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Popular Scientific Summary

We summarise some of the important concepts and results.

The Swedish mathematician Gösta Mittag-Leffler (1846-1927) was one of

the most influential researchers in Swedish mathematics. His mathematical

contributions are connected chiefly with complex analysis. He studied with

Karl Weierstrass while he travelled to Berlin and some of his research were

built on Weierstrass’ work, such as the Mittag-Leffler theorem which is the

main topic of this paper.

The Mittag-Leffler theorem proves the existence of meromorphic functions

with prescribed poles and principal parts. Interestingly, this study began as

an extension of the Weierstrass theorem. As a continuation of Weierstrass’s

work, it was undertaken with the tools acquired from Weierstrass’ lectures.

These facts also show that Mittag-Leffler was indeed an important contribu-

tor to Weierstrass’s research program concerning the foundations of analysis.

Mittag-Leffler published the final version of the theorem in 1884, in his

newly-established journal Acta Mathematica which served as a comprehen-

sive account of essentially all of his work on the subject. The theorem was

seen as an important and fundamental element in complex analysis. It gen-

erated a number of research in the following generation of mathematicians,

including the well-known figures Picard, Appell, and Poincaré, and it re-

mained popular and widely-studied in different languages, such as French,

Russian and German. [6]
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Abstract

The Swedish mathematician Gösta Mittag-Leffler (1846-1927) is

well-known for founding Acta Mathematica, the famous international

mathematical journal. His mathematical contributions are connected

chiefly with complex analysis. The Mittag-Leffler theorem which built

on Karl Weierstrass’ work asserts the existence of meromorphic func-

tion with prescribed poles and principal parts.

The main purpose of this thesis is to make a well-organised note

of the Mittag-Leffler theorem which plays a significant role in com-

plex analysis. The Weierstrass theorem which prescribes the zeros of

holomorphic functions will be proved by using the result of the Mittag-

Leffler’s theorem. Moreover, the concept of the Mittag-Leffler star, a

starshaped open domain will also be defined and proved in detail.
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1 Introduction

This paper mainly discusses the results found by Gösta Mittag-Leffler (1846-

1927) who was a Swedish mathematician. He was one of the most influential

researchers in Swedish mathematics with discoveries in, among other things,

theory of functions, which today is called complex analysis. [4] He matric-

ulated at Uppsala University in 1865 and completed his Ph.D in 1872. He

was appointed as a docent at the university the same year. He next travelled

to Berlin and with his contemporary talents, he became friends with Karl

Weierstrass who was a world famous German mathematician.

Mittag-Leffler was a member of Kungliga Vetenskapsakademien (the Royal

Swedish Academy of Sciences) from 1883. He collected a large mathematical

library in his villa at Djursholm in Sweden and on his 70th birthday in 1916,

he established a mathematical foundation under the administration of the

Academy of Sciences. Mittag-Leffler and his wife donated their villa and

library as the Mittag-Leffler Institute which today is a major mathematical

research centre. [2]

The best known result of Mittag-Leffler concerned the analytic represen-

tation of a one-valued function and this work culminated in the Mittag-Leffler

theorem which will be mainly discussed in this paper. The study began while

Mittag-Leffler was studying in Berlin. He attempted to generalise the results

from Weierstrass’s lectures where Weierstrass had described his theorem on

the existence of an entire function with prescribed zeros each with a spec-
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ified multiplicity. The result that Mittag-Leffler found asserts that we can

prescribe the poles and principal parts of a meromorphic functions in com-

plex analysis and this theorem is named after Mittag-Leffler. Moreover, the

theorem can also be used to express any meromorphic function as a sum of

partial fractions.

Mittag-Leffler received many honours during his life. He was an honorary

member of almost every existing scientific society, including the Cambridge

Philosophical Society, the Royal Institution, the Royal Irish Academy, the

London Mathematical Society, and the Institut de France. He also received

honorary degrees from six different universities, and in 1886 was elected a

Fellow of the Royal Society of London. [6]

In this paper, the formulation and the proof of the Mittag-Leffler theorem

will be shown in detail and the Weierstrass theorem will also be proved by

using the results of the Mittag-Leffler’s. Moreover, the concept of the Mittag-

Leffler star, a starshaped open domain, will be discussed and proved. Firstly,

the required definitions and lemmas will be given in order to help proving

the theorems later.
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2 Preliminaries

Definition 2.1. A function f(z) is analytic on the open set U if f(z) is

(complex) differentiable at each point of U and the complex derivative f ′(z)

is continuous on U .

