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Abstract 
This paper empirically evaluates whether different backtests for Expected Shortfall (ES) produce            

similar results. In 2016, the Basel Committee on Banking Supervision proposed a shift from              

Value-at-Risk (VaR) to ES as the industry standard when calculating capital requirements for             

banks. However, ES has been found difficult to backtest. Since backtesting results form the basis               

for determining the capital requirements of banks it is important to elucidate whether the              

backtests produce similar results. We answer this question by performing six different daily             

backtests on the S&P 500 index for the period 1965-2020 and measuring correlations between              

the different backtests. We found a substantial divergence across different backtests. We also             

found that the correlations remain stable or increase during the global financial crisis. In the light                

of these results we recommend practitioners to diversify between multiple backtests. 
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1 Introduction 

Risk is a central aspect of financial activities. There are many different types of risks and several                 

ways of quantifying it. Since the early 1990s, Value-at-Risk (VaR) has been the predominant              

measure of market risk (Jorion, 2006). Simply put, VaR quantifies possible portfolio losses into a               

single number. However, VaR has been subject to criticism. It has been shown that the risk                

measure does not always encourage diversification. Also, losses greater than VaR are            

disregarded, thereby VaR fails to uncover “tail risk” (​Artzner, Delbaen, Eber, and Heath, ​1999).              

These drawbacks led to the introduction of the risk measure Expected Shortfall (ES). ES              

measures the average of losses larger than VaR, thereby considering a broader spectrum of              

potential losses. In 2016, the Basel Committee on Banking Supervision (BCBS) prescribed a             

shift from VaR to ES in calculating capital requirements for banks. However, while accounting              

for tail risk and encouraging diversification, ES has introduced another issue: it is complicated to               

backtest.  

 

In this paper, we do not intend to participate in the ongoing debate on VaR versus ES. Nor is it                    

an attempt to systematically investigate the quality of individual backtests. Instead, our goal is to               

determine whether different backtests for ES produce similar results. This is important to clarify,              

because if different backtests produce divergent results, the quality of a risk model and thereby               

the capital requirement of the bank is contingent on which particular test statistics are used.  

 

We will analyse this problem by first describing six pre-existing backtests. We will create a               

coherent framework analogous to the Traffic Light System for VaR proposed by the Basel              

Committee in 1996. For some of the tests we will employ a Monte Carlo Simulation approach to                 

derive the critical values corresponding to the Traffic Light System. We will then perform the               

backtests empirically on the US stock index S&P 500 and compare the Traffic Light responses               

from the various backtests. Lastly, we will provide some recommendations.  
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The remainder of the paper is organized as follows. Section 2 provides background on VaR and                

ES, and reviews the backtesting literature. In Section 3, we present and describe six prevalent ES                

backtests which are the basis of our empirical analysis. Section 4 outlines our methodological              

framework for estimating and backtesting ES. In Section 5, we present the results from the               

empirical analysis. Section 6 and Section 7 are conclusion and discussion, respectively.  
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2 Background  

In this section, we will give a brief background on the history of risk measures, establish                

definitions of some important concepts, and provide an overview of the backtesting literature.  

2.1 The History of Risk Measures  

Financial risk management has been an important issue for regulators and financial institutions             

for a long time. However, VaR did not become a prevalent concept until the stock market crash                 

of 1987 (Jorion, 2006). VaR was adopted to systematically measure a trading firm’s risk              

exposures across its different portfolios. It is a holistic measure in the sense that it considers all                 

types of exposures, and applies to market, credit and operational risk (Alexander, 2009). Before              

VaR, risk among commercial trading houses was measured and controlled on a desk-by-desk             

basis, basically neglecting the firm-wide exposures (Culp, Miller & Neves, 1998). 
 

VaR is a measurement of the worst case loss at a predetermined confidence level of the profit                 

and loss distribution (P&L) given a certain holding period (Alexander, 2009). In 1996, following              

new banking regulations for market risk, RiskMetrics declared VaR as its regular measure of              

risk, which then became an industry standard within international financial risk management,            

supported by the Basel Committee (Acerbi & Szekely, 2014).  

 

However, the debate on appropriate risk measures has been, and still is, lively among              

researchers. VaR remains popular in practice due to its conceptual simplicity, universality and             

straightforward backtesting. Yet, VaR has been criticized because of several shortcomings.           

Artzner et al. ​(1999) point at two fundamental issues. Firstly, VaR neglects the shape of the tail.                 

That is, if VaR is exceeded, it tells us nothing about the extent of those potential losses.                 

Secondly, VaR lacks the mathematical property of subadditivity, which means that the VaR of a               

portfolio as a whole can be higher than the sum of the VaRs of its individual portfolios                 

independently. Hence, it would not necessarily encourage diversification and thereby contradict           

modern portfolio theory.  
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Artzner et al. (1999) propose that a risk measure, is coherent if it isp ,   

 

i) monotonous X , , (Y ) (X),( :  Y ∈ V Y ≥ X ⇒ p ≤ p  

i) subadditive , , X (X ) (X) (Y ),( : X Y  + Y ∈ V ⇒ p + Y ≤ p + p  

iii) positively homogeneous , h ≻ 0, hX (hX) p(X),( : X ∈ V   ∈ V ⇒ p = h  

iv) translation invariant , a (X ) (X) .( : X ∈ V  ∈ ℝ ⇒ p + a = p + a  

     

They conclude that VaR is not a coherent risk measure since it does not fulfill the second                 

property in all situations.  

 

In 2001, ES was first introduced as an alternative downside risk measure to VaR. ES is defined                 

as the conditional expectation of the loss for losses beyond the VaR level. By calculating the                

average of all losses larger than VaR, ES detects tail risk and satisfies the property of                

subadditivity. This led practitioners to start using ES in addition to VaR. In October 2013, The                

Basel Committee on Banking Supervision (BCBS) updated its bank trading book rules in the              

wake of the global financial crisis, aiming to better capture that type of extreme losses. This                

entailed a change from VaR to ES, which regulators believed will better capture the extreme               

losses that can occur during times of financial distress (Basel Committee, 2013).  

 

Although ES solves some of the main issues with VaR, there are still mathematical and practical                

inconveniences. Gneiting (2011) demonstrates that ES is not elicitable. Elicitability is a            

mathematical property, satisfied by VaR but not ES. Specifically, a risk measure is elicitable if               

there exists a loss function such that the risk measure is the solution to minimizing the expected                 

loss (Patton, Ziegel & Chen, 2019). This implies that backtesting ES is, if even possible, more                

complicated than backtesting VaR (Gneiting, 2011).  

 

Given that VaR is not coherent and ES is not elicitable, researchers and regulators keep               

searching for a more suitable risk measure. In particular, the expectile has gained substantial              
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attention. It was first introduced by Newey and Powell (1987) and has become an emerging               

alternative to VaR and ES. However, in this paper we are primarily interested in ES due to its                  

growing importance within the Basel regulatory framework.  

2.2 Value-at-Risk 

VaR has two fundamental parameters. The significance level (alternatively confidence level        α     

) and the risk horizon , a period of time measured in trading days (Alexander, 2009). The1 − α      h             

significance level is usually determined by an external part. Under the Basel regulatory             

framework, VaR is backtested at the 1% significance level.  

