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Abstract

The observed high orbital eccentricities of many giant exoplanets is thought to be the result
of gravitational scattering between planets. Outcomes of planet-planet scattering can result
in some planets being lost by ejections into interstellar space, or collisions between planets
or with the star. The likelihood of collisions for a planet with a certain mass, increases
with larger radii. After planets have been formed they will then cool and contract, which
probably affects the rate of collisions and the evolution of planetary orbits.

The purpose of this thesis is to examine how planetary contraction affects the outcomes
of planet-planet scattering. By the use of numerical simulations I analyze of the outcomes
of three 1MJ planet systems with fixed 1RJ , 1.5RJ , 2RJ radii, as well as a changing radii
that follows a contraction curve from a cooling model for giant planets based on general
cooling theory of Brown Dwarfs.

The results show that larger planetary radii indeed lead to more collisions, which in
turn produces lower final eccentricity distributions. While the timescales for collisions
remained the same as for the fixed radii, more collisions occurred earlier within that time-
frame for the changing radii systems. The use of present-day radii underestimates the rate
of collisions, which planetary systems with contracting radii giants otherwise experience.
The cumulative eccentricity distribution for simulations with changing radii also showed
lower final eccentricities, as expected from the increased collision rate. Although the 2RJ

set showed similar amounts of collisions and ejections as the changing radii simulation,
the final eccentricity distribution differed significantly. Perhaps suggesting that the time
dependence of the collision rate has an effect on planetary orbital evolution.





Populärvetenskaplig beskrivning

Sedan den första bekräftade upptäckten av planeter utanfört v̊arat solsystem år 1992 har
över 4000 fler hittats. Den data man har kunnat samlat ger ett gott underlag till att jämföra
med resultaten av datorsimuleringar, i hopp om att bättre kunna först̊a hur planetsystem
formas och utvecklas.

Planeter formas i en s̊akallad protoplanetär skiva, best̊aende av 1% stoft och 99%
gas, som roterar runt en ung stjärna. Gasen i skivan ger uppst̊and till motst̊and som
förhindrar planeternas omloppsbanor fr̊an att ändras markant. Efter att gasen försvinner
börjar sedan en utveckling i omloppsbanorna d̊a planeterna gravitationellt interagera med
varandra. Nyformade planeter har en hög mängd värme som dem sedan str̊alar bort, vilket
innebär att planeten kyls ner över sin livstid. I fallet av gasplaneter innebär nerkylningen
ocks̊a att den tjocka atmosfären ökar i densitet, och att planeten i helhet blir mindre.

Bland dem observerade planeterna kan man märka att många jätteplaneter har bety-
dligt mer ovala banor än gasjättarna i solsystemet. Denna höga excentricitet tror man
är en produkt av gravitationella interaktioner när planeter möts p̊a nära h̊all, d̊a planeter
även kan komma att kollidera med varandra eller kastas ut ur planetsystemet. Med nu-
meriska simulationer har forskare kunnat studera hur excentricitetsfördelningar p̊averkas
av interaktionerna, och jämfört med observationell data.

Förutom planeternas massa s̊a har även radien en roll i hur planeter försvinner ur sys-
temet. Det här arbetet har som ändamål att utforska effekten som sammandragningen
av gasjättar kan ha p̊a utvecklingen av planeternas omloppsbanor. Resultaten fr̊an nu-
meriska simulationer ska hjälpa med att besvara skillnaden p̊a hur planeter förloras, samt
den slutliga excentricitets fördelningen.
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Chapter 1

Introduction

The first confirmed planets orbiting another star were published by Wolszczan and Frail
(1992). They were terrestrial sized, and orbited a pulsar. Only three years later Michel
Mayor and Queloz (1995) first detected an exoplanet around a main sequence star, for
which they were awarded the Nobel Prize in physics in 2019. In the last three decades
exoplanetory research has developed greatly. Over 4000 planets have now been confirmed1,
giving context for our understanding of our own place in the universe.

Different methods of discovery and observation give different insights to features of the
planet’s orbit. One of the most successful methods is the transit method, which detects
planets by the dimming of the star’s light when the planet crosses in front of the star.
Radial velocity is another common method, which measures the Doppler shift of certain
spectral lines from a star, the star’s moving caused by the planet exerting a gravitational
pull on it as it orbits around. An exoplanet discovery is not considered to be confirmed
with transit detection alone, as at that point it lacks a necessary mass estimate, which one
can get from a subsequent radial velocity measurement.

So far, observations are still limited by the size of the planets. Using the transit method
the planet must be physically wide enough to block a significantly measurable part of its
host star, and for the radial velocity method the planets must be massive enough for the
gravitational pull to be observable. Looking at the most current data from exoplanet
databases shows that of the giant planets, many of them have high eccentricities. This
is believed to be caused by planet-planet scattering. In which planets will, during close
encounters, excite each others orbits. With a large enough gravitational kick a planet can
get ejected out of the system, or if the distance between them gets sufficiently small they
will collide.

Advancement in computational capabilities and the many new observations opens a
door to research the evolution of planetary orbital dynamics. In which large sets of simu-
lations can be performed using n-body integrators, then comparing the results to the set
of confirmed observed exoplanets.

