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Abstract

In this thesis, the mass singularities occurring in the cross-section of electron scattering pro-
cesses are investigated. Two types of scatterings are studied: Quantum Electrodynamics
(QED) scatterings, and Perturbative Quantum Gravity (PQG) scatterings. We show how
mass singularities in QED and PQG cancel when real and virtual diagrams are included in
the scattering cross-section. We find that in both theories, the scattering cross-section is
infrared (IR) finite and that IR singularities are regulated by the finite energy resolution of
the detector. Finally, the differences in the eikonal factorization and the mass singularity
structure in QED and PQG are studied. From this, some important properties of PQG
are inferred and discussed.



Popular Abstract

Throughout history, the quest to find a theory that can explain nature and all of its inter-
actions has inspired the physics community. From the ancient Greeks and their classical
four-element model to Mendeleev’s periodic table, humans have always sought to under-
stand the universe at its most fundamental level. In the 20th century, two theories that
would completely revolutionize our understanding of the universe were conceived: general
relativity and quantum field theory.

Formulated by Albert Einstein in 1915, general relativity describes the fundamental force
of gravity as a geometric property of spacetime. General relativity allowed physicists to
study the large-scale properties of the universe, such as the dynamics of planets, stars,
and galaxies, and predicted the existence of gravitational waves and black holes. On the
other hand, our understanding of the smallest particles and their interaction comes from a
quantum field theory, the Standard Model (SM) of particle physics. The SM describes three
of the four fundamental forces: the weak force, the strong force, and the electromagnetic
force. The fourth force, gravity, has not yet been incorporated into the SM.

Quantum field theories are like mathematical machines that take certain information in, e.g.
the energies of particles and their masses, and return quantities involving the interaction of
those particles, such as the probability of a process occurring or the direction in which the
particles will fly after the interaction. However, these machines can sometimes malfunction
and return singular results, i.e. when the “machine” outputs infinite quantities. These
results are unphysical since we all know that it’s impossible to have particles with infinite
energies or a process occurring with infinite probability. Thus, if we want a theory to make
any physical sense, we must make sure such singularities do not occur.

The goal of this work is to remove some of the singularities occurring in Perturbative
Quantum Gravity (PQG). PQG is one of the many attempts to incorporate gravity into
the SM. Removing singularities is not important only because singularities are unphysical.
The process of removing such singularities can also teach us a lot about the theory itself
and its properties. By studying singularities in PQG, we hope to get one step closer to
understanding gravity and its quantum properties.
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Notations and Conventions

• Throughout this work “natural units” have been used, i.e. ~ = c = 1.

• The Minkowski metric tensor with metric signature (+,−,−,−) will be represented
by ηµν or ηµν .

• For contractions between 4-momentum vectors and gamma matrices we will follow
Feynman’s notation, where �p ≡ γµpµ.

• Graviton lines in Feynman diagrams have been represented by double photon lines.

• The spacial component of 4-vectors has been represented by bold letters; pµ = (p0,p)

• In Feynman diagrams time flows vertically from bottom to top.



1 INTRODUCTION

1 Introduction

Quantum Field Theory (QFT) and General Relativity (GR) constitute two of the most
successful and influential scientific achievements of the 20th century. QFT combines three
major fields of modern physics: special relativity, quantum mechanics (QM), and classical
field theory, and it provides the theoretical framework for the treatment of elementary
particles and their interactions. Hitherto, the most successful QFT is the Standard Model
(SM) of particle physics, which provides a set of mathematical and pictorial techniques to
describe processes involving three of the four known fundamental forces: weak, strong, and
electromagnetic forces. Nonetheless, gravity has not yet been incorporated into the SM.

Although many candidates for a theory of quantum gravity - such as loop quantum gravity
and superstring theory - have been devised, a full, self-consistent theory of quantum gravity
has not yet been discovered. Hence, quantum gravity remains one of the most fundamental
unanswered questions in theoretical physics. One of the simplest ways to describe GR
in terms of a QFT is by using linearized gravity, an approximation of GR in the limit
where gravity is very weak. This approach to quantum gravity is known as Perturbative
Quantum Gravity (PQG). In PQG, the weak field expansion of GR is used to obtain
the gravitational Lagrangian, from which the Feynman rules for graviton-graviton and
graviton-matter interactions can be extracted [1].

The transition amplitude of some scattering processes can become divergent if the masses
of internal particles are allowed to vanish. These singularities in the transition amplitudes
are known as mass singularities. Based on their physical origin, mass singularities can be
classified into two types: collinear and infrared (IR) singularities. The goal of this is work
is to study the structure of mass singularity cancellations in QED and PQG scatterings.
The cancellation of mass singularities in PQG is important for two reasons. First of all, if
PQG is to be a predictive theory, it cannot yield singular observables. That is, any mass
singularities occurring in separate Feynman diagrams must cancel when observables are
calculated. In QED, one of the most successful and well tested QFTs, all observables are
free of mass singularities [2]. Secondly, the cancellation mechanism of mass singularities
can provide important information on the kinematic properties of PQG. By comparing the
cancellation mechanism of mass singularities in QED and PQG, we hope to gain a better
understanding of the fundamental differences between PQG and other gauge theories.

This thesis is structured as follows: in section 2, we briefly introduce QFT, mass singular-
ities, and the formalism and tools required for the study of scatterings. In subsection 2.3,
the non-radiative diagrams relevant for the electron scattering in QED are computed ex-
plicitly. We will show that the cross-section obtained from these diagrams contains soft and
collinear singularities. In section 3, the cross-section for an electron scattering with one real
photon in the final state will be calculated. We will demonstrate how the IR singularities
in the real radiation diagrams cancel the IR singularities in the non-radiative diagrams.
At the end of section 3, the cancellation of IR singularities to all orders in QED is proven.
In subsection 4.1, a brief introduction to PQG is given. Furthermore, the soft graviton
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2 MASS SINGULARITIES IN QFT

factorization will be studied and used to compute the real and virtual contributions of soft
gravitons to a gravitational electron scattering. We will show, to all orders in the soft
graviton approximation, that PQG electron scatterings contain no mass singularities. In
section 5, the main results of the calculations are summarized and discussed. The results
from section 4 will be used to discuss the mechanism that enables the cancellation of all
mass singularities in PQG but not in QED.

2 Mass singularities in quantum field theories

In this section, the fundamentals of QFT are introduced, including the main tools for QFT
computations, such as the scattering matrix (S-matrix) formalism and Feynman diagrams
[3, 4, 5]. Moreover, the origin of mass singularities in QFT calculations will be discussed
[3, 4, 6]. Throughout this section, QED will be used to demonstrate, by computing explicit
examples, the different sources of mass singularities in scattering processes.

2.1 Quantum field theory and mass singularities

In quantum mechanical problems, one is often interested in the probability for a certain
process to occur, e.g. the probability that an electron found at position x0 at time t0 is
observed at position x′ at a later time t′. The probability amplitude of this process is
often calculated using the time-dependent Schrödinger equation. However, there is a fun-
damental complication with this approach; the solution to this problem violates causality.
In other words, the probability for this process to occur is non-zero outside the particle’s
light cone. These types of discrepancies in the early stages of quantum mechanics led
physicists to develop a relativistic formulation of quantum mechanics, QFT. QFT provides
the necessary tools for relativistic quantum mechanical calculations.

At the heart of QFT lies the idea that fundamental particles - such as electrons and pho-
tons - can be treated as the excited modes of a field. The exact nature and properties
of a particular quantum field are determined by the Lagrangian of that particular the-
ory, which is usually obtained using gauge symmetry arguments. Likewise, in the QFT
formalism, particle interactions - such as scatterings - correspond to interactions between
the particles’ quantum fields. The exact form of the interaction between fields is usually
obtained using the local gauge invariance of the gauge theory. For a detailed discussion on
the fundamentals of QFT, the reader is referred to references [3, 4].

One of the most extensively used tools in QFT are Feynman diagrams, which pictorially
represent the time-dependent perturbative expansion of particle scatterings. Feynman di-
agrams are of great importance since they provide a way to approximately solve QFT
problems. Given the Lagrangian of a theory, any allowed interaction can be represented
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2.2 Mass singularities in QED 2 MASS SINGULARITIES IN QFT

pictorially as a diagram. By following a set of rules, known as Feynman rules, the matrix
element M, which contains all the dynamic information of the process, can be extracted
from the Feynman diagram. Then, the transition amplitude squared of a process, i.e. its
cross-section, can be obtained by squaring the matrix element of the process and integrat-
ing it over the appropriate phase space of final states.
Once the Feynman diagram of a process has been drawn, the transition amplitude of the
process is an analytic function in the momenta of external legs and the masses of internal
lines [5]. Feynman amplitudes can yield divergent quantities - singularities - for certain
values of external momenta and internal masses. Throughout this work, we will focus
on mass singularities, i.e. singularities that occur quite independently of the external
momenta [6] and are associated with vanishing masses of internal particles.

Now that the main ideas of probability amplitudes in QFT have been presented, and
mass singularities have been introduced, an example of a QFT calculation containing mass
singularities will be discussed in detail. The following calculation will serve to illustrate
how mass singularities in cross-sections occur. This calculation will yield two different
types of mass singularities: infrared singularities - also known as soft singularities - and
collinear singularities. The meaning and origin of the different types of singularities will
be discussed as they appear in the calculations. Given that probability amplitudes are
associated with observables, the fact that such calculations can yield divergent results
is a catastrophe. Therefore, it will be necessary to introduce a method to remove the
appearance of divergent observables in QFT.

2.2 Mass singularities in QED

The strategy that we will follow to study mass singularities is to first perform the electron
scattering calculation in QED and study the structure of mass singularities and their
cancellation in detail in this theory. Then, by transferring the tools and understanding of
mass singularities in QED to gravity, we will perform a similar calculation in the framework
of PQG. We decided to work in the framework of QED since it is the simplest and most
tested known physical gauge theory. Nonetheless, the techniques and concepts developed
in this section can be generalized to any other gauge theory. Moreover, as we shall see
later, we will able to generalize many of the results and methods from QED to PQG. It
is assumed that the reader is familiar with the Feynman rules for QED, a list of basic
Feynman rules is provided in Appendix A.
The process that we will use to study mass singularities, both in QED and PQG, is the
scattering of a fermion, namely an electron, off an arbitrary charged particle. In particular,
we are interested in the probability amplitude of the process shown in Figure 1. To calculate
this probability amplitude, we will employ the S-matrix formalism.