Definition 2.2. A function f(z) is meromorphic on an open subset D if

f(z) is analytic on D except for a set of isolated points, each of which is a

pole.

Remark. If there are infinitely many poles of f(z) in D, then we can arrange

them in a sequence that accumulates only at the boundary of D. Otherwise,

there would be a point of accumulation in D of the poles of f(z), and this

point would not be an isolated singularity of f(z).

Definition 2.3 (Principal part). The sum of the negative powers,

P (z) =
N∑
k=1

ak(z − z0)−k =
a1

z − z0
+ · · ·+ aN

(z − z0)N
,

is called the principal part of f(z) at the pole z0 if f(z)− P (z) is analytic

near z0.

Lemma 2.1 (Weierstrass M-Test). Suppose Mk ≥ 0 and
∑
Mk converges.

If gk(x) are complex-valued functions on a set E ⊆ Rn such that |gk(x)| ≤Mk

for all x ∈ E, then
∑
gk(x) converges uniformly on E.
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Proof. The partial sums of the series are the functions

Sn(x) =
n∑
k=0

gk(x) = g0(x) + g1(x) + · · ·+ gn(x)

For each fixed x, the estimate for gk(x) shows that the series
∑
gk(x)

is absolutely convergent, since |gk(x)| ≤ Mk. The series
∑
gk(x) converges

to some complex number g(x), and |g(x)| ≤
∑
|gk(x)| ≤

∑
Mk. The same

estimate, applied to the tail of the series, shows that

|g(x)− Sn(x)| = |
∞∑

k=n+1

gk(x)| ≤
∞∑

k=n+1

Mk.

If we set εn =
∑∞

k=n+1Mk, then εn −→ 0 as n −→ ∞, and the estimate shows

that the partial sums Sn(x) converge uniformly on E to g(x).

One also needs to prove that a uniform limit of analytic functions is

analytic.

Lemma 2.2. Suppose {fk(z)} is a sequence of analytic functions on a do-

main D. If the sequence converges uniformly on compacts to f(z) on the

domain D, then f(z) is analytic on D.

To prove f(z) is analytic, one could apply two well-known theorem, Mor-

era’s theorem and Cauchy’s theorem, which are formulated as following.

Theorem 2.3 (Morera’s theorem [7]). Let f(z) be a continuous function

on a domain D. If
∫
∂R
f(z)dz = 0 for every closed rectangle R contained in

4



D with sides parallel to the coordinate axes, then f(z) is analytic on D.

Theorem 2.4 (Cauchy’s theorem). Let D be a simply connected bounded

domain with piecewise smooth boundary. If f(z) is an analytic function on

D that extends smoothly to ∂D, then

∫
∂D

f(z)dz = 0.

Now we can prove lemma 2.2. Since analytic functions are continuous,

and the limit of a uniformly convergent sequence of continuous functions is

continuous, f(z) is continuous. Let E be a closed rectangle contained in D.

By Cauchy’s theorem,
∫
∂E
fk(z)dz = 0 for each k. From the lemma above

we obtain in the limit that
∫
∂E
f(z)dz = 0. By Morera’s theorem, f(z) is

analytic.
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3 The Mittag-Leffler Theorem

Theorem 3.1 (The Mittag-Leffler Theorem [1]). Let ζj be a sequence

of distinct complex numbers such that |ζj| increases to infinity, and let

G0(z), G1(z), . . . , Gn(z), . . .

be a sequence of rational functions which has the form

Gn(z) =
a
(n)
βn

(z − ζn)βn
+ · · ·+ a

(n)
1

z − ζn
, n = 0, 1, 2, . . . (1)

where βn ∈ Z+, so that ζn is the unique pole of the corresponding function

Gn(z). Then there exists a meromorphic function f(z) in the complex z-

plane C having poles at the points ζj with corresponding principal part equals

Gn(z), for each n=0,1,2,. . . .

