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Abstract

Entanglement production is one of the properties of interest when studying nanoscale systems.

Not only does entanglement between subsystems hints at other non-classical behaviour and

effects that may be of interest to applications; the resource of entangled systems themselves

is one on which many future devices and protocols may depend on [1]. In this thesis work,

a system of two quantum dots coupled in series between two fermionic leads is considered.

The system is a fermionic version of the qubit system studied previously by J. B. Brask et.

al. [2]. Assuming steady state, the density matrix of the double dot subsystem is calculated

by first finding the retarded Green’s functions of the system, and then showing the connection

between these Green’s functions and the elements of the density matrix. From the density

matrix, the entanglement produced between the two quantum dots is extracted. This result is

compared to and shown to agree with previous theoretical results, where instead a Markovian

master equation approach was used to find the density matrix. Finally, in the discussion and

outlook sections possible next steps in the calculation are discussed, as well as the advantages

of the Green’s functions method over the Markovian master equation approach.
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1 Introduction

The study of nanoscale devices and systems has grown substantially over the recent decades,

with research communities thriving on both the theoretical [3,4] and experimental [5,6] sides.

Nanostructures such as quantum dots and nanowires can now be created experimentally in

laboratories [7, 8], which allows for the creation of systems simple enough to be modelled

accurately by pen-and-paper calculations. The applications of such nanostructures range

from heat engines [9] and clocks [10] based on thermodynamical properties, to quantum

entanglers [2, 11] and beyond. The efficient production of entangled states has been studied

extensively [12, 13], as the resource of entangled states is vital for applications in the fields

of quantum computing and quantum cryptography among others [1].

These nanosystems, like many other systems studied in contemporary physics, require

a quantum-mechanical treatment to be modelled accurately. Open quantum systems, i.e.

quantum systems which interact with some environment, are represented mathematically by

the density matrix. The density matrix generalizes the notion of a state ket from quantum

mechanics, and is used to extract thermodynamical and entanglement properties. There-

fore, solving such a system often refers to calculating the density matrix. This quantity is

commonly calculated by the use of Markovian master equations [14]. The Markovian master

equation method is generally based on strong approximations, but where these approxima-

tions are accurate they can be used to calculate the density matrix.

This thesis work will focus on a particular system of two quantum dots coupled in series

between two fermionic leads. This is a fermionic version of a qubit system previously stud-

ied by the use of Markovian master equations [2, 11, 15]. Instead of the Markovian master

equation method we will make use of Green’s functions to calculate the density matrix and

extract the concurrence of the quantum dot subsystem. Unlike the solutions to Markovian

master equations, Green’s functions are exact solutions to the problem at hand. The system

will be modeled without interaction; introducing interaction such as Coloumb repulsion and

attraction would generally require a perturbative solution of the Green’s functions.
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2 Theory

Throughout this thesis, we set ~ = 1. The equations in each of the subsections can be found

in the references of that particular subsection.

2.1 Heisenberg and Schrödinger picture

The dynamics of quantum mechanics are commonly formulated in one of three formalisms.

Only two of these, the Heisenberg and Schrödinger pictures, are relevant to this thesis. The

third one is the interaction picture, which will not be covered further here. In the Schrödinger

picture state kets are time-dependent, |ψ〉 = |ψ(t)〉. The dynamics of the states in a system

with Hamiltonian Ĥ are governed by the Schrödinger equation [16]

i
d |ψ(t)〉

dt
= Ĥ |ψ(t)〉 . (1)

In the case of a time-independent Hamiltonian, the Schrödinger equation is equivalent to the

explicit time evolution of state kets

|ψ(t2)〉 = Û(t2, t1) |ψ(t1)〉 , Û ≡ exp
[
−iĤ(t2 − t1)

]
. (2)

In this picture, operators corresponding to observables such as x̂ and p̂ are stationary in time;

any change in measurement probabilities over time is due to the state ket |ψ(t)〉 changing.

In the Heisenberg picture however, state kets are independent of time. Instead, operators

evolve in time according to the Heisenberg equation of motion

i
dÂ(t)

dt
= [Â, Ĥ]. (3)

Here it is assumed that Â has no explicit time dependence in the Schrödinger picture, which

would otherwise introduce one additional term in (3). For a time-independent Hamiltonian,

the solution to the Heisenberg equation of motion is

Â(t2) = Û(t2, t1)Â(t1)Û †(t2, t1) = Û(t2, t1)Â(t1)Û(t1, t2). (4)

The two pictures are completely equivalent. They should however not be mixed, as operators

and states are equal only between the pictures at some pre-specified overlapping point in time.

