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Abstract

Automotive radar systems have undergone a long and extensive evolution since the first
prototypes appeared in automotive industry labs in the 1970s. Since then, practically all
major manufacturers have started to offer radar systems in some car models, promising
increased safety and comfort. The current use include tasks such as adaptive cruise control,
collision avoidance and parking assistance, with the trend appearing to become an industry
standard. Very recently, phase modulated systems have started to emerge, challenging the
current fast chirping state-of-the-art in terms of cost, resolution and cooperability while
simultaneously enabling efficient communication capabilities. This thesis is an attempt at
making a comparison between these kind of systems from an idealistic signal processing
perspective. Specifically, three contributions are attempted.

First, some of the current established literature is gathered and summarized, focusing on
development and mutual interference aspects of phase modulated systems. Second, a system
analysis is performed, presenting some automotive system requirements and finishing with
a case study. It is shown that phase modulated systems provide better performance in
terms resolution and contrasting capabilities, but suffers from dynamic range degradations
in scenarios of uncompensated Doppler. The systems are further investigated in terms of
multi-transmit multi-receive capabilities, where it is argued that phase modulated systems
are advantageous in terms of up-scaling.

In the third contribution, computational approaches are investigated in an attempt at re-
solving some of the resolution and Doppler-degrading shortcomings. It is first confirmed that
data adaptive algorithms may provide significant performance gains in some automotive sce-
narios where angular resolution is bottlenecking. Then, a mismatched filtering approach is
taken to deal with Doppler degradations at pulse compression. It is shown that for some
common binary sequences, the Doppler-degradation can be heavily attenuated by mismatch-
ing at receive with only small losses in processing gain. However, a major drawback is the
large number of bits (16 to 24) needed in the filter representation.
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Chapter 1

Introduction

Radar, short for radio detection and ranging, is a type of apparatus used for detection,
localization, tracking and characterization of objects in a confined region in space. The
working principle is based on time of flight and energy measurements of transmitted sets of
pulses scattered off from targets in a field of view. If a received echo has enough power to
be significantly different from noise, clutter or interference, a target is deemed to be present.
By measuring the time from transmission to reception, the distance to the target can be
estimated. By measuring the change in distance from pulse to pulse, the radial velocity of the
target can be estimated. By employing a scanning type of system, or multiple transmitters
or receivers, the horizontal and vertical angles to the target can be estimated. If the system
has enough resolution, target signatures (such as micro-motions) can be used to characterize
(classify) the target. If the system has few ambiguities in the measurements, multiple targets
can be detected, localized and characterized simultaneously. By employing multiple target
tracking algorithms, each target can be monitored over a sequence of frames.

Thus, radar systems are very capable, providing all necessary information for obtaining com-
prehensive situational awareness of monitored environments. Compared to optical, infrared,
laser and ultrasound systems, radar systems have long range capabilities and the ability to
function even under harsh weather conditions and external interference due to the inherent
environmental robustness and by the combination of smart system and signal processing
design. This has made them extensively popular in military systems (from which they orig-
inate from), with the main application being air defence (from ground, sea or air) since
the invention in the 1930s to defend against bomber aircrafts. Other applications include
early warning systems, missile guidance, non-cooperative target recognition and confined
area surveillance, among many others. To this end, the useage has largely been a success
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2 CHAPTER 1. INTRODUCTION

story, and have played critical roles during wartimes [1–6].

Over the past decades, radar systems have emerged in numerous civilian applications, such
as airport traffic control, marine navigation, speed cameras for law enforcement, remote
sensing of the environment and much more [3, 4, 7]. An emerging application field is within
healthcare, where applications such as contact-less vital sign monitoring [8–10], and human
monitoring [11, 12] are being developed. For instance, in [10], a radar system was shown
to be capable of tracking multiple persons while simultaneously monitoring each individuals
vital signs, including breathing and heartbeat rates. Even more recently, radar systems has
started entering consumer applications, ranging from advanced driver-assistance systems to
wearables and other applications [13–17]. In [15], a pulsed coherent radar was used for
gesture control of headphones, and in [14], the same radar was used for the gesture control
of speakers, among other use cases. Perhaps more indicative, the new pixel 4 from Google
was recently released, being the first known commercial cellphone to employ a small radar
sensor for presence detection and gesture recognition [16–19].

There are many books and papers on radar systems and applications. For a further overview,
see for instance the recent magazines [20, 21], as well as [4, 22, 23]. The topic of this thesis
will be on phase and linear frequency modulated automotive radar systems as applied for
advanced driver assistance.

1.1 Motivation

In 2016, approximately 1.35 million people died as a direct consequence of road traffic injuries,
corresponding to one fatality every 25 seconds [24]. As a consequence of the high rates of
traffic accidents, the automotive industry has for several decades invested a lot of resources
on developing driver safety functions. These efforts have mainly consisted of passive systems
which work by alleviating the accident once it has happened, with examples including air-
bags, seat belts and crumple zones. However, as pointed out in [25], the passive systems
have been "virtually exhausted" and what remains is exploring active safety systems, where
the accident is mitigated before taking place. In order to accomplish this, a set of sensors
providing enough information about the environment for the task at hand is required in order
to either alarm the driver to take action or autonomously avoid or mitigate the hazard.
Perhaps anticipated, it has been shown that after the seat belt, the most efficient safety
system for the passengers is dynamic driving controls (see the references in [26]).
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One active area of research and development is within advanced driver-assistance systems
(ADAS), which are electronic systems aimed at assisting the driver to operate the vehicle
(see [26, 27] and the introduction of [28]). These systems are deemed important since most
accidents are due to human errors caused by loss of alertness, inattention, fatigue and al-
cohol [29]. Possible scenarios include direct measures such as collision avoidance and traffic
alert, but also reducing the risk of accident by a driver’s slip by increasing the drivers comfort
through functionalities such as, for instance, adaptive cruise control, parking assistance and
ultimately automated driving. In the light of these aspirations, radar systems have emerged
as promising candidates due to the robust operational capabilities even under non-ideal en-
vironmental conditions, while simultaneously providing accurate localization performance
of widely separated targets in the field of view. As an example, Figure 1.1 illustrates an
adaptive cruise control scenario using a forward looking radar.

Figure 1.1: Illustration of an adaptive cruise control scenario.

To this end, automotive radar systems has undergone an extensive evolution since the first
prototypes in the 1970s, with the first commercial systems appearing in Japanese cars during
the 1980s developed by Toyota, Nissan and Honda [30] and in US and Europe during the
late 1990s with the Daimler S-class systems, followed by Jaguar, Nissan and BMW [13, 25,
31]. Since then, practically all major automotive manufacturers have started to offer radar
systems in some car models, being used in applications such as adaptive cruise control and
brake assistance, with the trend appearing to become an industry standard [25,31].

In the current state, the majority of the systems seem to employ some form of frequency
modulation for range estimation, with linear sweeps appearing to become the most commonly
used waveform as indicated in the literature (see, for instance [25, 30, 32, 33]) and by some
of the current manufacturers [34–37]. While the frequency modulation can be realized in
many different ways, each with its own set of advantages and disadvantage (see [32] for the
automotive case), the main benefit is the ease of implementation and low cost, realized by the
recent advances in hardware manufacturing [13] and the employement of the stretch processor
which allows for the simultaneous use of high bandwidth waveforms and low analog receive



4 CHAPTER 1. INTRODUCTION

bandwidths, which significantly reduces the noise power and the required sampling rates to
recover the signal [38–40]. In the case of linear frequency modulation, the stretch processing
essentially de-ramps the chirp at receive which allows for a highly efficient implementation
of the pulse compressor by a set of fast Fourier transforms.

Moving into the future, it has been concluded that the systems must be able to sustain
high levels of interference caused by inter-operating sensors, as well as attaining even higher
resolution in all dimensions (ideally approaching that of LIDAR) for accurate localization
and mitigating the risk of corner case failures. One of the reasons for these requirements, as
noted in [41], is that automotive radar systems are clutter limited as opposed of being noise
limited like many conventional radar systems, and will therefore require high resolutions
in order to resolve targets. For instance, resolving a car from a tunnel opening at decent
distances requires high resolution in elevation, while separating a child walking close next
to a car requires a high horizontal resolution, as well as high contrasting capablities. For an
an overview on the topic of future system requirements, see [42] (and the reference therein),
where the current state of the art technology is also discussed, covering aspects such as target
tracking, clustering, waveform optimization and cognition. See also [43, 44], which explores
some approaches of super resolution estimation.

As a part of the increasing demands and due to the technological advances, the tradtionally
employed 24 GHz systems are getting phased out for the high bandwidth 77 GHz systems
due to the smaller associated form factors as well as increased resolution in practically
all dimensions [13]. However, while the range and Doppler resolution can be increased
by simply increasing the bandwidth, and dwell time and operating frequency, the angular
resolution remains a limiting factor since it requires additional receive channels which is
burdened by the additional scaling in hardware and data processing units, to name two
issues. For instance, the early automotive radar systems had limited angular capabilities and
relied mostly on narrow and scanning beams, or limited beamforming [13], while the more
recent systems have adopted digital beamforming by employing multiple-input multiple-
output (MIMO) configurations, which has the advantage of providing a large aperture at
reduced hardware and improved form factor by exploiting the concepts of diversity and
virtual arrays [39,45]. The benefit is improved angular resolution at a relatively low cost and
it appears that most current systems use three transmitters and four receivers with combined
azimuth and elevation capabilities. Three examples include the systems developed by Texas
Instruments [46], NXP [47] and ST [48], each using three transmitters and four receivers.
Following the trend, imaging systems employing extensively larger MIMO configurations
are emerging, with four examples being the next generation Texas Instruments imaging
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radar [49], as well as the systems developed by Vayyar [50], Uhnder [51] and Arbe [52], each
capable of employing 192 or more virtual receivers.

One may thus consider MIMO to be enabling technology in process of achieving high res-
olution. However, the technology has been a topic of controversty outside the automotive
community [53–55] and while it appears that the industry is catching the trend and heading
towards increasingly bigger MIMO systems, the advantages are not without compromise.
For instance, in [56], it was shown that the amount of clear area in the MIMO ambiguity
function is reduced by a factor corresponding to the number of transmitters employed. An-
other issue is the degraded interference rejection capabilities in the spatial domain since the
entire virtual array no longer can be used to place mitigating nulls (the transmit steering
vector is no longer known, see e.g. [57]). Thus, while larger MIMO systems consisting of
several transmitters and receivers provide improved spatial capabilities, it is at the cost of
various other system parameters which may impose additional design constraint on top of
already challenging requirements.

1.2 Background

As previously noted, the main objective of automotive radar is to reduce the number of road
accidents by taking pro-active measures and increasing the drivers comfort. To this end,
some of the current limitations (or weaknesses) of FMCW systems are the lack of resolution
and robustness to interference. In an attempt to circumvent these issues, larger bandwidths
have been allocated [13], increasingly bigger MIMO systems developed [49–52], and novel
interference mitigation and co-existance schemes considered [58,59].

In [60, 61], a 79 GHz fully integrated phase modulated continuous wave (PMCW) radar
system with MIMO capabilities, targeting consumer products, was for the first time demon-
strated, suggesting several possible improvements over the mainstream FMCW systems.
Among them, the use of phase codes allows for the design of waveforms with certain de-
sireable properties. For instance, the codes can be constructed to give flat, unambiguous
and thumbtack-like range responses after pulse compression [38], and by embedding addi-
tional information, vehicle-to-vechile communication becomes possible [62]. The employed
waveforms may furthermore be designed with respect to the entire MIMO system in mind,
allowing for a simultaneous transmit from all channels by fast time code division multiplex-
ing [63]. Similar to communication systems, the use of spread spectrum techniques also
implies a certain degree of robustness against interference, noise and jamming.
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Some of the development appear to have started in [64], where the first transmitter in 28 nm
CMOS capable of PMCW sensing was demonstrated, satisfying spectral mask regulations
and capable of operating at the entire 77-81 GHz range at a chip rate of 2 Gbps. The design
also showed a transmit effiency of 10.4 % at 27◦C at an output power of 11.5 dBm, with a
degradation of 4.3 dBm at 125◦C. However, a major drawback was the large instantaneous
bandwidth required to recover the transmitted signal, which implied the need for fast and
expensive analog to digital converters and high throughput data processors. In [65], it was
shown that for short range applications, only 4 bits are required to achieve a dynamic range
of more than 70 dB, as a direct consequence of thermal noise dithering and large processing
gains. Even 3 bits were deemed sufficient if certain performance losses were to be tolerated.
The results indicated the feasibility of efficient CMOS implementation [66], and in [67], a
parallized correlator bank was demostrated in an FPGA for compressing and accumulating
the received echos (at half the bandwidth), also demonstrating computatioanl feasibility.
Shortly after, the first fully integrated MIMO systems where presented [60, 61], capable
of both transmission, reception and compression, leaving the rest of the processing to be
handled off-chip (Doppler and direction of arrival estimation, detection, tracking etc.). In
the design, two transmitters and two receivers were used, with the capability of cascading two
chips into a 4-by-4 MIMO system, yielding a 5 degree angular resolution in both azimuth and
elevation when employing a line parametric estimator. In [63,68–70], several waveforms were
investigated for automotive radar use, each with their set of advantages and disadvantages,
showing the possibility of satisfying the large dynamic range requirements by employing
binary phase codes with zero correlation zones. Finally, in [51], a 12 transmitter and 8
receiver PMCW MIMO system was presented, capable of processing 192 virtual receivers
by time multiplexing the transmitters in azimuth and elevation, allowing for both vertical
and horizontal localization with very high resolution. To this end, this appears to the most
capable PMCW system published to date, remaining highly competetive in performance
when compared with the current state-of-the-art among FMCW systems.

Regarding interference aspects, it has been claimed that PMCW systems offers a certain
degree of improved rejection due to the spread spectrum approach and (almost) arbitrary
waveform design capabilities. While a lot of work on the nature of FMCW interference has
been accomplished (e.g. [57, 58, 71–78], to name a few), there is still at the time of writing
little work done on PMCW systems. The following is an attempt at summarizing the current
state.

The first study on PMCW interference appear to be [79], where the performance was evalu-
ated experimentally under simulated environments and compared with that of an equivalent
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FMCW system. In the analysis, it was concluded that both PMCW and FMCW systems
show similar susceptibility to either kind of interference, as long as no synchronization be-
tween the victim and interferer occurs. While happening rarely, these kind of interferences
have the effect being amplified by the signal processor and thus dramatically increasing the
interference to noise ratio (INR). In order to avoid these catastrophic scenarios of synchro-
nization and spread out the interference in the range-Doppler domain, it was suggested that
co-operating systems should differ at least 5 % in bandwidth and 40 ppm in carrier frequency
as well as using different waveform modulations, such as differnet chirp rates in the case of
FMCW and phase codes in the case of PMCW. It was also noted that in order to obtain
a good spread in Doppler, the greatest common divisor of the number of pulses during a
coherent processing interval (CPI) should be as small as possible.

A similar interference study was carried out in [80] where it was shown that both FMCW
and PMCW systems suffers from ridges in the range-Doppler map which are dependent
on the relative waveforms and velocities motion of the radar systems, even after moderate
asynchronization. In the case PMCW, the spread was mostly limited to a single Doppler bin
whereas in FMCW the ridges spread throughout the range-Doppler map. It was concluded
that randomization is necessary for obtaining a good range-Doppler spread.

A Monte-Carlo interference study was carried out in [81], which showed that no substantial
differences could be found in the noise floor between FMCW and PMCW systems when
randomizing the carrier frequencies, bandwidths, pulse durations and code sequences of
the interfers. However, it was shown that ridges appear in the range-Doppler domain for
FMCW systems, which in practices makes the noise floor significantly more heavy-tailed
and consequently degrading target detectability (in case of CFAR, raising the detection
threshold), whereas in PMCW systems the spread was observed to be flat. The study was
further supported by analytical investigations and it was concluded that the interference
suppression is equal given uncorrelated systems and equal time-bandwidth products (but not
equally distributed in range-Doppler). For future work, it was noted that the probability of
interference and probability of uncorrelated and correlated (synchronization) for either kind
of system needs to be investigated.

In [59, 82], an analytical approach was used to show that as a direct consequence of the
stretch processing used, the INR is generally higher in FMCW systems than in PMCW
systems, as related linearly by an introduced interference susceptibility factor. For PMCW
systems, the factor was argued to always be close to one, regardless if the interferer is of
FMCW or PMCW type. In the case of FMCW systems, the same conclusion was made
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when interfered by a PMCW system. However, when interfered by another FMCW system,
the factor is generally higher than one and directly related to the relative chirp rates of
the victim and interferer. For instance, for two crossing chirps with opposite signs on the
chirp rates, the factor is one and equal to the PMCW case, whereas the more similar the
slopes are, the higher the susceptiblity factor. As an example on the order of magnitude, an
amplification of more than 10 dB was illustrated for two systems sweeping at 15.36 and 13.5

MHz/us respectively [59]. The conclusion of this work is that the FMCW systems are more
susceptible to INR degradations than PMCW systems as a direct consequence of the stretch
processing employed. However, it also concludes that the more randomized (asynchronized,
or dithered) the waveforms are, the smaller are the differences in susceptibility.

In [83], the effects of phase noise was considered in order to also consider hardware non-
idealities in the interference analysis. Assuming the same type of victim and interferer, it
was shown analytically that phase noise causes additional spreading in range and Doppler by
mismatching with the receive filter. Based on the simulations, it was concluded that PMCW
systems are less affected by phase noise in the interferer, in terms of range-Doppler spread
and target masking. Furthermore, it was also concluded that these kind of non-idealities
significantly affects interference susceptibility.

In [84], the impact of FMCW interference on PMCW systems was investigated using simu-
lated data and a time domain excision approach to mitigate the effect proposed. It was noted
that in order to mitigate the FMCW interference, a time domain approach must be used
since otherwise the correlation properties of the phase codes are compromised. As such, the
chirps were detected in baseband by thresholding and blanked out, yielding significant im-
provements in SNR. However, due to the periodic transmission of the interferer, the blanking
was observed to result in artifacts in the range-Doppler domain. For aspects and strategies
on PMCW-PMCW mitigation, see [85] and the discussions in [59].

Thus, to conclude, PMCW systems are in general better than FMCW systems at rejecting
interference, specifically when hardware imperfections (e.g. phase noise) and real world
scenarios (e.g. synchronization) are taken into account. Furthermore, the noise floor does
not appear to be as heavy tailed as in FMCW, indicating better detection statistics. However,
this is not due to the occurence of "orthogonal waveforms" in PMCW systems (although it
definitely alleviates), but rather due to the risk of having similar chirps entering the passband
in the stretch processor. Nevertheless, the advantages do not appear to be dramatic, and
taking into account of currently established mitigation techniques, it is not clear which
system is the most robust. For instance, there is a large number of interference mitigation
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techniques specifically developed for FMCW systems, as compared to PMCW systems, as
noted in [81]. Therefore, although many of the methods are waveform independent and
thus easily extendable to PMCW systems (e.g. beamforming, frequency agility), there is
still a large hole in the PMCW literature which may hinder practictioners and engineers
from implementeing efficient systems. However, as noted [59], PMCW systems share many
similarities with CDM communication systems which has been subjected to an extensive
amount of research on the topic. As concluded, this is still a topic of research and is therefore
yet not established for the radar use case.

Finally, cost is yet an aspect with no definitive answer — in [64] it was claimed that PMCW
is cheaper due to tight integration and efficient 28 nm CMOS fabrication when compared
with current state of the art silicon-germanium technology. However, there are yet no sensors
available in the market, and at the time of writing, the only company developing commercial
automotive PMCW systems is Uhnder, under the partnership with Magna, with the first
product planned to be released in 2019-2020 [86,87].

The purpose of this thesis is to make a futher exploration on these topics from a signal
processing perspective, pin-pointing system and interference aspects, as well as attempting a
comparison with current state-of-the-art FMCW systems. Specifically, a case study is carried
out to investigate the performance differences between PMCW and FMCW systems under
typical short range automotive requirements. Aspects on MIMO scaling is then considered
with regards to the current emergence of large multi-transmit systems. Some topics of high
performance processing is then considered, investigating the possible use of data adaption in
the spatial domain to estimate the direction of arrivals of targets under difficult scenarios. A
specific investigation of pulse compression filter design for the PMCW case is then considered
since it is shown that the compression suffers significant sidelobe degradations in the presence
of uncompensated Doppler shifts. In the final chapter, a method for mitigating mutual
interference is proposed for both PMCW and FMCW systems.

1.3 Scope

It is well known that sometimes, hardware imperfections is the main factor limititing the
achievable performance. This topic is considerable and very complicated, and includes ev-
erything from and between the waveform generators, antenna subsystems to the receive achi-
tecture and analog to digital conversion, as well as the environment surrounding the radar
components (e.g packaging) and the actual environment illuminated. Some typical factors
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are, for instance, phase noise, oscillator leakage, antenna couplings, receiver nonlinearities
and saturation. Sometimes even issues in the complex number representation, originating
from in-phase and quadrature components not being orthogonal, can bottleneck the system
by image band folding. These aspects, while being critical from a practical point of view,
will not be considered in detail in this thesis. As will be shown, even in the absence of
such non-idealities, there are still major bottlenecks limiting the performance of the systems
considered.

1.4 Outline

Chapter 2: The objective of this chapter is to provide a set of signal models for both
FMCW and PMCW systems. Admittedly long, there is, to the writer’s (although limited)
knowledge, no single textbook which covers both FMCW and PMCW models in one place
at the same time. A part of the objective is therefore to have it all gathered in one place as
a reference for future readers.