Proof. The Taylor series expansion

Gn(z) = a
(n)
0 + a

(n)
1 z + · · ·+ a

(n)
k zk + . . . , n = 0, 1, 2, . . .

is convergent naturally by analyticity when |z| < |ζn| and uniformly conver-

gent on every smaller disk, particularly on Dn : |z| < 1
2
|ζn|. Take an arbitrary

sequence {εn} of positive numbers such that

∞∑
n=0

εn <∞. (2)
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Take integers k0, k1, . . . , kn so that they satisfy

|Gn(z)− [ a
(n)
0 + a

(n)
1 z + · · ·+ a

(n)
kn
zkn ] | < εn, n = 0, 1, 2, . . . (3)

∀z ∈ Dn. Then, let Pn(z) be the polynomials such that

Pn(z) = −a(n)0 − a
(n)
1 z − · · · − a(n)kn

zkn , n = 0, 1, 2, . . . . (4)

Let KR : |z| < R, let N(R) be the smallest integer such that |ζn| > 2R for

all n > N(R). Thus we have the series

∞∑
n=N(R)+1

[ Gn(z) + Pn(z)] . (5)

Note that KR ⊂ Dn for all n > N(R), while KR does not contain any points

ζN(R)+1, ζN(R)+2, . . . . Now it follows from (3) and (4) that

|Gn(z) + Pn(z)| < εn

for all n > N(R) and z ∈ KR.

Therefore, by (2) and Weierstrass M-test (Lemma 2.1), the series (5) is

uniformly convergent on KR, and hence represents an analytic function hR(z)

on KR. This means that if

f(z) =
∞∑
n=0

[ Gn(z) + Pn(z)] ,

then the function has the representation in the form of a Mittag-Leffler ex-
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pansion

f(z) = fN(R)(z) + hR(z), z ∈ KR, (6)

where hR(z) is analytic on KR, and the partial sum

fN(R)(z) =

N(R)∑
n=0

[ Gn(z) + Pn(z)]

is a rational function whose poles in KR coincide with the points of the

sequence in ζj, and the principal part at the points ζn ∈ KR is precisely

Gn(z). Thus the theorem follows at once since KR has arbitrarily large

radius.

Corollary 3.2. Suppose f(z) is a meromorphic function whose poles are

given by a sequence of distinct numbers ζj such that |ζj| goes to infinity, and

the corresponding principal parts are Gn(z). Then the representation of the

function f(z) can be in the form

f(z) = g(z) +
∞∑
n=0

[ Gn(z) + Pn(z)] ,

where Pn(z) are polynomials and g(z) is an entire function.

Proof. By using Mittag-Leffler’s theorem we can find a function

φ(z) =
∞∑
n=0

[ Gn(z) + Pn(z)]

which has the same poles and principal parts as f(z). f(z) − φ(z) has no

singular parts and thus is entire in the whole plane, which denoted by g(z)
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in the theorem.

Remark. The proof of the theorem works with functions with essential singu-

lar parts as well as poles. Essential singularities are singularities where

the function has no limits at the singularity. A pole has infinity as its limit

thus poles are not essential singularities. The principal parts are holomorphic

outside zj with essential singularity at zj and the proof of the theorem works

as for the case for principal parts with poles.

Examples of essentially singular parts is eg(z), which has an essential sin-

gularity at z0 if g(z) has a pole at z0. Since sin(z) = eiz−e−iz
2i

, we find that

sin(g(z)) and cos(g(z)) have essential singularities at z = 0 if g(z) has a pole

there, for example, sin(1
z
) and cos(1

z
).

An interesting fact is that if f(z) has an essential singularity at z0, then for

any complex number Z there is a sequence zj → z0 such that limj→∞ f(zj) =

Z. In a more descriptive words, f comes arbitrarily close to any complex

value in every neighbourhood of z0. This is called the Casorati-Weierstrass

theorem and is easy to prove.

Proof. If w is not a limit point, then by definition there exists an ε > 0

such that |f(z) − w| > ε when 0 < |z − z0| is small. Then the function

g(z) = 1/(f(z)−w) is bounded near z0, and so by the Riemann theorem we

find that g(z) is analytic near z0. This gives that f(z) = w+ 1/g(z) is either

analytic or has a pole at z0.
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Example 3.1. Given a sequence of distinct ζj such that |ζj| increases to

infinity, we can find a meromorphic function f(z) with simple poles at ζj

with corresponding principal parts

Gn =
1

z − ζn
, n = 1, 2, . . . . (7)

This is a special case of Mittag-Leffler’s theorem, with simple poles and

special principal parts, thus the result can be obtained directly from the

theorem. Corollary 3.2 gives that,

f(z) = g(z) +
∞∑
n=1

[
1

z − ζn
+ Pn(z)]

is a meromorphic function with poles ζj and principal part 1
z−ζn where Pn(z)

are polynomials and g(z) is entire.