3



2.2 Mass singularities in QED 2 MASS SINGULARITIES IN QFT

Figure 1: Feynman diagram of an electron scattering off an arbitrary charged particle. The
gray circle indicates the sum of all diagrams contributing to the process.

S-matrix formalism

In QFT, the scattering matrix - also known as S-matrix - is used to compute the transition
probability from a set of initial states with definite momenta to a set of final states with
definite momenta. The S-matrix is a unitary operator whose matrix elements Sfi are
defined to be the projection of an initial state |Ψi〉, on the final state 〈Ψf |. Due to the
unitary nature of the S-matrix, the T -matrix can be defined as follows:

Ŝ = Î + iT̂ . (2.1)

The T -matrix contains the “interaction” part of the S-matrix, so if the incoming particles do
not interact, the S-matrix is simply the identity operator. A careful perturbative treatment
of the S-matrix operator leads to the formalism of how quantum fields interact with one
another and with external states, ultimately leading to Feynman diagrams. However, this
treatment is outside the scope of this work, and we will state the main results without
proof. The reader is referred to [4] for a more formal treatment of the subject.
The main result that we will use from the formalism of the S-matrix will be the appearance
of the invariant matrix element M, defined using the T -matrix as follows:

Tif = (2π)4δ(4)(
∑
i

pi −
∑
f

pf ) · iM(pi → pf ), (2.2)

where pi and pf stand for the 4-momenta of the incoming and outgoing particles respec-
tively. The delta function guarantees conservation of momentum in the scattering process.
The matrix element M plays a similar role to the scattering amplitude f(θ), which most
students have encountered in quantum mechanics courses. SinceM is defined using the T -
matrix, it contains all the dynamical information of the scattering process, i.e. the physics
that depends on the Hamiltonian of the particular gauge theory. The matrix element M
can then be obtained using Feynman diagrams as follows:

iM = Sum of all allowed Feynman diagrams, (2.3)

4



2.3 Electron scattering calculation 2 MASS SINGULARITIES IN QFT

where the diagrams are evaluated according to the Feynman rules of the given theory. See
Appendix A for a list of Feynman rules for QED and PQG.

2.3 Electron scattering calculation

2.3.1 Electron scattering cross-section

It can be shown, see [3], that the differential cross-section of the electron scattering process
displayed in Figure 1 is given by:(

dσ

dΩ

)
CM

= K|M(p1, p2 → p′1, p
′
2)|2, (2.4)

where K is a kinematic factor containing normalization constants and factors depending
on the energies and 3-momenta of the external particles. For this work, the exact form
of the kinematic factor will not be relevant, as it contains no mass singularities. For the
matrix element squared, all non-observed degrees of freedom in the final states - such as
spins and polarizations - must be summed over, while the quantum numbers in the initial
state must be averaged over.
The first step to compute the cross-section of the electron scattering is to draw all Feynman
diagrams that contribute to the process. Henceforth, Feynman gauge will be adopted for
all the calculations, i.e. n = 0 in Eq. A.4. In this work, we will only consider tree-level and
one-loop order diagrams. Using the Feynman rules in Appendix A, one finds one diagram
at tree-level and three first order correction diagrams that are relevant for the electron
scattering process, see Figure 2. It is worth noting that due to the mass difference, radiative
corrections diagrams - such as diagrams B, C, and D - involving the heavier particle are
kinematically suppressed and have not been included. Vacuum polarization diagrams, i.e.
diagrams containing loops in the boson propagator, have not been included either, as these
diagrams only lead to a renormalization of the electric charge, with no consequences for
the results of this work.
From Figure 2, the matrix element squared is given by:

|M|2 = |A+B + C +D|2. (2.5)

Noting that |M|2 = MM∗, we can expand the above expression, keeping only the first
two leading order terms in the coupling constant e:

|M|2 = |A|2 + 2Re (AB∗ + AC∗ + AD∗) +O(e8). (2.6)

In the above expression, e = −|e| is the electron charge.

2.3.2 Tree-level diagram

Diagram A in Figure 2 is the tree-level diagram, corresponding to the simple scattering
of an electron off another charged particle. The matrix element for this process can be
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Figure 2: Tree-level diagram and first order non-radiative correction diagrams which con-
tribute to the scattering of an electron off a heavier particle. Note that all the diagrams
on the right hand side have the same final state as the diagram on the left hand side.

obtained using the Feynman rules for QED, listed in Appendix A:

= ie2ū(p′1, s
′
1)γµu(p1, s1)

ηµν
q2
ū(p′2, s

′
2)γνu(p2, s2), (2.7)

where q = p1 − p′1 is the photon momentum. In Appendix C, it is shown how after
simplifying the above expression, multiplying by its complex conjugate and summing over
spins, the matrix element squared becomes:

|A|2 =
8e4

q4

[
(p1 · p′2)(p′1 · p2) + (p1 · p2)(p′1 · p′2)−m2(p1 · p′1)

]
. (2.8)

This expression can be evaluated in the center-of-mass frame of the scattering process.
However, we will not simplify this equation any further since we are not interested in the
exact numerical cross-section of the process. Instead, we want to study mass singularities
appearing in cross-sections. It is clear that Eq. 2.8 is singular only if q2 = 0, originating
from a nearly on-shell virtual photon. This singularity is not a mass singularity since it
generally depends on the values of external momenta. Hence, we can conclude that the
tree-level diagram contains no mass singularities. This result will turn out to be very
important because as we shall see, the higher order terms in Eq. 2.6 will factorize into
the tree-level part of the scattering, i.e. |A|2, times a factor which contains all the mass
singularities.
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Figure 3: Diagrammatic representation of the second order correction terms to the electron
scattering process.

2.3.3 Electron vertex correction

Equipped with the diagrams in Figure 3, we are ready to evaluate the higher order correc-
tions in Eq. 2.6. We will begin by computing the electron vertex diagram, see diagram B
in Figure 2. Using the Feynman rules for QED in Feynman gauge, i.e. n = 0 in Eq. A.4,
and the momentum labelling as indicated in Figure 4, the matrix element of the electron
vertex correction is:

Figure 4: Feynman diagram of an electron scattering with a virtual photon connecting the
two external electron legs, known as electron vertex correction.

B = −ū(p′1)

[∫
d4k

(2π)4
(−ieγα)

i((�p
′
1 −�k) +m1)[

(p′1 − k)2 −m2
1 + iε

] −iηαβ
[k2 + iε]

i((�p1 −�k) +m1)[
(p1 − k)2 −m2

1 + iε
](−ieγβ)

]
A0,

where A0 has been defined such that A = ū(p′1)A0, where A is the matrix element of the
tree-level diagram. Using the identities in Appendix B, the numerator and denominator
of the above expression can be greatly simplified, giving:

7
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B =
−2ie2

(2π)4

[∫
d4k

2((p′1 · p1) + k2)− ((k · p′1) + (k · p1))

(k2 − 2p′1 · k + iε)(k2 + iε)(k2 − 2p1 · k + iε)

]
A. (2.9)

Eq. 2.9 yields a very important result; the matrix element of the vertex diagram factorizes
into a kinematic factor, which depends only on the momenta of the different particles,
times the tree-level matrix element A. The kinematic factor in Eq. 2.9 contains three
singularities. To display the singularities in the integral without explicitly solving it, light-
cone coordinates will be used to represent the momenta of the particles.

Light-cone coordinates

Any 4-vector can be decomposed in light-cone components as follows:

pµ =
1

2
(n̄ · p)nµ +

1

2
(n · p)n̄µ + pµ⊥, (2.10)

where nµ and n̄ν are light-like vectors such that nνnν = n̄νn̄ν = nνp⊥ν = n̄νp⊥ν = 0 and
nνn̄ν = 2. Defining p+ ≡ n̄ · p and p− ≡ n · p, the invariant mass of a 4-vector in terms of
its light-cone components is given by:

p2 = (n · p)(n̄ · p) + p2
⊥ = p+p− + p2

⊥. (2.11)

In this work, we are mainly concerned with singularities occurring in the limit where
particles become soft or collinear to other particles. Therefore, we would like to have
a clear, mathematical definition of what we mean by a particle being soft or collinear.
The light-cone decomposition allows us to scale the components of a 4-vector so that it
behaves as a soft particle or a collinear particle. Throughout this work, we will borrow the
component-scaling scheme used in the soft-collinear effective theory (SCET) for QCD [7].
To study the behavior of a collinear particle in the direction nν , the collinear scaling of
the light-cone components will be used. The collinear scaling is defined as:

pµ = {p+, p−, p⊥} ∼ {1, λ2, λ}. (2.12)

Similarly, the soft scaling is defined by the following scaling of the components:

pµ = {p+, p−, p⊥} ∼ {λ, λ, λ}. (2.13)

The desired scaling is achieved by letting λ go to zero. Note that in both scaling schemes,
the invariant mass of p goes to zero as ∼ λ2, meaning that we are working in the ultra-
relativistic limit of p.
Now that light-cone decomposition has been defined, let us rewrite Eq. 2.9 in ligh-cone
components by setting p′1 in the direction of n, as follows:

p′1 = |p′1|n; k =
1

2
k+n+

1

2
k−n̄+ k⊥; p1 =

1

2
p1+n+

1

2
p1−n̄+ p1⊥, (2.14)

8



2.3 Electron scattering calculation 2 MASS SINGULARITIES IN QFT

⇒ p′1 · p1 = |p′1|p1−; p′1 · k = |p′1|k−;

k · p1 =
1

2
k+p1− +

1

2
k−p1+ + k⊥p1⊥; k2 = k+k− + k2

⊥.