Chapter 3: In this chapter, the necessary background of radar waveforms is introduced
in order to understand the main body of text. The intention is not to provide a complete
treatment — for that, see the included references. Also, a short section on the Welch lower
bound is included, illustrating that there is no such things as orthogonal waveforms (although
one can construct sets to be orthogonal at certain regions).

Chapter 4: This chapter is about the typical procedures employed when practicing signal
processing. First, a set of assumptions are imposed on the models introduced in Chapter 2,
simplifying the treatment and allowing for efficient processing — typically at the cost of a
certain model mismatch. The basics of pulse compression, Doppler processing and direction
of arrival estimation is then covered as a background for the future analysis. A section on
radar performance metrics derived from the idealized models is then presented in order to
evaluate the system designs and performances in later chapters.

Chapter 5: In this chapter, a system analysis of the automotive radar requirements is
carried out. First, an introduction to short, medium and long range specifications are in-
troduced. A short range radar system design for both FMCW and PMCW radars is then
considered as a case study and both system compared. Then, some aspects of MIMO are
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discussed, showing the improved performance and concluding that PMCW is better in terms
of up-scaling.

Chapter 6: This chapter is on high performance processing. First, data adaptive direction
of arrival estimators are investigated for both small and larger MIMO systems under some
corner-case scenarios. Then, pulse compression filters are designed in order to mitigate the
effects of uncompensated Doppler.
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Chapter 2

Signal models

A radar system does not differ much from a clockwatch. The principal task is to measure
the round-trip time of a transmitted pulse scattered from an object in the receptive field. By
relating the time to the speed of propagation, the range to the object can be deduced. For the
systems considered in this thesis, the way of doing this turns out to be sole difference.

2.1 Overview

In the following, two types of radar systems will be considered. In the first type, which is
known as frequency modulated continuous wave (FMCW) radar system, a linear frequency
modulated (LFM) waveform, is transmitted, a so scalled chirp. The modulation implies
that the instantaneous frequency changes linearly over time. Assuming the pulse duration
is much longer than the round-trip time, the range can be deduced at any time instance by
comparing the frequency of the currently received echo with the currently transmitted one.
Since the frequency changes at a specific rate, the difference in frequency is used to calculate
the round-trip time, which in turn gives the range.

Figure 2.1 illustrates how this may be implemented in practice by using a stretch proces-
sor. In the upper part of the figure, the chirp waveform that is transmitted is illustrated,
consisting of a repetetive sequence of LFM pulses generated by the chirp generator. After
generation, the LFM waveforms are assumed to be at radio frequency (RF), and are there-
fore subsequently transmitted. Simultaneously, the transmitted signal is sent to the mixer,
which down-converts any received waveform, directly followed by low pass filtering (ADC),
analog to digital conversion (ADC) and then typically stored in an on-board memory where

13
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parameter estimation and data processing takes place. The stretch processing part is the
mixing between the transmitted chirp and the received chirp, which in practice corresponds
to a multiplication and results in a signal which consist of the instantaneous frequency dif-
ference, called the intermediate frequency (IF) and the instantaneous frequency sum. This
down-conversion is sometimes also denoted as demodulation, or deramping. The role of the
the low-pass filter (LPF) is to discard the frequency sum and only retain the intermediate
frequency, which in turn can be related to the round-trip time since the chirp rate is known.
This procedure significantly reduces the analog bandwidth and the required sampling rate
by (depending on the system) a factor of 20 or even more while also reducing the complexity
of the subsequent pulse compression to a set of fast Fourier transforms. For more details on
the stretch processor, see for instance [38,39].

Figure 2.1: A high level view of a FMCW system using a stretch processor.

In the second type of system considered, the so called phase modulated continuous wave
(PMCW) systems, a constant frequency waveform subjected to phase modulations is trans-
mitted and the round-trip time measured directly, by comparing anything received with
what was transmitted. While the phase modulation is not strictly needed for estimating the
round-trip time, it turns out to make several targets resolvable.

Figure 2.2 illustrates how a PMCW system can be realized in practice, using a direct con-
version architecture. In the upper part of the figure, the phase modulated waveform is
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illustrated. We will only consider binary phase modulated waveforms, which in practice
is a sequence of ones and zeros, where each step, or subpulse, is called chip and the entire
waveform called sequence or phase code. The waveform is generated at baseband and upcon-
verted to RF by the local oscillator (LO) prior to transmission. At reception, the waveform is
down-converted to baseband, low pass filtered, digitized and then subjected to various stages
of data processing in order to estimate the time delays. The range estimation is typically
accomplished by a combination of correlations and accumulations.

Figure 2.2: A high level view of a direct conversion PMCW system.

Since most systems transmit a sequence of multiple pulses over a CPI, two time scales (in
addition to the total time elapsed) are commonly used to keep track of the times within
each pulse as well as the times when each pulse was transmitted. These are known as fast
time and slow time, and are illustrated in Figure 2.3a) and b). As shown in a), the fast
time dimension corresponds to the time instances within a single pulse, while the slow time
dimension to the time instances at the start of each transmitted pulse. In the following,
these variables will be denoted as tf and ts.
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Figure 2.3: Illustration of the radar time scales. a) Fast time referes to the time instances
between the start and the end of a pulse. b) Slow time refers to the time instances at which
each pulse is transmitted.

2.2 Range-Doppler models

2.2.1 Phase modulated systems

Let φ(t) denote the baseband signal of a single transmitter at time t = tf + ts. After
modulation with a carrier at frequency fc, the transmitted signal is

ytx(tf , ts) = φ(t− ts) cos(2πfc(t− ts) + ψ) = φ(tf ) cos(2πfctf + ψ) (2.2.1)

where it is assumed that the waveform is transmitted every ts and ψ represents an arbitrary
phase term. Assuming a single point scatterer in the field of view, a single echo is returned
with an (unspecified, possibly time varying and non-stationary) time delay τ = τ(t) =

τ(tf , ts). The received signal is therefore

yrx(tf , ts) = φ(tf − τ) cos(2πfc(tf − τ) + ψ) (2.2.2)

The signal yr(tf , ts) is then down-converted to baseband by mixing with the baseband carrier
signal and low-pass filtered, yielding the in phase component

LPF
(
yrx(tf , ts) cos(2πfctf + ψ)

)
≈ 1

2
φ(tf − τ) cos(2πfcτ). (2.2.3)
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By performing the same procedure, but with the carrier instead phase-shifted π/2 radians,
a phase unambiguity is be obtained and the analytic signal recovered, i.e., the in phase (I)
and quadrature (Q) components are recovered. Therefore, the demodulated signal may be
expressed by using the complex baseband representation

y(tf , ts) = φ(tf − τ)ej2πfcτ (2.2.4)

which is the PMCW baseband range-Doppler model. It can be seen that there are two
factors in the received signal, a time delayed replica of φ(t)1 and a phase modulation which
depends on the time delays (motion) of the target. As will be shown in Section 4, the first
factor can be used to estimate the range to the target, and the second to estimate the radial
velocity, as well as the azimuth and elevation angles.

2.2.2 Linear frequency modulated systems

In the following, we will consider a chirp being transmitted, which in the "up" case is ex-
pressed in RF as cos(2πfct+π

B
Tc
t2 +ψ) where fc is the carried frequency, B is the bandwidth,

Tc the chirp duration and ψ an abitrary phase offset. It should be noted that the instanta-
neous frequency is increasing linearly as fc + B

Tc
t, but that sometimes a linearly decreasing

instaneous frequency might be used. As previously, the signal is transmitted at time instances
ts, yielding

ytx(tf , ts) = cos(2πfctf + π
B

Tc
t2f + ψ) (2.2.5)

A scattered replica yrx(tf , ts) with time delay τ = τ(tf , ts) is then obtained, given by

yrx(tf , ts) = cos(2πfc(tf − τ) + π
B

Tc
(tf − τ)2 + ψ) (2.2.6)

The received signal is then demodulated with a copy of the transmitted signal and lowpass
filtered, yielding the in-phase component

LPF
(
yrx(tf , ts) cos(2πfctf + π

B

Tc
t2f + ψ)

)
≈ cos(2πfcτ + 2π

B

Tc
tfτ − π

B

Tc
τ 2) (2.2.7)

1In Chapter 4, it will be shown that if the target is moving at a constant velocity, the waveform will also
be subjected to compression and dilation effects. For the scenarios considered, these are however considered
to be negligible.
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and with the quadrature component one obtains the complex representation

y(tf , ts) = ej2π
B
Tc
tf τ−jπ B

Tc
τ2

ej2πfcτ (2.2.8)

which is the stretch LFM baseband range-Doppler model. Comparing with the model in
eq. (2.2.4), one may notice a close resemblence. To see this, let φ(tf , ts; τ) = ej2π

B
Tc
tf τ−jπ B

Tc
τ2

,
which allows eq. (2.2.8) to be expressed as

y(tf , ts) = φ(tf , ts; τ)ej2πfcτ (2.2.9)

which is the same form as (2.2.4).

Example: Range estimation of a stationary target

To illustrate how the range can be estimated, consider a stationary target with time delay
τ = τ0 = 2R0

c
. The baseband signal is then

y(tf , ts) = e2π
2BR0
cTc

tf e−jπ
B
Tc
τ2
0 ej2πfcτ0 (2.2.10)

Since all factors except the first are constant, estimating the range R0 is simply a frequency
estimation problem. The range may thus be estimated using, for instance, a Fourier trans-
form in fast time. It turns out that this model holds approximately even when targets are
moving moderately fast.

2.3 Interference models

The models derived in the previous sections do only consider the cases when the received
waveform is synchronized with the receiver and no interferers are present. Since the receivers
of each type of systems are different, the respective waveforms will also differ after down-
conversion and filtering. In this section, the range-Doppler models are therefore extended
to also include non-cooperative interferers from both type of systems. Four models will be
considered, describing the PMCW-PMCW, FMCW-PMCW, PMCW-FMCW and FMCW-
FMCW interference cases, where the system before the hyphen is the interferer and the
system after the victim (that is, FMCW-PMCW means a FMCW interfering on a PMCW).
It will be shown that in all cases, except for PMCW-PMCW interference, the received
baseband signal will in general be chirp-like.
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2.3.1 Phase modulated systems

We will in the following use the same notation as previously defined, but with an interferer
denoted by an additional superscript (.)(l), denoting the l:th interferer. Let φ(l)(t) be the
phase modulated baseband signal of the l:th interferer, at time t = t

(l)
f +t

(l)
s where t(l)f and t(l)s

is the fast and slow time variables for the interferer, respectively. The time interpretations
are as previously, fast time corresponds to the time as measured from the start of each pulse
and slow time the time instances each pulse is transmitted. Let y(l)

tx (t) be the upconverted
transmitted signal from the l:th interferer, given as

y
(l)
tx (t) = φ(l)(t− t(l)s ) cos(2πf (l)

c (t− t(l)s ) + ψ(l)) (2.3.1)

where f (l)
c denotes the carrier frequency and ψ(l) an arbitrary phase offset. The signal will

reach the operating radar system of interest, with a time delay τ = τ(t) = τ(tf , ts) =

τ(t
(l)
f , t

(l)
s ), and then demodulated and down-converted, yielding the received signal y(tf , ts)

as viewed from the perspective of the operating radar. Following the same steps as previously,
one obtains

y(l)(tf , ts) = LPF
(
φ(l)(tf + ts − t(l)s − τ (l))ej2πf

(l)
c τ (l)

ej2πf
(l)
∆ (t)ej(ψ−ψ

(l))
)

(2.3.2)

where τ (l) is the direct path propagation time between the radar systems and f (l)
∆ (t) = fc(t−

ts)− f (l)
c (t− t(l)s ) is a frequency modulation which depends on the relative PRFs and carrier

frequencies. We note some immediate differences when compared with eq. (2.2.4). First,
there are two modulation factors. The first, which depends on τ (l) depends on the carrier
frequency of the interferering radar system instead of the operating radar systems carrier
frequency. The second factor consisting of f (l)

∆ (t) is a modulation factor which captures carrier
frequency and PRI differences and will introduce additional distortions to the baseband
signal φ(t). Finally, as can be seen, if ts = t

(l)
s , fc = f

(l)
c and ψ = ψ(l), the same model as in

eq. (2.2.4) is obtained.

Example: Two stationary PMCW systems

As an example, we will consider two identical stationary radar systems but with different
carrier frequencies. This scenario would for instance be prevalent when two-self driving cars
of the same model are waiting in a traffic intersection. The situation implies that τ (l) = τ0 is
constant and that the PRI parameters are equal, which yields constant slow time difference
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ts − t(l)s = ts,0 (since the initial timings might differ). Thus, eq. (2.3.2) becomes

y(l)(tf , ts) = φ(l)(tf + ts,0 − τ0)ej2π(fc−f (l)
c )tf ej2πf

(l)
c τ0e−j2πf

(l)
c ts,0ej∆ψ (2.3.3)

Two points can be made. First, there is a time delay τ0 − ts,0 which depends on the relative
PRI timings of the systems. Since the PRI is on the order of several microseconds, which
corresponds to several hundreds of meters, and since the systems are non-cooperative, this
time delay will be completely random. Second, there is a fast time modulation term with
frequency fc − f (l)

c , which will cause an additional pulse compression mismatch between the
waveforms and possibly range smearing depending on the waveform used. Based on these
two observations, an interferer may end up anywhere in range and may in addition mask
weak targets in range, depending on the waveform range-response. However, since there are
no slow-time modulations, the interferer will end up at zero Doppler (and may therefore be
mitigated by e.g. MTI). However, it should be noted that it will only be non-zero Doppler if
the timing parameters are exactly equal. If it is also assumed that the PRIs are only slightly
different, this would end up a slow-time drift between the systems, resulting in a Doppler shift
(and possibly even chirp-like modulation in slow time). The implications would be that the
interferer would be entirely unpredictable in range-Doppler as well as additional smearings
over the entire range-Doppler map, which may significantly deteriorate the system.

We will now proceed to derive the equations describing how a FMCW system interfers with
a PMCW system. The transmitted LFM signal from the interferer is

y
(l)
tx (tf , ts) = cos(2πf (l)

c (t− t(l)s ) + πα(l)(t− t(l)s )2 + ψ(l)) (2.3.4)

where as previously, the superscript (.)(l) denotes the l:th interferer and α(l) = B(l)

T
(l)
c

is the
corresponding chirp rate. The delayed signal, received in the PMCW system is

y(l)
rx(tf , ts) = cos(2πf (l)

c (t− t(l)s − τ (l)) + πα(l)(t− t(l)s − τ (l))2 + ψ(l)) (2.3.5)

The received signal is then in-phase and quadrature demodulated at constant frequency and
low-pass filtered, yielding the complex baseband signal

y(l)(tf , ts) = LPF
(
ej2πf

(l)
∆ (t)ej2πf

(l)
c τ (l)

e−jπα
(l)(t−t(l)s −τ (l))ej(ψ−ψ

(l))
)

(2.3.6)

As can be seen by the third modulation, the received FMCW interference resembles itself as a
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chirp at baseband. The starting frequency of the chirp will depend on the frequency difference
between the radar systems as well as the relative time delays, as can be seen by the first and
second modulations. The low-pass filter is still kept in this expression since the receiver will
filter away any frequency components outside the analog receiver bandwidth.

Example: A coherent FMCW interferer

In this example, we will illustrate the case when a coherent interference is present. Under
such circumstances, f (l)

c = fc, t
(l)
s = ts, which yields the baseband signal

y(l)(t) = ej2πf
(l)
c τ (l)

e−jπα
(l)(t−t(l)s −τ (l))2

ej(ψ−ψ
(l)) (2.3.7)

which is simply a chirp with slope α(l), modulated by the relative time delays between the
systems.

2.3.2 Linear frequency modulated systems

We will now derive two range-Doppler models for the FMCW case. As will be seen, the
models are slightly different when compared with phase modulated systems due to the stretch
processor employed.

Denote as as previously the l:th interferer by the superscript (.)(l) and consider a phase
modulated interferer. Then, the upconverted transmitted signal y(l)

tx (t) is

y
(l)
tx (t) = φ(l)(t− t(l)s ) cos(2πf (l)

c (t− t(l)s ) + ψ(l)) (2.3.8)

which is received by the victim after a time delay τ (l). Since the victim is assumed to use
a stretch processor, the signal is demodulated with cos(2πfctf + παt2fψ) and its quadrature
component, and lowpass filtered, yielding the in-phase and quadrature signal

y(tf , ts) = LPF
(
φ(tf + ts − t(l)s − τ (l))ej2πf

(l)
c τ (l)

ejπαt
2
f ej2πf

(l)
∆ (t)ej(ψ−ψ

(l))
)

(2.3.9)

where f (l)
∆ (t) = fc(t− ts)− f (l)

c (t− t(l)s ). As can be seen, the interferer resembles a chirp due
to the stretch processor. However, since φ(l)(t) is pseudo-random, the signal will average out
to zero and appear noise-like. In the case of an FMCW interferer, the transmitted signal
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is

y
(l)
tx (t) = cos(2πf (l)

c (t− t(l)s ) + πα(l)(t− t(l)s )2 + ψ(l)) (2.3.10)

and at reception, after complex demodulation and lowpass filtering, the received signal
is

y(l)(tf , ts) = LPF
(
ej2πf

(l)
c τ (l)

ejπα(t−ts)2

e−jπα
(l)(t−t(l)s )2

ej2πf
(l)
∆ (t)ej(ψ−ψ

(l))
)

(2.3.11)

and as can be seen, the interferer is essentially a lowpass filtered chirp at baseband.

Example: A scenario of FMCW-FMCW interference

To provide a concerete example, consider a scenario when two frequency modulated systems
are interfering and assume that ts = t

(l)
s = 0 and ψ − ψ(l) = 0. Then, the interferer in

eq. (2.3.11) can be simplified as

y(l)(tf , ts) = LPF
(
ej2πf

(l)
c τ (l)

ej2π(fc−f (l)
c )tf ejπ(α−α(l))t2f

)
(2.3.12)

which is a lowpass filtered chirp with start frequency fc−f (l)
c and chirp rate α−α(l), which is

the difference between the carrier frequencies and the chirp rates of the respective systems.
Note also that there is a modulation factor with phase f (l)

c τ (l) which also affects the shape of
the interferer, which is dependent on the motion of the interferer. This effect can sometimes
be significant.

2.4 MIMO model

The single channel range-Doppler models presented in the previous sections will now be
extended to the case when multiple transmitters and multiple receivers are operating si-
multaneously. We will illustrate for the case of a PMCW system, the other models follow
analogously.

Consider the situation illustrated in Figure 2.4 and assume that there are M receivers and
N transmitters, and that transmitter number n is radiating the waveform φn(t). Then, the
received signal at receiver m will be the sum of all transmitted waveforms, scattered from the
target. If it is also assumed that the radar system is designed so that each of the transmitters



2.5. AMPLITUDE AND NOISE MODELS 23

and each of the receivers are separated in space, then, each of the transmitted waveforms will
have a slightly different range to the target. Similarly, the range from the target to each each
of the receivers will be different, and thus also having slightly different time delays. Therefore,
the propagation time from the n:th transmitter to the m:th receiver will be τ + τ txn + τ rxm

where τ is the time delay as measured from some reference, and τ txn , and τ rxm the additional
time delays caused by the position of the n:th transmitter and m:th receiver relative to the
frame of reference, respectively. The PMCW signal ym(t) in eq. (2.2.4), measured at the
m:th receiver can therefore be written as

ym(t) =
N∑
n=1

φn(tf − τ − τ txn − τ rxm )ej2πfc(τ+τ txn +τrxm ) (2.4.1)

It can be seen the single channel model is modified in two ways. First, each receiver will
obtain the same sum of waveforms, but delayed by a time which depends on the overall
location of the sensors. Second, the sum of waveforms will also experience a modulation,
which in addition to the target also depends on location of the sensors. It will later in
the signal processing section be shown that this spatial diversity can be used to estimate
the direction of arrival of targets illuminated by the radar system, and that the additional
transmitters will enhance this capability.

Figure 2.4: A MIMO array illuminating a target, illustrating the concept of spatial diversity.

2.5 Amplitude and noise models

In this section, some amplitude and noise models based on the radar range equation are
presented. These results can be found in practically any radar textbook, in one form or
another. The ones presented here were obtained from chapter 2 in [3]. We will first present
the two-path model for the case of a single staring radar system, and then a single-path
model for the case when jammers and other mutual interferers are present.
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We note that while explicit dependencies on time, environmental, system and target char-
acteristics are omitted from the models, many of the parameters are actually dependent on
these quantities and may in certain situations have significant effects. Furthermore, while
the received signal power is in theory deterministic, it is in practice highly dependent on
the aspect angles which may significantly affect the radar cross section. The received power
may therefore be treated as a stochastic random variable with an expected value around
the range, Doppler and angle of interest, which is typically assumed constant during CPI,
but with a radar cross section which follows a certain probability distribution. The Swerling
models as introduced in [88] are famous approximations and allow for intra-pulse of inter-
pulse variations by using relatively simple models. For the sake of simplicity, we will consider
the amplitude as an unknown but constant variable which does not change over a CPI.

2.5.1 Two-path model

The received signal power Pr scattered from a target at range R and radar cross section σ
is given by

Pr =
Ptλ

2

(4π)3
· GtGr

R4
σ (2.5.1)

where Pt is the transmitted power, Gt and Gr the transmit and receive antenna gain, and λ
the wavelength of the baseband carrier.

