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Abstract

The Swedish construction industry is subject to a high rate of occupational injuries,
where overload factors are a significant cause. Through Human Activity
Recognition, movement data can be collected and analyzed, enabling the
identification of harmful movement patterns with the use of machine learning. This
study aims to describe the environmental barriers and stakeholder attitudes towards
a smart construction helmet which enables this kind of data collection, while
evaluating the performance of the supervised machine learning algorithm Random
Forest when applying it to movement data. It asks whether collecting movement
data violates the privacy of construction workers, or if there are other significant
aspects to consider in the adoption process.

Based on a literature review on the Swedish construction industry, digitalization and
privacy, interviews were conducted with stakeholders within five relevant roles to
gather their attitudes towards the smart helmet. Furthermore, a group of eleven
subjects participated in the collection of movement data which was further analyzed
with the Random Forest algorithm. Analysis of the interview responses
demonstrated a positive attitude from all stakeholders, where technology resistance
was an obstacle, while privacy was a less emphasized issue. The movement data
analysis showed significant recognition skills after using reviewed methods to
manipulate the data. However, the collected dataset was not satisfactory to alone
show these results but was complemented by an external dataset. The results
indicate that the construction industry may be ready for a smart helmet if the
presented gains outweigh the technology resistance and the added weight of the 10T-
device. Further research is however needed to develop the recognition skills to
analyze more detailed movement data.

Keywords: machine learning, Random Forest, Human Activity Recognition,
construction industry, digitalization, privacy



Sammanfattning

Den svenska byggbranschen ar hart drabbad av arbetsskador, dar belastningsskador
ar en Overvdgande orsak. Genom Human Activity Recognition kan rorelsedata
samlas in och analyseras, vilket mojliggor identifiering av skadliga rdrelsemdnster
med maskininlarning, ett vaxande vetenskapsomrade. Studien syftar att beskriva de
omvarldsfaktorer och olika intressenters attityd gentemot en smart bygghjélm som
mojliggdr den hér typen av datainsamling. Parallellt utvérderas prestandan hos den
vagledda maskininlarningsalgoritmen Random Forest, nar den appliceras pa
rorelsedata. Studien ifragasatter om insamling av rorelsedata &r en inskrankning pa
den personliga integriteten hos byggarbetare, eller om det finns andra viktiga
aspekter som bor tas hansyn till i implementeringen av hjalmen.

Baserat pa en litteraturstudie rérande den svenska byggbranschen, digitalisering och
personlig integritet, utférdes intervjuer med intressenter inom fem relevanta roller,
for att sammanfatta deras attityder gentemot den smarta hjalmen. Vidare deltog en
grupp av elva representanter i insamlingen av rorelsedata, som senare analyserades
med Random Forest-algoritmen. Analys av intervjusvaren visade pa en positiv
attityd bland samtliga intressenter, dar teknologiskt motstand var ett uttryckt hinder,
medan den personliga integriteten var ett mindre betonat problem. Analysen av
rorelsedata visade signifikant igenkénning av olika rérelser efter anvandning av
granskade metoder for att manipulera data. Emellertid var det insamlade datasetet
inte tillrackligt for att pa egen hand visa dessa resultat, utan var kompletterat med
ett externt dataset. Resultaten indikerar att byggbranschen kan vara redo for en smart
hjalm, under forutsattning att de presenterade vinsterna véger upp for det
teknologiska motstandet och den adderade vikten till hjalmen som den teknologiska
applikationen medfér. Vidare forskning pad omradet kravs dock for att utveckla
igenk&nningen och mdjliggora analys av mer detaljerade rorelsedata.

Nyckelord: maskininl&rning, Random Forest, Human Activity Recognition,
byggbranschen, digitalisering, personlig integritet



Acknowledgements

The production of this thesis has been an interesting process, giving us the
opportunity to combine our previous knowledge while deep diving into two areas
that were completely new to us - the science of machine learning and the
construction industry. While we many times have encountered challenges to try our
patience, this process has also been very inspiring and rewarding, which we will
carry with us in future projects.

First, we would like to thank Cybercom and all employees involved in developing
the smart helmet for the opportunity to work with this project and providing us with
the tools needed to finish it. We would especially like to thank our supervisor at
Cybercom, Dennis Zikovic for his continuous support and management whenever
this project took new turns.

Secondly, we would like to thank our supervisors at LTH, Emil Akesson, and Emma
Fitzgerald for guiding us through this project. Taking part of their input and
knowledge did always generate giving discussions to bring us further and improve
our thesis. We would also like to thank our opponents Ellen Peber and Erik Waéstfelt
for providing us with new perspectives and constructive feedback, which helped us
fine-tune this thesis.

Finally, we would like to express our gratitude to all the experts and company
representatives that we have received insights from through the conducted
interviews, as well as to the research subjects that participated in the smart helmet
data collection.

Lund, May 2020
Sarah Johannesson and Johanna Ogren



Table of Contents

List of Acronyms and ADDreviations.............cccveiiieiie i 9
L INEPOTUCTION ... 10
1.1 Problem Definition..........ccooiiiiiiiiiieee e 10
1.2 ReSEArch QUESTION ........eiiiiiiiiie ettt e 11
1.3 LIMIEAEIONS. ... 11
1.4 CONEIIDULTONS ... 11
1.5 DISPOSTEION. ...ttt 12
2 BaCKgrOUNG .......ooieieeie ettt 13
2.1 The Construction INAUSEIY ..........coiiiiiieiiee e 13
2.2 Privacy Consequences from Digitalization ..............ccccooeevviiiiiiciicnnenn 17
2.3 Human Activity RECOGNITION .........coeiiiiiiiiiecieei e 19
2.4 The Fundamentals of Maching Learning...........ccccevvvveieeivennenieeieesee 22
2.5 Evaluation of Supervised Learning Algorithms ............ccccccvvveiciiniinnenn 25
2.6 The Random Forest AIGOrithm ............ooovviiiiiiiie e 28
K IV, 1<7 1 T o (o] (0o SRR 32
3.1 Understanding the Environmental Barriers of the Smart Helmet ............... 32
3.2 Body Movement Analysis APProach ..........cccccvvveiiiiiiiieiicnc e 38
4 INTErVIEW RESUIES ... 49
4.1 FASIDIITY ..o 49
4.2 DESITADTITY ..o 50
4.3 VIADTHEY ..o s 52
4.4 SUMIMETY ..ottt e e e s e e nnneean 52
5 Body Movement Analysis ReSUIES...........ccooviiiiiiiiicee e 54
5.1 Analysis of the Preprocessed Smart Helmet Dataset .............c.ccoccveviviennenne 54
5.2 Analysis of the Raw Time-Series External Dataset .............cccoccevcvviieninne 58

7



5.3 Analysis of the Preprocessed External Dataset...............ccooveiveiieniinniene 64

5.4 SUMMAIY ..ottt e e e e 67
B DIHSCUSSION ...ttt 68
6.1 The Environmental Barriers for the Smart Helmet.............coccooiviiinienn. 68
6.2 Body Movement Analysis Performance...........ccccoovverveniienienienieeneee 71
6.3 SUMMAIY ...ttt e s 75
6.4 FULUIE RESEAICH ... 76
T CONCIUSTON .. 77
8 RETEIBNCES ...t 78
Appendix A Interview Guides (in SWedish) .........cccceviiiiiiiiiiece e 84
AL Trade Union (TU) .o 84
A2 EMPIOYEr (NCCL) .ot 85
A.3 Employer & Employee (NCC2).......ccoveiiiiiiiiieiicieeeeee e 86
A4 Legal SErVICES (LEG) ...ooiuiiiiiiiiiiiiceeeee e 87
A.5 Technological EXpert (TECH)........coooiiiiiiiiiieecee e 88
Appendix B Explanatory Tables ...........oooiiiiiiie e 90
B.1 Supervised Machine Learning Algorithm Characteristics........................ 90
B.2 Activities for Data ColleCtion ............ccccovviiiiiiiiiicee e 91
B.3 Data PreproCESSING .....cccvveeitieeiiiie et esiieeesieeesteeeseeeeseeeesneeeesnneesneeeesneeeens 92
Appendix C Implementation Code..........cccveiiiieiiieiiee e 104



List of Acronyms and Abbreviations

Al Artificial Intelligence

CAGR Compound Annual Growth Rate
FFT Fast Fourier Transformation
GDPR The General Data Protection Regulation
HAR Human Activity Recognition
loT Internet of Things

IT Information Technologies

JSON JavaScript Object Notation

KNN K-nearest Neighbor

LDA Linear Discriminant Analysis
MCC Matthew Correlation Coefficient
RQ Research Question

SVM Support Vector Machines

UCl University of California Irvine



1 Introduction

The introductory chapter aims to firstly present the problem definition based on a
short underlying background, which will be further explained in Chapter 2. This
will be followed by the research question and the limitations that are considered in
this thesis. Ultimately, the contributions that the thesis will bring to academic
research will be presented.

1.1 Problem Definition

The Swedish construction industry is subject to the highest rate of occupational
injuries and illnesses among all industries in Sweden. Construction workers are
often likely to operate on construction sites under constantly changing conditions,
creating an unsafe environment and an increased risk of accidents (AFA Forsékring,
2017). Among the reported injuries, 17 percent are caused by movements leading to
overload and/or overuse injuries. Furthermore, in a long-term perspective, as much
as 47 percent of occupational injuries are caused by overload factors (Samuelson,
2018).

Meanwhile, the science of machine learning is experiencing explosive growth, with
its market’s expected compound annual growth rate (CAGR) of 43.7 percent
between the years of 2020 and 2030 (Prescient & Strategic Intelligence, 2020).
Human Activity Recognition (HAR) has been an active field of research for over
two decades and builds on detecting body movements with the help of data collected
from either external or wearable sensors (Lara & Labrador, 2013). With the help of
stronger machine learning capabilities, this is an area of research that has expanded
lately.

The possibility to detect harmful movement patterns could prevent them from
causing long-term and irreversible injuries. This could in turn enable a healthier
work-life for construction workers as well as resulting in reduced healthcare costs.
However, due to the General Data Protection Regulation (GDPR) it is important to
consider what type of personal information is permitted to collect and store
regarding employees, and how this is handled.

With this idea in mind, the purpose of this research is to evaluate the possibility of
developing a smart construction helmet (later referred to as the smart helmet), which
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by applying machine learning on movement data can prevent these kinds of injuries,
without violating the construction workers’ integrity rights.

1.2 Research Question

This project aims to answer the following research question (RQ):

RQ 1 Is Random Forest applicable for the smart helmet and what are the stakeholder
attitudes towards the smart helmet?

RQ 1.1 What are the environmental barriers in the Swedish construction
industry for the smart helmet, with regards to the stakeholder attitudes?

RQ 1.2 Can Random Forest make good classification from the movement
data collected from the smart helmet?

1.3 Limitations

To enable giving a clear answer in the pre-study, the scope has been narrowed with
two conditions: only studying the Swedish construction industry, and only
considering how the smart helmet would be implemented with regards to Swedish
regulations. This, as both the industry structure and the regulatory framework of
each country are believed to have an impact on the implementation environment and
process.

Due to the outbreak of Covid-19 in the spring of 2020, the data collection was not
executed according to plans, since the variety of research subjects could not be used
as first expected. Therefore, the research subject attributes presented in the
methodology chapter are not as widely spread as had been wished for. Furthermore,
during the data collection unforeseen connection errors to the Azure server were
encountered. This resulted in a less efficient data collection, and hence less amount
of data due to the time limitation.

1.4 Contributions

This project contributes to the current research on smart helmets within the
construction industry by evaluating both the social and technological aspects of its
implementation. From the social perspective, it provides a review of the
construction industry and its stakeholder attitudes, and the possible implications of
introducing a smart helmet with a certain focus on the privacy of users. From the
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technological perspective, it contributes with an evaluation of the Random Forest
machine learning algorithm when applied on an activity dataset, inspired by
movements in the construction industry, collected through the smart helmet. This,
as a first step in research towards identifying and preventing harmful movement
patterns among construction workers. Furthermore, an implementation code for
preprocessing data according to the used methods will be provided. In addition to
this, the explorations may not only be limited to the construction industry but could
also provide guidance for projects related to other industries.

1.5 Disposition

The background to this thesis will first be presented, elaborating on the construction
industry structure, its digitalization initiatives, and how privacy is related to this.
Moreover, the fundamentals of HAR and machine learning will be explained with
the purpose to give the reader an understanding of the subject, to better follow the
analysis further on. Further, the methodology used for this thesis will be presented,
describing how the work process was conducted and the method chosen to answer
the research questions from two perspectives: the environment of the smart helmet,
and the implementation of the machine learning algorithm. Subsequently, the
methodology will be followed by the interview and observation results of the pre-
study, to create a practical base for the problem to be better understood. The results
of the body movement analysis will then be presented to describe the performance
of the Random Forest algorithm. The results will then further be evaluated and
discussed to answer the purpose of the thesis. Lastly, a conclusion will present the
reflections from this work process.
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2 Background

The theory chapter is divided into five parts. The first two parts will explain the
prerequisites of the pre-study, focusing on the social aspects. First, the relevant
fundamentals of the construction industry are presented. This includes an
explanation of the Swedish industry structure and its issue with occupational
injuries, together with the general digitalization progress of the industry. Second, it
will be reviewed how privacy and personal integrity rights can be handled in an
increasingly digital business and working environment. The following parts will
focus on the prerequisites from a technical perspective. This will include the
definitions and technology behind human activity recognition, as well as related
research on the subject. Furthermore, the science behind machine learning will be
explained, with a certain focus on supervised learning and the Random Forest
algorithm which will be evaluated in the report.

2.1 The Construction Industry

The Swedish construction industry consisted in 2019 of 327,000 employees, which
represents 6.4 percent of the engaged workforce in Sweden, and entails an increase
of 152,000 employees since the turn of the millennium (Byggféretagen, 2020b;
Statistiska Centralbyran, 2020). Approximately 10 percent of these are employed at
one of the three largest construction firms: PEAB, Skanska, and NCC
(Byggforetagen, 2020a). Out of 107,582 companies within the construction
industry, only 662 companies had more than 50 employees in 2019 (Byggforetagen,
2020b). Hence, most construction companies are small enterprises, often active as
subcontractors to larger firms.

2.1.1 Industry Regulations

In Sweden the right of association gives all employees the right to join a trade union
of their choice, which in each sector determines collective agreements to which
companies within that sector need to comply with. The trade unions and employer
organizations are responsible for the fulfillment of these regulations towards
employees and employers, while the government does not interfere (Unionen,
2020). Considering the construction industry, Byggnads is a trade union with over
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100,000 members, supporting around 80 different occupational groups, meaning
that approximately one-third of all employees in the construction industry are
members (Byggnads, 2019).

It is the employer together with several involved project stakeholders that are
responsible for safe work conditions in construction projects. In each project there
are two work environment coordinators responsible for the work environment
during the planning phase and the construction phase respectively
(Arbetsmiljoverket, 2019). Alongside, AML 1977:1160 is a general law for all
Swedish industries, providing legal regulations to prevent health issues and
accidents in the work environment. Furthermore, AFS 2001:1 ensures that the
employer continuously evaluates their business and activities for the same purpose.
If the employer itself does not have the sufficient resources and competence, the
same regulation states that the employer must engage an occupational health service
to provide health care.

2.1.2 Injuries in the Construction Industry

Despite the regulations and safety measurements previously presented, the
construction industry is subject to the highest rate of occupational injuries and
illnesses among all industries in Sweden. Construction workers are often likely to
operate on construction sites under constantly changing conditions, creating an
unsafe environment and an increased risk of accidents (AFA Foérsdkring, 2017).
Apart from the construction site changes due to the project process, the workforce
on the site will also change (Kines, et al., 2011). This may increase the risk of
accidents, as safety information on the worksite is not guaranteed to reach all
construction worker (Stergiou-Kita, et al., 2015).

Although the yearly number of reported injuries has decreased in recent years, the
frequency of reported injuries was still 11.5 per 1,000 construction workers in 2018.
Among these, 17 percent of the reported injuries are caused by movements leading
to overload and/or overuse injuries. Furthermore, from a long-term perspective, as
much as 47 percent of occupational injuries are caused by overload factors
(Samuelson, 2018). Generally, overload factors most commonly originate from
repetitive activities, heavy lifting, transferring of objects, and inconvenient body
positioning (Arbetsmiljoverket, 2018). More specifically, approximately 30 percent
of construction workers state that they lift more than 15 kg at least once per day,
while the percentage is less than half in other industries (Arbetsmiljoverket, 2015).

The construction industry did until 1993 have an occupational health service
specifically assigned to them, called “Bygghalsan” (“The Construction Health”).
The years following the termination of Bygghélsan, expert knowledge among
occupational health services were considered deficient by employers and trade
unions, as construction companies were forced to employ more general health
services. Furthermore, the knowledge about health and safety-related issues varies
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between large and small construction companies (Byggvarlden, 2015). This issue is
also intensified as it is more difficult for smaller companies to employ these types
of services compared to larger companies, due to limited resources and that the
occupational health services often prioritize larger customers in time and resources
(Astr'om Paulsson, et al., 2014; Johansson, 2016).

However, nearly 20 years after the termination of Bygghdlsan new initiatives started
to sprout. A collaboration between Lulea University of Technology, Development
Fund of the Swedish Construction Industry (SBUF) and the insurance company
AFA Forsdkring evaluated the health services provided in the construction industry,
by interviewing the trade association Byggforetagen, trade unions, local managers,
safety officers and construction workers (Byggvérlden, 2015).

In the following years, NCC and Peab, both listed as the top three largest Swedish
construction firms signed an agreement with the occupational health service
Feelgood (Feelgood, 2008; Feelgood, 2019). The objective would be to increase the
companies’ work with long-term health among employees, through a preventative
approach. The introductory intervention was presented in a report from Linkdping
University. The intervention included a test group of 123 construction workers, all
considered as high-risk with regards to their physical condition. For one year, half
of the participants would go through regular physical check-ups and get feedback to
improve their condition, while the other half would represent the control group.
Results could be noticed both regarding the physical health of the participants, as
well as through gains in efficiency thanks to decreased sick leave among workers
(Bernfort, et al., 2013).

2.1.3 Digitalization of the Construction Industry

While digitalization already has reached many industries as of today, the
construction industry is experiencing a delay due to technology resistance (Oliver
Wyman, 2018). A Swedish report from Tillvéxtverket (2018) investigates the
digitalization in Swedish industries, defined as the usage of information
technologies (IT) in firms. Internationally, Sweden performs well in overall
digitalization of society, the knowledge and usage of technology. However, the
digitalization trend differs among the sizes of firms and industries. Businesses
within the service sector are generally more digitalized than those within the
industrial sector, and among the latter, the construction industry is considered the
least digitalized industry in Sweden.

Simultaneously, the need for a disruption is growing to increase the efficiency of
the industry according to a report from McKinsey & Company (2016). The authors
state that in an international context projects often take 20 percent longer to finish
than initially planned for and end up at 80 percent over budget. Furthermore, the
labor productivity of the construction industry compared to the total economy has
declined in the German and UK market since 1995.
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A report from Oliver Wyman (2018) shows that certain trends are pushing towards
digitalization within the construction industry more than others. As clients of
construction companies are influenced by other more rapidly changing industries,
they demand the buildings and infrastructure to fit usage expectations and
connectedness. Simultaneously, the costs of sensors, hardware, and software are
decreasing, while their efficiency is increasing, making technologies more
available. The accelerating technology adoption is creating new technology-related
jobs as well as increasing the opportunities for startups within the industry.
Furthermore, digitalization can help reduce the environmental impact of
construction projects. This in turn, is needed to fill governmental requirements and
regulations that can be seen particularly in the Nordic countries and the UK. The
requirements on data capacity and cybersecurity in buildings and infrastructures will
also increase, with a sustainable approach towards the GDPR. Although
construction industry stakeholders are still hesitant about new technologies, they
may be required to develop new strategies for the digital age to reach continuous
success in the future.