Planets are formed around young stars in so called protoplanetary disks. The disks

1http://exoplanet.eu/catalog/ - Accessed: May 5th 2020
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CHAPTER 1. INTRODUCTION

consist of 99% gas and 1% dust, rotating around the star on a flat plane. During formation
the protoplanets are subject to drag from the gas which dampens most orbital excitation
that would otherwise occur from gravitational interactions between planets. Eventually,
after a few million years, the gas disappears from the disc allowing for the planetary orbits
to evolve freely without the drag from the gas dampening any orbital excitations. It is
during this post-gas stage that most orbital evolution is understood to happen. Under
periods of instability the planets can undergo close encounters where they can collide,
scatter off each other into more eccentric orbits, or even be ejected from the system entirely.

Up until now research into planet-planet scattering has been done under the simplifi-
cation of constant planet density. However, the density is in fact a temperature dependent
function. Meaning that as giant planets with large gas envelopes cool down after for-
mation, they will also increase in density and thus contract. Terrestrial planets, such as
Earth, are not as susceptible to significant density changes as they cool down due to them
being mostly only the rocky core. Due to the planetary radii being an important factor
in determining the fallout of close encounters, such as collisions being dependent on the
planets cross section, this project sets out to look at how contracting planets differ from
fixed cool planets in these types of simulations.

The timescales for instabilities and when different types of events occur depend on
the initial orbit parameters used for simulations as well as the planetary masses (Davies
et al., 2014). Jurić and Tremaine (2008) performed sets of simulations with various initial
conditions and number of planets, and found that collisions will be the dominant mode for
planets to be lost on dynamical timescales, earlier on in the simulation times compared to
ejections. A majority of planets lost were due to ejections, while collisions caused 3− 20%
of planets to be lost. A portion of planets collided with the star, most often caused by
more massive planets gradually exciting their eccentricities.

The aim of this project is to perform numerical simulations to investigate how the
contraction of giant planets, after the dissipation of gas in the protoplanetary disk, may
affect the rate of collisions and ejections. As well as studying the effects which this in turn
has on the final eccentricity distribution of planets.
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Chapter 2

Theory

2.1 Keplerian Orbital Elements

When working with orbits of planets, the Keplerian orbital elements are often preferred
over the more common Cartesian coordinate system. In Cartesian coordinates, the orbits
are described by the 3 dimensional position and velocity components, giving rise to six
degrees of freedom in total. Keplerian orbital elements are developed from Kepler’s first
law, which states that planets orbit in elliptical paths where the host star is positioned in
one of the ellipse’s focal points. Such that the six degrees of freedom are instead determined
by the shape and orientation of an ellipse. The Keplerian elements are depicted in figure
2.1, and we consider the position of the star to be the space’s origin.

The semi-major axis, a, is half the longest possible length between two points on the
ellipse. The eccentricity, e, is a measure of how non-circular the orbit is. The zero-value
for e indicates a perfect circle, higher values up to (but not including) 1 express how
non-circular the ellipse becomes.

An orbital plane is spanned by the points on the ellipse and can be tilted from some
reference direction, the tilt being measured by the inclination angle i. Where the orbit
crosses the reference plane, spanned in part by the reference direction, in an upward direc-
tion is called the ascending node. So the longitude of the ascending node, Ω, is the angle
between the position of the ascending node and the reference direction, and orients the
orbital inclination.

The argument of perihelion, ω, then orients the eccentricity of the orbit on the orbital
plane, as an angle between the perihelion and the ascending node. Lastly, the mean
anomaly, M , determines where the planet is positioned on the orbit, in expressing the
fraction of orbital period elapsed since passing through perihelion as an angle. In figure
2.1 the true anomaly ν is depicted instead of M , which is the true geometrical angle.

7



2.1. KEPLERIAN ORBITAL ELEMENTS CHAPTER 2. THEORY

Figure 2.1: A depiction of the Keplerian orbital elements ν, ω, Ω and i which in part de-
scribe planetary orbits. Eccentricity e and semi-major axis a are not depicted. Wikimedia
Commons (2007)
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2.2. FORMATION OF PLANETARY SYSTEMS CHAPTER 2. THEORY

2.2 Formation of Planetary Systems

In this project we take a look at how the orbits of Jupiter-like gas giants can change
when they cool and contract in the early stages of their lifetimes. Planets are formed in
a protoplanetary disk surrounding newly formed stars. The flat disk consists of 99% gas
and 1% dust in rotation around the star, which also slowly moves in towards the star. The
disk disappears in part by accretion by the star, and after a few million years the radiation
from the star has evaporated the remaining gas in a phenomenon called photoevaporation
(Hogerheijde, 2011).

As presented in Jurić and Tremaine (2008), formation of planetary systems can be
simplistically considered as happening in two stages. In the first stage planetary cores are
formed through the fusion of smaller solid bodies, which in turn were formed by coagu-
lation of dust particles in the protoplanetary disk. If the cores are massive enough, their
gravitational pull could hold an envelope of gas around the core. In the second stage, the
planetary system evolves by primarily gravitational interaction after gas has dissipated
from the disk.