2.5.2 Single-path model

The received signal power P (l)
r from a single-path propagation from another system at range

R is given by

P (l)
r =

Grλ
2

(4π)2
· P

(l)
t G

(l)
t

R2
(2.5.2)

where P (l)
t is the transmit power and G(l)

t the transmit gain.
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2.5.3 Thermal noise

The thermal noise power can be expressed as

Pn = kBTBF (2.5.3)

where B is the analog bandwidth of the receiver, F the noise factor, T the temperature, and
kB Boltzmanns constant.

2.5.4 Examples

To give the reader an impression of the order of magnitudes, we will now proceed with three
examples.

Example 1: The signal strength of a target

Assume that a radar is operating with Gt = Gr = 6 dB and Pt = 10 dBm at 79 GHz. For a
target at 30 meters, the receiver power is then -126.3 dBm for a target with σ = −8 dBsm,
resembling a pedestrian [89].

Example 2: The signal strength of an interferer

Assume that a radar is operating with Gr = 6 dB dBm at 79 GHz and that there is an
interferer present with P (1)

t = 10 dBm and G(1)
t = 6 dB. The received interference power is

then -77.9 dBm at 30 meters.

Comparing with the received power from the previous example, a signal to interference ratio
(SIR) of -48.4 dB is obtained. If the interferer would be at 5 or 100 meters instead, the
received powers would be -62.3 and -88.4 dBm, yielding a SIR of -63.9 and -30.0 dB instead.
These observations indicate that an interferer can be several orders of magnitudes higher in
energy than the targets that one may want to detect.

Example 3: Thermal noise power, SNR and INR

Consider a PMCW system with a receive bandwidth of 1500 MHz and noise figure 15 dB,
operating at 300◦ K. The thermal noise power is then -67.1 dBm. Comparing with the previ-
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ous two examples, one then obtains a signal to noise ratio (SNR) of -59.2 dB and interference
to noise ratio of INRs of 4.8, -10.8 and -21.3 dB at 5, 30 and 100 m, respectively.

Aa can be seen, the SNR is extremely low, and well below any form of detectability. This
can be challenge in some radar systems. Fortunately however, the processing gains can be of
several orders of magnitude due to the extremely large amount of data "flooding" through
the ADCs. For instance, in the current example, at least 74.2 dB of processing gain is needed
to get an SNR of 15 dB. Assuming for simplicity an entirely coherent processing, this would
require the integration of a total of 26.3 megasamples, which may, for instance, be realized
by processing of 4 receive channels at 1500 MHz in tandem over a CPI of 5 ms (assuming a
100% duty cycle).



Chapter 3

Radar waveforms

The purpose of a radar system is to actively (and sometimes passively) sense an environment
for any backscattered echos from objects in the receptive field. The waveforms employed
play a central role in the process, since they determine many key performance metrics. For
instance, if multiple echos from multiple targets are received, each single waveform needs to
be easily distinguishable from time shifted versions of itself. If multiple waveforms are used in
a MIMO setting, each of those waveforms must also be distinguishable from each other. If in
addition other, possibly non-cooperative systems are transmitting, the waveforms used must
be chosen carefully as to minimize mutual interference. This problem of waveform design
turns out to be rather difficult, specifically when taking the hardware and budget constraints
into account, and has therefore extensively been considered in the literature.

The purpose of this chapter is to provide a very brief overview on radar waveforms specifically
for binary PMCW systems. The concept of phase modulated waveforms is first introduced,
along with some associated operations and metrics. Of concern will be waveforms with good
auto- and cross correlation properties. A good autocorrelation indicates little ambiguities and
a good pulse compression response, whereas if multiple waveforms are used simultaneously,
the cross correlation properties will decide the amount of channel isolation achieveable. For
this purpose, four binary waveforms used in this thesis are summarized, the maximum lengths
sequences, Gold codes, almost perfect autocorrelation sequences and zero correlation zone
sequences. What follows is a short overview of some MIMO multiplexing techniques. The
chapter finishes with a discussion on the Welch lower bound. For a more complete treatment,
see for instance [38,90–92].
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3.1 Phase modulation

When employing phase modulation, the baseband signal φ(t) has the following particular
form:

φ(t) =
L∑
k=1

skpk(t) (3.1.1)

where L is the number of symbols in the sequence, sk the symbols of the phase code and
pk(t) a shaping pulse with duration Tc. A unit-modulus constraint will be assumed, yielding
sk = ejϕ(k) for some phase sequence ϕ(k). It will also be assumed that the codes are binary,
which yields ϕ(k) ∈ {0, π} and therefore sk ∈ {−1, 1}. In the case of a rectangular shaping
function, one obtains

pk(t) = rect
(
t− (k − 1)Tc

Tc

)
(3.1.2)

but for spectral efficiency reasons, other shapes might be used, such as gaussian windows
or half cosines. In the following we will assume that the waveforms are sampled at time
instances Ts, yielding

φ(n) = φ(nTs) =
L∑
k=1

skpk(nTs), n = 1 . . . L (3.1.3)

In the representation, it has been implicitly assumed that Ts = Tc since L samples were
sampled over the waveforms, but note that sometimes one may want to oversample the
waveform. The waveforms may further be classified as periodic or aperiodic. In this thesis,
we will only consider periodic waveforms, which have the property of being L periodic, such
that φ(n) = φ(n+L). These waveforms are realized by transmitting the same code repeatedly
at full duty cycle. At receive, the waveforms are typically subjected to pulse compression by
matched filtering. The pulse compression response may be defined by periodic correlation
function,

rφ1,φ2(k) =
L∑
n=1

φ1(n)φc2((n− k) mod L), k = −L+ 1 . . . L− 1 (3.1.4)

where (.)c denotes the complex conjugate. If a normalized response is considered, it means
rφ1,φ2(k)/rφ1,φ2(0) is evaluated. For a matched compression, φ1(n) = φ2(n), where we denote
rφ(k) = rφ1,φ2(k). If the target experiences Doppler modulations, one may consider the
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periodic ambiguity function, meaning φ1(n) = φ(n)ej2πfdn and φ2(n) = φ(n), where fd is the
normalized Doppler. If the compression is mismatched, then φ1(n) = φ(n) and φ2(n) is the
mismatched filter. The (mismatched) periodic cross correlation and periodic cross ambiguity
functions may similarly be defined, but for two different waveforms φ1(n) and φ2(n). The
value of the periodic autocorrelation function between two samples can be obtained by linear
interpolation if a rectangular shaping function is used [38].

Two metrics will be of particular interest: the integrated sidelobe level (ISL) and the maxi-
mum peak-to-sidelobe ratio (PSLR). Consider a set of m sequences {φ1(n), . . . , φm(n)}, then
the metrics may be defined as

PSLR = max
k 6=0,i 6=j

|rφi,φj(k)|2 (3.1.5)

ISR = 2
m∑
i=1

L−1∑
k=1

|rφi(k)|2 +
∑
i 6=j

L−1∑
k=−L+1

|rφi,φj(k)|2 (3.1.6)

When mismatched filters are used, some loss in processing gain (LPG) is typically expected,
and is assessed by

LPG = 10 log10


(∑L

n=1 φ̂
c
nφn

)2

∑L
n=1 |φ̂n|2

∑L
n=1 |φn|2

 (3.1.7)

where φ̂ is the mismatched filter.

In the following, we will restrict ourselves to the four following binary sequences (although
it should be noted that many other variants exist):

Maximum length sequences
Maximum length sequences, also known as pseudorandom noise sequences, have been used
in multiple applications such as spread spectrum communications. Recently, they have also
been considered for the use in automotive radar systems [93]. The short overview below
follows the exposition in [94].

Let h(x) = h0x
q + h1x

q−1 + . . .+ hq be a binary polynomial of order q, with h0 = hq = 1. If
h(x) is also a primitive polynomial, then the binary sequence u generated by h(x) as

ui+q =

q−1∑
k=0

hq−k ⊕ ui+k (3.1.8)
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Table 3.1: A list of preferred pair primitive polynomials in binary representation. The
polynomials should be read from left to right. For instance 100101 represents the polynomial
x5 + x2 + 1.

Order Polynomial 1 Polynomial 2
5 100101 111101
6 1000011 1100111
7 10001001 10001111
9 1000010001 1001011001
10 10000001001 10100001101
11 100100100101 100000000101

is said to be a maximum length sequence (m-sequence, or MLS) of degree q, where ⊕ defines
the modulo-2 addition (exclusive OR). The vector consisting of the q initializing symbols,
u0, u1, . . . , uq−1, is called the seed, and must be different from the zero vector. The sequences
may be generated by linear feedback shift registers (LFSR), and have, among many other,
the three following properties, where L = 2q − 1,

1. For a given seed, the m-sequence repeats itself every L symbols (it is L-periodic).

2. Exactly L sequences can be generated, given by the L different periodic shifts.

3. After the mapping {0, 1} → {−1, 1}, the normalized periodic autocorrelation function
is two valued, having the value of −1/L for all out of phase components.

Table 3.1 lists some primitive polynomials of order q = 5, 6, 9, 10. Figure 3.1 shows a maxi-
mum length sequence with q = 5 which has been subjected to the mapping {0, 1} → {−1, 1},
corresponding to 0 and 180 degree phase shifts in eq. (3.1.1). As can be seen, the sequence
is noise-like and has a flat autocorrelation function.

Gold codes
It turns out that when considering a larger set of m-sequences, the cross correlation properties
are rather bad. A related kind of sequences is the family of Gold codes, which possess good
cross correlation properties. To this end, Gold codes have been used in multiple applications,
such as spread spectrum communications and satellite navigation. Similar to the overview
on m-sequences, the following is based on [94].

Consider two different primitive polynomials, h1(x) and h2(x) each of order q. If the pair of
m-sequences, u1 and u2, generated by the polynomials have a three valued (periodic) cross-
correlation function, then the polynomials are said to be preferred. A set G of new sequences
can then be generated from this pair of m-sequences by the pairwise modulo-2 additions of
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the periodically shifted versions of each other,

G = {u1, u2, u1 ⊕ u2, u1 ⊕ T 1u2, . . . , u1 ⊕ TL−1u2} (3.1.9)

where L = 2q − 1 and T k is a k-element periodic shift operator. The generated sequences
in the set are called Gold codes and have also a three valued periodic cross (and auto)
correlation function, with the highest value given by 2(q+2)/2 + 1 if q is even and 2(q+1)/2 + 1

if q is odd. As can be seen, the set consist of L + 2 sequences, corresponding to the L
shifted pairs of modulo-2 additions along with the two original preferred m-sequences. The
pair of polynomials illustrated in table 3.1 are also preferred (note that no preferred pairs
exist for q = 4, 8, 12, . . .). Figure 3.2 illustrates a Gold sequence with q = 5, along with the
periodic auto- and the cross correlation functions obtained when correlating with another
Gold sequence in the set.

Almost perfect autocorrelation sequences
Ideally, one wants perfect codes with all out of phase correlations being zero. However,
this is not always possible, and a reasonable compromise is therefore sequences which are
perfect almost everywhere. The use of almost perfect autocorrelation sequences (APAS) for
automotive radar was first proposed in [69] as an approach to satisfy the high dynamic range
scenarios that may be encountered. The following three properties were proven in [95]:

1. The number of symbols in APAS sequence must be a multiple of 4.

2. A sequence is an APAS if and only if the non-zero out-of-phase correlation coefficient
is at lag L

2
− 1.

3. The amplitude of the out-of-phase coefficient is 4− L.

Admittedly, the theory (and the construction) of these type of sequences appear rather
complicated. For further details, see [69] and the references therein (specifically [96, 97]).
The implementation used in this thesis is based on [98]. Figure 3.3 illustrates an APAS of
length 60 along with its autocorrelation function. As can be seen, the autocorrelation is zero
everywhere except in the middle.

Zero correlation zone sequences
Similarly to the case of APAS, one may further relax the requirements to only consider
sequences which are orthogonal over certain regions. Such sequences are known as zero
correlation zone (ZCZ) sequences and have been considered for the automotive case in,
for instance [70, 99], where in the latter a single APAS was used by circularly shifting the
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sequence equidistantly in time. Note that by definition, APAS are also a ZCZ sequences,
defined by the regions at either side of the non-zero out-of-phase coefficient — specifically,
the length of the ZCZ is L/2−1 since the non-zero peak is at the center. The zero correlation
zones can in turn be split up into additional smaller zones by shifts, leading to range domain
code multiplexing, as explained later.

In this thesis, we will use the construction scheme presented in [100], which allows for the
design of multiple different sequences with a joint ZCZ (as compared with using a single
shifted APAS) Figure 3.4 illustrates a constructed ZCZ sequence of length 32, along with
the periodic autocorrelation function and the periodic cross correlation function obtained
from the complementary ZCZ sequence. As can be seen, there are approximately 8 lags on
either side of the in-phase component, indicating a zero correlation zone of 16 lags.

Figure 3.1: a) a maximum length sequence and b) its (periodic) autocorrelation function.

Figure 3.2: a) a Gold code and b) its (periodic) autocorrelation function. c) shows the
(periodic) cross correlation function with another code.
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Figure 3.3: a) an almost perfect autocorrelation sequence and b) its (periodic) autocorrela-
tion function.

Figure 3.4: a) a ZCZ sequence and b) its (periodic) autocorrelation function. c) shows the
(periodic) cross correlation function with a complementary ZCZ sequence.

3.2 MIMO multiplexing

Since MIMO multiplexing is a big topic in automotive radar (see e.g [93, 101–103]), a brief
overview will be provided. Three types of schemes will be considered, time division mul-
tiplexing (TDM), frequency division multiplexing (FDM) and code division multiplexing
(CDM). Within the CDM framework, three techniques are common - fast time, range do-
main and outer code multiplexing. Note that this section depends on the theory presented
in Section 4.

Let A be a matrix (e.g a MIMO matrix) and Φ = Φ(t) = [φ1(t), φ2(t), . . . ,φM(t)]T a
set of M waveforms sampled at L points. The problem of multiplexing is essentially a pulse
compression problem where the objective is to recover each of the individual transmit-receive
channels, loosely stated as follows: Given a hypothesized target AΦ, design a receive filter
Φ̂ such that AΦΦ∗ ≈ A. It should be noted that this problem is rather hard, since all of
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the requirements in normal pulse compression also needs to be satisfied, indicating that in
addition to good out-of-phase properties, each of the waveforms need to also be orthogonal.
As stated by the Welch lower bound, uniformly orthogonal waveforms do not exist, and the
effect of Doppler mismatch may impact the compression negatively, see e.g [104].

In order to keep the discussion short and distinguish the multiplexing techniques, we will
in the following assume that each φi are sufficiently orthogonal when matched out of phase
individually (i.e low sidelobes).

Code division multiplexing
The most intuitive solution to the problem is by employing fast time CDM. Under such
circumstances, Φ contains a set of "orthogonal" waveforms, and A is simply recovered by
the procedure

AΦΦ∗ ≈ A (3.2.1)

If using range domain CDM, the same set of waveforms in Φ are used, but cyclically time
shifted with respect to each other, such that they are cross-orthogonal in the autocorrelation
domain. However, for a fixed pulse length, this has the downside of reducing the maximum
unambiguous range by the number of transmitters.

In outer code divison multiplexing, the issue is solved by transmitting multiple identical
waveforms, but each modulated according to some scheme which allows for separation at
reception. One scheme proposed for the automotive case is Hadamard codes [102]. To
illustrate, assume 2 transmitters and let H2 be a Hadamard matrix of size two,

H2 =
[
1 1
1 −1

]
(3.2.2)

then, if only φT is transmitted, we can write Φ as

Φ = H2 ⊗ φT =

[
1 · φT 1 · φT
1 · φT −1 · φT

]
(3.2.3)

where ⊗ denotes the Kronecker product. The received signal is then compressed with the
same transmitted waveform, yielding

AΦΦ∗ = A

[
φT φT

φT −φT
] [
φc φc

φc −φc
]

= A

[
2φTφc 0

0 2φTφc

]
= 2A (3.2.4)

Similarly, for M transmitters the procedure corresponds to transmittingHM ⊗φT and then
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compressing with HM ⊗ φT . However, note that since periodic waveforms are commonly
used, some kind of additional buffers are needed for reorganization of the data, depending
on how the processing is set out. Note also that anM times longer PRI is needed, indicating
a loss in maximum Doppler.

Time division multiplexing
In order to achieve orthogonality in TDM, each of the waveforms are interleaved in time at
transmit. Conceptually, there is no difference between TDM and outer CDM (when using
Hadamard codes). To see this, let HM = IM be an identity matrix of size M . Then, as
previously

AΦΦ∗ = A

[
φT 0T

0T φT

] [
φc 0
0 φc

]
= A

[
1 0
0 1

]
= A (3.2.5)

Thus, for M transmitters the procedure corresponds to transmitting IM ⊗ φT and then
matching with I

M
⊗ φT . Note that similar to outer CDM, an M times longer PRI is

needed.

Frequency division multiplexing
In FDM, orthogonality is achieved by transmitting each of the waveforms at different fre-
quency bands. The individual transmit-receive channels are then recovered by sampling the
total bandwidth simultaneously and then isolating each component by bandpass filtering.
After a data reorganization, pulse compression and standard data processing may then be
continued as usual.

3.3 The Welch lower bound

It has been claimed that by employing orthogonal waveforms, one can completely eliminate
all interference and co-existance problems. This is obviously not true and in this section we
will show that no such waveforms exist as a direct consequence of the Welch lower bound
(WLB).

Theorem 1. The Welch lower bound
Let φ = {φ1 φ2 . . . φm} be a set of m unit vectors in Cn. Then, the maximum cross
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correlation cmax is bounded by

c2
max ≥

m− n
n(m− 1)

(3.3.1)

The proof is rather simple, and follows by connecting the Frobenius norm with the eigenvalues
of the covariance matrix of φ, followed by Cauchy-Schwarz inequality and a simple sum
inequality, see [105]. Loosely speaking, the theorem then tells us "how orthogonal" a set of
m vectors can be in Cn. Obviously, this is only meaningful if m > n since otherwise cmax is
bounded from below by a negative number, and it is well known from linear algebra that up
to m vectors can easily be made orthogonal in an m-dimensional space.

Regarding the applications to radar, the bound is mostly interesting from a pulse compression
perspective. Under such circumstances, using a periodic phase code, each of the cyclically
shifted replicas need to be distinguished from each other after correlation processing (see
Section 4.2). Thus, if a total of n symbols are used, there will be m = n different waveforms,
which yields cmax = 0, indicating the possibility of forming perfect codes. On the other
hand, if instead p periodic phase codes are transmitted, then the total number of time-
shifted waveforms becomes pn, and the WLB takes the form

c2
max ≥

p− 1

pn− 1
(3.3.2)

Figure 3.5 illustrates the WLB with respect to the number of symbols in the sequences for
various set sizes. It can be seen that in the case of p = 2 sequences, the lowest possible peak
correlation level ranges from approximately -13 to -53 dB for sequence lengths ranging from
10 to 100000 symbols. It can further be seen that the bound decreases approximately 10 dB
for every order of magnitude increase in the number of symbols. For sets consisting m = 4

or more sequences, the bound follows the same shape but is approximately 3 dB higher,
ranging from -10 to -50 dB.

Put into perspective with the first application, modern automotive radar systems need to
operate in dynamic ranges ranging in the order of 100 dB. For instance, in the 77 GHz
band, pedestrians and cars may have a cross sections in the order of -5 dBsm and 35 dBsm,
indicating a span of 40 dB if assuming equal range. Furthermore, assuming conventional
correlation processing and that a detector with a 10 dB threshold is used, the dynamic range
needs to be at least 50 dB. This corresponds to sequences containing the order 100000 sym-
bols. Comparing with recently proposed systems [60,61], this appears difficult to implement,
keeping in mind that even if such sequences were possible, they would be highly susceptible
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Figure 3.5: The WLB with respect to the number of symbols.

to Doppler degradation. Also if including the R−4 factor in the radar range equation, even
longer sequences would be needed.

However, it is worth noting that sequences which are orthogonal at certain regions, so called
zero correlation zones are possible. For instance, if p = 4 waveforms are used, but only the
first n/4 range bins needs to be considered (this could for instance correspond to the range
at which a signal is detectable), then the number of shifted waveforms becomes n and the
cross correlation is bounded by zero, indicating a possible feasibility of orthogonality.
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Chapter 4

Signal processing

Once the sensor data Y has been collected, the task of the signal processor is to determine
whether targets are present, and if so establish an estimate of their parameters, such as
position and identity. Put under the statistical framework of hypothesis testing, the formu-
lation is then, given a certain set of target parameters such as range, Doppler and angles of
arrival, to determine whether a hypothesized target Yk can be deemed sufficiently different
from noise, interference and clutter N . That is, under the null hypothesis H0, the target is
considered absent, whereas under the alternative hypothesis H1, the target is present

H0 : Y = N (4.0.1)

H1 : Y = Yk +N (4.0.2)

The optimal detection criteria is given by the Neyman-Pearson criteria, and multiple rules
can be made to perform the hypothesis testing, such as the generalized likelihood ratio test.
Typically, most common tests culminate in some form of whitening followed by thresholding,
set by the noise, clutter and interference environment, where the target is deemed present
if the energy of the hypothesis exceeds the threshold, see [3, 106]. Viewed from a more
pragmatic setting, the purpose of all data processing before detection is to maximize the SNR
(or SCR, SIR. . . or all of them, depending on the circumstances), in order to maximize the
probability of detection and while simultaneously suppressing noise, clutter and interferecne
to reduce the probability of false alarm. Once a target has been detected, the process of
parameter estimation proceeds, which may include additional signal processing, conditioning,
tracking and classification.

The actual data processing path can be rather complicated and done in many different ways.