 

The statistical definition of VaR is given by  

 

.aR (L) min{ l ( L l ) 1 α }V α =  : P >  ≤  −   

 

The equation gives us the smallest portfolio loss value quantile conditioned on that it is larger                

than or equal to our significance level of choice. In terms of probability, VaR is simply a quantile                  

of the loss distribution. As Alexander (2009) illustrates, a daily VaR with a 5% significance level                

is a loss level that we expect to occur with a frequency of 5%, holding the portfolio static for 24                    

hours. Likewise, with 95% confidence we believe that VaR will not be exceeded for the same                

portfolio and risk horizon. Alternatively, we expect a loss of the 5% VaR or more one day in 20                   

days.  
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Figure 1. Profit-Loss distribution and VaR (Yamai & Yoshiba, 2002), where VaR is the value of the P&L 
distribution at percentile .  α   

2.3 Expected Shortfall 

ES, also referred to as conditional VaR, was originally introduced by Rappoport (1993). While              

VaR asks “How bad can things get?”, ES instead asks the question “If things go bad, what is the                   

expected loss?” (Hull, 2018). The predominant definition of ES is given by 

,S (X) aR (X)dxE α =  1
1−α ∫

1

α
V x  

 
which is equivalent to the expected VaR for all confidence levels larger or equal to . This               α   

specification illustrates that VaR needs to be estimated in order to estimate ES. Figure 2               

illustrates a P&L distribution for ES and VaR. A more intuitive definition is that ES is the                 

expected value of losses conditional on losses greater VaR: 

  
].S (X) E[X   |  X  V aR (X)E α =  >  α  
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Figure 2. Profit-loss distribution, VaR and ES, (Yamai & Yoshiba, 2002), where ES is the integrated values of the 

P&L distribution to the left of . α   

2.4 Backtesting 

The term backtesting has several meanings within finance. It has been described as “a collection               

of disparate practices in the wait for a clear definition” (Acerbi & Szekely, 2017, p.2). As                

Christoffersen (2010) points out, it mainly refers to either an assessment of a trading strategy, or                

the evaluation of financial risk models. In this paper, backtesting refers to the evaluation of risk                

models.  

 

The idea behind backtesting is straightforward. Jorion (2007) describes it as a statistical method              

aiming to check if the real losses, observed ex post, are in compliance with the forecasts of the                  

risk measure. In this way, the accuracy of the risk model can be determined.  

2.4.1 Backtesting Value-at-Risk 

After VaR emerged as a popular risk measure in the early 1990s, the demand for backtesting                

methodologies was high. ​An early and influential backtesting procedure was proposed by Kupiec             

(1995). His POF (proportion of failures) test is an unconditional coverage test. These types of               

tests count the number of exceedances and compare them with confidence levels. Simply put,              
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you test the quality of the VaR model by counting the number of days on which the realised                  

portfolio loss is greater than the VaR forecast, given a determined confidence level and sample               

size.  

 

If the number of exceedances differs substantially from of the sample, the quality of        00%α × 1       

the risk model must be investigated. The test statistic is formulated as 

 

,OF  2log  P =  (( 1−α
1−α︿)T −I(α)( α

α︿)I(α) )  

,I(α)α 
︿

= 1
T  

 .(α) (α)I = ∑
T

t=1
I t  

 
This reveals that if the proportion of VaR exceedances, is exactly equal to ,         00%α︿× 1      00%α × 1  

then the test takes the value zero, implying an adequate model. If the underlying model               

systematically understates or overstates risk, this is reflected in a discrepancy between the             

observed exceedance rate and the expected exceedance rate.  

 

The POF test by Kupiec (1995) remains widely used and was built upon by the Basel Committee                 

on Banking Supervision in 1996. However, unconditional coverage tests have some drawbacks.            

Most notably, they may fail to detect VaR measures that have dependent VaR exceedances. As               

Campbell (2005) points out, a streak of a small number of large unexpected losses over a short                 

period may be a stronger indicator of insufficient risk management than a larger number of               

evenly occured losses over a relatively longer period.  

 

The inability of unconditional coverage tests to distinguish violations of the independence            

property led to the development of tests that specifically check the independence property of the               

VaR exceedance series, . A notable test in this category is Christoffersen’s (1998) Markov   (α)I t            

test. It tests if the likelihood of a VaR exceedance is dependent on whether or not a VaR                  
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exceedance occurred on the previous day, where dependency indicates problems in the            

underlying model.  

 

Another independence test was proposed by Christoffersen and Pelletier (2004). The idea behind             

their duration test is that if VaR exceedances are independent from each other, then the amount                

of time passing by between VaR exceedances should be independent of the amount of time               

passing by since the last violation.  

 

Another influential part of the VaR literature is the conditional autoregressive VaR (CAViaR)             

class of models developed by Engle and Managanelli (2004). There are also conditional tests.              

These test for both unconditional coverage and independence. Some examples are the time             

between failures likelihood ratio test (Haas, 2001), the multivariate autocorrelations test (Hurlin            

& Tokpavi, 2006), the dynamic binary tests (Dumitrescu, Hurlin & Pham, 2012) and the              

generalized Markov tests (Pajhede, 2015). For a comprehensive review of different VaR            

backtests, see Zhang and Nadarajah (2018).  

2.4.2 Backtesting Expected Shortfall 

Although ES solves some of the main issues with VaR, there are still mathematical and practical                

inconveniences. As Du and Escanciano points out, “the major challenge in the implementation of              

the ES as the leading measure of market risk is the unavailability of simple tools for its                 

evaluation (2017, p. 40)”. When Gneiting (2011) demonstrated that ES, contrary to VaR, lacks              

the mathematical property of elicitability, many were concerned claiming that a non-elicitable            

functional cannot be backtestable. ​However, ES has been shown to be conditionally elicitable             

(Emmer, ​Kratz & Tasche, 2015) and jointly elicitable with VaR (Fissler & Ziegel, 2015).              

Besides, Acerbi and Szekely (2014) argue that elicitability is not inherently related to backtesting              

itself but rather a way to rank the forecasting performance of different risk models. 

 

The literature on ES backtesting is smaller than the literature on VaR backtesting, but constantly               

growing since the shift from VaR to ES in trading book capital rules. Some early attempts are the                  
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residual approach (McNeil & Frey, 2000), the censored Gaussian approach (Berkowitz, 2001)            

and the functional delta approach (Kerkhof & Melenberg, 2004). However, as noted by Righi              

and Ceretta (2015) and Novales and Garcia-Jorcano (2019), there are some pitfalls for these              

approaches. The reliance on asymptotic test statistics is a risk if the sample size is small, and the                  

fact that the p-values are calculated based on the full sample size rather than conditioning on the                 

number of exceptions might also cause inaccuracies.  

 

In recent years, several approaches for backtesting ES have been suggested, although no             

coherent framework has been established. Some alternative approaches, which we do not            

consider in this essay, are the saddle-point techniques by Wong (2008) and Graham and Pál               

(2014), Acerbi and Szekely’s (2017) ridgeback test, Du and Escaniano’s (2017) tail risk method              

and the multinomial VaR implicit backtest (Kratz, Lok & McNeil, 2018).  

2.4.3 The Traffic Light System  

In 1996, the Basel Committee on Banking Supervision proposed a framework for supervisory             

interpretation of backtesting results. In their so-called Traffic Light Approach, three color zones             

are defined via cumulative probabilities of the number of actual VaR exceedances. The Basel              

Committee ranks backtesting outcomes according to green, yellow and red zones. By choosing             

multiple thresholds they try to balance type I and type II errors. They conclude that: 

 

there is no threshold number of exceptions that yields both a low probability of              
erroneously rejecting an accurate model and a low probability of erroneously accepting            
all of the relevant inaccurate models. It is for this reason that the Committee has rejected                
an approach that contains only a single threshold ​(The Basel Committee on Banking             
Supervision, 1996, p. 7). 