Armitage (2007) explains the core accretion model where cores of giant planets are
formed in the same manner as for terrestrial planets, the difference being the eventual
core mass being able to accrete and hold a large envelope of gas. The cores can grow by
collisions of planetesimals (km sized), or perhaps more significantly by the accretion of
pebbles. The core can continue to grow and eventually hold a significant envelope of gas
around it. The growth of a planet by accreting gas stops either when a gap forms in the
protoplanetary disk due to the planet itself, or when the gas in the disk has disappeared.

A prediction from the core accretion model is that eccentricities and inclinations of
planets should be low (Winn and Fabrycky, 2015). The inclination being low due to
the formation happening in a flat disk, and the planet eccentricities being low due to the
streamlines being near-circular. As well as that any excitation in e or i will be counteracted
by hydrodynamical drag with the disk.

2.2.1 Planet cooling

In Baraffe et al. (2003) the authors make a model to follow the cooling of extrasolar giant
planets by applying general cooling theory for brown dwarfs. The model presented in
the paper is based on the ”COND” approach where dust opacity in the radiative transfer
equation is neglected, and includes both irradiated and non-irradiated models.

For the purpose of this project the non-irradiated models will be used since the simu-
lated planets are initially placed far enough away from the star to neglect irradiation. The
irradiation however depends on the distance between the star and planet, which would im-
ply for a system where orbits can change frantically during periods of instabilities, that the
irradiation would vary over time. Within the scope of this project that could not be taken
into consideration, and thus the neglecting of irradiation is a convenient simplification.

From Baraffe et al. (2003), a graph for the radius contraction of 1MJ planet was taken
and fitted with a polynomial function. The graph displayed the contraction from 105 to
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Figure 2.2: On the left, the 3rd degree polynomial fit for the changing planetary radius over
time, of the result in Baraffe et al. (2003) for 1MJ planets. On the right, the equivalent
change in average density over time.

109 years, and the purpose of the fit was to get a function for the radius over time which
extends to earlier on in the contraction. Polynomial fits of the 2nd, 3rd and 4th degree
were tried. The 2nd degree fit was to deemed to be too poor, while the 3rd and 4th degree
fits were sufficiently accurate. Thus, the simpler 3rd degree fit would be used as the change
in planetary radius over time for this project. Figure 2.2 shows the fitted path of the radius
over time, as well as the equivalent change of the planets average density.

2.3 Planet-Planet Scattering

This section explains the events that can occur in the stage after the gas has dissipated
from the protoplanetary disk, when gravitational interactions are the dominant force for
planetary system evolution. The loss of a dampening force can lead to a growth in orbital
eccentricities, which in turn can cause orbits to overlap and close encounters between
planets. Scattering between planets could develop the high eccentricities which are seen
for observed exoplanets (Chatterjee et al., 2008).

The timescales for instabilities will depend on the planetary masses and the initial
separation. Low initial separations lead to earlier instabilities as the orbits are closer
together, and higher masses have shorter instability timescales (Davies et al., 2014). The
Initial Separation Test in section 4.2 explores the timescales of various initial separations
to find which one fits the scope of this project.

Planet-planet scattering can also cause planets in the system to be lost. Those three
types of events are: Collision between planets, planets being ejected from the system, and
a planet colliding with the central body. The nature of these events differ such that the
rate at which they happen will effect the final distributions of eccentricities.

The likelihood of a planet-planet collision depends on their respective cross sections,
increasing with larger radii, and is independent of the masses. The Safronov number Θ is
a helpful tool in assessing the outcomes of close encounters, defined in equation 2.1, where
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2.3. PLANET-PLANET SCATTERING CHAPTER 2. THEORY

Mp and Rp are the planet’s mass and radius, M∗ the stellar mass and a the semi-major axis.
It is a quantification of a planets surface escape velocity compared to the planetary escape
velocity at the planets semi-major axis. Small value Θ indicate an increased likelihood of
collisions during close encounters.

Θ2 =
(
Mp

M∗

)(
Rp

a

)−1

(2.1)

Ejections can occur after close encounters between planets. An ejected planet is no
longer gravitationally bound to the star it was formed around and thus considered to be
lost from the planetary system. The surviving planet will feel a recoil from the event which
can excite its eccentricity. Since the force is gravitational, the energy in the recoil will of
course depend on the mass ratio between the two planets. In the scattering of unequal-
mass planets, the more massive survivor is subject to a less energetic recoil then that of
the survivors of an equal-mass event. Simply due to the fact that more energy is required
for a planet to eject another planet of the same mass (Davies et al., 2014).
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Chapter 3

Method

3.1 MERCURY

In this project, numerical simulations are performed using the n-body integrator software
package MERCURY6.2, Chambers (1999). In our use it computes the motions of planets
step-by-step, accounting for the gravitational pulls between all bodies in the simulation.
Although the motions are calculated as for point masses, the integrator can account for
collisions between the bodies using a set physical radii. MERCURY has a variate of integration
algorithms to choose from, some of which are described briefly below.