The industry must also lay the groundwork for these types of initiatives to thrive as
discussed by McKinsey & Company (2016). The report shows that projects within
the construction industry are often extremely diverse. On top of that, smaller
construction firms with varying sophistication levels often function as
subcontractors, creating a complexity between actors that must be managed. There
is a demand for better processes for project planning, incentives for risk-sharing and
innovation in contracts, performance management, and evaluating up-front
investments compared to their long-term benefits. The latter is significant, with
R&D expenditures in construction of less than 1 percent of revenues, versus up to
4.5 percent in the auto and aerospace sectors.

Furthermore, it is shown that firms are more likely to digitalize within areas related
to increased efficiency and streamlining of processes, while it is less common to
apply technology within business development. It is therefore considered important
for companies to also identify digitalization possibilities to enhance the value
proposition and customer benefits (Tillvéxtverket, 2018).

However, some initiatives related to construction safety with the help of new
technologies have been seen lately. Brown (2020) states one example, where the
Boston-based construction firm Suffolk has introduced drones to capture images of
construction sites. Using a machine learning algorithm trained with ten years of
accident data and safety hazard images, the objective is to predict where accidents
will happen. Furthermore, considering not only the construction industry but
workwear in general, Yang, et al. (2018) introduces a wearable system with textile
electrodes, motion sensors, and real-time data processing. The system is used to
conduct risk assessments in various types of activities with various levels of
workload, by collecting data on the heart rate and leg motion. Eight research
subjects were used, whereof two from the construction industry, to collect data and
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provide a basis for the prevention of musculoskeletal disorders and cardiovascular
disorders based on physical workload.

2.2 Privacy Consequences from Digitalization

The word integrity originates from Latin, meaning whole or complete, and relates
to each person’s inalienable intrinsic value. The idea of personal integrity rights is
that a person shall not be violated, neither physically nor mentally. Physical integrity
relates to the human body, to which no actions should be made without the owner’s
consent. Mental integrity analogously relates to the human mind, such as values,
ideas, opinions, and desires, which shall not be subject to encroachment (Statens
Medicin-Etiska Rad, 2020). In Sweden these rights are explained by the
Fundamental Law on Freedom of Expression, one of four fundamental laws in The
Swedish Constitution stated by the government (Sveriges Riksdag, 2016). Related
to integrity, and more generally used in an international context is the word privacy,
which according to the Cambridge Dictionary is defined as “the right that someone
has to keep their personal life or personal information secret or known only to a
small group of people”. Both integrity rights and privacy has become a topic of
discussion lately, as digitalization progress and an increasing amount of personal
data is collected from users of digital devices.

Johansson Stalnacke & Pettersson (2016) evaluates through their research the view
on personal data and integrity rights in increasingly digital services from two
perspectives: the receiver often in the role of a product developer, and the sender as
the product user. The report states that although the both parts are initially skeptical
to share personal data in private use of devices, the receiver expresses more trust
after the purpose is explained, due to their bigger knowledge regarding data storage
and processing. Furthermore, a difference could be noticed in what type of data was
considered most sensitive to share. Both parts considered health data highly
sensitive, while location information was more sensitive to senders than to receivers.
The authors argue that future developments will result in more complex applications
and related information sharing, requiring a more trustful and transparent
relationship between the sender and the receiver.

Johansson Stalnacke & Pettersson (2016) further argues that although the research
on Internet of Things (10T) usage has expanded lately, little is said about how IoT
influence people’s integrity and sense of security. With an increasing amount of
collected personal data thanks to loT, it is important for companies to ensure
integrity quality, and build strong and lasting relationships with customers. As
proposed by Weinberg, et al. (2015) privacy by design is a method in this process,
where the integrity of customers is considered throughout the development process.
Cavoukian (2010) presents seven principles on which privacy by design builds on,
related to how privacy should be considered:
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(1) proactive rather than reactive;

(2) default condition rather than optional,

(3) embedded in the design rather than an add-on;

(4) not to interfere with the product functionality;

(5) to be protected, security is applied throughout the entire system where
sensitive data may travel,

(6) procedures are transparent to be trustworthy in delivering on privacy-related
objectives;

(7) respectful with regards to users’ interests and being, empowering them to
manage their data through actions related to consent, accuracy, access, and
compliance.

Brill (2014) discusses the increasing amount of data collected and stored in society
through 10T devices, along with its involved stakeholders, opportunities, and risks.
There is a big potential in this evolvement of data collection for solving social
challenges, and breakthroughs in healthcare are already seen thanks to wearable
devices used to measure movements, sleep, and other health aspects. However,
stakeholders notice risks related to the privacy of individuals, as personal
information becomes affluent and more easily available. With various combinations
of offline and online personal data, it is possible to create alarmingly accurate
consumer profiles, letting companies track and advertise towards their customers in
a more precise way. Brill (2014) presents three practices to help device and service
providers cope with these privacy issues. First, as previously mentioned, privacy by
design is recommended to promote the privacy of consumers and the ethical aspect
throughout organizations and processes. Second, the importance of the de-
identification of personal data is stressed. Third, it must be recognized that effective
transparency is fundamental for privacy protection, easily explaining to consumers
what nature of data their devices collect and transmit.

Apart from general initiatives to protect the privacy of users in the digital
environment, the regulatory framework has also been updated in recent years.
GDPR 2016/679 was implemented in May 2018, with the purpose to create a
uniform basis for the protection of personal data throughout the EU, enabling a freer
flow of data within Europe (Datainspektionen, 2020). GDPR superseded the Data
Protection Directive 95/46/EC which was implemented by several countries within
the EU in 1998, also with the purpose to protect personal data. However, as
presented by IDG (2019), there are some essential differences between the two
regulations. Firstly, GDPR states that a company cannot own any personal data of
individuals. Data can only be lent from the individuals to the company and must be
disposed of as soon as the two parties are no longer involved. Secondly, companies
must clarify to the owner the purpose with which they are collecting personal data,
before collecting it.

Processing of personal data is only lawful if it follows at least one of six legal bases
as presented in Chapter 2 (Art. 6 §1) of GDPR 2016/679 (2016):
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(1) the data subject has given consent to the processing of his or her personal
data for one or more specific purposes;

(2) processing is necessary for the performance of a contract to which the data
subject is party or in order to take steps at the request of the data subject
prior to entering into a contract;

(3) processing is necessary for compliance with a legal obligation to which the
controller is subject;

(4) processing is necessary in order to protect the vital interests of the data
subject or of another natural person;

(5) processing is necessary for the performance of a task carried out in the
public interest or in the exercise of official authority vested in the controller;

(6) processing is necessary for the purposes of the legitimate interests pursued
by the controller or by a third party, except where such interests are
overridden by the interests or fundamental rights and freedoms of the data
subject which require protection of personal data, in particular where the
data subject is a child.

2.3 Human Activity Recognition

The field of HAR has been active in research since the late 1990s and can provide
distinct information on the activities and behaviors of people (Lara & Labrador,
2013). Today it is of interest for several industries, and the technology is used in for
example medical, military and security applications to give feedback to the user on
its movements (Jia, 2009; Yin, et al., 2008).

2.3.1 The HAR System

Two different methods for collecting and recognizing activity data can be seen.
Either, applications may use external sensors such as cameras or smart home
devices, positioned in the environment of interest. The second approach is using
wearable sensors, which are positioned on the body to collect the user’s movement,
environmental variables, or physiological signals (Lara & Labrador, 2013).

With external sensors several difficulties can be seen, especially if using cameras.
First, as the method implicates continuous monitoring and recording by a camera, it
may violate the privacy of the user. Second, capturing the specific user’s movements
from various angles and within the photographic reach can be difficult and limiting.
Third, video processing demands heavy computing which becomes both complex
and expensive, limiting a scalable real-time system. These difficulties can motivate
the use of wearable sensors instead of external sensors in HAR systems (Lara &
Labrador, 2013).
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The HAR system with wearable sensors is built up by four general architectural
parts: (1) the wearable sensors measuring the attributes of interest, (2) the
integration devices communicating with the sensors, possibly preprocessing the data
and sending it to a server, (3) communication protocol over which the sensors can
communicate with other applications, and (4) storage and inference where the data
may be stored, monitored or visualized. The architecture is illustrated in Figure 2.1
(Lara & Labrador, 2013).

WEARABLE SENSORS INTEGRATION DEVICE COMMUNICATION STORAGE
Accelerometer, GPS, Smartphones, laptops UDP/IP or TCP/IP via Local, on the
heart monitor, light and other devices. WiFi or the cellular integration device, or
sensor, thermometer, network. remote, on a server.

etc.

Figure 2.1. The general structure of a HAR system (Lara & Labrador, 2013).

2.3.2 The HAR Problem Definition

The HAR problem, i.e. recognizing movements from time series of attribute values,
such as acceleration values can be defined in several ways (Lara & Labrador, 2013).
Lara & Labrador proposes a definition of the HAR problem to make it problem
deterministically solvable, by limiting the combinations of attribute values and
activities. This can be achieved if using attribute values recorded over some time
with a constant sample frequency, which are then cut into equally sized sections
with regards to the number of samples and time, so-called fixed-length time
windows. Within each of the time windows it will thereby be easier to evaluate what
activity is performed, since the window is relatively small compared to the time a
person naturally performs one activity.

It is however argued by Lara & Labrador that this definition creates some errors in
the model, as more than one activity might be performed within one single time
window if letting the participant move freely and switches activities. Yet, it is
assumed that the number of transition windows will be much smaller than the total
number of time windows, making the error insignificant.

2.3.3 System Design Issues

When designing a HAR system Lara & Labrador (2013) identifies seven main issues
to consider.

(1) The selection of attributes and their corresponding sensors, which can be
categorized as environmental (e.g. temperature, humidity, audio level),
acceleration, location, and physiological signals (e.g. heart rate, respiration
rate, skin temperature), are critical for the result. In the selection phase the
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relevance and combination of these attributes must be evaluated, to reach
as high recognition accuracy and descriptiveness as possible in the future
analysis of data. Related to the use of accelerometers, Maurer, et al. (2006)
propose that there is no significant gain in accuracy above 20 Hz for
ambulation activities, such as walking, running, or climbing stairs.
Furthermore, Lara & Labrador (2013) stresses the importance of the
accelerometer placement on the user, with regards to the motions that the
system aims to recognize. Ravi, et al. (2005) have approached the problem
by using motion sensors dedicated to different body parts, e.g. waist, wrist,
chest, and thighs, with good classification performance as a result.
Meanwhile, the system should not include more attributes and sensors than
is needed, as this increases the system cost and energy expenditures through
potential wireless connections, as well as it introduces obtrusiveness.
Obtrusiveness should be avoided, meaning that the HAR system should not
be noticeable for the user, neither through the number of sensors or the need
to interact with them. However, with more sensors the collected data will
be richer, why it is important to find a balance between both sides. The
number of sensors needed will also depend on the type of activities. For
example, Bao & Intille (2004) conclude in their study that only two
accelerometers, either on the wrist and thigh or wrist and hip, are sufficient
to recognize ambulation and other daily activities. Anguita, et al. (2013)
argue that using smartphones for data collection may less obtrusive and
invasive than solutions such as wearable sensors.

The environment and the individuals who are part of the data collection
must be considered. Collecting data in a controlled laboratory environment
will give more accurate results than in the natural environment.
Furthermore, to obtain comprehensive training data, individuals of various
characteristics should be used to ensure the flexibility of the model.

The recognition performance of the system depends on several aspects that
must be considered, such as the activity set and the complexity of the
activities, the training data quality and quantity, the feature extraction
method, and the choice of learning algorithm based on the characteristics of
the dataset.

Energy consumption may not be too high, as HAR applications often rely
on mobile devices with an energy constraint. Energy expenditures are
caused by processing, communication and visualization tasks, and can be
limited mainly by minimizing the amount of transmitted data, and by using
short-range networks such as Wi-Fi or Bluetooth over the cellular network.
Processing of data can be made either in the server or in the integration
device, where the former provides a larger capacity for processing and
storing, while the latter can reduce energy expenditures from data not
having to be continuously transmitted as well as being more responsive
from not depending on wireless communication.
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(7) The level of flexibility of the system must be considered, and hence it is
important to decide whether a general recognition model should be used for
all users, or if the model should be adjusted to each user’s characteristics.
The choice may depend on factors such as the number and type of activities,
and the variation of behavior among users.

2.3.4 Research Topics and Future Developments

Anguita, et al. (2013) brought out a study on HAR using smartphones, arguing that
the device brings new research opportunities on the area, with users as a rich source
of context information and the device a firsthand sensing tool. As later models of
smartphones come with built-in sensors, they provide a flexible and affordable way
of monitoring daily activities in an unaobtrusive sense. In their study Anguita, et al.
presents a dataset collected from smartphone accelerometers and gyroscopes,
intending to recognize six different human activities. There were 30 research
subjects included in the study, with ages ranging from 19 to 48 years, following a
protocol of activities while wearing a smartphone on their waist. The collected data
was thereafter further processed in both the time domain and in the frequency
domain.

Lara & Labrador (2013) argues that there are several topics for future research
which could create value when developing the technology of HAR systems further.
Some of these are: (1) enabling the analysis of more complex behaviors and
composite activities other than the more fundamental groups earlier presented, (2)
enabling the identification of overlapping activities, such as walking while eating,
(3) creating greater context awareness by not only classifying the activity, but also
other attributes such as age and gender, (4) enabling recognition of collective
activity patterns which gives the possibility to estimate exercise habits and health
conditions of a target population. Anguita, et al. (2013) also mentions the issue of
identifying non-dynamic activities as a possible topic for future research, as their
study shows a significant misclassification overlap between e.g. standing and
sitting.

2.4 The Fundamentals of Machine Learning

Machine learning is a part of a wider concept called artificial intelligence (Al) and
includes the concept of deep learning with neural networks. It is a field that can
synthesize the underlying relationship among data without being explicitly
programmed. The goal with using machine learning is to estimate the outcome of a
situation that is unknown to the computer (Khanna & Awad, 2015). A more precise
and widely accepted definition about the concept of machine learning was defined
by Mitchell (1997). He defined it as:
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““A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.”” (pp. 2)

Machine learning is today applied in a wide range of applications and areas, such as
in image and audio processing, determining diseases and social behavior analysis.
Based on the underlying mappings between input data and the expected output
value, different machine learning algorithms can be used (Jiang, et al., 2017). These
can simply be categorized into three main groups: supervised learning, unsupervised
learning and reinforcement learning.

As mentioned, this report will evaluate the Random Forest algorithm, which is a
supervised learning algorithm. Therefore, the following parts of this chapter will
focus on supervised learning, while all three groups of learning algorithms will be
briefly explained in this section to give the reader an understanding of the
differences between them. The choice of machine learning algorithm will be further
explained and motivated in 2.4.1 Supervised Learning and 2.6.1 Evaluation of
Algorithms within Similar Research Projects.

2.4.1 Supervised Learning

Supervised learning is when a model is using a labeled training dataset, i.e. samples
which are tagged with one or more labels, to learn the link between the input data
and the expected output values (Khanna & Awad, 2015). From this, a prediction
model can be developed to forecast output values for a new dataset (Jiang, et al.,
2017).

A high level of generalization and predictive power for new input datasets is
desirable when working with supervised learning algorithms. Since the performance
increases with the size and variance of the training dataset, supervised learning
algorithms require a potentially expensive training process.

The majority of classification and regression algorithms are supervised, where
classification tasks use categorical output variables, while regression tasks use
numerical output variables (Medium, 2018; Jiang, et al., 2017). Some examples are
linear regression models, K-nearest neighbor (KNN), support vector machines
(SVM), Bayesian learning, and Random Forest (Khanna & Awad, 2015; Jiang, et
al., 2017). The latter will be further explained in 2.5 The Random Forest Algorithm,
while the key characteristics of each are presented in Appendix B.1 Supervised
Machine Learning Algorithm Characteristics.
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2.4.2 Unsupervised Learning

The family of unsupervised learning techniques detect and group data that behaves
similar to each other, without them being pre-specified and labeled as done in
supervised learning. Therefore, the unsupervised learning technique does not need
a specific training dataset. Instead it learns the underlying structure of the dataset,
while rejecting unstructured noise. Unsupervised learning algorithms include most
clustering and dimensionality reduction algorithms (Khanna & Awad, 2015).

2.4.3 Reinforcement Learning

Reinforcement learning is inspired by behavioral psychology, where the learning
technique relies on a dynamic iterative learning and decision-making process (Jiang,
et al., 2017). The learning methodology is built on feedback loops, where rewards
and punishments are associated with a sequence of actions, as illustrated in Figure
2.2. A given set of experimental actions is performed by an intelligent agent which
will result in observed responses to the state of the environment. Depending on the
action, the agent may also be rewarded. The agent is motivated to maximize the
cumulated reward to find the best possible behavior or path in a specific state
(Khanna & Awad, 2015).

Environment
Agent

Figure 2.2. The fundamental parts of reinforcement learning: an agent takes actions in an
environment, which is interpreted into reward and a representation of the state, which is fed
back into the agent (Amiri, et al., 2018).

2.4.4 Summary

To summarize the subsections above, a family-tree of machine learning techniques,
their type of training data, learning method, and use can be constructed as Table 2.1
shows.

Mitchell (1997) described a classification problem as when the algorithm needs to
determine the category of the data, where the possible categories are included in a
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dataset of categorical output variables. The aim with the collected dataset was to
identify and group activities performed by the research subjects. With this in mind,
it could be considered a classification problem, why it was found motivated to
mainly study supervised learning algorithms and evaluation methods. Hence, the
following sections will only concern supervised machine learning.

Table 2.1. Family-tree of machine learning techniques and their key characteristics, based on
their training data, learning method and use.

Supervised learning Unsupervised learning Reinforcement learning
Training Labeled training dataset ~ No training dataset The agent generates its
data own data through

interaction with the
environment

Learning Learning from historical ~ Learning from structured  Reward based learning
method experience patterns, by rejecting
unstructured noise
Use Used for classification Used for clustering and Reward and
and regression dimensional reduction recommendation
algorithms algorithms algorithms

2.5 Evaluation of Supervised Learning Algorithms

Depending on the problem a machine learning model is trying to solve, different
evaluation metrics are used. The metrics evaluates how well an algorithm performs,
and different machine learning models can be compared if standard metrics are used
(Caruana & Niculescu-Mizil, 2006). In the following subsection, a selection of
different standard evaluation metrics for supervised learning algorithms will be
presented.

2.5.1 Confusion Matrix

The confusion matrix is one of the most used evaluation metrics in supervised
learning, and is a way to summarize the performance of a classification algorithm
(Seref & Bostanci, 2018; Xu, et al., 2020). The confusion matrix is built up by two
dimensions. One dimension is indexed with the actual class of an object and the
other is indexed with the predicate class (Deng, et al., 2016). In Table 2.2, a standard
form of a confusion matrix is presented. The algorithm reaches its optimal when it
classifies as much of the dataset as possible as true positives and true negatives, i.e.
the numbers along the diagonal are as high as possible, while the false positives and
false negatives are as low as possible.
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Table 2.2. The standard form of a confusion matrix with predicted classes presented
horizontally and actual classes presented vertically (Chicco & Jurman, 2020).

Predicate positive Predicate negative
Actual positive True positives, TP False negatives, FN
Actual negative False positives, FP True negatives, TN

Note: True positives (TP) and true negatives (TN) are the correct predictions made by the classifier,
while incorrect predictions are made with false negatives (FN) and false positives (FP)

By analyzing the number of true positives, false positives, false negatives, and true
negatives in the confusion matrix several other evaluation metrics of classification
performance can be defined. These are presented in the following subsections.

2.5.2 Accuracy

Accuracy is the proportion of the total number of predictions that were correctly
identified among the total number of cases examined (Deng, et al., 2016).

TP+TN

Accuracy = ——
Y = IPITN+FP+FN

2.1)

2.5.3 Precision

Precision is a measure that shows the proportion of correctly identified instances
that has been predicted in the positively identified set (Deng, et al., 2016). In other
words, when the algorithm predicts the positive result, it is a measure of how often
it is the correct prediction (Seref & Bostanci, 2018).