 

The green zone is defined as the number of exceedances under the null hypothesis whereby the                

cumulative probability of obtaining that many exceedances or fewer is less than 95%. This result               

is to a very high certainty consistent with an accurate model. The red zone is defined by a                  

cumulative probability of 99.99% or more, and indicates a risk model that is almost certainly               
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problematic. The yellow zone corresponds to a probability between 95% and 99.99%, and may              

be consistent with either an accurate or an inaccurate model.   
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3 Theory 

3.1 The Design of Different Expected Shortfall Backtests  

In this section we will define and describe six prevalent backtests for ES. They are all simple                 

enough to implement, which is a relevant factor considering the growing demand for viable              

backtesting procedures for ES within the financial industry. The tests are the foundation of our               

empirical analysis.  

3.1.1 Acerbi and Szekelys’ (2014) Non-parametric Tests  

Acerbi and Szekely (2014) propose three different non-parametric backtests for ES. The three             

tests are classified as conditional, unconditional and quantile tests. For this study, we will              

empirically evaluate the conditional and unconditional test. We omit the third test, since it is not                

a direct test of ES but rather a test of the full distribution.  

 

Test 1 – Conditional Test  

The first test proposed by Acerbi and Szekely (2014) is considered conditional since it requires               

the estimation of VaR beforehand. They define ES and the test statistic as 

  
,S  [ X  | X  aR  ]E α,t =  − E t t <  − V t  

,Z1 = 1
NT

∑
T

t = 1

X It t
ESα,t

+ 1  

 
where, is the number of VaR exceedances in the evaluation period, and is the P&L N T            X t     

distribution in the evaluation period. is defined as an indicator function     I t         1I t =  { X   <  − V aR  }t t
 

which is equal to one if and zero otherwise. is the expected value of the       V aRX t <  −  t    SE α,t        

losses in the estimation window conditional on VaR exceedances. The test statistic is an equally               

weighted average of the rescaled losses conditional on VaR exceedances. The null hypothesis is              

formulated as:   
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,P , ∀ tH0 :  t = F t   

 

where and are the expected and observed distributional tail. The null is formulated P t   F t             

against 

,S (X ) ES (X )  and  V aR (X ) V aR (X ) H1 : E F
α,t t ≥  α,t t

F
α,t t =  α,t t   

 
where is the realised and is the expected distribution of P&L. Under the test does F t      P t         ,Ho     

not reject the estimation method for both ES and VaR while under the test rejects ES            ,H1      

without rejecting VaR. Acerbi and Szekely (2014) highlight that since the test is an expected               

value of exceedances, it is completely insensitive to the number of VaR exceedances. Notice that               

and . This indicates that the expected value of the test statistic is[Z ] 0EHo 1 =    [Z ] 0EH1 1 <              

zero under  and negative under .,H0 H1  

 

The test requires a Monte Carlo Simulation approach to attain the critical values for the backtest.                

The practical implementation of the simulations is further explained in Section 4.3. 

 

Test 2 – Unconditional Test 

The second test proposed by Acerbi and Szekely (2014) is unconditional because it tests ES               

directly without any need to first backtest VaR. They define ES and the test statistic as:  

 
,S  [ ]E α,t =  − E α

X It t  

, Z2 =  1
T α ∑

T

t =1

X It t
 ESα,t 

+ 1  

 
where is the number of observations in the estimation window, and is the significance level.T           α      

The difference between the first and second test can be observed in the weighting parameter. In                

the conditional test, the losses are scaled by the number of VaR exceedances, yielding an equally                

weighted average of exceedances. However, in the unconditional test the losses are scaled by the               

expected number of exceedances a priori given a significance level and estimation window          α     T

Consequently, the unconditional test is more sensitive to the number of VaR exceedances, ( 1
T α) .               

15 



e.g. it will presumably reject a large number of small VaR exceedances while the conditional test                

is insensitive to the number of VaR exceedances. Therefore, the unconditional test is not only               

sensitive to the magnitude of exceedances but also the number of exceedances. The null and               

alternative hypothesis are defined as: 

 
, , ∀  tH0 : P t = F t   

 and  for some  and ,ES  ES   ∀ tH1 :  F
α,t ≥  α,t > t aR  V aRV F

α,t ≥  α,t  
 
where and are defined as in the conditional test. Note again that and F t   P t            [Z ] 0EHo 2 =    

. The difference between the conditional and unconditional regarding is due to[Z ] 0EH1 2 <           H1     

the difference in the weighting parameter. For the unconditional test, rejecting means           H0   

rejecting both the estimated ES and VaR. 

 

A convenient result of the second test is the stability of the p-values across different               

distributions. Therefore, Monte Carlo simulations to obtain the critical values are not required             

(Acerbi & Szekely, 2014). The critical values simulated by Acerbi and Szekely (2014) are              

illustrated in Table 1.  

  

Degrees of freedom Significance level 

v 5% 0.01% 

3 -0.82 -4.4 

5 -0.74 -2 

10 -0.71 -1.9 

100 -0.7 -1.8 

N(0,1) -0.7 -1.8 

 
Table 1: Acerbi and Szekely’s (2014) left tail critical values. 
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3.1.2 Constanzino and Curran’s (2018) Traffic Light Tests  

Constanzino and Curran (2015) propose a backtest for any spectral risk measure, that is a risk                

measure which is a weighted average of outcomes, including ES, using a finite-sample             

distribution. In accordance with established Basel practice, Constanzino and Curran (2018)           

expand on their findings with a Traffic Light test. The backtest is an extension of the                

unconditional coverage test for VaR, but also measures the severity of an exceedance. The              

critical values are derived from both an approximative asymptotic distribution and a finite             

sample distribution. Since the test is an extension of the VaR coverage test, the individual and                

summarized VaR indicator functions for a significance level  need to be defined:α  

 
,(α) 1I (i)

V aR =  { X  ≤  −V aR (α) }i i
 

,(α) IN
V aR =  ∑

N

i = 1
1{ X   ≤  −V aR (α) }i i

 
 

 
where and is the P&L distribution and VaR estimate respectively for the period . X i   aRV i             i  

Analogous to , Constanzino and Curran (2018) define the ES exceedance indicator,  I (i)
V aR           I ,(i)

ES

 

 

and for significance level  as:S(α)E α  

  ,S(α) aR(p)dp E =  ∫
α

0
V  

,(α) dp 1 ) 1I (i)
ES =  α

1 ∫
α

0
 1{X   ≤  −V aR (p)}i i

→ ( − α
F (X )x i

{X   ≤  −V aR (α)}i i
 

,(α) θ (α) II (i)
ES =   

(i) (i)
V aR  

 
where is the measure of severity of the exceedance and is the cumulative distribution of θ(i)           F L       

the P&L distribution. To exemplify the role of the exceedance indicator, Constanzino and Curran              

(2018) provide the following examples:  

 
. V aR (X ) 1 (α) 0 (α) 0X i =  i → F X i =  → θ 

(i) =  → I (i)
ES =   
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This makes intuitively sense as the loss is equivalent to the VaR, hence there is no exceedance                 

and ES should be equal to zero. Further, they show that as            X i →  − ∞   θ(i) → 1 I .→  (i)
ES = 1

 

 

Hence, the severity of an individual loss value for is continuous. Generalizing the         0, )I (i)
ES ∈ ( 1      

equation to  trading days yields the following sum:N  

 

