4 days; Table 4.2). The optimal global threshold for NDVI resulted in a R-square 

of 0.33 and a RMSE of 6.9 days (Figure 4.4), where the NDVI based DOY for the crop 

growth stage 31DC was between DOY 140.8 and 168.2. 

 

 

Figure 4.3 Incremented NDVI and EVI2 thresholds plotted against their induced RMSE (in days) for the 

crop growth stage 31DC (first node detectable). The optimal global threshold for NDVI (74%) induced a 

RMSE of 6.9 days (a), while the optimal global threshold for EVI2 (70%) induced a RMSE of 5.1 days 

(b). 
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Table 4.2 Studied fields with in-situ DOY for the crop growth stage 31DC (first node detectable), along 

with the S2 (NDVI, EVI2) derived DOY and RMSE when applying the optimal global threshold (74% 

NDVI; 70% EVI2) for the studied spring barley fields. The error in days of the global threshold for each 

studied spring barley field is based on VI DOY minus in-situ DOY. 

 

 Optimized Global Threshold for 31 DC (NDVI, EVI2) 

Field 
Number 

Sampling 
Year 

In-situ 
DOY 

 NDVI 
74% DOY 

NDVI 74% 
Error (days) 

  EVI2 
70% DOY 

EVI2 70% 
Error (days) 

90 2019 147 153.1 6.1 153.5 6.5 

91 2019 147 144.4 -2.6 149 2 

60 2019 147 149.8 2.8 151.6 4.6 

62 2019 154 140.8 -13.2 146.8 -7.2 

92 2019 154 142.7 -11.3 151.4 -2.6 

152 2019 154 160.4 6.4 161.2 7.2 

62 2018 154 158.1 4.1 155.1 1.1 

92 2018 148 154.1 6.1 144.4 -3.6 

61 2017 156 149.9 -6.1 154.8 -1.2 

90 2017 170 168.2 -1.8 161.8 -8.2 

  

       NDVI 
      RMSE  

    6.9  
   days 

         EVI2 
         RMSE 

 5.1      
days 

On the other hand, based on EVI2, using the optimal global threshold (70%) for the 

crop growth stage 31DC, resulted in a higher R-square (0.43) and lower RMSE (5.1 

days; Figure 4.4), while the EVI2 observed DOY for the crop growth stage 31DC was 

between the DOY 144.4 and 161.8. In general, the offset of the S2 estimated 

phenological dates for the crop growth stage 31DC did not show any consistent pattern 

of underestimation or overestimation for both NDVI and EVI2 when compared to the 

in-situ measurements (Table 4.2, Figure 4.4). 
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Figure 4.5 and Figure 4.6 depict the resulted phenological maps regarding the crop 

growth stage 31DC for a studied spring barley parcel (field number 91 in 2019; NDVI 

and EVI2 respectively). The location of the in-situ measurements (single pixel) had an 

optimal local threshold of 79.8% for NDVI and 64.5% for EVI2 regarding the crop 

growth stage 31DC (resulting in DOY 147; Table 4.1). When subtracting the DOY of 

the local threshold from the DOY of the global threshold (Global threshold DOY minus 

Local threshold DOY) the difference in days for that pixel was -2.6 days for NDVI 

while the difference for EVI2 was +2 days (Figure 4.5b and Figure 4.6b respectively). 

 

 

Figure 4.4 Comparison between detection of the crop growth stage 31DC (first node detectable) based 

on NDVI (a) and EVI2 (b; N=10). Scatterplot of NDVI derived DOY when applying the optimal global 

threshold (74%) and in-situ observed DOY (R2=0.33, RMSE = 6.9 days; a). Scatterplot of  EVI2 derived 

DOY when applying the optimal global threshold (70%) and in-situ observed DOY (R2=0.43, RMSE = 

5.1 days; b). The red line represents the 1:1 relationship. 
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Figure 4.5 DOY for the crop growth stage 31DC derived from NDVI for the field number 91 in 2019 

with a global threshold of 74% (a) and the difference in number of days between DOY based on the 

global minus local threshold (b). 

 

Figure 4.6 DOY for the crop growth stage 31DC derived from EVI2 for the field number 91 in 2019 

with a global threshold of 70% (a) and the difference in number of days between DOY based on the 

global minus local threshold (b). 

4.3 The optimal global threshold for detecting the crop growth stage – Flag 

leaf ligule just visible (39DC) 

For the crop the crop growth stage 39DC (flag leaf ligule just visible) thresholds ranging 

from 70% – 99% were used in order to identify the threshold that induces the smallest 

RMSE against the in-situ observations of the 10 selected spring barley fields. The 

optimal global threshold for the crop growth stage 39DC (flag leaf ligule just visible) 

was 92% for NDVI with a RMSE of 7.6 days, where for EVI2 the optimal global 

threshold was 91% with a RMSE of 4.8 days (Figure 4.7) 
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According to the in-situ measurements the crop growth stage 39DC for the studied 

spring barley parcels was observed between the DOY 153 and 178 (Table 4.3). The 

difference in days between the S2 derived DOY and the in-situ observed DOY for the 

crop growth stage 39DC varies from -13.4 to +10.4 days (range of 23.8 days; Table 4.3) 

for NDVI when applying the optimal global threshold (92%). For EVI2 (optimal global 

threshold 91%) the difference is smaller with a range between -8.9 and +5.5 days (range 

of 14.4 days; Table 4.3). The optimal global threshold for NDVI resulted in a R-square 

of 0.27 and a RMSE of 7.6 days (Figure 4.8), where the NDVI based DOY for the crop 

growth stage 39DC was observed between DOY 150.6 and 178.2 (Table 4.3).  