Using the above relations, the term inside the brackets in Eq. 2.9 becomes:∫
dk+dk−dk

2
⊥

2(|p′1|p1− + k+k− + k2
⊥)− (|p1|k− + 1

2
k+p1− + 1

2
k−p1+ + k⊥p⊥)

(k2 − 2|p′1|k−)(k2)(k2 − k+p1− − k−p1+ − 2k⊥p1⊥)
. (2.15)

Now, the soft scaling, as described in Eq. 2.13, can be used to study the soft behaviour
of k in the above integral. Power counting in λ shows that while the numerator becomes
constant, the denominator goes to 0 as ∼ λ4. This means that the integral diverges
logarithmically in the limit λ → 0. This type of mass singularity is known as infrared
singularity or soft singularity. It occurs when the energy of the photon vanishes or becomes
arbitrarily small. This means that the matrix element of the vertex diagram becomes
arbitrarily large if a virtual photon with vanishingly small energy is exchanged between
the external electron legs.
The second type of singularity present in Eq. 2.9 is a collinear singularity. Performing
another power counting, this time using the collinear scaling in Eq. 2.14, one finds that
while the numerator becomes a constant, the denominator inside the integral goes to 0 as
∼ λ4. This means that the integral is logarithmically divergent in the limit λ → 0. This
limit corresponds to the photon being emitted nearly collinearly to the momentum of the
outgoing electron p′1. Notice that unlike the case of the soft photon, the third parenthesis
in the denominator of the above integral does not identically vanish. The same type of
singularity is found if the photon is now set to be collinear to p1.
Eq. 2.9 contains two very important properties of the vertex function: the factorization of
the matrix element of the vertex diagram into a kinematic term, times the matrix element
of tree-level diagram A, and the divergent behaviour of the matrix element in the soft and
collinear limits.

2.3.4 External leg corrections

We will now compute the matrix element of diagram C in Figure 2, known as a leg correc-
tion diagram. Using the Feynman rules for QED in Appendix A, the matrix element for
diagram C is:

9
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⇒ C = ū(p′1)Σ(p′1)
(�p
′
1 +m1)

p′12−m2
1 + iε

A0, (2.16)

where Σ(p) is the electron self-energy. To second order in the electron charge e, Σ is given
by:

Σ2(p′1) = i(−ieγα)

∫
d4k

(2π)4

−iηαβ
(k2 + iε)

i((�p
′
1 −��k) +m1)

((p′1 − k)2 −m2
1 + iε)

(−ieγβ). (2.17)

Eq. 2.17 can be simplified using the identities in Appendix B, giving:

Σ2(p′1) =
−2ie2

(2π)4

∫
d4k �p

′
1 +��k

(k2 + iε)(k2 − 2p′1 · k + iε)
. (2.18)

Using light-cone coordinates and setting p′1 in the direction of the light-like vector n, Σ2(p′1)
becomes:

Σ2(p′1) =
−2ie2

(2π)4

∫
dk−dk+dk⊥

�p
′
1 +��k

(k+k− + k2
⊥)(k+k− + k2

⊥ − 2|p′1|k−)
. (2.19)

Now, we would like to study the soft and collinear behavior of the electron self-energy.
Using the soft scaling in Eq. 2.13 and performing a power counting, one finds that in the
limit λ → 0, the denominator in Eq. 2.19 goes to 0 as ∼ λ3. Therefore, we find that the
electron self-energy contains no IR (soft) singularities.
On the other hand, performing a power counting using the collinear scaling in Eq. 2.12, one
finds that the numerator in Eq. 2.19 goes to 0 as ∼ λ4. Hence, Σ2 contains a logarithmic
collinear divergence, similar to the one in the electron vertex diagram, see Eq. 2.9.
Now, we would like the matrix element C to factorize into the tree-level matrix element A,
times some factors, just as the electron vertex matrix element. Using Eq. B.2 to replace
the numerator of the fermion propagator by a spin sum, and after some simplifications,
the matrix element of the external leg correction becomes:

C = �p
′
1

p′21 + iε
Σ2(p′1)A, (2.20)

where we have assumed the limit of the massless electron.
The calculation of the matrix element of the second external leg correction in Figure 2
follows the same steps as the previous calculation. Since no new physics is introduced we
will simply state the result:

D = �p1

p2
1 + iε

Σ2(p1)A. (2.21)
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2.3 Electron scattering calculation 2 MASS SINGULARITIES IN QFT

Now that the matrix elements of all the diagrams in Figure 2 have been calculated, we are
in a position to compute the matrix element squared |M|2 in Eq. 2.6. Taking the complex
conjugate of Eq. 2.9, Eq. 2.20, and Eq. 2.21 and substituting in Eq. 2.6, one finds:

|M|2 = |A|2
(

1 + 2Re

[
Vf + �p

′
1

p′21 + iε
Σ2(p′1) +

i�p1

p2
1 + iε

Σ2(p1)

])
, (2.22)

where Vf is the kinematic vertex factor:

Vf =
−2ie2

(2π)4

[∫
d4k

2((p′1 · p1) + k2)− ((k · p′1) + (k · p1))

(k2 − 2p′1 · k + iε)(k2 + iε)(k2 − 2p1 · k + iε)

]
. (2.23)

We have seen that Vf diverges in the soft and collinear limits and that all the other terms
inside the Re function in Eq. 2.22 are singular in the collinear limit. This means that unless
the singularities are purely imaginary, so that their real part vanishes, the matrix element
squared |M|2 of the electron scattering is singular in the IR (soft) and collinear limits.
To solve the divergent integrals, which generally do not have simple analytic solutions,
we will need to make some simplifications. Henceforth, an upper cutoff Λ on the virtual
photon energy k0 will be imposed. The cutoff has been chosen so that we are only dealing
with soft photons, with energies lower than the electron energies. The treatment of hard-
collinear particles, which requires ultraviolet (UV) considerations, is outside the scope
of this work. The soft photon approximation allows us to drop terms containing k that
appear in the numerators of the integrals. Moreover, from this point forth, only the leading
order of the divergent integrals will be considered. Although it is possible to keep track
of all divergent order terms, the mathematics becomes increasingly complicated and the
expressions become almost impossible to deal with by hand. Nonetheless, the results of
the cancellation of leading order divergences contains the same physical features as a more
general cancellation. Using these approximations, the divergent integrals become:

Iloop =
ie2

(2π)4

∫
d4k

1

(k2 + iε)(p · k + iε)
, (2.24)

Vf =
−ie2

(2π)4

[∫
d4k

p′1 · p1

(p′1 · k + iε)(k2 + iε)(p1 · k + iε)

]
. (2.25)

Before evaluating these integrals, there is a problem with our expression for the vertex
function diagram, Eq. 2.9, that we first must solve. From the S matrix formalism discussed
at the beginning of this section, the matrix element for the electron scattering process is
given by M = A+ δF1(q2). Where F1 is a form factor, which to first order is given by γµ

and to second order is determined by the vertex factor Vf . The external leg corrections
do not affect the form factor since such diagrams are not one-particle irreducible, see [3]
for more details. Moreover, from experimental data, we expect radiative corrections to
F1 to vanish for q2 = 0, i.e. δF1(0) = 0. Thus, to satisfy this condition, the radiative
correction δF1(q2) can be redefined as follows δF1(q2)→ δF1(q2)− δF1(0). Concretely, for
the electron scattering process in Figure 2 the condition q2 = 0 occurs when p1 = p′1. Using
this argument, the electron vertex correction is redefined as:

11



2.3 Electron scattering calculation 2 MASS SINGULARITIES IN QFT

Vf =
−ie2

(2π)4

[∫
d4k

p′1 · p1

(p′1 · k + iε)(k2 + iε)(p1 · k + iε)
− p2

1

(k2 + iε)(p1 · k + iε)2

]
. (2.26)

This new expression for Vf ensures that the correction of the vertex factor to the form
factor F1 vanishes for q2 = 0.
We are now in a position to evaluate the integrals in Eq. 2.24 and Eq. 2.26. Because of
the Re function in Eq. 2.22, we are only interested in the real contribution of Eq. 2.24
and Eq. 2.26. Noting the factor of i behind both integrals, the real part comes entirely
from the imaginary contributions of the integrals. In subsection C.2, it is shown that the
imaginary part of such propagators arises entirely from values of k for which the terms in
the denominator vanish. In Appendix D, the real contributions of the integrals in Eq. 2.24
and Eq. 2.26 are shown to be:

Re(Iloop) =
α

(2π)2

∫ Λ

|kmin|
d|k|

∫
Ωk̂

1

(p0 − p · k̂)
, (2.27)

Re(Vf ) =
−α
2π

ln

(
Λ

|kmin|

)[
1

2β
ln

(
1 + β

1− β

)
− 1

]
, (2.28)

where β is the relative velocity between the incoming and outgoing electron:

β =

√
1− m2

1m
2
1

(p1 · p′1)2
. (2.29)

For a massless electron, i.e. p0 = |p|, the first integral is divergent in the collinear limit
p · k̂ = |p|. The second integral diverges in the soft limit |kmin| → 0. Furthermore, letting
the mass m1 of one of the particles go to zero while fixing its momentum p constant, one
can Taylor expand β and show that the second integral is also divergent, corresponding to
a collinear singularity. This shows that the matrix element squared of the electron scat-
tering diverges both in the soft limit and in the collinear limit. Since the matrix element
squared is related to an observable quantity, i.e. the cross-section of the scattering process
by Eq. 2.4, it should not contain singularities.

Before we provide a method to remove mass singularities, let us try to interpret the results
of our calculations. First of all, note that unlike the singularity present in the tree-level
diagram, see Eq. 2.8, mass singularities found in this section occur independently of the
values of the momenta of the external legs and depend exclusively on the energy of the
virtual photon and its relative orientation with respect to the external legs. This is con-
sistent with the definition of mass singularities provided at the beginning of this section.
The name mass singularities derives from the fact that these singularities are associated
with the vanishing masses of particles. The simplest way to see this is by noting that IR
(soft) singularities can be regularized by introducing a non-zero photon mass mγ. With

12



3 SINGULARITY CANCELLATION

this fictitious photon mass, the denominator in the logarithm in Eq. 2.28 does not vanish,
and the matrix element is no longer singular. Similarly, because the momentum of a mas-
sive particle cannot be light-like, collinear singularities are regulated by the non-vanishing
electron mass me.