TP
TP+FP

Precision = (2.2)
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2.5.4 Recall

Recall is a measure that distinguishes the proportion of the true positive predictions
compared to the complete set of actual outcomes. It is an indicator of how complete
the results are (Deng, et al., 2016).

TP
TP+FN

Recall = (2.3)

2.5.5 Fl-score

The F1-score is a measure of a test’s accuracy and defined as the harmonic mean of
the precision and the recall of the algorithm predictions (Deng, et al., 2016). The
ranges for the F1-score is [0,1], and as for accuracy, the minimum is reached when
all positive samples are misclassified (TP = 0) and the maximum is reached for
perfect classification (FN = FP = 0) (Chicco & Jurman, 2020).

Precision*Recall

F1 —score = 2 % (2.4)

Precision+Recall

2.5.6 Matthew Correlation Coefficient

Matthew Correlation Coefficient (MCC) is a measure of the quality of the binary
classification. Therefore, to get a high-quality score the classifier must make correct
predictions in most of the positivity cases and negativity cases respectively. This,
independently from their ratio in the overall dataset (Chicco & Jurman, 2020). The
MCC ranges in [-1, 1]. The maximum is reached when perfect classification and
respectively the minimum is achieved with perfect misclassification. The value of
MCC = 0, indicates that the prediction was no better than a random flip of a fair
coin (Boughorbel, et al., 2017).

TP*TN—FP*FN
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Mcc = (2.5)

One of the advantages with MCC, according to Chicco & Jurman (2020), is that it
can generate reliable results from an imbalanced dataset (the number of examples
for each class label in the dataset is unbalanced). Further they explain that, F1-score
and accuracy, can produce misleading results when applied to an imbalanced
dataset, since these measurements fail to consider the rate between positive and
negative elements. Thus, it is recommended by Chicco & Jurman (2020) to use
MCC to evaluate the algorithm’s performance.
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2.6 The Random Forest Algorithm

Random Forest is a supervised machine learning algorithm that can perform both
regression and classification tasks (Hastie, et al., 2009). The following subsection
will firstly present a theoretical motivation to why the Random Forest algorithm was
chosen for this project. Furthermore, as this thesis concerns a classification problem,
the fundamentals of the Random Forest classification algorithm will be presented.

2.6.1 Evaluation of Algorithms within Similar Research Projects

Nowadays, an attractive research topic is HAR based on wearable sensor data, due
to its applications in areas like healthcare and smart environments. Remarkable
results have been presented from research using accelerometer and gyroscope data
for HAR (Jordao, et al., 2018), similar to the setup of this study. Furthermore,
multiple research studies have been made on the publicly available HAR dataset
from the University of California Irvine (UCI) Machine Learning Repository
presented in 2.3.4 Research Topics and Future Developments, trying to evaluate
which algorithm is the best classifier. As seen in Table 2.3, Random Forest
outperformed all other algorithms’ results with its score closes to the maximum of
1.0 in accuracy, and is according to the result of various studies the best classifier
method.

Table 2.3. A comparison of the performance in accuracy between different supervised learning
algorithms based on the UCI HAR dataset, presented in four research studies.

Random Decision SVM KNN LDA Naive Parallel
Forest Tree Bayes Random
Forest

Parmar (u.d.) 0.9987 0.8999 0.9877 - - - -

Dewi & 0.9857 - 0.9796 0.9748 0.9823 - -
Chen (2019)

Lavanya & 1.0 0.9777 0.9555 0.8988 - 0.9555 -
Gayathri
(2017)

BhanuJyothi, 0.9313 - - 0.8628 - - 0.9298
et al. (2017)

In a similar study, five popular machine learning algorithms were used to train
models for prediction of accident occurrence and severity in the construction
industry. Once again, Random Forest provided the best performance regarding
accuracy, as seen in Table 2.4. The dataset used in the study was collected from a
constructor in Singapore and included 27 construction projects over seven years,
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between 2010 and 2016. Furthermore, it consisted of 785 safety monthly inspection
records, 418 accident cases along with their related monthly project-related
attributes (Poh, et al., 2018).

With basis in the presented evaluation results and the previously presented
background, the Random Forest algorithm was considered the most suitable for this
research project.

Table 2.4. A comparison of the performance in accuracy between different machine learning
algorithms from Poh, et al. (2018).

Random Forest ~ Decision Tree SVM KNN Linear regression?

0.78 0.71 0.44 0.73 0.59

4 Note: Linear regression is not a classification algorithm.

2.6.2 The Decision Tree as a Building Block

The building block of the algorithm is a large collection of de-correlated decision
trees (Hastie, et al., 2009). A decision tree can be described as a series of true/false
questions about the data that is leading to a predicted class for a classification
problem (BhanuJyothi, et al., 2017). This means for each node top-down, the tree
will find one feature that allows it to split the observations into a new classification,
so that the resulting groups are as different from each other as possible while the
members of each resulting subgroup are as similar to each other as possible
(Medium, 2017).

One simple example that illustrates the logic of a decision tree is predicting the
outside temperature of tomorrow for any city of choice. At each node the remaining
observations will be classified after *“season”, “historical average”, and
“temperature of today”, resulting in a final prediction at the end of each subtree as
illustrated in Figure 2.3 (Medium, 2017).

When Random Forest is used for classification, a prediction will be made from a
majority vote from each tree’s class prediction, as seen in Figure 2.4 (Hastie, et al.,
2009).
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Historical average lower than 50 F Historical average higher than 60 F
Today's higher than 25 F Today's higher than 45 F Today's higher than 65 F Today'’s higher than 55 F

40 F 22F 54 F 40F 71F 62 F 58F 52F

Figure 2.3. The logical reasoning of each decision tree in the Random Forest algorithm with a
prediction of tomorrow’s temperature (Medium, 2017).
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MAJORITY VOTING

FINAL CLASS

Figure 2.4. Structure of the Random Forest classification, with n trees between which a
majority voting is performed (Medium, 2017).

According to Oshiro, et al. (2012) previous literature on Random Forest has very
limited directive regarding the number of decision trees needed to compose a forest.
The result of their research report and experiment of 29 datasets showed that the
optimal range is 64 to 128 trees in a forest. Furthermore, according to the authors,
no significant performance gain can be seen from increasing the number of trees
higher than to the mentioned threshold, since this only increases the computational
cost.
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2.6.3 Bias and Variance

When designing supervised learning algorithms, both bias and variance are sources
of error. Thus, they should both be minimized. As they are functions reacting in the
opposite direction, a tradeoff must be made since minimizing the variance will
increase the bias errors and vice versa (Geurts, 2002).

Supervised learning algorithms are said to suffer from bias error when wrong
assumptions are made from the learning process. A high bias can result in missing
relevant relations between features and target output since the algorithm is not
satisfactory to solve the problem (James, 2003). Using the example in 2.6.3 The
Decision Tree as a Building Block, the bias would be caused if not enough questions
were asked to give a credible prediction, and an unfounded conclusion is drawn.

A high variance can cause the algorithm to overfit (James, 2003). Overfitting is
caused by the level of specificity in the tree, i.e. the depth of the tree in the example
above, which may include noise to the training dataset, i.e. asking irrelevant
questions that misleads the prediction (Towards Data Science, 2018; James, 2003).
Hence, this source of error is a result of the sensitivity to small fluctuations in the
training dataset (James, 2003).

The idea in Random Forest is to reduce the variance without increasing the bias.
This is achieved in the tree-growing process by bagging (also known as bootstrap
aggregation) and by splitting the nodes of each decision tree with a random subset
of features along with the use of a committee prediction. Bagging refers to training
a model on different datasets multiple times. In other words, each decision tree used
in the algorithm learns from a different subset of data that is chosen at random with
replacement. Each tree will therefore be unique. Thus, it reduces the correlation
between the trees (Hastie, et al., 2009).
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3 Methodology

This chapter aims to elaborate on questions related to the methodology of the thesis,
such as the chosen research strategy and its validity. The methodology will be
divided into two main parts according to the research questions. Firstly, the
methodology for the pre-study will be presented. This will include the empirical and
theoretical approach conducted, to explain the methods used to gather information.
Furthermore, it will include an analytical approach for the findings made. Secondly,
a more technical approach for the implementation of the machine learning
algorithm will be presented, describing the technological prerequisites for the
project, the data collection and selection process, and finally the data analysis with
regards to the Random Forest algorithm.

3.1 Understanding the Environmental Barriers of the
Smart Helmet

This section describes the methods used to understand the environmental barriers of
an introduction of the smart helmet, to answer RQ 1.1. The theoretical framework
and methods used will first be presented, followed by an explanation of how
interviews and observations were conducted.

3.1.1 Theoretical Framework

When developing a new product, services, or internal process, design thinking is a
human-centered approach for creative problem-solving. The approach has its focus
on the human need behind any considered business need, and may reduce the risk
associated with launching new ideas (IDEO, 2020).

Brown (2020) suggests that the first step in the design thinking process is to discover
which constraints are important to the development of an innovation. These
constraints can be organized into three overlapping criteria for successful ideas
called “The Three Lenses of Innovation’: feasibility, desirability, and viability as
presented in Figure 1.1. Feasibility describes what is functionally possible for an
innovation within a foreseeable future. Desirability includes whether the innovation
is of any value to people and organizations. Viability explains whether the
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innovation will be valid for a sustainable business model. The idea is to find a
balance between these three criteria, as an innovation will not manage in practice
with only one or two of them fulfilled.

FEASIBILITY DESIRABILITY

VIABILITY

Figure 1.1 A Venn diagram illustrating the framework which this thesis’ pre-study is built
upon (IDEO, 2020).

To better understand the needs and constraints of the construction industry and the
social environment in which the smart helmet would be applied, it was decided to
conduct a pre-study as a first part of this thesis. In the pre-study the presented design
thinking framework is adopted to better understand the environment in which the
smart helmet would be implemented, together with the barriers that may be
encountered. However, the framework is adjusted according to the scope of the
thesis, to better fit the prerequisites of the thesis.

Within the feasibility criteria, the aim is to understand the technological aspect
related to machine learning and human activity recognition, as well as to consider
the social aspect regarding regulations, regulating units, and stakeholders on the
labor market. Within the desirability criteria the receptiveness among construction
workers in their role as users is evaluated, and their attitude towards privacy in the
case of the smart helmet. Furthermore, the desirability is evaluated also from other
stakeholder perspectives, such as the value construction companies and the trade
union can see that this smart helmet would create. Finally, the viability criteria will
only be briefly commented on, as it was assumed to follow the business model of
existing construction helmets.

As a first step in the pre-study, the aim was to get an understanding of the
fundamentals of the construction industry and the regulatory environment
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surrounding it. Building this background to the problem situation would help in the
following process of understanding which key stakeholders to contact for
interviews, what relevant questions to ask them, as well as what theoretical areas to
dig deeper into. Furthermore, the theoretical approach with a focus on machine
learning was developed from an initial literature review to generally understand the
science of machine learning and its underlying topics, as well as the related research
made on human activity recognition. This is done to create a base to motivate the
following approach and discussions on what machine learning algorithm was
appropriate to evaluate for this thesis.

A preliminary mapping of theoretical areas and relevant contributions within those
were made, where relevance was mainly assessed based on the number of citations
on articles together with the applicability to the thesis situation. As this thesis is
limited to only evaluating the Swedish construction industry, Swedish articles
related to the regulatory and cultural environment was prioritized to get a more valid
picture of the situation. When searching for more general subjects, not as influenced
by the regulatory and cultural environment of Sweden, the citation method would
be prioritized together with the specificity of the articles. However, when using non-
academic articles as sources, the validity and reliability of the authors were assessed.

As stated by (Host, et al., 2006) the most common methods when collecting
empirical data are interviews, observations, and archival analysis. Among these,
conducting interviews was considered the most appropriate method for collecting
primary data, to cover several social areas within the time limitation. Observations
were also chosen as a preliminary secondary strategy to collect data, depending on
the outcome of the interviews and what information would be missing.

3.1.2 Interviews

Due to not having any existing network within the subjects covered in the pre-study,
snowball sampling was found to be a reliable method to widen the social network
and reach out to relevant stakeholders. Noy (2008) proposes a definition of snowball
sampling as a method where the researcher gets access to interviewees through
contact information provided by already known interviewees. It is argued that
snowball sampling is specifically useful for two purposes: (1) to capture social
knowledge dynamically, and (2) to understand the power relations between
interviewees (Noy, 2008). This approach enabled capturing the greatest findings
from the initial leads, while also being presented to dedicated experts within the
research areas.

3.1.2.1 Interviewee Selection

When selecting interviewees, the aim was to gain a comprehensive understanding
of the context in which the smart helmet would be applied, including stakeholders
involved in the product’s future adoption and use. As some background research
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had been made before starting to conduct the interviews it was possible to define
stakeholder attributes within the thesis’ framework, i.e. the three lenses of
innovation that were considered important for the purpose of the thesis.

As proposed by Mitchell, et al. (1997) it is possible to identify three stakeholder
attributes: power, legitimacy, and urgency. Power can be defined as the ability of a
stakeholder to impose its will in a relationship, while legitimacy is the perception of
a stakeholder’s actions being desirable, proper, or appropriate with regards to the
social organization it is conducted in. Ultimately, urgency is proposed to be an
attribute adding a dynamic dimension to the model, where time-sensitivity and
criticality are included in the relationship (Mitchell, et al., 1997a).

Considering the previously presented stakeholder attributes, the thesis framework,
and the initial literature reviews, a stakeholder analysis was conducted to identify
appropriate interviewee positions for qualitative data collection as input to the work.

(1) Employers were defined as representatives at construction companies at
white-collar positions. These were interviewed to get an apprehension of
their attitude towards the smart helmet as customers, from both a feasibility,
desirability and viability perspective. From a feasibility perspective, they
were considered to have power in arguing for whether the implementation
of the smart helmet would be organizationally possible. They were also
asked to share any former experience from collecting and handling these
types of personal data of employees. From a desirability perspective, they
were thought to have power in telling whether the helmet would fulfill any
needs of the employers and/or employees. Third, from a viability
perspective, they were thought able to tell what the purchasing process
would look like, and what level of willingness to pay would have to be met.

(2) Employees were defined as construction workers. These were interviewed
to better understand their willingness to adopt the smart helmet, mainly
from a desirability perspective. The aim was to investigate their acceptance
towards letting the employer collect individual movement data in their daily
work, as well as towards the technological adoption of the helmet. Another
aim was to understand the power relationship between employees and
employers in the situation. This, related to the requirements employers may
set for employees in terms of demanding the use of the helmet for safety
reasons, versus the requirements employees may set for employers in terms
of not wanting to share personal data for privacy reasons.

(3) Trade unions were from the initial research understood to have moderate
power in the implementation of a smart helmet, mainly from a feasibility
perspective. They were therefore interviewed to better understand their
influence on the implementation, and what obligations and/or possibilities
they would have to protect the privacy of construction workers.
Furthermore, they were thought to have an apprehension of the behavior
among construction workers, both regarding injuries and their attitude
towards technological devices.
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(4) Legal services were considered to have high power with regards to the
social aspects of the feasibility perspective. Since regulations set the
framework for what is legal and therefore practically implementable, legal
services were interviewed to give a better understanding and confirmation
of the regulations concerned when implementing a smart helmet.

(5) Technical experts were considered to have high power in understanding
the implementation of similar solutions to the helmet, and would therefore
be able to give support to the feasibility perspective by explaining their
experience on the area.

In Table 3.1 the interviews conducted are presented, describing which stakeholders
were included at each meeting. Furthermore, in the right column the code with
which they will be cited in 4 Interview Results are presented to act as a reference for
the reader.

Table 3.1 The interviews held with various stakeholders and the code with which they will be
cited with in the interview results.

Code Interview

TU Interview with a representative with long experience from the trade union
Byggnads.

NCC1 Group interview with four employers on various positions at the construction
company NCC.

NCC2 Group interview with two employers and two employees at NCC with varying
experience of the industry.

LEG Interview with a representative from legal services, specialized on GDPR
within business law.

TECH Interview with a researcher on the topic of human activity recognition.

3.1.2.2 Interview Structure

Interviews were conducted with a semi-structured approach. As argued by Barriball
& While (1994), semi-structured interviews are appropriate when there is a need to
explore certain opinions and perceptions among the respondents, and if respondents
have different professional, educational or personal backgrounds, meaning that a
standardized interview form cannot be applied. Hence, as the empirical part of this
study was aimed towards several different professional groups, a semi-structured
approach was found adequate, and would allow adjusting the interview form for
each of the respondents which in turn would create a more flowing conversation.

Before each interview, a personal interview form was sent to the respondent to give
him or her an opportunity to read and understand the interview questions, as well as
to prepare any needed research in advance. The interview form consisted of some
social and technical background to give an understanding of the thesis project and
its purpose. The form was then followed by a few introductory questions where the
respondent would tell about their position and knowledge on the area. Apart from
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providing some background information on the respondent, these types of questions
may also make the respondent feel more confident and comfortable in the interview
situation (Lekvall & Wahlbin, 2001). The interview was often followed by a couple
of sections with different focuses, e.g. the privacy consequences of the helmet, or
regarding the power position of the respondent in the potential implementation of
the helmet. Questions were based on the conducted literature review. However, due
to the exploratory approach and lack of knowledge in some areas, questions would
be rather open and speculative to capture as many thoughts and opinions as possible.
The interview forms can be forms in Appendix A.

3.1.2.3 Analysis of Results

The interviews were audio recorded for future reference, together with notes taken
during the interview. Due to technical issues, some of these recordings were lost.
However, the existing recording would be transcribed. As proposed by Miles, et al.
(2014) coding is a way to analyze information gathered during fieldwork, and to
categorize pieces of data to synthesize their message. Therefore, the transcripts,
together with the notes from those interviews missing recordings would be coded to
capture their essence. However, since the interviews had fairly different focuses
depending on which of the presented role was interviewed, it was difficult to
generate a descriptive set of codes that would be common for all interviewees.
Instead, the general framework for the report was used, with categories
“FEASIBLE”, “DESIRABLE”, and “VIABLE”, together with subcategories
“POSITIVE”, “NEGATIVE” and “NEUTRAL” for each. These codings were later
summarized as presented in 4 Empirical findings.

3.1.3 Observations

Observations can be defined as the systematic description of events, behaviors, and
artifacts in the social setting chosen for a study (Marshall & Rossman, 2014). With
the basis in this definition and as a complement to the conducted interviews and part
of the qualitative data collection, observations were made on a construction site,
supervised by some of the construction workers that had previously been
interviewed. The observations were made to get a better understanding of the work
environment that construction workers act in, providing an opportunity to
understand what type of movements construction workers often perform, and which
of those that may cause occupational injuries. Furthermore, it was found rewarding
to involve with the construction workers in their normal environment, where they
might express thoughts and opinions which they would not be expressed in a formal
interview setup. The results from the observations were mainly used to motivate the
choice of activities performed in the data collection, further explained in 3.2.1.3
Activity selection and performance.
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3.2 Body Movement Analysis Approach

As suggested by Khanna & Awad (2015) the process of developing a machine
learning algorithm can be decomposed into seven steps: (1) collect the data that is
to be analyzed, (2) preprocess the data through formatting, cleaning and sampling,
(3) transform the data, (4) train the algorithm, (5) test the algorithm, (6) apply
reinforcement learning, and (7) execute.

Inspired by this approach, but with the prerequisites of this thesis in consideration,
a five-step approach was used. First, the data collection involved selecting the
subset of all available data attributes generated from the smart helmet, and then
gathering the data through the smart helmet. Second, choosing a relevant machine
learning algorithm for the problem was done through evaluation of results from
previous works. Third, preprocessing of the data was conducted on the collected
raw data stream, to be understood by the chosen algorithm. Fourth, a feature
optimization was performed, as this according to Yi, et al. (2015) can reduce the
dimensions of the features, contributing to a more efficient training and better
performance of the algorithm. Fifth, training and testing of the algorithm was
conducted, including analyzing the prediction results using various evaluation
metrics which as suggested by Khanna & Awad (2015) can determine whether the
model needs improvements or is sufficient.

As a final part of this section, limitations that occurred due to technical issues during
the data collection, and how the effect of those were mitigated will be presented.