All equations in this subsection are taken from [16].
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2.2 The second quantization formalism

Many-particle quantum physics is commonly formulated in the second quantization formalism

[17], where the entire system is described by kets indexed by occupation numbers. Any single

such ket

|n1, n2, n3, . . .〉 (5)

is an eigenket to the occupation number operators n̂i. The eigenvalue of a specific number

operator n̂k is the number of particles occupying the state indexed by k

n̂k |n1, n2, . . . , nk, . . .〉 = nk |n1, n2, . . . , nk, . . .〉 . (6)

The focus in this thesis is on fermionic systems, where the occupation numbers can equal

either 0 or 1. The formalism can also be developed in a similar fashion for bosonic systems and

is covered in most introductory literature on many-body physics, e.g. [17]. The occupation

number operator can be factorized into one creation and one annihilation operator, ĉ† and ĉ

respectively, where one is the hermitian conjugate of the other

n̂k = ĉ†kĉk. (7)

The creation and annihilation operators add and subtract one particle from one state in the

system. However if this would put the occupation number outside the allowed range {0, 1},
the ket is mapped to zero

ĉ†k |. . . , nk, . . .〉 =

|. . . , nk + 1, . . .〉 , nk = 0

0, nk = 1
(8)

ĉk |. . . , nk, . . .〉 =

0, nk = 0

|. . . , nk − 1, . . .〉 , nk = 1.
(9)

This allows all second quantization kets (5) to be expressed as creation operators operating

on the empty (vacuum) state |0, 0, 0, . . .〉

|n1, n2, n3, . . .〉 = (ĉ†1)n1(ĉ†2)n2(ĉ†3)n3 · · · |0, 0, 0, . . .〉 . (10)

The majority of calculations carried out in the second quantization formalism is not on

the kets themselves, but on the creation and annihilation operators. Central properties of
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these operators include the anti-commutator relations

{ĉ†j, ĉ
†
k} = 0, {ĉj, ĉk} = 0, {ĉj, ĉ†k} = δjk. (11)

Note that in general these operators do not commute [ĉ†j, ĉ
†
k] 6= 0, which means that the

ordering of annihilation and creation operators, such as in (10), is of significance.

All equations in this subsection are taken from [17].

2.3 The density matrix

The density matrix is a generalization of the state ket, and is commonly used to describe

statistical ensembles of states [18]. States which can be described by a state ket are pure

states, while any state that is not pure is called mixed. A density matrix describing a system

in a statistical ensemble of pure states {|ψi〉} is defined as

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (12)

where the set of real constants {pi} are the statistical weights of the ensemble [19]. The

interpretation of {pi} as probabilities justifies the conditions 0 < pi ≤ 1,
∑

i pi = 1 which we

impose on the weights.

Since in the most general case, the density matrix is our description of the system at

hand, there should be a way to define the expectation value 〈Â〉 of an operator Â in a system

described by ρ̂. This expectation value is defined as

〈Â〉 = Tr{ρ̂Â} (13)

which is a direct generalization of the familiar expression for pure states 〈Â〉 = 〈ψ|Â|ψ〉.
Here Tr{Â} denotes the trace

Tr{Â} =
∑
i

〈φi|Â|φi〉 (14)

which is independent of the choice of complete orthonormal basis {|φi〉}.
Eqs. (12) and (14) are taken from [19]. Eq. (13) is taken from [17].
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2.4 Green’s functions

In mathematics, Green’s functions Gij(t, t
′) are inverse functions to some linear operator L.

That is, the linear operator maps Green’s functions to Dirac delta functions

L[Gij(t, t
′)] = δijδ(t− t′). (15)

The Dirac delta function is a generalized function which can be defined from its Fourier

transform as

δ(t− t′) =
1

2π

∫ ∞
−∞

e−iω(t−t′)dω =

0, t 6= t′

∞, t = t′
(16)

and the Kronecker delta is defined as

δij =

0, i 6= j

1, i = j.
(17)

The discrete indexing i, j can be replaced with one or several pairs of continuous variables

x, x′, see for example [20]. Green’s functions are frequently used to solve linear differential

equations on the form

L[fi(t)] = gi(t) (18)

since if the Green’s function of L is known, the solution to (18) is given by

fi(t) =
∑
j

∫
Gij(t, t

′)gj(t
′)dt′. (19)

This can be seen by explicit calculation since the operator only acts on the non-primed

variables

L[fi(t)] = L

[∑
j

∫
Gij(t, t

′)gj(t
′)dt′

]
(20)

=
∑
j

∫
L [Gij(t, t

′)] gj(t
′)dt′ (21)

=
∑
j

δij

∫
δ(t− t′)gj(t′)dt′ (22)

= gi(t). (23)

In physics, Green’s functions are used to encode the past and future evolution of a par-
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ticle/state [21]. They provide a method to solving a physical system exactly, in terms of

its behaviour, properties and dynamics. In quantum mechanics, the relevant differential

operator is the Schrödinger operator

L = i
d

dt
−Hij (24)

where Hij are elements of the Hamiltonian in a discrete basis.