39



40 CHAPTER 4. SIGNAL PROCESSING

We will consider the very simple scheme illustrated in Figure 4.1, which appears to be the
most common one in automotive radar systems, as frequently indicated by the literature
(see for instance [42]). First, the (conditioned) sensor data is subjected to pulse compression
and Doppler processing. This is repeated for each channel, and if the transmitted signal
is multiplexed at transmit, it also needs to be demultiplexed at receive. A non-coherent
averaging is then typically performed, followed by some form of threshold detection. Typ-
ically, 10 dB above the noise floor is sufficient, as pointed out in [13]. The directions of
arrival are then estimated, and the detections are then subjected to post processing, which
may include clustering, tracking and classification. The final product is a set of target
lists, which sole purpose is to provide a good understanding of the monitored environment.

Figure 4.1: Illustration of the considered signal processing path.

In the following, we will present the basics of each block, excluding detection and post
processing. However, as is typical in the engineering sciences, a set of assumptions are first
imposed on the models developed in Section 2, followed by a series of approximations to make
the following signal processing and interpretation tractable. Based on these results, some
associated performance metrics are also presented, as a reference for future sections.

4.1 Model assumptions

4.1.1 MIMO assumptions

We will start by simplifying the MIMO model in eq. (2.4.1). As will be shown, the results are
rather neat. Assume that the waveforms φn(t) are narrowband, which is a fair assumption
since a 4 GHz bandwidth corresponds to a fractional bandwidth of approximately 5% at 79
GHz. Although, it should be noted some significant (although not dramatic) degradations
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should be expected if employing an adaptive beamformer [107]. The assumption means that
φn(t) varies slowly enough so that the MIMO time delays can be neglected

φn(tf − τ − τ txn − τ rxm )ej2πfc(τ+τ txn +τrxm ) ≈ φn(tf − τ)ej2πfc(τ+τ txn +τrxm ) (4.1.1)

What remains is then to find an expression on the time delays τ txn and τ rxm . This may be
achieved by the far field assumption, which implies that a plane wave approaches the array,
and holds approximately whenever targets are further away than 2D2/λ, where D is the
size of the MIMO aperture [3]. At 79 GHz and a 32 element ULA, this corresponds to
approximately 2 meters, whereas if using 96 element ULA is used, as in [51], the far field is
17.5 meters away, indicating that this assumption is no longer valid over a significant range
swath. Under such circumstances, one has to deal with the curvature of the wavefront.
Nevertheless, under the assumption, the time delays can be written as [108,109]

τ rxm = gTmp(θ, ϕ) (4.1.2)

τ txm = gTnp(θ, ϕ) (4.1.3)

where gm and gn is the position of the m:th receiver and n:th transmitter, and p the target
direction of propagation, given as

p = [cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)]T (4.1.4)

where θ and ϕ are the azimuth and elevation angles. The model in eq. (2.4.1) then be-
comes

ym(t) = bm

N∑
n=1

anφn(tf − τ)ej2πfcτ (4.1.5)

where bm = ej2πg
T
mp(θ,ϕ) and an = ej2πg

T
np(θ,ϕ). It can be seen that as a consequence of the

narrowband and far-field assumptions, the range-Doppler and direction of arrival components
have been separated out into two factors, simplifying the processing significantly. This is
a celebrated result in array processing, and the exact same procedure can be done for the
FMCW model in eq. (2.2.8), yielding the same model as above but with φn(t) being a
multiplexed replica of the first modulation.
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4.1.2 Target motion assumptions

We will now make the assumption that the targets are moving at a constant velocity v, which
yields the time delay

τ =
2R0 + 2vt

c
= τ0 +

2v

c
(tf + ts) (4.1.6)

The range-Doppler model in eq. (2.2.4) then becomes

y(tf , ts) = φ

(1− 2v

c
)︸ ︷︷ ︸

a) dilation

tf −
2R0

c︸︷︷︸
b) range

− 2v

c
ts︸︷︷︸

c)migration

 ej2πfdtf︸ ︷︷ ︸
d)mismatch

ej2πfdts︸ ︷︷ ︸
e)Doppler

ej
4πR0
λ (4.1.7)

where fd = 2v
λ
is the Doppler frequency. For clarity, the respective factors have been empha-

sized. The first factor in a) incurs a compression/dilation in fast time, caused by the target
motion during pulse transmission. This effect can be safely neglected in automotive scenar-
ios since relativistic velocities are unheard of. The second term in b), is the target range,
which is to be estimated. However, the parameter is biased by the third term in c), which
corresponds to a range migration in slow time. The effect may be substantial, specifically in
high resolution radars when targets are moving fast. The fourth factor in d) corresponds to
a Doppler modulation in fast time, which may cause a Doppler induced mismatch at pulse
compression — the actual effect is typically studied using the ambiguity function. The fifth
factor in e) is a Doppler modulation in slow time, which is typically used to estimate the
target Doppler shift.

Simplifying the range-Doppler model in eq. (4.1.7), one may obtain a set of equations which
are applicable under different regimes. We will consider the three below (were we have
discarded the time constant phase and dilation/compression factors):

ya)(tf , ts) = φ

(
tf −

2R0

c
− 2v

c
ts

)
ej2πfdtf ej2πfdts (4.1.8)

yb)(tf , ts) = φ

(
tf −

2R0

c

)
ej2πfdtf ej2πfdts (4.1.9)

yc)(tf , ts) = φ

(
tf −

2R0

c

)
ej2πfdts (4.1.10)

which correspond to the modes a) high range resolution and high Doppler, b) high Doppler
and c) low Doppler.
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One may form the same set of equations for the FMCW model. Consider the range response
φ(tf , ts; τ) in eq. (2.2.9), and neglect the second quadratic modulation. Then, under the
constant velocity assumption (and neglecting range migration in fast time) one obtains

φ(tf , ts; τ) ≈ ej2π
2B
cTc

(R0+vts)tf (4.1.11)

and consequently the model approximation (ignoring the phase constants)

y(tf , ts) = ej2π(
2B
cTc

(R0+vts)+fd)tf︸ ︷︷ ︸
a) range

ej2πfdts︸ ︷︷ ︸
b)Doppler

(4.1.12)

As illustrated, the model consists of two main components. The range information can be
found in a), where also the corresponding range-migration and fast time Doppler modula-
tion is present, biasing the range estimate. In b), there is a Doppler modulation in slow
time. Since the Doppler modulation in fast time only biases the result, only two models are
considered, yielding

yd)(tf , ts) = ej2π(
2B
cTc

(R0+vts)+fd)tf ej2πfdts (4.1.13)

ye)(tf , ts) = ej2π(
2B
cTc

R0+fd)tf ej2πfdts (4.1.14)

As can be seen, both baseband models are entirely complex sinusoidal, with d) also showing a
range migration phase cross term, attributing the well known range-Doppler coupling present
in chirp radar systems, see e.g. [3,39,40]. The model approximation in e) is entirely sinusoidal.
We conclude this section by noting that the FMCW model is rather complicated, since we
have neglected many factors which may in fact be significant under certain scenarios.

4.1.3 Signal processing model

We are now ready to summarize the model development and realize the final signal models
which the signal processing will be build upon. Using vector notation, we will express
a(θ, ϕ) ∈ CN×1, b(θ, ϕ) ∈ CM×1 and A(θ, ϕ) ∈ CM×N as

a(θ, ϕ) = [a1(θ, ϕ) a2(θ, ϕ), . . . , aN(θ, ϕ)]T (4.1.15)

b(θ, ϕ) = [b1(θ, ϕ) b2(θ, ϕ), . . . , bM(θ, ϕ)]T (4.1.16)

A(θ, ϕ) = b(θ, ϕ)a(θ, ϕ)T (4.1.17)
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where a(θ, ϕ) and b(θ, ϕ) are the transmit and receive steering vectors, and A(θ, ϕ) the
MIMO matrix. Furthermore, let tf = nfTs and ts = nsTp, where nf = 1 . . . L and ns =

1 . . . P . Then, each of the returned waveforms in eq. (4.1.8)-(4.1.10) and eq. (4.1.13)-(4.1.14)
can be represented with respect to the fast-slow-time snapshots as φ(nf , ns;R, v). The N
received waveforms Φ(ns;R, v) ∈ CN×L at snapshot ns can be expressed as

Φ(ns;R, v) = [φ1(ns;R, v), φ2(ns;R, v), . . . ,φN(ns, R, v)]T (4.1.18)

where each pulse φn(ns;R, v) ∈ CL×1 for n = 1, . . . , N is

φn(ns;R, v) = [φn(1, ns;R, v), φn(2, ns;R, v), . . . , φn(L, ns;R, v)]T (4.1.19)

Under this notation, the returned echo from a target under any of the models in eq. (4.1.8)-
(4.1.10) and eq. (4.1.13)-(4.1.14) can be expressed as

X(ns;R, v, θ, ϕ) = αejwnsA(θ, ϕ)Φ(ns;R, v) (4.1.20)

where w = 4πv
λ

is the normalized angular Doppler frequency and α the complex amplitude.
In order to make the notation more readable, we will consider a target k with parameters
αk, Rk vk, θk and ϕk and denote the received echo as

Yk(ns) = αke
jwknsAkΦk = αkXk (4.1.21)

where it is understood from the context whether Xk or Φk depends on ns or not, and where
all of the target parameters are implicit in the matrice Ak = bka

T
k and Φk. For a set of K

targets, the received signal is

Y (ns) =
K∑
k=1

αke
jwknsAkΦk +N (4.1.22)

where N represents the contribution from interference, clutter and noise. If not otherwise
specified, it will be assumed to circularly symmetric complex normally distributed white
noise with a conforming dimension. The reason for this is that it is the most tractable
and easiest to approximate. In reality, however, the noise can be very complicated, see for
instance [40].
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4.2 Pulse compression

The pulse compression is typically the first stage in the data processing after the baseband
data has been conditioned, with the purpose of matching the waveforms of the received echos
as to increase the SNR and range resolution. Since the waveforms employed are typically
in the order of microseconds, corresponding to a couple of hundred meters, while the actual
resolution is in the order of centimeters, the waveform is said to be "compressed" into that
particular range cell (or "bin"), which justifies the name pulse compression.

As was discussed previously, the received signal Y was said to consist of K targets. However,
since the task at hand is to estimate the number of targets and their parameters, the number
cannot be known beforehand. One may therefore instead consider a set of hypothetic targets
Yk with amplitude αk over a discretized grid of ranges indexed by k, where the task is to
determine whether the amplitude αk is significantly different from zero or not. The way this
is done is by correlating the expected waveform Φk of Yk with a matching filter Φ̂k. Under
such circumstances, and neglecting Doppler, the compression is

Y Φ̂∗k = αkAkΦkΦ̂
∗
k +

∑
l 6=k

αlAlΦlΦ̂
∗
k + nΦ̂∗k (4.2.1)

As can be seen, one would ideally want that ΦkΦ̂
∗
k = I while simultaneously suppressing

the clutter terms such that ΦlΦ̂
∗
k = 0. The responses from the surrounding bins is known

as sidelobe clutter, originating from adjacent targets. If the waveforms employed have good
auto- and cross correlation properties (or is multiplexed well), then this contribution will be
small. Note that if the waveform would only have good autocorrelation properties, but not
good cross correlation properties then that contribution would be large, possibly higher than
αk and thus masking the true amplitude.

To elaborate further, the way the pulse compression is implemented depends on what kind of
system is considered. In the case of FMCW, the compression may efficiently be implemented
using fast fourier transforms, as indicated by the sinusoidal model in eq. (4.1.14). In the
case of PMCW, a bank of parallell correlators and accumulators may be used [61].

The filter which maximizes the SNR is the matched filter [3], given as Φ̂k = Φk. Given
an evaluated range bin, the filter will provide the best possible detection under the white
noise assumption. However, it does not take into account of side effects such sidelobe clutter
from neighbouring cells which may significantly bias the detection criteria and mask possible
targets if rejected in a later detection stage. The matched filter is therefore suboptimal from
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a SCR perspective and considering that automotive radars are often clutter limited [41], this
is a big drawback and is the reason why practically all FMCW systems employ some form
of windowing prior to compression in order to reduce the sidelobes — an operation which is
nothing but mismatched filtering. See for instance [110,111].

4.3 Doppler processing

Doppler processing is usually the second stage in the data processing. In the following, we
will assume that the echos have been successfully compressed at each of the desired range
bins, neglecting any residual Doppler. It will later be briefly discussed what to do when
this assumption no longer holds. Under the said circumstances, the signal model after pulse
compression, evaluated at a certain range bin, is

Y (ns) =
K∑
k=1

αke
jwknsAk +N (4.3.1)

where K is the number of targets present along the considered Doppler profile. The task
is identically to the case of compression: to do sequence of hypothesis tests over a grid of
Doppler shifts to determine whether targets at certain velocities are present in the evalu-
ated range bin. Since the the signal along each transmit-receive channel Ak is a complex
exponential, the corresponding matched filter is equivalent to a discrete fourier transform.
Similarly to the case of pulse compression in FMCW systems, some form of tapering is
usually required.

It turns out that different kind of targets reside at different regions in the Doppler subspace.
Specifically, clutter is known to be localized along the low Doppler profiles whereas (moving)
targets (of interest) usually reside in the high Doppler profiles. This is the motivation behind
many of the Doppler processing techniques conventioanlly used, such as MTI [2, 3], which
filters out unwanted echos around zero Doppler. As can be seen by the model in eq. (4.3.1),
each Doppler return appears as a pure sinusoid, hinting that the processing is in fact "just"
spectral analysis [112].

Another interesting topic which has attracted notable attention is that of microdoppler [113].
Since most targets are extended (when sufficiently close) the return will not consist of a single
echo, but rather a sum of echos originating from different portions of the target. Each of
these individual echos will experience (possibly time varying) Doppler shifts, which may
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be identical or not. Thus, consider a single range bin and channel, and assume a single
target which returns K echos, with the k:th echo having a Doppler shift Ωk(ns), then the
microdoppler signature is

y(ns) =
K∑
k=1

αke
jΩk(ns) (4.3.2)

To make a concrete example, pedestrians which are sufficiently close to the radar will scatter
from, for instance, the torso, arms and legs. Since the body parts are different in size, they
will have different αk. Furthermore, if the pedestrian is walking, the arms and legs will be
swaying back and forth, indicating certain phase-variations in Ωk(ns) for those particular
body parts, usually oscillating around the Doppler of the torso which typically has a more
low-pass character. In general the phase variations can be complicated, but idealized, one
may consider the return as a synchronized sum of sinusoids. This kind of information can be
used to distinguish various objects monitored by the radar, such as humans from animals,
vehicles and clutter. To do so, one may for instance use time-frequency representations
combined with some sort of feature extraction prior to classification, as discussed in [11].
In the cases of multiple targets, separation in Doppler can be problematic and a different
approach was proposed in [114] were the microdoppler was extracted at the tracking level
for target identification. Similarly, in [115], an implementation of a 24 GHz FMCW system
was presented, including a system level description, which uses a support vector machine to
discriminate humans post processing at the tracking level. The topic is still rather new and
has been considered in, for instance [11, 116, 117], where deep learning approaches appears
to give state of the art performance.

We will now briefly touch on two issues which are related to the Doppler and pulse com-
pression. As can be seen by the signal models in eq. (4.1.8) and eq. (4.1.13), the range
and Doppler parameters are coupled in the waveform by the fast and slow time modulations.
This can cause certain performance losses when using the processing methods presented since
there can be residual Doppler shifts present, which may degrade the pulse compression. In
the case of chirping systems, the doppler shift typically results in a small range bias by the
range-Doppler coupling, which is more often than not acceptable. However, uncompensated
Doppler shifts may significantly degrade the pulse compression in PMCW systems, see for
instance [80, 104]. Furthermore, if the radar has a sufficiently high range resolution and
a target moving sufficiently fast, a migration over several range bins may occur during a
dwell, so called range migration, which in turn may causes performance losses and target
spread in the range-Doppler domain. These topics has therefore been studied in the lit-
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erature, where several compensation approaches have been investigated. For instance, by
employing a Doppler-first processing approach, the fast time modulations may be compen-
sated for, as shown in [118], significantly reducing the associated range clutter. Similarly, it
was demonstrated in [119] that by in addition performiing a fourier transform in fast time,
the range migration can be compensated by taking chirp z-transforms along the Doppler
profiles. The corresponding pulse compression is then performed on the Doppler and mi-
gration compensated data by taking an inverse fourier transform in fast time, following by
conventional pulse compression. As also noted in the paper, these processing schemes are
known as all-cell-doppler correction (ACDC) and all-cell migration compensation (ACMC),
or simply keystone processing in synthetic aperture radar.

4.4 Direction of arrival estimation

By measuring the relative time of flight differences of the returned echos between a set of
receivers, the direction of arrival (DOA) to the target can be estimated. It turns out that the
process is specifically simple under the narrowband assumption, as previously introduced in
Section 4.1, since then a time delay can be estimated with a phase shift.

Assume that the received signal has been compressed in range and processed in Doppler.
Then, the signal model is

Y =
K∑
k=1

αkAkRk +N (4.4.1)

where the Rk = ΦkΦ̂
∗
k is the waveform covariance matrix, which ideally should be the

identify matrix. However, due to non-orthogonality, it will color the channels (note that
the noise will also be colored, but we will neglect this aspect). The task is to estimate the
parameters {θk, ϕk}. Let y = vec{Y } be a vectorization of the data matrix, then

y =
K∑
k=1

αk(R
T
k ⊗ IM)vec{Ak}+ vec{N} (4.4.2)

=
K∑
k=1

αk(R
T
k ⊗ IM)vk + n (4.4.3)

where ideally RT
k ⊗ IM ≈ IMN and vk is the MIMO steering vector. Here, the relation

vec{AB} = (BT ⊗ I)vec{A} has been used [120]. As can be seen, non-orthogonality
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in the transmitted waveforms affects the virtual array by a coupling, similar to the way
conventional calibration errors affect normal arrays. However, this effect appear to be small
for most reasonable radar waveforms. In the following, we will neglect this factor, and only
consider the model

y =
K∑
k=1

αkvk + n (4.4.4)

when doing DOA estimation. As previously, the direction of arrivals can be estimated by
doing a hypothesis test over all possible vk which are of interest.

4.5 Performance metrics

We will now present some performance metrics based on the simplified models in Section 4.1
and conventional processing in Section 4.2-4.4, as a reference for the coming sections. Three
metrics will be considered in each of the measurables, the accuracy, resolution and ambiguity.
While some of the derivations are rather simple, they are good for the intuition, and will
therefore also be presented.

4.5.1 Range

We will start with the range resolution in the FMCW case. Consider the range component in
the sinusoidal model in eq. (4.1.14), assume zero Doppler and that the waveform is sampled
every Ts seconds over the pulse. Then, tf = Tsn, where Tp/Ts is the number of samples.
Since the range estimation problem is equivalent to a frequency estimation problem, the
normalized resolution is then given by the inverse of the number of samples Ts/Tp [112]. The
corresponding range resolution is given by

∆R =
Ts
Tc

cTp
2BTs

=
c

2B
(4.5.1)

As can be seen, the resolution depends only on the bandwidth B of the chirp. It turns out
that the same relation also holds for general waveforms, and thus also in the PMCW case,
see [3, 121]. For a waveform with pulse length Tp seconds, the maximum unambigous range
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Rmax is given by

Rmax =
cTp
2

(4.5.2)

However, in the FMCW case, Rmax is sometimes limited by the sampling rate Fs = 1/Ts.
To see this, note that the maximum frequency is constrained by 1 = 1

∆RFsTp
Rmax, which

yields Rmax = ∆RFsTp. Thus, the minimum sampling rate Fs,min needed to achieve a given
coverage is

Fs,min =
Rmax

∆RTp
(4.5.3)

Note that the image band has been used to extend the range. Otherwise, one would need
twice the sampling rate to satisfy a given Rmax. The range accuracy δR can be assessed
in multiple ways, for instance by using the Cramér-Rao lower bound [122, 123]. We will
consider the approximate expression given in [13],

∆R = δR
√

2SNR (4.5.4)

which relates the metric with the resolution and SNR.

4.5.2 Doppler

The Doppler can sometimes be seen as a sinusoid in slow time, as shown in Section 4.1.
Thus, assuming a dwell time TD, and scaling for the velocity, the resolution ∆v is given
by

∆v =
λ

2TD
(4.5.5)

which indicates that longer dwells increase the resolution. The maximum unambiguious
velocity is determined by the PRF (which is the sampling rate), yielding

vmax = ± λ

4PRI
(4.5.6)

where the maximum normalized Doppler was assumed ±0.5 since both positive and negative
velocities are of interest, as compared with the maximum unambiguous range in the FMCW
case where only positive ranges are of interest. The velocity accuracy δv is assessed based
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on [13], giving

∆v = δv
√

2SNR (4.5.7)

4.5.3 Direction of arrival

Assessing the performance of DOA estimation can be tricky, since there is a long standing
history of using data adaptive methods and nonuniform arrays, which might make some con-
ventional assessments rather pessimistic. Under such circumstances, a simple, although ex-
pensive way of estimating the performance is by performing statistical analysis using Monte-
Carlo simulations under realistic target environments. However, more recently analytical
results on the performance bounds have emerged, see e.g. [124].