One conventional algorithm used for the n-body integration of this type is Burlisch-
Stoer (BS) and is available in MERCURY. Applied here it computes numerical solutions to
the momentum of each body, as affected by the gravitational pull from all others. With
the modified midpoint method each step in BS consists of multiple substeps, which are
then used in a rational function extrapolation (Press et al., 1992). This is what allows
the algorithm to have fairly large stepsizes without loosing too much in accuracy. The
amount of substeps can be used to control the extrapolation errors. The estimated error
is compared to the error of the same step performed with more substeps, if the fractional
difference is below a specified tolerance parameter the integrator can move to the next
step, if not, the extrapolation is reattempted with more substeps. For this project that
tolerance parameter was set to 10−12.

The Mixed-Variable Symplectic algorithm (MVS) is much faster in comparison with
BS. MVS breaks up Hamilton’s equations of motion such that the gravitational pull from
the very massive central body can be ’built in’ and separated from the pulls of smaller
bodies (Chambers, 1999). The integrator then has to perform fewer computations in total,
leading to lower run times for the simulations.

A characteristic of MVS is the fixed stepsize, necessary to preserve the Hamiltonian.
During some events, such as close encounters between planets, the gravitational pull of
the central body can lose its dominance relative to the gravitational forces exerted by the
planets on each other. Meaning that the assumption made in how the equations of motion
can be split-up faults and the integration error in each step increases significantly. One
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remedy to retain accuracy is to momentarily decrease the integration step-size during such
events, which however leads to a shift in the energy of the system. If it’s necessary to
change the step-size often in a single integration the errors will build up and the keplerian
orbits can break down. MVS in this form is therefore not a suitable algorithm for the
purpose of this project.

Chambers (1999) presents an integration algorithm which is an hybrid of MVS and BS.
hereon referred to as the Hybrid algorithm. It ordinarily uses MVS, switching over to BS
when planets are significantly close to each other. Thus it attempts to retain high accuracy
from BS during close encounters, while harnessing the efficiency of MVS elsewhere. The
change from one algorithm to another is done with a changeover function, allowing for a
harmonious transition by ’fading out’ one algorithm while the other emerges over some
specified distance.

The accuracy of a simulation is determined by how well the integration has conserved
both the energy and the angular momentum in the system. It is the total accumulated
error estimated in each step of the integration. The total fractional change in energy due
to the integration is therefore used to tell how accurate the simulation was, and require
that it is below a 10−3 threshold to hold valid.

MERCURY considers bodies to have been ejected when their semi-major axis is greater
then a set value, for this project that distance was set to 100 AU. It also has the ability to
register close encounters, which occur when bodies come within a certain range of Hill radii
(see eq. 3.1). For each integration step during the close encounter, MERCURY then checks
if the bodies have collided by checking for an overlap of the physical radii. The exception
being a collision with the central body, in which the collision is considered to have taken
place if the smaller body has come within a distance of the origin, 1R� in this project.

RH = a
(
Mp

3M∗

)1/3

(3.1)

3.1.1 Dynamical Radii

In this project we want to see what effect a changing density has on planet-planet scattering
and the final distribution of orbital parameters. For this purpose the physical planetary
radii are based on the cooling curve of 1 MJ planets presented in chapter 2.2.1. In part
by simulating various sets of planets with fixed radii and a set where the radii follows the
fitted path, see figure 2.2.

For simulations with time dependent radii the BS algorithm, with variable timesteps,
was used. A couple of new parts needed to be implemented into the subroutine MAL HVAR.FOR

in MERCURY which sees to it that the density is updated before it is applied in other parts
of the subroutine for calculations. Below follows a bullet point description of MAL HVAR.FOR,
the new parts added for this project being marked with (NEW).

• Initialization

- Initialize some local variables

13



3.2. INITIAL PARAMETER GENERATION CHAPTER 3. METHOD

- (NEW) Change density, the pre-set value gets overwritten.

- Calculate close encounter limits and physical radii for bodies.

- Setup time for next output etc.

• Main Loop

- Check if it’s time for output or if the integration is finished.

- Advance one timestep

- (NEW) Update density

- Check if close-encounters occurred

- If collisions between planets or with the central body occurred: resolve it,
remove lost object and recompute physical radii.

- Check for ejections: remove lost objects

The way in which collisions are resolved has not been changed from the original code.
Fragmentation is neglected, and the resulting body after the merge of two planets has
their combined mass. The density is calculated in this method by using the mass of the
body and the radius which changes over time. After a collision, the remaining planet then
continuous to follow the same radius reduction curve.

3.2 Initial Parameter Generation

This section describes the initial values of orbital elements and fixed parameters set for
the various simulated bodies. The central body was given Sun-like properties, with mass
1M� and radius 0.005 AU.

All systems were run for three gas giants in the likes of Jupiter, with fixed mass 1MJ .
In MERCURY the size of planets is defined by the average density, and the radius then
calculated from the density and mass. A radius of 1RJ corresponds to an average density
of 1.33 g/cm3 (Rothery et al., 2018). At places in this project where results from using
different radii, the corresponding density is stated in connection.

As stated in section 2.1, the orbits of the planets are determined by 6 different parame-
ters. The semi-major axes are chosen such that the inner planet is placed at 2 AU, and the
remaining two subsequently placed at some separation. Which separation is most suitable
for the scattering simulations is tested and determined in the section 4.2 Initial Separation
test.