There is one more singularity associated with all diagrams containing virtual corrections
which we have not discussed so far; ultraviolet singularities, which occur due to the inte-
gration over the virtual photon momentum d4k, whose upper limit needs not to be finite.
However, it will be assumed that all UV singularities have been regularized by adding
appropriate counterterms. UV regularization will not affect any of the methods or results
discussed in this or the following sections.

3 Cancellation of mass singularities in QED

In this section, we will show how some of the mass singularities discussed in the previous
section cancel to first order when the contribution of real radiation diagrams, such as
the ones shown in Figure 5, are included in the calculation of the matrix element of the
electron scattering. Moreover, by following a similar approach to Weinberg’s in reference
[8], we will show the cancellation of infrared singularities in QED to all orders. At the end
of this section, we will discuss why it is relevant and consistent to include real radiation
diagrams in the calculation of the cross-section of the electron scattering in Figure 1.

3.1 Soft bremsstrahlung radiation

In classical electrodynamics, it is well known that a charged particle undergoing an accel-
eration will radiate photons, a process that is known as bremsstrahlung. Analogously,
in QED, a charged particle can emit a photon, as long as energy and momentum are con-
served. The process that we will study in this section is the radiation of a soft photon
during the scattering of an electron from a heavier particle, i.e. xe− → γxe−. To first or-
der, the Feynman diagrams contributing to this process are shown in Figure 5. Using the
Feynman rules in Appendix A, the matrix element of the diagram on the left of Figure 5
gives:

⇒ ū(p′1)(−ieγµ)ε∗µ(k)
i((�p

′
1 −��k) +m1)

(p′1 − k)2 −m2
1 + iε

A0. (3.1)
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3.1 Soft bremsstrahlung radiation 3 SINGULARITY CANCELLATION

Figure 5: Feynman diagrams of electron scattering with real radiation. The matrix element
of these diagrams becomes singular in the soft radiation limit or in the limit where a
massless electron emits a collinear photon.

Now, let us simplify the above expression by assuming a soft photon, so that the term ��k in
the numerator can de dropped. Using the identities in Appendix B, Eq. 3.1 can be greatly
simplified in the soft photon approximation, giving:

R1 = e
2p′1 · ε∗

−2p′1 · k
ū(p′1)A0 = e

[
−p′1 · ε∗

p′1 · k

]
A. (3.2)

Similar to the factorization of the virtual corrections, the matrix element of soft bremss-
trahlung factorizes into a kinematic factor, times the non-radiative tree level matrix element
A. This factorization is known as the eikonal factorization. The eikonal factor can be
shown to be quite independent of the spin of the emitting particle. However, its exact
structure is determined by the conserved charges of the gauge theory being studied. As
we shall see in section 4, the form of the eikonal factor in PQG will be responsible for the
distinctive structure of the cancellation of mass singularities in linearized gravity.
The calculation for the matrix element of the second diagram in Figure 5 follows the
same steps as the calculation above so we will not repeat it. The matrix element for soft
bremsstrahlung from the incoming electron becomes:

R2 = e

[
p1 · ε∗

p1 · k

]
A. (3.3)

Thus, the matrix element for soft bremsstrahlung is given by:

R = e

(
p1 · ε∗

p1 · k
− p′1 · ε∗

p′1 · k

)
A. (3.4)

Finally, we would like to compute the matrix element squared for soft bremsstrahlung.
Thus, the above expression must be multiplied by its complex conjugate. Since there is
a photon in the final state, we must sum over its polarization, and integrate over its 4-
momentum. However, the emitted photon must be on-shell, therefore, a delta function
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3.2 Infrared singularities 3 SINGULARITY CANCELLATION

δ(k2) must be included in the integration;

|R|2 = |A|2e2

∫
dk4

(2π)4

∑
ε polarization

(
pµ1ε
∗
µενp

ν
1

(p1 · k)2
+
p′µ1 ε

∗
µενp

′ν
1

(p′1 · k)2
− 2

pµ1ε
∗
µενp

′ν
1

(p1 · k)(p′1 · k)

)
δ(k2). (3.5)

The above expression can be greatly simplified by performing the sum over photon po-
larizations using the Ward identity. The Ward identity states that an arbitrary QED
process - denoted byMµ(k) - involving an external photon with momentum k, vanishes if
the polarization vector εµ(k) is replaced by k:

kµMµ = 0. (3.6)

Using the Ward identity, one can show that the sum over external photon polarizations can
be replaced by the metric tensor, i.e.

∑
ε∗µεν → −ηµν . Replacing the photon polarization

sum and integrating over the first component of the photon 4-momentum using the delta
function with k0 = |k|, Eq. 3.5 becomes:

|R|2 = |A|2e2

∫
dk3

(2π)3

1

2|k|

(
2

p1 · p′1
(p1 · k)(p′1 · k)

− p2
1

(p1 · k)2
− (p′1)2

(p′1 · k)2

)
. (3.7)

This is almost identical to the integral we encountered when computing the real contribu-
tion of the vertex function Vf . Using the result of the known integral in subsection D.2,
Eq. 3.7 becomes:

|R|2 = |A|2 α
2π

ln

(
|kmax|
|kmin|

)[
1

β
ln

(
1 + β

1− β

)
− 2

]
. (3.8)

This expression looks very similar to the vertex function Vf from the previous section, and
just like the vertex function, it also diverges in the soft and collinear limits. The meaning
of |kmax| will soon become clear, all we know right now is that it must be small enough so
that the soft photon approximation still holds.

3.2 Infrared singularities

Hitherto, the method used to compute the matrix element of a process was to add up the
contribution of all diagrams with identical final states at fixed order. In the case of the
electron scattering process, we looked at the diagrams relevant to the process xe− → xe−

in Figure 2. Now, we will justify why electron scatterings with soft real radiation - Figure 5
- must be included in the calculation of the cross-section of the process xe− → xe−.
Imagine a detector with a threshold energy resolution Et, so that it cannot resolve energies
lower than Et. Now, consider an electron scattering process with a real photon with energy
lower than Et. To this detector, the scattering process looks like a xe− → xe− process and
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3.3 Collinear singularities 3 SINGULARITY CANCELLATION

not like a xe− → xγe− process, since the detector cannot detect the final photon nor the
energy missing from the final state particles. Hence, if only the two final state particles
are detected, it is impossible to tell if the scattering process occurred with the emission of
a soft photon with energy lower than Et or if it was a non-radiative scattering, such as the
ones in Figure 2. This means that for the calculation of the cross-section of the process
xe− → xe−, we must also include diagrams with real radiation that we could not resolve,
i.e. processes with real radiation with energy lower than the detector’s threshold Et.

|Mxe−→xe− |2 = |Mnon-radiative
xe−→xe− |2 + |Msoft

xe−→γxe−|2, (3.9)

where the non-radiative matrix element was calculated in subsection 2.3 - see Eq. 2.22 -
and the soft part is given by the the matrix element of scatterings with soft real radiation
with energy lower than Et, see Eq. 3.8. Substituting Eq. 2.24 and Eq. 2.28 in Eq. 2.22, the
above equation becomes:

|Mxe−→xe−|2 = |A|2
{

1 + 4Re(Iloop) +
α

2π
f(β)

[
ln

(
Et
|kmin|

)
− ln

(
Λ

|kmin|

)]}
,

|Mxe−→xe− |2 = |A|2
{

1 + 4Re(Iloop) +
α

2π
f(β) ln

(
Et
Λ

)}
, (3.10)

where f(β) is defined as:

f(β) =

[
1

β
ln

(
1 + β

1− β

)
− 2

]
. (3.11)

Note that |kmin| does not appear in the matrix element any longer. Moreover, all the
terms in Eq. 3.10 are finite in the soft limit. Hence, we have shown how by adding the
contributions of virtual and soft real photons, the IR singularities in the electron scattering
cross-section cancel out to first order. In fact, the cancellation shown here is just an
example of the more general Bloch-Nordsieck theorem [2]. This theorem states that all
infrared singularities in QED with a massive electron will cancel when summing over final
state radiation, as long as there is a finite energy resolution Et.

3.3 Collinear singularities

Despite Eq. 3.10 being IR finite, it is still divergent in the collinear limit. In the limit of a
massless electron emitting a collinear photon, both Iloop and f(β) become singular. Even
worse, unlike IR singularities, collinear singularities from the real and virtual contributions
do not cancel each other. The reason why collinear singularities do not cancel in our final
matrix element is due to the approximations made to treat soft photons. A more careful
treatment of the integrals keeping all factors of k in the numerators would lead to the
cancellation of collinear singularities to first order in the final matrix element [5].
Collinear singularities in QED are generally regularized by the non-vanishing electron mass.
Nonetheless, studying the behavior of collinear singularities is still relevant. Consider, for
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3.4 Cancellation beyond leading order 3 SINGULARITY CANCELLATION

Figure 6: Feynman diagram of an electron scattering containing n soft photons connected
in any possible arrangement to the external electron legs. The photons may be soft real or
soft virtual photons.

instance, an experiment where the energy of the collision Q is far greater than the electron
mass me. In such an experiment, the contribution from the collinear singularities associated
with the vanishing electron mass would become important. However, Kinoshita [6], Lee,
and Nauenberg [9] showed that in any unitary theory - such as QED - all mass singularities
associated with the final state must cancel when integrated over all degenerate final states
(KLN theorem). So even for ultra-relativistic electron scatterings, where the electron
mass is negligible, the cross-section of the scattering process remains finite. Similarly to
how IR singularities are regulated by the detector’s finite energy resolution Et, collinear
singularities are regulated by the detector’s finite angular resolution θt, i.e. the minimum
transverse component of the momentum that can be resolved. The finite angular resolution
means that scatterings with real collinear photons that could not be detected must also be
included in the matrix element. Including these diagrams in the calculation of the matrix
element leads to the cancellation of collinear singularities, analogous to the cancellation
discussed in the previous section.