Under the data independent matched filtering framework, the performance is bounded sim-
ilarly as for the range and Doppler counterparts. Assume a uniform linear array (ULA)
with half wavelength element spacing d = λ/2, then the spatial frequency resolution is given
by

∆f =
d

λ
(sin(θ + ∆θ)− sin(θ)) =

1

Nvx

(4.5.8)

where Nvx is the number of elements. An estimate of the resolution ∆θ can be obtained
from the following approximation

sin(θ + ∆θ)− sin(θ) ≈ cos(θ)∆θ (4.5.9)

which yields

∆θ ≈ 2

Nvx

radians ≈ 120

Nvx

degrees (4.5.10)

Note that if tapering is used, then the resolution will be worse, see for instance [112]. For the
section on system analysis, we will also need the following approximate expression [13],

∆θ = δθ
√

2SNR (4.5.11)

which relates the angular resultion with the accuracy δθ.
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Chapter 5

Radar system analysis

The purpose of this section is to make a comparison between FMCW and PMCW radar
systems from a signal procesing and system perspective. To accomplish this, the current
requirements of automotive radar systems are first presented, where bottlenecks are pin-
pointed and the requirements for future systems examined. A short range radar use case
for parking assistance is then considered, where the previous requirements are adjustment
for the particular scenario. A FMCW and a PMCW radar system are then designed for the
particular use case, which are then jointly compared.

It is first shown that PMCW radar systems have better range resolution and high contrasting
capabilities than FMCW systems under conventional processing frameworks, while FMCW
systems are less prone to Doppler induced performance degradations, which may otherwise
mask certain targets under certain scenarios. When evaluating the systems in the angular
domain, no significant difference is found for the considered scenarios. The topic of MIMO
scalibility is then considered, where it is shown that as a result of the direct sampling
approach used in PMCW systems, the maximum amount of range-Doppler area is exploited
by design, whereas for FMCW systems the area is bottlenecked by the required sampling
rates imposed by the stretch processor. This property makes PMCW systems naturally more
scalable from the point of currently employed systems, whereas realizing big MIMO FMCW
systems will require a convergence towards direct IF sampling and digital pulse compression
in order to scale properly. It is then finally illustrated that both systems experience slight
Doppler degradations in the virtual array as a result of transmit multiplexing, but that the
PMCW system is less sensitive due to the relatively fast MIMO switching.

53
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5.1 General system requirements

Due to the almost infinite number of automotive radar use cases and scenarios, three repre-
sentative type of systems were defined in [13] in order to simplify the design process. The
designs are denoted as SRR, MRR and LRR for short-, medium-, and long range radar, re-
spectively. The types of intended applications covered by sensors are numerous and include,
for instance, adaptive cruise control, lane change assistance, forward collision avoidance, eva-
sion assistance, cross traffic alert, obstacle detection, parking assistance, blind spot detection
and rear collision warning.

The list of requirements for the SRR, MRR and LRR systems is presented in table 5.1 which
shows the available frequency bands along with the allowed power transmissions as well
as various resolution and accuracy requirements on range, Doppler, azimuth and elevation.
It should be noted that the presented values are only representative and depend on the
specific system, intended application and assumptions made, while the frequency and power
regulations are absolute. These requirements, along with some others will be discussed in
the next sections in order to provide a picture of the design problem.

Table 5.1: A list of automotive radar requirements for the LRR, MRR and SRR systems at
the 76–81 GHz band as presented in [13].

Type LRR MRR SRR
Maximum EIRP 55 dBm -9 dBm/MHz -9 dBm/MHz
Frequency band 76–77 GHz 77–81 GHz 77–81 GHz
Range swath 10–250 m 1–100 m 0.15-30 m
Range resolution 0.5 m 0.5 m 0.1 m
Range accuracy 0.1 m 0.1 m 0.02 m
Velocity resolution 2.2 km/h 2.2 km/h 2.2 km/h
Velocity accuracy 0.36 km/h 0.36 km/h 0.36 km/h
Angular accuracy 0.1◦ 0.5◦ 1.0◦
3 dB beamwidth azimuth ± 15◦ ± 40◦ ± 80◦
3 dB beamwidth elevation ± 5◦ ± 5◦ ± 10◦

5.1.1 Dynamic range

The dynamic range of a radar system is the ratio between the strongest and weakest return
that the system can handle to the extent that the signal processor can output accurate
and unambiguous target detections, without an excessive number of false detections and
spurious returns. The metric can be defined in mulitple ways depending on which part of
the system that is considered. For instance, analog to digital converters have a dynamic
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range which depends on the number of bits used, whereas the linear amplifiers used in the
analog front end have a dynamic range which is determined by the 1 dB compression point
and the level of the spurioses [3]. In the following, we will consider the dynamic range from
a pulse compression and matched filtering perspective, which we define by the PSR after a
filtering operation. The metric is important since it sets a limit on how detectable targets
with small cross sections are when high cross section targets are closely situated. In [82], a
similar notion using the term high contrast resolution was used to determine how detectable
two close targets with high cross sectional differences are.

The dynamic range that needs to be handled in a radar system can be very large due to
the R−4 scaling in the received power [3] and the variations in the radar cross section [13,
89, 125, 126]. Satisfying these requirements is a challenge, as pointed out in [13]. To get
an impression of the levels that may be encountered, the worst case dynamic range can
estimated by using the radar range equation, which is assessed as

worst case dynamic range = 40 log10

(
Rmax

Rmin

)
+ (σmax − σmin) + γdet (5.1.1)

where γdet is a detection threshold. The value is typically set around 10–17 dB above the
noise floor [3,13,121]. For the SRR system as specified in table 5.1, and a scenario consisting
of a car and a pedestrian with 30 and -8 dBsm cross section [13,89], the worst case dynamic
range becomes 140 dB when using a detection threshold of 10 dB. For the MRR and LRR
systems, the corresponding values are 128 and 96 dB. This high dynamic range scenario may
for instance occur when a car approaches the radar at close distances, while a pedestrian
is walking further away. If both targets end up occupying the same Doppler bin, the range
sidelobe level needs to be well below 100 dB, which puts high demands on the signal processor.
It should be noted that 100 dB corresponds to a 5 decimal difference in a linear amplitude
scale. The observation indicates that SRR systems need to handle higher power variations
than MRR and LRR systems due to the short close raneg requirements, yielding dynamic
ranges of well above 100 dB in the worst cases.

5.1.2 Angular accuracy and resolution

As shown in table 5.1, the angular accuracy requirements are set at 1.0, 0.5 and 0.1 de-
grees for SRR, MRR and LRR systems, respectively. At the maximum required ranges, the
corresponding cross ranges are approximately 0.50, 0.85 and 0.44 meters. Based on these
observations, it may be noted that LRR systems need higher accuracies to achieve the same
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cross range performance at the maximum range when compared to MRR and LRR systems
due to the amplification in cross-range. In general, the longer the operational range, the
higher is the demand on good angular accuracy.

Continuing with the angular resolution, it appears that an actual value is difficult to assess
since it depends on the intended application and the assumptions imposed on the possible
scenarios. However, it is safe to say that if the systems are to be used in safety critical appli-
cations, then they must be able to properly handle almost all possible corner cases that may
be encountered during an intended operation. This in turn will require an angular resolution
in the order of degrees or less for scenarios when high range-Doppler resolution is insufficient.
For instance, in [43], it was noted that in some adaptive cruise control and forward colli-
sion avoidance scenarios, specular multipath propagation might cause conventional signal
processing approaches to be unreliable and that high resolution angular processing might
instead be needed. Other possible corner cases, requiring high angular resolution in both
azimuth and elevation include detecting small objects such as tires on the road, bridges and
cars standing in tunnel openings. Furthermore, high angular resolution might be needed
for certain applications such as lane change assistance. In [13], it was pointed out that an
angular resolution of a couple of degrees or less might be needed for high performance, and
in [127], it was concluded that high angular resolution is critical for future systems.

For the SRR, MRR and LRR accuracy requirements, the corresponding required resolu-
tions at 15 dB SNR becomes approximately 8.0, 4.0 and 0.8 degrees when evaluated using
eq. (4.5.11). Assuming conventional processing and a ULA with half wavelength spacing, the
number of channels needed to satisfy these requirements, using eq. (4.5.10), is 15, 30 and 150,
respectively, indicating that a rather large MIMO system is needed. However, it should be
noted that the actual number of elements might be lower or higher in practice. For instance,
array calibration errors may degrade the performance significantly [128–130], and some form
of tapering might be needed to suppress sidelobes, at the cost of degraded resolution in order
to obtain a sufficent dynamic range [112]. Similarly, numerous data adaptive methods may be
used to surpass the resolution criteria [108,112], with some simultaneously also being robust
to calibration errors [112]. In [44], a method using MUSIC in the range-angle beamspace was
used in an attempt to reduce the computational complexity while simultaneously achieving
superresolution. In the Texas Instruments people tracking and counting reference design,
Capon was used after range processing to obtain high resolution range-angle heat maps prior
to Doppler processing [131]. To this end, there is a rich literature on direction of arrival es-
timators which can be used for both the single and multiple snapshot case depending on the
signal processing pipeline employed (see for instance [108, 112, 132]). Although considered
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somewhat risky, these methods may be used to compensate for the hardware required, at
the cost of a significantly increased computational burden.

5.1.3 Range ambiguity, resolution and accuracy

The effects on the system design caused by the operating range requirements in table 5.1 will
be slightly different depending if the system is linear frequency modulated and employs a
strech processor or whether it is phase modulated with a correlator filter bank. In the latter
case, the assessment is rather easy since the only requirement is that the pulse duration
is long enough. For the specified cases of 250, 100 and 30 meters max range, the corre-
sponding minimum pulse durations are given by the relation in eq. (4.5.2), which correspond
to 1.7, 0.7 and 0.2 us respectively. However, typically one wants to match the maximum
unambiguous range with the range at which the strongest possible target is well below the
noise floor in order to avoid a target foldover to close ranges. In the FMCW case, the same
limitation applies. However, since the pulses transmitted are typically in the order of 50 us,
and since stretch processors predominantly used, the actual maximum unambiguous range
usually is limited by the sampling rate, as shown in eq. (4.5.3), since targets further away
will correspond to higher frequencies. Thus, the higher the sampling rate, the longer the
maximum unambiguous range. Similarly, short pulses and high bandwidths correspond to
shorter maximum ranges at a fixed sampling rate. As an example, a system with maximum
range of 250 meters, bandwidth 300 MHz and sweep time 100 us will require a sampling rate
of 5 MHz.

Regarding the minimum range requirements, at close ranges, a good transmit-receive isola-
tion is necessary in order to avoid eclipsing. In the PMCW case, this requires minimizing
transmit-receive spillover [61, 64] and in the FMCW case this also includes, among other
things, minimizing the cross talk at the analog strech processing stage [40].

The range resolution requirements of 0.5, 0.5 and 0.1 meters for the LRR, MRR and SRR
systems as illustrated in table 5.1, corresponds to a bandwidths of 300, 300 and 1500 MHz
respectively. Using eq. (4.5.4), the required SNR to also satisfy the range accuracies is 11
dB for all three systems, which is harmonious with most threshold detectors.



58 CHAPTER 5. RADAR SYSTEM ANALYSIS

5.1.4 Doppler ambiguity, resolution and accuracy

Doppler is important since it constitutes an independent dimension which can be used to
enhance target discrimination. More importantly, for non-imaging systems with insufficient
spatial resolution, clutter can be efficiently rejected via pulse Doppler processing or moving
target indication [1, 3, 121]. The required resolution sets a limit on how short a dwell can
be in a pulsed system, assuming conventional processing. For the systems presented in
table 5.1, a resolution of 2.2 km/h is specified. In a 78 GHz system this corresponds to a
shift of approximately 320 Hz, which yields a required dwell time of at least 3.1 ms. Given
the specified accuracies in table 5.1, the required SNR is approximately 13 dB when using
eq. (4.5.7), which is, similarly to the range requirements, consistent with the commonly
used detection thresholds. However, it is worth noting that even longer dwell times will
improve clutter suppression and detection of slowly moving targets. Another benefit which
is the possible enhancement of achieving high resolution microdoppler signatures for target
characterization, a feature which is becoming ever more prevalent in the radar literature (for
an overview, see for instance [113–117].

Another important application specific consideration is the requirements on the maximum
measureable unambiguous velocity. If assuming a non-staggered PRF, aliasing will occur
if the Doppler shift exceeds half of the PRF. The effect is a possible foldover onto the low
Doppler bins, potentially masking slow moving targets of interest. The problem can be
alleviated by various disambiguation and foldover detection techniques, using for instance
multiple frames with different PRFs together with the chinese remainder theorem [133] or
by exploiting the transmit multiplexing in the MIMO system, see for instance [134] for
the TDM case and [135] for the Hadamard CDM case. However, since the corrections are
made post detection, the folding issues still remain. Furthermore, employing multiple PRFs
may compromise the system requirements and exploiting the MIMO multiplexing becomes
daunting when multiple transmitters are employed. Thus, while long pulses are desirable
from a maximum range perspective, they will also lower the maximum Doppler. To get
an impression on the orders of magnitude, an unambiguous measurement of targets moving
with a relative radial velocity of 100, 200 and 300 km/h will require a PRI of maximum
34, 17 and 11 us respectively at 78 GHz. While these pulse lengths pose no restriction to
phase modulated systems, frequency modulated systems with a stretch processor may get
severely limited when also employing emplying multiple transmitters using time divsion or
outer code multiplexing for increased spatial capabilities.
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5.1.5 Multitarget detection capabilities

An important consideration of modern radar systems is the ability to detect and track
multiple targets simultaneously. In the previous generation of automotive radars which
used continuous wave, slow linear frequency modulation, frequency shift keying and various
other methods, target disambiguation in the range-Doppler space was a limiting factor (see
for instance [32] and the references therein). This eventually led to the mainstream fast
chirping systems employed today, where each chirp duration is in the order of 90 us. Thus,
this issue appears to no longer be a problem with the recently developed high PRF frequency
and phase modulated systems.

5.1.6 A reference design from industry

To get an impression of how some real systems can be designed, we will now provide an
example of an industrial system design developed by Texas Instruments. Specifically, the
considered system, TIDEP-0092, is a SRR reference design based on the AWR1642 evaluation
module which is a single chip FMCW radar sensor operating at the 76 to 81 GHz band [136].
The system is intended to be used in applications such as lane change assistance, autonomous
parking, cross traffic alert and blind spot detection, and has an entire signal processing
pipeline implemented on an integrated processing unit, including baseband processing and
detection as well as data processing such as clustering and tracking.

The reference design employs a multi-mode system, combining both short range and ultra
short range capabilities by switching between two modes, each employing different chirp
waveforms. The short range mode uses a PRF switching scheme which allows for an ex-
tended unambiguous maximum velocity by a chinese remainder disambiguation, whereas the
ultra short range mode runs at high bandwidth for accurate close range measurements. This
design allows for tracking of strong scatterers such as cars at up to 80 meters while simul-
taneously generating point clouds for weaker targets at close ranges up to 20 meters at a
higher resolution, with everything running on relatively cheap hardware.

As a reference to contrast the numbers in table 5.1, an overview of some of the system
parameters is illustrated in table 5.2. As can be seen, the range and Doppler requirements
are satisfied with large margins, whereas the angular resolution is not, when evaluated at
an SNR of 15 dB. However, it should be noted that at least for the USRR mode, all of the
requirements are satisfied at 20 dB SNR, indicating that whenever a target is well above the
noise floor the system should function properly. Note also that the system does not have
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any capabilities of resolving targets in elevation. The design choice is probably a trade-off
between cost and hardware, since realizing many receivers is expensive.

Table 5.2: An overview of some system parameters in TIDEP-0092. 1Evaluated at 15 dB
SNR. 2Increased from native with high level algorithms.

SRR USRR Unit
Number of transmitters 1 2
Number of receivers 4 4
Effective chirp time 51 82 us
Time between chirps 5 5 us
Number of ADC samples 256 512
ADC sampling frequency 5000 6250 ksps
Number of chirps 128 64
Frame time 7.3 6.03 ms
Bandwidth 409 3456 MHz

Range resolution 36 4.3 cm
Range accuracy1 4.5 0.5 cm
Velocity resolution 0.94 1.13 km/h
Velocity accuracy1 0.12 0.14 km/h
Maximum velocity2 90 36 km/h
Azimuth resolution 30 15 degrees
Azimuth accuracy 1 3.8 1.9 degrees

5.2 A short range radar case study

We will consider a SRR system designed for parking assistance. A fictive scenarios is il-
lustrated in Figure 5.1 and consists of a rather crowded environment around a parking lot,
where the drivers intention is to comfortably leave without having to fear the risk of collision.
The role of the radar system is to provide a coherent view of the environment as to provide
a complete situational awareness.

The considered system is based on the SRR requirements from table 5.1. However, small
modifications will be made to fit the intended scenario slighty better. We will consider
the range and Doppler resolution, field of view, and maximum unambiguous range and
Doppler. The range and Doppler accuracies will be evaluated based on the corresponding
resolutions. The angular estimation will be assessed based on the considered radar systems
(i.e the available hardware), since there is typically little freedom in choosing the number
of transmitters and receivers (although it should be noted that sparse configurations are
possible, at the cost of certain trade-offs).
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Figure 5.1: Illustration of a possible scenario in the use case considered.

5.2.1 System specifications

Doppler resolution: As compared to the value in table 5.1, we will increase the Doppler
resolution from 2.2 to 0.5 km/h. This is to improve the detection of slowly moving targets
such as pedestrians, which otherwise might be masked by strong clutter such as, for instance,
bushes, trees or other swaying objects. Another considerable benefit is improved target
recognition due to the enhanced microDoppler signatures, which may allow discriminating
pedestrians from bicyclist, automotives and other clutter [113–117]. These advantages come
at the price of a four times longer dwell which may impair the co-existance properties with
other systems, as well as increasing the computational burden in the signal processor due to
the increased amount of data which needs to be compressed at each frame.

Range resolution: The same range resolution as in table 5.1 will be used. However, it
may be down prioritized for two reasons. First by decreasing the operating bandwidth more
systems will be able to coexist in the frequency band. This might be an important trade off
since many systems must be able to function simultaneously, even in the presence of tens of
cars. Second, discriminating two objects sufficiently close at the same Doppler might not be
a priority since they will most likely follow the same trajectory (assuming they are moving),
or at least in a later time instance split up into two tracks when sufficiently spaced. Since the
main objective is to increase the situational awareness as to avoid collisions, the knowledge
of only one target present when it in fact was two closely spaced targets might not be that
important for the application. However, it should be noted that poor resolution may lead
to failure in certain corner cases and for a truly high performing system, high resolution is
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of uttermost importance. This is obviously a design problem which needs to be addressed
from a systems point of view.

Maximum Doppler: Since a possible scenario is the occurrence of cars driving in a main
road, a maximum Doppler of at least 70 km/h will be required to guarantee that no alias-
ing occurs. It is here assumed that the car carrying the radar sensor is moving relatively
slowly when leaving the parking lot. Nevertheless, it should be noted that the value can
be increased or decreased depending on the post processing chain employed. For instance,
the maximum velocity can be increased by disambiguation as previously noted, and since
fast moving targets typically move non-radially, the target will move throughout the range-
Doppler image, possibly masking different targets at each time instance. Certainly, a good
target tracker should be able handle a few missing detections and thus alleviate the situa-
tion. Furthermore, assuming a stationary radar; in order to fold into zero Doppler and mask
slowly moving targets, the target will have to move at twice the maximum unambiguous
velocity, which in this case is 140 km/h.

In a trade-off between range resolution, maximum Doppler and hardware limitations (in this
case a maximum possible IF bandwidth of 20 MHz in the later considered FMCW system),
we will keep the range resolution as specified, and require a 70 km/h maximum unambiguous
velocity. Obviously, this is a compromise and in a real implementation one would test many
different configurations, some with higher maximum velocity and lower range resolution and
vice versa, in order to ensure a satisfactory system.

Spatial resolution and accuracy: In current automotive systems, the spatial resolution
is ultimately limited by the number of virtual receivers that can be used in the system.
Furthermore, since it is rather hard to assess whether the range and Doppler resolution is
sufficient, we will not consider this aspect any further – but only note that the situation
might be alleviated algorithmically by using data adaptive methods.

Furthermore, imaging clutter (stationary targets) might be important in order to avoid
colliding with targets such as, for instance, standing pedestrians, cones, pillars or railings;
hence we will later also consider a small and large MIMO system.

Field of view: As mentioned in [137], a large field of view is required in order to obtain a
good situational awareness – in this case we will follow the recommendations in table 5.1.
However, it should be noted that this comes at the price of a reduced transmit and receive
gain which may limit the operational range. This issue can obviously be (and is) solved by
mounting multiple systems around the car - at the additional hardware cost, increased RF
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Table 5.3: The requirements on the considered SRR system.

Parameter Value Unit
Maximum EIRP -9 dBm/MHz
Frequency band 77-81 GHz
Range swath 0.15-30 m
Range resolution 0.1 m
Velocity resolution 0.5 km/h
Maximum velocity 70 km/h
3 dB beamwidth azimuth ±80 degrees
3 dB beamwidth elevation ±10 degrees

occupancy, and increased data processing (sensor fusion) and calibration complexity.

The system requirements are illustrated in table 5.3. We will now proceed to derive some
additional parameters which are independent of the type of waveform employed. These are
summarized in table 5.4.

Waveform bandwidth: The required range resolution is 0.1 meters, which corresponds
to a bandwidth of 1500 MHz and an accuracy of 0.02 meters at 11 dB SNR, as shown
previously.

Transmit and receive gain: The transmit and receive gain can be estimated as G =

3.098π/(θ3ϕ3) − L where ϕ3 and θ3 are the 3 dB beamwidths in azimuth and elevation
respectively and L the associated losses [3]. By using the azimuth and elevation field of view
as the 3 dB beamwidths, and setting a loss of 4 dB in transmit and receive, an estimate of
the transmit and receive gain is 6 dB at the field of views of ±80◦ and ±10◦ in azimuth and
elevation.

Transmit power: At the 1500 MHz bandwidth, the maximum EIRP becomes 22 dBm.
This yields a maximum transmit power Pt,max = 22−Gt = 16 dBm.