The defining equation (24) of the Green’s function has a range of solutions. A boundary

condition is imposed to end up with the Green’s function of choice. The solution with

boundary condition t < t′ =⇒ Gij(t, t
′) = 0 is called the retarded Green’s function [17] and

is given by

G+
ij(t, t

′) = −iθ(t− t′)〈
{
ĉi(t), ĉ

†
j(t
′)
}
〉. (25)

Here θ(t) is the Heaviside step function defined as

θ(t) =

1, if t > 0

0, otherwise.
(26)

The time-dependence of the second quantization operators are governed by the Heisenberg

equation (3). The boundary condition t > t′ =⇒ Gij(t, t
′) = 0 yields the advanced Green’s

function

G−ij(t, t
′) = iθ(t′ − t)〈

{
ĉi(t), ĉ

†
j(t
′)
}
〉. (27)

A third kind are the lesser Green’s functions, which are not solutions to (24) but closely

related to (25) and (27):

G<
ij(t, t

′) = i〈ĉ†j(t′)ĉi(t)〉. (28)

If the Hamiltonian of the system is time-independent then the Green’s functions only depend

on the time difference t− t′. It is then convenient to do calculations in frequency space where

the Green’s functions depend only on a single variable

Gij(ω) = F [Gij(t− t′)] =

∫ ∞
−∞

dtGij(t− t′)eiω(t−t′). (29)

One useful relation in the frequency domain is that the retarded and advanced Green’s

functions are closely related

G−ij(ω) =
[
G+
ji(ω)

]∗
. (30)

Eqs. (15) to (20) are taken from [20]. Eqs. (24) to (30) are taken from [17].
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2.5 Entanglement

If two separate, uncoupled quantum systems are considered, the state of the total system

is given by a product state. A product state is a state of the full system AB that can be

written as a tensor product of a state ket in subsystem A and a state ket in subsystem B

|Ψ〉AB = |ψ〉A ⊗ |φ〉B . (31)

In this case, the two states |ψ〉A and |φ〉B are completely independent of each other; inter-

acting with one of the subsystems will not change the state of the other one. If interaction

between the subsystems is introduced, or if the full system AB is interacted with, the most

general state of the composite system is a linear combination of product states

|Φ〉AB =
∑
i

ci |ψi〉A ⊗ |φi〉B . (32)

If the composite state |Φ〉AB can not be reduced to a product on the form (31), it is called

an entangled state [1]. More generally, if the state of the composite system is described by

some density matrix ρAB, the state of the system is called a product state if it can be written

on the form

ρAB =
∑
i

ωiρ
A
i ⊗ ρBi . (33)

States described by density matrices that are not product states are called entangled states.

2.5.1 Concurrence

To quantify the entanglement in a two-qubit system, concurrence is commonly used. Define

the bit-flipped density matrix as

ρ̃ = (σy ⊗ σy)ρ̂∗(σy ⊗ σy) (34)

where σy is the Pauli y-matrix. Also, denote by λ1, λ2, λ3, λ4 the eigenvalues of the matrix

R = ρ̂ρ̃, ordered in decreasing magnitude. Then the concurrence of the system described by

ρ̂ is defined as

C{ρ̂} = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}. (35)

This is well-defined since ρ̂ is positive semi-definite, which implies that all the eigenvalues of

R are non-negative.

All equations in this subsection are taken from [1].
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3 The system

The system considered in this thesis is a fermionic version of the qubit system studied by J.

B. Brask et al. [2]. The system consists of two quantum dots coupled in series between two

thermal baths, see Fig. 1. Throughout this thesis, the complete system will be denoted by

S, the leads sub-system will be denoted by Sl and the sub-system consisting of only the two

quantum dots by SD. The same subscripts will also be used for matrices.

Figure 1: Illustration of the physical system treated in this thesis. Sl and SD denotes the
subsystems consisting of only the heat baths and the quantum dots, respectively. ε denotes
the energy level of a site in the system, Ω denotes the inter-dot coupling and t denotes the
coupling strength between a quantum dot and its respective heat bath.

3.1 Hamiltonian and mathematical properties

The Hamiltonian of the system is given by

Ĥ = Ĥ0 + V̂ (36)

where the uncoupled part is

Ĥ0 =
∑
α

εαd̂
†
αd̂α +

∑
α

∑
k

εαkĉ
†
αkĉαk. (37)
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Here α ∈ {L, R} and k runs over all the energy levels in the respective thermal bath. To

follow conventions, d̂ is used instead of ĉ to denote the second quantization operators in SD.

The interaction term V̂ is given by

V̂ = Ω(d̂†Ld̂R + d̂†Rd̂L) +
∑
α

∑
k

(
tαkĉ

†
αkd̂α + t∗αkd̂

†
αĉαk

)
(38)

where the constant Ω characterises the coupling strength between the two quantum dots,

while the constants tαk characterises the coupling strength between quantum dot α and

thermal bath level αk. Coulomb interaction between electrons is not taken into consideration

in this model. The interaction would introduce terms with four fermionic operators into the

Hamiltonian, such as ĉ†Lĉ
†
RĉRĉL, which would make calculating the Green’s function much

more challenging.

4 Calculations

In Section 4.1, the retarded Green’s functions of the system are calculated. This result is

then used in Section 4.2 to calculate the lesser Green’s functions. When evaluated at equal

times t = t′, the lesser Green’s functions are directly related to the components of the density

matrix. This relation is shown in Section 4.3.