3.2.1 Data Collection

In the following subsection the smart helmet will be introduced with its hardware,
embedded software and backend server components, through which the data would
be collected. Thereafter, a description of the data collection will be explained
including research subjects, activity selection, and performance.

3.2.1.1 Description of the Smart Helmet

The smart helmet prototype used for the data collection was retrieved from the IT-
consultancy firm Cybercom. The smart helmet was equipped with a 3-axis
accelerometer and a 3-axis gyroscope connected to an Arduino board, which would
generate a raw data stream during the data collection. Furthermore, a buzzer was
attached to the Arduino board to increase the communication between the hardware
and the user environment. The buzzer would beep to inform the beginning and end
of each recording sequence of the embedded software. Lastly, a battery was used as
the system’s power supply. Embedded software code was produced for the helmet
to communicate with an external server. However, this code cannot be shared
because of confidentiality policy at Cybercom.
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A full description of the hardware is described in Table 3.2. The full arrangement
of hardware (later referred to as the loT-device) was located at the back of the
helmet, as seen in Figure 3.1.

Table 3.2 Description of the hardware components used in the loT-device of the smart helmet.

Hardware component  Brand Model
Arduino board Arduino MKR WiFi 1010 Arduino
3-axis accelerometer MPUG6050 accelerometer and Olimex

and 3-axis gyroscope  gyroscope 3-axis UEXT
Buzzer Buzzer 3.8 kHz -

Battery Battery LiPo 3.7V 1500mAh -

it

T
sitisitene

Figure 3.1. The arrangement of hardware mounted on the smart helmet.

3.2.1.2 Activity Set Selection

The selected activity set for the data collection consisted of five activities, which
could be divided into two main groups: lifting and walking. The lifting activities
would be differentiated as light lifting and heavy lifting. Likewise, the walking
activities would be differentiated as walking, walking while carrying something
heavy, and walking while looking upwards. All activities are further described in
Table 3.3.

The activities were chosen with regards to the ease with which they could be
understood and performed by the participants, while also being related to the
observed movements carried out by construction workers during the study visit.
Furthermore, it was found interesting to evaluate rather similar activities within each
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of the main groups, to see if it was possible to distinguish minor differences in
movement patterns which could be a valuable result for future developments.

Table 3.3. Detailed descriptions of the activity set performed by the research subjects.

Activity Description

Light lifting Lifting a 2 kg object from the ground onto a table, approximately a lift
of 0.75 m.

Heavy lifting Lifting a 10 kg object from the ground onto a table, approximately a lift
of 0.75 m.

Walking Walking at a regular pace, approximately 1.4 m/s

Walking while carrying Walking at a regular pace, approximately 1.4 m/s, while carrying a 10
something heavy kg object in each hand

Walking while looking Walking at a regular pace, approximately 1.4 m/s, while bending the
upwards head backwards to look at the ceiling.

3.2.1.3 Research Subjects

It is problematic to quantify the size of a dataset that will turn the trained model
from good into great in advance. A rule of thumb is however that more complex
problems and models need more data points. Simultaneously, the goal when training
an algorithm is to build a model which will understand the relationship and the
patterns of the data. Therefore, the quality of the data is an equally important factor
to consider as the quantity, since the limit of the used data will be the limit of the
trained model. From this, it is therefore a good approach to simply begin with a
general estimation on the dataset required, to be able to work with the model. With
time and as results appear to evaluate, it will become more obvious if more data is
needed (Lionbridge, 2019).

A representative set of research subjects consists of selective samples from the
original target population, which efficiently capture significant information with
low redundancy (Pan, et al., 2005). Therefore, a group of eleven research subjects
of various age, height and weight were selected when collecting data to generate a
representative dataset, which was intended to simulate the spread that are occurring
at a construction site. However, due to the outbreak of Covid-19 the spread in gender
was highly unequal with only two male subjects out of eleven in total. Among the
accepted subjects, the ages ranged from 18 to 60 years, with a median of 25 years.
The heights ranged from 162 to 195 cm, with a median of 170 cm. Similarly, weights
ranged from 55 to 90 kg, with a median of 66 kg. Details of each subject’s
characteristics are illustrated in Appendix B.2.1 Table B.2.

3.2.1.4 Setting the Sampling Frequency

The sampling frequency is the frequency with which each data sample is collected,
in this study from recordings of performed activities during a timespan. Previous
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research from Anguita, et al. (2013) argues for a sampling frequency of 50 Hz being
sufficient for HAR projects. This statement is further affirmed by the studies of
Maurer, et al. (2006), concluding that a sampling frequency higher than 20 Hz
provides no increased gain in precision for ambulation activities, which represents
three out of five of the chosen activities.

With the aim to distinguish rather similar movements within the two main groups
of activities, i.e. walking and lifting, it was considered adequate to use a higher
sampling frequency such as the one Anguita, et al. (2013) proposes. Furthermore,
as mentioned by Lara & Labrador (2013), several of the activities could be
considered overlapping, e.g. walking while looking upwards, which still is subject
for research. This made it difficult to argue for the sampling frequency of 50 Hz
being high enough to make these kinds of distinctions. However, as argued by
Anguita, et al. (2013), a too high sampling frequency may create a superfluous
quantity of data or result in significant performance loss of the hardware
components, why 50 Hz was settled with as an outset.

A fixed sampling frequency was never set on the helmet. However, it was during
initial test recordings discovered that the raw data stream would be sampled with a
frequency around 50 Hz, or 1500 samples over 30 seconds. The achieved frequency
would vary depending on the physical environment in which the movements were
recorded, as well as the prevailing communication setup (e.g. the Wi-Fi capacity).
To achieve a frequency level as even as possible over all sampling sequences, an
accepted sample size of 1500+150 samples over 30 seconds was set, corresponding
to a frequency of 5045 Hz.

3.2.1.5 Communication and Server Setup

The raw data stream generated from the smart helmet was transferred to a backend
server at a frequency of 5.5 Hz using a wireless connection. Data was formatted to
JavaScript Object Notation (JSON), which is a file and data interchange format used
to transfer data between servers and web applications. Each transfer to the server
consisted of nine JSON-objects, as this would fit the static random-access memory
(SRAM) of the Arduino board, which otherwise would be overloaded and block the
sending (Arduino, 2020b; Arduino, 2020a).

Each JSON-object would include the current research subject coded with letters, the
sample number to distinguish between different objects, a Unix timestamp, and the
X-, y- and z-values for acceleration and angular velocity respectively. The full
structure of the JSON-object is presented in Appendix B.3.1 Table B.7.

Furthermore, an employee at Cybercom established a server in Azure, which made
it possible to extract the three-axial accelerometer and gyroscope values respectively
from each JSON-object. These values were then put into separate CSV-files, which
could be downloaded locally to be further processed, as described in 3.2.3 Data
Preprocessing.
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3.2.1.6 Activity Performance

At the beginning of each test session, each participant was given information
regarding the study, and was told the terms and conditions of the participation. They
were also asked to share their information regarding gender, age, height, and weight
for statistics.

Each research subject was instructed to follow a protocol of the chosen activities
while wearing the smart helmet. Each activity was performed during a sequence of
30 seconds, with a longer break between each sequence to prepare the smart helmet
for the next recording. For the lifting movements, there was a three second break
between each lift during the 30 second sequence, to allow the experiment supervisor
to replace the weight on the ground again. The samples collected during these breaks
would later on be excluded from the dataset, to simulate a repetitive lifting
movement. To receive a balanced dataset, i.e. equal number of samples from each
movement, twice as many sequences of lifting was recorded compared to walking
sequences to compensate for the excluded breaks. In total, walking activities were
recorded three times, while lifting activities were recorded six times. A summarized
description of the protocol can be found in Appendix B.2.1 Table B.3.

3.2.2 Choice of Machine Learning Algorithm

As motivated in several sections of 2 Background, the Random Forest machine
learning algorithm was chosen for evaluation. This, due to the results it had shown
in classification problems similar to this project, and comparison to other
algorithms.

Further, due to the time limitation and the scope of the project, it was decided to
retrieve the Random Forest algorithm from the open source Python library called
Scikit-Learn with inbuilt machine learning libraries. The algorithm can be found by
browsing sklearn._ensemble _RandomForestClassifier.

3.2.3 Data Preprocessing

The algorithm retrieved from Scikit-Learn cannot handle features made up of
strings, and more critically a feature cannot consist of time series of data (Scikit-
Learn, 2020). Therefore, the categorical activities were encoded from string values
to integer values. Moreover, since the algorithm is evaluating the input data on a
per-event basis, i.e. row by row, it not possible to use time series of data as input
values. This, as time series of data capture snapshots of the movement, instead of
capturing a complete movement.

Instead, inspiration was taken from the signal processing of a similar research
project by Anguita, et al. (2013), further described in 2.3.4 Research Topics and
Future Developments. Like this thesis, the authors used time series of data from a
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three-axial accelerometer and a three-axial gyroscope for HAR, why the method
seamed relevant. Each step of the preprocessing will be further described in the
subsections below.

3.2.3.1 Noise Reduction

As a first step in the signal processing, and inspired by the methodology of Anguita,
et al. (2013), a noise reduction was performed on the raw accelerometer and
gyroscope signals. This means eliminating frequencies which are not caused by
actual movements but caused by oversensitivity to vibrations etc. in the sensors.

For this, a median filter and a 3™ order low-pass Butterworth filter with a 20 Hz
cutoff frequency was used. According to Anguita, et al. it is sufficient to use the 20
Hz as a threshold to capture human body motion, since 99 percent of its energy is
contained below 15 Hz. The model used for the median filter was
scipy.signal .medfilt, while scipy.signal .butter was used for the low-
pass Butterworth filter.

3.2.3.2 Separation of Gravitational Force from Accelerometer Values

The original data collected from the accelerometer would include both the
acceleration caused by the actual movements, as well as the force of gravity which
is always naturally present. Because of this it would not be possible to recognize
any movements from the unprocessed signals. Therefore, the second step in the
signal processing would be to separate the acceleration signal into body acceleration
and gravity components.

Again, the signals were filtered with a 3" order low-pass Butterworth filter. The
gravitational force only consists of low frequency components (van Hees, et al.,
2013). Therefore, a cutoff frequency of 0.3 Hz for the Butterworth filter was used
for the constant gravity signal as performed by Anguita, et al. The same Butterworth
filter model was used as presented for noise reduction.

After the gravity signal had been separated, the values were subtracted from the
original acceleration values to obtain the body acceleration values.

3.2.3.3 Calculation of Euclidean Magnitude and Time Derivative

To extend the possible number of features as input variables for the algorithm,
additional signals were calculated for the time domain, influenced by Anguita, et al.
These were derived from the body acceleration and angular velocity values, and are
here mentioned as the Euclidean magnitude, jerk, and angular acceleration.

The Euclidean magnitude was calculated for both body acceleration and angular
velocity values. It can be described as the magnitude, i.e. the length, of the vector
obtained from each combination of three-axial values that were sampled. For this,
the model numpy . Iinalg.norm was used. Mathematically, it can be formulated
as:
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lall = /x? + y? + z2 (3.1)

The jerk, j(t) is the time derivative of the acceleration, a(t). Similarly, the angular
acceleration, a(t), is the time derivative of the angular velocity, w(t). For each of
the i =1,2,3...n sampled values of each recorded sequence these values were
calculated as:

. _ da(t) _ a(tpi)—a(tn)

j(t) = TR ——— (3.2)
_ do(t) _ o(tpi1)-w(tsn)

a(t) = T s—— (3.3)

3.2.3.4 Separation Into Time Windows

As a next step, the collected time signals were separated into equally sized time
windows. This approach has been described in 3.2.4 The HAR Problem Definition
and is as proposed by Lara & Labrador (2013) a method to make the HAR problem
deterministically solvable.

To further minimize the transition errors that may occur, Lara & Labrador suggest
using overlapping windows. The overlap was set to 50 percent, meaning that the
second half of each window would contain the same values as the first half of the
following window, as proposed by Anguita, et al. (2013).

Furthermore, each window would consist of 128 values. The chosen number of
values can be argued for. Firstly, it is a power of 2, which has been shown to result
in a more efficient Fast Fourier Transform (FFT) (The SciPy Community, 2020).
The FFT is a part of the data processing and will be further described in the
following subsection. Secondly, if movements are recorded with a sampling
frequency of 50 Hz, each window will fit samples from a period of 2.56 seconds.
As proposed by Anguita et al. (2013) at least a full walking cycle of two steps is
preferred to fit each window. They also propose that the average step rate when
walking is 90 to 130 steps per minute, meaning that each window would fit 1.9 to
2.8 walking cycles.

The time windows were produced with the Python package window_slider 0.8
and model window_slider.Slider.

3.2.3.5 Frequency Domain Mapping

A signal mapped in the time domain provides information regarding how the signal
changes over time. A representation of a signal in the frequency domain enables the
observation of other signal characteristics, which may otherwise be difficult to
notice. For example, when mapped in the frequency domain, it is possible to observe
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how the signal’s energy is distributed over a range of frequencies (MathWorks,
2020).

Inspired by Anguita, et al. (2013) FFT was applied to the obtained sets of time
domain signals to map them in the frequency domain. The model used for FFT was
numpy . FFt_rfft. The full list of time and frequency domain signals can be seen
in Appendix B.3.2 Table B.8 and Table B.9.

3.2.3.6 Measurements

As a last step in the preprocessing of data, calculations of a set of features for the
time and frequency signals were performed. These features would be the final input
variables for the algorithm to process.

As proposed by Lara & Labrador (2013) acceleration signals are highly fluctuating,
leading to difficulties in observing underlying patterns from the raw data only. It is
therefore proposed to use various feature extraction methods to better describe
patterns. Anguita, et al. (2013) added several new sets of features to the standard
measurement previously used in HAR projects to improve the learning performance
of the algorithm. Influenced by Anguita, et al. a set of 14 statistical measurements
was used to describe the obtained time and frequency domain signals, with a full
description in Appendix B.3.2 Table B.10. Not all measurements were calculated for
the time and frequency domain respectively, due to their signal characteristics.

By performing these calculations, the final number of features would end up at 348.
Hence, from each set of time windows consisting of manipulated attribute values.
348 features would be extracted and sorted into a new time window. These could
then be fed as input values to the algorithm. A full list of their names and heritage
is presented in Appendix B.3.2 Table B.11.

3.2.3.7 Handling Categorical Activities

As mentioned the sklearn.ensemble.RandomForestClassifier cannot
handle features made up of strings, why the categorical activities were manually
encoded using integers. These encodings are presented in Appendix B.3.3 Table
B.11.

3.2.4 Feature Optimization

To maximize the performance of the algorithm and contributing to more efficient
training and as suggested by Yi, et al. (2015), an available feature optimization
technique from Scikit Learn called feature_importances was used. The model
builds on setting a higher value to indicate greater importance of a feature. Using
the model would enable validating each feature against its value of contribution in
a prediction through recursion, to determine if the dimension of features had to be
reduced.
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3.2.5 Train and Test the Algorithm

To ease the performance assessment, the preprocessed data was randomly
partitioned into two independent sets, influenced by the approach of Anguita, et al.
(2013). From the total, 70 percent of the data was used to train the algorithm and
the remaining 30 percent was selected for testing.

Depending on what problem the machine learning algorithm is trying to solve,
different evaluation metrics are often used. However, the confusion matrix often
stands as a base through the evaluation of most supervised algorithms, as explained
in 2.5 Evaluation of Machine Learning Algorithms. Therefore, the confusion matrix
was found to be a sufficient evaluation metric to start with. For example, it answered
questions such as how many of the activities were correctly classified and at what
cost in terms of false positives.

Caruana & Niculescu-Mizil (2006) highlight that an algorithm may perform well on
one metric while it performs badly on others. Therefore, to make better use of the
data from the confusion matrix, it was chosen to use the spread of evaluation metrics
presented in 2.5 Evaluation of Machine Learning Algorithms to ensure no
misleading results.

3.2.6 Adjustments Due to Technical Issues

After the data collection several technical issues were discovered, which would have
great impact on the further work and results. This subsection aims to describe these
issues as they were discovered, and which adjustments to the presented method were
made to reach a result as similar to the initial hypothesis as possible.

3.2.6.1 False Impressions Due to a Faulty Sample Counter

Before the data collection, a sample counter was set up with the purpose to state
how many samples were collected during each sequence of 30 seconds. This was
considered a safeguard to know when to accept or reject a sequence depending on
the obtained sampling frequency.

However, after all test sessions had been conducted it was discovered that this
counter was defect, and not consistent with the number of samples that could be
downloaded from the server. Instead, the number of samples that had reached the
server would be highly erratic. For each subject, the first couple of recorded
sequences would result in an approved sampling frequency, i.e. within the interval
of 50+5 Hz. However, the number of samples would decrease for each recorded
sequence, reaching a frequency as low as 10 Hz. This was later understood to be
caused by a server capacity limitation due to the free trial used.

The sample counter was later corrected to give the true results, which would be
valuable for future tries. The server was also upgraded to a paid version to increase
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the capacity and receive data with the desired frequency. Both applications were
tested before starting a new data collection.

3.2.6.2 Data Preprocessing with Regards to the New Conditions

Had the activities been performed in the same order for all subjects, without any
retakes, the achieved frequency for each activity would be more similar since it
would decrease with a rather consistent rate. However, since the activity protocol
was conducted in the order preferred by the subject, with retakes due to the faulty
sample counter signaling too low sample counts, the frequency of different activities
would vary a lot. Furthermore, within the CSV-files of samples from each recorded
sequence, there would be slack during periods where no samples were received.

Thus, each file had to be further edited, and solid recordings separated into new
files, which would be labeled with their final achieved frequency. Due to the sorting
of data, the final dataset would not be balanced, as the total solid recordings would
differ between the activities performed.

Those files representing the same activities and with rather similar frequencies
would be merged and further preprocessed as explained in 3.2.3 Data
Preprocessing. An exception to this occurred when processing the signals of those
data sequences with a lower sampling frequency. It was discovered that the filtering
was not as effective as for data sequences of higher sampling frequencies. This was
assumed to be due to the cutoff frequency being too close to the sampling frequency,
disabling filtration.

Nonetheless, the proposed methodology for preprocessing the data was still
considered valuable, since it would calculate measurements based on the general
characteristics of the solid value gatherings. As acceleration metrics are naturally
fluctuating as earlier mentioned and further described by Lara & Labrador (2013),
the result did not necessarily have to be completely distorted. However, it was
assumed that it would not either give as accurate results as it would with the initial
methodology.

3.2.6.3 Using an External Dataset

To make up for the encountered issues and still being able to evaluate the
methodology from the initial prerequisites, an additional external dataset was
evaluated. As proposed by Lara & Labrador (2013) each dataset has distinct
characteristics which may be either beneficial or unfavorable for a specific
algorithm. Therefore, using an additional dataset was also seen as a possibility to
explore what results the algorithm would show for a different activity set.

The dataset was collected for a similar research study at Cybercom by Kock &
Sarwari (2020). Their study aimed to identify and classify three different activities
(jumping, squatting and stomping) as real or fake for a mobile game application.
The activities would be defined as fake when the research subject manipulated the
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phone in an attempt to simulate the actual activity. The activities are further
described in Appendix B.2.1 Table B.4.

The set of experiments were carried out by a group of 12 volunteers with ages
ranging from 18 to 38. Each person was instructed to perform the three real and fake
activities respectively. Worth noticing is that three of the volunteers participated
twice. While the research subjects were performing the activities, they were holding
an iPhone 6 in landscape mode at shoulder height extended from the body with
slightly bent arms.

The data was collected using the smartphone’s acceleration and gyroscope at a
sampling rate at 50 Hz. Moreover, the attributes from the raw data stream collected
from the smartphone can be seen together with a description of the total dataset in
Appendix B.3.1 Table B.6. Apart from the three-axial acceleration and angular
velocity values, and due to the use of an iPhone, the authors did automatically obtain
three additional attributes called roll, pitch and yaw. These attributes represent the
relative rotation in x-, y-, and z-axis respectively.