Example 3.2. Given a sequence of distinct ζj such that |ζj| increases to

infinity, we can find a meromorphic function f(z) with poles of order 2 at ζj

and corresponding principal parts

Gn(z) =
1

(z − ζn)2
(8)

One gets the result using Corollary 3.2 with principal part Gn(z) as in

Example 3.1. Alternatively, we can take f(z) = −F ′(z) where F (z) is a

meromorphic function with singular parts given by (7) in Example 3.1.
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3.1 The Weierstrass Theorem

If f(z) is an entire function with zero of order mj at zj (with no accumulation

point), then Taylor’s formula gives

f(z) = (z − zj)mjg(z) (9)

with analytic g(z) near zj.

Theorem 3.3 (Weierstrass Theorem). Let zj be a sequence of complex

numbers such that zj → ∞ and let mj ∈ Z+. Then there exists an entire

function f(z) such that

f(z) = (z − zj)mjgj(z) (10)

close to zj where gj(z) 6= 0 is analytic near zj.

Observe that if such a function exists, its logarithmic derivative

f ′(z)

f(z)
=
mj(z − zj)mj−1g(z) + (z − zj)mjg′(z)

(z − zj)mjg(z)

=
mj

z − zj
+
g′(z)

g(z)

satisfies Mittag-Leffler theorem in the case where all the poles are simple and

the coefficients mj are positive integers.

Proof. One can use the Mittag-Leffler theorem to construct a meromorphic

function f(z) with singular part mj(z − zj)
−1 near zj, j = 1, 2, . . . . Then
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the integral F (z) =
∫ z
z0
f(z)dz is well defined outside zj modulo 2ikπ, which

appears when integrating around zj. In fact, near zj we have that

F (z) = mj log(z − zj) + h(z),

where log is the complex logarithm and h(z) is analytic.

Then g(z) = eF (z) = (z − zj)
mjeh(z) satisfies Weierstrass theorem with

given zeroes of multiplicity mj at zj, j = 1, 2, . . . .

Example 3.3. Let ζj be a sequence such that |ζj| increases to infinity, and let

{An} be an arbitrary complex sequence, then one can find an entire function

f(z) such that

f(ζn) = An, n = 1, 2, . . . . (11)

To prove that we use theWeierstrass theorem to get an entire function

g(z) with simple zeroes at ζj. Then we obtain a sequence of nonzero complex

numbers g′(ζn) by first calculating the derivative g′(z) at every point ζn, and

the corresponding principal part is

Gn(z) =
An/g

′(ζn)

z − ζn
, n = 1, 2, . . . . (12)

By using the Mittag-Leffler’s theorem, we can construct a meromorphic func-

tion

φ(z) =
∞∑
n=1

[
An/g

′(ζn)

z − ζn
+ Pn(z)]

with principal part Gn(z) at ζn which is stated in (12) and Pn(z) are poly-
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nomials. Then we get the desired function

f(z) = g(z)φ(z).

Moreover, the function f(z) satisfies the condition (11), since

f(ζn) = lim
z→ζn

g(z)φ(z)

= lim
z→ζn

[
g(z)− g(ζn)

z − ζn
φ(z)(z − ζn)]

=
g′(ζn)An
g′(ζn)

= An, n = 1, 2, . . . .

Since f(z) has a limit at ζn, it is analytic by the Riemann Theorem.
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4 The Mittag-Leffler Star

A domain A ⊂ C is said to be starlike (or starshaped) with respect to a

point a ∈ A if for any point z ∈ A the line `z between a and z lies entirely in

A. The point a need not be unique, in fact, every convex domain is starlike

with respect to any of its points.

An analytic function f(z) defined near a point a ∈ C has the property

that its Taylor expansion
∑∞

k=0 f
(k)(a)(z − a)k/k! converges in an open disk

centered at a. For each ray it gives a unique continuation in a domain

containning part of the ray and thus a continuation in a starlike domain

containing the original disk. This continuation is unique and gives a univalent

function in a maximal domain A that is starshaped with respect to a. Observe

that this domain is open but could be unbounded, it is called the Mittag-

Leffler star of f(z).

Example 4.1. The function 1
1−z has Taylor expansion 1 + z + z2 + . . . at

z = 0 with radius of convergence equal to 1, but it is analytic in the starshaped

domain {z ∈ C : z 66= 1}. (This is because the function has a pole at z = 1.)

The complex logarithm log(z) defined by the usual logarithm when z > 0 can

be analytically continued to the starshaped domain {z ∈ C : z 6≤ 0}.