4.1 Retarded Green’s functions

The starting point is some simpler Hamiltonian and the Green’s function of that system;

in this case the Hamiltonian of the uncoupled system (37). To find the retarded Green’s

functions for the uncoupled system, here denoted as g+, we use the equations of motion

method. This involves evaluating the time derivative of the Green’s functions. Evaluating

the time derivative of the (so far unknown) uncoupled Green’s functions

i∂tg
+
γγ′(t, t

′) = ∂tθ(t− t′)〈
{
ĉγ(t), ĉ

†
γ′(t
′)
}
〉 − iθ(t− t′)〈

{
i∂tĉγ(t), ĉ

†
γ′(t
′)
}
〉

= δ(t− t′)〈
{
ĉγ(t), ĉ

†
γ′(t
′)
}
〉 − iθ(t− t′)〈

{
[H0, ĉγ(t)] , ĉ

†
γ′(t
′)
}
〉

= δ(t− t′)δγγ′ − iεγθ(t− t′)〈
{
ĉγ(t), ĉ

†
γ′(t
′)
}
〉

= δ(t− t′)δγγ′ + εγg
+
γγ′(t, t

′).

(39)

Here we have used ∂tθ(t) = δ(t) and for the uncoupled system [H0, ĉγ] = [εγ ĉ
†
γ ĉγ, ĉγ] = εγ ĉγ.

The gammas can refer to any energy level in the system, γ ∈ {L,R, Lk1, Rk1, Lk2, Rk2 . . . }.
Fourier transforming both sides of the above equation and solving for the Green’s function
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yields

g+
γγ′(ω) =

δγγ′

ω − εγ + iη
. (40)

The η is a positive infinitesimal which ensures that the function vanishes for t < t′ in accor-

dance with the boundary conditions mentioned in Section 2.4. The Kronecker delta means

that g+
γγ′ is nonzero only for γ = γ′, which is to be expected in the uncoupled case where no

correlations are present between the different sites.

Having found the expression for the uncoupled Green’s functions, we make use of the

Dyson equation [22], which establishes the link between the coupled and uncoupled functions

G+ = g+ + g+VG+. (41)

Solving the equation for G+ gives

G+ = (1− g+V)−1g+. (42)

The matrix of uncoupled Green’s functions is diagonal

g+ =



g+
L (ω)

g+
R(ω)

g+
Lk1

(ω)

g+
Rk1

(ω)

g+
Lk2

(ω)

g+
Rk2

(ω)
. . .


=

(
g+
D 0

0 g+
l

)
(43)

and V is the matrix form of the interaction operator V̂

V =



0 Ω t∗Lk1 0 tLk2 0 . . .

Ω 0 0 t∗Rk1 0 tRk2 . . .

tLk1 0 0 0 0 0 . . .

0 tRk1 0 0 0 0 . . .

tLk2 0 0 0 0 0 . . .

0 tRk2 0 0 0 0 . . .
...

...
...

...
...

...
. . .


=

(
Ω V†l
Vl 0

)
(44)

Here both matrices are also written on block form where the upper left 2x2 block corresponds

to inter-dot interactions, the upper right and lower left blocks corresponds to quantum dot-
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lead coupling and the lower right block corresponds to lead-lead interaction

Ω =

(
0 Ω

Ω 0

)
, Vl =



tLk1 0

0 tRk1

tLk2 0

0 tRk2
...

...


. (45)

The same block partition is used for g+. Using block matrix algebra throughout, we have

(1− g+V)−1 =

(
1− g+

DΩ g+
DV†l

g+
l Vl 1

)−1

. (46)

By the formula for inverse of block matrix (see appendix A.2), the upper-left block of the

inverse is given by

(1− g+
DΩ− g+

DV†lg
+
l Vl)

−1 (47)

resulting in the retarded Green’s function for the quantum dots

G+
D =

[
(1− g+V)−1g+

]
D

= (1− g+
DΩ− g+

DV†lg
+
l Vl)

−1g+
D

=
[
(g+

D)−1(1− g+
DΩ− g+

DV†lg
+
l Vl)

]−1

=
[
(g+

D)−1 −Ω−V†lg
+
l Vl

]−1

.

(48)

Here one can identify (g+
D)−1 −Ω = ω1− [H0]D −Ω = ω1−HD and define the self energy

V†lg
+
l Vl =

(∑
k

|tLk|2
ω−εLk+iη

0

0
∑

k
|tRk|2

ω−εRk+iη

)
=

(
ΣL 0

0 ΣR

)
≡ Σ+. (49)

This yields the final matrix form for the retarded Green’s functions

G+
D = (ω1−HD −Σ+)−1. (50)

For later convenience (e.g. to be able to assume the wide-band limit), we define the energy

shift Λ and level width Γ as the real part and minus half the imaginary part of the self-energy,
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respectively1

Λ = Re Σ+ =

∑k P
{
|tLk|2
ω−εLk

}
0

0
∑

k P
{
|tRk|2
ω−εRk

} (51)

Γ = −2 Im Σ+ =

(
2π
∑

k |tLk|2δ(ω − εLk) 0

0 2π
∑

k |tRk|2δ(ω − εRk)

)
. (52)

such that Σα = Λα − i
2
Γα.