 

 

 

 

 

 

 

Figure 4.7 Incremented NDVI and EVI2 thresholds plotted against their induced RMSE (in days) for 

the crop growth stage 39DC (flag leaf ligule just visible). The optimal global threshold for NDVI (92%) 

induced a RMSE of 7.6 days (a), while the optimal global threshold for EVI2 (91%) induced a RMSE 

of 4.8 days (b). 
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Table 4.3 Studied fields with In-situ DOY for the stage 39DC (flag leaf ligule just visible), along with 

the S2 (NDVI, EVI2) derived DOY and RMSE when applying the optimal global threshold (92% NDVI; 

91% EVI2) for the studied spring barley fields. The error in days of the global threshold for each studied 

spring barley field is based on VI DOY minus in-situ DOY. 

  Optimized Global Threshold for 39 DC (NDVI, EVI2) 

Field 
Number 

Sampling 
Year 

In-situ    
DOY 

NDVI     
92% DOY 

NDVI 92% 
Error (days) 

EVI2       
91% DOY 

EVI2 91% 
Error (days) 

90  2019 157  162.4 5.4 161.7 4.7 

91 2019 155 155 0 158.9 3.9 

60 2019 161 156.4 -4.6 159.4 -1.6 

62 2019 164 150.6 -13.4 155.5 -8.5 

92 2019 160 150.6 -9.4 161.2 1.2 

152 2019 163 171.5 8.5 165.6 2.6 

62 2018 159 166.4 7.4 164.5 5.5 

92 2018 153 163.4 10.4 152.8 -0.2 

61 2017 162 156.9 -5.1 163.9 1.9 

90 2017 178 178.2 0.2 169.1 -8.9 

  

   NDVI 
   RMSE  

     7.6  
      days 

         EVI2 
         RMSE 

          4.8 
         days 

Based on EVI2, the optimal global threshold (91%) for the crop growth stage 39DC 

resulted in higher R-square (0.45) and lower RMSE (4.8 days; Figure 4.8) compared to 

NDVI, while the EVI2 derived DOY for the crop growth stage 39DC was between the 

DOY 152.8 and 169.1 (Table 4.3). In general, likewise the results for the stage 31DC, 

the offset of the S2 estimated phenological dates for the crop growth stage 39DC did 

not show any consistent pattern of underestimation or overestimation for both NDVI 

and EVI2 when compared to the in-situ measurements (Table 4.3, Figure 4.8). 
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Figure 4.9 illustrates the resulted phenological maps regarding the crop growth stage 

39DC for one of the studied spring barley parcels (field number 91 in 2019) based on 

NDVI (a) and EVI2 (c). The location of the in-situ measurements (single pixel) had an 

optimal local threshold of 92% for NDVI and 84.2% for EVI2 regarding the crop 

growth stage 39DC (resulting in DOY 155; Table 4.1). When subtracting the DOY of 

the local threshold pixel value from the DOY of the global threshold (Global threshold 

DOY – Local threshold DOY) the difference in days for that pixel was 0 days for NDVI 

while the difference for EVI2 was +3.9 days (Figure 4.9b and Figure 4.9d respectively).  

Figure 4.8 Comparison between detection of the crop growth stage 39DC based on NDVI (a) and EVI2 

(b) for each spring barley field (N=10). Scatterplot of NDVI derived DOY when applying the optimal 

global threshold (92%) and in-situ observed DOY (R2=0.27, RMSE=7.6 days; a). Scatterplot of EVI2 

derived DOY when applying the optimal global threshold (91%) and in-situ observed DOY (R2=0.45, 

RMSE= 4.8 days; b). The dashed line represents the 1:1 relationship.  
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Figure 4.9 DOY for the crop growth stage 39DC derived from NDVI for the field 91in 2019 with a 

global threshold of 92% (a) and the difference in number of days between DOY based on the global 

minus local threshold (b), DOY for the crop growth stage 39DC derived from EVI2 with a global 

threshold of 91% (c) and the difference in number of days between DOY based on the global minus local 

threshold (d). 

4.4 The optimal global threshold for detecting the crop growth stage – 

First spikelet of inflorescence just visible (51DC) 

Regarding the crop growth stage 51DC (first spikelet of inflorescence just visible) 

thresholds ranging from 90% – 100% (peak of the season) were investigated in order 

to identify the threshold that results in the smallest RMSE against the in-situ 

measurements of the 10 studied spring barley fields. The optimal global threshold for 

both NDVI and EVI2 was 99% for the crop growth stage 51DC with a RMSE of 7.2 

for NDVI and 4.2 days for EVI2 (Figure 4.10).  

As seen in Figure 4.10, for the crop growth stage 51DC, the resulting RMSE shows an 

almost linear decreasing trend as the threshold value is approaching the peak of the 

season (100% threshold) followed by a rapid increase after the optimal global threshold 
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(99%). Consequently, when using a threshold value that is greater than 99% (i.e. close 

to the peak of the season when the DL function has a flatter shape) adjusting the 

threshold value will result in a greater change of RMSE than when using thresholds less 

than 99%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the studied spring barley fields did not include any in-situ observations past the 

stage 49DC (field number 90 in 2019), meaning that it was not possible to interpolate 

the DOY for stage 51DC. Therefore, for the crop growth stage 51DC the sample size is 

9 spring barley fields (N=9; Table 4.4). According to the in-situ measurements, the 

crop growth stage 51DC for the studied spring barley parcels was observed between the 

DOY 162 and 185. The difference in days between the S2 derived DOY and the in-situ 

observed DOY for the crop growth stage 51DC varies from -9.1 to +12.2 days (range 

of 21.3 days; Table 4.4) for NDVI when applying the optimal global threshold (99%). 