Like in the scattering experiments of Jurić and Tremaine (2008), we draw the initial
value of eccentricities and inclination for the planets with the Rayleigh probability distri-
bution, seen in equation 3.2 where σ is a scaling factor.

f(x, σ) =
x

σ2
exp (−x2/(2σ2)) (3.2)
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Ida and Makino (1992) showed through simulations that the relationship between the
orbital inclination and eccentricity for a protoplanet has the dispersion 〈e〉 = 2〈i〉, where i
are in units of radians. In this project the initial dispersion of these parameters are chosen
such that the value of i, in radians, follows a Rayleigh distribution with σ = 0.01, and e is
twice that value.

The three last parameters that orient the orbit are the argument of pericenter ω, the
longitude of ascending node Ω, and the mean anomaly M . They are randomly set in the
range 0◦ − 360◦ with a uniform distribution.
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Chapter 4

Results

4.1 Typical Outcomes for Events

This section discusses some of the typical outcomes of scattering and showcases what they
can look like in forms of orbital elements data over time. The results are taken from select
systems in the Initial Separation test (section 4.2), where three 1MJ planets were simulated
over 106 years. As such, the initial separation between example-cases vary.

Figure 4.1 shows the semi-major axis over time for a system where a collision between
two planets occurs at roughly 40000 years. During a period of instability, ranging approx-
imately from 2 · 104 years until the time of the collision, the outermost planet (Planet 3)
gets moved much closer to the star. The others (Planet 1 and Planet 2) move outwards to
orbits with larger a, and undergo frequent and continuous scattering ending in a collision
between the two. After which the two remaining planets settle in stable orbits with final
eccentricities e1 = 0.17 and e3 = 0.35.

Figure 4.2 shows two plots of the an ejection event occurring at approximately 12000
years. The left side plot shows a with respect to time for the three planets, while the right
side plot shows the apses as well but only for the two outer planets (Planet 2 and Planet
3). Compared to the collision event, the planets in this case were initially separated much
closer together, ∼ 0.6 − 0.7 AU compared to ∼ 1 − 1.6 AU. Early on in the simulation
(102 years) the two outer planets begin to scatter. In the time 103 until the ejection event
they collectively move outwards while the inner planet (Planet 1) proceeds to move closer
to the star. Planet 3’s eccentricity and orbits continuous to be excited, reaching e > 0.9
before the increasing semi-major axis finally is considered an ejection (a > 100 Au).

The final eccentricities for the ejection event case, after the two remaining planets who
settled in stable orbits, were e1 = 0.72 and e2 = 0.46. A comparison with the collision case
also showcases the effect mentioned in section 2.3, in which collision between planets tend
to lead to more low eccentric survivors compared to ejections between equal-mass planets.
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Figure 4.1: The semi-major axis for a system where two planets collide at 41000 years after
a period of instability. Final eccentricities were e1 = 0.17 and e3 = 0.35

Figure 4.2: A system where a planet gets ejected (a > 100 AU), left image shows the semi-
major axis over time. The image on the right more closely shows the interaction between
Planet2 and Planet3 which leads to the ejection, where solid line is the semi-major axis
and dashed lines are the apsis of the orbit.
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4.2 Initial Separation Test

Chambers et al. (1996) found that systems with three or more planets, where planets
were separated by K < 10RH , where K is the difference in semi-major axes, were always
unstable and that for time t, there existed a linear relation between log(t) of the first close
encounter between planets and K.

log(t) = a ·K + b (4.1)

In this section we first try to replicate that result using our simulations and initial parameter
generation. With that result, a reasonable initial separation of planets semi-major axes
can also be determined for the subsequent simulations of fixed and dynamical radii.

This test involved running multiple systems with three planets at varying initial semi-
major axis separation. The innermost planet was always placed at 2 AU. The second planet
K -number of Hill radii, as defined in equation 3.1, from the first and the third planet at
an equal number of Hill radii from the second. K varied from 2 to 8 RH in steps of 0.2,
three planetary systems were run for each step in K. The total of 93 systems, all had a
simulation time of 106 years.

Out of the 93 systems, 49 had a fractional energy change due to integrator > 10−3.
Because those values are too high to deem the simulations accurate, they were subsequently
rerun using the BS integrator instead of the hybrid integrator. After which all systems had
< 10−3 fractional energy change.

The graph in figure 4.3 shows the time of the first close encounters between planets in
each system as blue crosses for each initial separation value K, in units of Hill Radii. A
linear fit was made to the first encounter times, shown as the black line in figure 4.3. The
coefficients of equation 4.1 for the fit are a = 1.01378052 and b = −2.23665029.

There are notable outliers among the first encounter times from the linearity, namely,
the assortment of systems around K ' 8RH . These systems have lower than expected
times for the first close encounters. Upon further investigation, the middle planet in these
systems turns out to be close to being, initially, in mean motion resonance with both the
outer and inner planets where Pi

Pj
' 2. This synchronization of the orbits means that the

orbits will evolve faster such that their eccentricities increase, which in turn allows for
earlier first close encounters when the paths of planets overlap.

Figure 4.3 also includes the time at which planets collide or are ejected, as blue and
orange dots respectively. It is apparent that in this test, ejections of planets into interstellar
space tend to occur after 104 years, and that collisions between planets can happen as early
as the first close encounters.