We further processed the additional dataset according to 3.2.3 Data Preprocessing.
However, the noise reduction and separation of gravity components were not
performed, as this was done automatically through the iPhone. Furthermore, the
values for roll, pitch and yaw were not used since two datasets as similar as possible
were desired. However, the feature importance of these attributes was evaluated
separately as described in 3.2.4 Feature Optimization.

3.2.6.4 Notations for the Different Datasets

In the following chapters a consistent set of prefixes will be held for the different
datasets used, presented in Table 3.4.

Table 3.4 The set of prefixes used to describe the different datasets used in this thesis.

Prefix Description

Smart helmet dataset The dataset collected with the smart helmet as part of this
thesis methodology.

External dataset The dataset collected by Kock & Sarwari (2020) and used for
validation in this thesis.

Raw time-series The original time-series of data of each dataset, before being
preprocessed.

Preprocessed The preprocessed data of each dataset, consisting of the 348

features presented in the methodology.
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4 Interview Results

The following chapter aims to describe the empirical findings and results made from
interviews and observations in the pre-study with the five different stakeholders
which were presented in the methodology chapter: the employees, the employers,
the trade union, the legal system, and the technical expert. Naturally, these will
contribute differently to the evaluation of the innovation criteria depending on their
role and authority.

4.1 Feasibility

From the perspective of the legal system, and consistent with theory, the data
processing approach with regards to the smart helmet must follow one of the legal
bases of GDPR to be lawful. It is normally not possible to use the basis of consent
in power relationships. Hence, this basis cannot be used to motivate the
implementation of the smart helmet in construction companies, as employees will
be subordinate to employers. However, the processing of personal data could be
considered a trade-off between the employee’s vital interests and the interests of the
employer and any third parties. Furthermore, the relevance and the benefits brought
by the smart helmet through higher safety and decreased injury rates may carry more
weight than only protecting the employee’s personal integrity. (LEG)

Considering the risks of implementing the smart helmet, data may be used by the
employer to identify the worker’s activity, bringing disadvantages to workers
appearing to be less active (LEG). It is therefore important to ensure that the data is
only accessible by a few selected people within the organization, or even by an
external party such as an occupational health service that the employer may be
hiring. Using the latter would make the collected data confidential and not
accessible by the employer (TECH).

This was also considered a worthwhile solution by the employer, who expressed an
understanding of the complexity of the problem while showing little to no interest
in taking part in the data themselves. The construction company is today connected
to an occupational health service that performs various mobility and ergonomic
check-ups in their routine, which would align well with the introduction of a smart
helmet to prevent related injuries. Actions are today only taken on an individual
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level if injuries are discovered, but the employer also receives a yearly report on a
group level, stating statistics and trends of their employee health (NCC1).

Many employees own a smartphone today, and are therefore used to wearing GPS
applications, making them less hesitant about wearing these in their daily work
(NCC1). Hence, according to both employers and employees, the sensors of the
smart helmet would most likely not be perceived as a threat towards the personal
integrity rights (NCC2). Again, the employer states that they want to avoid all
situations where the efficiency and performance of employees can be measured, or
where this type of data can be stored and analyzed (NCC1).

The employer also expressed that although employees may worry about being
supervised while using these types of technological applications, a bigger obstacle
would still be the technology resistance among users. The technology resistance is
both based on lack of knowledge, but also habitual with a determination of
continuing to do things the way they have always been done. The technological
adoption of the smart helmet might vary between employees depending on age and
level of digitalization, and this might have to be considered if implementing a final
solution (NCC1).

From the perspective of the trade union it is also observed that the construction
industry today is overall rather analog, especially so on the construction site
compared to the planning levels of the construction industry (TU). This confirms
the background found on the topic, stating that the construction industry is not as
digitalized as other industries are as of today. Many workers have never used digital
tools in their daily work, and if the smart helmet would be introduced it is important
to simplify any user application that may come with it, to minimize resistance
towards it (NCC1). From the technical expert’s perspective the outlook is positive,
as technology has ramped up in later years. Earlier, these devices needed several
sensors and cords connected to them, while it today is easier to gather movement
data from smartphones or other unobtrusive devices (TECH).

Furthermore, it is said that several initiatives have been taken towards digitalization
which have not always been successful. One example is the ID06 card which is an
electronic register to make sure only registered construction workers are at the site,
preventing illegal workforce. However, this system has been bypassed with time,
which may create a disbelief for new digitalization initiatives to success among
employers and employees in the construction industry (TU).

4.2 Desirability

The liability of the trade union includes acting for their members’ interests in all
areas where the organization can make an impact. This may for example include
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negotiations on retiring age or lawful employment contracts for construction
workers (TU).

It is reported by the trade union that approximately 80 percent of Byggnads’
members belong to small construction companies, where Byggnads is an external
actor to which workers can turn for support. The remaining part of the members
work at larger construction companies such as NCC, Peab, and Skanska, where
Byggnads have internal organizations consisting of elected representatives (TU).

Furthermore, it is noticed by the trade union representative that the hazards which
construction workers are exposed to in their daily work is not given a lot of attention,
and that few people are aware of the injury and death tolls, compared to those in
other industries. This creates a big interest within the trade union and their initiatives
for the construction workers wellbeing. Furthermore, it is said that many initiatives
are taken towards the trade union members in order to change the industry culture
and way of working, e.g. by encouraging workers to de-emphasize the macho
culture in the industry (TU).

The overall attitude towards the smart helmet among construction workers was also
positive. The interviewees stated that there are many activities in their daily work
causing occupational hazards and long-term injuries, where a preventative approach
would be greatly appreciated by many. Examples of demonstrated hazards could be
heavy lifts and carrying of construction materials, as well as being situated in
unergonomic positions for a long period of time (NCC2). The technical expert
agreed that there is an overall need for systems and devices which can prevent these
types of injuries connected to ergonomics and overload factors (TECH).

When ordering a new helmet, a critical attribute to consider both among
construction workers and the purchasing unit is the weight of the helmet. As the
work demands a considerate amount of movement, and often so angular movements
of the head and neck, the helmet weight is more apparent and may also amplify the
damage made to these body parts. More specifically, when construction workers
have a liability to always observe the crane when located at a construction site to
make sure not to walk under its load. This leads to construction workers spending a
lot of time walking while looking upwards, making the helmet weight obvious.
Therefore, it would be important to consider this aspect, and to minimize the weight
of the loT-device alone, in case of an implementation of the smart helmet (NCC1,
NCC2).

From a legal perspective, the desirability aspect was vaguely discussed. However,
it was mentioned that these types of questions are encouraged, as they may set new
examples for practice, in a digital environment with rather weak guidelines at this
point in time (LEG).
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4.3 Viability

As of today, NCC has a central purchasing unit which is assists the divisions with a
selected range of workwear and equipment, in which several construction helmets
are included. This range is continuously reevaluated to adjust to the market offerings
as well as the construction workers” demand. NCC also has a representative group
consisting of construction workers, which from time to time try out new clothes and
equipment that may be added to the assortment. Today, there are about six helmets
included in this assortment, which the construction workers are free to choose
among (NCC2).

If the smart helmet would fulfill the requirements that NCC set for their equipment,
such as safety certifications and weight, it should follow the same business model
as other helmets. Although it is difficult to state any exact numbers, it was expressed
that there would be a willingness to pay a higher price than for regular construction
helmets if it would increase the safety of workers. If the set up would be developed
and sold as an additional application to be mounted onto any existing helmet, this
would be considered as a new type of product for which it is more difficult to
estimate the willingness to pay among construction companies. However, as this
solution would allow using an already approved construction helmet, the purchasing
and implementation process was thought to be dramatically shortened. (NCC2)

4.4 Summary

To provide an overview of the interview findings, the opinions considered most
apparent among respondents was concluded in Table 4.1. Vertically the four
interviewed stakeholder groups are listed, and horizontally the feasibility and
desirability criteria are listed along with potential risks or limitations. The viability
criterion is precluded from the table, as it was considered difficult to draw any
conclusions from the data collected in this area, while the smart helmet was assumed
to follow the same business model as existing construction helmets.
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Table 4.1. A summary of the different stakeholder attitudes with regards to the feasibility and
desirability criteria, as well as proposed risks.

Feasibility Desirability Risks

Employee Are used to wearing Long-term injuries are The purpose of the
smartphones, making common and an helmet may be
them less hesitant approach to prevent misunderstood due to
towards sharing data. these is welcomed. technology resistance.

Employer Promotes a third party to  Supportive to equipment  The additional helmet
handle data, avoiding improving occupational ~ weight caused by the
violation of personal safety if consistent with  loT-device may exceed
integrity rights. certifications and what is acceptable for

requirements. safety reasons.
Trade union Sensors are accepted if Positive to any Digitalization initiatives

Legal system

Technological
expert

they do not provide
video recordings or
GPS.

The interest of the
individual must
overweigh that of the
responsible companies.

Proposes an
occupational health
service to manage the
data.

initiatives in improving
occupational safety.

It provides a definition
of praxis in similar cases
where regulations may
be ambiguous.

Sees a big need for
further development in
the science of HAR to
lower the injury rate.

have sometimes failed,
risking a disbelief in
new solutions.

An appropriate
responsible unit must be
chosen to handle the
data.
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5 Body Movement Analysis Results

In this chapter the results from the movement data analysis and the performance of
the Random Forest classification will be presented. First, the classification results
and statistics for the smart helmet dataset will be described. Second, the results from
a comparative evaluation of the raw time-series external dataset will be presented,
followed by the corresponding evaluation of the preprocessed external dataset.
Last, a summary of the results and an objective comparison between the two
datasets will be presented to reinforce the discussion and analysis following in the
next chapter.

5.1 Analysis of the Preprocessed Smart Helmet Dataset

The results obtained from evaluating the smart helmet dataset will be presented in
this section. As mentioned in the methodology several issues were encountered
during the data collection and processing of data. Therefore, and due to the
complexity of this topic the results may not be as intuitive to the reader as they
otherwise would be, why they will be followed by a more thorough explanation.

5.1.1 Acceleration Signal Analysis

In Figure 5.1 and Figure 5.2 the body acceleration data collected during a walking
and lifting movement respectively is illustrated. The illustrated data was obtained
from movements within the highest frequency interval reached, i.e. similar to the
desired frequency. It is possible to see some repetitive patterns in the acceleration
data for both activities, however, it is somewhat irregular which may be due to the
variation of frequencies.
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Figure 5.1 An illustration of the separated body acceleration data in three axes, when
performing the light lifting activity.
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Figure 5.2 An illustration of the separated body acceleration data in three axes, when
performing the walking activity.
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5.1.2 Initial Confusion Matrix and Evaluation Metrics

Furthermore, a confusion matrix was generated with regards to the collected and
preprocessed movement data, presented in Table 5.1. As explained in the
background chapter, the optimal result is reached when the matrix shows as high
values as possible along the diagonal from the top-left corner to the bottom-right
corner. It is possible to see that the classification results for the smart helmet dataset
are relatively high.

The minimum precision of 0.8276 is for walking while carrying something heavy,
and the maximum is for walking while looking upwards with no confusion at all.
The remaining activities range from 0.8686 to 0.8832, showing a rather low
variance. Furthermore, it can be seen that walking while carrying something heavy
is most commonly mistaken for walking, and vice versa. A rather high confusion
can be seen between the two lifting movements as well. Likewise, the recall ranges
from 0.8182 to 0.8936 for all activities but walking while looking upwards, which
scores 0.9881.

Table 5.1 The confusion matrix obtained from the initial classification results on the
preprocessed smart helmet dataset.

Light Heavy Walking Walking, Walking, Recall
lifting lifting carrying looking
heavy upwards

Light 119 20 1 0 0 0.8500
lifting
Heawy g 168 2 0 0 0.8936
lifting
Walking 0 1 121 14 0 0.8897
Walking,
carrying 0 3 13 72 0 0.8182
heavy
Walking,
looking 0 0 0 1 83 0.9881
upwards
Precision  0.8686 0.8750 0.8832 0.8276 1.0000

The additional evaluation metrics derived from the confusion matrix results are
presented in Table 5.2. It can be seen that the accuracy, precision, recall, and F1-
score all range from 0.8850 to 0.8851. Meanwhile, the MCC shows a bit lower score
at 0.8528, which may be explained by the adjustment it does to the imbalanced
dataset. However, all metrics are relatively high, especially so with regards to the
limitations during the data collection.
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Table 5.2 The overall evaluation metrics when calculated for the initial classification
performance of the preprocessed smart helmet dataset.

Accuracy Precision Recall F1-score MCC
(Weighted) (Weighted) (Weighted)
0.8850 0.8851 0.8850 0.8850 0.8528

5.1.3 Feature Optimization Confusion Matrix and Evaluation Metrics

Lastly, the feature importance was evaluated. Because of the high number of
features each one will not be presented. However, a list of the five highest
importance scores are presented together with those that scored zero in Table 5.3.
In total, ten features were eliminated, resulting in 338 features. It can be seen that
several of the gravitational force vectors had high importance, and especially so in
the x-axis. By looking at the raw time-series signals, it is apparent that the
movements in the x-axis are the most significant, why it may also create the most
significant results. Among those features that scored zero these are exclusively

entropy and maximum index vectors for various attributes.

Table 5.3 The most and least important features when performing a feature optimization on
the preprocessed smart helmet dataset. A more detailed description of each feature can be

found in Appendix B.3.2 Table 8-11.

Most important features Score Least important features Score
tGravityAcc-mean()-X 0.040385 tBodyAcclerk-entropy()-X 0.00000
tGravityAcc-max()-X 0.033889 fBodyAcc-entropy()-X 0.00000
tGravityAcc-sma() 0.026421 fBodyAcc-entropy()-Y 0.00000
tGravityAcc-min()-X 0.021605 fBodyAcc-entropy()-Z 0.00000
fBodyGyro-energy()-Y 0.020515 fBodyAcclerk-entropy()-Y 0.00000
fBodyAccJerk-entropy()-Z 0.00000
fBodyAccMag-maxInds() 0.00000
fBodyBodyAcclerkMag-maxIinds() 0.00000
fBodyBodyGyroMag-maxInds() 0.00000
fBodyBodyGyroJerkMag-maxInds() ~ 0.00000

After evaluating the dataset again, but excluding unimportant features, the
increased
for light lifting and walking, equal for walking while looking upwards, while

confusion matrix presented in Table 5.4 was obtained. The precision is
decreased for heavy lifting and walking while carrying something heavy.
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The recall for light lifting and walking while carrying something heavy is almost
precisely the same as the result obtained before the feature optimization.
Furthermore, it is rather increased for heavy lifting, slightly increased for walking
while looking upwards, and slightly decreased for walking. The sum of the
predictions for each activity differs from the original classification presented in
Table 5.1, as the training and testing data was randomly partitioned between the two
classifications.

Table 5.4 The confusion matrix obtained from the classification results of the preprocessed
smart helmet dataset, after a feature optimization resulting in 338 features.

Light Heavy Walking Walking, Walking, Recall
lifting lifting carrying looking
heavy upwards

Light 136 22 0 2 0 0.8500
lifting
Heavy 7 166 1 0 0 0.9540
lifting
Walking 2 0 131 18 0 0.8733
Walking,
carrying 0 6 8 63 0 0.8181
heavy
Walking,
looking 0 0 0 0 73 1.0000
upwards
Precision  0.9379 0.8558 0.9357 0.7590 1.0000

The overall evaluation metrics do increase slightly after the feature optimization, as
can be seen in Table 5.5.
Table 5.5 The overall evaluation metrics after feature optimization when calculated for the

classification results of the preprocessed smart helmet dataset, together with their absolute
increase from the previous results in Table 5.2.

Accuracy Precision Recall F1-score MCC
(Weighted) (Weighted) (Weighted)

0.8961 (+0.0111) 0.9003 (+0.0152) 0.8960 (+0.0110) 0.8965 (+0.0115) 0.8674 (+0.0146)

5.2 Analysis of the Raw Time-Series External Dataset

The results obtained from the evaluation of the raw time-series external dataset will
be presented in the following subsections. This dataset will exclude the roll, pitch,
and yaw attributes to simulate the smart data set as much as possible. First, the
general movement data characteristics will be presented below as was done in 5.1
Analysis of the Preprocessed Smart Helmet Dataset. In the following two
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subsections the results from the evaluation of the raw time-series external dataset
with and without the roll, pitch, and yaw attributes included will be presented, to
evaluate the importance of these attributes which were only included in the external
dataset.

5.2.1 Acceleration Signal Analysis

In Figure 5.3, Figure 5.4 and Figure 5.5 the body acceleration data collected during
jumping, squatting, and stomping respectively is illustrated. It is for all tree activities
possible to distinguish repetitive movement patterns, where the body acceleration
in x- and z-axis is especially apparent.

Jumping

Acceleration, x =~ = Acceleration, y Acceleration, z

Figure 5.3 An illustration of the separated body acceleration data in three axes, when
performing the true jumping activity.
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Figure 5.4 An illustration of the separated body acceleration data in three axes, when
performing the true squatting activity.

Stomping

Acceleration, x = Acceleration, y Acceleration, z

Figure 5.5 An illustration of the separated body acceleration data in three axes, when
performing the true stomping activity.

5.2.2 Initial Confusion Matrix and Evaluation Metrics

As the external raw time-series of data also contains the attributes for roll, pitch, and
jaw, each evaluation step of this subsection will be presented in two parts. The first
will exclude the additional attributes, to simulate the smart helmet dataset. The
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second part will include the additional attributes to illustrate the difference they
make.

5.2.2.1 Excluding Roll, Pitch and Yaw Attributes

The confusion matrix with regards to the raw time-series external dataset is
presented in Table 5.3. As can be observed, the precision ranges from 0.7321 to
0.8977 for all activities but jumping, which only reaches 0.5317. The precision is
specifically high for the activities labeled as fake, ranging from 0.7955 to 0.8977.
Likewise, the recall ranges from 0.7068 to 0.8482 for all activities but fake
stomping, which only reaches 0.6010. Regarding the recall it is not possible to see
any significant difference between true and false movements.

Table 5.3 Confusion matrix of the classification results on the raw time-series external dataset,
with the roll, pitch and yaw attributes excluded.

Fake Squatting  Fake Jumping Fake Stomping  Recall
jumping stomping squatting
Fake 3796 119 150 152 197 142 0.8332
jumping
Squatting 102 3928 14 155 208 224 0.8482
Fake g9 34 4038 2153 107 101 0.6010
stomping
Jumping 159 278 108 3305 176 650 0.7068
Fake 434 361 117 160 3353 254 0.7329
squatting
Stomping 130 249 71 291 174 3747 0.8037
Precision 0.8070  0.7905 0.8977 0.5317 0.7955 0.7321

The additional evaluation metrics derived from the confusion matrix results are
presented in Table 5.5. The accuracy, precision, recall, and F1-score all range from
0.7993 to 0.8010 when evaluating the data with roll, pitch, and yaw attributes
excluded, showing significantly similar values in comparison to each other. The
MCC is 0.7600, hence lower than the other measurements which may be due to the
dataset not being perfectly balanced.
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Table 5.5 The overall evaluation metrics when calculated for the resulting classification
performance of the raw time-series external dataset, with the roll, pitch and yaw attributes
excluded.

Accuracy Precision Recall F1-score MCC
(Weighted) (Weighted) (Weighted)
0.7997 0.8010 0.7998 0.7993 0.7600

5.2.2.2 Including Roll, Pitch and Yaw Attributes

The confusion matrix with regards to the raw time-series external dataset is
presented in Table 5.6. It can be observed that the precision is ranging from 0.8225
to 0.9587. As for the classification with roll, pitch, and yaw excluded, the precision
is specifically high for the activities labeled as fake, ranging from 0.9241 to 0.9587.
The precision for all activities is noticeably higher when including roll, pitch, and
yaw if compared to Table 5.3. Recall ranges from 0.8359 to 0.9534, which again is
higher than the respective values in Table 5.3.

Table 5.6 Confusion matrix of the classification results on the external raw time-series external
dataset, with the roll, pitch and yaw attributes included.