.(α) (α) I (α)IN
ES = ∑

N

i = 1
θ 

(i) (i)
V aR  

 
The value of ES for trading days is the sum of exceedances with their respective severity. The     N              

backtesting procedure is a modification of the POF test for VaR exceedances proposed by              

Kupiec (1995), described in Section 2.4.1. However, since the ES exceedance indicator is             

continuous, they adjust the test by choosing and inverting the quantile to attain the              

corresponding exceedance value (Constanzino & Curran, 2018). The boundaries are computed           

under the null hypothesis: 

 
 and .I }   iid ∀ i = jHo : { (i)

ES
N
i = 1 /  [ X V aR (p) ] p 0, α]P i ≤  i =  ∈ [    

 
They use the result derived in Constanzino and Curran (2015) to show that you can make a                 

normal approximation for any : 0,  )α∈ ( 1  

 
( I (α) μ )  →   N (0,  √N N

ES −   
ES d σ ),2

ES
 
  

 αN ,μES =  2
1  

. α( )σ2
ES =  12

4 − 3α  

 
From the above approximation, the Z-score test statistic can be derived as 

 
(0, ).√N σES

(I (α) − μ )N
ES ES ~ N 1  

 
Constanzino and Curran (2018) derive the asymptotic boundaries for the Traffic Light test using              

the above approximation, yielding:  
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Green light: , 5.4768IN
ES <   

Yellow light:  ,.4768 I 9.2295 ≤  N
ES <   

Red light: . 9.229IN
ES ≥   

 

Constanzino and Curran (2018) also derive the finite sample boundaries for the Traffic Light test               

using a numerical root finding procedure, yielding: 

 

Green light: , 5.7049IN
ES <   

Yellow light:  ,.7049 I 9.88335 ≤  N
ES <   

Red light: . 9.8833IN
ES ≥   

3.1.3 Emmer, Kratz and Tasche’s (2015) Approximative Quantile Test 

Emmer, Kratz and Tasche (2015) propose a simple approximative method for backtesting ES             

based on a representation of ES as integrated VaR:  

 

S (X)  q  (X) du [ q (X) (X) (X) (X) ],E α =  1
1−α ∫

1

α
 u ≈ 4

1
α + q0,75α + 0,025 + q0,5α + 0,5 + q0,25α + 0,75  

 
where is the VaR of the P&L distribution at quantile . A similar approach for (X)qα           α      

backtesting has been proposed by the Basel Committee in the Financial Trading Book Review              

(2013) with the VaR quantile levels 97.5 % and 99 %. Emmer, Kratz and Tasche (2015) suggest                 

using four quantile levels. Still, there is no conclusive guidance in the literature regarding the               

optimal number of VaR levels. Since we compare different backtests for ES, we want a more                

precise approximation. Hence, we choose to use five VaR quantile levels. In line with Kratz, Lok                

and McNeil (2018), the VaR quantile levels are derived from the formula 

 
, α (1 ),  j 1 ... N  αj =  +  N

j−1 − α  =   

 
where is the order significance level. The approximative ES at a 97.5 % confidence αj    hj − t             

level can then be written as:  
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S (X) [V aR (X) aR(X) aR(X) aR(X) aR(X) ].E 0.975,t =  5
1

0,975 + V 0,98 + V 0.985 + V 0.99 + V 0.995  

 
That is, VaR 97.5%, 98%, 98.5%, 99% and 99.5% are jointly backtested. This constitutes a               

linear approximation of ES.  

  

This method is attractive due to its practical simplicity. There exist well established methods for               

backtesting VaR and it requires no Monte Carlo Simulation for generating the statistical             

parameters needed for backtesting (Emmer, Kratz & Tasche, 2015). Also, since VaR is elicitable,              

the approximative ES is too. Consequently, this backtest circumvents the discussion of whether             

ES is backtestable or not. 

 

Similar to Kupiec’s POF test the number of observed exceedances are compared with the              

cumulative probability of observing that number of exceedances for every VaR level. The             

cumulative probabilities of each VaR level is illustrated in Table 2.  
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Table 2. Cumulative probabilities of the VaR quantile levels. The test yields a green light if the cumulative 
probability of the observed number of exceedances are below 95% for all VaR levels. Red light corresponds to a 
cumulative probability above 99.99% for at least one of the VaR levels. Yellow light corresponds to a cumulative 
probability above 95% and below 99.99% for at least one of the VaR levels. 
 

To perform the backtest, the number of exceedances are estimated for each quantile and              

compared with the cumulative probability of observing that number of exceedances. Contingent            

on the number of exceedances, the risk model is classified with a green, yellow or red light in                  

line with the suggested Traffic Light System.  

3.1.4 Moldenhauer and Pitera’s (2019) Secured Position Test 

Moldenhauer and Pitera (2019) argue that a backtesting procedure for ES should be transparent,              

holistic and intuitive such that it is applicable to all asset classes. Moreover, they conclude that                

proposed methods in previous literature require an advanced mathematical framework, certain           

model assumptions, reference estimation processes or large samples. Therefore, they advocate a            
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simple non-parametric approach with a Traffic Light test resembling the POF test for VaR              

proposed by Kupiec (1995).  

 

To backtest ES, they define the secured position, , as a combination of the realised financial        Y         

position and the capital reserve: 

 
, pY = X +  ︿  

 
where is the P&L distribution of the evaluation period, and is the estimated capital reserve X           p ︿       

derived from a chosen internal modelling approach, which can be any distributional risk measure              

like VaR or ES. It can be calculated using e.g. Historical Simulation, normal approximation or               

Monte Carlo Simulation methods. The backtesting procedure is performed by counting the            

number of exceedances, where an exceedance is observed when . Intuitively, an         Y < 0    

exceedance occurs when the daily P&L are negative such that . X  0p 
︿

−  <    

 

To perform the backtests, we assume that we have P&L for Further, we         xt    , ... , .t = 1  t − 1   

estimate  as our daily ES forecast. The daily secured position is given byp t
︿

 

 
 x  p  .yt =  t +  

︿

t   

 
To perform the backtest, the test statistic  is defined asGt  

 

,GT = ∑
T

t = 1
T

1{ y  + ... + y }[1] [t]  

 
where is our sample of secured positions. The test is carried out by taking the sum of the yt                   

worst secured position realisations and observing the sign of the sum. Notice that we do not only                 

test the number of worst exceedances, but also the severity.  

 

Moldenhauer and Pitera (2019) provide the critical values corresponding to the Traffic Light             

System. For and the expected number of exceedances are 6,25. A  50T = 2   S 2.5%E =           
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confidence band around the number of expected exceedances provides us with the three color              

zones for the Traffic Light System:  

 

Green Light: , which is expected to happen in 90 % of all casesin{G } 0∑
12

t = 1
m T >   

,0, .05)GT ∈ [ 0  

Yellow Light:  but  which is expected to happen atin{G } 0∑
12

t = 1
m T <  in{G } 0,∑

25

t = 1
m T >   

 of all cases ,0 %~ 1 0.05, .1)GT ∈ [ 0  

Red light:  which is expected to happen at 0.01 % of all casesin{G } 0,∑
25

t = 1
m T <   

.0.1, ]GT ∈ [ 1  

 
If the sum of the 12 worst secured positions are positive, the model is classified with a green                  

light. If the sum of the 12 worst secured positions are negative but the sum of the 25 worst are                    

positive the model is classified with a yellow light. Finally, if the sum of the 25 worst secured                  

positions are negative, the model is classified with a red light.  