3.4 Cancellation beyond leading order

Now that we have seen how IR singularities in an electron scattering process cancel to first
order, we would like to see if this cancellation occurs beyond the first order. In this section,
following a similar approach to the more general proof by Weinberg [8], we will prove the
cancellation of IR singularities to all orders in an electron scattering process in QED.

Consider an electron scattering process involving an arbitrary number of soft real or virtual
photons, see Figure 6. From subsection 3.1, we know that the matrix element for attaching
a soft photon to the outgoing electron leg of an electron scattering process is given by Eq. 3.2
(without the photon polarization factor).
Now, consider attaching n soft photons to the outgoing electron leg. Given that the
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3.4 Cancellation beyond leading order 3 SINGULARITY CANCELLATION

final electron has momentum p′1, the fermion propagator before the emission of the last
photon has momentum p

′(1) ≡ p′1 + k1, the propagator before has momentum p
′(2) ≡

p′1 + k1 + k2, until the last propagator - the one attached attached to the scattering vertex
- has momentum p

′(n) ≡ p′1 + k1 + k2 + ... + kn. Following the same simplification steps
used in subsection 3.1, it is not difficult to show that the matrix element for attaching n
soft photons to the outgoing electron becomes:

x = ū(p′1)en
(
p
′(1)

p′1 · k1

)(
p
′(2)

p′1 · (k1 + k2)

)
...

(
p
′(n)

p′1 · (k1 + k2 + ...kn)

)
A0. (3.12)

For simplicity, we will not only work in the approximation where all photons are soft, but
we will also assume that the sum of all soft photons is soft. This condition allows us to
make the approximation that all intermediate fermion propagators are nearly on-shell and
have similar “off-shellness”. Now, let us sum over the n! number of permutations of the
ordering of the soft photons. A short proof by induction, see [3], gives that the sum of x
over the different photon permutations is:

X = en
(
p
′(1)

p′1 · k1

)(
p
′(2)

p′1 · k2

)
...

(
p
′(n)

p′1 · kn

)
A. (3.13)

Now, we would like to repeat this process but instead, attach n soft photons to the incoming
electron. This time, we know the initial momentum of the electron to be p1, so that the
first propagator after the soft first emission has momentum p

(1)
1 ≡ p1 − k1, the second

one has momentum p
(2)
1 ≡ p1 − k1 − k2, etc. The expression for the matrix element of

this process is identical to Eq. 3.13, however, there is an additional minus sign inside each
parenthesis, since (p1−ki)2−m2 ≈ −2p1 ·ki. Hence, if we attach n photons to the external
legs in any possible way and then sum over all the possible permutations, the following
matrix element is obtained:

M = Aen
(
p
′(1)

p′1 · k1

− p(1)

p1 · k1

)(
p
′(2)

p′2 · k2

− p(2)

p2 · k2

)
...

(
p
′(n)

p′n · kn
− p(n)

pn · kn

)
. (3.14)

We have not yet specified whether these soft photons are real - bremsstrahlung - or virtual,
connected to the external legs in any possible way, i.e. external leg corrections or vertex
diagrams. Now, note that we can construct a virtual photon by choosing two photons i, j,
setting their momenta to be ki = −kj, i.e. one of the photons is being emitted and the
other being absorbed, inserting a photon propagator in between and integrating over the
4-momentum of the photon:

Xvirtual = e2

∫
d4k

(2π)4

(
p
′µ
1

p′1 · k
− pµ1
p1 · k

)
−iηµν
k2

(
− p

′ν
1

p′1 · k
+

pν1
p1 · k

)
. (3.15)

Where the factors of iε have been omitted to improve readability. This leads to:

Xvirtual = e2

∫
d4k

(2π)4

1

k2

(
2p1 · p′1

(p′1 · k)(p1 · k)
− (p′1)2

(p′1 · k)2
− p2

1

(p1 · k)2

)
. (3.16)
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To obtain the above expression, we have used the fact that we are considering only soft

photons, thus, p
′(i)
1 ≈ p′1 and p

(i)
1 ≈ p1. Moreover, the above factor must be multiplied by

1
2

to avoid over-counting, since permuting i and j would give the same loop. Then, the
matrix element for a process containing m virtual soft photons is:

M(m)
virtual = A

(
Xvirtual

2

)m
1

m!
. (3.17)

The factor m! must be included to prevent over-counting, since permuting any of the m
loops would not change the matrix element. Now, we must to add up the contribution of
all diagrams containing up to m virtual loops:

Mvirtual =
m∑
0

M(m)
virtual

m→∞
= A exp

(
Xvirtual

2

)
. (3.18)

Hence, the matrix element squared becomes:

|Mvirtual|2 = |A|2 exp [Re(Xvirtual)]. (3.19)

Note that the real part of Eq. 3.16 is almost identical to the real part of the vertex function
Vf , which we computed in subsection D.2. Reusing the result from subsection D.2, the real
part of Eq. 3.16 is given by:

Re (Xvirtual) =
−α
2π

ln

(
Λ

|kmin|

)
f(β), (3.20)

where f(β) is again given by Eq. 3.11. Inserting Eq. 3.20 into Eq. 3.19 gives:

⇒ |Mvirtual|2 = |A|2
(
|kmin|

Λ

) α
2π
f(β)

. (3.21)

Now, let us consider a scattering where n soft real photons are emitted. The matrix element
squared for the emission of n soft real photons is obtained by inserting a photon polarization
vector inside each parenthesis in Eq. 3.14, multiplying it by its complex conjugate, summing
over final-state photon polarizations and integrating over the on-shell momenta of all real
photons:

|A|2
∫
dK

n∏
1

e2

(2π)32|kn|

(
pµ1Θµνp

ν
1

(p1 · kn)2
+
p
′µ
1 Θµνp

′ν
1

(p′1 · kn)2
− p

′µ
1 Θµνp

ν
1

(p1 · kn)(p′1 · kn)
− pµ1Θµνp

′ν
1

(p1 · kn)(p′1 · kn)

)
,

where dK = d3k1d
3k2...d

3kn is the integration over the phase-space of on-shell photons and
Θµν is the photon polarization sum. Using the Ward identity, Eq. 3.6, the polarization
sums Θµν =

∑
ε∗µεν may be replaced by −ηµν , giving:

|M(n)
real|

2 =
|A|2

(2π)3n

∫
dK

n∏
1

e2

2|kn|

(
2p1 · p′1

(p′1 · kn)(p1 · kn)
− p2

1

(p1 · kn)2
+

(p′1)2

(p′1 · kn)2

)
. (3.22)
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Given that photons are bosons, we must multiply the above expression by 1
n!

, as there are n
- indistinguishable - bosons in the final state. We must now integrate the expression above
over the photons phase-space dK. To be able to compute the integral, we will assume that
the energy of all soft photons is much less than the detector threshold Et. Ideally, the
integrals should be computed so that the energies of all soft photons combined is less than
Et. However, this approach makes the integrals extremely complicated and would only
introduce sub-dominant corrections. Now, we integrate Eq. 3.22 by noting that each d3k
integral is identical to the integral we encountered for the bremsstrahlung in subsection 3.1,
which gives:

|M(n)
real|

2 =
|A|2

n!

[
α

2π
ln

(
Et
|kmin|

)
f(β)

]n
. (3.23)

Finally, the contribution from all diagrams containing up to n real soft photons in the final
state must be added:

|Mreal|2 =
n∑
0

|M(n)
real|

2 n→∞
= |A|2

(
Et
|kmin|

) α
2π
f(β)

. (3.24)

Using Eq. 3.24 and Eq. 3.21, the matrix element squared of an electron scattering process
containing an arbitrary number of soft photon virtual loops and real soft photons becomes:

|M|2 = |A|2
(
|kmin|
|kmax|

) α
2π
f(β)(

Et
|kmin|

) α
2π
f(β)

= |A|2
(
Et
Λ

) α
2π
f(β)

. (3.25)

The above expression no longer depends on |kmin|, instead it depends on the experimental
energy resolution Et and the soft-photon energy cutoff Λ. Thus, given that f(β) is IR finite,
the above expression is IR finite. Similarly to the first order cancellation in section 3, the
above equation is IR finite but can become divergent in the collinear limit since f(β)
diverges if a collinear photon is emitted from a massless external leg. This can be seen if
we let the mass m1 of the external leg p′1 go to zero while fixing its spatial momentum p′1
constant. Taylor expanding β to second order in m2

1 gives:

f(β) ≈ ln (4(p′1 · p1))− ln
(
m2

1m
2
1

)
+O(m6

1). (3.26)

Due to the second logarithm in the above expression, f(β) diverges in the limit m1 → 0.
In section 4, by repeating this calculation for the matrix element of an electron scattering
in PQG, it will be shown that the matrix element is finite both in the soft and collinear
massless limit.
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4 Perturbative quantum gravity

In this section, we will give a brief overview of the theoretical framework of PQG and its
associated boson; the spin-2 graviton. Moreover, we will show how mass singularities oc-
curring in the cross-section of a gravitational electron scattering become finite when adding
real and virtual contributions. As we shall see, we will be able to reuse the mathematical
machinery of the previous sections by showing that gravitational scatterings factorize into
the tree level diagram, times a divergent factor, similar to those that we encountered in
subsection 2.3. Furthermore, it will be shown how, by canceling IR divergences to all orders
- analogously to the cancellation in subsection 3.4 - the electron scattering matrix element
becomes finite both in the soft and the collinear limit, unlike QED, for which additional
UV considerations are necessary to cancel collinear singularities.