For EVI2 (optimal global threshold 99%) the difference is smaller with a range between 

-5.9 and +7.1 days (range of 13 days; Table 4.4).  

 

 

 

 

Figure 4.10 Incremented NDVI and EVI2 thresholds plotted against their induced RMSE (in days) for 

the crop growth stage 51DC (first spikelet of inflorescence just visible). The optimal global threshold 

for NDVI (99%) induced a RMSE of 7.2 days (a), while the optimal global threshold for EVI2 (99%) 

induced a RMSE of 4.2 days (b). 
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Table 4.4 Studied fields with in-situ DOY for the stage 51DC (first spikelet of inflorescence just visible), 

along with the S2 (NDVI, EVI2) derived DOY and RMSE when applying the optimal global threshold 

(99% NDVI; 99% EVI2) for the studied spring barley fields. The error in days of the global threshold 

for each studied spring barley field is based on VI DOY minus in-situ DOY. 

             Optimized Global Threshold for 51DC (NDVI, EVI2) 

Field 
Number 

Sampling 
Year 

In-situ 
DOY 

NDVI     
99% DOY 

NDVI 99% 
Error (days) 

EVI2      
99% DOY 

EVI2 99% 
Error (days) 

90 2019 - - - - - 

91 2019 162 165.9 3.9 167.2 5.2 

60 2019 166 163 -3 165.5 -0.5 

62 2019 170 164 -6 165.8 -4.2 

92 2019 170 160.9 -9.1 168.9 -1.1 

152 2019 170 179 9 170.3 0.3 

62 2018 164 172.5 8.5 171.1 7.1 

92 2018 159 171.2 12.2 162.9 3.9 

61 2017 168 165.6 -2.4 171.4 3.4 

90 2017 185 189.6 4.6 179.1 -5.9 

   

   NDVI 
   RMSE 

 7.2  
   days 

              EVI2 
              RMSE 

       4.2  
       days 

The optimal global threshold for NDVI (99%) resulted in a R-square of 0.39 and a 

RMSE of 7.2 days (Figure 4.11a), where the NDVI derived DOY for the crop growth 

stage 51DC was observed between DOY 163 and 189.6 (Table 4.4). For EVI2 the 

optimal global threshold for the stage 51DC (99%) resulted in R-square of 0.69 and a 

RMSE of 4.2 days (Figure 4.11b), where the EVI2 derived DOY for the crop growth 

stage 51DC falls between DOY 162.9 and 179.1 (Table 4.4). As for the stages 31DC 

and 39DC, the offset of the estimated S2 phenological dates for the crop growth stage 

51DC did not show any consistent underestimation or overestimation pattern for both 

NDVI and EVI2 when compared to the in-situ measurements (Table 4.4, Figure 4.11). 
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Figure 4.12 and Figure 4.13 depict the phenological maps for a studied spring barley 

parcel (field number 91 in 2019) regarding the crop growth stage 51DC (NDVI and 

EVI2 respectively). The location of the in-situ measurements (single pixel) had an 

optimal local threshold of 97.4% for NDVI and 95% for EVI2 for the crop growth stage 

51DC (resulting in DOY 162; Table 4.1). When subtracting the DOY of local threshold 

from the DOY of the global threshold (Global threshold DOY – Local Threshold DOY) 

the difference in days for that single pixel was +3.9 for NDVI and +5.2 days for EVI2. 

Another example of phenological maps regarding the crop growth stages of interest 

(31DC, 39DC, 51DC) for one of the studied spring barley parcels (field number 60 in 

2019) is shown in Appendix Figure S1 (EVI2) and Figure S2 (NDVI). 

 

 

 

 

 

 

 

 

Figure 4.11 Comparison between detection of the crop growth stage 51DC based on NDVI (a) and EVI2 

(b) for each spring barley field with in-situ measurements (N=9). Scatterplot of NDVI derived DOY when 

applying the optimal global threshold (99%) and in-situ observed DOY (R2=0.39, RMSE=7.2 days; a). 

Scatterplot of EVI2 derived DOY when applying the optimal global threshold (99%) and in-situ observed 

DOY (R2=0.69, RMSE = 4.2 days; b). The dashed line represents the 1:1 relationship. 
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Figure 4.12 DOY for the crop growth stage 51DC derived from NDVI for field 91 in 2019 with a global 

threshold of 99% (a) and the difference in number of days between DOY based on the global minus local 

threshold (b). 

 

Figure 4.13 DOY for the crop growth stage 51DC derived from EVI2 for field 91 in 2019 with a global 

threshold of 99% (a) and the difference in number of days between DOY based on the global minus local 

thresholds (b). 
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4.5 Comparison of the retrieved crop growth stages based on NDVI and 

EVI2 

After retrieving the crop growth stages of interest (31DC, 39DC, 51DC) based on NDVI 

and EVI2 data using the optimal global thresholds (defined in Section 3.3.4) and as also 

shown by the study of Huang et al. (2019) the comparison of the two VIs results indicate 

that NDVI is having slightly higher optimal (global) threshold values than EVI2 (Figure 

4.14). 

 

Figure 4.14 Values of the optimal global threshold as defined by the threshold optimization for NDVI 

(green) and EVI2 (blue) for deriving the crop growth stages of interest (31DC, 39DC, 51DC). 

The difference in the values of the optimal global threshold is showing a decreasing 

trend with later crop growth stages. The highest difference was retrieved for the stage 

31DC with the optimal global threshold being 74% and 70% for NDVI and EVI2 

respectively. Regarding the crop growth stage 39DC, EVI2 resulted in lower optimal 

threshold (91%) compared to NDVI (92%), while for the crop growth stage 51DC the 

two VIs had the same optimal global threshold (99%; Figure 4.14).  