Theorem 4.1 (The Mittag-Leffler Star). An analytic function f(z) de-

fined near a point a ∈ C can be expanded in a series of polynomials in its

Mittag-Leffler star A with uniform convergence on any compact subset of A.
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The expansion, called the Mittag-Leffler expansion, is on the form

f(z) =
∞∑
n=0

kn∑
j=0

cnj f
(j)(a)(z − a)j/j!

where the coefficients cnj are positive rational numbers. These numbers and

the degree kn of the polynomials are independent of f .

Proof. By a translation, we may assume that a = 0 for simplicity. The

idea of the proof is to make a Taylor expansion of f(z) stepwise on the line

`z = {θ · z : 0 ≤ θ ≤ 1} from z backwards until we reach 0. We are going to

show that f(z) = limn→∞ gn(z) uniformly on compact subsets of A, where

gn(z) =
n2∑
λ1=0

n4∑
λ2=0

· · ·
n2n∑
λn=0

f (λ1+λ2+...λn)(0)
( z
n

)λ1+λ2+···+λn
/λ1!λ2! . . . λn!

n ≥ 1

If G1(z) = g1(z) and Gn(z) = gn(z) − gn−1(z) for n > 1, then we find

f(z) =
∑∞

n=1Gn(z). Thus,

cnk =
1

nk

∑
(λ)

1

λ1!λ2! . . . λn!

where the sum is over λ1 +λ2 + · · ·+λn = k and (n− 1)2j < λj ≤ n2j, j ≤ n.

When doing the continuation along the line `z, we have to estimate the

error terms. For that we shall use the Cauchy estimate which we obtain from
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the Cauchy formula

f(z) =
1

2πi

∫
|z−ζ|=%

f(ζ)

ζ − z
dζ

Then, by taking derivatives we obtain the estimate

|f (k)(z)| ≤ F0k!%−k

where F0 = max|z−ζ|=% |f(ζ)|.

Now, since the line `z is compact in A and the complement C\A is closed,

we find that the distance d(w, `z) from any w /∈ A to `z has a positive lower

bound. (Recall that A contains an open disc at the origin.) Thus there exists

% > 0 so that `%z = {w : d(w, `z) ≤ %} is a compact subset of A. Let

F = max
`%z
|f(ζ)|

be the maximum over this compact set. We shall use Cauchy’s estimates in

`%z.

Now for the given z ∈ A we can find an integer n ≥ 1 such that |z/n| < %,

i.e., n > |z|/%. But more than that hold true. Let 0 < α < 1 depend on n so

that αn → 1 when n→∞, then we may assume that

|z/n| < %n = αn%

i.e., n > |z|/%αn. Later we will take α = e−
1

nω(n) , where 0 < ω(n)→∞ when
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n→∞.

Next, we let ξ = z/n and ξk = kξ, k = 1, 2, . . . , n, so that ξn = z. Then

we have |ξ| ≤ %n < · · · < %1 < %. We shall start by expanding

f(z) =
∞∑

λ1=0

f (λ1)(ξn−1)(z − ξn−1)λ1/λ1!

then Cauchy’s estimates gives

|f (λ1)(ξn−1)| ≤ Fλ1!%
−λ1

since |z − ξn−1| = |ξ| ≤ %, so that z ∈ `%z. Then the first approximation is

f(z) =

m1∑
λ1=0

f (λ1)(ξn−1)ξ
λ1/λ1! + ε1

with m1 to be determined later. Here

ε1 ≤ F
∞∑

λ1=m1+1

αλ1

since we also have |ξ| ≤ %1 and %1/% = α.

Next, we want to approximate the partial expansion at ξn−1 by a partial

expansion at ξn−2. In order to do that, we take z and z1 so that |z1−ξn−2| ≤ %1

and |z − z1| ≤ % − %1 which implies |z − ξn−2| ≤ %. By expanding f(z) =∑∞
λ1=0 f

(λ1)(z1)(z − z1)λ1/λ1! we obtain from Cauchy’s estimate that

|f (λ1)(z1)| ≤ Fλ1!(%− %1)−λ1
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which gives

|f (λ1)(z1)(z1 − ξn−2)λ1/λ1!| ≤ F%λ11 (%− %1)−λ1 = F

(
α

1− α

)λ1
since |z1 − ξn−2| ≤ %1.