4.1 Spin-2 gravitons

QED - and more generally the whole SM - is a field theory formulated in flat space-time,
where the metric is given by the Minkowski metric ηµν . In the absence of gravity, the QED
Lagrangian is given by [1]:

LQED = iψ̄γµDµψ −mψ̄ψ −
1

4
F µνFµν , (4.1)

where Dµ = ∂µ + ieAµ is the covariant derivative of QED, and F µν = ∂µAν − ∂νAµ is the
electromagnetic field strength tensor. The gauge invariant formulation of QED - and the
SM - as described by Eq. 4.1, holds only for flat space-time, where the metric is constant
and given by ηµν . However, in GR, the metric gµν(x) is a dynamical variable, whose
exact form is determined by the Einstein field equations [10]. PQG provides a way to
partly incorporate the formalism of GR into the gauge invariance of the SM. As the name
indicates, PQG is a perturbative approach, which uses the gravitational weak field limit
to approximate the metric gµν as follows:

gµν = ηµν + κhµν , (4.2)

where κ is defined using the universal gravitational constant G, κ =
√

32G, and the sym-
metric tensor field hµν denotes the deviation of the metric tensor gµν from the Minkowski
metric tensor ηµν . We will not derive the PQG Lagrangian here since it requires a good
understanding of GR and mathematical machinery outside the scope of this work. The
relevant Feynman rules for gravitational fermion scattering can be found in Appendix A
and are presented without derivation. A thorough discussion on the derivation of the
gravity-matter Lagrangian in PQG can be found in [1]. Nonetheless, we will discuss two
important theoretical aspects of PQG. The first one is that gravitons are spin-2 bosons
since they arise from a tensor field hµν . On the other hand, photons, which arise from the
vector potential Aµ, are spin-1 bosons. One interesting property of spin-2 particles is that
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the exchange of a spin-2 boson leads always to an attractive potential, this is consistent
with our notion of Newtonian gravity being always an attractive force. The second im-
portant aspect of PQG is its gauge invariance. PQG is invariant under local space-time
transformations, xµ → xµ + λµ(x), also known as general coordinate transformation. By
Noether’s theorem, every symmetry is associated with a conserved current, which in the
case of PQG is the energy-momentum tensor Tµν . This means that the conserved charge
in PQG is energy and momentum.

4.2 Mass singularities in the gravitational electron scattering

In this section, we will study the gravitational equivalent of the electron scattering xe− →
xe− studied in subsection 2.3. The Feynman diagram for this process is the same as the
one in Figure 2, with the photon line replaced by a graviton line. Using the Feynman rules
in Appendix A, we find that up to the first two leading orders in the gravitational coupling
constant κ, the Feynman diagrams relevant for the electron scattering are the same as in
QED - Figure 1 - with every photon line replaced by a graviton line.

By looking at the equations for a fermion-graviton vertex and for a graviton propagator
- Eq. A.2 and Eq. A.8 - we can see that the only source of singularities in the tree level
diagram arises from the term 1

p2
in the graviton propagator. We came across a similar

singularity in QED for the tree level diagram of the electron scattering - see Eq. 2.8 - and
concluded that such divergence did not correspond to a mass singularity. By the same
argument, we can conclude that the tree level gravitational electron scattering is free of
mass singularities. The exact numerical value of the matrix element for the tree level
diagram will not be relevant for this work, all we need to know is that it contains no mass
singularities. Henceforth, we will denote the matrix element for the tree level gravitational
scattering by Ag.
Instead of repeating the calculation for all the non-radiative corrections - diagrams B, C,
and D - and the real radiation diagrams - Figure 5 - a similar approach to the one taken
in subsection 3.4 will be followed. That is, we will see how attaching a soft graviton to an
external leg factorizes into a kinematic factor times the tree level diagram Ag and then use
this result to treat real and virtual corrections individually.
Using the Feynman rules in Appendix A, the expression for attaching a soft graviton with
momentum k to an outgoing external electron leg with momentum p′1 + q is given by:

ū(p′1)
−κ
8

[2ηµν(2�p
′
1 +��k − 2m)− (2p′1 + k)µγν − γµ(2p′1 + k)ν ]

(�p
′
1 +��k) +m

(p′1 + k)2 −m2 − iε
A0,

(4.3)
where A0 is defined such that ū(p′1)A0 = Ag. In subsection C.3, we show how in the soft
graviton limit, the above expression simplifies to:(κ

2

)[p′1,µp′1,ν
p′1 · k

]
Ag. (4.4)
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The Lorentz indices µ, ν in the above expression are contracted with a graviton propa-
gator if the graviton is virtual, or with a tensor-polarization sum, if the graviton is real.
Neglecting the coupling constants, we can compare this expression to Eq. 3.2 and note
that the eikonal factors of soft gravitons and soft photons are almost identical. In fact, the
expressions only differ by the extra factor of p

′
1,ν in the numerator of the graviton. As we

shall see later, this extra momentum factor will be responsible for the absence of collinear
singularities in the final cross-section of the gravitational electron scattering.
Now, repeating the method from subsection 3.4, we want to consider attaching n soft gravi-
tons to an external leg. The proof by induction in subsection 3.4 applies also to gravitons

- just replace p
′(n) by p

′(n)
1,µ p

′(n)
1,ν - thus, we find that after summing over all the different

permutations of attached gravitons, the factor obtained after attaching n soft gravitons to
the outgoing external leg is given by:

y =
(κ

2

)n(p′(1)
1,µ p

′(1)
1,ν

p′1 · k1

)(
p
′(2)
1,µ p

′(2)
1,ν

p′1 · k2

)
...

(
p
′(n)
1,µ p

′(n)
1,ν

p′1 · kn

)
A. (4.5)

By adding a minus sign inside each parenthesis in the above expression, we find the factor
for attaching n soft gravitons to the incoming external leg, with momentum p1. Thus,
attaching n soft gravitons to either external leg and summing over all possible permutations
gives:

Y = Ag

(κ
2

)n(p′(1)
1,µ p

′(1)
1,ν

p′1 · k1

−
p

(1)
1,µp

(1)
1,ν

p1 · k1

)(
p
′(2)
1,µ p

′(2)
1,ν

p′1 · k2

−
p

(2)
1,µp

(2)
1,ν

p1 · k2

)
...

(
p
′(n)
1,µ p

′(n)
1,ν

p′1 · kn
−
p

(n)
1,µp

(n)
1,ν

p1 · kn

)
.

(4.6)
Now, we want to consider the matrix element for a scattering containing n virtual graviton
loops. We begin by constructing a single graviton virtual loop by setting ki = −kj, inserting
a graviton propagator Gµναβ(p) - given by Eq. A.8 - and integrating over the 4-momentum
of the soft graviton:

Yvirtual =
(κ

2

)2
∫

d4k

(2π)4

(
p′1,µp

′
1,ν

p′1 · k1

− p1,µp1,ν

p1 · k1

)
Gµναβ(p)

(
−
p′1,αp

′
1,β

p′1 · k1

+
p1,αp1,β

p1 · k1

)
. (4.7)

Since the graviton propagator Gµναβ(p) contains only metric tensors η, it is not difficult to
show- either using symmetry arguments or a long but simple calculation - that the above
integral simplifies to:

Yvirtual = −i
(κ

2

)2
∫

d4k

(2π)4

1

(k2)

(
2(p1 · p′1)2 − p2

1p
′2
1

(p′1 · k)(p1 · k)
− (p

′2
1 )2

2(p′1 · k)2
− (p2

1)2

2(p1 · k)2

)
, (4.8)

where the factors of iε have been omitted for the sake of readability. Attaching n virtual
loops to a tree level diagram will give n factors like Yvirtual. Multiplying by 1

2nn!
to prevent

over-counting, and summing over all diagrams containing up to n virtual graviton loops,
the matrix element for a scattering with an arbitrary number of virtual loops is given by:

Wvirtual
n→∞
= Ag exp

(
Yvirtual

2

)
, (4.9)
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⇒ |Wvirtual|2 = |Ag|2 exp [Re(Yvirtual)] . (4.10)

In subsection D.3, it is shown that the real part of Yvirtual is given by:

Re(Yvirtual) = − κ2

8(2π)2
ln

(
Λ

|kmin|

)
g(β). (4.11)

Inserting this result in Eq. 4.10 gives:

|Wvirtual|2 = |Ag|2
(
|kmin|

Λ

) κ2

8(2π)2
g(β)

, (4.12)

where g(β), with β given by Eq. 2.29, is defined as follows:

g(β) =

[
1

2
m1m1

1 + β2

β
√

1− β2
ln

(
1 + β

1− β

)
− m2

1

2
− m2

1

2

]
. (4.13)

Now, we want to consider a scattering with the emission of m real soft gravitons. The ma-
trix element squared of this process is obtained by inserting a graviton polarization tensor
h∗µν inside each parenthesis in Eq. 4.5, multiplying by its complex conjugate, summing over
graviton polarizations and integrating over the on-shell momenta of the final gravitons:

|W(m)
real|

2 = |Ag|2
∫
dK

m∏
1

κ2

(2π)38|km|
Ψ(p1, p

′
1)m, (4.14)

where Ψ(p1, p
′
1)m is defined as:

Ψm =

(
p′1,µp

′
1,νΓp

′
1,αp

′
1,β

(p′1 · km)2
−

p′1,µp
′
1,νΓp1,αp1,β

(p′1 · km)(p1 · km)
−

p1,µp1,νΓp
′
1,αp

′
1,β

(p′1 · km)(p1 · km)
+
p1,µp1,νΓp

′
1,αp

′
1,β

(p1 · km)2

)
.

In the above expression, Γ is the graviton polarization sum. Since the graviton polarization
tensor hµν is a symmetric tensor, it can be written as a product of spin-one polarization
vectors hµν = εµεν . Moreover, the gauge invariance of PQG imposes the condition that
the spin-one polarization vectors εµ and εν must be transverse to the graviton momentum
k and to each other [1]. This transverse-polarization property allows us to replace the
spin-one polarization sums by metric tensors η. Thus:

Γ =
∑

h∗µνhαβ =
∑

ε∗µε
∗
νεαεβ → −

1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ). (4.15)

Substituting Eq. 4.15 in Eq. 4.14 and performing the tensor contractions gives:

|W(m)
real|

2 = |Ag|2
∫
dK

m∏
1

κ2

(2π)38|km|

(
2(p1 · p′1)2 − p2

1p
′2
1

(p′1 · k)(p1 · k)
− (p

′2
1 )2

2(p′1 · k)2
− (p2

1)2

2(p1 · k)2

)
.

(4.16)
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The above integrals can be solved noting that the on-shell condition, δ(k0 = |k|), turns the
above integrals into m integrals of the form Eq. D.9. Using the results from subsection D.3,
the dK integral in Eq. 4.16 gives:

|W(m)
real|

2 =
|Ag|2

m!