EVI2 resulted in higher R-square values than NDVI when applying the optimal global 

thresholds for detecting the crop growth stages of interest (31DC, 39DC, 51DC). The 

highest R-square (0.69) was achieved with EVI2 for the crop growth stage 51DC, while 

the highest R-square achieved with NDVI was also for the crop growth stage 51DC. 

The lowest R-square values were found for the stage 39DC when using NDVI (R-

square = 0.27), while for EVI2 the lowest R-square was induced for the crop growth 

stage 31DC (R-square = 0.43; Figure 4.15). 
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Figure 4.15 Optimized Global thresholds for the crop growth stages (31DC, 39DC, 51DC) and 

corresponding R-square values for NDVI and EVI2. 

Regarding the RMSE of the optimal global threshold for NDVI and EVI2 for the 

different crop growth stages (Figure 4.16), the lowest RMSE was achieved for the stage 

51DC using EVI2 (4.2 days), where the highest RMSE (7.6 days) was induced when 

using NDVI (optimal global threshold 92%) for the detecting the crop growth stage 

39DC. The highest RMSE for EVI2 (5.1 days) was acquired for deriving the stage 

31DC (optimal global threshold 70%), while the highest RMSE for NDVI was induced 

for the stage 39DC where the optimal global threshold was defined as 92%. The 

difference between NDVI and EVI2 induced RMSE for the different crop growth stages 

31DC, 39DC, and 51DC was 1.8 days, 2.8 days, and 3 days respectively. 

 

Figure 4.16 Optimized Global thresholds for the crop growth stages (31DC, 39DC, 51DC) and 

corresponding RMSE values for NDVI and EVI2. 
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In general, for all of the different crop growth stages (31DC, 39DC, 51DC) EVI2 

resulted in higher R-square and smaller RMSE than NDVI when using the optimal 

global thresholds. These results describe the performance accuracies of the two VIs and 

suggest that EVI2 performs better than NDVI for detecting the crop growth stages 

31DC, 39DC and 51DC of spring barley. 
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5. Discussion 

5.1 Reconstruction of S2 time series and crop phenological metric 

extraction for crop growth stage detection.  

 

In this study, the accuracies of S2 time series (NDVI, EVI2) for detecting the three crop 

growth stages of interest (31DC, 39DC, 51DC) were analyzed. The results of this study, 

suggest that EVI2 is more accurate than NDVI in detecting the crop growth stages 

31DC (first node detectable), 39DC (flag leaf ligule just visible), and 51DC (first 

spikelet of inflorescence just visible). EVI2 resulted in a RMSE of 4.2 – 5.1 days for 

the different crop growth stages, while the RMSE for NDVI ranged between 6.9 – 7.6 

days. Moreover, EVI2 performed better than NDVI in terms of R-square for all the 

studied crop growth stages (31DC, 39DC, 51DC).  

The results, at the same time are depicting the inaccuracies caused by the common 

drawbacks of optical data (i.e. S2), that result from cloud coverage and other noise 

caused by particles of the atmosphere. Cloud coverage is drastically reducing optical 

data availability, while smaller noise (i.e. shadows, aerosol contamination) are also 

affecting the acquisition of dense high quality time series (Nasrallah et al. 2019; 

Stendardi et al. 2019; d’Andrimont et al. 2020; Gao et al. 2020; Zeng et al. 2020). 

As explained in Section 3.3.4, noisy signals led to low quality S2 acquisitions during 

the growing season which did not allow for the inclusion of 11 spring barley fields in 

the studied parcel sample (out of the 21 spring barley parcels with available in-situ 

measurements). That was because the DL fit for these (11) fields was considered poor 

(Figure 3.4 NDVI; Figure 3.5 EVI2). This limited the sample size of spring barley fields 

that was used in the analysis down to 10 (N=10). The aforementioned disadvantages of 

S2 have been described in various studies (Vrieling et al. 2018; Nasrallah et al. 2019; 

Stendardi et al. 2019; Zeng et al. 2020) and were also apparent throughout the 

reconstruction of the S2 time series. Nonetheless, it must be noted, that S2 appears to 

be capable of monitoring crop phenology and its spatial variability at parcel scale. As 

reported by Nasrallah et al. (2019) and Xu et al. (2017), the time that cereal crops are 

reaching a specific crop growth stage is not the same within a field as a result of 

different conditions. This is obvious in the resulted phenological maps of the studied 

spring barley parcels (in the results section) where the within parcel variability in terms 

of DOY for reaching the crop growth stages 31DC, 39DC and 51DC is depicted 

(Figures 4.5, 4.6, 4.9, 4.12, 4.13, Appendix Figure S1). On the other hand, satellites 
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with a lower temporal resolution (e.g. Landsat) would provide sparser time series, while 

satellites with a daily revisit are usually having coarse spatial resolution (e.g. MODIS) 

and thus, do not enable monitoring of agricultural systems at parcel scale (Pan et al. 

2015). Based on the above, it is apparent that factors like the availability and quality of 

data are having a great impact on the potential of S2 in detecting different crop growth 

stages (Gao et al. 2020).  

Applying quality indicators on the raw time series data is a common pre-processing 

step (Zeng et al. 2020). Therefore, before reconstructing the VI time series with the use 

of the DL function, the Scene Classification Layer (SCL) was utilized as quality flag of 

the S2 data to filter out cloud contaminated observations. It is important to consider 

though, that such quality data (i.e. SCL) are also including errors and thus the time 

series data used in this study were far from noise free. An example of an inaccurate fit 

of the DL function that was induced by the misclassification of a pixel as good quality 

(i.e. vegetation) data when it was obviously contaminated by clouds is shown in Figure 

5.1. After inspecting the SCL data for that pixel, it was assessed that moving the 

location of the in-situ measurements to the adjacent pixel (where according to the SCL 

it was classified as cloud and thus assigned a weight of 0) would result in a more 

visually satisfying fit of the DL function. That was performed in order to include the 

aforementioned field in the threshold optimization analysis. Figure 5.2 shows the EVI2 

single pixel time series of the new location of the in-situ measurements for that spring 

barley field (field 90 in 2017). 