4.2 Lesser Green’s functions

Following the result of [23], the lesser self-energy is given by the diagonal matrix

Σ< = iΓf (53)

where Γ is the line width from the previous section and f is the matrix of Fermi-Dirac

distributions for the left and right leads

f =

(
fL(ω) 0

0 fR(ω)

)
=

(
1

exp(βL(ω−µL))+1
0

0 1
exp(βR(ω−µR))+1

)
. (54)

The inverse temperature in the exponent is βi = 1/kBTi. If not otherwise stated, we

will assume equal chemical potential µL = µR = 0. Given this self-energy and the re-

tarded/advanced Green’s functions (50) and (30), the matrix of lesser Green’s functions for

the central region can be calculated from the relation [23]

G<
D = G+

DΣ<G−D. (55)

4.3 Density operator

The concurrence (35) is calculated from the density matrix ρ of the quantum dot system

SD. We therefore set out to find a general expression connection the Green’s functions of

the earlier sections to the elements of the density matrix. Expanding ρ̂ in the occupation

number basis yields

ρ̂ =
∑

nL,nR,n
′
L,n

′
R

|nL, nR〉 〈n′L, n′R|C
nLnR
n′
Ln

′
R

(56)

1Here P denotes the Cauchy principal value of complex analysis.
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where we can use (10) to write the coefficients C as

CnLnR
n′
Ln

′
R

= 〈nLnR| ρ̂ |n′Ln′R〉 = Tr
{
ρ̂(ĉ†L)n

′
L(ĉ†R)n

′
R |0, 0〉 〈0, 0| ĉnRR ĉnLL

}
. (57)

Now we make use of the fact that the projection operator onto the vacuum state can be

expressed in terms of creation and annihilation operators as |0, 0〉 〈0, 0| = (1−ĉ†LĉL)(1−ĉ†RĉR).

This allows us to write the correlation functions as sums of expectation values of second

quantization operators. Expectation values of four operators can be rewritten in terms of

simple two-operator expectations by the use of a corollary to Wick’s theorem [24]

〈ĉ†i ĉ
†
j ĉkĉl〉 = 〈ĉ†i ĉl〉〈ĉ

†
j ĉk〉 − 〈ĉ

†
i ĉk〉〈ĉ

†
j ĉl〉. (58)

Using the fact that expectation values of an uneven number of creation and annihilation

operators vanish, we get that the nonzero components of the density matrix are given by

C11
11 = 〈ĉ†LĉL〉〈ĉ

†
RĉR〉 − 〈ĉ

†
LĉR〉〈ĉ

†
RĉL〉

C00
00 =

(
1− 〈ĉ†LĉL〉

)(
1− 〈ĉ†RĉR〉

)
− 〈ĉ†LĉR〉〈ĉ

†
RĉL〉

C10
10 = 〈ĉ†LĉL〉

(
1− 〈ĉ†RĉR〉

)
+ 〈ĉ†LĉR〉〈ĉ

†
RĉL〉

C01
01 = 〈ĉ†RĉR〉

(
1− 〈ĉ†LĉL〉

)
+ 〈ĉ†LĉR〉〈ĉ

†
RĉL〉

C10
01 = 〈ĉ†RĉL〉

C01
10 = 〈ĉ†LĉR〉

(59)

and all other C’s vanish. The matrix form of ρ̂ is

ρ̂ =


C00

00 0 0 0

0 C10
10 C10

01 0

0 C01
10 C01

01 0

0 0 0 C11
11

 . (60)

Up to a factor i, the two-operator expectation values in (59) are exactly the lesser Green’s

functions (28) evaluated at t = t′, which were calculated in Section 4.2.
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5 Results

5.1 Explicit expressions of the Green’s functions

The retarded Green’s functions in the frequency domain are given by the four elements of

inverse expression (50)

G+
LL(ω) =

ω − εR − ΛR(ω) + i
2
ΓR(ω)[

ω − εL − ΛL(ω) + i
2
ΓL(ω)

] [
ω − εR − ΛR(ω) + i

2
ΓR(ω)

]
− Ω2

(61)

G+
RR(ω) =

ω − εL − ΛL(ω) + i
2
ΓL(ω)[

ω − εL − ΛL(ω) + i
2
ΓL(ω)

] [
ω − εR − ΛR(ω) + i

2
ΓR(ω)

]
− Ω2

(62)

G+
LR(ω) = G+

RL(ω) =
Ω[

ω − εL − ΛL(ω) + i
2
ΓL(ω)

] [
ω − εR − ΛR(ω) + i

2
ΓR(ω)

]
− Ω2

. (63)

To express the Lesser Green’s functions, we first apply the wide-band limit by absorbing

Λ into ε and assuming that the level widths are independent of frequency

Λ(ω) + ε→ ε, Γ(ω)→ Γ. (64)

The wide-band limit is accurate if the density of states of the fermions is constant near the

Fermi energy [25]. The formula (55) now yields the four elements of G<
D

G<
LL(ω) = i

fLΓL
∣∣ω − εR + i

2
ΓR
∣∣2 + Ω2fRΓR∣∣(ω − εL + i

2
ΓL)(ω − εR + i

2
ΓR)− Ω2

∣∣2 (65)