When determining what separation to use for integrations with fixed and changing
radii, one must consider both the instability timescales and integration time limit. For
separations between 2 − 4 RH the systems appear too unstable, with the first encounters
and possible collisions occurring as early as during the first orbit. Separations above 7RH
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Figure 4.3: First close encounters (blue crosses) in each planetary systems compared to
the initial semi-major axis separation in Hill radii, linearly fitted (black line). The systems
marked at exactly 106 yrs did not have any close encounters between planets in the duration
of the simulations. Collision and ejection events are marked as blue and orange solid circles
respectively.

result in first encounters taking place too late in the limited integration time. This resulted
in the choice of K = 6RH for the separation applied in the simulations presented in sections
4.4 and 4.5, where first encounters are expected on the order of 103 − 104 years.

4.3 Integration Step Size Test

This section briefly tests the integration step sizes using the hybrid algorithm. The time
to run simulations can be reduced if one can choose a larger step size. The larger step size
should however not have significant impairment on the accuracy of the simulations. Thus,
sizes of 4,6,12,25,50 days were tested, the larger end limited by 1/20th of the smallest
initial orbital period (∼ 51.7 days).

The graph in figure 4.4 shows resulting fractional energy change due to the integrator
for 8 systems per chosen step size, drawing a minimum accuracy criteria at 10−3. While
all sizes have a few systems which fail the criteria, the fractional energy change for those
who do get significantly lower with smaller sizes.

In reflection on the proportion of systems in the Initial Separation test (section 4.2)
which also failed the criteria, with a step size of 8 days, fits in with the results of this test.
When running integrations using the hybrid algorithm, systems that fail the accuracy
criteria need to be rerun using the slower but more consistently accurate Burlisch-Stoer
algorithm. If however up to half of the systems, or more, need to be rerun, the time ex-
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Figure 4.4: Fractional energy change of a set of 8 systems per tested integration step size.
Simulating three 1MJ planets over 106 years using the hybrid algorithm.

pected to be saved by using the hybrid algorithm becomes indifferent. Out of convenience,
the remaining integrations done in this project (i.e. section 4.4-4.5) were run using solely
the BS algorithm with 10−12 error tolerance for each step.

4.4 Fixed Radii Runs

Performing simulations runs with fixed radii of various sizes can give a basic insight into
what affect the radius might have on planet scattering and how planets are lost. It does
not however give a full picture for the changing radii, as it might over- or underestimate
some event types, which favor large radii.

To determine what radii to use for these sets, the original plot from Baraffe et al. (2003)
was used, which the curve in figure 2.2 were based on. That plot had a lower limit of 105

years for the radius of a 1MJ planet. In the period between 105−106 yrs the radii is on the
interval of 2.2− 1.5RJ . Three sets of 100 planetary systems with three 1MJ planets, were
what could be done within the scope of this project. Those three sets would each have
different fixed radii of all planets; 1.5RJ and 2RJ which span the interval just mentioned,
and 1RJ as a control sample to compare to. Table 4.1 shows the corresponding densities
to the aforementioned radii. For all systems in the three sets the total fractional energy
change due to the integrator was smaller than 10−4, giving confidence in the accuracy of
the simulations.

Figure 4.5 shows the rates for in what manner planets were lost in the different sets. The
different sets had similar total planet losses: 1RJ/1.5RJ/2RJ losing 115/115/113 planets
respectively out of 300. For increasing radius the balance between planet-planet collisions
and ejections shifted, with collisions increasing for larger planetary radius, and ejections
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Table 4.1: Radii and corresponding densities of Jupiter mass planets used in the fixed radii
simulations.

RJ ρ [g/cm3]
1 1.33

1.5 0.393
2 0.166

Figure 4.5: The amount of planets lost per event-type for the various fixed radii sets.
Planet-planet collisions: 35/43/52, Ejections: 73/65/49, Collisions with star: 7/7/12, for
1RJ/1.5RJ/2RJ respectively.

decreasing. The number of times planets collided with the central body was small for all
sets.

The timescales of when the different type of planet loss happens are shown in figure 4.6.
As expected from the initial separation test in section 4.1, collisions begun to occur from
the time of the first close encounters, around 103 years into the simulation. The median
time for collisions is around 104 years, but they are present until almost the very end
of the 106 year simulations. Ejections appear later on, with medians in the hundreds-of-
thousands of years. The timescales for ejections and collisions respectively do not appear
to be dependent on the size of the planetary radius, as they are similar for all three sets.

In figure 4.7, one can see the cumulative distribution of eccentricities for surviving
planets at the end of simulation. The various radii sizes follow a closely similar distribu-
tion, where sets with larger radii have slightly more low-eccentric planets. A performed
Kolmogorov-Smirnov test could however not conclude that the different integrated sets
where not coming from the same distribution of eccentricities. In comparison with ob-
servational data1 from similarly sized giants (0.8 − 20MJ) with orbital periods above 100

1http://exoplanet.eu/catalog/ - Accessed: April 14th 2020
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Figure 4.6: The time periods of collisions and ejections from the different fixed radii sets.
Blue box and whiskers mark the range of times when collisions occurred, orange for ejec-
tions.

days, the simulations included more high eccentric planets.