 

Figure 5.1 EVI2 time series of the original location of the in-situ observations for the field number 90 

in 2017. Showing the cloud contaminated observation marked as good quality (in the black rectangle) 

which falls around the peak of the season. 
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Figure 5.2 EVI2 time series of the new location (moved) of the in-situ observations for the field number 

90 in 2017. 

While other methods of cloud pre-filtering could have been adopted, such as the 

acquisition of S2 images based on cloud coverage percentage, it was decided that in 

that way it would not be possible to guarantee a reasonable exclusion of noisy S2 data 

from the time series. That is because, S2 scenes can have a high cloud coverage (e.g. 

70%), but the agricultural parcels of interest (pixels within the parcel) could be cloud 

free. Moreover, the use of a range of weights (0 to 1) instead of binary weights (0 or 1) 

could have been applied for pre-filtering the raw time series data, but with questionable 

benefits with respect to the time and reasoning that is needed for selecting different 

weight values.  

Based on the above, it is obvious that S2 has some strong drawbacks when used in 

phenology studies (i.e. cloud contamination). Therefore, several studies have focused 

on countering such problems through the combination of data (i.e. data fusion) from 

different optical and radar sensors (De Bernardis et al. 2016a; Gao et al. 2017; Stendardi 

et al. 2019). Data fusion methods, especially with the use of radar sensors (which are 

not affected by cloud contaminations) were found to effectively increase the amount of 

available observations throughout the growing cycle (De Bernardis et al. 2016a; 

Nasrallah et al. 2019; Stendardi et al. 2019). Therefore, it is of high interest for future 

studies to investigate the performance of such data fusion algorithms for acquiring 

denser time series, that can be used for extracting phenological metrics which relate to 

different crop growth stages on a more accurate basis. 

Another factor that has a great influence on the extracted phenological results is the 

selection of the time series reconstruction method (Atkinson et al. 2012; Liu and Zhan 

2016; Cai et al. 2017). Among the many smoothing methods that have been trialed in 
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various crop phenological studies (SG, AG, etc.) one might overperform others in 

different environments or crop types (Zeng et al. 2020). In this study, the selection of 

the DL function was based on the fact that DL is capable of capturing accurately the 

phenological cycle of crops while it requires the definition of fewer fitting parameters 

when compared to other smoothing functions (e.g. SG, AG; Liu and Zhan 2016; Wei 

et al. 2016; Cai et al. 2017). 

Moreover, as reported by Cai et al. (2017), beside the selection of the smoothing method 

that is usually based on the characteristics of the data and the purposes of the study, the 

selection of the smoothing parameters is of high importance for reaching the maximum 

potential of a smoothing algorithm. Cai et al. (2017) tested a vast amount of different 

combinations of parameters and they described in detail how the selection of fitting 

parameters such as those that relate to the adaption of the reconstructed VI curve to the 

upper envelope can influence the accuracy of the results. Furthermore, they explained 

that such parameters are defined empirically and are known for having a great influence 

on the extracted phenometrics (e.g. DOY of different crop growth stages). The 

parameters used for the fitting of the DL function such as the (i) seasonal parameter, 

(ii) number of envelope iterations and (iii) adaption strength (Table 3.5) were thus based 

on the empirical judgement of the characteristics of the S2 time series (NDVI, EVI2). 

Therefore, potential directions for a future study could be to assess if different fitting 

settings when using the DL function would alter the results significantly, and also as 

Wei et al. (2016) and Liu and Zhan (2016) suggest, to further investigate the use of 

other reconstruction methods (e.g. SG, AG) in the concept of crop growth stage 

detection. 

Additionally, it is to consider the reliability of the method used (i.e. dynamic thresholds) 

for the extraction of the phenological dates and how the results would differ if other 

methods were deployed. Even though the use of dynamic thresholds is among the most 

popular approaches for extracting phenological metrics (You et al. 2013; Pan et al. 

2015), it is a simple and empirical method (Zeng et al. 2020). Huang et al. (2019) 

presented an enhanced version of the dynamic threshold in order to compensate for the 

effect of the different crop management practices in their study area. Thus, it is to 

consider in the future the use of other more sophisticated and flexible techniques for 

extracting crop phenological metrics that are based on the changing properties (e.g. 

maximum slope, inflection point) of the reconstructed VI trajectory (You et al. 2013; 

Zeng et al. 2020). 
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Lastly, as noted in the introduction section, RS data enable the approximation of the 

crop growth without providing any direct links to crop growth stages (Zeng et al. 2020). 

Consequently, it might not be possible to detect some specific crop stages (Gao et al. 

2017) that correspond to smaller crop biophysical changes than the commonly studied 

phenological events (e.g. SOS, EOS). Therefore, in such cases, it could be more 

efficient to use other kinds of models (i.e. Growing Degree Days, GDD; which 

simulates the crop growth based on temperature data; De Bernardis et al. 2016b; Gao 

et al. 2017). Considering the above, future lines of questioning should be based on 

assessing which crop growth stages that are useful in agronomic management can be 

detected more accurately with the use of S2 data. 