Fake Squatting  Fake Jumping Fake Stomping  Recall
jumping stomping squatting
Fake 4143 77 41 116 102 73 0.9101
jumping
Squatting 46 4345 2 26 46 142 0.9431
Fake g 2 4439 70 45 52 0.9534
stomping
Jumping 82 104 67 3809 79 416 0.8359
Fake g7 127 48 104 4129 199 0.8794
squatting
Stomping 64 212 33 191 67 4087 0.8782
Precision 0.9268  0.8927 0.9587 0.8825 0.9241 0.8225

The additional evaluation metrics derived from the confusion matrix results are
presented in Table 5.7. When including roll, pitch, and yaw attributes, the accuracy,
precision, recall, and F1-score range from 0.9001 to 0.9013. Furthermore, the MCC
is 0.8804 which again is lower than the other measurements due to the unbalanced
dataset. Similar to the confusion matrix results, the scores are overall higher for the
dataset including roll, pitch, and yaw attributes.
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Table 5.7 The overall evaluation metrics when calculated for the resulting classification
performance of the raw time-series external dataset, with the roll, pitch and yaw attributes
included. Together with their absolute increase from the previous results in Table 5.5.

Accuracy Precision Recall F1-score MCC
(Weighted) (Weighted) (Weighted)

0.9001 (+0.1004) 0.9013(+0.1003) 0.9001 (+0.1003) 0.9002 (+0.1009) 0.8804 (+0.1204)

5.2.3 Feature Optimization

Lastly, the feature importance is also presented in two parts, excluding and including
the roll, pitch, and yaw attributes.

5.2.3.1 Excluding Roll, Pitch and Yaw Attributes

The feature importance with the roll, pitch, and jaw attributes excluded is presented
in Figure 5.6, in which the most significant feature is body acceleration in the x-
axis, scoring 0.149679. The remaining features would range from 0.082299 for
gravitational force in the x-axis, to 0.129519 for angular velocity in the y-axis.
However, since none of the features were considered unimportant, the already
presented result maintains.

Feature Importance Score
0 0.05 0.1 0.15 0.2
Body acceleration, x I
Body acceleration, y
Body acceleration, z
Gravity, x I
Gravity, y
Gravity, z
Angular velocity, x
Angular velocity, y

Angular velocity, z

Figure 5.6 The feature importance when evaluating the raw time-series external dataset, with
roll, pitch and yaw attributes excluded. The highest and lowest values are marked in black.
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5.2.3.2 Including Roll, Pitch and Yaw Attributes

When including the roll, pitch, and jaw attributes, as seen in Figure 5.7 the scoring
is observed to be clearly different. The yaw attribute shows significant importance,
scoring 0.176285 followed by body acceleration in the x-axis, scoring 0.120188.
The lowest score was seen for gravitational force in the x-axis, with a score of
0.052661. Similar to above, none of the features were considered unimportant,
hence the already presented result maintains.

Feature Importance Score
0 0.05 0.1 0.15 0.2

Body acceleration, x
Body acceleration, y
Body acceleration, z
Gravity, X

Gravity, y
Gravity, z
Angular velocity, x
Angular velocity, y
Angular velocity, z
Roll
Pitch

'Y 21V

Figure 5.7 The feature importance when evaluating the raw time-series external dataset, with
roll, pitch and yaw attributes included. The highest and lowest values are marked in black.

5.3 Analysis of the Preprocessed External Dataset

The results obtained from the evaluation of the preprocessed external dataset will
be presented below. This dataset was as earlier mentioned used to validate the
feature extraction methodology. First, the confusion matrix and evaluation metrics
will be presented. Second, the feature importance will be evaluated for the
preprocessed dataset.

5.3.1 Initial Confusion Matrix and Evaluation Metrics
The confusion matrix with regards to the preprocessed data of 348 features is

presented in Table 5.8. As can be observed, the precision reaches the maximum of
1.0000 for squatting, fake stomping, and jumping. Furthermore, it ranges from
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0.9474 to 0.9759 for the remaining three activities. Any difference between true and
fake activities cannot be seen. The recall does too reach the maximum of 1.000 for
squatting, fake stomping, and stomping. For the remaining three activities it ranges
from 0.9467 to 0.9740.

Table 5.8 Confusion matrix of the classification results on the preprocessed external dataset.

Fake Squatting  Fake Jumping Fake Stomping  Recall
jumping stomping squatting
Fake 75 0 0 0 2 0 0.9740
jumping
Squatting 0 65 0 0 0 0 1.0000
Fake 0 0 59 0 0 0 1.0000
stomping
Jumping O 0 0 71 0 4 0.9467
Fake 3 0 0 0 81 0 0.9643
squatting
Stomping 0 0 0 0 0 72 1.0000
Precision 0.9615  1.0000 1.0000 1.0000 0.9759 0.9474

The additional evaluation metrics derived from the confusion matrix results are
presented in Table 5.9. It is observed that all scores range from 0.9792 to 0.9797,
where the MCC also is similar to the other evaluation metrics.

Table 5.9 The overall evaluation metrics when calculated for the resulting classification
performance of the preprocessed external dataset.

Accuracy Precision Recall F1-score MCC
(Weighted) (Weighted) (Weighted)
0.9797 0.9792 0.9797 0.9792 0.9792

5.3.2 Feature Optimization Confusion Matrix and Evaluation Metrics

Lastly, the feature importance was evaluated. Again, due to the high number of
features, a list of the five highest scores are presented in Table 5.10, while 38
features scored zero and will not be presented. Among these, 28 features were of the
entropy attribute, and four of the max index attribute.
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Table 5.10 The most important features when performing the feature optimization on the
preprocessed external dataset. A more detailed description of each feature can be found in
Appendix B.3.2 Table 8-11.

Most important features

Score

tGravityAcc-std()-Z
tGravityAcc-mad()-Z
tBodyGyroMag-sma()

tGravityAcc-iqr()-Z
fBodyBodyGyroJerkMag-meanFreq()

0.027169
0.025138
0.024024
0.022622
0.019296

After evaluating the dataset again, but excluding unimportant features, the
confusion matrix presented in Table 5.11 was obtained. The precision has increased
for fake squatting, while it has decreased slightly for fake jumping and squatting.
The recall for fake jumping has increased, and the result for fake squatting has an
increased marginally. Furthermore, the recall has slightly decreased for jJumping.

Table 5.11 The overall evaluation metrics when calculated for the resulting classification
performance of the preprocessed external dataset, after feature optimization resulting in 310

features.
Fake Squatting  Fake Jumping Fake Stomping  Recall
jumping stomping squatting
Fake g, 0 0 0 0 0 1.0000
jumping
Squatting 0 73 0 0 0 0 1.0000
Fake 0 64 0 0 0 1.0000
stomping
Jumping O 0 0 66 0 4 0.9429
Fake 0 0 0 72 0 0.9474
squatting
Stomping 0 0 0 0 0 69 1.0000
Precision 0.9523  1.0000 1.0000 1.0000 1.0000 0.9452

The overall evaluation metrics do increase slightly except for MMC after the feature
optimization, as can be seen in Table 5.12.

66



Table 5.12 The overall evaluation metrics when calculated for the resulting classification
performance of the external preprocessed dataset, after feature optimization resulting in 310
features. Together with their absolute increase from the previous results in Table 5.9.

Accuracy Precision Recall F1-score MCC
(Weighted) (Weighted) (Weighted)

0.9815(+0.0018) 0.9824 (+0.0032) 0.9815(+0.0018) 0.9815(+0.0023) 0.9780 (-0.0012)

5.4 Summary

From the presented results above it can be seen that the evaluation metrics from the
preprocessed external dataset is significantly better than the ones obtained when
using the raw time-series of data, both when including and excluding the roll, pitch
and, yaw attributes. The results from using the preprocessed smart helmet dataset
outperform the results of the raw time-series external dataset when excluding the
roll, pitch, and yaw attributed, but do not reach the performance of the preprocessed
external dataset. Neither do they reach the performance of the raw time-series
external dataset with roll, pitch and yaw included.

Furthermore, from the evaluation of the preprocessed smart helmet dataset some
confusion can be seen within the two main groups of activities, i.e. lifting and
walking, apart from for the activity walking while looking upwards which shows
high precision and recall. From the raw time-series external dataset it is possible to
see that the fake movements are better distinguished than the true movements. In
cases of confusion, the fake activities are randomly misclassified, and not
specifically with their respective true activities.

Finally, the feature importance shows that the yaw attribute is of high importance
for the raw time-series external dataset. When comparing the most important
features of the two preprocessed datasets, the results will vary. However, the least
important features will mainly be represented by entropy and max index attributes.
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6 Discussion

In this thesis, the construction industry environmental barriers in which a smart
helmet would be implemented is presented and evaluated, with regards to five
stakeholder perspectives. Furthermore, the performance of the Random Forest
algorithm is evaluated, when analyzing human activity data collected from sensors
in the smart helmet. This chapter will provide a discussion based on the results
achieved from the research questions of this thesis. First, the results of each
guestion will be separately discussed to give the reader a deeper understanding of
their significance. Further, these will be summarized to conclude the discussion.
Lastly some future research areas that are interesting for further investigation will
be presented.

6.1 The Environmental Barriers for the Smart Helmet

This section will present a discussion related to the research question asking what
the environmental barriers in the Swedish construction industry are for the smart
helmet. The discussion is based on the conducted literature review and the interview
results, to provide the reader with new perspectives on the obtained results.

6.1.1 Initiatives against Occupational Injuries

As disclosed by the background chapter of this thesis, the construction industry is
facing a major challenge in decreasing the number of occupational injuries. From
the empirical results, it is also clear that occupational injuries are an obvious
problem in the daily life of construction workers. This awareness can be
acknowledged by the clear communication both employers and employees had
regarding the helmet weight, one main attribute to consider when choosing between
construction helmets. As a heavier helmet could cause overload injuries to the neck,
choosing a light-weight helmet is an active choice to avoid injuries.

However, there is little engagement expressed to change the overall situation in the
industry from the individual construction workers’ perspective, although external
initiatives are welcomed. This may be due to three major factors discovered.
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Firstly, construction work has historically used rather analog techniques, demanding
heavy physical labor, and hence causing injuries. Going so far back in time, this
may have become an accepted condition by workers, and therefore little is done to
prevent it.

Secondly, from a cultural perspective, this issue could be amplified by the
construction industry being heavily dominated by men. This creates a macho
culture, where it may be less accepted among construction workers to observe and
take action towards perceived physical issues. Furthermore, it may generate a
stubbornness to manage tasks oneself, which in turn can lead to a higher injury rate.

Thirdly, from a knowledge perspective, construction workers may miss vital
knowledge of various prevention methods to avoid injuries, but also of the
technological possibilities that enable prevention, resulting in a passive attitude
towards injury prevention. However, as the attitude towards external initiatives for
injury prevention is positive, the imposition of preventative methods such as the
smart helmet should be possible as long as it does not demand too much of the
construction worker.

6.1.2 Technology Resistance

While digitalization is a strong driver in the development of other industries, the
same cannot be said for the construction industry. The backlog of technological
initiatives, and even a pronounced technology resistance was apparent from the
empirical results. As previously mentioned, when discussing the lack of engagement
among construction workers towards preventative methods, the issue of technology
resistance may also be due to the analog history of the construction industry in
combination with the lack of knowledge regarding technological applications.
These results may potentially cause hindrance in the implementation of the smart
helmet. However, similar to the contention above, it could be bridged by not
demanding too much of the construction workers with regard to physical interaction
in the use of the smart helmet. Furthermore, communicating the underlying purpose
of the helmet and why it should be adopted towards construction companies and
their employees would be crucial for maximizing the retention rate.

Although it is said that the technology resistance is high within the construction
industry, the employers also state that most employees own a smartphone and are
therefore used to that certain level of technology. However, it is understandable that
it might be different to use new technologies in private than to start using it in work
tasks that are otherwise not as digitalized.

Nonetheless, the implications of a technology resistance in the construction industry
as a whole can be further discussed. It may set an even higher barrier to the
implementation than the individual construction worker’s attitude will. This, as the
construction industry as a whole sets the framework for the internally recommended
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regulations and principles. This will obviously also affect which equipment and
technological systems will be introduced in construction companies, such as when
the assortment of construction helmets is evaluated.

6.1.3 Privacy Issues

It is stated by the employer that they have no interest in handling the data collected
from the helmet. This may be interpreted as them only being interested in obtaining
the true purpose of the smart helmet, i.e. preventing injuries among their employees.
If this is the case, it implies that the risk of employers misusing data, e.g. to monitor
the efficiency of employees, is eliminated. However, it could also be interpreted as
the employer not having the resources or knowledge to handle that type of data,
resulting in a lack of interest to engage in it.

Regardless of the employer’s intention, if the principles of privacy by design
proposed by Cavoukian (2010) are followed when implementing the helmet, the
privacy issue should be eliminated. It would ensure the setup of a comprehensive
structure for handling the data between convenient responsible, without sharing the
information with potentially harmful stakeholders. Furthermore, as discussed by
Johansson Stalnacke & Pettersson (2016) it is important to understand the difference
in attitudes between the sender and receiver, regarding what type of data is more
sensitive to share.

Interview results did also show that one important factor to consider is how the
collection of data is interpreted among employees. It was emphasized that the
employee should not feel directly monitored, e.g. through GPS or video recordings
where data is more descriptive. This was also an argument by Lara & Labrador
(2013) for not using external sensors in HAR systems. As the movement (i.e.
acceleration and angular velocity) data from the smart helmet can be considered
more difficult for a layman to draw any conclusions from, the collection of
movement data through the sensors on the smart helmet could be more acceptable.

Considering the empirical results presented from a legal perspective, this approach
should also support the legal basis saying that the interest of and value for the
employee should weigh heavier than that of the organization or system processing
and storing the data.

The organization proposed by interviewees to be responsible for this is the potential
occupational health service that employers may hire. Since this organization has no
power relationship with the employee, its interest in the data can be neglected.
Furthermore, information processed by health services is confidential, meaning that
it cannot be shared with the employer. However, this idea would demand from
construction companies that they are hiring an occupational health service to enable
the use of the helmet, which may not be the case for all companies.
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Nonetheless, introducing a smart helmet in the construction industry could make a
great example for the further digitalization of the industry, and for new practices
related to privacy by design if done right. Furthermore, as mentioned in the
interview results, it provides a definition of praxis in similar cases where regulations
may be ambiguous, which could be valuable and encouraging future developments.

6.2 Body Movement Analysis Performance

In this section the performance of the body movement analysis with regards to the
preprocessing method and the Random Forest classifier algorithm will be discussed.
The results of both datasets used will be analyzed and compared to each other, with
a discussion on why the differences would occur.

6.2.1 Activity Set and the Complexity of the Activities

When comparing the two activity sets with regards to their recognition performance,
several distinctive results can be seen. As the overall recognition performance of the
preprocessed external dataset was higher than that for the smart helmet dataset, a
contributing factor to this could be the complexity of activities in the latter. The
activities of Kock & Sarwari are rather distinguishable with regards to their
frequency and amplitude, while those in the smart helmet dataset are more
overlapping and/or complex to distinguish within the two main groups of activities.

Furthermore, when performing the feature optimization it was apparent that the most
important features would differ between the two datasets. This argues for different
characteristics in the activity set, why the recognition performance also may differ
between them.

Since the misclassification of fake activities in the raw time-series dataset of Kock
& Sarwari was rather randomly distributed while the classification overall was
experiencing high precision, it could be argued that the true and corresponding fake
activities all could be perceived as different activities with regards to their
acceleration and angular velocity data. This would also contribute to their higher
overall evaluation metrics compared to those of the smart helmet dataset.

From the dataset collected with the smart helmet, the activity with the highest
precision and recall was walking while looking upwards. It was initially
hypothesized that this activity would be confused with the other two walking
activities, which was rejected by the results. This can be explained by the tilt of the
neck when looking upwards, causing the axes in which the acceleration and angular
velocity are measured to shift. From this, it can be concluded that the algorithm
should be able to distinguish between similar movements performed with the head
in different positions. Recognizing differences as these could be argued for being
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an advantage in the recognition of movement patterns with the head in a harmful
position, such as when monitoring the crane at a construction site which was
presented as a cause of injuries in the interview results.

6.2.2 Choice of Sensor Attributes and Their Positioning

From the interviews it was suggested that the sensors on the smart helmet should
not cause any trouble as long as they do not provide video recordings or GPS.
Although this was expressed as a condition for protecting the privacy of construction
workers, it is also supported from a technological perspective, as the additional
sensors would cause a substantial increase of the power and computational
expenditures without necessarily creating any extra value.

However, it can be discussed whether the chosen sensor positioning is optimal to
recognize more advanced motions. The experiment might generate more consistent
results from the sensor being positioned elsewhere, or by using additional sensors.
For example, when analyzing the lifting activities, a wrist positioned sensor might
give more accurate results, as proposed by Lara & Labrador (2013). Adding this
sensor would also give information about the arm movement and could provide
possibilities to observe how the arm strength reacts to the lifting activities depending
on different weights. Nonetheless, this would also be a trade-off considering the
obtrusiveness of the system, as it would demand users to wear not only a helmet but
also some sort of wrist-mounted device.

Furthermore, the roll, pitch, and yaw attributes included in the initial raw times-
series dataset of Kock & Sarwari can be discussed to be valuable for this type of
movement analysis. Partly to get a more precise result, but also because these
rotations may be valuable in the process of understanding movements. This, since
they can detect e.g. harmful rotations of the head or neck in the three axes, which
may be essential in predicting and preventing injuries. After analyzing the external
dataset it was especially apparent that yaw, i.e. the relative angle rotation around the
x-axis, is a significant feature for the concerned activities. Furthermore, the
improvement of the results when including these attributes in the raw time-series
data analysis was apparent. However, roll and pitch scored lower in feature
importance and may therefore not have an as big impact on the algorithm result.

Despite this, the additional value added by using a magnetometer could be discussed
in future developments of the setup, to evaluate if it worth the extra financial and
energy expenditure as well as increasing the physical size of the device.
Furthermore, the importance could not be validated by also analyzing the smart
helmet dataset and may therefore not apply to all types of activities.
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6.2.3 The Training Data Quality and Quantity

The overall quality of the two datasets would differ for two reasons: the initial
purpose of their use, and the limitations that occurred during the data collection of
the smart helmet dataset. This would in turn affect both the quality and quantity of
the training data.

For the smart helmet dataset, the sampling frequency would vary between
approximately 10 to 50 Hz, affecting the data quality, and implying that the time
windows of 128 samples would contain a varying number of movement cycles
depending on the average frequency of one window. This might have contributed to
some misclassifications in the recognition performance. Furthermore, as the
sampling frequency sometimes only reaches approximately 10 Hz at some points, it
can be questioned whether this was enough to capture small differences in
movements.

However, from the results it is visible that the recognition performance was in first
hand high between the main groups of activities, but also rather high within the
groups. This argues for a good recognition performance also for small differences
between movements, which could most likely be improved if using a higher and
fixed sampling frequency. However, it is difficult to say whether the sensors could
catch up even smaller differences than those in the activities presented, for example
when distinguishing between lifting movements of several different weights.

As already discussed, more sensors would possibly distinguish the differences, but
a higher sampling frequency could possibly do so too. This, without risking
obtrusiveness with regards to the size and weight of the loT-device, which was
discussed to be an important factor when purchasing a construction helmet.

Especially when considering the different types of walking, a higher sampling
frequency might be needed to for example distinguish whether a person is carrying
weights could be distinguished through a more apparent wobbling from side to side.
However, these movement characteristics could vary in their distinctiveness among
individuals, and thereby still be mistaken for each other.

The quality of the external dataset will not be commented on, as the sampling was
performed by Kock & Sarwari, and it is assumed that the iPhone used for data
collection was well functioning. Furthermore, the sampling showed accurate results,
with easily identifiable movements from the signal analysis of the body acceleration
data. Although the signals from the smart helmet dataset showed repetitive
movement patterns, they were not as easily distinguishable as those of the external
dataset. This could be explained by at least three reasons: (1) the frequency was not
constant for the illustrated signal as several samples of an average frequency were
merged, causing variations in the cycle time, (2) the accelerometer and gyroscope
may not have been positioned correctly or not set in a steady position during the
data collection, possibly causing distortion to the data collected for each axis, either
from angular misplacement or vibrations, and (3) the noise filtering and separation
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of the body acceleration may not have been correctly conducted, possibly causing
data to be mistakenly eliminated.