Pulse repetition interval: A maximum velocity of 70 km/h corresponds to a Doppler shift
of approximately 10.2 kHz at 79 GHz. A PRF of 20.4 kHz will accordingly be needed to un-
ambiguously sample the Doppler shift, which in turn corresponds to a PRI of approximately
49 us.

Dwell time: Similarly, a velocity resolution of 0.5 km/h corresponds to Doppler resolution
of approximately 73 Hz, which in turn requires a dwell time of approximately 14 ms. This
in implies that at least 286 pulses need to be transmitted during a CPI.
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Table 5.4: The table shows some derived system parameters for the SRR case.

Parameter Value Unit
Receive gain 6 dB
Transmit gain 6 dB
Maximum transmit power 16 dBm
Pulse bandwidth 1500 MHz
Minimum PRI 49 us
Minimum dwell time 14 ms
Minimum number of pulses 286
3 dB beamwidth elevation ±10 degrees

5.2.2 Configuring a FMCW system

In the following, we will consider the AWR2243 developed at Texas Instruments as the
hardware platform for the design [46]. An overview of some system parameters are illustrated
in table 5.5.

Chirp parameters: In the system, three transmitters are available for improving the spa-
tial diversity. In order to simplify the system analysis, we will consider time division mul-
tiplexing, although it should be noted that outer Hadamard coding is also possible in the
AWR2243. Thus, all three transmitters must sequentially transmit a chirp during a PRI of
49 us, as specified in table 5.4. This yields a maximum chirp duration of 16.33 us, and a
corresponding minimum ramp rate of 92 MHz/us, which is also satisfied by hardware, as
given in table 5.5.

Sampling rates: Given the chirp rate and sweep time, the corresponding beat frequency
at the maximum range of 30 m is 18.4 MHz, which satisfies the IF bandwidth requirement.
Strong reflections from distances further away than 30 meters will not pose any problem and
fold into close ranges since these are removed by the analog filters after the de-chirping in
the analog front end.

It is worth nothing that if the maximum velocity requirement would have been 120 km/h,
the chirp maximum chirp duration and minimum ramp rate would have corresponded to
9.33 us and 161 MHz/us respecteviely. This would yield a beat frequency of 32.2 MHz at 30
m, which is 60% above the 20 MHz IF bandwidth. The hardware would thus not support
this configuration.

SNR analysis: We will proceed to evaluate the SNR obtained at 30 meter for a pedestrian
with a radar cross section of -8 dBsm. The performance will be considered at 13 dBm
transmit power and an additional 3 dB loss will be added on to noise figure, taking into
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Table 5.5: An overview of some system parameters in AWR2243.

Parameter Value Unit
Sampling rate 45 Msps
Noise figure 12 dB
No. transmitters 3
No. receivers 4
Max transmit Power 13 dBm
Maximum IF bandwidth 20 MHz
Maximum ramp rate 266 MHz/us
3 dB beamwidth elevation ±10 degrees

account of other possible losses. Thus, given the radar range equation and thermal noise
power in eq. (2.5.1) and eq. (2.5.3), as well as the the parameters in the tables 5.4 and 5.5,
the corresponding SNR at 30 m is -37 dB at 300 K.

A standard signal processing flow consisting of pulse compression, Doppler processing and
non-coherent channel integration before detection is considered. At the specified range reso-
lution of 0.1 meters, a minimum of 300 samples are needed for a 30 meter coverage. Since the
ADCs are capable of each outputting 734 samples over the 16.33 us chirp duration at a sam-
pling rate of 45 Msps, we will assume that 512 samples are available at compression. Since
processing gain for the range-Doppler processing is coherent, the gain will be approximately
45.7 dB, assuming a pessimistic 6 dB window and straddle loss. The channel integration is
non-coherent and will result in an approximately 7.6 dB gain [3].

Thus, the SNR at 30 meter is 8.4 dB before integration and after 16 dB, before detection,
which above the typical 10 dB threshold used in many detectors. If assuming Rayleigh
distributed noise and a Swerling 0 target, then the probability of detection is evaluated as
99.9 % when using an optimal linear law detector with a probability of false alarm of 10−6

when using Albersheims equation [3]. Thus, the implementation is clearly feasible (and
possible even over-designed for the use case).

5.2.3 Configuring a PMCW system

As a reference system, we will consider the 79 GHz system developed in [60,61]. A list of some
system parameters is illustrated in table 5.6. The system employs two transmitters and two
receivers, where it was demonstrated that two chips can be combined to form a four-by-four
transmit-receive MIMO system. At transmit, the waveform generator is capable of generating
any arbitrary binary sequence with up to 2047 chips at 1.975 Gb/s, with the additional
possibility of employing outer code multiplexing by using Hadamard codes. At receive, the
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Table 5.6: An overview of the system parameters of the PMCW in [60, 61]. 1When using 1
or 2 chips.

Parameter Value Unit
Carrier frequency 79 GHz
Noise figure 10 dB
Maximum chip rate 1.975 Gbps
Maximum sequence length 2047 chips
Number of receivers 2 / 41

Number of transmitters 2 / 41

Maximum transmit power 10 dBm
3 dB beamwidth elevation ±10 degrees

signal is downconverted to complex baseband and digitized using a synchronized 7 bit 1.975
GHz analog to digital converter. At each channel, a set of parallel correlation banks and
accumulators are used for pulse compression and coherent integration. The compressed data
is then sent off-chip for further Doppler processing, direction arrival estimation, detection
and data processing.

In the following, the same signal processing chain as in [61] will be used to configure the
system and assess the performance. For an overview, we refer to the paper and Sections
2 and 4 on the signal modeling and processing. In order to make a fair comparison, the
system will be assessed based on TDM transmission, although it should be noted that this is
not ideal for PMCW systems and that one would prefer outer CDM using Hadamard codes
(which is supported in the considered system). Furthermore, to make this configuration
comparable to the previous FMCW system, we will consider a two-chip cascade, employing
all receivers but only employing three of the four transmitters.

Waveform: As previously, the minimum pulse repetition interval is 49 us, which yields an
effective duration of maximum 16.33 us for each transmitter. Since the required bandwidth
is 1500 MHz, the corresponding chip duration is 0.67 ns, which yields a pulse duration
of approximately 1.36 us for 2047 chips. Accordingly, each transmitter can accumulate
approximately 12 pulses to yield a duration of approximately 16.33 us. We note that the
risk of range folding is small since the 1.36 us pulse length corresponds to an unambiguous
range of 200 meters.

Sampling rates: It will be assumed that the analog to digital converters are perfectly
synchronized with the waveform generation, as in [61], but at a lower sampling rate of 1500
MHz. This will allow the transmitted waveform to be perfectly recovered despite critically
sampled.



5.2. A SHORT RANGE RADAR CASE STUDY 67

SNR analysis: As previously, we will evaluate the SNR obtained at 30 meter for a pedes-
trian with a radar cross section of -8 dBsm. The performance will be considered at 10 dBm
transmit power and an additional 3 dB loss will be added on to noise figure, taking into
account of other possible losses. A 2 GHz analog bandwidth is assumed, yielding an SNR
of approximately -58 dB before compression at 30 meter distance and a temperature of 300
K.

The pulse compression, accumulation and Doppler processing is assumed coherent and chan-
nel integration non-coherent, yielding a signal processing gain of 62.5 dB before channel
integration and 70 dB after. We have removed 3 dB for window and straddle losses during
the Doppler processing, and an additional possible 3 dB loss if using, for instance, GMSK
modulation at transmit to satisfy regulations. The corresponding SNR at 30 meter is then
approximately 12 dB after integration, which is also above the approximately 10 dB thresh-
old used in many detectors. By using Albersheims equation with a probability of false alarm
of 10−6, the probability of detection is approximately 91%, which is reasonable considering
the pessimistic assumptions.

5.2.4 System comparison

We will now proceed to compare the described systems. Since the biggest differences lies in
the way pulse compression is carried out, the range and Doppler responses are specifically
investigated in terms of sidelobe structure, resolution and dynamic range. We will consider
some of the binary sequences proposed in [63, 69, 70] for automotive radar and only use
conventional matched filter processing without any Doppler correction (except for MIMO
motion compensation as descrbibed later on) or other processing techniques. ZCZ, APAS,
MLS are considererd at 2048, 2000, 2047 symbols with the previous specifications. The ZCZ
and APAS has sidelobe-free zones up to approximately 50 and 100 meters, respectively, which
is sufficient for the considered scenarios. For the FMCW system, the Hann and Blackman
windows are applied to the downconverted LFM signal. These windows are considered
necessary in order to acheive adequate performance and are well representative for most
conventional systems.

Effects of uncompensated Doppler shifts
Fig. 5.2 illustrates the differences in the range responses obtained after compressing some
PMCW sequences and a Hann windowed LFM waveform at various target velocities. Note
that the responses have been centered in range and normalized in power to make the differ-
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ences more visible. In practice, small biases may occur in the FMCW due to, for instance,
range-Doppler coupling along with certain processing losses caused by the windowing and
dppler mismatch [3, 40]. The waveforms are generated at a 1500 MHz bandwidth except
for one ZCZ sequence which is generated at 750 MHz as reference. It can be seen that all
phase codes yield a sharp thumbtack response which is narrower than the Hann windowed
waveform, indicating a slightly better contrast resolution of closely spaced and wide dynamic
range targets. At zero Doppler, APAS and ZCZ yield zero sidelobes whereas MLS yields
a flat sidelobe structure at just below -60 dB. The Hann window has a sidelobe structure
with a peak at -32 dB and a fall off to -100 dB and well below at larger distances. With the
utilized bandwidth of 1500 MHz, the expected range resolution is approximately 0.1 m. It
can be seen that the phase coded waveforms acheive this, but that since windowing is used
in the FMCW system (which is necessary), the resolution is in fact 0.2 m when measured
from the mainlobe peak to the first null. For comparison, the same resolution is obtained
at 750 MHz when using a ZCZ sequence. At increased Doppler shifts however, substantial
sidelobe degradations occur for the phase modulated sequences which reduces the dynamic
range. The LFM waveform on the other hand remain robust and experiences practically no
performance loss over the increasing amount of Doppler shifts.

In order to further quantify the effects of the Doppler induced filter mistmatches, PSR,
ISR and LPG is shown in Fig. 5.3 when evaluated at increasing shifts. Since the LFM
waveform is well known to be Doppler resistant with a ridge-like ambiguity function, and is
well documented in the literature, it is excluded from the figure. For this particular case,
the Doppler mismatch SNR losses are assumed to be negligible. However, it should be noted
that there are other losses present, corresponding to approximately 1.9 dB in the window
and maximum 1.33 dB in the straddle when using a Hann taper [3]. From the figure, it can
be seen that the LPG is neglible for all evaluated velocities, indicating that the SNR after
compression remains relatively unaffected. On the other hand, the PSR and ISR increases at
increasing Doppler shifts which in essence instead reduces the SCR at adjacent target cells,
which reduces detectability. The effect is rather substantial in the considered case since it
breaks the worst case dynamic range requirements of approximately 100 dB after only minor
Doppler shifts. For instance, at a target velocity of 30 km/h, the PSR is only -70 dB for an
APAS or ZCZ sequence while the Hann windowed LFM waveform has a PSR of well below
-100 dB at longer ranges, indicating better sidelobe rejection It may be further noted from
Fig. 5.3 that the PSR and ISR performance is best for ZCZ and APAS as compared to MLS,
with ZCZ having an edge with respect to the ISR. Furthermore, the 750 MHz ZCZ performes
worse than the 1500 MHz ZCZ which is due to the longer pulse length (each chip is twice as
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Figure 5.2: The normalized range response obtained after compressing various waveforms
using matched filtering. It can be seen that the phase modulated waveforms (MLS, APAS,
ZCZ) provide better resolution and dynamic range at small Doppler shifts and close distances
when compared to the windowed periodogram (Hann). However, for large Doppler shifts and
distances, the periodogram remains robust and outperforms the phase modulated analogs.
Note that ZCZ acheives the same (Rayleigh) resolution as Hann at half the bandwidth.

long), which creates a larger Doppler distortion in the received signal. This appears to be a
common phenomenon for most kind of sequences. As will be shown in the next example, the
implications are that high RCS targets at close ranges may mask low RCS targets further
away. However, for closely spaced targets, this is not an issue since the RCS differences
typically do not exceed 50 dBsm in most scenarios.

Some performance illustrations
To give a further idea on how the systems differs, and illustrate the advantages of either
kind of system, a test scenario consisting of two point sources with 40 and 10 dBsm cross
sections will be considered. Although idealistic, these targets may represent a car and a
bicyclist respectively and will illustrate the effects advantages and disadvantages of either
system. Convential matched filtering will be used and it is assumed that the antennas form
a uniform linear virtual array. In the setup, the previously presented APAS sequence will
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Figure 5.3: The figure illustrates the peak sidelobe ratio (PSR), integrated sidelobe ratio
(ISR) and loss in processing gain (LPG) obtained after matched filtering compression for
various Doppler shifts. It can be seen that small losses in processing

be used and compared with a hanning windowed LFM waveform after deramping. In the
Doppler processing, a hanning window is used to taper the slow time samples.

Fig. 5.4 illustrates the range-Doppler maps obtained for the four different scenarios consid-
ered. The upper row corresponds to the response obtained from the PMCW system, and the
bottom row the corresponding response from the FMCW system. In fig. 5.4a), the 40 and
10 dBsm target are placed at 2 and 7 meter range, respectively, with zero Doppler. It can
be seen that the PMCW system manages to compress the target to a much smaller point
source with no sidelobes in range when compared to the windowed FMCW, indicating a
much better resolution and contrast imaging. However, as shown in fig. 5.4b), increasing the
target velocities to 15 km/h increases the sidelobe levels dramatically in the PMCW system,
making the weaker 10 dBsm target at 7 meter range hardly discernible from the surrounding
clutter. The FMCW system on the other hand remains largely unaffected, illustrating the
robustness in dynamic range even when the targets are subjected to Doppler shifts. Con-
tinuing, fig. 5.4c) illustrates the case when the targets are standing still at 2 and 2.5 meters
respectively. It can be seen that, as previously, the PMCW system manages to compress the
echos into two well separable point sources in the range-Doppler domain. On the other hand,
despite having an expected resolution of 0.1 m, the targets are hard to discern due to the
large main peak and high sidelobe levels. The same results can be seen in fig. 5.4d) when the
targets are moving at a velocity of 15 km/h. It is noted that the targets are still discernible
in the PMCW case despite the large sidelobe levels since the R−4 factor is not as prevalent
when the targets are closely spaced. Similarly, the targets are still hardly resolvable in the
FMCW case.
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Figure 5.4: range-Doppler maps obtained. Upper row is PMCW, lower row is FMCW.

To further illustrate the effects of the increased sidelobe levels, fig. 5.5 shows eight range
slices along the Doppler bin where the targets reside. As previously, the upper column
corresponds to the PMCW and the lower by the FMCW, where we have also included a
blackman window for reference. The scenarios in fig. 5.5a) and b) represent the cases when
the targets are moving at 0 and 15 km/h respectively, each target located at 2 and 7 meter
range. As previously, the FMCW system has no problems discerning the targets at either
velocity, while the PMCW remains sensitive to the induced Doppler shift, raising the noise
floor by almost 40 dB. To show the possible consequences of this mismatch, fig. 5.5c) and
d) illustrates the same set of experiments, but the target at 7 m is moving to 14 m. At zero
Doppler in c), the targets are well separable, but at 15 km/h the weaker target is no longer
detectable as it lies below the sidelobe ridge.

This scenario is important since is idealizes many cases that may be encountered. For
instance, one can imagine a bicyclist at boresight and a car crossing in a side lane, both
driving at 15 km/h. In such case, both will end up in the same Doppler bin, and if the
detector is only based on the range-Doppler map (which appears to be common), the bicyclist
will not be detectable at a range of 14 m if the car is 2m from the sensor if one were to
operate a PMCW system without any further processing.

Fig. 5.6 shows eight range slices illustrating the high contrast capabilities of either system.
In a) and b), the targets are placed at 2 and 2.5 m respectively, with a) being stationary
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Figure 5.5: Range slices that the target Doppler bins. Upper row is PMCW, lower row is
FMCW.

Figure 5.6: Range slices that the target Doppler bins. Upper row is PMCW, lower row is
FMCW.
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and b) both moving at 15 km/h. It can be seen that the range response of the PMCW
system resembles as previously a thumbtack, with both targets clearly separated in the zero
Doppler case. At 15 km/h, the sidelobes are as in the previous examples raised i significantly.
However, the targets are still separable since the R−4 factor gets negligible at such short
separation. For the Hann and Blackman windowed FMCW waveforms in the bottom, both
targets are discernible for both tapers. However, they do not separate down to the noise
floor, which in turn will require some sort of peak finding algorithm or data adaptive detector
(for instance a sliding window CFAR variant [3]) in order to recover the sources. It should be
noted that implementing a general detector for these kind of scenarios is not straightforward
since the closely situated targets will act as persistent interferers and may cause a bias in the
training data used in the detector. In practice this means that sometimes only little data
is available to estimate the noise, clutter and interference statistics.Thus, discriminating the
targets may, or may not be a challenge depending on the processing and kind of targets
expected in the field of view. In fig. 5.6 c) and d), the same scenarios are illustrated, but
with the targets at 2 and 2.2 m. As previously, both targets are separable in the PMCW
systems, whereas in the FMCW, the peaks coalesce into one.

5.3 Extension to large MIMO systems

Sometimes, the separation in the range-Doppler domain is not sufficent for an ideal perfor-
mance. Certain scenarios can be challenging and adding an extra spatial dimension might
improve the performance considerably. Another benefit is that of reducing the cross range
variations of the estimated target positions at longer ranges, as well as handling challenging
environments where, for instance, resolution in elevation is important.

As discussed in the introduction of this thesis, systems with many tansmitters and receivers
are being evaluated in the industry and may eventually make it to the consumer. Thus, in
this section we will consider the recently developed SRR system in the angular domain, and
investigate how the MIMO system affects the performance. The signal processing will still
be based on the conventional matched filters, and in addition to the previously constructed
range-Doppler maps, range-angle maps will be generated. These are generated by treating
each received range profile as an independent snapshot, used to estimate the direction of
arrivals at each range bin. However, some additional processing is needed since target mo-
tions will cause phase errors in the virtual array, which may degrade the performance. The
process of mitigating this effect is known as motion compensation [138].
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5.3.1 Motion compensation

We will now shortly show how to compensate for the motion by dragging back the phases
in the Doppler domain. Let ytx,k ∈ CM×1 denote the signals received corresponding to the
k:th active transmitter in the TDM. Under the simplified model in eq. (4.1.5), assuming N
transmitters with k = 0 . . . N − 1 and a single target with delay τ and Doppler shift fd, the
signal received under the time division multiplexing is

ytx,0 = αφ(tf − τ)e−j2πfd(ts+0·Tp)ba0 = x0a0e
−j2πfd0·Tp

ytx,1 = αφ(tf − τ)e−j2πfd(ts+1·Tp)ba1 = x0a1e
−j2πfd1·Tp

ytx,2 = αφ(tf − τ)e−j2πfd(ts+2·Tp)ba2 = x0a2e
−j2πfd2·Tp

...

where b is the receive steering vector and ak the k:th component of the transmit steering vec-
tor. Thus, as can be seen, the motion in the receivers corresponding to the k:th transmitters
can be compensated by adding a fdTp · k phase shift. However, since the objective is to esti-
mate the target parameters, the Doppler shift is not known. This issue can be circumvented
by transforming the range-compressed data to the Doppler domain, apply the modulation
specifically for each Doppler bin and then transforming back to the range-pulse domain where
the direction of arrivals are estimated. This can be done without knowing the actual wave-
form parameters as follows. For the FMCW case, the normalized dopler frequencies (which
are in the range -0.5 to 0.5) are given by ν = fdNTp. Thus, the motion compensation can be
expressed in terms of the considered Doppler bin as fdTpk = fdNTp

Tpk

NTp
= νk/N for the k:th

transmitter. In the PMCW case, if the transmitters are switched between each accumula-
tion, one also needs to know the number of accumulations Nacc, since then the normalized
frequency is ν = fdNNaccTp. The corresponding phase shift is then νk/(NNacc). It may be
noted that the phase error is much smaller in the PMCW case than for the FMCW when a
large number of accumulations is used. However, this assumes that the hardware is able to
switch the power amplifiers at that rate. It appears more common to run all transmitters
simulatensouly and run either inner or outer codes to acheive transmit orthogonality, such
as Hadamard CDM, which also has the avantage of increasing the average transmit power
given that the regulatory aspects are satisfied. Nevertheless, for the case of this particular
comparison, we will disregard this aspect. We finally note that prior to angle estimation,
one may perform additional Doppler processing, such as moving target indication to reduce
the amount of clutter present.
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5.3.2 Range-angle estimation in 3x4 MIMO

We will now illustrate the performance in the range-angle domain using the same systems
as previously discussed.

In the first scenario, two targets with a cross section of 40 and 10 dBsm, each located at 2
and 8 m. The direction of arrivals are 30 and 0 degrees, respectively. Figure 5.7 illustrates
the range angle maps for the respective PMCW (upper row) and FMCW systems (bottom
row) when using a Hann windowed beamformer. As can be seen in a), and disregarding the
aspects of range-resolution, both systems perform almost identically in the angular domain
when the targets are stationary. Similar results can be seen in b), with also the range
sidelobes appearing in the PMCW system.