5.2 Validation of results with in-situ measurements 

In order to assess the accuracy of the S2 results regarding the crop growth stages of 

interest (31DC, 39DC, 51DC), the S2 derived phenometrics were compared with the 

in-situ measurements of the spring barley parcels. It is important to note that, the crop 

growth stages of interest were not always recorded in the in-situ measurements 

protocol, and hence, it was needed to approximate the date of the crop growth stages of 

interest by performing linear interpolation (as described in Section 3.2.2), but since 

Zadoks DC is a non-linear scale (Wang and Engel 1998; Ahmed and Stockle 2017) 

such method is expected to introduce uncertainty in the results (during calibration and 

validation). 

Other methods like the GDD could have been used as in the studies of d’Andrimont et 

al. (2020) and Gonzalez Piqueras et al. (2019), to acquire the dates of the desired crop 

growth stages more accurately. Even though, such methods could increase the 

reliability of the comparison results, they require additional data (e.g. temperature; De 

Bernardis et al. 2016b) and yet they also include uncertainties (Zeng et al. 2020) in 

addition to the fact that this kind of modelling was considered to be out of the scope of 

this thesis. Thus, and as suggested in the study of Xu et al. (2017), it is important to 

create a more accurate basis for crop phenology applications by focusing on recording 

the dates of different specific crop growth stages that are of high interest in agricultural 

management (e.g. 31DC, 39DC, 51DC). This can be achieved by adjusting the ground 

sampling schedule based on knowledge of the agricultural conditions within the study 

area (Xu et al. 2017), which could actually be very challenging (Nasrallah et al. 2019). 

Moreover, in-situ measurements always require the assumption that the individuals 

conducting the field observations are experienced and thus able to identify the crop 
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growth stages accurately (Xu et al. 2017). At the same time it is of high importance that 

the field observers follow consistent sampling rules (by taking the in-situ measurements 

within the field and not close to the edges of the parcel) which will ensure that the 

sampling location corresponds to a homogenous crop pixel. 

5.3 Comparison of NDVI and EVI2 phenological metrics based on 

the threshold optimization 

In general, NDVI showed higher values of optimal global thresholds compared to EVI2 

for extracting the crop growth stages 31DC and 39DC (Figure 4.14) which is aligned 

with the findings of Huang et al. (2019), while for the stage 51DC the optimal global 

threshold was the same for both VIs. As Huang et al. (2019) note, the aforementioned 

differences in the optimal threshold values originate from the fact that NDVI captures 

changes in chlorophyll with higher sensitivity than EVI (where EVI2 is considered to 

have similar performance) which results in a higher season amplitude for NDVI 

compared to EVI2 (Figure 3.4, Figure 3.5). Moreover, the researchers note that sensors 

with high spatial resolution (i.e. S2) are capable of providing a homogenous time series 

signal (and not a mix of multiple land cover classes as happens with coarse resolution 

data; i.e. MODIS) which would ultimately increase the accuracy of the resulting NDVI 

phenological metrics. However, this is not depicted in the results of this study where 

EVI2 seems to outperform NDVI for all of the three crop growth stages of spring barley 

that are of interest in this study (31DC, 39DC, 51DC).  

Overall, the RMSE for the different crop growth stages (31DC, 39DC, 51DC) is less 

than 7.6 days based on NDVI and less than 5.1 days for EVI2 (Figure 4.16). Nasrallah 

et al. (2019), defined the range of 6 days as a satisfactory offset, justified by the fact 

that crop growth stages will have a lasting period of a few days which will eventually 

reduce the actual shift of the S2 results. It is to question though if such an offset in days 

is viable for the timely application of external inputs (e.g. fungicides) in agricultural 

systems. Furthermore, the accuracies of NDVI and EVI2 varied for the different crop 

growth stages of interest of spring barley. EVI2 consistently resulted in higher R-square 

values and lower RMSE than NDVI (Figure 4.15 and Figure 4.16 respectively), which 

suggests that EVI2 performed better than NDVI regarding the detection of the crop 

growth stages 31DC, 39DC, 51DC of spring barley. This comes to an agreement with 

the hypothesis of Gao et al. (2017) where EVI2 is expected to detect crop growth stages 

that fall close to the peak of the season more accurately than NDVI. More specifically, 

the greatest difference in the accuracies of NDVI and EVI2 (R-square and RMSE; 



 

51 

 

Figure 4.15, Figure 4.16) was found for the crop growth stage 51DC (where the 

difference in RMSE was 3 days) followed by the crop growth stage 39DC, where both 

stages fall close to the peak of the season. The smallest difference in the accuracies of 

NDVI and EVI2 was found for the crop growth stage 31DC (where the difference in 

RMSE was 1.8 days). Such finding, could be possibly explained by the superiority of 

EVI2 over NDVI in capturing changes under dense vegetation (i.e. relationship with 

leaf area index; Jiang et al. 2008). Moreover, for both NDVI and EVI2, the offset of the 

estimated phenological dates for the different crop growth stages of interest (31DC, 

39DC, 51DC) did not show any consistent pattern in terms of underestimation or 

overestimation when compared to the in-situ measurements (Figure 4.4, Figure 4.8, 

Figure 4.11). 

Even though, it is challenging to make a comparison of phenological results derived 

from optical (i.e. S2) and radar data (i.e. S1; Stendardi et al. 2019) it is interesting to 

compare the results of this thesis with the study of Nasrallah et al. (2019) who used S1 

data to monitor crop phenology. The researchers underline the fact that according to 

their results cereal crops that have reached the stage of germination early will reach the 

heading stage also early, while late germination leads to late heading. However, this is 

not true for the results of this thesis, where a spring barley parcel that was observed 

according to S2 to reach 39DC late would might reach 51DC earlier than a spring barley 

parcel that had reached 39DC earlier. Such a contradictory finding is strictly bounded 

to the achieved fit of the DL function, where the quality of the fit is known for having 

a great influence in the extracted phenometrics (Wei et al. 2016; Cai et al. 2017; Belda 

et al. 2020). 