3.1.5 Righi and Ceretta’s (2015) Truncated Distribution Tests 

Righi and Ceretta (2013) propose a parametric ES backtest which uses the expectation and              

dispersion of a return distribution truncated by the VaR upper limit. Previous backtests use the               

full conditional distribution standard deviation as a dispersion measure, see e.g. McNeil and Frey              

(2000) and Wong (2008). Righi and Ceretta’s (2015) backtest is different by only considering the               

dispersion conditional on a VaR exceedance. To estimate the dispersion around the expected             

value of the truncated return distribution, they introduce a measure they denote the Shortfall              

Deviation (SD). Righi and Ceretta (2015) define VaR, ES and SD as  

 
aR  μ  σ F (α),V t =  t +  t

−1   

S  μ  σ E[ z  | z  F (α)],E t =  t +  t t t <  −1   

,D  (σ  var[ z  | z  F (α) ])S t =  t
2

t t <  −1 2
1
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where is the inverse of a probability distribution which dictates the white noise process (α)F −1               

. They argue that the SD of the truncated distribution is a superior dispersion metric than thezt                  

previously proposed full distribution conditional standard deviation. It merely accounts for the            

extreme losses, and risk managers and legislators are primarily interested in limiting the             

extremely bad cases.  

 

Righi and Ceretta (2015) suggest applying a simple model-free numerical simulation approach to             

estimate the values of VaR, ES and SD. Using Monte Carlo simulations, it is possible to simulate                 

a large number of P&L from a known distribution and estimate ES and SD as the expected value                  

and standard deviation of the P&L distribution conditional on the occurence of a VaR              

exceedance. The simulated values can then be tested using a standard t-test:  

 
.K  B  =  SD 

X   −  ES   

 
The simulations result in a large number of values of BK which are used to find the critical                  

values. We perform the numerical simulations using a normal and Student’s t-distribution to             

attain estimates of ES, SD and BK and by extension the critical levels used in the Traffic Light                  

System. The practical implementation of the simulations are further explained in Section 4.3.             

Righi and Ceretta (2015) identify that a problem with this method is that it ignores the stylized                 

fact of heteroscedasticity and variance clustering in financial data.  

 

Righi and Ceretta (2015) further derive a parametric approach. This results in the analytical              

expressions for ES and SD with applications to the normal and the Student’s t-distribution. The               

analytical expressions allow us to simulate the critical levels from a predictive distribution. Due              

to the mathematical complexity involved with the Student’s t-distribution, we limit our study of              

the analytical approach to the standard normal distribution case.  

 

Let be the probability density function and be the cumulative distribution function of the Φ        ξ         

normal distribution. The truncated expectation by the superior limit theorem is then given by 
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,[X  | X  F (p) ] E <  −1 =  − ξ(F (p))−1
Φ(F (p))−1

 

 
where is the cumulative distribution function of the truncated P&L distribution If we treat F            .X     

as equivalent to , and note that , we can plug it into ES equation aboveX t     zt     (p) F (p)ξ−1 =  −1          

and derive the analytical form of the ES:  

 
.S  μ  σE t =  t −  t p

Φ(F (p))−1

 

 
Similarly, Right and Ceretta (2015) derive the analytical form for the SD: 

 
.D  [σ (1 (p) ) )]S t =  t

2 − ξ−1  
 p
Φ (ξ (p)) −1

− ( p
Φ(ξ (p))−1 2 2

1
 

 
If we plug in the chosen ES significance level, we attain the analytical values of         .025,α = 0        

and for the normal distribution. The values are subsequentlyS  .34E t =  − 2   D  0.3416S t =           

used in a Monte Carlo Simulation to estimate values of the backtesting statistic from which we                

attain the critical values for the Traffic Light System.  

 

The backtest of Righi and Ceretta (2015) follows the BK test statistic described above. Assume               

is a P&L distribution for trading days. We estimate as the average losses inX        ... Tt = 1       ES
︿

     

the evaluation window conditional on a VaR exceedance. Using the values of ES and SD from                

the numerical simulation and the analytical approach, we plug the values into the BK test               

statistic: 

 
. BK  =  SD 

ES − ES
︿

  

 
The resulting value is compared with the critical levels estimated by the numerical and analytical               

simulation. The test is a one-sided test with the null and alternative hypotheses:  

 
,ES ES  H0 :  

︿
=   

. ES ES  H1 :  
︿

>   
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4 Methodology and Data 

In this section, we will present the empirical data used in our analysis, describe the different                

methods used to estimate VaR and ES, and provide our methodological framework for             

comparing the backtests.  

4.1 Data and Descriptive Statistics 

We used data of the daily closing price of the US stock index S&P 500. Our data was obtained                   

from Thomson Reuters Eikon Datastream over the period from 1 December 1965 to 18 May               

2020. The data was logged, first differenced and scaled by a factor of 100. S&P 500 is one of the                    

broadest stock indices in the world, with a long history. Consequently, the index reflects              

significant shocks that hit the world economy during the time period, e.g. the 1973 and 1979 oil                 

crises, the stock market crash of 1987, the 1997 Asian financial crisis, the dot-com bubble               

around the turn of the millenium, the September 11 terror attacks, the 2007-2008 global financial               

crisis, and the COVID-19 pandemic. However, any other index, asset or asset class with a               

continuous loss distribution can be applied. Figure 3 displays the daily log returns of S&P 500.                

The plot reveals several turbulent periods, most notably the aforementioned crises. As expected,             

the series also exhibit volatility clustering. The daily closing price of the S&P 500 is visualized                

in Figure 1 in Appendix. Descriptive statistics are presented in Table 3. Notably, the log returns                

show excess kurtosis. Figure 4 shows the daily log returns of S&P 500 during the global                

financial crisis. 
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Figure 3. Daily log returns (%) of S&P 500 for our entire dataset (1/1/1964–18/5/2020). 
 

                                                  Raw data                                           Log returns (%) 

No. of obs. 14708   14708 

Mean 756.502   0.025 

Median 409.330   0.015 

Std.dev. 770.465   1.026 

Skewness 1.151   -1.047 

Kurtosis 0.576   28.025 

Maximum 3386.150   10.957 

Minimum 62.280   -29.00 

 

Table 3. Descriptive Statistics for the returns and log returns of the stock index S&P 500 for our entire dataset 
(1/1/1964–18/5/2020).  

27 



 
Figure 4. Daily log returns (%) of S&P 500 during the global financial crisis (1/1/2007–31/12/2009).  

4.2 Estimation of VaR and ES 

We estimated a 1-day ahead forecast of VaR and ES. There are various ways to do this. We used                   

both parametric and non-parametric methods. Parametric methods rely on some distributional           

assumption, while non-parametric methods do not. For the parametric methods the standard            

normal and Student’s t-distribution were used. For the non-parametric method applied Historical            

Simulation with 500 trading days as our estimation window. As emphasized by Righi and              

Ceretta (2015), the estimation window is a potential source of model risk. The Basel Committee               

proposes an estimation window of minimum 250 trading days (Basel Committee, 1996). 

4.2.1 Parametric Estimation of VaR and ES 

Normal distribution  

The normal distribution relies on two parameters: the mean ( ) and the standard deviation ( ).         μ      σ  

Assuming that the return variable is normally distributed, we estimated the 1-day ahead forecasts              

of  VaR and ES for the percentile using the following formulas: p   
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,aR  μ  σ  ξ (p)V p
t +1  =  t +  t

−1  

,S  μ  σ  E p
t +1 =  t +  t 1 − p

Φ(ξ (p))−1

 

 
where is the estimated mean and is the standard deviation. and are the cumulative μ       σt      ξ   Φ     

distribution and the probability density function of the standard normal, respectively.  