Lastly, the quantity of data would differ for the two datasets, also affecting the final
results. For both lifting activities and walking, the data quantity would be larger than
for remaining activities in both datasets with a factor of two to three. Although the
smart helmet dataset was overall larger than the external dataset for all activities,
the higher imbalance between activities may have caused confusion which resulted
in lower classification results. Considering the high classification results of the
external dataset, the quantity of data can be considered sufficient for the
corresponding activity set. However, it is not possible to tell without further
experiments whether the quantity is high enough also for the smart helmet dataset.

6.2.4 The Preprocessing Method

It is possible to argue that the data preprocessing method used makes significant
improvements to the algorithm’s performance.

Firstly, the classification results of the external dataset were improved when
extracting new features from the raw time-series data when roll, pitch, and yaw
attributes are excluded. The performance of the algorithm improved even further
when the features of the least importance for the prediction were eliminated.

Secondly, the classification results of the smart helmet dataset were satisfying with
regards to the encountered limitations during the data collection, and were similarly
improved when eliminating the features of least importance. However, as discussed
in previous sections the results of the classification for the smart helmet dataset
could most likely be enhanced if the data quality was higher.

Among the features eliminated due to low importance, a prevailing majority were
of entropy and max index attributes, disclosing that these may not be relevant to
consider in the first place. However, it could be further evaluated whether the
unimportance is general, if it depends on the characteristics of the datasets, and/or
if the programmed formula for calculating these is faulty.

The method of analyzing the raw time-series dataset of Kock & Sarwari (2020)
showed good results specifically in recognizing the activities labeled as fake. This
distinction could not be seen for the preprocessed dataset. However, this may be due
to the evaluation metrics for the preprocessed dataset being so high that almost all
activities were correctly classified.

The overall evaluation metrics did not show any significant variations to be
commented on for any of the datasets. It was shown that the MCC was higher and
more similar to the other metrics when preprocessing the external dataset, which
would advocate for using the proposed method also when working with slightly
unbalanced datasets such as that of Kock & Sarwari. The improvement could not be
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validated with the results of the smart helmet dataset. However, the MCC did not
either differ noticeably from the other evaluation metrics of the smart helmet dataset
which was even more unbalanced. Hence, the method could be considered suitable
also for somewhat unbalanced datasets.

6.3 Summary

Although occupational injuries are a problem in the daily life of construction
workers, there is barely any engagement expressed to change the situation from an
individual perspective. However, the attitude towards external initiatives for injury
prevention is positive. In the case of the smart helmet, it is crucial that the purpose
of the smart helmet, i.e. prevention of harmful movement patterns, is communicated
clearly both to the construction companies and their employees, since most
construction helmets today are chosen based on its weight. It is therefore important
to minimize the added weight of the IoT-device for it to be overlooked for its
additional value of safety provided by the smart helmet.

Further, it can be argued if adding a magnetometer to the smart helmet to obtain the
yaw values only would increase the additional weight without offering more value
to the Random Forest classifier. The same argument can be held if other sensors
were to be added to collect more data about the user. Further, it is also a question
regarding how much information should be collected with the smart helmet since
the employees do not want to feel directly monitored. However, since the current
setup of the smart helmet is more accepted by the employees than data obtained
from GPS and/or video recording there should not be a problem regarding privacy.
Moreover, if the principle of privacy by design is applied, and by giving the
responsibility of the data to the occupational health service, the issue of feeling
monitored can be further eliminated.

The performance of the classification of the Random Forest is satisfactory. The
classification result can however be further improved since the data obtained from
the smart helmet were insufficient. However, the algorithm was effective to
distinguish between movements with greater difference (walking vs lifting) and it
could differentiate more similar movements (light lifting vs heavy lifting) too.
Further, the Random Forest algorithm showed even more precise results when
predicting movements involving a change in the position of the head and/or rotation
of the neck (walking, while looking upwards). Lastly, the method used to preprocess
the data made significant improvements to the algorithm’s performance.
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6.4 Future Research

For future research, several topics were during the process of this report found
interesting for further work. Below, a number of ideas are presented that could act
subject to developments of this project, related to the technological aspects.

To reach the future purpose of the smart helmet, i.e. being able to prevent long-term
and irreversible injuries from overload factors among construction workers, two
criteria must be reached. First, it must be ensured that the helmet can also tell the
difference between movements in a natural environment with different individual
characteristics included in the data collection. Furthermore, to enable the
identification of harmful movement patterns, this work would have to be combined
with the science of ergonomics to develop methods for distinguishing characteristics
of harmful activities.

It is discussed whether more sensor attributes would reach a higher recognition
performance, or if they would have to be positioned on additional body parts to do
so. Therefore, in future works it would be interesting to evaluate the limit where no
additional value is generated from extra sensor attributes to the helmet.

It has not yet been discovered whether the algorithm could identify more complex
movements or overlapping movements. Neither has it been evaluated how well it
would work over a floating time period, where movement data would be cut into
time windows according to their natural happening, causing transition errors to some
of the windows. This could do as a first step towards adjusting the setup for a more
natural environment. An even further step would be to enable the analysis of real-
time data collected from the construction site, and simultaneously communicate
warnings of harmful movement patterns to the construction worker. However, these
kinds of techniques would also demand an extremely large and historically collected
training dataset combined with knowledge in ergonomics as previously mentioned.

An alternative way of processing the data which could be subject to further research
is to use the integration device, i.e. the built-in processor, to store and process the
data instead of sending it to a server. This would reduce the energy expenditure from
the transmission, which could be an advantage when implementing the helmet in a
large-scale environment.

The existing recognition model is general for all users, but an alternative
implementation to investigate is using an individual model. This could possibly be
more aware of the user’s individual movement patterns and hence be able to
recognize changes in those that may not apply for other users.
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7 Conclusion

It is shown that the stakeholder attitudes towards the smart helmet are overall
positive. While privacy was hypothesized as the biggest barrier for the
implementation of the helmet, it was later found out that the technology resistance
of the construction industry together with the additional weight to the loT-device
were considered larger barriers. Nonetheless, it is emphasized that monitoring and
storage of personal movement data should follow the privacy by design principles
to avoid intruding on the privacy of construction workers.

From the results achieved through this study it can be said that the Random Forest
machine learning algorithm together with the presented methods of data
preprocessing is suitable for classifying a movement dataset collected through the
smart helmet. It performs well also in recognizing rather detailed differences
between similar activities, which could be valuable if the helmet was to be
implemented in the construction industry to recognize and prevent harmful
movement patterns. However, the technological architecture of the smart helmet
should be considered in future developments to guarantee the best prerequisites for
data collection and processing.
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Appendix A Interview Guides (in
Swedish)

A.1 Trade Union (TU)

A.1.1 Fackets roll

Nr

Fraga

Kommentar

Vilket ansvar och roll har facket gentemot

byggarbetare?

Vilken makt har facket att besluta om vilka produkter,
tjanster, och férandringar som far genomforas inom

byggbranschen?

Ett exempel pa en nyare digital I6sning i
byggbranschen &r inférandet av ID06. Hur har detta
mottagits av facket, byggféretagen och

byggarbetarna?

Har synen pa 1D06 forandrats sedan inforandet for

négra ar sedan?

Finns det andra liknande exempel?
Har det forekommit fall dar produkter, tjanster och

forandringar inte tillatits?

Politiskt (arbetsratt),
samarbete med
arbetsmiljoverket, etc.

Har nagon av kategorierna
extra fokus eller inflytande?

Hur har de mottagits?

Vad har det berott pa, och
vilken typ av produkt tjanst
eller férandring har det

handlat om?
A.1.2 Den tekniska lésningen
Nr Fraga Kommentar
1 Var tanke &r att behandling och analys av indata for Exempel pé erfarenheter

att identifiera ett felaktigt rérelsemonster ska innebéra
Okad sakerhet for byggarbetare, men kan samtidigt
uppfattas som dvervakande och integritetskrédnkande.
Ser du nagra andra eventuella férdelar och brister
med produkten ur ett fackligt och/eller

anvandarvanligt perspektiv?

kring liknande produkter
som inforts och som skapat
vérde eller orsakat
komplexitet som inte
forutségs?



Var gar gransen mellan 6kad sakerhet och den
integritetskrénkning eller 6vervakning som
byggarbetare utsatts for genom den har produkten?

Kan man dvervdga produkten tack vare det vérde den
skapar och pa sa satt fa den att mottas battre?

Vilka ar de faktorer ni kollar pa for att avgéra om
integritet hos en byggarbetare verskrids av dess
arbetsgivare?

Far och kan en arbetsgivare enlig er stélla krav pa
vilken data vill samla in och analysera fran anstilldas
arbete och beteende?

Hur stéller ni er till balansen mellan sékerhet och
integritet i en produkt?

Hos facket/anvandarna?

Hur méste vi tanka kring
produkten och insamling av
information for att minimera
att den personliga
integriteten hos byggarbetare
kranks.

Exempelvis genom kontrakt
eller specifika krav pa ett
projekt.

Vilket vdger tyngre, och hur
definieras vinningen av
vardera sida?

A.2 Employer (NCC1)

Nr Fraga Kommentar

1 Hur ser processen ut nar ni képer in ny Paverkas det av anvandarna
skyddsutrustning, som hjalmar? eller er som arbetsgivare?

2 Har ni intresse att skydda era medarbetare pa ett satt
som “dvertraffar” standarden?

3 Jobbar ni ndgonsin proaktivt med sikerhet pa
arbetsplatser och i sa fall hur?

4 Var tanke 4r att behandling och analys av indata for Exempel pé erfarenheter
att identifiera ett felaktigt rorelseménster ska innebara  Kring liknande produkter
odkad sékerhet for byggarbetare, men kan samtidigt som inforts och som skapat
uppfattas som overvakande och integritetskrankande, ~ Varde eller orsakat
Ser du nagra andra eventuella férdelar och brister lf(é)thZ :;XS',t)et som inte
med produkten ur ett arbetsgivar- och/eller g5
anvandarvanligt perspektiv?

5 Hur stéller ni er till balansen mellan sékerhet och Vilket vdger tyngre, och hur
integritet i en produkt? definieras vinningen av

vardera sida?

6 Om arbetarna vill ha en produkt for deras 6kade
sakerhet, vilken makt har arbetsgivaren i fragan?

7 Hur arbetar ni med personlig integritet pa Ser ni det ur ett
arbetsplatsen? grupperspektiv eller pa

individniva?
8 Hur ser ni pa personlig integritet kopplat till Har ni nagra erfarenheter av

inspelning, tid, position i hjalmens fall?
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10

Ponera att ni skulle anvanda er av den har hjalmen.
Hur hanterar ni data i verksamheten?

Fran intervju med Jonas och Jorgen har vi plockat
upp att man t.ex. skulle kunna hantera data genom
foretagshalsovard for att skydda den med sekretess.
Fungerar det i den har typen av verksamhet?

A.3 Employer & Employee (NCC2)

Nr

Fraga

Kommentar

10

11

Hur ofta upplever du att det introduceras nya
skyddsutrustningar som exempelvis hjalmar i ditt
arbete?

Ar man generellt van vid att introducera nya
produkter, t.ex. skyddsutrustningar i arbetet?

Hur stéller du dig till nya produkter? Ar mottagandet
olika beroende pa om produkten ar teknologisk eller
ej?

Om en produkt skulle introduceras med syfte att 6ka
sakerheten pa arbetsplatsen, skulle den mottas mer
positivt an om paverkan var neutral?

Forhéller man sig olika beroende pa om det &r
individen eller gruppen som skyddas?

Var tanke &r att behandling och analys av indata for
att identifiera ett felaktigt rérelsemonster ska innebéra
Okad sakerhet for byggarbetare, men kan samtidigt
uppfattas som dvervakande och integritetskréankande.
Hur ser du pa detta utifran ditt arbete, din vardag, och
den information du idag delar med dig till
arbetsgivare?

Var anser du att gransen gar for vad som ar
integritetskrdnkande och vad som inte ar det?

Kan du tianka dig ett exempel pa nagon teknologi eller
liknande som skulle 6verskrida den gransen?

Om hjalmen skulle anvandas av er byggarbetare, hur
skulle du 6nska att data behandlas och hanteras?
Motsétter du dig att arbetsgivaren skulle fa hantera
den insamlade datan? Skulle exempelvis
foretagshalsovarden vara en mer legitimerad enhet att
gora det?

Hur upplever du idag att personlig integritet hanteras
pé arbetsplatsen?

T.ex. tid, position, filmning.
Vilket vdger tyngre, och hur
definieras vinningen av
vardera sida?

Ser ni det ur ett
grupperspektiv eller pa
individniva?
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A.4 Legal services (LEG)

A.4.1 Rattsvasendets roll

Nr

Fraga Kommentar

Utifran det vi last om bl.a. Datainspektionen, GDPR,
Arbetsmiljoverket och Arbetsdomstolen, finns det
flera olika organ med savél lagre som hogre makt att
ge riktlinjer och besluta kring hur produkter som
hjalmen boér brukas i arbetslivet. Hur skulle du sdga
att dessa samverkar, och finns det nagra andra organ
som &r viktiga att ndmna i sammanhanget?

Var tanke &r att behandling och analys av indata for
att identifiera ett felaktigt rérelsemonster ska innebéra
Okad sakerhet for byggarbetare, men kan samtidigt
uppfattas som dvervakande och integritetskrédnkande.
Ser du nagra andra eventuella férdelar och brister
med produkten ur ett antingen réttsligt, fackligt eller
anvéandarvanligt perspektiv?

Har det forekommit fall i historien dar produkter,
tjanster och forandringar inte tillatits? Vad har detta
berott p& och vilken typ av produkt, tjanst eller
forandring &r det?

Har det varit produkter liknande den smarta
bygghjélmen riktad mot byggarbetarna eller andra
typer av produkter?

Finns det nagon typ av pagaende forarbete for att
fortydliga den har typen av fragor i arbetslivet? Om
ja, vilken riktning ser det ut att ta?

A.4.2 Overvakning och integritet

Nr Fraga Kommentar

1 Kan du ge nagra exempel pé fall av dvervakning i
arbetslivet som varit tillatna samt nagra som inte
tillatits?

2 Hur skulle ett fall av 6vervakning dér de anstéllda
inte anser att situationen ar integritetskrankande
dbémas, om den trots allt skulle bryta mot en lag?

3 Kan ett fall frias for att inblandade inte har nagra
motsattningar? Bygger domen pa individen eller
rattsliga riktlinjer?

4 Vilka réttsliga rattigheter har arbetsgivaren att

Overvaka arbetstagaren med hjalp av olika
teknologiska hjalpmedel sdsom positioneringsteknik,
e-post och annan data kring beteende som kan samlas
in och lagras av arbetsgivaren?
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Eftersom var produkt inte ar uppbyggd av nagon
GPS-sédndare, utan endast av en accelerometer, skulle
du séga att det finns farre juridiska motsattningar till
varfor produkten skulle fa anvandas?

A.4.3 Sakerhet och integritet

Nr

Fraga

Kommentar

Var gar gransen mellan 6kad sakerhet och den
integritetskrénkning eller 6vervakning som
byggarbetare utsatts for genom en produkt lik den
smarta bygghjalmen?

Kan man dvervdga produkten tack vare den dkade
sikerhet den bidrar med och pd sa sétt fa den att
mottas battre av byggbranschen? Finns det t.ex. lagar
for integritetskrdnkande och for arbetsmiljé som kan
tala for eller emot varandra?

Ar det méjligt att i ett anstéllningsavtal eller i ett
projekt krdva av en anstalld eller projektarbetare att
delge den har typen av information dé det finns krav
pé att bara hjalm pa arbetsplatsen?

A.5 Technological Expert (TECH)

Nr

Fraga

Kommentar

Vad &r din bakgrund rent studie- och yrkesmassigt?
Hur har det lett dig in pé sparet med smarta
byggklader och hur man méter arbetsmiljé?

Vi fick ju tag pa dig genom Viktor (BuildSafe). Hur
har ditt arbete med dem sett ut, vilka kopplingar kan
man dra mellan era olika projekt?

Vad var startpunkten till arbetet, vilken idé borjade ni
fran och hur har den utvecklats?

Hur har ditt engagemang med smarta byggklader
mottagits av byggbranschen?

Kan du ge nagra exempel pé vart i ditt arbete som du
har sttt pd mest problem och hur du 16st dessa?

De sensorer vi kommer anvénda pa hjalmen, ar en

accelerometer med inbyggd gyroskop 3-axel? Tror du
det & mojligt att samla in tillrackligt med information
genom denna setup eller maste fler sensorer adderas?
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Vilka anledningar har funnits
till detta - svarigheter,
“enkelheter”, osv?

Vi har t.ex. haft intervjuer
for att fa battre forstaelse for
facket och den rattsliga sidan
- &r det nagon av dessa som
har begransat? Om, hur?



Har du koll pa nagra liknande projekt med sensorer Gérna som inkluderar
och rorelseanalys? machine learning, men inte
nddvéandigtvis.

Avslutningsvis, har du ndgra andra tips, erfarenheter
eller omraden som du vill dela med dig som du tror
kan vara vérdefullt for oss?
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Appendix B Explanatory Tables

This appendix will present a number of tables which were found overly detailed to
present in the report, risking to confuse the reader. Therefore, the information in
these tables is directed to those readers with a high technological interest, or those
encouraged to read the details of the methodology.

B.1 Supervised Machine Learning Algorithm
Characteristics

In this section, a table of selected supervised machine learning algorithms’ key
characteristics will be described.

Table B.1 A selection of supervised learning algorithms (Jiang, et al., 2017; BhanuJyothi, et al.,
2017; Mohammadi, et al., 2015).

Learning techniques  Key characteristics

Linear regression
models

K-nearest neighbor
(KNN)

Support vector
machines (SVM)

Naive Bayesian
learning

Linear Discriminant
Analysis (LDA)

Parallel Random
Forest

Estimate the variables’ linear relationships.

Classify a new data point through a majority vote of K-nearest
neighbors’ classifications.

Prediction model is developed by separating the dataset into two classes
with the use of a hyperplane. Non-linear mapping to high dimension.

A statistical classification technique based on the Bayes Theorem.

Prediction model is developed by mapping the dataset into a new feature
space which are more linearly discriminant compared with the original
features of the dataset.

Parallel implementation (instead of sequential implementation) of the
Random Forest classification algorithm.
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B.2 Activities for Data Collection

In this section tables containing details from the physically conducted data
collection be presented.

B.2.1 Research Subject Details and Activity Protocol

Table B.2 The distribution of characteristics among the research subjects.

Person Gender Age Height Weight
P1 Male 58 year 195 cm 90 kg
P2 Male 18 year 190 cm 87 kg
P3 Female 60 year 168 cm 70 kg
P4 Female 53 year 169 cm 66 kg
P5 Female 29 year 170 cm 69 kg
P6 Female 26 year 162 cm 55 kg
P7 Female 25 year 173 cm 64 kg
P8 Female 24 year 177 cm 66 kg
P9 Female 24 year 170 cm 64 kg
P10 Female 24 year 162 cm 55 kg
P11 Female 23 year 168 cm 58 kg

Table B.3 Experiment protocol of activities for the initial data collection.

Activity Recording time Hold time Repetitions
Light lifting 30 seconds 3 seconds 6
Heavy lifting 30 seconds 3 seconds 6
Walking 30 seconds Continuous 3
Walking while looking upwards 30 seconds Continuous 3
Walking while carrying something heavy 30 seconds Continuous 3
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Table 3.4. Detailed descriptions of the activity set performed by the research subjects.

Activity Description

Jumping Jumping on the spot for 30 seconds, while holding the smartphone in
landscape mode at shoulder height extended from the body with slightly
bent arms.

Fake Jumping Manipulating the phone in an attempt to simulate actual jumping for 30

seconds, while holding the smartphone in landscape mode at shoulder
height extended from the body with slightly bent arms.