Moreover, as noted in the introduction section, and as the comparison results between 

NDVI and EVI2 suggest, different VIs are expected to give different phenological 

results (Jiang et al. 2008; Gao et al. 2017; Huang et al. 2019; Zeng et al. 2020). 

Additionally, as showed in the work of Sun et al. (2020), the red-edge bands of S2 are 

expected to improve the performance of VIs regarding crop monitoring, hence, it would 

be interesting to investigate in future work the use of NDVI and EVI2 or other VIs with 

the inclusion of other S2 spectral bands (e.g. red edge).  
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5.5 Near real-time crop growth stage detection  

While phenology studies of precedented years is a widely explored domain (Gao et al. 

2020), the concept of near real-time phenology monitoring, which refers to the 

detection of specific phenological events (e.g. crop growth stages) close to their 

occurrence (Zhang 2017), within the interval of ± 3 days (Liu et al. 2017; Liu et al. 

2018) has drawn little attention (Zhang et al. 2012). Conversely, it is widely accepted 

that monitoring crop phenology in near real-time is beneficial for agronomic 

management (De Bernardis et al. 2016a; Liu et al. 2017; Liu et al. 2018; Defourny et 

al. 2019; Gao et al. 2020). Therefore, it is important to note that, the methodology 

deployed in this study is not capable of providing any information for the ongoing 

growing season in a timely fashion (i.e. in near real-time). As noted, in various 

phenology applications, workflows similar to the one utilized this study enable 

phenological studies for preceding years only since data from the entire growing season 

are required to fit a function (De Bernardis et al. 2016b; Gao et al. 2017; Liu et al. 2017; 

Gao et al. 2020; Zeng et al. 2020). According to Zhang (2017), near real-time 

monitoring of vegetation phenology using RS data is greatly hindered by the 

complications of noise filtering (e.g. atmospheric contaminations) when dealing with 

incomplete time series.  

Nevertheless, great efforts have been directed towards conducting crop phenology 

monitoring in near real-time using different satellites (e.g. MODIS, Landsat, S2) with 

the combination of data from multiple sensors (i.e. data fusion) being extremely 

beneficial (Gao et al. 2017; Liu et al. 2018; Gao et al. 2020). More specifically, Liu et 

al. (2018) demonstrated the simulation of artificially generated VI (e.g. EVI) 

trajectories representing the increasing VI phase of the crop growth. Their method for 

detecting crop growth phases in near real-time is based on the work of Liu et al. (2017) 

and uses climatological phenology data (potential crop growth derived from historical 

MODIS data) and timely available satellite acquisitions (i.e. Visible Infrared Imaging 

Radiometer Suite; VIIRS). In a similar fashion, Olsson et al. (2016) utilized TIMESAT 

along with historical and timely available MODIS NDVI time series data to monitor in 

near real-time forest defoliation. For that, they used the DL function to reconstruct time 

series of two hundred MODIS pixels in order to create an average seasonal NDVI 

trajectory that represents a normal growing season. Furthermore, they explained that 

such methods might be also applicable on S2 data.  
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In that way, it could be possible to use historical MODIS data in combination with S2 

data to create a VI trajectory (Olsson et al. 2016) that represents a typical growth cycle 

of barley. Additionally, the potential VI trajectory of spring barley could also be 

possibly derived by exploiting the rich spatial domain of S2. Meaning that instead of 

using the time domain (historical data) as in the case of sensors with coarse spatial 

resolution (e.g. MODIS), for S2 the larger amount of pixels might be able to provide 

the potential VI trajectory of spring barley which can be ultimately combined with 

timely available S2 acquisitions for detecting crop growth stages in near real-time. 

Based on the above, it is of high interest to investigate the capabilities of S2 in near 

real-time crop growth stage detection by deploying more sophisticated approaches 

along with its data fusion possibilities. 
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6. Conclusion 

This study demonstrated the use of S2 time series data (NDVI, EVI2) for deriving the 

phenological cycle of spring barley and ultimately for detecting three specific crop 

growth stages that are of high interest in agronomic management, named according to 

the Zadoks scale as: (i) first node detectable (31DC), (ii) flag leaf ligule just visible 

(39DC) and first spikelet of inflorescence just visible (51DC). To achieve this aim, in-

situ measurements were used to calibrate and validate the results of the (i) optimal local 

and (ii) global thresholds for the different crop growth stages of interest. 

According to the results of the global threshold optimization, the induced RMSE and 

R-square values based on NDVI and EVI2 showed a varying agreement between the 

in-situ observations and derived phenometrics for the different crop growth stages of 

interest (31DC, 39DC, 51DC). More specifically the resulted RMSE when applying the 

optimal global threshold for NDVI was in the range 6.9 days – 7.2 days, where for EVI2 

the induced RMSE ranged between 4.2 days – 5.1 days. It is challenging though to 

decide whether the resulted RMSE when applying the optimal global threshold for both 

VIs is in an acceptable range for applying fungicides (or other external inputs). 

In general, the variability of the optimal local thresholds for both NDVI and EVI2 

showed a decreasing trend with later crop growth stages. In detail, for the stages 39DC 

and 51DC NDVI showed higher SD (10.4%, 5.9% respectively) compared to EVI2 

(7.1%; 39DC, 3.1%; 51DC). Conversely, for the stage 31DC EVI2 resulted in higher 

SD (21.1%) than NDVI (16.1%). 