 

Student’s t-distribution 

The normal distribution is generally considered an unrealistic assumption due to the stylized fact              

that financial data exhibits excess kurtosis and variance clustering. The Student’s t-distribution            

converges to a normal distribution as the degrees of freedom increase. For smaller degrees of               

freedom, however, it allows for fat tails and asymmetry which makes it a more reasonable               

assumption within finance (Righi & Ceretta, 2015). We used the Student’s t-distribution to             

estimate the 1-day ahead forecasts VaR and ES for percentile  using the following formulas:p   

 
,aR  μ σ t  V p,t =  +  √ ν

ν−2
t

−1
p,v

 
  

,S  μ σ ( )E p,t =  +  √ ν
ν−2

t 1−p
t (t )tp,v

−1
p,v

 
 

 

 

 

 
ν−1

v + [ t  ]p,v
2

  

 
where is the degrees of freedom, and are the probability density and inverse ν        tt vp,v,

 t−1
p,v        

probability density function of the Student’s t-distribution, respectively.  

 

Volatility and EWMA 

To estimate VaR and ES for our backtests daily estimates of the volatility are required. One                

possibility is to use a rolling window technique where the forecasted volatility of today is the                

sample volatility of the estimation window. This is simple to apply practically. However, the              

method suffers in that it gives equal weight to all observations in the estimation window.               

Consequently, the method does not incorporate the current market condition particularly well            

(Hull, 2018).  
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An alternative method is to use a geometrical decay parameter such that values in the past have                 

less effect the further they are from today. An example of a volatility forecasting method that                

incorporates a decay parameter is the exponentially weighted moving average method (EWMA),            

first introduced by Roberts (1959). The EWMA method is given by 

 
, λσ  (1 )εσt

2 =  2
t−1 +  − λ 2

t−1  

 
where the volatility forecast at time is given by the volatility forecast at and the most      t         t − 1     

recent shock, , is a weighing parameter. Using recursive substitution, Hull  .ε2
t−1  0, ]λ∈ [ 1          

(2018) shows that the equation can be written as  

 

. (1 ) ε  λ σσt
2 =  − λ ∑

m

i = 1
λi−1 2

t−i +  m 2
t−m  

 
We observe that as . Hence, there is geometrical decay at rate for the   σ  λm 2

t−m → 0   m → ∞         λ    

past volatility forecasts. The chosen value of governs the responsiveness of the volatility       λ        

forecast to the most recent change, where a small value puts a lot of emphasis on the most recent                   

shock, and a larger value puts more emphasis on past volatility forecasts. We use , a               0.94λ =    

conventional value suggested by J.P. Morgan (1996) since it comes closest to the realised              

variance rate. An alternative method is to use GARCH(1,1) of which EWMA is a special case.                

GARCH models have the benefit of incorporating the mean reversion but requires estimation of              

three unknown parameters .ω, , )( α β  

 

Hence, in addition to using a standard sample volatility with an estimation window of the 500                

previous days, we applied the EWMA forecasting approach with to attain a new          0.94λ =       

sample of volatilities, more responsive to current market conditions.  
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4.2.2 Non-parametric Estimation of VaR and ES  
 
Historical Simulation 

Historical Simulation is the most widely used non-parametric VaR method (Taylor, 2008). The             

method requires no distributional assumptions. Instead, the estimation of VaR and ES are based              

on the sample of actual observed losses. Assume a P&L distribution for trading days . To           X   T      

estimate VaR and ES we divided the sample into an estimation and evaluation period. Using the                

P&L distribution in the estimation window the VaR and the ES was estimated for the first day in                  

the evaluation window using the functions 

 
,aR (X) min{X  P r(X  x) 1 p}V p,t =  :  >  ≤  −   

,S (X) E[X  | X  V aR (X)]E p,t =  >  p   

 
where VaR is the value of the P&L distribution at quantile given our chosen significance level           p       

and ES is the expected value of the losses conditional that they are bigger than the estimated                 

VaR. Using a rolling window technique, this process was repeated for each day in the evaluation                

period. 

 

There are pros and cons with Historical Simulation. It is easy to implement and does not make                 

any distributional assumptions. However, it is highly reliant on the sample period, and there is a                

risk of a “ghosting effect”. That is, a very volatile/calm period remaining in the estimation               

window might result in too high/low values of VaR and ES. Moreover, the choice of estimation                

window length is subjective. A too long period might include return moments that are no longer                

relevant while a too short period is prone to a larger sampling error (Taylor, 2008).  

 

Figure 5 illustrates the daily logged losses of S&P 500 and the 1-day ahead forecasts of and ES                  

using the parametric methods with sample volatility and EWMA and Historical Simulation.  
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Figure 5. ​Daily logged losses of S&P 500 and the 1-day ahead forecasts of  ES (​1/12/1965–18/5/2020)​. 
 

In Table 4, some descriptive statistics for the volatilities, log returns, VaR and ES for the                

different estimation methods are displayed. For VaR and ES, we observe that applying EWMA              

volatility on the normal distribution yields the smallest average losses. As expected, the EWMA              

estimates systematically produce the smallest minimum values, reflecting the superior ability to            

capture turbulent periods. Further, the larger kurtosis of the Student’s t-distribution compared to             

the normal distribution is reflected in a higher mean for ES. Historical Simulation demonstrates              

the highest average ES, but the lowest maximum ES.  

 

 
Table 4. Descriptive statistics for our entire period (1/12/1965–18/5/2020). VaR and ES are measured in absolute                
(positive) terms.   
 

Table 5 shows the same descriptive statistics during the global financial crisis. We observe that               

unlike the entire period the average EWMA is higher than the sample volatility. The parametric               

methods that employ EMWA display a higher VaR and ES than the sample volatility. Historical               
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Simulation demonstrates the highest average ES for the period while Student’s t-distribution with             

EWMA produces the largest maximum value.  

 

 
Table 5. Descriptive statistics for the financial crisis (1/1/2007-31/12/2009). VaR and ES are measured in absolute                
(positive) terms. 

4.3 Monte Carlo Simulation 

To derive the Traffic Light critical levels for the two tests proposed by Acerbi and Szekely                

(2014) and Righi and Ceretta (2015), we used a Monte Carlo Simulation approach. Monte Carlo               

Simulation methods are stochastic approaches that use a predetermined parametric or empirical            

distribution to generate a large series of stochastic paths that represent different outcomes             

(Konatantinos et al., 2007; Valerie Louisy-Louis, 1998; Hendricks, 1996 cited in Virdi 2011)​.  

 

A general structure for our simulations is as follows: 

 

1. We simulated 250 random numbers from either the standard normal or the Student’s             

t-distribution with three, five or ten degrees of freedom. The distributional assumption            

was made a priori, hence the values of VaR and ES for the chosen level of significance                 

(in our case 2.5%) are known beforehand (see Table 6).  

2. The simulated values were treated as 250 i.i.d. trading day outcomes that we used to               

estimate the required parameters for the backtests. 

3. The simulated outcomes, estimated and a priori known parameters was put into the test              

statistic. The result was one sample value of the test statistic.  

4. This process was repeated 100 000 times to generate a large enough sample of the test                

statistic from which we derived the critical levels required for the Traffic Light System.  
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Degrees of freedom (v) 

 
Critical values 

v VaR   ES 

3 -3.18 -5.04 

5 -2.57 -3.52 

10 -2.23 -2.82 

N(0,1) -1.96 -2.34 

.025α = 0  

Table 6. Critical values of VaR and ES for the standard normal distribution and the Student’s t-distribution.  
 