G<
RR(ω) = i

fRΓR
∣∣ω − εL + i

2
ΓL
∣∣2 + Ω2fLΓL∣∣(ω − εL + i

2
ΓL)(ω − εR + i

2
ΓR)− Ω2

∣∣2 (66)

G<
LR(ω) = iΩ

(ω − εR + i
2
ΓR)fLΓL + (ω − εL − i

2
ΓL)fRΓR∣∣(ω − εL + i

2
ΓL)(ω − εR + i

2
ΓR)− Ω2

∣∣2 (67)

G<
RL(ω) = iΩ

(ω − εL + i
2
ΓL)fRΓR + (ω − εR − i

2
ΓR)fLΓL∣∣(ω − εL + i

2
ΓL)(ω − εR + i

2
ΓR)− Ω2

∣∣2 . (68)

These are the lesser Green’s functions that we seek, but given in the frequency domain. The

last step is now to evaluate the Fourier transform from frequency to time

G<
LL(τ) = F−1[G<

LL(ω)] =
i

2π

∫ ∞
−∞

fLΓL
∣∣ω − εR + i

2
ΓR
∣∣2 + Ω2fRΓR∣∣(ω − εL + i

2
ΓL)(ω − εR + i

2
ΓR)− Ω2

∣∣2 e−iωτdω (69)

and similar integrals for G<
RR, G

<
LR and G<

RL. The dependence of the transformed function is

the time difference t − t′ = τ . Analytic solutions to limiting cases of these Fourier integrals
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are presented in the following section.

5.2 Limiting cases

5.2.1 Vanishing inter-dot coupling

It is clear that in the limit Ω→ 0, (65), (66), (67), (68) reduce to

G<
LL(ω) = i

fLΓL∣∣ω − εL + i
2
ΓL
∣∣2 , G<

RR(ω) = i
fRΓR∣∣ω − εR + i

2
ΓR
∣∣2 , G<

LR(ω) = G<
LR(ω) = 0 (70)

The vanishing off-diagonal Green’s is reasonable in this limit, since Ω→ 0 leaves the left and

right system as two separate systems with no coupling between them. Without explicitly

solving the integrals for G<(τ), it can be shown that the concurrence (35) of the system

vanish when the off-diagonal terms vanish. Using the elements of ρ̂ given in (59), we find

when 〈ĉ†RĉL〉 = 〈ĉ†LĉR〉 = 0:

ρ̂ρ̃ = 〈ĉ†LĉL〉〈ĉ
†
RĉR〉

(
1− 〈ĉ†LĉL〉

)(
1− 〈ĉ†RĉR〉

)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (71)

which has four identical eigenvalues λ1 = λ2 = λ3 = λ4 = 〈ĉ†LĉL〉〈ĉ
†
RĉR〉

(
1− 〈ĉ†LĉL〉

)(
1− 〈ĉ†RĉR〉

)
.

This implies that the concurrence C{ρ̂} = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} = 0. We

can solve the Fourier integrals if we assume constant Fermi distributions. We therefore set

fα(ω) = fα(εα), where ω = εα is the peak of G<
αα(ω). The integrand of the Fourier integral

G<
αα(τ) =

ifα(εα)Γα
2π

∫ ∞
−∞

e−iωτdω

(ω − εα − i
2
Γα)(ω − εα + i

2
Γα)

(72)

now has a single pole ω = εα − i
2
Γα in the lower half-plane, with residue

Resω=εα− i
2

Γα

{
e−iωτ

(ω − εα − i
2
Γα)(ω − εα + i

2
Γα)

}
= i

e−(Γα/2+iεα)τ

Γα
. (73)

Applying Jordan’s lemma and Cauchy’s residue theorem to a semicircle of radius R→∞ in

the lower half plane yields the solution to the integral

G<
αα(τ) = −ifα(εα)Γα

2π
· 2πi · Res = ifα(εα)e−(Γα/2+iεα)τ (74)
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At τ = t− t′ = 0, the density matrix is

ρ̂ =


[1− fL(εL)] [1− fR(εR)] 0 0 0

0 fL(εL) [1− fR(εR)] 0 0

0 0 fR(εR) [1− fL(εL)] 0

0 0 0 fL(εL)fR(εR)


(75)

which was shown earlier to result in vanishing concurrence. In fact, the state (75) is a product

state

ρ̂ = ρ̂R ⊗ ρ̂L =

(
1− fR(εR) 0

0 fR(εR)

)
⊗

(
1− fL(εL) 0

0 fL(εL)

)
(76)

which is expected from two completely separate subsystems.