[
κ2

8(2π)2
ln

(
Et
|kmin|

)
g(β)

]m
, (4.17)

where we multiplied by m! to avoid over-counting since there are m gravitons - bosons -
in the final state. Summing the contribution of all diagrams containing up to m real soft
gravitons gives:

|Wreal|
m→∞

= |Ag|2
(

Et
|kmin|

) κ2

8(2π)2
g(β)

. (4.18)

Finally, using Eq. 4.10 and Eq. 4.18, the matrix element squared of a gravitational electron
scattering containing an arbitrary number of soft virtual and soft real gravitons can be
written as:

|W|2 = |Ag|2
(
Et
Λ

) κ2

8(2π)2
g(β)

. (4.19)

Similar to the result we found in QED, a process containing an arbitrary number of soft
gravitons - real or virtual - factorizes into the tree level diagram Ag, times a factor which is
independent of the minimum graviton energy |kmin|. Therefore, the above matrix element
is IR finite. Now, we can study the collinear behaviour by letting the mass m1 of the
external leg p′1 go to zero while fixing its momentum p′1 constant. Taylor expanding g(β)
to second order in m2

1 gives:

g(β) ≈ (p′1 · p1) ln(m2
1m

2
1)− m2

1m
2
1

(p′1 · p1)
ln(m2

1m
2
1) +O(m6

1). (4.20)

Due to the factor m2
1 behind the logarithm, the second term in the above expression goes

to zero in the limit m1 → 0. Moreover, Lorentz invariance for gravitons - conservation of
the energy-momentum tensor - implies momentum conservation, which in the soft graviton
limit allows us to make the approximation p′1 ·p1 ≈ p

′2
1 . This means that the first term also

goes to zero in the limit m1 → 0. Therefore, the matrix element squared for an electron
scattering containing an arbitrary number of real and virtual soft gravitons is finite both in
the IR and the collinear limit. The factors of m2

1, and p
′2
1 that appear behind the logarithms

in the above equation, occur in PQG but not on QED due to the extra factor of p in the
PQG eikonal factor, see Eq. 4.4.
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5 Conclusion

In subsection 2.3, we saw that if only the non-radiative diagrams are considered, the cross-
section of the electron scattering is divergent both in the soft and collinear limits. From
Eq. 2.27 and Eq. 2.28, the physical origin of the mass singularities became clear; soft
singularities occur if the photon energy vanishes, while collinear singularities occur if a
massless electron emits a collinear photon. In subsection 3.1, we found that scatterings
with real radiation contain the same type of mass singularities as those in the non-radiative
diagrams. We discussed why, to a detector with finite energy resolution Et, scatterings
with real radiation photons with energy less than Et are degenerate to scatterings with
no real radiation. The S-matrix formalism states that to calculate a scattering amplitude,
we must sum over all degenerate final states. Thus, non-radiative diagrams, as well as
radiative diagrams, must be included when computing the scattering amplitude. We saw
that by doing this, the cross-section of the scattering process became IR (soft) regular.
A more thorough calculation would have led to the same conclusion regarding collinear
singularities. That is, mass singularities cancel when the contribution of real radiation
diagrams is included in the cross-section[5][6].

Given that the cross-section of a process is an observable, we expect the cancellation of
mass singularities to occur not only to first order but to all orders. In subsection 3.4, we
showed how IR (soft) singularities in QED cancel to all orders if real and virtual correc-
tions are included. Moreover, we showed that the scattering cross-section was independent
of the photon’s lowest energy and was determined by the detector’s threshold resolution
Et. However, there was a complication with the proof in subsection 3.4, the collinear
singularity was still present since f(β) was divergent if the mass of one of the external
electrons was sent to zero while fixing its spatial momentum constant. Even though there
are no massless charged particles in QED, we expect collinear singularities to cancel, since
in experiments where Q� me, the contributions from the divergent behaviour of collinear
singularities become important. A proof of the cancellation of collinear singularities to all
orders can be achieved but requires treatment beyond the soft photon approximation [5].
This last point is where a significant difference between the structure of mass singularities
in QED and PQG scatterings was found.

In subsection 4.2, we showed the cancellation of IR (soft) singularities to all orders in a
gravitational electron scattering process and arrived at a similar result as in QED. That
is, we showed that the cross-section of a process with an arbitrary number of real and
virtual soft gravitons is IR finite. More importantly, we found that the cross-section was
also free of collinear singularities since g(β) goes to zero in the electron massless limit. The
cancellation of both soft and collinear singularities in the soft graviton approximation - but
not in the soft photon approximation - points towards a fundamental difference between
the structure of QED and PQG. It was also shown that the eikonal factorization of PQG
was quite similar to that of QED.
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The eikonal factor - Eq. 3.2 and Eq. 4.4 - can be separated in two parts. The factor of p
p·k

is a kinematic factor, independent of the gauge theory, while the rest is a factor related to
the “charge coupling” of the particular gauge theory. In QED, the coupling of a photon to
a fermion is independent of the momenta of either particle. This is not the case for PQG,
where the momentum appears in the coupling vertex of a graviton to a fermion. In QED,
the “charge coupling” factor e is given by the electric charge of the fermion to which the
photon couples to, while for PQG, the “charge coupling” factor is κ

2
p. The appearance of a

momentum factor in the “charge coupling” part of the eikonal factor is a consequence of the
role that momentum plays as a “conserved current” in PQG. By Noether’s theorem, the
gauge invariance of QED leads to the conservation of electric charge. Similarly, the gauge
invariance of PQG under general coordinate transformations implies the conservation of
energy and momentum. Hence, momentum plays the same role in PQG as electric charge
plays in QED, which explains the presence of momentum factors in the “charge coupling”
part of the gravitational eikonal factor. The extra momentum factor in the eikonal factor
of PQG leads to additional factors, which are responsible for the absence of collinear sin-
gularities in the massless electron limit.

The structural differences between QED and PQG scatterings discussed above indicate
that there could be a more fundamental difference in the way that the graviton tensor
field couples to matter. Here, only an example of a scattering process was studied, where
only boson-fermion vertexes were considered. Even in this simplified scenario, a structural
difference between QED and PQG was found. Namely, in PQG, the coupling of gravitons
to fermions vanishes in the massless fermion limit, leading to collinear finite cross-sections,
even in the soft graviton approximation.

By studying more general graviton interactions, it may be possible to extract more fun-
damental and general properties of PQG and its singularity structure. However, the dia-
grammatic structure of PQG is incredibly complicated, since the vertices of gravitons to
other particles of the SM and other gravitons [1] become almost impossible to deal with by
hand. Thus, future treatments of the subject should avoid a diagrammatic approach, and
instead should focus on more fundamental properties of the theory, such as the scaling of
the fields [11].

We conclude this section by mentioning why, throughout this work, QED and PQG scat-
terings were treated as separate processes. This simplification is justified by the enormous
difference between the universal gravitational constant G and the EM fine-structure con-
stant α, which in natural units is roughly 1 : 1035. Thus, gravity will not significantly
contribute to the electron scattering process discussed in subsection 2.3 and section 3.
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A Feynman rules

A.1 Quantum electrodynamics

Here, some relevant Feynman rules for QED are listed without derivation. For a detailed
discussion on the derivation of these rules see [3].

External Fermion Leg:

= us(p) = u(p, s),
(A.1)

External Antifermion Leg:

= ūs(k) = ū(k, s),
(A.2)

where the terms inside the parenthesis (p, s) - (k, s) - correspond to the 4-momentum and
spin of the fermion - antifermion- respectively.

Fermion propagator:

=
i(�p+m)

p2 −m2 + iε
,

(A.3)

Photon propagator:

=
−i
q2

[
ηµν + n

qµqν
q2

]
,

(A.4)

where n is a gauge-fixing parameter. Two common choices are the Landau gauge with
n = −1 and the Feynman gauge with n = 0. If the gauge parameter is not explicitly
defined, Feynman gauge is assumed.

External Photon Leg:

= εµ = ε(p, λ),
(A.5)
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= ε∗µ = ε∗(p, λ),
(A.6)

where ε(p, λ) and ε∗(p, λ) , with λ = ±1, represent the polarization vectors of initial and
final photons respectively.

Fermion-Fermion-Photon Vertex:

= −ieγµ.
(A.7)

A.2 Perturbative quantum gravity

Here, we provide a list of the Feynman rules for PQG relevant for this work. For a more
detailed and complete list of the Feynman rules for PQG see [1].

Graviton Propagator:

=
i

2

ηµαηνβ + ηµβηνα − ηµνηαβ

p2
, (A.8)

Fermion-Fermion-Graviton Vertex:

=
i

8
κ [2ηµν (�p1 + �p2 − 2m)− (p1 + p2)µγν − γµ(p1 + p2)ν ] , (A.9)

External Graviton Leg:

= hµν(p) = εµ(p)εν(p), (A.10)
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= h∗µν(p) = ε∗µ(p)ε∗ν(p), (A.11)

where hµν(p) and h∗µν(p) represent the polarization tensors of initial and final gravitons
respectively.

B Numerator algebra

In this appendix we provide a list of identities used to simplify the numerators of the dif-
ferent expressions throughout this work. The identities here are provided without a proof,
for a derivation of these identities the reader is refereed to [3][4][5].