For the two tests proposed by Acerbi and Szekely (2014) it is straightforward to simulate the test                 

statistics. Assuming that the random numbers are trading day outcomes, we plugged the numbers              

into the test statistics and attained the corresponding test value. After the simulations the critical               

values were extracted as the test value sample percentile at the confidence levels specified in the                

Traffic Light System.  

 

Righi and Ceretta (2015) provide us with the analytical values for the ES and SD. We used a                  

numerical simulation approach to estimate the ES and SD for the standard normal and the               

Student’s t-distribution with three, five and ten degrees of freedom. The simulation is a two-step               

approach where we first simulated random numbers from the distributions and estimated the ES              

and SD as the expected value and standard deviation of exceedances. The mean of the simulated                

ES and SD we used in the second step of the simulation are displayed in Table 7. 
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Analytical Numerical 

   N(0,1) N(0,1) Student’s t 
 ( )v = 3  

Student’s t  
( )v = 5  

Student’s t 
( )0v = 1  

ES SD ES SD ES SD ES SD ES SD 

-2.34 0.34 -2.33 0.31 -5.04 2.05 -3.51 0.92 -2.81 0.52 

 
Table 7. The mean of the Expected Shortfall and the Shortfall Deviation from numerical simulation. The analytical                 

values are derived from the analytical forms of the ES and the SD. 

 

The second step is to estimate the test statistic using the analytical and simulated values. Like                

Acerbi and Szekely’s (2014) tests we attained the critical levels by finding the percentile of the                

simulated test statistic values. The Traffic Light critical values for Acerbi and Szekely (2014)              

and Righi and Ceretta (2015) are displayed in Table 8.  

4.4 The Traffic Light System 

To compare the different ES backtests, we used a Traffic Light System, similar to the one                

introduced by the Basel Committee ​on Banking Supervision ​(1996), described in Section 2.4.3.             

In this way, we investigated whether the different backtests generate similar responses when ES              

is calculated based on empirical data on S&P 500. Following Acerbi and Szekely’s (2014),              

Constanzino and Curran’s (2018) and Moldenhauer and Pitera’s (2019) ES application of the             

Basel Committee’s VaR Traffic Light System, we used the color zone boundaries: 

 
Green zone: ,.95p < 0  

Yellow zone: ,.95 p 0.99990 ≤  <   

Red zone: ,0.9999p ≥   

 
where is the confidence level. We derived the critical values corresponding to the color zone p                

boundaries for the different backtests. The critical values are presented in Table 8.  
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 N(0,1) Student’s t 
v )  ( = 3  

Student’s t 
v )  ( = 5  

Student’s t 
v 0)  ( = 1  

Confidence level .99990  .950  .99990  .950  .99990  .950  .99990  .950  

Acerbi and Szekely  
Test 1 

-0.32 -0.11 
 

-2.31 -0.42 -0.95 -0.26 -0.56 -0.17 

Acerbi and Szekely  
Test 2 

-1.8 -0.70 -4.4 -0.82 -2 -0.74 -1.90 -0.71 

Constanzino and Curran 
Asymptotic test 

9.30 5.70       

Constanzino and Curran 
Finite Sample test 

9.88 5.70       

Righi and Ceretta 
Analytical test 

-2.25 -0.78       

Righi and Ceretta 
Numerical test 

-2.44 -0.88 -6.04 -1.04 -3.63 -0.99 -3.04 -0.92 

Notes: Constanzino and Curran’s two tests and Righi and Ceretta’s Analytical test are parametric assuming normal distribution.                 
Hence, there are no simulated critical values for the Student’s t-distribution.  
 
Table 8. Critical values for the color zone boundaries for different distributional assumptions in the Monte Carlo                 
simulations. 
 

For Emmer, Kratz and Tasche’s (2015) Approximative Quantile Test, the color zones are given              

by the cumulative probabilities in Table 2, where a test is classified as green if the cumulative                 

probabilities are green for all tests, yellow or red if any of the tests are yellow or red. For                   

Moldenhauer and Pitera’s (2019) Secured Position Test the color zones are defined as green if               

the sum of the 12 worst secured positions are positive, yellow if they are negative but the sum of                   

the 25 worst secured positions are positive and red if the sum of the 25 worst secured positions                  

are negative.  
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5. Empirical Results 

In this section, we will present the results of the empirical evaluation of the backtests for the 

entire evaluation period and the subsample period during the global financial crisis.  

5.1 Backtesting 1965-2020 

Table 9 illustrates the proportions of green, yellow and red classifications for 13960 daily              

backtest for the entire evaluation period (1/12/1965–18/5/2020).  

 

 

 
Table 9. Proportions of green, yellow and red lights for 13960 daily backtests for different estimation methods                 
(1/12/1965–18/5/2020). 
 

The results reveal some patterns among the backtests. Acerbi and Szekely’s Test 1 with three               

degrees of freedom, Constanzino and Curran’s two tests and Righi and Ceretta’s t-distributed             

Numerical Test show the largest proportion of green lights. The Quantile Approximation Test by              
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Emmer, Kratz and Tasche and The Secured Position Test by Moldenhauer and Pitera yield less               

than 70% green lights across all estimation methods.  

 

Further, the tests display conflicting sensibilities to volatility type. For Acerbi and Szekely Test 2               

and the tests by Constanzino and Curran, Emmer, Kratz and Tasche, and Moldenhauer and Pitera               

the proportion of red lights unambiguously decreases when EWMA volatilities are applied. This             

tendency is considerably apparent for Acerbi and Szekely Test 2. Acerbi and Szekely’s first test               

has a tendency towards the opposite, where the proportion of red lights increases when EWMA               

volatilities are applied. This may be due to the fact that Test 1 is insensitive to the number of                   

exceedances​. This could possibly suggest that Test 1 is more sensitive to the magnitude of               

exceedances.  

 

Table 10 shows the correlations between the different backtests performed daily over the entire              

evaluation period. Each correlation was calculated as the average correlation between each test             

across all estimation methods and distributions. Consequently, the correlation between one test            

and itself measures the test’s stability across different estimation methods. Likewise, a            

correlation between two different tests is conditioned on all estimation methods. Notably, Acerbi             

and Szekely’s Test 2, Emmer, Kratz and Tasche approximative test and Moldenhauer and             

Pitera’s test exhibit the highest correlations (0.55-0.61). Acerbi and Szekely’s Test 1,            

Constanzino and Curran and Righi and Ceretta exhibit weak correlations to other tests (a              

maximum of 0.35, 0.36 and 0.36 respectively). 
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Correlations  

  A & S Test 1 A & S Test 2 C & C Emmer et al. M & P  R & C 

A & S Test 1  0.54 ... ... ... ... ... 

A & S Test 2 0.25 0.63 ... ... ... ... 

C & C 0.11 0.26 0.74 ... ... ... 

Emmer et al. 0.26 0.55 0.19 0.61 ... ... 

M & P 0.35 0.60 0.25 0.58 0.66 ... 

R & C 0.06 0.05 0.36 -0.01 0.03 0.38 

 

Table 10. Correlations between different backtests performed daily (1/12/1965–18/5/2020). Each correlation was            
calculated as the average correlation between each test across all estimation methods and distributional              
assumptions in the Monte Carlo simulations.  
 

Tables 11-15 display the annual backtest results for different estimation methods. It is evident              

that the general performance differs across different estimation methods. For instance, a            

parametric method assuming normally distributed losses is more inclined to show green light,             

than a parametric method assuming Student’s t-distributed losses with EWMA volatilities.           