4.5 Dynamical Radii Runs

This sections showcases the results from a set of 100 systems of three 1MJ planets each,
where the planet radius contracts as described in section 2.2.1. MERCURY calculates the
physical planetary radii from the density. But due to the nature of the fitting in section
2.2.1, the changing radii function diverges towards infinity at t = 0. Thus, during the
integration initialization, the contraction curve needs to be offset from t = 0, such that
it does not cause the simulation to break. For the simulations presented here, the offset
was set to equal the 6 day integration step size which will have a negligible effect on the
contraction in the long run. At t = 6 days the radius is ∼ 25RJ , which is well within the
Hill radii of the inner most planet (∼ 0.1 AU) and will therefore not cause any breakage
in the integration.

The fractional energy change due to the integrator was below 10−5 for all systems,
which is deemed satisfactory.

The timescales for ejections and collisions are similar to the three sets of fixed radii,
as can be seen in figure 4.8. However as indicated by the smaller box for collisions on the
changing radii set, the earliest 3/4 of collisions had occurred ∼ 20000 years sooner than
for the fixed radii simulations. For reference, the radii is ∼ 3.3RJ at 104 years. This shift
towards earlier times for collision events can be reflected on with the Safronov number
Θ, which quantifies likely outcomes of close encounters and is dependent on the planetary
radius. Lower values favor collisions as an outcome of scattering, and figure 4.9 shows how
Θ increases over time, as the radius contracts.
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Figure 4.7: End of simulations cumulative eccentricity distribution for planets, compared
to observational data. Figure on right only uses e > 0.2

Figure 4.8: The time periods of collisions and ejections from the different fixed radii sets
together with the changing radii set. Blue box and whiskers mark the range of times when
collisions occurred, orange for ejections.
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Figure 4.9: The Safronov number (eq. 2.1) for the 1MJ radius contraction in 2.2, at the
initial placement of the inner planet a = 2 AU.

Out of the 300 initial planets 111 were lost to planet-planet collisions, ejections or
collisions with the central body. The bar graph in figure 4.10 shows the distribution of
this, in comparison to the sets of fixed radii systems. Collisions occurred slightly more often
than ejections, in a similar amount and ratio as the set of 2RJ fixed radii planets, which is
also significantly different from the 1RJ fixed radii control sample. Planets colliding with
the central body are few, like for the fixed radii runs. All 100 systems lost at least one
planet, of which 11 systems lost two.

The cumulative eccentricity distribution for this set of simulations is shown in figure
4.11, in comparison to both observational data and the fixed radii sets. The distribution
is similar to that of the observational data at low eccentricities (< 0.2) but deviates from
it for higher eccentricities where it more closely resembles the results of the fixed radii
simulations. Notably the eccentricities differ between the changing radii set and the 2RJ

fixed radii set, despite the similarity in the rate of collisions and ejections. A Kolmogorov-
Smirnov test between the two, gives a p-value < 0.003 indicating that they are not drawn
from the same distribution. The only other measured difference between the sets in this
project was that collisions occurred more early on in the changing radii set. Perhaps
suggesting that the final eccentricity distribution in addition to the dependence on the
rate of collision, also depends on the time at which collisions occur.

Figure 4.12 shows a density plot for the final eccentricity of planets in systems where
a collision occurred in comparison to systems without any collisions. It also shows the
density of eccentricities for all surviving planets in the entire set. The plot shows that
planets in systems where a collision took place have lower final eccentricities then the rest.
If a collision is the first event where a planet is lost in a system, the two remaining planets
will have unequal masses. As reviewed in Davies et al. (2014), scattering between unequal-
mass planets have been shown to result in less eccentric distributions then scattering of
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Figure 4.10: The amount of planetary losses per event-type, for the various fixed radii sets
and the changing radii set. Planet-planet collisions: 35/43/52/55, Ejections: 73/65/49/51,
Collisions with star: 7/7/12/5, for 1RJ/1.5RJ/2RJ/changing radii respectively.

Figure 4.11: End of simulations cumulative eccentricity distribution for planets from the
changing radii set, compared to observational data. Right hand side plot shows the same
distribution limited to e > 0.2.
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Figure 4.12: Density plots of eccentricities for planets in systems where: collision occurred,
no collision occurred, and all systems are included respectively. Additionally, the dotted
black line is the density of eccentricities for observed giant planets.

equal-mass planets.
The same deviation from the observational data in figure 4.11, is seen in figure 4.12

where the density of the whole set decreases into a plateau between eccentricities 0.4−0.8,
while the observational data continuous to decrease.

Finally, figure 4.13 shows the final eccentricities plotted against the final semi-major,
differentiating by final mass, and the initial semi-major axis placements at e = 0. In line
with Chatterjee et al. (2008), planets that are scattered into orbits with high a tend to get
high eccentricities. The same empty, wedge-shaped region pointed towards the placement of
the initial middle planet can also been seen, which exists out of the requirement for orbital
stability after scattering. Planets close to the initial placements tend to be from systems
where a collision occurred, others are more scattered and from systems with ejection events.
There is a clear difference between the semi-major axes of 1MJ and 2MJ planets close to the
initial placements, arising from orbits mass dependence. For planets scattered to smaller
distances, a ' 1 AU, the eccentricities vary widely. This decrease in e could be from
long-term gravitational interactions between the inner and outer planet after scattering,
in which the inner orbit circularizes.