The free propagating spinor us(p) obeys the Dirac equation:

(�p−m)us(p) = ūs(p)(�p−m) = 0. (B.1)

Spinors also satisfy the following completeness relation for spin sums:∑
s

us(p)ūs(p) = �p+m. (B.2)

Using the above identity, a very useful formula for spin sums can be proven:∑
s,s′

v̄s
′

a (p′)γµabu
s
b(p)ū

s
cγ

ν
cdv

s′

d (p′) = tr [(�p
′ −m)γµ(�p+m)γν ] . (B.3)

It can be shown by explicit calculation that Dirac matrices satisfy the following identities:

{γµ, γν} = 2ηµν ; γµγµ = 4. (B.4)

C Supplementary calculations

C.1 Tree level diagram QED

Here, we show how the matrix element squared of the tree level electron scattering process
in Eq. 2.8 can be obtained from Eq. 2.7. Rearranging and contracting one of the gamma
matrices in Eq. 2.7, the amplitude for the process becomes:

A =
ie2

q2
(ū(p′1, s

′
1)γµu(p1, s1)) (ū(p′2, s

′
2)γµu(p2, s2)) . (C.1)
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Noting that (v̄γµu)∗ = ūγµv, the complex conjugate of the above expression is given by:

A∗ =
−ie2

q2
(ū(p1, s1)γνu(p′1, s

′
1)) (ū(p2, s2)γνu(p′2, s

′
2)) . (C.2)

The unpolarized matrix element squared can then be obtained combining the above ex-
pressions:

|A|2unp =
e4

q4
[ū(p′1, s

′
1)γµu(p1, s1)ū(p1, s1)γνu(p′1, s

′
1)] [ū(p′2, s

′
2)γµu(p2, s2)ū(p′2, s

′
2)γµu(p2, s2)] .

Finally, assuming unpolarized incoming particles, we must average over incoming spins
(s1,s2) and sum over final spins (s′1,s′2).

|A|2 =
1

2

∑
s1

1

2

∑
s2

∑
s′1

∑
s′2

|A|2unp. (C.3)

The above sums can be performed using the spin sum identities in Appendix B. Using the
massless electron approximation, Eq. C.3 becomes:

|A|2 =
e4

4q4
tr [�p

′
1γ

µ + �p1γ
ν ] tr [(�p

′
2 +m)γµ + (�p2 +m)γν ] , (C.4)

where m is the mass of the massive particle. Using trace identities for gamma matrices,
the above equation simplifies as follows:

|A|2 =
8e4

q4

[
(p1 · p′2)(p′1 · p2) + (p1 · p2)(p′1 · p′2)−m2(p1 · p′1)

]
, (C.5)

which is the desired equation.

C.2 Imaginary factors in Feynman propagators

Imaginary parts of loop amplitudes come from virtual particles going on-shell.

Proof. To prove this statement, we will assume that Feynman propagators are analytic
functions and can be analytically continued to the whole complex plane. Hence, the dis-
continuity of a propagator f(s), across any branch cut it may have, is proportional to its
imaginary part [4]. If the propagator contains a branch cut in the real axis at s, then:

Discontinuity(f(s)) = 2iIm(f(s+ iε)). (C.6)

Let us illustrate the use of this result by computing the imaginary part of a photon prop-
agator:

Im

(
1

k2 + iε

)
=

1

2i
Discontinuity =

1

2i

(
1

k2 + iε
− 1

k2 − iε

)
=

−ε
(k2)2 + ε2

. (C.7)
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The above expression vanishes in the limit ε→ 0, except at the point k2 = 0. Integrating
k2 in the above expression for k2 > 0 gives:∫ ∞

0

dk2 −ε
(k2)2 + ε2

= −π, (C.8)

⇒ Im

(
1

k2 + iε

)
= −πδ(k2). (C.9)

Hence, the imaginary part of a massless propagator vanishes except when the particle goes
on-shell.

C.3 Soft graviton simplification

Here, we show how Eq. 4.3 simplifies to Eq. 4.4 in the soft graviton limit. First, let us do
some algebra in the numerator N to simplify it:

N = −κū(p′1) [2ηµν(2�p
′
1 +��k − 2m1)− (2p′1 + k)µγν − γµ(2p′1 + k)ν ] (�p

′
1 +��k+m1)A0. (C.1)

In the soft graviton approximation we can drop the terms k in the numerator:

N = −κū(p′1) [2ηµν(2�p
′
1 − 2m1)− (2p′1)µγν − γµ(2p′1)ν ] (�p

′
1 +m1)A0. (C.2)

The first term inside the squared brackets cancels when multiplied by the numerator of
the electron propagator since the outgoing electron is on-shell, i.e. p

′2
1 = m2

1. The other
two terms can be rewritten as:

N = κ [(2p′1)µū(p′1)γν(�p
′
1 +m1) + ū(p′1)γµ(�p

′
1 +m1)(2p+ q)ν ]A0. (C.3)

Using the commutation relations for the Dirac matrices, and the identities in Appendix B,
the above expression simplifies to:

N = 8κ
[
p′1,µp

′
1,ν

]
ū(p′1)A0 = 8κ

[
p′1,µp

′
1,ν

]
Ag. (C.4)

On the other hand, the denominator simply becomes:

8
(
(p′1)2 + 2p′1 · k + k2 −m2

1)
)

= 16(p′1 · k). (C.5)

Combining the last two expressions gives the desired expression in Eq. 4.4.

D Integral evaluation

In this appendix, we evaluate the most important integrals that appeared in the calcula-
tions:
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D.1 Eq. 2.24

Iloop =
ie2

(2π)4

∫
d4k

1

(k2 + iε)(p · k + iε)
. (D.1)

We are interested in the real part of the above integral. This integral can be evaluated by
contour integration of k0 in the complex plane. The integrand is analytic in k0 except at
three poles;

k0 = |k| − iε, k0 = −|k|+ iε, and k0 =
k · p
p0
− iε.

By closing the integration in the upper-plane with a large semi-circle, we avoid the two
poles in the lower-plane. Thus, the integral only gets a contribution from the pole at
k0 = −|k|+ iε. This pole gives a factor of −iπ|k| for the k0 integral. After performing the k0

integral, Eq. 2.24 becomes:

Iloop =
e2π

(2π)4

∫ Λ

|kmin|

d3k

|k|2(p0 − p · k̂)
=

α

(2π)2

∫ Λ

|kmin|
d|k|

∫
Ωk̂

(p0 − p · k̂)
. (D.2)

The above integral is purely real.

D.2 Eq. 2.26

Vf =
−ie2

(2π)4

[∫
d4k

p′1 · p1

(p′1 · k + iε)(k2 + iε)(p1 · k + iε)
− p2

1

(k2 + iε)(p1 · k + iε)2

]
. (D.3)

Again, we are interested in the real part of the above integral. Similar to the previous
integral, we will evaluate the real part of Eq. 2.28 by first integrating k0 using a contour
integral. Let us first look at the first term in the integrand. The integrand is analytic
except at four poles;

k0 = |k| − iε, k0 = −|k|+ iε, k0 =
k · p′1
p
′0
1

− iε, and k0 =
k · p1

p0
1

− iε.

Again, by closing the contour with a large semi-circle in the upper-plane, we get a contri-
bution to the integral only from the pole at k0 = −|k| + iε, which again gives a factor of
−iπ
|k| . After performing the k0 integral, Eq. 2.28 becomes:

V
(1)
f =

−e2π

(2π)4

∫ Λ

|kmin|
d3k

p′1 · p1

|k|3(p
′0
1 − p′1 · k̂)(p0

1 − p1 · k̂)
,

⇒ −α
(2π)3

ln

(
Λ

|kmin|

)∫
Ωk̂

p′1 · p1

(p
′0
1 − p′1 · k̂)(p0

1 − p1 · k̂)
. (D.4)
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The k̂-angular integral is a relatively common integral in scattering particle physics, whose
analytic solution is [5]:∫

Ωk̂

p′1 · p1

(p
′0
1 − p′1 · k̂)(p0

1 − p1 · k̂)
= 2π

(
1

2β
ln

(
1 + β

1− β

))
, (D.5)

where β is the relative velocity between the incoming and outgoing electron, given by
Eq. 2.29.
The second part of the integrand in Eq. D.3 can be solved again by contour integration,
noting that the integration has the same poles as the integral in subsection D.1. Integrating
k0 the same way as in subsection D.1, gives the same contribution and the integral becomes:

V
(2)
f =

−α
(2π)2

∫ Λ

|kmin|

d|k|
|k|

∫
Ωk̂

p2
1

(p0 − p · k̂)2
,

⇒ V
(2)
f =

−α
2π

ln

(
Λ

|kmin|

)
. (D.6)

Finally, combining Eq. D.4 and Eq. D.6 gives:

Vf =
−α
2π

ln

(
Λ

|kmin|

)[
1

2β
ln

(
1 + β

1− β

)
− 1

]
. (D.7)

The integral above is purely real.

D.3 Eq. 4.8

Yvirtual = −i
(κ

2

)2
∫

d4k

(2π)4

1

(k2)

(
2(p1 · p′1)2 − p2

1p
′2
1

(p′1 · k)(p1 · k)
− (p

′2
1 )2

2(p′1 · k)2
− (p2

1)2

2(p1 · k)2

)
. (D.8)

Note that in the above integral, the analytic form of the k0 integral is identical to the
vertex function integral Vf , discussed in the previous section. That is, the poles are the
same, and by closing the contour upwards, only the pole at k0 = −|k| + iε contributes to
the integral. After performing the k0 integral using the result from the previous section,
Yvirtual becomes:

Yvirtual = −
(

κ2

8(2π)3

)
ln

(
Λ

|kmin|

)∫
Ωk̂

(
2(p1 · p′1)2 − p2

1p
′2
1

(p′1 · k̂)(p1 · k̂)
− (p

′2
1 )2

2(p′1 · k̂)2
− (p2

1)2

2(p1 · k̂)2

)
.

(D.9)

The first k̂-angular integral is given by [8]:

2π

[
1

2
m1m1

1 + β2

β
√

1− β2
ln

(
1 + β

1− β

)]
. (D.10)
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The other two angular integrals are almost identical to the second angular integral of the
vertex function Vf . The only difference is that the angular integrals here have an additional
factor of p2 in the numerator, which by noting that the external electrons must be on-shell
can be replaced by m2. Thus, the second and third angular integrals above give:

2π

(
−m

2
1

2
− m2

1

2

)
. (D.11)

Inserting Eq. D.10 and Eq. D.11 in Eq. D.9 gives:

Yvirtual = −
(

κ2

8(2π)2

)
ln

(
Λ

|kmin|

)[
(m1m1)(1 + β2)

2(β
√

1− β2)
ln

(
1 + β

1− β

)
− m2

1

2
− m2

1

2

]
, (D.12)

which again, is purely real.
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