Comparing the different backtests, irregardless of estimation method, we observe substantial           

differences in Traffic Light responses for a large number of years. Validating the output in Table                

9, Acerbi and Szekely’s test, Constanzino and Curran’s Traffic Lights Test and Righi and              

Ceretta’s Truncated Distribution Test generate a large proportion of green lights compared to             

Acerbi and Szekely’s second test, Emmer, Kraz and Tasche’s Quantile Approximation Test and             

Moldenhauer and Pitera’s Secured Position Test. The proportion of red lights for Righi and              

Ceretta’s test using simulated Student’s t critical values diverges from the other tests. Notably,              

unlike the other tests it does not classify the period during the financial crisis as red. 

 

  

39 



 
Table 11. Annual backtest results for the parametric estimation method assuming normal distribution.  

40 



 
Table 12. Annual backtest results for the parametric estimation method assuming normal distribution with EWMA               
volatilities. 
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Table 13. Annual backtest results for the parametric estimation method assuming Student’s t-distribution. 
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Table 14. Annual backtest results for the parametric estimation method assuming Student’s-t distribution with              
EWMA volatilities. 
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Table 15. Annual backtest results for the non-parametric estimation method applying Historical Simulation. 

5.2 Backtesting The Global Financial Crisis 

To further examine the backtests’ performances during periods of financial stress, we considered             

the subsample period 1/1/2007–31/12/2009. Tables 16-20 illustrate the backtesting results for           

different estimation methods. One backtest was performed every 50 trading days. We observe             

similar patterns but also that the tests proposed by Acerbi and Szekely (2014), Emmer, Kratz and                

Tasche (2015) and Moldenhauer and Pitera (2019) react almost concurrently during the crisis,             

while Constanzino and Curran (2018) and Righi and Ceretta (2015) lag behind.  
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Table 16. Backtest results for the parametric estimation method assuming normal distribution            
(1/1/2007–31/12/2009). One backtest is performed every 50 trading days. 
 

 
Table 17. Backtest results for the parametric estimation method assuming normal distribution with EWMA              

volatilities (1/1/2007–31/12/2009). One backtest is performed every 50 trading days. 

 

 
Table 18. Backtest results for the parametric estimation method assuming Student’s t-distribution            
(1/1/2007–31/12/2009). One backtest is performed every 50 trading days. 

45 



 

 
Table 19. Backtest results for the parametric estimation method assuming Student’s t-distribution with EWMA              
volatilities (1/1/2007–31/12/2009). One backtest is performed every 50 trading days. 
 

 
Table 20. Backtest results for the non-parametric estimation method applying Historical Simulation            
(1/1/2007–31/12/2009). One backtest is performed every 50 trading days. 
 

Correlations between the tests for the period are displayed in Table 21. In comparison with the                

entire sample, the correlations between Acerbi and Szekely’s Test 2, Emmer, Kratz and Tasche,              

and Moldenhauer and Pitera slightly increase (from 0.55-0.61 to 0.62-0.64). Acerbi and            

Szekely’s first test exhibits decreasing correlations to all tests, now almost uncorrelated to any              

other tests (-0.03-0.10). Moreover, the correlation between Constanzino and Curran and Righi            

and Ceretta increases from 0.36 to 0.49. Notably, Constanzino and Curran demonstrate a very              

high stability across different estimation methods during the global financial crisis (0.93).  
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Correlations  

  A & S Test 1 A & S Test 2 C & C Emmer et al. M & P  R & C 

A & S Test 1  0.26 ... ... ... ... ... 

A & S Test 2 0.07 0.71 ... ... ... ... 

C & C 0.01 0.28 0.93 ... ... ... 

Emmer et al. 0.10 0.63 0.11 0.63 ... ... 

M & P 0.15 0.64 0.16 0.62 0.65 ... 

R & C -0.03 -0.03 0.49 -0.17 -0.12 0.53 

 
Table 21. Correlations between different backtests performed daily (1/1/2007–31/1/2009). Each correlation was            
calculated as the average correlation between each test across all estimation methods and distributions. 
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6. Conclusion 

In 2016, the Basel Committee on Banking Supervision (BCBS) prescribed a shift from VaR to               

ES in determining capital requirements for banks. However, while solving some issues            

associated with VaR, ES has been declared difficult to backtest. Still, several backtests have been               

proposed and considering the growing importance of the risk measure within the Basel             

regulatory framework, there are probably more to come.  

 

The purpose of this essay was to determine whether different backtests for ES produce similar               

results. This is important to elucidate, ​because if different backtests produce conflicting results,             

the quality of a risk model and thereby the capital requirement of the bank is contingent on                 

which particular test statistics are used.  

 

We have backtested six different ES backtests using data of the daily closing price of the US                 

stock index S&P 500, applying a Traffic Light Approach. We found a substantial divergence              

across different backtests. For the period 1/12/1965–18/5/2020, we found that Acerbi and            

Szekely’s Test 2, Emmer, Kratz and Tasche Approximative Quantile Test and Moldenhauer and             

Pitera Secured Position Test are the highest correlated tests (0.55-0.61). Acerbi and Szekely’s             

Test 1, Constanzino and Curran’s Traffic Light Tests and Righi and Ceretta’s Truncated             

Distribution Tests exhibit weak correlations to other tests (a maximum of 0.35, 0.36 and 0.36               

respectively). Also, we found diverse sensitivity to volatility type among different tests. 

 

To further examine the backtests’ performances during periods of financial stress we performed             

backtests for the period 1/1/2007–31/12/2009. We found that the correlations remain stable or             

slightly increase during the financial crisis. Moreover, the approach proposed by Constanzino            

and Curran displays a very high stability across different estimation methods. Righi and Ceretta’s              

tests demonstrate a disparate proportion of green lights compared to the other tests. 
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In the light of the conflicting performances of the various backtests, we conclude that regulators               

and practitioners need to be careful when choosing a backtest. We recommend diversification             

between several tests. In particular, tests that are weakly correlated are suitable pairings. If only               

one test must be chosen, we suggest using Constazino and Curran’s approach due to its stability                

across different estimation methods.  
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7. Discussion and Further Research 

In this essay, we showed that different backtests for ES produce different results. We examined               

six different backtests. However, these do not encompass all the proposed backtests in the              

literature. A more comprehensive comparison would be illuminating. Also, it is important to bear              

in mind that a backtesting procedure involves many subjective decisions. The choice of             

estimation method, volatility forecasting method and estimation window length affect the results.  

 

We noticed an anomaly with regard to Acerbi and Szekely’s (2014) first test. The backtesting               

results indicate that the test is sensitive to the magnitude of the losses. One possible way to build                  

upon our analysis is a more comprehensive simulation analysis of the backtests under different              

scenarios. This could systematically expose different backtests’ performance under different          

market conditions. Furthermore, a study of the size and power of all backtests would be an                

interesting extension.  

 

We have primarily focused on the empirical evaluation of backtests for ES. However, there is an                

ongoing debate on the mathematical property elicitability and its relation to backtestability. The             

relevance of elicitability in this context is crucial to determine. For now, ES remains the leading                

candidate to replace VaR as the standard risk measure used for regulatory purposes. A coherent               

and elicitable alternative risk measure to VaR and ES is expectiles. This is an important area of                 

future research. Whichever risk measure chosen by practitioners and supervisors, we urge            

researchers to further illuminate us on this very relevant and fascinating topic.  
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Appendix  

 

 
Figure 1: Daily closing price of S&P 500 (1/1/1964–18/5/2020). 
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