A noteworthy part of this plot is the accumulation of planets with 5 < a < 20 AU at
e ' 0.2, the reason for which is not clear. From further examination we conclude that it is
at least not in correlation with the final mass, nor the amount of planets left in the system.
This accumulation and the subsequent ’gap’ of planets with ∼ 0.2 < e <∼ 0.6, is also
reflected in figure 4.11, where the cumulative eccentricities of the changing radii sharply
deviates from the observational line.
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Figure 4.13: Final eccentricities and semi-major axes for planets in changing radii test,
with color differentiating between 1MJ and 2MJ planets. Orange crosses marks the initial
semi-major axes, with e = 0.
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Chapter 5

Discussion & Conclusions

The purpose of this project was to investigate the effects of a contracting physical radius
for young giant planets on planet scattering. Simulations of three equal-mass giant planets
for the first 106 years of their development after gas had dissipated from the protoplanetary
disk were conducted using MERCURY.

The sets of fixed radii planets show that the balance between collisions and ejections
is indeed dependent on the radius. It shows that more collisions occur for larger planetary
radii. The rate of ejections will also decrease for larger radii, however the total balance can
not be properly analyzed since we expect more ejection to have occurred if the integration
time had been extended beyond 106 years. For the set where the radii decreased with
respect to time, the rate of collisions also increased, and the total number of planets lost
in this way was similar to that of the fixed 2RJ simulations.

Collisions indeed occur quite early on in the evolution of the system compared to
ejections, at which point the planetary radius can be a few times larger than at the very
end. The Safronov number Θ, which depends on the planet radius and is shown in figure
4.9 for the contraction curve made in section 2.2.1. Θ increases as the planetary radius,
and cross section becomes smaller, indicating the likelihood of collisions as an outcome of
scattering is larger early on and diminishes over time.

In section 4.5 we noted the difference between the cumulative final eccentricity distri-
bution between the fixed 2RJ set and the changing radii set (see figure 4.11), despite the
similarity in rate of collisions and ejections. A KS-test confirmed that the eccentricities
were not drawn from the same distribution, indicating that there might be another factor
at play. The other measured difference between the sets were the occurrence times for
collisions, seen in figure 4.6, where the first 3/4 of the collisions in the changing radii set
occurred a factor of 3 times earlier at times when the radius was significantly greater than
2RJ . This might suggest that the time dependence in the rate of collisions can have an
effect on planetary orbital evolution. Further research into this could include more sets of
fixed radii.

If a collision is the first type of event in our three planet systems in which a planet is lost,
then the remaining planets will have unequal-masses. As reviewed in Davies et al. (2014),
surviving planets of unequal-mass scattering will have smaller eccentricities compared to
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equal-mass scattering. The resulting distribution of eccentricities then showed that systems
with contracting planets did indeed have lower final eccentricities.

In comparison with observational data the performed integration set of dynamical radii
planets had more planets with high eccentricities. This could perhaps be explained by
initial planet masses being fixed and equal, and not drawn from some distribution, or the
number of planets in each system only being three.

One possible improvement to these results would be increasing the number of systems
in each simulated set. This could give greater statistical significance and allow for more
conclusive results. Extending integration times could also give the opportunity to attain
truer numbers for ejection-events, as there are likely to have been restrained by the low
106 years integration time.

The simulations in this thesis considered planets to be ejected at a > 100 AU. Although
low, some justification for this could be for stars forming in dense stellar clusters where
planets at such distances could instead get bounded to neighboring stars passing by. How-
ever that is not guaranteed to happen to all planets with large orbits and they can still
play a part in the orbital evolution of remaining planets if still bound to the star. Thus it
would be wise to use larger ejection distances for future simulations, perhaps on the order
of 104 − 105 AU similar to the outer edge distance of the Oort cloud1.

How collisions were resolved for the simulations with changing radii in this thesis could
be improved. Here the planets merged by combining the masses, but without any ad-
justment to the radius. Instead the radius continued to decrease from the same point
on the contraction curve. One could expect that a collision between two giant planets
could, beside fragmentation, also either significantly alter or reset the planet cooling and
contraction.

The contraction curve used in this thesis may also be an upper limit for the effects of
planet contraction on planet-planet scattering. It was created from the contraction curve
from Baraffe et al. (2003), which is modeled based on the general theory of brown dwarf
cooling. The difference between the formation processes of giant planets and brown dwarfs
will affect initial conditions for cooling, brown dwarfs formed by direct collapse would be
expected to be hotter than core accreted giant planets. Additionally, the metallicity can
differ between the two, which in turn can influence the cooling and contraction. For ex-
ample, Spiegel and Burrows (2012) present more complex cooling models of non-irradiated
objects on the range of giant planets and small brown dwarfs. They give an analytical
fit to the radii-mass-entropy relation, which could be interesting for further research into
scattering outcomes for contracting planets in systems with diverse initial masses.
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