The overall results showed a varying agreement between the in-situ observations and 

the derived phenometrics based on NDVI and EVI2 for the different crop growth stages 

of interest (31DC, 39DC, 51DC) when applying the optimal global thresholds. Though, 

the extracted phenological dates associated with the optimal global thresholds based on 

the RMSE and R-square values seem to be moderately accurate when compared to the 

in-situ observations. 

However, the uncertainty related to the in-situ measurements in conjunction with the 

small sample size of spring barley parcels that were used in the analysis does not allow 

any confident conclusions. Therefore, an attempt has to be made in order to record the 

exact dates of the crop growth stages of interest in the field protocol, along with the 
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inclusion of more parcels in such analysis in order to increase the reliability of the 

results. 

In general, EVI2 consistently performed better than NDVI in terms of R-square and 

RMSE for all the different studied crop growth stages (31DC, 39DC, 51DC) when 

applying the optimal global threshold. The same applies in terms of variability of the 

optimal local threshold, except for the stage 31DC, where NDVI was better than EVI2. 

Thus, the results of this study suggest that EVI2 was generally more accurate in 

detecting the three crop growth stages of interest. 
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Appendix 

 

Figure S1 Example of a spring barley field (field number 60 in 2019) map showing the derived DOY 

from EVI2 for the crop stage 31DC when applying the global threshold (70%; a), and difference map in 

number of days based on the global minus local thresholds (b). DOY from EVI2 for the crop stage 39DC 

when applying the global threshold (91%; c), and difference map in number of days based on the global 

minus local thresholds (d). DOY from EVI2 for the crop growth stage 51DC when applying the global 

threshold (99%; e), and difference map in number of days based on the global minus local thresholds (f). 
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Figure S2 Example of a spring barley field (field number 60 in 2019) map showing the derived DOY 

from NDVI for the crop stage 31DC when applying the global threshold (74%; a), and difference map in 

number of days based on the global minus local thresholds (b). DOY from NDVI for the crop stage 39DC 

when applying the global threshold of (92%; c), and difference map in number of days based on the 

global minus local thresholds (d). DOY from NDVI for the crop growth stage 51DC when applying the 

global threshold (99%; e), and difference map in number of days based on the global minus local 

thresholds (f). 
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Figure S3 NDVI time series of a pixel that represents the location of the in-situ observations for a 

spring barley parcel (field number 61 in 2017) showing the effect of a mixed pixel. The NDVI time 

series of the new location is shown in Figure 3.3. 

 
 
Figure S4 Example of NDVI time series of a pixel that represents the location of the in-situ 

measurements for one spring barley parcel (field number 91 in 2018). This pixel did not allow the 

reconstruction of a smooth VI curve. Quality observations that were used for the DL fit (red line) are 

marked in red circles. 
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Figure S5 Example of NDVI time series of a pixel that represents the location of the in-situ 

measurements for one spring barley parcel (field number 217 in 2019). This pixel did not allow the 

reconstruction of a smooth VI curve. Quality observations that were used for the DL fit (red line) are 

marked in red circles. 
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Table S1 Zadoks scale for crop growth stages of cereals, with corresponding DC - decimal code (modified from Zadoks et al. 1974). 

DC Description DC Description DC Description DC Description

0 Germination 3 Stem elongation 6 Anthesis 9 Ripening

00 Dry seed 30 Pseudostem (leaf sheath) erection 60 — 90 —

01 Start of imbibition (water absorption) 31 First node detectable 61 Beginning of anthesis 91 Caryopsis hard (difficult to divide)

02 — 32 2nd node detectable 62 — 92 Caryopsis hard (not dented by thumbnail)

03 Imbibition complete 33 3rd node detectable 63 — 93 Caryopsis loosening in daytime

04 — 34 4th node detectable 64 — 94 Over-ripe, straw dead and collapsing

05 Radicle (root) emerged from caryopsis (seed) 35 5th node detectable 65 Anthesis half-way 95 Seed dormant

06 — 36 6th node detectable 66 — 96 Viable seed giving 50% germination

07 Coleoptile (shoot) emerged from caryopsis 37 Flag leafjust visible 67 — 97 Seed not dormant

08 — 38 — 68 — 98 Secondary dormancy induced

09 Leaf just at coleoptile tip 39 Flag leaf ligule just visible 69 Anthesis complete 99 Secondary dormancy lost

1 Seedling Growth 4 Booting Process 7 Milk Development

10 First leaf through coleoptile 40 — 70 —

11 First leaf unfolded 41 Flag leaf sheath extending 71 Caryopsis (kernel) water ripe

12 2 leaves unfolded 42 — 72 —

13 3 leaves unfolded 43 Boots just visibly swollen 73 Early milk

14 4  leaves unfolded 44 — 74 —

15 5 leaves unfolded 45 Boots swollen 75 Medium milk

16 6 leaves unfolded 46 — 76 —

17 7leaves unfolded 47 Flag leaf sheath opening 77 Late milk

18 8 leaves unfolded 48 — 78 —

19 9 or more leaves unfolded 49 First awns visible 79 —

2 Tillering 5 Infloresence emergence 8 Dough Development

20 Main shoot only 50 — 80 —

21 Main shoot and 1 tiller 51 First spikelet of inflorescence just visible 81 —

22 Main shoot and 2 tillers 52 — 82 —

23 Main shoot and 3 tillers 53 1/4 of inflorescence emerged 83 Early dough

24 Main shoot and 4 tillers 54 — 84 —

25 Main shoot and 5 tillers 55 1/2 of inflorescence emerged 85 Softdough

26 Main shoot and 6 tillers 56 — 86 —

27 Main shoot and 7 tillers 57 3/4 of inflorescence emerged 87 Hard dough

28 Main shoot and 8 tillers 58 — 88 —

29 Main shoot and 9 or more tillers 59 Emergence of inflorescence completed 89 —
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