To further investigate the performance, Figure 5.8 illustrates the angular-profiles obtained
along the 7 meter range-bin for two targets moving at 15 km/h, separated by a) 30 degrees
and b) 15 degrees. The target at boresight has a cross section of 0 dBsm, while the target
at 30 degrees is increased from 0 dBsm to 40 dBsm. As can be seen in a), the targets are
separable at 30 degrees, but with a bias of the weaker target which increases the higher the
dynamic range is. In b), the targets are barely separable at equal dynamic range, with the
resolvability lost at increased dynamic range.

These examples indicate that the performance in the angular domain is similar for both type
of systems, and that the resolution is rather poor with very high sidelobes even if windowing
is used. This is one of the reasons for the emerging use of large receive arrays, where MIMO
plays a central role in keeping the cost and form factor favourable.

5.3.3 Range-angle estimation in 8x8 MIMO

In the following, we will evaluate the DOA estimation performance when using a 8x8 MIMO
array. In order to satisfy the maximum unambiguous Doppler requirement, the systems are
reconfigured as follows; instead of 12 accumulations, the PMCW will do 4 accumulations; the
sweep time is reduced from 16.33 us to 6.1 us in the FMCW system. We will as previously
consider two targets, both situated at 7 meters to evaluate the resolution. As previously, all
range-angle maps are in dB-scale and represented in a linear color scale from the noise floor
to the maximum peak. Furthermore, the upper rows in the figures correspond to the results
from the PMCW systems and the lower from the FMCW systems.

Figure 5.9 illustrates the range-angle maps obtained when using the 8x8 MIMO system
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Figure 5.7: The figure illustrates the range-angle image for the respective 3x4 MIMO systems.
Two targets are present, each with an RCS of 40 (at 2 m) and 10 (at 7 m) dBsm respetively.

Figure 5.8: The figure illustrates four angular profiles as obtained from the respective 3x4
MIMO systems. The targets are moving at 15 km/h. DR = Dynamic Range.
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without any motion compensation. As can be seen in the zero Doppler case in a), there
are no issues localizing the targets. When the targets are moving at 15 km/h, however, in
addition to the range clutter in the PMCW system, large sidelobes are apparent around the
strong target at 15◦, as shown in b). In the PMCW case, the target at boresight is still well
discriminated, whereas the corresponding target in the FMCW case is masked. As previously
discussed, this is because the PMCW system have much shorter pulses than the FMCW
which in turn makes the phase errors in the virtual array smaller. Figure 5.10 illustrates
the corresponding images after motion compensation. As can be seen, the sidelobes are
significantly attenuated and the smaller target at boresight can now be discriminated from
the sidelobes.

Figures 5.11 and 5.12 illustrate the angular profiles along the target range bin for both the
Doppler uncompensated and compensated case. As can be seen in the uncompensated case,
the spurioses caused by the motion induced errors apparent for both systems, but about 20 dB
weaker in the PMCW system. The dynamic range in the respective systems is approximately
60 and 40 dB respectively, indicating also a 20 dB favor for the PMCW system. On the
other hand, after motion compensation, practically all spurioses are eliminated while there
still remain minor peaks in the FMCW system, at a dynamic range of approximately 60
dB, which is enough for practically all scenarios. It is worth nothing that large sidelobes
are still present around the strongest target. This is due to the Hann window used during
beamforming and indicates one of the major weaknesses of non-adaptive estimators.

The results indicate that PMCW systems have some inherent robustness to motion induced
phase errors in the MIMO array when compared with FMCW systems, which is due to the
relatively short pulses transmitted.

5.3.4 On MIMO scalability

We will now investigate how adding additional transmitters affects the system design. It was
noted in table 5.4 that the minimum PRI needed to satisfy a 70 km/h maximum unambiguous
velocity is 49 us. For three transmitters in a TDM or Hadamard CDMmode, this corresponds
to a PRI of 16.33 us, and if using 8 or 16 transmitters, the maximum PRIs instead become
6.13 and 3.06 us.

For the considered PMCW system, this poses no bigger challenge than reducing the number
of accumulations to 4 and 2, respectively, which in practice is no compromise. On the
other hand, for the FMCW system, we first note that 16 transmitters is not supported
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Figure 5.9: The figure illustrates the range-angle image of two targets with cross section 10
and 40 dBsm using the 8x8 MIMO system without motion compensation. The upper row is
PMCW, the lower row is FMCW.

Figure 5.10: The figure illustrates the range-angle image of two targets with cross section
10 and 40 dBsm using the 8x8 MIMO system with motion compensation. The upper row is
PMCW, the lower row is FMCW.
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Figure 5.11: The figure illustrates the angular profile at the target range bin from Figure 5.9.
The upper row is PMCW, the lower row is FMCW. DR =dynamic range.

Figure 5.12: The figure illustrates the angular profile at the target range bin from Figure 5.10.
The upper row is PMCW, the lower row is FMCW. DR = dynamic range.
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by the hardware since this would correspond to a chirp rate of 489 MHz/us, as indicated
by table 5.5. Another issue is the required sampling rate needed to cover the 30 m range
swath. At 30 m, the beat frequencies for both both cases are 24.5 and 49 MHz. Thus,
sampling rates of at least 49 and 98 Msps are needed to prevent aliasing for the respective
cases. Neither of these two configurations are supported by hardware, and unless improved,
some sort of compromises must be made. For instance, in the example in Section 5.2, a
multi-mode approach was used, where a short range, high resolution and ambigous Doppler
(low PRF) mode was combined with a long range, low resolution and unambiguous Doppler
mode (staggered high PRF). Thus, by switching the modes over two consecutive frames and
combining the target lists, the specification may still be fulfilled, at the cost of compromised
resolution at longer ranges and twice the dwell time.

The observations indicate that current PMCW systems are more scalable from a MIMO point
of view than current FMCW systems, with the issue appearing to originate in the transmit
multiplexing and the low sampling rates used. To the best of the writer’s knowledge, all
current FMCW systems use either TDM or Hadamard CDM to multiplex the transmitters,
each reducing the maximum unambiguous Doppler and increasing the required sampling
rates by the number of transmitters. This in turn implies that much faster ADCs will
be needed in order to keep up with the range-Doppler requirements. Furthermore, at the
considered bandwidths, the pulse durations are in the order of few microseconds, and when
operating over longer distances, the round-trip delay will be on the same order of magnitude
(1 us corresponds to 150 m, for instance), indicating that a significantly large portion of the
waveform needs to be discarded if using stretch processing.

The main issue appears to be the need to keep up with the reduced range-Doppler area
when the transmitters increase. By multipltying eq. (4.5.2) and eq. (4.5.5) and letting
PRI = Tp/Ntx, one obtains the largest achievable range-Doppler area

Apmcw =
λc

8Ntx

(5.3.1)

which, as can be seen, does not depend on the choice of waveform, but only on the carrier
frequency and number of transmitters. However, since the maximum range in FMCW sys-
tems is ADC limited, as indicated by eq. (4.5.3), the corresponding range-Doppler area is
instead

Afmcw =
λ∆RFs,min

4Ntx

(5.3.2)



5.3. EXTENSION TO LARGE MIMO SYSTEMS 81

which depends on the sampling rate Fs,min and range resolution ∆R in addition to the
number of transmitters. To make a comparison, consider an extremely capable system with
the same SRR system parameters as previously considered, but with a maximum range of
250 meters, approaching that of some LIDAR systems. Then, the needed range-Doppler area
is 250 ·70/3.6 = 4861 m2/s. The corresponding achievable range-Doppler area in the PMCW
case and the required sampling rates in the FMCW case are illustrated in table 5.7 for the
case of Ntx = 2, 4, 8, 16 and 32 transmitters. As can be seen, the required range-Doppler
area can be satisfied for all MIMO configurations when employing PMCW (neglecting the
small undershoot at 32 transmitters). Turning to the required sampling rates in the FMCW
system, it can immediately be seen that the sampling rates quickly approach those needed for
direct IF sampling. This indicates that for such high performing systems, stretch processing
becomes no longer feasible and the leap to enter the domain of entirely digital processors
become smaller. Fundamentally, when pushing radar systems to these performance limits,
there are very few corners that can be cut and PMCW systems appear to at least have a
native support for managing the required waveforms.

As a final note on this issue, the maximum operational range was set to 250 meters, which
indicates that in order to guarantee no range folding, one would need a maximum unam-
biguous range of, say 1000 meters, indicating the need for a four times larger range-Doppler
area. However, this is only a problem when realizing the MIMO with TDM and Hadamard
CDM, since then the pulse duration has to be reduced by the number of transmitters. If
one instead uses orthogonal ZCZ sequences, such as the ones proposed in [100] (see also
Section 3.1), then the range ambiguity is no longer an issue since the pulse duration is not
compromised (although one then instead has to deal with Doppler effects). Note that this
corresponds to setting Ntx = 1 in eq. (5.3.1), indicating initially that no compromises are
made. However, by the Welch lower bound (see Section 3.3), it is impossible to design Ntx

sequences with perfect auto- and cross corelation properties. On the other hand, the bound
states that it is possible to construct sequences which are orthogonal over certain regions
which size is reduced by a factor of Ntx from the single sequence case, which is exactly
what the sequences in [100] manage. Thus, the clear range-Doppler area is still limited by
eq. (5.3.1), but there is no risk of range folding. This observation appears to be consistent
with the results in [56].

To conclude, as systems are progressing towards large MIMO systems the usable range-
Doppler area becomes scarce. It appears therefore advantageous (and maybe necessary) to
directly sample the entire IF bandwidth and then peform an entirely digital pulse compres-
sion, as in PMCW systems, as compared to the mixed analog-digital processing employed in
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Table 5.7: The table illustrates the maximum possible range-Doppler area for a PMCW
system, and the minimum sampling rate for a FMCW system to satisfy a range-Doppler
area of 4861 m2/s.

Ntx Apmcw [m2/s] Fs,min [Msps]
2 71104 102
4 35552 205
8 17776 410
16 8888 820
32 4444 1640

the current FMCW stretch processors.

5.4 Conclusion

The focus on this section has been on automotive radar system design and a special at-
tention has been made to make, to the best of the authors knowledge, a fair comparison
between FMCW and PMCW type of systems. First, an overview of the design specifications
was reviewed and discussed, also providing an example of an industrial design. Then, two
short range radar systems for parking assistance were designed, one for each type of system.
It was shown that both systems fulfill the specifications, with margins, and show feasible
performance. The FMCW type of system was shown to be robust to Doppler-induced pulse
compression mismatch, but showed poor resolution and contrasting capabilities when com-
pared to the PMCW system. The PMCW system on the other hand showed good resolution
with a thumbtack-like range response and excellent dynamic range, whenever the targets
were stationary. As soon as fair amounts of Doppler was present, significant degradations
were observed. In addition to the range-Doppler performance, the angular capabilities were
also examined. It was shown that with the use of 12 virtual receivers, the performance was
poor for both type of systems. Extending to larger MIMO arrays, PMCW showed better
performance in the angular domain due to the fast pulses employed, making it more robust
to Doppler-induced angular degradations than FMCW, which have relatively long pulses. It
was further shown that from a native stand-point, PMCW systems show much better scal-
ing capabilities than FMCW systems due to the inherent full baseband sampling approach,
which allows for a full utilization of the range-doppler area. The FMCW systems on the
other hand appear to be bottlenecked by the slow analog-to-digital converters employed,
which is a result of the stretch processors used. It is argued that in order to approach real
LIDAR capabilities, full baseband sampling might be necessary.



Chapter 6

High performance processing

6.1 Data adaptive DOA estimation

Since imaging radar systems using large MIMO arrays are emerging, we will in this section
investigate the possible performance gains in the angular domain. Specifically, we will con-
sider the cases of closely situated point sources and spatially extended targets. The purpose
is to show the achievable performance under an idealistic setting to investigate whether cer-
tain difficult scenarios can be handled feasibly. Various hardware and environmental limiting
factors are therefore neglected. Since data adaptive estimators are known to break to the
resolution criteria in eq. (4.5.10), with some also providing more robust estimates than the
conventional matched filters, five different estimators will be demonstrated.

6.1.1 Overview of the DOA signal model

We will quickly reiterate the idealized signal model in eq. (4.4.4) for DOA estimation:

y(t) =
K∑
k=1

αk(t)vk + n = Bs(t) + n(t) (6.1.1)

whereK is the number of hypothesized targets, y(t) ∈ CMN×1 the data vector, n(t) ∈ CMN×1

the associated noise, s(t) ∈ CK×1 the source signals, vk ∈ CMN×1 the MIMO steering vector

83
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and B ∈ CMN×K is the MIMO steering matrix, each given as

s = [α1(t), α2(t), . . . , αK(t)]T (6.1.2)

B = [v1, v2, . . . ,vK ]T (6.1.3)

The noise n(t) is modelled as a zero mean, temporally white and uncorrelated stochastic
process. The source signals s(t) are modelled as being zero mean, mutually uncorrelated
and uncorrelated with n(t). The associated covariance matrices are then given by

E{n(t)n∗(t̃)} = diag ([σ1 σ2 . . . σM ]) δt,t̃ (6.1.4)

E{s(t)s∗(t̃)} = diag ([p1 p2 . . . pK ]) δt,t̃ (6.1.5)

E{n(t)s∗(t̃)} = 0 (6.1.6)

where δt,t̃ = 0 for all t 6= t̃ and δt,t̃ = 1 for all t = t̃. Under the stated assumptions, the
covariance matrix of y(t) can be expressed as

R = E{y(t)y∗(t)} = A∗PA (6.1.7)

where

A∗ = [v1 . . . vK e1 . . . eM ] (6.1.8)

= [v1 . . . vK vK+1 . . . vK+M ] (6.1.9)

with ek denoting a column vector which is one at index k and zero everywhere else, and

P = diag ([p1 . . . pK σ1 . . . σM ]) (6.1.10)

The covariance matrix model (6.1.7) has been considered thoroughly in the literature and
serves as the basis for many spectral estimators, see e.g. [112]. In the following, we will
let R̂ denote an estimate of the covariance matrix, which is typically estimated using a
forward-backward and (sometimes) spatially smoothed approach [108] (whenever the array
allows),

R̂ =
1

ST

T∑
t=1

S∑
i=1

yi(t)yi(t)
∗ (6.1.11)

where yi(t) is each of the S generated snapshots, both forward-backward and the subarrays,
from y(t) and total T the number of temporal snapshots. Note that if the covariance matrix
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is spatially smoothed, then the the steering vectors vk need to be adjusted accordingly.

6.1.2 Overview of some spectral estimators

We will consider five adaptive estimators, MUSIC [139], MVDR [140], RCB [141], IAA [142],
and q-SPICE [143–146], which all have previously been demonstrated in the multisnapshot
case of DOA estimation that is currently considered. For further details on the first three
estimators, see for instance [108,112,132].

The method of MUltiple SIgnal Classification (MUSIC) and Minimum Variance Distortion-
less Response (MVDR) beamformer (also known as Capon) are well known and popular in
the radar community and will therefore only be shortly described. MUSIC is based on a
subspace fitting approach where the signal and noise subspaces are assumed to be orthogonal
in the eigenspace of the data. The pseudo power spectrum is given by

p̂k =
1

v∗kÛnÛ ∗nvk
, k = 1 . . . K (6.1.12)

where Ûn is the estimated noise subspace as obtained from the n singular vectors correspond-
ing to the n smallest singular values in the singular value decomposition of R̂. Note that the
number of targets n needs to be known a priori, which is known as the model order selection
problem. MVDR is based on a minimum variance criteria where the power over the array
is minimized under the distortionless condition, giving rise to the following data-adaptive
estimate of the power spectrum

p̂k =
1

v∗kR̂
−1vk

, k = 1 . . . K (6.1.13)

Note that an inverse of the R̂ needs to be formed, which can be difficult when the number of
data is scarce. This is however not an issue in the considered use case where each pulse is an
independent snapshot, although for very large arrays this can be problematic. Under such
circumstances one may, for instance, form rolling averages from frame to frame or employ
some form of dimensionality or rank reduction scheme.

The Robust Capon Beamformer (RCB) is an extension of MVDR to the case when an
uncertainty is imposed on the steering vectors. Assuming a spherical uncertainty in vk, the
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formulation takes the following form

min
ṽk

ṽkR
−1ṽk, s.t ‖ṽk − vk‖2

2 = ε (6.1.14)

where the new weights ṽk are used to form the MVDR spectrum. The weights can be
solved efficiently using the Lagrange multiplier, see e.g [112], where it is also pointed out
that it is not dramatically more expensive than the MVDR. The strength of RCB is the
robustness to model misspecifications which may arise in many real world scenarios. For
instance, the receive and transmit arrays are more often than not corrupted by calibration
errors and mutual couplings, and in the considered problem, phase errors originating from
target motions results in certain modeling errors. The steering vector uncertainty imposed
on the formulation gives some robustness to these kind of issues.

The iterative adaptive approach (IAA) is an iterative nonparametric estimator which have
the following updating formula:

1. Initialize pk for k = 1 . . . K using the unwindowed beamformer.

2. Repeat until convergence:

• Set R = BPB∗ where P = diag{pk}, k = 1 . . . K

• Set ŝk(t) =
v∗kR

−1y(t)

v∗kR
−1vk

, t = 1 . . . T, k = 1 . . . K

• pk = 1
T

∑T
t=1 |ŝs(t)|2, k = 1 . . . K

The method has been proven useful in applications such as MIMO and STAP radar sys-
tems [147–149].

The generalized Sparse Covariance Based Estimator (q-SPICE) is a hyperparameter-free
semiparametric estimator recently proposed, which in the considered case minimizes is a
linearly constrained whitening problem. The updating formulas are given as

1. Initialize pk for k = 1 . . . K using PER.

2. Initialize σk = pK+k for k = 1 . . .MN using the MN smallest values of PER.

3. Set wk = 1
T
v∗kR̂

−1vk, k = 1 . . . K

4. Set νk = 1
T
e∗kR̂

−1ek, k = 1 . . .MN

5. Repeat until convergence:
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• Set R = A∗PA using eq. (6.1.7).

• Set βk = pk‖v∗kR−1R̂1/2‖2, k = 1 . . . K

• Set γl = σl‖e∗lR−1R̂1/2‖2, l = 1 . . .MN

• Set λ =
∑K

k=1 w
1/2
k βk +

(∑MN
l=1 ν

q
q+1γ

2q
q+1

) q+1
2q

• Set pk = βk

λw
1/2
k

, k = 1 . . . K

• Set σl =
γ

2
q+1
l

λν
q
q+1
l

(∑MN
k=1 ν

q
q+1

k γ
2q
q+1

k

) q−1
2q

, l = 1 . . .MN

where the choice of q should be chosen with respect to the sparsity desired – we will use q = 1

and q = 1.25. In the case of q = 1, the estimator coincides with the SPICE estimator. The
estimators have been shown to be useful in several spectral analysis and array processing
applications [150–157].

6.1.3 Simulation setup

In the following, we will consider the same FMCW systems as in Section 5.2 using a 3x4
and 8x8 MIMO in a half wavelength ULA configuration, since it was shown to be the most
sensitive to Doppler. The simulations were carried out as follows: The received data cubes
were first compressed and then motion-compensated as given in Section 5.3.1. A total number
of 286 range-profiles were used as individual snapshots. Since not all power spectrums are
meaningful - for instance, MUSIC yields a pseudo-spectrum and q-SPICE a heavily biased
one, the normalized spectrum of each estimator is considered

For the respective estimators, a set of 1024 steering vectors uniformly covering the angles
(−80◦, 80◦) was used. All targets were generated coherent and placed off-grid. The covariance
matrices were estimated using the sample covariance matrix using a four array forward-
backward spatial smoothing to mitigate the effect of source coherency. Although unrealistic,
MUSIC was given the correct model order. The spherical uncertainty was set as ε = 0.1 for
RCB. IAA was run for 20 iterations. The q-SPICE estimators were evaluated for q = 1 and
q = 1.25 and run for 250 iterations in order to prevent overly sparse solutions.
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6.1.4 Results and Discussion

We will now illustrate the performance of the respective estimators. In total, four scenarios
will be considered. The true targets are highlighted by a red cross if point sources and a red
dashed line if spatially extended.

Scenario 1
In the following scenario, we will consider car located in front at boresight with a pedestrian
0.5 m to the right in cross range. The radar and car are both assumed to move with a
velocity of 30 km/h, indicating the relative velocities are zero and that the pedestrian is
instead moving towards the radar at 30 km/h. Although the pedestrian can be separated in
Doppler, we will illustrate the performance in angle at the current settings. It is assumed
that the car is 8 m in front of the radar, having a width of 1.9 m and thus spanning the
azimuth angles -6.17◦ to 7.12◦. In total, 35 point sources are generated over the region
and each point is assumed Rayleigh distributed with an expected cross section of 20 dBsm
each. This is a reasonable model for the fluctuations in the cross section [3]. The pedestrian
is assumed a point target with -8 dBsm cross section at 11.31 degrees, corresponding to
approximately 0.5 m from the car in cross range.

Figure 6.1 illustrates the angular profile along the 8 m range obtained using a 3x4 MIMO.
As can be seen, none of the estimators manage to resolve the pedestrians. Furthermore,
MUSIC, MVDR, 1.00- and 1.25-SPICE split into three peaks while IAA gives a flat spectrum.
Figure 6.2 shows the corresponding results when using an 8x8 MIMO, showing a significantly
improved performance for all estimators. PER has high sidelobes (as expected), whereas
Hann, Blackman, MVDR and RCB resolves the car but not the pedestrian. MUSIC, IAA,
1.00 and 1.25-SPICE resolves the car and the pedestrian, with 1.25 SPICE appearing to have
slightly better separation, which is most likely due to the enforced sparsity.