5.2.2 Symmetric system

In the case of a symmetric system εL = εR ≡ ε and ΓL = ΓR ≡ Γ, the Green’s functions

reduces slightly. For the first diagonal and off-diagonal elements, we get

G<
LL(ω) = iΓ

fL(ω)
[
(ω − ε)2 +

(
Γ
2

)2
]

+ fR(ω)Ω2[
(ω − ε− Ω)2 +

(
Γ
2

)2
] [

(ω − ε+ Ω)2 +
(

Γ
2

)2
] (77)

G<
LR(ω) = iΩ

Γ(ω − ε) [fL(ω) + fR(ω)] + i
2
Γ2 [fR(ω)− fL(ω)][

(ω − ε− Ω)2 +
(

Γ
2

)2
] [

(ω − ε+ Ω)2 +
(

Γ
2

)2
] (78)

and the remaining two elements can be found by interchanging L and R. To be able to easily

evaluate the Fourier integral of this function, we again approximate the Fermi distributions

as constants fα(ω) = fα(ε):

G<
LL(ω) ≈ iΓ

fL(ε)
[
(ω − ε)2 +

(
Γ
2

)2
]

+ fR(ε)Ω2[
(ω − ε− Ω)2 +

(
Γ
2

)2
] [

(ω − ε+ Ω)2 +
(

Γ
2

)2
] (79)

G<
LR(ε) ≈ iΩ

Γ(ω − ε) [fL(ε) + fR(ε)] + i
2
Γ2 [fR(ε)− fL(ε)][

(ω − ε− Ω)2 +
(

Γ
2

)2
] [

(ω − ε+ Ω)2 +
(

Γ
2

)2
] (80)
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The Fourier integrals are evaluated by calculus of residues, yielding at time difference τ =

t− t′ = 0

G<
LL(τ = 0) ≈ i

2 [fL(ε) + fR(ε)] Ω2 + Γ2fL(ε)

4Ω2 + Γ2

G<
LR(τ = 0) ≈ ΩΓ

fR(ε)− fL(ε)

4Ω2 + Γ2
.

(81)

Note that this reduces to the uncoupled result (74) in the limit Ω→ 0, as expected. The six

nonzero elements of the density matrix are

〈00|ρ̂|00〉 =
Γ2[1− fL(ε)][1− fR(ε)] + 4Ω2

[
1− fL(ε)+fR(ε)

2

]2

4Ω2 + Γ2
(82)

〈10|ρ̂|10〉 =
Γ2fL(ε)[1− fR(ε)] + 4Ω2

[
fL(ε)+fR(ε)

2

] [
1− fL(ε)+fR(ε)

2

]
4Ω2 + Γ2

(83)

〈01|ρ̂|01〉 =
Γ2fR(ε)[1− fL(ε)] + 4Ω2

[
fL(ε)+fR(ε)

2

] [
1− fL(ε)+fR(ε)

2

]
4Ω2 + Γ2

(84)

〈11|ρ̂|11〉 =
Γ2fL(ε)fR(ε) + 4Ω2

[
fL(ε)+fR(ε)

2

]2

4Ω2 + Γ2
(85)

〈10| ρ̂ |01〉 = iΩΓ
fR(ε)− fL(ε)

4Ω2 + Γ2
(86)

〈01| ρ̂ |10〉 = iΩΓ
fL(ε)− fR(ε)

4Ω2 + Γ2
(87)

The concurrence can be calculated from the method described in Section 2.5.1, and is equal

to

C{ρ̂} =
2ΩΓ|fL − fR|

4Ω2 + Γ2

− 2Γ2

4Ω2 + Γ2

√√√√[(1− fL)(1− fR) +
4Ω2

Γ2

(
1− fL + fR

2

)2
][

fLfR +
4Ω2

Γ2

(
fL + fR

2

)2
]

(88)

or C{ρ̂} = 0 if the above expression is negative.

Plots The concurrence (88) is plotted as a function of scaled temperature kBTL/ε in Fig. 2.

The same concurrence is also plotted for equal temperatures TL = TR and instead as a

function of the left chemical potential µL/ε in Fig. 3a. The right chemical potential µR is set

to zero. In Fig. 3b is a 2-dimensional plot showing the concurrence as a function of the two
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Fermi functions fL and fR.

(a) (b)

Figure 2: Concurrence in the symmetric system given by (88). Parameters in (a) are given
Γ/ε = 0.01, Ω/ε = 0.002. Parameters in (b) are given by Γ/ε = 0.01, Ω/ε = 0.001.

(a) (b)

Figure 3: (a) shows the concurrence plotted as a function of the chemical potential in the
left system µL/ε. The chemical potential in the right system is set to zero µR = 0. (b) shows
the a 2-dimensional plot of the concurrence as a function of the Fermi functions fL and fR.
In both cases, parameters are given by Γ/ε = 0.01, Ω/ε = 0.002.
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6 Discussion

6.1 Comments on the results

The concurrence plotted in Fig. 2 can be compared to the result in [2]. We see that our result

agrees with the general behaviour of the steady-state concurrence with vanishing Coulomb

energy U/E = 0, which is presented in Fig. 4c of [2]. This is expected since, as mentioned

in Section 3.1, our model does not consider Coulomb interaction in the system.

The concurrence (88) can also be compared to the results from the Markovian master

equation approach, see chapter 6 of [26]. There, two qubits in contact with bosonic environ-

ments are considered instead of the fermionic system considered here. Interactions are also

taken into account here. Comparing the steady state solution ρ̂ and the concurrence between

the methods, we can see that they result in similar expressions. However, where the con-

currence in the bosonic model is zero above some threshold temperature TR > Tthreshold, the

fermionic model seems to instead approach some finite limit 0 < limTR→∞ C{ρ̂} < ∞. This

can be attributed to the minor differences in the models, including the Coloumb interaction

which is not present in our model.