Now expand again

f (λ1)(z1)(z1 − ξn−2)λ1/λ1! =
∞∑

λ2=0

f (λ1+λ2)(ξn−2)(z1 − ξn−2)λ1+λ2/λ1!λ2!

and then Cauchy’s estimate gives

|f (λ1+λ2)(ξn−2)/λ1!λ2!| ≤ F

(
α

1− α

)λ1
%−λ1−λ21

and

|f (λ1+λ2)(ξn−2)ξ
λ1+λ2|/λ1!λ2! ≤ F

(
α

1− α

)λ1
αλ1+λ2

since |ξ| ≤ %2. This gives the second approximation

m1∑
λ1=0

f (λ1)(ξn−1)ξ
λ1/λ1! =

m2∑
λ2=0

m1∑
λ1=0

f (λ1+λ2)(ξn−2)ξ
λ1+λ2/λ1!λ2! + ε2

with m2 to be determined later, where

ε2 ≤ F

m1∑
λ1=0

∞∑
λ2=m2+1

α2λ1+λ2

(1− α)λ1
= F

1− (1−α
α2 )m1+1

1− 1−α
α2

(
α2

1− α

)m1 αm1+m2

1− α

We shall proceed like this, and choose z, z1 . . . , zk so that |zk− ξn−k−1| ≤

18



%k, |zk−1−zk| ≤ %k−1−%k, . . . , |z−z1| ≤ %−%1 which implies |z−ξn−k−1| ≤ %.

Observe that we get |zn−1| ≤ %n−1 when k = n − 1. Then we obtain the

approximation

f(z) =

m1∑
λ1=0

· · ·
mn∑
λn=0

f (λ1+···+λn)(0)ξλ1+···+λn/λ1! . . . λn! + ε1 + · · ·+ εn

where

εk ≤ F

m1∑
λ1=0

· · ·
mk−1∑
λk−1=0

∞∑
λk=mk+1

αkλ1+(k−1)λ2+···+λk

(1− α)λ1+···+λk−1

= F

∏k−1
j=1

(
1− ( 1−α

αk−j+1 )mj+1
)∏k−1

j=1

(
1− 1−α

αk−j+1

) αm1+1

1− α
αm1+m2

(1− α)m1
. . .

αm1+···+mk

(1− α)mk−1
k ≤ n

with m1, . . . ,mn to be determined later, see [3].

Now we are going to choose

α = e−1/nω(n)

where 0 < ω(n) → ∞ when n → ∞ (for example ω(n) = nδ where 0 <

δ < 1). We have that αn = e−1/ω(n) ↗ 1 as n → ∞ and 1 − α = 1 −

e−1/nω(n) < 1/nω(n). When λ ≤ n we have αλ = e−λ/nω(n) ≥ e−1/ω(n) so that

1−α
αλ

< e1/ω(n)

nω(n)
. This gives

1

1− 1−α
αλ

<
1

1− e1/ω(n)

nω(n)
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and thus

1∏k−1
j=1

(
1− 1−α

αk−j+1

) < (1− e1/ω(n)

nω(n)

)−n
↘ 1 n ≥ k →∞

so we can find a majorant µ > 1 of the left hand side for any k. We also

have that
∏k−1

j=1

(
1− ( 1−α

αk−j+1 )mj+1
)
< 1.

Now we shall choosem1 ≥ 2nω(n) log(nω(n)), m2 ≥ m1nω(n) log(nω(n)),

m1 +m3 ≥ m2nω(n) log(nω(n)) and

m1 +m2 + · · ·+mk−2 +mk ≥ mk−1nω(n) log(nω(n)) k ≤ n

If we take ω(n) = nδ where 0 < δ < 1, then we may choose m1 = n2, m2 = n4

and mk = n2k for k ≤ n and n� 1.

We find αm1 ≤ α2nω(n) log(nω(n)) = (nω(n))−2, αm2 ≤ αm1nω(n) log(nω(n)) =

(nω(n))−m1 , αm1+m3 ≤ αm2nω(n) log(nω(n)) = (nω(n))−m2 and

αm1+m2+···+mk−2+mk ≤ (nω(n))−mk−1 k ≤ n

when n� 1. We also find that ( α
1−α)mk < (nω(n))mk since 1−α

α
= 1

e1/nω(n)−1 <

nω(n).

Putting these estimates together, we find that

εk ≤ Fµαm1αm2 . . . αm1+m3 . . . αm1+m2+···+mk−2+mk

(
α

1− α

)1+m1+···+mk−1

≤ Fµ

nω(n)
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for k ≤ n and n � 1. This gives that
∑n

k=1 εk < Fµ/ω(n) → 0 when

n→∞, which proves the result.
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