Scenario 2
This scenario is made to represent the case when a car approaches a tunnel opening at 60
km/h, where the objective is to separate the roof from the ground (so that is possible to
detect if something is standing at the entrace). The entrace is assumed 80 m away with
the opening being 5 m high. The angle from the ground (assumed 0 degrees elevation) to
the opening is then 3.58◦. Somewhat arbitrary, there is a wall extending above the opening
to span 5 degrees up from 3.58◦, and the ground is assumed to span 5 degrees down from
boresight. A total of 15 Rayleigh distributed point scatterers with an expected cross section
of 20 dBsm each was generated for the ground and wall. The number of targets correspond
to approximately 3 scatterers per degree, or approximately five scatterers per resolution cell
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Figure 6.1: The angular profile for scenario 1 using a 3x4 MIMO. All sources are coherent
and 286 snapshots (pulses) were used.

Figure 6.2: The angular profile for scenario 1 using an 8x8 MIMO. All point sources are
coherent and 286 snapshots (pulses) were used.
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for a 64 channels as given by eq. (4.5.10).

Figure 6.3 illustrates the angular profiles obtained for the 3x4 MIMO. It can be seen that
PER, IAA and 1.00- and 1.25-SPICE provides best separation, with 1.50-SPICE appearing
to provide the best separation, while the rest of the estimators do not manage to resolve
the ridges. The corresponding profiles for the 8x8 MIMO are illustrated in Figure 6.4,
with PER and IAA appearing to give the best separation. MUSIC gives separation but a
lot of spurioses (it is given correct model order), and 1.00- and 1.25-SPICE, being sparse,
have a very high ripple around the flat wideband regions, making the discrimination hard.
The other estimators are simply not good enough for this scenario. Notably, the q-SPICE
variants yielded much better performance when few elements was used in the 3x4 MIMO
case. The reason for this is probably the sparsity assumption enforced and the relatively
small dictionary used, since the effective number of targets is much smaller in the 3x4 MIMO
than in the 8x8 MIMO, given the sizes of the resolution cells.

Scenario 3
This scenario is a mixed stationary scenario with multiple targets. The scene conssits of an
extended target ranging between -20.17◦ to 7.12◦, consisting of 74 scatters each with Rayleigh
distributed with 1 dBsm expected value and three point targets at 30.40, 31.40 and 11.31
degrees with a cross section of 30, 30 and -8 dBsm respectively. It should be noted that the
total number of sources exceeds the number of virtual receivers for all cases, indicating that
the array is saturated and that the problem is somewhat badly posed.

Figure 6.5 illustrates the imaging results when using a 3x4 MIMO array. It can be seen
that all periodogram based estimators fail while all adaptive estimators manage to resolve
the plateu and one of the two closely spaced scatterers at 30.4◦ and 31.4◦, but not the
weak one at 11.37◦. The nonparametric estimators, MVDR, IAA and RCB are very similar,
while MUSIC, 1.00- and 1.25-SPICE, being sparse, have high ripples in the flat region.
The corresponding case with an 8x8 MIMO in Figure 6.6 shows a significantly improved
performance for all estimators. All manage to separate the extended target and at least one
of the peaks at 30-31 degrees. However, only IAA and the q-SPICE estimators manage to
resolve all targets.

A special case of spatial spread
We will consider a scenario with two point sources and one extended target with constant
deterministic amplitude. The point sources are placed at 30.4◦ and 11.31◦ with a cross
section of 40 and -8 dBsm respectively. The spread source consists of 84 uniformly placed
point sources from −32.51◦ to 7.12◦ (approximately 4 points per resolution cell in the 64
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Figure 6.3: Angular profile along target range. 3x4 MIMO Coherent targets, 286 snapshots
(pulses). 6 subarray forward-backward spatial smoothing.

Figure 6.4: Angular profile along target range. 8x8 MIMO Coherent targets, 286 snapshots
(pulses). 32 subarray forward-backward spatial smoothing.
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Figure 6.5: Angular profile along target range. 3x4 MIMO Coherent targets, 286 snapshots
(pulses). 6 subarray forward-backward spatial smoothing.

Figure 6.6: Angular profile along target range. 8x8 MIMO Coherent targets, 286 snapshots
(pulses). 32 subarray forward-backward spatial smoothing.
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element case) each with a cross section of 1.2 dBsm. The targets are stationary and located
at 12 m range.

Figure 6.7 illustrates the scenario using an 8x8 MIMO array. As can be seen, increasing the
array significantly improves the performace. Somewhat surprising, it can be seen that all
of the estimators fails at representing the extended target (with MUSIC having a complete
breakdown), except for IAA. Specifically, only the edges of the extended target can be located
and the high multitarget scenario appear to negatively affect the resolvability of the closely
situated 8 dBsm target at 11.31◦. As a reference, we have included the equivalent case of
four point targets, where most estimators manage to resolve the targets in Figure 6.8.

This phenomenon of target splitting is believed to be a consequence of the constant deter-
ministic amplitude, explained as follows: Consider a target which is wideband and spread
between the frequencies w1 and w2 and assume a continuous source distribution. Then, the
k:th component of the "spatially extended steering vector" can be represented as∫ w2

w1

ejwkdw =
1

jk
(ejw2k − ejw1k) (6.1.15)

which consists two weighted point sources each located at the edges of the target. Note that
the weighting does not affect the position of the sources, but will only cause a peak widening
since its spectrally unimodal, narrowband around the zero frequency and independent of
w1 and w2. Thus, if a continuous (wideband) target distribution is considered, then the
true spectrum is not wideband, but in fact narrowband! However, if the target can instead
be represented by a discrete set of K dominant narrowband sources, possibly unresolvable
within each resolution cell, then the target representation is

y =
K−1∑
k=0

αv(θ + dθ · k) (6.1.16)

where dθ is the source spacing. Under such circumstances, and assuming identifiability, one
should expect the maximum-likelihood solution to be able to recover the amplitudes α at each
of the targets, and thus the true spread target representation. With the results presented, it
therefore appears that in this particular scenario, IAA is closer to the maximum-likelihood
solution than the rest of the estimators which instead seem to converge to the continuous
solution, indicating that IAA is a very special estimator.
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Figure 6.7: Angular profile along target range. Coherent targets, 286 snapshots (pulses). 4
subarray forward-backward spatial smoothing.

Figure 6.8: Angular profile along target range. Coherent targets, 286 snapshots (pulses). 4
subarray forward-backward spatial smoothing.
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6.1.5 Conclusion

In this section, the use of MIMO for improving the angular resolution has been shortly
investigated. It was shown that using multiple receivers and transmitters combined with data
adaptive estimators significantly improves the performance in the angular domain.

In the considerer scenarios, IAA was shown to have best performance overall. Being non-
parametric, it makes few assumptions on the data and does not need any complicated ini-
tializations or model order selection schemes. It was shown to handle extended targets
well, even in the special case of equal amplitudes, while simultaneously showing a resolu-
tion comparable to that of MUSIC and better than MVDR. The amplitude estimates were
furthermore good and the estimator was shown to handle large dynamic ranges with close
targets without any significant degradations. On the downside, the estimator is expensive
in the form presented and runs in O(M3N3) when using a direct implementation. It is
worth noting that the method does not rely on any data covariance matrix estimates. How-
ever, this has been a topic of research and in [158] an exact O(M2N2) implementation was
propsed by exploiting the toeplitz structure of the covariance matrix, using a combination of
fast fourier transforms, Gohberg-Semencul factorizations and Levinson-Durbin recursions.
In [159], the method was extended by using a preconditioned gradient descent approach,
yielding an approximate solution running in tractable O(MN logMN).

The sparse methods, MUSIC and q-SPICE were shown to be poorly suited (although better
than the periodogram and MVDR based estimators) to the mixed nature of spread targets
and point sources, yielding a large ripples at extended portions and sometimes spurioses
(mostly MUSIC when given correct model order). The periodogram based estimators ap-
peared insufficent for many of the use cases. Based on the results, IAA, being nonparametric,
appears to have the best performance against spatially spread targets and appear to provide
a good trade-off between resolution, accuracy and robustness.

However, we pin-point the fact that PER is in fact maximum-likelihood when there is only
a single point source present and interference is absent, which is a good approximation for
the majority of scenarios in automotive radar. Under such circumstances, the data adaptive
approaches will not provide any performance benefits over PER. Nevertheless, if imaging
capabilities are considered and corner cases are to be properly handled, then they might be
of great value.
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6.2 Pulse compression filter design

As was discussed in Section 5, good waveform correlation properties can be hard to ob-
tain, specifically when uncompensated Doppler is present. However, since the compression
was performed by matching with the same transmitted sequence — the natural question is
therefore if one can obtain a better compression by matching with something else.

It is well known from detection theory that the matched filter maximizes the SNR under
the white Gaussian noise assumption [3]. However, the matched filter is only optimal in the
single target case and is not derived with the consideration of multitarget scenarios. Under
such circumstances, out-of-phase matching may lead to high sidelobes with the consequence
of masking weak returns. A remedy for this is the mismatched filter, which at the cost
of certain performance losses matches the received signal as to mitigate these secondary
effects. In FMCW systems, mismatched filters may be realized by using window functions,
which reduces the sidelobes at the cost of some SNR and resolution losses. However, window
functions are not applicable to PMCW systems, and an approach is to instead consider
computational approaches.

In this section, the framework presented in [111] will be used to design mismatched filters
for the periodic waveforms used in PMCW radar. It will be shown that sequences with
poor correlation properties (for radar) can still be used if the matching filter are tailored at
the receving end. Additionally, it is shown that the problem of uncompensated Doppler (as
discussed in Section 5) can be mitigated by imposing Doppler constraints into the design
problem, making the sequences presented also compatible with the dynamic range require-
ments for moving targets. However, when compared with the corresponding matched filters,
a possible issue appears to be the large number of bits needed in order to achieve sufficient
sidelobe attenuations.

6.2.1 Minimum PSLR filter design

We will consider the design of pulse compression filters for one transmit channel at a time.
If multiple transmit channels are used, then one can design one filter separately for each
channel. Under such conditions, the pulse-compression response for a single receiver in
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eq. (4.2.1), evaluated at a certain range bin, can be written as

y = α0φ̂
∗φ+

I∑
i=1

αiφ̂
∗λi (6.2.1)

where noise, and Doppler and receive phase factors have been neglected. Here, φ̂ ∈ CL×1

is the mismatched filter and φ ∈ CL×1 the waveform to match against. The terms {λl ∈
CL×1}Ii=1 are all the waveforms which the filter needs to suppress, which can for instance
be out-of-phase shifts of φ as well as shifted versions of other waveforms, such as those
originating from other transmitters in the MIMO. The term α0 is the amplitude at the
evaluated range bin and αi the sidelobe contribution from other waveforms. We will consider
the case of periodic waveforms, although the representation used does not impose any such
restrictions and one may easily consider other type of waveforms. To illustrate the considered
scenario, the compression when only one transmitter is present, taking into account of all
L− 1 out-of-phase shifts, is

y = α0φ̂
∗φ+ α1φ̂

∗λ1 + . . .+ αL−1φ̂
∗λL−1 (6.2.2)

= α0φ̂
∗φ+ α1φ̂

∗

 φL
φ1
...

φL−1

+ . . .+ αL−1φ̂
∗

φ2
φ3
...
φ1

 (6.2.3)

where φ = [φ1 φ2 . . . φL]T . If multiple transmitters are used, then the corresponding
waveforms should added as well. If Doppler shifts are expected, one may also include a set
of Doppler shifted components in the set {λi}to make the filter more resistant.

Previously in Section 5.1, the dynamic range was defined by ratio between the largest (in-
phase) peak and strongest sidelobe. The definition is intuitive since it sets a limit on how
far below strongest scatterer one can detect target returns without the risk of false alarms
(thresholding sidelobes). A natural criterion when designing φ̂ is therefore to maximize
the dynamic range, or equivalenty minimize the PSLR, as given in eq. (3.1.5). The idea of
the method presented in [111] is to solve a relaxed formulation of the PSLR minimization
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problem. Specifically, the following problem is solved

min
t,φ̂

t (6.2.4)

s.t φ∗φ̂ = φ∗φ (6.2.5)

φ̂∗φ̂ ≤ αφ∗φ (6.2.6)

‖φ̂∗λi‖2
2 ≤ t, i = 1 . . . I (6.2.7)

In the formulation, t is minimized such that the sidelobe constraint ‖φ̂∗λi‖2
2 ≤ t is minimized

uniformly. The energy constraint φ∗φ̂ = φ∗φ prevents the trivial solution φ̂ = 0 and the
constraint φ̂∗φ̂ ≤ αφ∗φ limits the LPG and can be necessary when the SNR losses are too
high. The parameter α is set such that LPG ≥ −10 log10 α.

As can be seen in the formulation, there is no constraint put on the set {λi} which gives
certain design freedoms. For instance, if only certain portions of the range swath is of
interest, then zero correlation zones can be introduced by only considering those out-of-
phase components. The advantage of doing this is an improved PSLR performance since
fewer constraints are imposed on the optimization criteria. Similarly, one may add more
constraints. For instance, to improve the resistance to Doppler degradation, one may in
addition add Doppler shifted versions of the waveforms considered. Furthermore, if multiple
transmitters (e.g MIMO) are used, one may also add the waveform components from the
other transmitters, possibly also Doppler shifted, to improve the channel isolation.

The considered problem is a quadratically constrained quadratic program and is therefore
convex [160]. An optimal solution can therefore be guaranteed given convergence to a sta-
tionary point and there are many software packages which can be used to solve the program
— we will use cvxpy [161]. It should be noted that in the considered use case, all calculations
are performed offline and only once. Therefore the computational complexity is of no issue.
However, if online adaptivity and cognition is required, then more efficient schemes are most
likely needed (at least for long sequences).

6.2.2 Results and Discussion

As previously shown in Section 5, the main issue with the considered waveforms was not
poor out-of-phase properties — perfect responses could be designed within the desired range
swaths. Similarly, MIMO orthogonality can be achived using any of the discussed methods
in Section 3.2, given certain performance losses. The main issue was the degradation in pulse
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compression when the returns were subjected to Doppler shifts, which significantly raised
the sidelobe levels. We will therefore demonstrate how this particular issue can be mitigated
by adding a Doppler constraint to the constraints in eq. (6.2.7).

While unrealistic, we will use a 64 bit floating point arithmetic to demonstrate the compres-
sion since this sets a bound on the best achievable performance when using the filters. The
effect of quantization in the filter coefficients is shortly investigated afterwards.

A visual example
Figure 6.9 illustrates the matched filter and two minimum PSLR-filters designed on a 63
MLS. The filter denoted as only PSLR was designed as to obtain a ZCZ over the first 30
range bins, while the second, denoted as Doppler-PSLR filter, was designed the same but also
including the Doppler modulated out-of-phase components at a Doppler shift of 60 km/h. As
can be seen, the filters differ quite significantly in appearence, with the standard PSLR-filter
being very similar to the matched filter, while the Doppler-PSLR filter is unrecognized.

To demonstrate the range-responses, Figure 6.10 illustrates the same example, but using a
64 chip APAS instead. As can be seen by the matched filter, a perfect ZCZ is obtained
at the zero Doppler case, whereas in the non-zero Doppler case (120 km/h at 1500 MHz
bandwidth), the sidelobes appear already at -70 dB. The designed Doppler-PSLR filter on
the other hand shows no performance degradations in Doppler. The drawback however: for
this particular case the LPG is -6.24 dB, which is significant. In the next example, it will be
shown that for longer sequences, the LPG appears to not be as severe.

A design demonstration
In the following, we will illustrate the minimum PSLR filters for the system considered in
Section 5.2. Specifically, we will consider four sequences presented in Section 3.1: MLS,
Gold codes, APAS and ZCZ sequences each consisting of 2047, 2047, 2040 and 2048 chips
respectively. The filters are designed over a ZCZ of 300 range bins, corresponding to the 30
m maximum range requirement, and the Doppler-PSLR filter is designed as previously – by
duplicating the constraints at a 60 km/h Doppler shift.

Figure 6.11 illustrates the pulse compression responses (over the ZCZs) for the respective
waveforms and filters, with the matched filter used as reference. As can be seen, the minimum
PSLR are at least as good as the matched filters for all cases in the zero Doppler case. It
should be noted that the PSLR filter for APAS and ZCZ sequences coincide with the matched
filter over the considered ZCZ. However, at increased Doppler shifts the performance of
the matched and minimum PSLR filters significantly degrade. The Doppler-PSLR on the
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Figure 6.9: An example of a 63 chip MLS 30 bin ZCZ minimum-PSLR filter design. Com-
parison between matched and minimum-PSLR filters.

Figure 6.10: An example of a 64 chip APAS filter design. Comparison between matched and
Doppler-designed minimum-PSLR filter. A ZCZ of 30 range bins was enforced on the PSLR
filter.
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other hand remains robust and has a PSLR of below 100 dB for velocities up to 250 km/h,
indicating feasibility with respect to the system requirements. The corresponding LPGs are
shown in Figure 6.12 and are in the range of a couple dB, comparable to the losses associated
with most window functions [3].

To investigate the quantization effects on the minimum PSLR filters, the corresponding pulse
compressions were performed (with full precision) after quantizing the filter cofficients. The
results are shown in Figure 6.13 with the matched filter (which is only needs 1 bit) is shown
for comparison. It can be seen that all of the minimum-PSLR filters are very sensitive to
coefficient quantization. Specifically, approximately 24 bits are needed to obtain the same
performance as in Figure 6.11, with 16 bits being sufficient if a dynamic range of 100 dB can
be tolerated. Quantizing the filters down to 8 and 4 bits results in a performance which is
worse than the original matched filter. Regarding the LPGs, those are practically identical
to the ones in Figure 6.12 and are therefore omitted. This observation is important since
compared to the matched filter, which only needs a 1 bit representation (and thus only
additions at compression), the minimum-PSLR filters need at least a 16 bit representation
along with multiplications in order to be realized. This may limit their use in real systems
since the hardware must be scaled accordingly.

6.2.3 Conclusion

It was noted in Section 5.2 that for some waveforms used in PMCW systems, uncompen-
sated Doppler may significantly degrade the performance to the extent of failing certain
requirements. Consequently, the purpose of this section was to approach the problem at
the pulse compression level by designing matching filters. The design problem was therefore
reviewed and related to the pulse compression used in the PMCW systems. A set of mini-
mum PSLR filters were then designed for the considered waveforms (and the popular Gold
codes). The filters showed feasiblity when introducing further Doppler constraints and the
LPGs were noted to be in the same level as for the conventional window functions used in
FMCW. However, it was noted that a large number of bits is required in order to harness
the effectiveness. For instance, 24 bits was required to obtain a similar performance as when
using 64 bit floating points, and if 100 dB PSLR can be accepted (over Doppler shifts 0-250
km/h), then 16 bits appeared sufficient.
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Figure 6.11: The PSLR of range responses of the designed filters.

Figure 6.12: The LPGs of the designed pulse compression filters, evaluated at various doppler
shifts.
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Figure 6.13: The PSLR of the range responses of the Doppler-PSLR filters after quantization,
evaluated at various doppler shifts.
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Chapter 7

Conclusion and future work

This thesis has attempted at making three contributions. First, some of the current estab-
lished literature was gathered and summarized, where the focus was on describing the need,
development and emergence of phase modulated systems in the automotive setting. Since
mutual interference is a central topic in this, some works on mutual interference aspects
were also reviewed, concluding that the differences compared with frequency modulated sys-
tems might not be as big as one might initially imagine. Second, a system analysis was
performed, where a fair comparison between the frequency and phase modulated type of
systems was attempted. It was shown that phase modulated systems provide better per-
formance in terms resolution and contrasting capabilities, but suffers from dynamic range
degradations in scenarios of uncompensated Doppler. Although it can be argued that the
respective effects are insignificant in the general case, one should remember that many of the
intended applications are safety critical, and good performance must always be guaranteed,
even in the specific case. It is furthermore shown that phase modulated systems provide
better performance in the angular domain due to the short pulse repetition interval, which
appear to significantly alleviate motion induced errors in the virtual array, when compared
with frequency modulated systems. Finally, it is argued that phase modulated systems are
advantageous in terms of up-scaling due to the full baseband sampling approach.

In the third contribution, computational approaches were investigated in an attempt at
alleviating some of the resolution and Doppler-degrading shortcomings of phase modulated
systems. It was first confirmed that data adaptive algorithms may provide significant perfor-
mance gains in some automotive scenarios where angular resolution is bottlenecking. Specif-
ically, the iteartive adaptive approach was shown to provide the best peformance when
all of the considered scenarios were jointly evaluated, with the sparse iterative covariance

105
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based methods coming secondly. Then, a mismatched filtering approach was taken to deal
with Doppler degradations at pulse compression. Specifically, a quadratically constrainted
quadratic program was used to minimize the maximum peak sidelobes, also taking into ac-
count of Doppler-distortions. It was shown that for some common binary sequences, the
Doppler-degradation can be heavily attenuated by mismatching at receive, using the de-
signed filters, with only small losses in processing gain. However, it was observed that a
major drawback is large number of bits needed in the filter representation.

For future works, it is believed that an entire data processing chain should be considered
jointly in order to make definitive conclusions about the performances. Therefore, it is pro-
posed that future work include state of the art detection and tracking systems in the analysis,
evaluated using real data or possibly simulated, using a modern simulation framework (see
e.g. [162] for an overview). Furthermore, some additional investigations on the mismatched
filter design should be made, where one may explore the possibilities of adding a fixed number
representation constraint into the optimization problem, as a way of reducing the number of
bits required. Finally, the performance needs to be investigated under additional real world
conditions, such as, for instance, hardware imperfections, including non-linearities and phase
noise, among many other factors.
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