It is clear from Fig. 3b that the concurrence is maximized when the difference of the

Fermi distributions is large. In Fig. 2 this difference is given by the difference in temperature

between the leads. It is also clear that instead of a temperature difference, the concurrence

can be driven by a difference in chemical potential, see Fig. 3a. In an experimental setting,

applying a difference in chemical potential could correspond to applying a voltage across the

system.

6.2 Comments on the approximations used

As mentioned in Section 2.4, the Green’s functions are exact solutions to the problem at

hand. That is, the retarded Green’s functions (61), (62) and (63) are exact solutions to the

steady-state system without any interaction between fermions. Further, the lesser Green’s

functions expressed as a Fourier integrals (69) are exact solutions to the steady-state system

in the range of validity of the wide-band limit (i.e. when the tunnel rate between the system

and leads is approximately constant), also not considering interactions. It is in principle

possible to relax the wide-band limit approximation, but this would require more complicated

calculations.

The main approximation used in Section 5.2 to be able to evaluate the solutions ana-

lytically is the evaluation of the Fermi distributions at constant energy f(ω) → f(ε). This

simplifies the calculations since it removes the infinitude of poles in the complex plane that
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G<(ω) would otherwise exhibit. Reducing the number of poles to four allows for the calcu-

lation of the Fourier integral (69) using calculus of residues. Relaxing this approximation

would require more advanced techniques to solve the integral analytically. One option of

solving this more exactly would also be to evaluate the Fourier integrals numerically. This

would allow for results which are more generally accurate than those presented by Markovian

master equations.

7 Outlook

As discussed in the previous section, more advanced analytical methods could present several

ways to expand on the results in this thesis. Numerical methods could also be introduced to

solve the Fourier integrals with relaxed assumption. Using a combination of Green’s functions

and numerical methods should give accurate results outside the range of validity of Markovian

master equations. These results would then extent the results of earlier research [2] limited

by the approximations implicit in the master equation method [14].

Further, the Green’s function method can be extended to include interactions. Calculating

the concurrence in this system in a more general setting, as well as further analysing the

current results, would allow for more thorough investigation of the impact of the different

parameters in the system. For applications the most efficient configuration of parameters are

desired, which in this case could be the choice of parameters that maximize the concurrence.

The search for this set of parameters could be one goal of further studying this system.

The study of this system with a Green’s functions approach is also not limited to con-

currence. Any quantity that can be extracted from the density matrix can be calculated

by virtually the same process as the one presented in this thesis. Such quantities include

heat currents and electrical currents. There is also a possibility to analyze the results of

the Green’s functions method on this system in relation to thermodynamical uncertainty

relations.

Finally, to describe experiments reliably, we need to take into account both interactions

and spin. While challenging, this is a promising avenue to pursue. Depending on the imple-

mentation, a realistic system would still not be modelled fully by such a simple model. The

system in this work is merely a simplified one, and one would hope that implementations

are possible where the effects and properties studied here are the major contributions to the

behaviour of the system. Nonetheless, results in this simplified domain could be useful for

future experimental system design in the nano scales.

20



A Mathematical tools

A.1 The Fourier Transform

The Fourier transform of a time-dependent function f(t), sometimes denoted by F [f ], is

defined as

F [f(t)](ω) =

∫ ∞
−∞

dtf(t)eiωt. (89)

Note that the transformed function is not a function of the time variable t, but instead a

function of the angular frequency ω. The transformed function is therefore often denoted

simply by f(ω). There also exist an inverse transformation f(ω)→ f(t) defined by

F−1[f(ω)](t) =
1

2π

∫ ∞
−∞

dωf(ω)e−iωt = f(t). (90)

Properties Useful rules that hold for the Fourier transform includes

F [f ] = F [g] =⇒ f = g (uniqueness) (91)

F [c1f + c2g] = c1F [f ] + c2F [g] (linear) (92)

F [∂tf(t)] = −iωF [f ] (transform of the differential operator) (93)

F [δ(t)] = 1 (transform of delta function). (94)

Based on the properties above, the Fourier transform proves to be a useful tool to solve

certain equations, most notably differential equations. If we want to solve a differential

equation in terms of some function f(t), we can transform differential equations to ω-space

where the differential operator is mapped to −iω. In this domain, the problem of solving

the differential is mapped to the problem of simply solving the desired function as a function

of ω. By uniqueness, one can then evaluate the inverse transform of f(ω) and arrive at the

desired expression for f in the time domain.

A.2 Block matrix algebra

Inversion Assume two block matrices

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
. (95)
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If AB = 1 (i.e. B = A−1) and assuming A22 is invertible, thenA11B11 + A12B21 = 1

A21B11 + A22B21 = 0
. (96)

solving this linear system for B11 yields the first sector of B in terms of A

B11 =
[
A11 −A12A

−1
22 A21

]−1
(97)

if the inverse on the right-hand side exists.
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