Squatting Squatting on the spot for 30 seconds, while holding the smartphone in
landscape mode at shoulder height extended from the body with slightly
bent arms.

Fake squatting Manipulating the phone in an attempt to simulate actual squatting for

30 seconds, while holding the smartphone in landscape mode at
shoulder height extended from the body with slightly bent arms.

Stomping Squatting on the spot for 30 seconds, while holding the smartphone in
landscape mode at shoulder height extended from the body with slightly
bent arms.

Fake stomping Manipulating the phone in an attempt to simulate actual stomping for

30 seconds, while holding the smartphone in landscape mode at
shoulder height extended from the body with slightly bent arms.

B.3 Data Preprocessing

In this section, tables of the raw time-series of data will firstly be presented.
Thereafter, tables for the measurements used along with the feature vectors in both
the time domain and in the frequency domain. Lastly, the tables for the encoded
categorical activities and a full descriptions of the datasets used will be presented.
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B.3.1 Features of the raw time-series of data and JSON-object

Table B.5 Description of the raw time-series features of the smart helmet dataset.

Feature Description

Acc_X Acceleration value in x-axis.
Acc_Y Acceleration value in y-axis.
Acc_Z Acceleration value in z-axis.
Rotation_X Angular velocity in x-axis.
Rotation_Y Angular velocity in y-axis.
Rotation_Z Angular velocity in z-axis.

Table B.6 Description of the raw time-series features of the external dataset.

Feature Description

Acc_X Body acceleration value in x-axis.

Acc_Y Body acceleration value in y-axis.

Acc_Z Body acceleration value in z-axis.
Grav_X Gravitational acceleration value in x-axis.
Grav_Y Gravitational acceleration value in y-axis.
Grav_Z Gravitational acceleration value in z-axis.
Rotation_X Angular velocity in x-axis.

Rotation_Y Angular velocity in y-axis.

Rotation_Z Angular velocity in z-axis.

Roll Relative rotation around the x-axis.

Pitch Relative rotation around the y-axis.

Yaw Relative rotation around the z-axis.
Action The activity performed by the research subject.

93



Table B.7 Description of the parameters in a JSON-object.

JSON-parameters Description

Person Identifier to distinguish between different research subjects.
Sample Identifier to distinguish between different JSON-objects.
Unix-time Unix time stamp.
Param {

- Acc X Acceleration value in x-axis.

- AccY Acceleration value in y-axis.

- Acc Z Acceleration value in z-axis.

- Gyro_ X Angular velocity in x-axis.

- Gyro Y Angular velocity in x-axis.

- Gyro 7} Angular velocity in x-axis.

B.3.2 Measurements and vectors in time domain & frequency domain

Table B.8 An overview of the final vectors produced in the time domain

Notation Description

tBodyAcc_XYZ Body acceleration for x-, y-, and z-axis.
tBodyAccMag Body acceleration Euclidean magnitude.
tGravityAcc-XYZ Gravity for x-, y- and z-axis.
tGravityAccMag Gravity Euclidean magnitude.
tBodyAcclerk-XYZ Jerk for x-, y- and z-axis.
tBodyAcclerkMag Jerk Euclidean magnitude.
tBodyGyro-XYZ Angular velocity for x-, y- and z-axis.
tBodyGyroMag Angular velocity Euclidean magnitude.

tBodyGyroAngularAcc-XYZ
tBodyGyroAngularAccMag

Angular Acceleration for x-, y- and z-axis.

Angular Acceleration Euclidean magnitude.
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Table B.9 An overview of the final vectors produced in the frequency domain

Notation Description

tBodyAcc-XYZ Body acceleration for x-, y- and z-axis.
tBodyAccMag Body acceleration Euclidean magnitude.
tBodyAcclerk-XYZ Jerk for x-, y- and z-axis.
tBodyAcclerkMag Jerk Euclidean magnitude.
tBodyGyro-XYZ Angular velocity for x-, y- and z-axis.
tBodyGyroMag Angular velocity Euclidean magnitude.
tBodyGyroAngularAccMag Angular acceleration Euclidean magnitude.

Table B.10 List of the measurements for computing the feature vectors.

Measurements

Description

Mean (mean)

Standard deviation (std)
MAD (mad)

Maximum (max)
Minimum (min)

Signal magnitude area (sma)

Energy (energy)

Interquartile range (iqr)

Signal entropy (entropy)
Correlation coefficient
(correlation)

Maximum index (maxInds)

Mean frequency (meanFreq)

Skewness (skewness)

Kurtosis (kurtosis)

The mean of all values in one window.

The standard deviation of the values in one window.
The median average deviation for one window.

The maximum value in one window.

The minimum value in one window.

The integral of the x-, y-, and z-values from their corresponding
windows, from time zero to the end time of the window.

The sum of the square of values in one window, divided with the
number of values.

The middle 50 percent of values in one window when ordered
from lowest to highest, calculating the difference between the
median values of the upper and lower half.

The level of uncertainty in the values of a window, based on their
probability.

The correlation between the xyz-signals: the correlation (x,y),
(x,2), and (y,z). Only for time domain values.

The largest frequency component in one window. Only for
frequency domain values.

Frequency signal weighted average in one window.

The skewness of the frequency signal, describing the asymmetry
of the normal distribution. Only for frequency domain values.

The kurtosis of the frequency signal, describing the tail of the
normal distribution. Only for frequency domain values.
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Table B.11 A full list of the 348 features obtained after preprocessing the data, for time domain
and frequency domain respectively.

Time domain

Frequency domain

tBodyAcc-mean()-X
tBodyAcc-mean()-Y
tBodyAcc-mean()-Z
tBodyAcc-std()-X
tBodyAcc-std()-Y
tBodyAcc-std()-Z
tBodyAcc-mad()-X
tBodyAcc-mad()-Y
tBodyAcc-mad()-Z
tBodyAcc-max()-X
tBodyAcc-max()-Y
tBodyAcc-max()-Z
tBodyAcc-min()-X
tBodyAcc-min()-Y
tBodyAcc-min()-Z
tBodyAcc-sma()
tBodyAcc-energy()-X
tBodyAcc-energy()-Y
tBodyAcc-energy()-Z
tBodyAcc-igr()-X
tBodyAcc-igr()-Y
tBodyAcc-iqr()-Z
tBodyAcc-entropy()-X
tBodyAcc-entropy()-Y
tBodyAcc-entropy()-Z

fBodyAcc-mean()-X
fBodyAcc-mean()-Y
fBodyAcc-mean()-Z
fBodyAcc-std()-X
fBodyAcc-std()-Y
fBodyAcc-std()-Z
fBodyAcc-mad()-X
fBodyAcc-mad()-Y
fBodyAcc-mad()-Z
fBodyAcc-max()-X
fBodyAcc-max()-Y
fBodyAcc-max()-Z
fBodyAcc-min()-X
fBodyAcc-min()-Y
fBodyAcc-min()-Z
fBodyAcc-sma()
fBodyAcc-energy()-X
fBodyAcc-energy()-Y
fBodyAcc-energy()-Z
fBodyAcc-igr()-X
fBodyAcc-igr()-Y
fBodyAcc-igr()-Z
fBodyAcc-entropy()-X
fBodyAcc-entropy()-Y
fBodyAcc-entropy()-Z
fBodyAcc--maxInds-X
fBodyAcc--maxInds-Y
fBodyAcc--maxInds-Z
fBodyAcc--meanFreg-X
fBodyAcc--meanFreg-Y
fBodyAcc--meanFreq-Z
fBodyAcc--skewness()-X
fBodyAcc--kurtosis()-X
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fBodyAcc--skewness()-Y
fBodyAcc--kurtosis()-Y
fBodyAcc--skewness()-Z
fBodyAcc--kurtosis()-Z

tBodyAcc-correlation()-X,Y

tBodyAcc-correlation()-X,Z

tBodyAcc-correlation()-Y,Z

tGravityAcc-mean()-X

tGravityAcc-mean()-Y

tGravityAcc-mean()-Z

tGravityAcc-std()-X

tGravityAcc-std()-Y

tGravityAcc-std()-Z

tGravityAcc-mad()-X

tGravityAcc-mad()-Y

tGravityAcc-mad()-Z

tGravityAcc-max()-X

tGravityAcc-max()-Y

tGravityAcc-max()-Z

tGravityAcc-min()-X

tGravityAcc-min()-Y

tGravityAcc-min()-Z

tGravityAcc-sma()

tGravityAcc-energy()-X

tGravityAcc-energy()-Y

tGravityAcc-energy()-Z

tGravityAcc-igr()-X

tGravityAcc-igr()-Y

tGravityAcc-iqr()-Z

tGravityAcc-entropy()-X

tGravityAcc-entropy()-Y

tGravityAcc-entropy()-Z

tGravityAcc-correlation()-X,Y

tGravityAcc-correlation()-X,Z

tGravityAcc-correlation()-Y,Z

tBodyAcclerk-mean()-X fBodyAcclerk-mean()-X

tBodyAcclerk-mean()-Y fBodyAcclerk-mean()-Y
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tBodyAcclerk-mean()-Z
tBodyAcclerk-std()-X
tBodyAcclerk-std()-Y
tBodyAcclerk-std()-Z
tBodyAccJlerk-mad()-X
tBodyAcclerk-mad()-Y
tBodyAcclerk-mad()-Z
tBodyAccJlerk-max()-X
tBodyAcclerk-max()-Y
tBodyAcclerk-max()-Z
tBodyAcclerk-min()-X
tBodyAcclerk-min()-Y
tBodyAcclerk-min()-Z
tBodyAcclerk-sma()
tBodyAcclerk-energy()-X
tBodyAcclerk-energy()-Y
tBodyAcclerk-energy()-Y
tBodyAcclerk-igr()-X
tBodyAcclerk-igr()-Y
tBodyAcclerk-igr()-Z
tBodyAcclerk-entropy()-X
tBodyAcclerk-entropy()-Y
tBodyAcclerk-entropy()-Z

tBodyAcclerk-correlation()-X,Y
tBodyAcclerk-correlation()-X,Z

fBodyAccJerk-mean()-Z
fBodyAcclerk-std()-X
fBodyAcclerk-std()-Y
fBodyAcclerk-std()-Z
fBodyAcclerk-mad()-X
fBodyAcclerk-mad()-Y
fBodyAcclerk-mad()-Z
fBodyAcclerk-max()-X
fBodyAcclerk-max()-Y
fBodyAcclerk-max()-Z
fBodyAcclerk-min()-X
fBodyAcclerk-min()-Y
fBodyAccJerk-min()-Z
fBodyAccJerk-sma()
fBodyAccJerk-energy()-X
fBodyAcclerk-energy()-Y
fBodyAcclerk-energy()-Z
fBodyAcclerk-igr()-X
fBodyAcclerk-igr()-Y
fBodyAcclerk-igr()-Z
fBodyAcclerk-entropy()-X
fBodyAcclerk-entropy()-Y
fBodyAccJerk-entropy()-Z
fBodyAcclerk-maxInds-X
fBodyAccJerk--maxInds-Y
fBodyAcclerk--maxInds-Z
fBodyAcclerk--meanFreg-X
fBodyAcclerk--meanFreg-Y
fBodyAccJerk--meanFreq-Z
fBodyAccJerk--skewness()-X
fBodyAccJerk--kurtosis()-X
fBodyAccJerk--skewness()-Y
fBodyAcclerk--kurtosis()-Y
fBodyAccJerk--skewness()-Z
fBodyAccJerk--kurtosis()-Z
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tBodyAcclerk-correlation()-Y,Z
tBodyGyro-mean()-X
tBodyGyro-mean()-Y
tBodyGyro-mean()-Z
tBodyGyro-std()-X
tBodyGyro-std()-Y
tBodyGyro-std()-Z
tBodyGyro-mad()-X
tBodyGyro-mad()-Y
tBodyGyro-mad()-Z
tBodyGyro-max()-X
tBodyGyro-max()-Y
tBodyGyro-max()-Z
tBodyGyro-min()-X
tBodyGyro-min()-Y
tBodyGyro-min()-Z
tBodyGyro-sma()
tBodyGyro-energy()-X
tBodyGyro-energy()-Y
tBodyGyro-energy()-Z
tBodyGyro-igr()-X
tBodyGyro-igr()-Y
tBodyGyro-igr()-Z
tBodyGyro-entropy()-X
tBodyGyro-entropy()-Y

tBodyGyro-entropy()-Z

fBodyGyro-mean()-X
fBodyGyro-mean()-Y
fBodyGyro-mean()-Z
fBodyGyro-std()-X
fBodyGyro-std()-Y
fBodyGyro-std()-Z
fBodyGyro-mad()-X
fBodyGyro-mad()-Y
fBodyGyro-mad()-Z
fBodyGyro-max()-X
fBodyGyro-max()-Y
fBodyGyro-max()-Z
fBodyGyro-min()-X
fBodyGyro-min()-Y
fBodyGyro-min()-Z
fBodyGyro-sma()
fBodyGyro-energy()-X
fBodyGyro-energy()-Y
fBodyGyro-energy()-Z
fBodyGyro-igr()-X
fBodyGyro-igr()-Y
fBodyGyro-iqr()-Z
fBodyGyro-entropy()-X
fBodyGyro-entropy()-Y
fBodyGyro-entropy()-Z
fBodyGyro--maxInds-X
fBodyGyro--maxInds-Y
fBodyGyro--maxInds-Z
fBodyGyro--meanFreq-X
fBodyGyro--meanFreg-Y
fBodyGyro--meanFreq-Z
fBodyGyro-skewness()-X
fBodyGyro--kurtosis()-X
fBodyGyro--skewness()-Y
fBodyGyro--kurtosis()-Y
fBodyGyro--skewness()-Z
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fBodyGyro--kurtosis()-Z
tBodyGyro-correlation()-X,Y
tBodyGyro-correlation()-X,Z
tBodyGyro-correlation()-Y,Z
tBodyGyroJerk-mean()-X
tBodyGyroJerk-mean()-Y
tBodyGyroJerk-mean()-Z
tBodyGyroJerk-std()-X
tBodyGyroJerk-std()-Y
tBodyGyroJerk-std()-Z
tBodyGyroJerk-mad()-X
tBodyGyroJerk-mad()-Y
tBodyGyroJerk-mad()-Z
tBodyGyroJerk-max()-X
tBodyGyroJerk-max()-Y
tBodyGyroJerk-max()-Z
tBodyGyroJerk-min()-X
tBodyGyroJerk-min()-Y
tBodyGyroJerk-min()-Z
tBodyGyroJerk-sma()
tBodyGyroJerk-energy()-X
tBodyGyroJerk-energy()-Y
tBodyGyroJerk-energy()-Y
tBodyGyroJerk-igr()-X
tBodyGyroJerk-igr()-Y
tBodyGyroJerk-iqr()-Z
tBodyGyroJerk-entropy()-X
tBodyGyroJerk-entropy()-Y
tBodyGyroJerk-entropy()-Z
tBodyGyroJerk-correlation()-X,Y
tBodyGyroJerk-correlation()-X,Z
tBodyGyroJerk-correlation()-Y,Z

tBodyAccMag-mean() fBodyAccMag-mean()
tBodyAccMag-std() fBodyAccMag-std()
tBodyAccMag-mad() fBodyAccMag-mad()
tBodyAccMag-max() fBodyAccMag-max()
tBodyAccMag-min() fBodyAccMag-min()
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tBodyAccMag-sma()
tBodyAccMag-energy()
tBodyAccMag-iqr()
tBodyAccMag-entropy()
tGravityAccMag-mean()
tGravityAccMag-std()
tGravityAccMag-mad()
tGravityAccMag-max()
tGravityAccMag-min()
tGravityAccMag-sma()
tGravityAccMag-energy()
tGravityAccMag-iqr()
tGravityAccMag-entropy()
tBodyAccJerkMag-mean()
tBodyAccJerkMag-std()
tBodyAccJerkMag-mad()
tBodyAccJerkMag-max()
tBodyAccJerkMag-min()
tBodyAccJerkMag-sma()
tBodyAcclerkMag-energy()
tBodyAcclerkMag-iqr()
tBodyAccJerkMag-entropy()
tBodyGyroMag-mean()
tBodyGyroMag-std()
tBodyGyroMag-mad()
tBodyGyroMag-max()
tBodyGyroMag-min()
tBodyGyroMag-sma()
tBodyGyroMag-energy()
tBodyGyroMag-iqr()
tBodyGyroMag-entropy()

tBodyGyroJerkMag-mean()
tBodyGyroJerkMag-std()

fBodyAccMag-sma()
fBodyAccMag-energy()
fBodyAccMag-iqr()
fBodyAccMag-entropy()

fBodyBodyAccJerkMag-mean()
fBodyBodyAcclerkMag-std()
fBodyBodyAcclerkMag-mad()
fBodBodyAcclerkMag-max()
fBodyBodyAcclerkMag-min()
fBodyBodyAcclerkMag-sma()
fBodyBodyAcclerkMag-energy()
fBodyBodyAcclerkMag-iqr()
fBodyBodyAcclerkMag-entropy()
fBodyBodyGyroMag-mean()
fBodyBodyGyroMag-std()
fBodyBodyGyroMag-mad()
fBodBodyGyroMag-max()
fBodyBodyGyroMag-min()
fBodyBodyGyroMag-sma()
fBodyBodyGyroMag-energy()
fBodyBodyGyroMag-iqr()
fBodyBodyGyroMag-entropy()
fBodyBodyAcclerkMag-maxIinds()
fBodyBodyGyroMag-meanFreq()
fBodyBodyGyroMag-skewness()
fBodyBodyGyroMag-kurtosis()
fBodyBodyGyroJerkMag-mean()
fBodyBodyGyroJerkMag-std()
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tBodyGyroJerkMag-mad()
tBodyGyroJerkMag-max()
tBodyGyroJerkMag-min()
tBodyGyroJerkMag-sma()
tBodyGyroJerkMag-energy()
ttBodyGyroJerkMag-igr()
tBodyGyroJerkMag-entropy()

fBodyBodyGyroJerkMag-mad()
fBodBodyGyroJerkMag-max()
fBodyBodyGyroJerkMag-min()
fBodyBodyGyroJerkMag-sma()
fBodyBodyGyroJerkMag-energy()
fBodyBodyGyroJerkMag-iqr()
fBodyBodyGyroJerkMag-entropy()
fBodyBodyGyroJerkMag-maxInds()
fBodyBodyGyroJerkMag-meanFreq()
fBodyBodyGyroJerkMag-skewness()
fBodyBodyGyroJerkMag-kurtosis()

B.3.3 Categorical Activities

Table B.11 Encoded categorical activities of the smart helmet dataset.

Activity Integer
Light lifting 1
Heavy lifting 2
Walking 3
Walking while carrying something heavy 4
Walking while looking upwards 5

Table B.12 Encoded categorical activities of the external dataset.

Activity

Integer

Fake jumping
Squatting
Fake stomping
Jumping

Fake squatting
Stomping

S oA W N
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B.3.4 Description of Datasets

Table B.13 Total description of the preprocessed smart helmet dataset.

Number of Classes, i.e. Samples per class Features

instances activities

92 400 5 549 (Light lifting) 348 before feature optimization
624 (Heavy lifting) 338 after feature optimization

411 (Walking)
265 (Walking, carrying heavy)
267 (Walking, looking upwards)

Table B.14 Total description of the preprocessed external dataset.

!\lumber of CIa_ss_gs, i.e. Samples per class Features

instances activities

1440 6 218 (Squatting) 348 before feature optimization
262 (Fake Squatting) 310 after feature optimization
240 (Others)

Table B.18 Total description of the raw time-series external dataset.

!\lumber of CIa_ss_gs, i.e. Samples per class Features

instances activities

92 400 6 14 000 (Squatting) 9 without roll, pitch and yaw
16 800 (Fake Squatting) 12 with roll, pitch, and yaw
15 400 (Others)
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Appendix C Implementation Code

All the implemented code for data preprocessing and running the Random Forest
algorithm is publicly available and can be found at:

https://github.com/sarahjohannesson/RandomForestClassification
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